drm/i915: Fix bug in user proto-context creation that leaked contexts
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
3136deb7 26#include <linux/dma-fence-chain.h>
e8861964
CW
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
e6017571
IM
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
f361bf4a 31#include <linux/sched/signal.h>
fa545cbf 32
10be98a7 33#include "gem/i915_gem_context.h"
b3786b29 34#include "gt/intel_breadcrumbs.h"
10be98a7 35#include "gt/intel_context.h"
38b237ea
CW
36#include "gt/intel_engine.h"
37#include "gt/intel_engine_heartbeat.h"
45233ab2 38#include "gt/intel_gpu_commands.h"
38b237ea 39#include "gt/intel_reset.h"
2871ea85 40#include "gt/intel_ring.h"
3e7abf81 41#include "gt/intel_rps.h"
10be98a7 42
21950ee7 43#include "i915_active.h"
696173b0 44#include "i915_drv.h"
a09d9a80 45#include "i915_trace.h"
696173b0 46#include "intel_pm.h"
05235c53 47
e8861964 48struct execute_cb {
e8861964
CW
49 struct irq_work work;
50 struct i915_sw_fence *fence;
f71e01a7 51 struct i915_request *signal;
e8861964
CW
52};
53
47514ac7
DV
54static struct kmem_cache *slab_requests;
55static struct kmem_cache *slab_execute_cbs;
32eb6bcf 56
f54d1867 57static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652 58{
5a833995 59 return dev_name(to_request(fence)->engine->i915->drm.dev);
04769652
CW
60}
61
f54d1867 62static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 63{
9f3ccd40
CW
64 const struct i915_gem_context *ctx;
65
e61e0f51
CW
66 /*
67 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
68 * may be freed when the request is no longer in use by the GPU.
69 * We could extend the life of a context to beyond that of all
70 * fences, possibly keeping the hw resource around indefinitely,
71 * or we just give them a false name. Since
72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 * lie seems justifiable.
74 */
75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 return "signaled";
77
6a8679c0 78 ctx = i915_request_gem_context(to_request(fence));
9f3ccd40
CW
79 if (!ctx)
80 return "[" DRIVER_NAME "]";
81
82 return ctx->name;
04769652
CW
83}
84
f54d1867 85static bool i915_fence_signaled(struct dma_fence *fence)
04769652 86{
e61e0f51 87 return i915_request_completed(to_request(fence));
04769652
CW
88}
89
f54d1867 90static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 91{
52c0fdb2 92 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
93}
94
f54d1867 95static signed long i915_fence_wait(struct dma_fence *fence,
04769652 96 bool interruptible,
e95433c7 97 signed long timeout)
04769652 98{
62eb3c24
CW
99 return i915_request_wait(to_request(fence),
100 interruptible | I915_WAIT_PRIORITY,
101 timeout);
04769652
CW
102}
103
43acd651
CW
104struct kmem_cache *i915_request_slab_cache(void)
105{
47514ac7 106 return slab_requests;
43acd651
CW
107}
108
f54d1867 109static void i915_fence_release(struct dma_fence *fence)
04769652 110{
e61e0f51 111 struct i915_request *rq = to_request(fence);
04769652 112
ee242ca7
MB
113 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
114 rq->guc_prio != GUC_PRIO_FINI);
115
e61e0f51
CW
116 /*
117 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
118 * is immediately reused), mark the fences as being freed now.
119 * Otherwise the debugobjects for the fences are only marked as
120 * freed when the slab cache itself is freed, and so we would get
121 * caught trying to reuse dead objects.
122 */
e61e0f51 123 i915_sw_fence_fini(&rq->submit);
0c441cb6 124 i915_sw_fence_fini(&rq->semaphore);
fc158405 125
32a4605b 126 /*
1e98d8c5
MB
127 * Keep one request on each engine for reserved use under mempressure,
128 * do not use with virtual engines as this really is only needed for
129 * kernel contexts.
32a4605b 130 */
1e98d8c5
MB
131 if (!intel_engine_is_virtual(rq->engine) &&
132 !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
133 intel_context_put(rq->context);
43acd651 134 return;
1e98d8c5
MB
135 }
136
137 intel_context_put(rq->context);
43acd651 138
47514ac7 139 kmem_cache_free(slab_requests, rq);
04769652
CW
140}
141
f54d1867 142const struct dma_fence_ops i915_fence_ops = {
04769652
CW
143 .get_driver_name = i915_fence_get_driver_name,
144 .get_timeline_name = i915_fence_get_timeline_name,
145 .enable_signaling = i915_fence_enable_signaling,
146 .signaled = i915_fence_signaled,
147 .wait = i915_fence_wait,
148 .release = i915_fence_release,
04769652
CW
149};
150
b87b6c0d
CW
151static void irq_execute_cb(struct irq_work *wrk)
152{
153 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
154
155 i915_sw_fence_complete(cb->fence);
47514ac7 156 kmem_cache_free(slab_execute_cbs, cb);
b87b6c0d
CW
157}
158
2e4c6c1a
CW
159static __always_inline void
160__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
b87b6c0d 161{
fc0e1270 162 struct execute_cb *cb, *cn;
b87b6c0d 163
fc0e1270 164 if (llist_empty(&rq->execute_cb))
b87b6c0d
CW
165 return;
166
2e4c6c1a
CW
167 llist_for_each_entry_safe(cb, cn,
168 llist_del_all(&rq->execute_cb),
7a9f50a0 169 work.node.llist)
2e4c6c1a
CW
170 fn(&cb->work);
171}
b87b6c0d 172
2e4c6c1a
CW
173static void __notify_execute_cb_irq(struct i915_request *rq)
174{
175 __notify_execute_cb(rq, irq_work_queue);
176}
177
178static bool irq_work_imm(struct irq_work *wrk)
179{
180 wrk->func(wrk);
181 return false;
182}
183
d1cee2d3 184void i915_request_notify_execute_cb_imm(struct i915_request *rq)
2e4c6c1a
CW
185{
186 __notify_execute_cb(rq, irq_work_imm);
b87b6c0d
CW
187}
188
e61e0f51 189static void free_capture_list(struct i915_request *request)
b0fd47ad 190{
e61e0f51 191 struct i915_capture_list *capture;
b0fd47ad 192
67a3acaa 193 capture = fetch_and_zero(&request->capture_list);
b0fd47ad 194 while (capture) {
e61e0f51 195 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
196
197 kfree(capture);
198 capture = next;
199 }
200}
201
89dd019a
CW
202static void __i915_request_fill(struct i915_request *rq, u8 val)
203{
204 void *vaddr = rq->ring->vaddr;
205 u32 head;
206
207 head = rq->infix;
208 if (rq->postfix < head) {
209 memset(vaddr + head, val, rq->ring->size - head);
210 head = 0;
211 }
212 memset(vaddr + head, val, rq->postfix - head);
213}
214
7dbc19da
TU
215/**
216 * i915_request_active_engine
217 * @rq: request to inspect
218 * @active: pointer in which to return the active engine
219 *
220 * Fills the currently active engine to the @active pointer if the request
221 * is active and still not completed.
222 *
223 * Returns true if request was active or false otherwise.
224 */
225bool
226i915_request_active_engine(struct i915_request *rq,
227 struct intel_engine_cs **active)
228{
229 struct intel_engine_cs *engine, *locked;
230 bool ret = false;
231
232 /*
233 * Serialise with __i915_request_submit() so that it sees
234 * is-banned?, or we know the request is already inflight.
235 *
236 * Note that rq->engine is unstable, and so we double
237 * check that we have acquired the lock on the final engine.
238 */
239 locked = READ_ONCE(rq->engine);
349a2bc5 240 spin_lock_irq(&locked->sched_engine->lock);
7dbc19da 241 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
349a2bc5 242 spin_unlock(&locked->sched_engine->lock);
7dbc19da 243 locked = engine;
349a2bc5 244 spin_lock(&locked->sched_engine->lock);
7dbc19da
TU
245 }
246
247 if (i915_request_is_active(rq)) {
248 if (!__i915_request_is_complete(rq))
249 *active = locked;
250 ret = true;
251 }
252
349a2bc5 253 spin_unlock_irq(&locked->sched_engine->lock);
7dbc19da
TU
254
255 return ret;
256}
257
9b4d0598
TU
258static void __rq_init_watchdog(struct i915_request *rq)
259{
260 rq->watchdog.timer.function = NULL;
261}
262
263static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
264{
265 struct i915_request *rq =
266 container_of(hrtimer, struct i915_request, watchdog.timer);
267 struct intel_gt *gt = rq->engine->gt;
268
269 if (!i915_request_completed(rq)) {
270 if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
271 schedule_work(&gt->watchdog.work);
272 } else {
273 i915_request_put(rq);
274 }
275
276 return HRTIMER_NORESTART;
277}
278
279static void __rq_arm_watchdog(struct i915_request *rq)
280{
281 struct i915_request_watchdog *wdg = &rq->watchdog;
282 struct intel_context *ce = rq->context;
283
284 if (!ce->watchdog.timeout_us)
285 return;
286
f7c37977
TU
287 i915_request_get(rq);
288
9b4d0598
TU
289 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
290 wdg->timer.function = __rq_watchdog_expired;
291 hrtimer_start_range_ns(&wdg->timer,
292 ns_to_ktime(ce->watchdog.timeout_us *
293 NSEC_PER_USEC),
294 NSEC_PER_MSEC,
295 HRTIMER_MODE_REL);
9b4d0598
TU
296}
297
298static void __rq_cancel_watchdog(struct i915_request *rq)
299{
300 struct i915_request_watchdog *wdg = &rq->watchdog;
301
302 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
303 i915_request_put(rq);
304}
305
66101975 306bool i915_request_retire(struct i915_request *rq)
05235c53 307{
163433e5 308 if (!__i915_request_is_complete(rq))
9db0c5ca 309 return false;
d9b13c4d 310
639f2f24 311 RQ_TRACE(rq, "\n");
4c7d62c6 312
9db0c5ca
CW
313 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
314 trace_i915_request_retire(rq);
2e4c6c1a 315 i915_request_mark_complete(rq);
80b204bc 316
9b4d0598
TU
317 __rq_cancel_watchdog(rq);
318
e5dadff4
CW
319 /*
320 * We know the GPU must have read the request to have
321 * sent us the seqno + interrupt, so use the position
322 * of tail of the request to update the last known position
323 * of the GPU head.
324 *
325 * Note this requires that we are always called in request
326 * completion order.
327 */
d19d71fc
CW
328 GEM_BUG_ON(!list_is_first(&rq->link,
329 &i915_request_timeline(rq)->requests));
89dd019a
CW
330 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
331 /* Poison before we release our space in the ring */
332 __i915_request_fill(rq, POISON_FREE);
e5dadff4 333 rq->ring->head = rq->postfix;
b0fd47ad 334
e2300560
CW
335 if (!i915_request_signaled(rq)) {
336 spin_lock_irq(&rq->lock);
9db0c5ca 337 dma_fence_signal_locked(&rq->fence);
e2300560
CW
338 spin_unlock_irq(&rq->lock);
339 }
c18636f7 340
4e5c8a99 341 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
3e7abf81 342 atomic_dec(&rq->engine->gt->rps.num_waiters);
c18636f7
CW
343
344 /*
345 * We only loosely track inflight requests across preemption,
346 * and so we may find ourselves attempting to retire a _completed_
347 * request that we have removed from the HW and put back on a run
348 * queue.
349 *
350 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
351 * after removing the breadcrumb and signaling it, so that we do not
352 * inadvertently attach the breadcrumb to a completed request.
353 */
d1cee2d3 354 rq->engine->remove_active_request(rq);
fc0e1270 355 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
52d7f16e 356
dff2a11b 357 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
9db0c5ca 358
9f3ccd40
CW
359 intel_context_exit(rq->context);
360 intel_context_unpin(rq->context);
75d0a7f3 361
9db0c5ca
CW
362 free_capture_list(rq);
363 i915_sched_node_fini(&rq->sched);
364 i915_request_put(rq);
365
366 return true;
05235c53
CW
367}
368
e61e0f51 369void i915_request_retire_upto(struct i915_request *rq)
05235c53 370{
d19d71fc 371 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 372 struct i915_request *tmp;
05235c53 373
639f2f24 374 RQ_TRACE(rq, "\n");
163433e5 375 GEM_BUG_ON(!__i915_request_is_complete(rq));
4ffd6e0c 376
05235c53 377 do {
e5dadff4 378 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
38d5ec43 379 GEM_BUG_ON(!i915_request_completed(tmp));
9db0c5ca 380 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
381}
382
b55230e5
CW
383static struct i915_request * const *
384__engine_active(struct intel_engine_cs *engine)
385{
386 return READ_ONCE(engine->execlists.active);
387}
388
389static bool __request_in_flight(const struct i915_request *signal)
390{
391 struct i915_request * const *port, *rq;
392 bool inflight = false;
393
394 if (!i915_request_is_ready(signal))
395 return false;
396
397 /*
398 * Even if we have unwound the request, it may still be on
399 * the GPU (preempt-to-busy). If that request is inside an
400 * unpreemptible critical section, it will not be removed. Some
401 * GPU functions may even be stuck waiting for the paired request
402 * (__await_execution) to be submitted and cannot be preempted
403 * until the bond is executing.
404 *
405 * As we know that there are always preemption points between
406 * requests, we know that only the currently executing request
407 * may be still active even though we have cleared the flag.
b4d9145b 408 * However, we can't rely on our tracking of ELSP[0] to know
b55230e5
CW
409 * which request is currently active and so maybe stuck, as
410 * the tracking maybe an event behind. Instead assume that
411 * if the context is still inflight, then it is still active
412 * even if the active flag has been cleared.
b4d9145b
CW
413 *
414 * To further complicate matters, if there a pending promotion, the HW
415 * may either perform a context switch to the second inflight execlists,
416 * or it may switch to the pending set of execlists. In the case of the
417 * latter, it may send the ACK and we process the event copying the
418 * pending[] over top of inflight[], _overwriting_ our *active. Since
419 * this implies the HW is arbitrating and not struck in *active, we do
420 * not worry about complete accuracy, but we do require no read/write
421 * tearing of the pointer [the read of the pointer must be valid, even
422 * as the array is being overwritten, for which we require the writes
423 * to avoid tearing.]
424 *
425 * Note that the read of *execlists->active may race with the promotion
426 * of execlists->pending[] to execlists->inflight[], overwritting
427 * the value at *execlists->active. This is fine. The promotion implies
428 * that we received an ACK from the HW, and so the context is not
429 * stuck -- if we do not see ourselves in *active, the inflight status
430 * is valid. If instead we see ourselves being copied into *active,
431 * we are inflight and may signal the callback.
b55230e5
CW
432 */
433 if (!intel_context_inflight(signal->context))
434 return false;
435
436 rcu_read_lock();
b4d9145b
CW
437 for (port = __engine_active(signal->engine);
438 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
439 port++) {
b55230e5
CW
440 if (rq->context == signal->context) {
441 inflight = i915_seqno_passed(rq->fence.seqno,
442 signal->fence.seqno);
443 break;
444 }
445 }
446 rcu_read_unlock();
447
448 return inflight;
449}
450
e8861964 451static int
c81471f5
CW
452__await_execution(struct i915_request *rq,
453 struct i915_request *signal,
c81471f5 454 gfp_t gfp)
e8861964
CW
455{
456 struct execute_cb *cb;
457
5ac545b8 458 if (i915_request_is_active(signal))
e8861964
CW
459 return 0;
460
47514ac7 461 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
e8861964
CW
462 if (!cb)
463 return -ENOMEM;
464
465 cb->fence = &rq->submit;
466 i915_sw_fence_await(cb->fence);
467 init_irq_work(&cb->work, irq_execute_cb);
468
2e4c6c1a
CW
469 /*
470 * Register the callback first, then see if the signaler is already
471 * active. This ensures that if we race with the
472 * __notify_execute_cb from i915_request_submit() and we are not
473 * included in that list, we get a second bite of the cherry and
474 * execute it ourselves. After this point, a future
475 * i915_request_submit() will notify us.
476 *
477 * In i915_request_retire() we set the ACTIVE bit on a completed
478 * request (then flush the execute_cb). So by registering the
479 * callback first, then checking the ACTIVE bit, we serialise with
480 * the completed/retired request.
481 */
7a9f50a0 482 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
2e4c6c1a
CW
483 if (i915_request_is_active(signal) ||
484 __request_in_flight(signal))
d1cee2d3 485 i915_request_notify_execute_cb_imm(signal);
e8861964 486 }
e8861964
CW
487
488 return 0;
489}
490
36e191f0
CW
491static bool fatal_error(int error)
492{
493 switch (error) {
494 case 0: /* not an error! */
495 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
496 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
497 return false;
498 default:
499 return true;
500 }
501}
502
503void __i915_request_skip(struct i915_request *rq)
504{
505 GEM_BUG_ON(!fatal_error(rq->fence.error));
506
507 if (rq->infix == rq->postfix)
508 return;
509
7904e081
CW
510 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
511
36e191f0
CW
512 /*
513 * As this request likely depends on state from the lost
514 * context, clear out all the user operations leaving the
515 * breadcrumb at the end (so we get the fence notifications).
516 */
517 __i915_request_fill(rq, 0);
518 rq->infix = rq->postfix;
519}
520
38b237ea 521bool i915_request_set_error_once(struct i915_request *rq, int error)
36e191f0
CW
522{
523 int old;
524
525 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
526
527 if (i915_request_signaled(rq))
38b237ea 528 return false;
36e191f0
CW
529
530 old = READ_ONCE(rq->fence.error);
531 do {
532 if (fatal_error(old))
38b237ea 533 return false;
36e191f0 534 } while (!try_cmpxchg(&rq->fence.error, &old, error));
38b237ea
CW
535
536 return true;
36e191f0
CW
537}
538
c10e4a79 539struct i915_request *i915_request_mark_eio(struct i915_request *rq)
baa7c2cd
CW
540{
541 if (__i915_request_is_complete(rq))
c10e4a79 542 return NULL;
baa7c2cd
CW
543
544 GEM_BUG_ON(i915_request_signaled(rq));
545
c10e4a79
CW
546 /* As soon as the request is completed, it may be retired */
547 rq = i915_request_get(rq);
548
baa7c2cd
CW
549 i915_request_set_error_once(rq, -EIO);
550 i915_request_mark_complete(rq);
c10e4a79
CW
551
552 return rq;
baa7c2cd
CW
553}
554
c0bb487d 555bool __i915_request_submit(struct i915_request *request)
5590af3e 556{
73cb9701 557 struct intel_engine_cs *engine = request->engine;
c0bb487d 558 bool result = false;
5590af3e 559
639f2f24 560 RQ_TRACE(request, "\n");
d9b13c4d 561
e60a870d 562 GEM_BUG_ON(!irqs_disabled());
349a2bc5 563 lockdep_assert_held(&engine->sched_engine->lock);
e60a870d 564
c0bb487d
CW
565 /*
566 * With the advent of preempt-to-busy, we frequently encounter
567 * requests that we have unsubmitted from HW, but left running
568 * until the next ack and so have completed in the meantime. On
569 * resubmission of that completed request, we can skip
570 * updating the payload, and execlists can even skip submitting
571 * the request.
572 *
573 * We must remove the request from the caller's priority queue,
574 * and the caller must only call us when the request is in their
349a2bc5 575 * priority queue, under the sched_engine->lock. This ensures that the
c0bb487d
CW
576 * request has *not* yet been retired and we can safely move
577 * the request into the engine->active.list where it will be
578 * dropped upon retiring. (Otherwise if resubmit a *retired*
579 * request, this would be a horrible use-after-free.)
580 */
9736387a
CW
581 if (__i915_request_is_complete(request)) {
582 list_del_init(&request->sched.link);
583 goto active;
584 }
c0bb487d 585
36e191f0
CW
586 if (unlikely(intel_context_is_banned(request->context)))
587 i915_request_set_error_once(request, -EIO);
7d442ea7 588
36e191f0
CW
589 if (unlikely(fatal_error(request->fence.error)))
590 __i915_request_skip(request);
d9e61b66 591
ca6e56f6
CW
592 /*
593 * Are we using semaphores when the gpu is already saturated?
594 *
595 * Using semaphores incurs a cost in having the GPU poll a
596 * memory location, busywaiting for it to change. The continual
597 * memory reads can have a noticeable impact on the rest of the
598 * system with the extra bus traffic, stalling the cpu as it too
599 * tries to access memory across the bus (perf stat -e bus-cycles).
600 *
601 * If we installed a semaphore on this request and we only submit
602 * the request after the signaler completed, that indicates the
603 * system is overloaded and using semaphores at this time only
604 * increases the amount of work we are doing. If so, we disable
605 * further use of semaphores until we are idle again, whence we
606 * optimistically try again.
607 */
608 if (request->sched.semaphores &&
609 i915_sw_fence_signaled(&request->semaphore))
44d89409 610 engine->saturated |= request->sched.semaphores;
ca6e56f6 611
c0bb487d
CW
612 engine->emit_fini_breadcrumb(request,
613 request->ring->vaddr + request->postfix);
b5773a36 614
c0bb487d 615 trace_i915_request_execute(request);
96d3e0e1
JH
616 if (engine->bump_serial)
617 engine->bump_serial(engine);
618 else
619 engine->serial++;
620
c0bb487d 621 result = true;
422d7df4 622
9736387a 623 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
d1cee2d3 624 engine->add_active_request(request);
9736387a
CW
625active:
626 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
627 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
b5773a36 628
c18636f7
CW
629 /*
630 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
631 *
632 * In the future, perhaps when we have an active time-slicing scheduler,
633 * it will be interesting to unsubmit parallel execution and remove
634 * busywaits from the GPU until their master is restarted. This is
635 * quite hairy, we have to carefully rollback the fence and do a
636 * preempt-to-idle cycle on the target engine, all the while the
637 * master execute_cb may refire.
638 */
2e4c6c1a
CW
639 __notify_execute_cb_irq(request);
640
641 /* We may be recursing from the signal callback of another i915 fence */
5701a66e
CW
642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643 i915_request_enable_breadcrumb(request);
f2d13290 644
c0bb487d 645 return result;
d55ac5bf
CW
646}
647
e61e0f51 648void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
649{
650 struct intel_engine_cs *engine = request->engine;
651 unsigned long flags;
23902e49 652
d55ac5bf 653 /* Will be called from irq-context when using foreign fences. */
349a2bc5 654 spin_lock_irqsave(&engine->sched_engine->lock, flags);
d55ac5bf 655
e61e0f51 656 __i915_request_submit(request);
d55ac5bf 657
349a2bc5 658 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
d55ac5bf
CW
659}
660
e61e0f51 661void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 662{
d6a2289d 663 struct intel_engine_cs *engine = request->engine;
d55ac5bf 664
c18636f7
CW
665 /*
666 * Only unwind in reverse order, required so that the per-context list
667 * is kept in seqno/ring order.
668 */
639f2f24 669 RQ_TRACE(request, "\n");
d9b13c4d 670
e60a870d 671 GEM_BUG_ON(!irqs_disabled());
349a2bc5 672 lockdep_assert_held(&engine->sched_engine->lock);
48bc2a4a 673
e61e0f51 674 /*
c18636f7
CW
675 * Before we remove this breadcrumb from the signal list, we have
676 * to ensure that a concurrent dma_fence_enable_signaling() does not
677 * attach itself. We first mark the request as no longer active and
678 * make sure that is visible to other cores, and then remove the
679 * breadcrumb if attached.
d6a2289d 680 */
c18636f7
CW
681 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
682 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
d6a2289d 683 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 684 i915_request_cancel_breadcrumb(request);
b5773a36 685
dba5a7f3 686 /* We've already spun, don't charge on resubmitting. */
163433e5 687 if (request->sched.semaphores && __i915_request_has_started(request))
dba5a7f3 688 request->sched.semaphores = 0;
dba5a7f3 689
e61e0f51
CW
690 /*
691 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 692 * will get woken by any other event or us re-adding this request
e61e0f51 693 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
694 * should be quite adapt at finding that the request now has a new
695 * global_seqno to the one they went to sleep on.
696 */
697}
698
e61e0f51 699void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
700{
701 struct intel_engine_cs *engine = request->engine;
702 unsigned long flags;
703
704 /* Will be called from irq-context when using foreign fences. */
349a2bc5 705 spin_lock_irqsave(&engine->sched_engine->lock, flags);
d6a2289d 706
e61e0f51 707 __i915_request_unsubmit(request);
d6a2289d 708
349a2bc5 709 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
5590af3e
CW
710}
711
38b237ea
CW
712void i915_request_cancel(struct i915_request *rq, int error)
713{
714 if (!i915_request_set_error_once(rq, error))
715 return;
716
717 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
718
62eaf0ae 719 intel_context_cancel_request(rq->context, rq);
38b237ea
CW
720}
721
23902e49 722static int __i915_sw_fence_call
d55ac5bf 723submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 724{
e61e0f51 725 struct i915_request *request =
48bc2a4a 726 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
727
728 switch (state) {
729 case FENCE_COMPLETE:
e61e0f51 730 trace_i915_request_submit(request);
ef468849
CW
731
732 if (unlikely(fence->error))
36e191f0 733 i915_request_set_error_once(request, fence->error);
9b4d0598
TU
734 else
735 __rq_arm_watchdog(request);
ef468849 736
af7a8ffa 737 /*
e61e0f51
CW
738 * We need to serialize use of the submit_request() callback
739 * with its hotplugging performed during an emergency
740 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
741 * critical section in order to force i915_gem_set_wedged() to
742 * wait until the submit_request() is completed before
743 * proceeding.
af7a8ffa
DV
744 */
745 rcu_read_lock();
d55ac5bf 746 request->engine->submit_request(request);
af7a8ffa 747 rcu_read_unlock();
48bc2a4a
CW
748 break;
749
750 case FENCE_FREE:
e61e0f51 751 i915_request_put(request);
48bc2a4a
CW
752 break;
753 }
754
23902e49
CW
755 return NOTIFY_DONE;
756}
757
b7404c7e
CW
758static int __i915_sw_fence_call
759semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
760{
209df10b 761 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
b7404c7e
CW
762
763 switch (state) {
764 case FENCE_COMPLETE:
b7404c7e
CW
765 break;
766
767 case FENCE_FREE:
209df10b 768 i915_request_put(rq);
b7404c7e
CW
769 break;
770 }
771
772 return NOTIFY_DONE;
773}
774
e5dadff4 775static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
776{
777 struct i915_request *rq, *rn;
778
e5dadff4 779 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 780 if (!i915_request_retire(rq))
d22ba0cb 781 break;
d22ba0cb
CW
782}
783
784static noinline struct i915_request *
43acd651
CW
785request_alloc_slow(struct intel_timeline *tl,
786 struct i915_request **rsvd,
787 gfp_t gfp)
d22ba0cb 788{
d22ba0cb
CW
789 struct i915_request *rq;
790
43acd651
CW
791 /* If we cannot wait, dip into our reserves */
792 if (!gfpflags_allow_blocking(gfp)) {
793 rq = xchg(rsvd, NULL);
794 if (!rq) /* Use the normal failure path for one final WARN */
795 goto out;
d22ba0cb 796
43acd651
CW
797 return rq;
798 }
799
800 if (list_empty(&tl->requests))
2ccdf6a1
CW
801 goto out;
802
9db0c5ca 803 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 804 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
805 i915_request_retire(rq);
806
47514ac7 807 rq = kmem_cache_alloc(slab_requests,
9db0c5ca
CW
808 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
809 if (rq)
810 return rq;
811
d22ba0cb 812 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 813 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
814 cond_synchronize_rcu(rq->rcustate);
815
816 /* Retire our old requests in the hope that we free some */
e5dadff4 817 retire_requests(tl);
d22ba0cb
CW
818
819out:
47514ac7 820 return kmem_cache_alloc(slab_requests, gfp);
d22ba0cb
CW
821}
822
67a3acaa
CW
823static void __i915_request_ctor(void *arg)
824{
825 struct i915_request *rq = arg;
826
827 spin_lock_init(&rq->lock);
828 i915_sched_node_init(&rq->sched);
829 i915_sw_fence_init(&rq->submit, submit_notify);
830 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
831
67a3acaa
CW
832 rq->capture_list = NULL;
833
fc0e1270 834 init_llist_head(&rq->execute_cb);
67a3acaa
CW
835}
836
e61e0f51 837struct i915_request *
2ccdf6a1 838__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 839{
75d0a7f3 840 struct intel_timeline *tl = ce->timeline;
ebece753
CW
841 struct i915_request *rq;
842 u32 seqno;
05235c53
CW
843 int ret;
844
0333ec88 845 might_alloc(gfp);
28176ef4 846
2ccdf6a1
CW
847 /* Check that the caller provided an already pinned context */
848 __intel_context_pin(ce);
9b5f4e5e 849
e61e0f51
CW
850 /*
851 * Beware: Dragons be flying overhead.
5a198b8c
CW
852 *
853 * We use RCU to look up requests in flight. The lookups may
854 * race with the request being allocated from the slab freelist.
855 * That is the request we are writing to here, may be in the process
21950ee7 856 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
857 * we have to be very careful when overwriting the contents. During
858 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 859 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
860 *
861 * The reference count is incremented atomically. If it is zero,
862 * the lookup knows the request is unallocated and complete. Otherwise,
863 * it is either still in use, or has been reallocated and reset
f54d1867
CW
864 * with dma_fence_init(). This increment is safe for release as we
865 * check that the request we have a reference to and matches the active
5a198b8c
CW
866 * request.
867 *
868 * Before we increment the refcount, we chase the request->engine
869 * pointer. We must not call kmem_cache_zalloc() or else we set
870 * that pointer to NULL and cause a crash during the lookup. If
871 * we see the request is completed (based on the value of the
872 * old engine and seqno), the lookup is complete and reports NULL.
873 * If we decide the request is not completed (new engine or seqno),
874 * then we grab a reference and double check that it is still the
875 * active request - which it won't be and restart the lookup.
876 *
877 * Do not use kmem_cache_zalloc() here!
878 */
47514ac7 879 rq = kmem_cache_alloc(slab_requests,
2ccdf6a1 880 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 881 if (unlikely(!rq)) {
43acd651 882 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
e61e0f51 883 if (!rq) {
31c70f97
CW
884 ret = -ENOMEM;
885 goto err_unreserve;
886 }
28176ef4 887 }
05235c53 888
1e98d8c5
MB
889 /*
890 * Hold a reference to the intel_context over life of an i915_request.
891 * Without this an i915_request can exist after the context has been
892 * destroyed (e.g. request retired, context closed, but user space holds
893 * a reference to the request from an out fence). In the case of GuC
894 * submission + virtual engine, the engine that the request references
895 * is also destroyed which can trigger bad pointer dref in fence ops
896 * (e.g. i915_fence_get_driver_name). We could likely change these
897 * functions to avoid touching the engine but let's just be safe and
898 * hold the intel_context reference. In execlist mode the request always
899 * eventually points to a physical engine so this isn't an issue.
900 */
901 rq->context = intel_context_get(ce);
2ccdf6a1 902 rq->engine = ce->engine;
1fc44d9b 903 rq->ring = ce->ring;
89b6d183 904 rq->execution_mask = ce->engine->mask;
d19d71fc 905
855e39e6
CW
906 ret = intel_timeline_get_seqno(tl, rq, &seqno);
907 if (ret)
908 goto err_free;
909
be988eae
MA
910 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
911 tl->fence_context, seqno);
855e39e6 912
85bedbf1 913 RCU_INIT_POINTER(rq->timeline, tl);
ebece753 914 rq->hwsp_seqno = tl->hwsp_seqno;
163433e5 915 GEM_BUG_ON(__i915_request_is_complete(rq));
d19d71fc 916
ebece753 917 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 918
ee242ca7
MB
919 rq->guc_prio = GUC_PRIO_INIT;
920
48bc2a4a 921 /* We bump the ref for the fence chain */
67a3acaa
CW
922 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
923 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
5590af3e 924
67a3acaa 925 i915_sched_node_reinit(&rq->sched);
52e54209 926
67a3acaa 927 /* No zalloc, everything must be cleared after use */
e61e0f51 928 rq->batch = NULL;
9b4d0598 929 __rq_init_watchdog(rq);
67a3acaa 930 GEM_BUG_ON(rq->capture_list);
fc0e1270 931 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
2ccdf6a1 932
05235c53
CW
933 /*
934 * Reserve space in the ring buffer for all the commands required to
935 * eventually emit this request. This is to guarantee that the
e61e0f51 936 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
937 * to be redone if the request is not actually submitted straight
938 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
939 *
940 * Note that due to how we add reserved_space to intel_ring_begin()
941 * we need to double our request to ensure that if we need to wrap
942 * around inside i915_request_add() there is sufficient space at
943 * the beginning of the ring as well.
05235c53 944 */
2ccdf6a1
CW
945 rq->reserved_space =
946 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 947
2113184c
CW
948 /*
949 * Record the position of the start of the request so that
d045446d
CW
950 * should we detect the updated seqno part-way through the
951 * GPU processing the request, we never over-estimate the
952 * position of the head.
953 */
e61e0f51 954 rq->head = rq->ring->emit;
d045446d 955
2ccdf6a1 956 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
957 if (ret)
958 goto err_unwind;
2113184c 959
b3ee09a4
CW
960 rq->infix = rq->ring->emit; /* end of header; start of user payload */
961
2ccdf6a1 962 intel_context_mark_active(ce);
d22d2d07
CW
963 list_add_tail_rcu(&rq->link, &tl->requests);
964
e61e0f51 965 return rq;
05235c53 966
b1c24a61 967err_unwind:
1fc44d9b 968 ce->ring->emit = rq->head;
b1c24a61 969
1618bdb8 970 /* Make sure we didn't add ourselves to external state before freeing */
0c7112a0
CW
971 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
972 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 973
ebece753 974err_free:
1e98d8c5 975 intel_context_put(ce);
47514ac7 976 kmem_cache_free(slab_requests, rq);
28176ef4 977err_unreserve:
1fc44d9b 978 intel_context_unpin(ce);
8e637178 979 return ERR_PTR(ret);
05235c53
CW
980}
981
2ccdf6a1
CW
982struct i915_request *
983i915_request_create(struct intel_context *ce)
984{
985 struct i915_request *rq;
e5dadff4 986 struct intel_timeline *tl;
2ccdf6a1 987
e5dadff4
CW
988 tl = intel_context_timeline_lock(ce);
989 if (IS_ERR(tl))
990 return ERR_CAST(tl);
2ccdf6a1
CW
991
992 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
993 rq = list_first_entry(&tl->requests, typeof(*rq), link);
994 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
995 i915_request_retire(rq);
996
997 intel_context_enter(ce);
998 rq = __i915_request_create(ce, GFP_KERNEL);
999 intel_context_exit(ce); /* active reference transferred to request */
1000 if (IS_ERR(rq))
1001 goto err_unlock;
1002
1003 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 1004 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
1005
1006 return rq;
1007
1008err_unlock:
e5dadff4 1009 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
1010 return rq;
1011}
1012
0d90ccb7
CW
1013static int
1014i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1015{
6a79d848
CW
1016 struct dma_fence *fence;
1017 int err;
0d90ccb7 1018
ab7a6902
CW
1019 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1020 return 0;
6a79d848 1021
d22d2d07
CW
1022 if (i915_request_started(signal))
1023 return 0;
1024
b2fe00bb
CW
1025 /*
1026 * The caller holds a reference on @signal, but we do not serialise
1027 * against it being retired and removed from the lists.
1028 *
1029 * We do not hold a reference to the request before @signal, and
1030 * so must be very careful to ensure that it is not _recycled_ as
1031 * we follow the link backwards.
1032 */
9ddc8ec0 1033 fence = NULL;
6a79d848 1034 rcu_read_lock();
d22d2d07
CW
1035 do {
1036 struct list_head *pos = READ_ONCE(signal->link.prev);
1037 struct i915_request *prev;
1038
1039 /* Confirm signal has not been retired, the link is valid */
163433e5 1040 if (unlikely(__i915_request_has_started(signal)))
d22d2d07
CW
1041 break;
1042
1043 /* Is signal the earliest request on its timeline? */
1044 if (pos == &rcu_dereference(signal->timeline)->requests)
1045 break;
0d90ccb7 1046
9ddc8ec0
CW
1047 /*
1048 * Peek at the request before us in the timeline. That
1049 * request will only be valid before it is retired, so
1050 * after acquiring a reference to it, confirm that it is
1051 * still part of the signaler's timeline.
1052 */
d22d2d07
CW
1053 prev = list_entry(pos, typeof(*prev), link);
1054 if (!i915_request_get_rcu(prev))
1055 break;
1056
1057 /* After the strong barrier, confirm prev is still attached */
1058 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1059 i915_request_put(prev);
1060 break;
6a79d848 1061 }
d22d2d07
CW
1062
1063 fence = &prev->fence;
1064 } while (0);
9ddc8ec0
CW
1065 rcu_read_unlock();
1066 if (!fence)
1067 return 0;
6a79d848
CW
1068
1069 err = 0;
07e9c59d 1070 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
6a79d848
CW
1071 err = i915_sw_fence_await_dma_fence(&rq->submit,
1072 fence, 0,
1073 I915_FENCE_GFP);
1074 dma_fence_put(fence);
1075
1076 return err;
0d90ccb7
CW
1077}
1078
ca6e56f6
CW
1079static intel_engine_mask_t
1080already_busywaiting(struct i915_request *rq)
1081{
1082 /*
1083 * Polling a semaphore causes bus traffic, delaying other users of
1084 * both the GPU and CPU. We want to limit the impact on others,
1085 * while taking advantage of early submission to reduce GPU
1086 * latency. Therefore we restrict ourselves to not using more
1087 * than one semaphore from each source, and not using a semaphore
1088 * if we have detected the engine is saturated (i.e. would not be
1089 * submitted early and cause bus traffic reading an already passed
1090 * semaphore).
1091 *
1092 * See the are-we-too-late? check in __i915_request_submit().
1093 */
60900add 1094 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
ca6e56f6
CW
1095}
1096
e8861964 1097static int
c81471f5
CW
1098__emit_semaphore_wait(struct i915_request *to,
1099 struct i915_request *from,
1100 u32 seqno)
e8861964 1101{
651e7d48 1102 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
e8861964 1103 u32 hwsp_offset;
c81471f5 1104 int len, err;
e8861964 1105 u32 *cs;
e8861964 1106
651e7d48 1107 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
795d4d7f 1108 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
e8861964 1109
c8a0e2ae 1110 /* We need to pin the signaler's HWSP until we are finished reading. */
c81471f5
CW
1111 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1112 if (err)
1113 return err;
e8861964 1114
c210e85b
CW
1115 len = 4;
1116 if (has_token)
1117 len += 2;
1118
1119 cs = intel_ring_begin(to, len);
e8861964
CW
1120 if (IS_ERR(cs))
1121 return PTR_ERR(cs);
1122
1123 /*
1124 * Using greater-than-or-equal here means we have to worry
1125 * about seqno wraparound. To side step that issue, we swap
1126 * the timeline HWSP upon wrapping, so that everyone listening
1127 * for the old (pre-wrap) values do not see the much smaller
1128 * (post-wrap) values than they were expecting (and so wait
1129 * forever).
1130 */
c210e85b
CW
1131 *cs++ = (MI_SEMAPHORE_WAIT |
1132 MI_SEMAPHORE_GLOBAL_GTT |
1133 MI_SEMAPHORE_POLL |
1134 MI_SEMAPHORE_SAD_GTE_SDD) +
1135 has_token;
c81471f5 1136 *cs++ = seqno;
e8861964
CW
1137 *cs++ = hwsp_offset;
1138 *cs++ = 0;
c210e85b
CW
1139 if (has_token) {
1140 *cs++ = 0;
1141 *cs++ = MI_NOOP;
1142 }
e8861964
CW
1143
1144 intel_ring_advance(to, cs);
c81471f5
CW
1145 return 0;
1146}
1147
1148static int
1149emit_semaphore_wait(struct i915_request *to,
1150 struct i915_request *from,
1151 gfp_t gfp)
1152{
326611dd 1153 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
18e4af04 1154 struct i915_sw_fence *wait = &to->submit;
326611dd 1155
f16ccb64
CW
1156 if (!intel_context_use_semaphores(to->context))
1157 goto await_fence;
1158
795d4d7f
CW
1159 if (i915_request_has_initial_breadcrumb(to))
1160 goto await_fence;
1161
fcae4961
CW
1162 /*
1163 * If this or its dependents are waiting on an external fence
1164 * that may fail catastrophically, then we want to avoid using
1165 * sempahores as they bypass the fence signaling metadata, and we
1166 * lose the fence->error propagation.
1167 */
1168 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1169 goto await_fence;
1170
c81471f5 1171 /* Just emit the first semaphore we see as request space is limited. */
326611dd 1172 if (already_busywaiting(to) & mask)
c81471f5
CW
1173 goto await_fence;
1174
1175 if (i915_request_await_start(to, from) < 0)
1176 goto await_fence;
1177
1178 /* Only submit our spinner after the signaler is running! */
5ac545b8 1179 if (__await_execution(to, from, gfp))
c81471f5
CW
1180 goto await_fence;
1181
1182 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1183 goto await_fence;
1184
326611dd 1185 to->sched.semaphores |= mask;
18e4af04 1186 wait = &to->semaphore;
6a79d848
CW
1187
1188await_fence:
18e4af04 1189 return i915_sw_fence_await_dma_fence(wait,
6a79d848
CW
1190 &from->fence, 0,
1191 I915_FENCE_GFP);
e8861964
CW
1192}
1193
ffb0c600
CW
1194static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1195 struct dma_fence *fence)
1196{
1197 return __intel_timeline_sync_is_later(tl,
1198 fence->context,
1199 fence->seqno - 1);
1200}
1201
1202static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1203 const struct dma_fence *fence)
1204{
1205 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1206}
1207
a2bc4695 1208static int
ffb0c600 1209__i915_request_await_execution(struct i915_request *to,
5ac545b8 1210 struct i915_request *from)
a2bc4695 1211{
ffb0c600 1212 int err;
a2bc4695 1213
ffb0c600 1214 GEM_BUG_ON(intel_context_is_barrier(from->context));
a2bc4695 1215
ffb0c600 1216 /* Submit both requests at the same time */
5ac545b8 1217 err = __await_execution(to, from, I915_FENCE_GFP);
ffb0c600
CW
1218 if (err)
1219 return err;
1220
1221 /* Squash repeated depenendices to the same timelines */
1222 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1223 &from->fence))
ade0b0c9 1224 return 0;
ffb0c600
CW
1225
1226 /*
1227 * Wait until the start of this request.
1228 *
1229 * The execution cb fires when we submit the request to HW. But in
1230 * many cases this may be long before the request itself is ready to
1231 * run (consider that we submit 2 requests for the same context, where
1232 * the request of interest is behind an indefinite spinner). So we hook
1233 * up to both to reduce our queues and keep the execution lag minimised
1234 * in the worst case, though we hope that the await_start is elided.
1235 */
1236 err = i915_request_await_start(to, from);
1237 if (err < 0)
1238 return err;
1239
1240 /*
1241 * Ensure both start together [after all semaphores in signal]
1242 *
1243 * Now that we are queued to the HW at roughly the same time (thanks
1244 * to the execute cb) and are ready to run at roughly the same time
1245 * (thanks to the await start), our signaler may still be indefinitely
1246 * delayed by waiting on a semaphore from a remote engine. If our
1247 * signaler depends on a semaphore, so indirectly do we, and we do not
1248 * want to start our payload until our signaler also starts theirs.
1249 * So we wait.
1250 *
1251 * However, there is also a second condition for which we need to wait
1252 * for the precise start of the signaler. Consider that the signaler
1253 * was submitted in a chain of requests following another context
1254 * (with just an ordinary intra-engine fence dependency between the
1255 * two). In this case the signaler is queued to HW, but not for
1256 * immediate execution, and so we must wait until it reaches the
1257 * active slot.
1258 */
1259 if (intel_engine_has_semaphores(to->engine) &&
1260 !i915_request_has_initial_breadcrumb(to)) {
1261 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1262 if (err < 0)
1263 return err;
24fe5f2a 1264 }
ade0b0c9 1265
ffb0c600 1266 /* Couple the dependency tree for PI on this exposed to->fence */
3f623e06 1267 if (to->engine->sched_engine->schedule) {
ffb0c600 1268 err = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1269 &from->sched,
ffb0c600
CW
1270 I915_DEPENDENCY_WEAK);
1271 if (err < 0)
1272 return err;
52e54209
CW
1273 }
1274
ffb0c600
CW
1275 return intel_timeline_sync_set_start(i915_request_timeline(to),
1276 &from->fence);
a2bc4695
CW
1277}
1278
fcae4961
CW
1279static void mark_external(struct i915_request *rq)
1280{
1281 /*
1282 * The downside of using semaphores is that we lose metadata passing
1283 * along the signaling chain. This is particularly nasty when we
1284 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1285 * fatal errors we want to scrub the request before it is executed,
1286 * which means that we cannot preload the request onto HW and have
1287 * it wait upon a semaphore.
1288 */
1289 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1290}
1291
ac938052 1292static int
3136deb7 1293__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
ac938052 1294{
fcae4961 1295 mark_external(rq);
ac938052 1296 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
5a833995 1297 i915_fence_context_timeout(rq->engine->i915,
16dc224f 1298 fence->context),
ac938052
CW
1299 I915_FENCE_GFP);
1300}
1301
3136deb7
LL
1302static int
1303i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1304{
1305 struct dma_fence *iter;
1306 int err = 0;
1307
1308 if (!to_dma_fence_chain(fence))
1309 return __i915_request_await_external(rq, fence);
1310
1311 dma_fence_chain_for_each(iter, fence) {
1312 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1313
1314 if (!dma_fence_is_i915(chain->fence)) {
1315 err = __i915_request_await_external(rq, iter);
1316 break;
1317 }
1318
1319 err = i915_request_await_dma_fence(rq, chain->fence);
1320 if (err < 0)
1321 break;
1322 }
1323
1324 dma_fence_put(iter);
1325 return err;
1326}
1327
b52992c0 1328int
ffb0c600 1329i915_request_await_execution(struct i915_request *rq,
5ac545b8 1330 struct dma_fence *fence)
b52992c0 1331{
29ef3fa9
CW
1332 struct dma_fence **child = &fence;
1333 unsigned int nchild = 1;
b52992c0 1334 int ret;
b52992c0 1335
29ef3fa9
CW
1336 if (dma_fence_is_array(fence)) {
1337 struct dma_fence_array *array = to_dma_fence_array(fence);
1338
ffb0c600
CW
1339 /* XXX Error for signal-on-any fence arrays */
1340
29ef3fa9
CW
1341 child = array->fences;
1342 nchild = array->num_fences;
1343 GEM_BUG_ON(!nchild);
1344 }
b52992c0 1345
29ef3fa9
CW
1346 do {
1347 fence = *child++;
93a2711c 1348 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
29ef3fa9 1349 continue;
b52992c0 1350
e61e0f51 1351 if (fence->context == rq->fence.context)
ceae14bd
CW
1352 continue;
1353
ffb0c600
CW
1354 /*
1355 * We don't squash repeated fence dependencies here as we
1356 * want to run our callback in all cases.
1357 */
47979480 1358
29ef3fa9 1359 if (dma_fence_is_i915(fence))
ffb0c600 1360 ret = __i915_request_await_execution(rq,
5ac545b8 1361 to_request(fence));
b52992c0 1362 else
ac938052 1363 ret = i915_request_await_external(rq, fence);
b52992c0
CW
1364 if (ret < 0)
1365 return ret;
29ef3fa9 1366 } while (--nchild);
b52992c0
CW
1367
1368 return 0;
1369}
1370
511b6d9a
CW
1371static int
1372await_request_submit(struct i915_request *to, struct i915_request *from)
1373{
1374 /*
1375 * If we are waiting on a virtual engine, then it may be
1376 * constrained to execute on a single engine *prior* to submission.
1377 * When it is submitted, it will be first submitted to the virtual
1378 * engine and then passed to the physical engine. We cannot allow
1379 * the waiter to be submitted immediately to the physical engine
1380 * as it may then bypass the virtual request.
1381 */
1382 if (to->engine == READ_ONCE(from->engine))
1383 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1384 &from->submit,
1385 I915_FENCE_GFP);
1386 else
5ac545b8 1387 return __i915_request_await_execution(to, from);
511b6d9a
CW
1388}
1389
c81471f5 1390static int
ffb0c600 1391i915_request_await_request(struct i915_request *to, struct i915_request *from)
c81471f5 1392{
ffb0c600 1393 int ret;
f16ccb64 1394
ffb0c600
CW
1395 GEM_BUG_ON(to == from);
1396 GEM_BUG_ON(to->timeline == from->timeline);
c81471f5 1397
ffb0c600
CW
1398 if (i915_request_completed(from)) {
1399 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
c81471f5 1400 return 0;
798fa870
CW
1401 }
1402
3f623e06 1403 if (to->engine->sched_engine->schedule) {
ffb0c600 1404 ret = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1405 &from->sched,
ffb0c600
CW
1406 I915_DEPENDENCY_EXTERNAL);
1407 if (ret < 0)
1408 return ret;
c81471f5
CW
1409 }
1410
38d5ec43
MB
1411 if (!intel_engine_uses_guc(to->engine) &&
1412 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
511b6d9a 1413 ret = await_request_submit(to, from);
ffb0c600
CW
1414 else
1415 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1416 if (ret < 0)
1417 return ret;
1418
1419 return 0;
c81471f5
CW
1420}
1421
f71e01a7 1422int
ffb0c600 1423i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
f71e01a7
CW
1424{
1425 struct dma_fence **child = &fence;
1426 unsigned int nchild = 1;
1427 int ret;
1428
ffb0c600
CW
1429 /*
1430 * Note that if the fence-array was created in signal-on-any mode,
1431 * we should *not* decompose it into its individual fences. However,
1432 * we don't currently store which mode the fence-array is operating
1433 * in. Fortunately, the only user of signal-on-any is private to
1434 * amdgpu and we should not see any incoming fence-array from
1435 * sync-file being in signal-on-any mode.
1436 */
f71e01a7
CW
1437 if (dma_fence_is_array(fence)) {
1438 struct dma_fence_array *array = to_dma_fence_array(fence);
1439
f71e01a7
CW
1440 child = array->fences;
1441 nchild = array->num_fences;
1442 GEM_BUG_ON(!nchild);
1443 }
1444
1445 do {
1446 fence = *child++;
93a2711c 1447 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
f71e01a7
CW
1448 continue;
1449
ffb0c600
CW
1450 /*
1451 * Requests on the same timeline are explicitly ordered, along
1452 * with their dependencies, by i915_request_add() which ensures
1453 * that requests are submitted in-order through each ring.
1454 */
2045d666
CW
1455 if (fence->context == rq->fence.context)
1456 continue;
1457
ffb0c600
CW
1458 /* Squash repeated waits to the same timelines */
1459 if (fence->context &&
1460 intel_timeline_sync_is_later(i915_request_timeline(rq),
1461 fence))
1462 continue;
f71e01a7
CW
1463
1464 if (dma_fence_is_i915(fence))
ffb0c600 1465 ret = i915_request_await_request(rq, to_request(fence));
f71e01a7 1466 else
ac938052 1467 ret = i915_request_await_external(rq, fence);
f71e01a7
CW
1468 if (ret < 0)
1469 return ret;
ffb0c600
CW
1470
1471 /* Record the latest fence used against each timeline */
1472 if (fence->context)
1473 intel_timeline_sync_set(i915_request_timeline(rq),
1474 fence);
f71e01a7
CW
1475 } while (--nchild);
1476
1477 return 0;
1478}
1479
a2bc4695 1480/**
e61e0f51 1481 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1482 * @to: request we are wishing to use
1483 * @obj: object which may be in use on another ring.
d8802126 1484 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1485 *
1486 * This code is meant to abstract object synchronization with the GPU.
1487 * Conceptually we serialise writes between engines inside the GPU.
1488 * We only allow one engine to write into a buffer at any time, but
1489 * multiple readers. To ensure each has a coherent view of memory, we must:
1490 *
1491 * - If there is an outstanding write request to the object, the new
1492 * request must wait for it to complete (either CPU or in hw, requests
1493 * on the same ring will be naturally ordered).
1494 *
1495 * - If we are a write request (pending_write_domain is set), the new
1496 * request must wait for outstanding read requests to complete.
1497 *
1498 * Returns 0 if successful, else propagates up the lower layer error.
1499 */
1500int
e61e0f51
CW
1501i915_request_await_object(struct i915_request *to,
1502 struct drm_i915_gem_object *obj,
1503 bool write)
a2bc4695 1504{
d07f0e59
CW
1505 struct dma_fence *excl;
1506 int ret = 0;
a2bc4695
CW
1507
1508 if (write) {
d07f0e59
CW
1509 struct dma_fence **shared;
1510 unsigned int count, i;
1511
d3fae3b3
CK
1512 ret = dma_resv_get_fences(obj->base.resv, &excl, &count,
1513 &shared);
d07f0e59
CW
1514 if (ret)
1515 return ret;
1516
1517 for (i = 0; i < count; i++) {
e61e0f51 1518 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1519 if (ret)
1520 break;
1521
1522 dma_fence_put(shared[i]);
1523 }
1524
1525 for (; i < count; i++)
1526 dma_fence_put(shared[i]);
1527 kfree(shared);
a2bc4695 1528 } else {
6b41323a 1529 excl = dma_resv_get_excl_unlocked(obj->base.resv);
a2bc4695
CW
1530 }
1531
d07f0e59
CW
1532 if (excl) {
1533 if (ret == 0)
e61e0f51 1534 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1535
d07f0e59 1536 dma_fence_put(excl);
a2bc4695
CW
1537 }
1538
d07f0e59 1539 return ret;
a2bc4695
CW
1540}
1541
ea593dbb
CW
1542static struct i915_request *
1543__i915_request_add_to_timeline(struct i915_request *rq)
1544{
d19d71fc 1545 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1546 struct i915_request *prev;
1547
1548 /*
1549 * Dependency tracking and request ordering along the timeline
1550 * is special cased so that we can eliminate redundant ordering
1551 * operations while building the request (we know that the timeline
1552 * itself is ordered, and here we guarantee it).
1553 *
1554 * As we know we will need to emit tracking along the timeline,
1555 * we embed the hooks into our request struct -- at the cost of
1556 * having to have specialised no-allocation interfaces (which will
1557 * be beneficial elsewhere).
1558 *
1559 * A second benefit to open-coding i915_request_await_request is
1560 * that we can apply a slight variant of the rules specialised
1561 * for timelines that jump between engines (such as virtual engines).
1562 * If we consider the case of virtual engine, we must emit a dma-fence
1563 * to prevent scheduling of the second request until the first is
1564 * complete (to maximise our greedy late load balancing) and this
1565 * precludes optimising to use semaphores serialisation of a single
1566 * timeline across engines.
1567 */
b1e3177b
CW
1568 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1569 &rq->fence));
163433e5 1570 if (prev && !__i915_request_is_complete(prev)) {
38d5ec43
MB
1571 bool uses_guc = intel_engine_uses_guc(rq->engine);
1572
1eaa251b
CW
1573 /*
1574 * The requests are supposed to be kept in order. However,
1575 * we need to be wary in case the timeline->last_request
1576 * is used as a barrier for external modification to this
1577 * context.
1578 */
1579 GEM_BUG_ON(prev->context == rq->context &&
1580 i915_seqno_passed(prev->fence.seqno,
1581 rq->fence.seqno));
1582
38d5ec43
MB
1583 if ((!uses_guc &&
1584 is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) ||
1585 (uses_guc && prev->context == rq->context))
ea593dbb
CW
1586 i915_sw_fence_await_sw_fence(&rq->submit,
1587 &prev->submit,
1588 &rq->submitq);
1589 else
1590 __i915_sw_fence_await_dma_fence(&rq->submit,
1591 &prev->fence,
1592 &rq->dmaq);
3f623e06 1593 if (rq->engine->sched_engine->schedule)
ea593dbb
CW
1594 __i915_sched_node_add_dependency(&rq->sched,
1595 &prev->sched,
1596 &rq->dep,
1597 0);
1598 }
1599
2ccdf6a1
CW
1600 /*
1601 * Make sure that no request gazumped us - if it was allocated after
1602 * our i915_request_alloc() and called __i915_request_add() before
1603 * us, the timeline will hold its seqno which is later than ours.
1604 */
ea593dbb 1605 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
ea593dbb
CW
1606
1607 return prev;
1608}
1609
05235c53
CW
1610/*
1611 * NB: This function is not allowed to fail. Doing so would mean the the
1612 * request is not being tracked for completion but the work itself is
1613 * going to happen on the hardware. This would be a Bad Thing(tm).
1614 */
2ccdf6a1 1615struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1616{
2ccdf6a1
CW
1617 struct intel_engine_cs *engine = rq->engine;
1618 struct intel_ring *ring = rq->ring;
73dec95e 1619 u32 *cs;
05235c53 1620
639f2f24 1621 RQ_TRACE(rq, "\n");
c781c978 1622
05235c53
CW
1623 /*
1624 * To ensure that this call will not fail, space for its emissions
1625 * should already have been reserved in the ring buffer. Let the ring
1626 * know that it is time to use that space up.
1627 */
2ccdf6a1
CW
1628 GEM_BUG_ON(rq->reserved_space > ring->space);
1629 rq->reserved_space = 0;
e5dadff4 1630 rq->emitted_jiffies = jiffies;
05235c53 1631
8ac71d1d
CW
1632 /*
1633 * Record the position of the start of the breadcrumb so that
05235c53
CW
1634 * should we detect the updated seqno part-way through the
1635 * GPU processing the request, we never over-estimate the
d045446d 1636 * position of the ring's HEAD.
05235c53 1637 */
2ccdf6a1 1638 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1639 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1640 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1641
e5dadff4 1642 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1643}
1644
16f2941a
CW
1645void __i915_request_queue_bh(struct i915_request *rq)
1646{
1647 i915_sw_fence_commit(&rq->semaphore);
1648 i915_sw_fence_commit(&rq->submit);
1649}
1650
a79ca656
CW
1651void __i915_request_queue(struct i915_request *rq,
1652 const struct i915_sched_attr *attr)
1653{
8ac71d1d
CW
1654 /*
1655 * Let the backend know a new request has arrived that may need
0de9136d
CW
1656 * to adjust the existing execution schedule due to a high priority
1657 * request - i.e. we may want to preempt the current request in order
1658 * to run a high priority dependency chain *before* we can execute this
1659 * request.
1660 *
1661 * This is called before the request is ready to run so that we can
1662 * decide whether to preempt the entire chain so that it is ready to
1663 * run at the earliest possible convenience.
1664 */
3f623e06
MB
1665 if (attr && rq->engine->sched_engine->schedule)
1666 rq->engine->sched_engine->schedule(rq, attr);
16f2941a
CW
1667
1668 local_bh_disable();
1669 __i915_request_queue_bh(rq);
1670 local_bh_enable(); /* kick tasklets */
2ccdf6a1
CW
1671}
1672
1673void i915_request_add(struct i915_request *rq)
1674{
d19d71fc 1675 struct intel_timeline * const tl = i915_request_timeline(rq);
e6ba7648 1676 struct i915_sched_attr attr = {};
61231f6b 1677 struct i915_gem_context *ctx;
2ccdf6a1 1678
e5dadff4
CW
1679 lockdep_assert_held(&tl->mutex);
1680 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1681
1682 trace_i915_request_add(rq);
61231f6b 1683 __i915_request_commit(rq);
2ccdf6a1 1684
61231f6b
CW
1685 /* XXX placeholder for selftests */
1686 rcu_read_lock();
1687 ctx = rcu_dereference(rq->context->gem_context);
1688 if (ctx)
1689 attr = ctx->sched;
1690 rcu_read_unlock();
e6ba7648 1691
a79ca656
CW
1692 __i915_request_queue(rq, &attr);
1693
e5dadff4 1694 mutex_unlock(&tl->mutex);
05235c53
CW
1695}
1696
062444bb 1697static unsigned long local_clock_ns(unsigned int *cpu)
05235c53
CW
1698{
1699 unsigned long t;
1700
e61e0f51
CW
1701 /*
1702 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1703 * The result and subsequent calculations are also defined in the same
1704 * approximate microseconds units. The principal source of timing
1705 * error here is from the simple truncation.
1706 *
1707 * Note that local_clock() is only defined wrt to the current CPU;
1708 * the comparisons are no longer valid if we switch CPUs. Instead of
1709 * blocking preemption for the entire busywait, we can detect the CPU
1710 * switch and use that as indicator of system load and a reason to
1711 * stop busywaiting, see busywait_stop().
1712 */
1713 *cpu = get_cpu();
062444bb 1714 t = local_clock();
05235c53
CW
1715 put_cpu();
1716
1717 return t;
1718}
1719
1720static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1721{
1722 unsigned int this_cpu;
1723
062444bb 1724 if (time_after(local_clock_ns(&this_cpu), timeout))
05235c53
CW
1725 return true;
1726
1727 return this_cpu != cpu;
1728}
1729
3f6a6f34 1730static bool __i915_spin_request(struct i915_request * const rq, int state)
05235c53 1731{
062444bb 1732 unsigned long timeout_ns;
52c0fdb2 1733 unsigned int cpu;
b2f2f0fc
CW
1734
1735 /*
1736 * Only wait for the request if we know it is likely to complete.
1737 *
1738 * We don't track the timestamps around requests, nor the average
1739 * request length, so we do not have a good indicator that this
1740 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1741 * order in which requests are executed by the context and so we can
1742 * tell if the request has been started. If the request is not even
1743 * running yet, it is a fair assumption that it will not complete
1744 * within our relatively short timeout.
b2f2f0fc 1745 */
52c0fdb2 1746 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1747 return false;
1748
e61e0f51
CW
1749 /*
1750 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1751 * rendering split between the CPU and GPU, the finite amount of time
1752 * required to set up the irq and wait upon it limits the response
1753 * rate. By busywaiting on the request completion for a short while we
1754 * can service the high frequency waits as quick as possible. However,
1755 * if it is a slow request, we want to sleep as quickly as possible.
1756 * The tradeoff between waiting and sleeping is roughly the time it
1757 * takes to sleep on a request, on the order of a microsecond.
1758 */
1759
062444bb
CW
1760 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1761 timeout_ns += local_clock_ns(&cpu);
05235c53 1762 do {
3f6a6f34 1763 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1764 return true;
c33ed067 1765
05235c53
CW
1766 if (signal_pending_state(state, current))
1767 break;
1768
062444bb 1769 if (busywait_stop(timeout_ns, cpu))
05235c53
CW
1770 break;
1771
f2f09a4c 1772 cpu_relax();
05235c53
CW
1773 } while (!need_resched());
1774
1775 return false;
1776}
1777
52c0fdb2
CW
1778struct request_wait {
1779 struct dma_fence_cb cb;
1780 struct task_struct *tsk;
1781};
1782
1783static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1784{
1785 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1786
3f6a6f34 1787 wake_up_process(fetch_and_zero(&wait->tsk));
52c0fdb2
CW
1788}
1789
05235c53 1790/**
e532be89 1791 * i915_request_wait - wait until execution of request has finished
e61e0f51 1792 * @rq: the request to wait upon
ea746f36 1793 * @flags: how to wait
e95433c7
CW
1794 * @timeout: how long to wait in jiffies
1795 *
e532be89 1796 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1797 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1798 * unbounded wait).
05235c53 1799 *
e95433c7
CW
1800 * Returns the remaining time (in jiffies) if the request completed, which may
1801 * be zero or -ETIME if the request is unfinished after the timeout expires.
1802 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1803 * pending before the request completes.
05235c53 1804 */
e61e0f51 1805long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1806 unsigned int flags,
1807 long timeout)
05235c53 1808{
ea746f36
CW
1809 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1810 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1811 struct request_wait wait;
05235c53
CW
1812
1813 might_sleep();
e95433c7 1814 GEM_BUG_ON(timeout < 0);
05235c53 1815
6e4e9708 1816 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1817 return timeout;
05235c53 1818
e95433c7
CW
1819 if (!timeout)
1820 return -ETIME;
05235c53 1821
e61e0f51 1822 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1823
1824 /*
1825 * We must never wait on the GPU while holding a lock as we
1826 * may need to perform a GPU reset. So while we don't need to
1827 * serialise wait/reset with an explicit lock, we do want
1828 * lockdep to detect potential dependency cycles.
1829 */
cb823ed9 1830 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1831
7ce99d24
CW
1832 /*
1833 * Optimistic spin before touching IRQs.
1834 *
1835 * We may use a rather large value here to offset the penalty of
1836 * switching away from the active task. Frequently, the client will
1837 * wait upon an old swapbuffer to throttle itself to remain within a
1838 * frame of the gpu. If the client is running in lockstep with the gpu,
1839 * then it should not be waiting long at all, and a sleep now will incur
1840 * extra scheduler latency in producing the next frame. To try to
1841 * avoid adding the cost of enabling/disabling the interrupt to the
1842 * short wait, we first spin to see if the request would have completed
1843 * in the time taken to setup the interrupt.
1844 *
1845 * We need upto 5us to enable the irq, and upto 20us to hide the
1846 * scheduler latency of a context switch, ignoring the secondary
1847 * impacts from a context switch such as cache eviction.
1848 *
1849 * The scheme used for low-latency IO is called "hybrid interrupt
1850 * polling". The suggestion there is to sleep until just before you
1851 * expect to be woken by the device interrupt and then poll for its
1852 * completion. That requires having a good predictor for the request
1853 * duration, which we currently lack.
1854 */
062444bb 1855 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
3f6a6f34 1856 __i915_spin_request(rq, state))
52c0fdb2 1857 goto out;
541ca6ed 1858
62eb3c24
CW
1859 /*
1860 * This client is about to stall waiting for the GPU. In many cases
1861 * this is undesirable and limits the throughput of the system, as
1862 * many clients cannot continue processing user input/output whilst
1863 * blocked. RPS autotuning may take tens of milliseconds to respond
1864 * to the GPU load and thus incurs additional latency for the client.
1865 * We can circumvent that by promoting the GPU frequency to maximum
1866 * before we sleep. This makes the GPU throttle up much more quickly
1867 * (good for benchmarks and user experience, e.g. window animations),
1868 * but at a cost of spending more power processing the workload
1869 * (bad for battery).
1870 */
1840d40a
CW
1871 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1872 intel_rps_boost(rq);
4680816b 1873
52c0fdb2
CW
1874 wait.tsk = current;
1875 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1876 goto out;
4680816b 1877
3adee4ac
CW
1878 /*
1879 * Flush the submission tasklet, but only if it may help this request.
1880 *
1881 * We sometimes experience some latency between the HW interrupts and
1882 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1883 * be due to lazy CS events), so lets run the tasklet manually if there
1884 * is a chance it may submit this request. If the request is not ready
1885 * to run, as it is waiting for other fences to be signaled, flushing
1886 * the tasklet is busy work without any advantage for this client.
1887 *
1888 * If the HW is being lazy, this is the last chance before we go to
1889 * sleep to catch any pending events. We will check periodically in
1890 * the heartbeat to flush the submission tasklets as a last resort
1891 * for unhappy HW.
1892 */
1893 if (i915_request_is_ready(rq))
5ec17c76 1894 __intel_engine_flush_submission(rq->engine, false);
3adee4ac 1895
52c0fdb2
CW
1896 for (;;) {
1897 set_current_state(state);
05235c53 1898
3f6a6f34 1899 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1900 break;
05235c53 1901
05235c53 1902 if (signal_pending_state(state, current)) {
e95433c7 1903 timeout = -ERESTARTSYS;
05235c53
CW
1904 break;
1905 }
1906
e95433c7
CW
1907 if (!timeout) {
1908 timeout = -ETIME;
05235c53
CW
1909 break;
1910 }
1911
e95433c7 1912 timeout = io_schedule_timeout(timeout);
05235c53 1913 }
a49625f9 1914 __set_current_state(TASK_RUNNING);
05235c53 1915
3f6a6f34
CW
1916 if (READ_ONCE(wait.tsk))
1917 dma_fence_remove_callback(&rq->fence, &wait.cb);
1918 GEM_BUG_ON(!list_empty(&wait.cb.node));
52c0fdb2
CW
1919
1920out:
5facae4f 1921 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
52c0fdb2 1922 trace_i915_request_wait_end(rq);
e95433c7 1923 return timeout;
05235c53 1924}
4b8de8e6 1925
1f0e785a
CW
1926static int print_sched_attr(const struct i915_sched_attr *attr,
1927 char *buf, int x, int len)
1928{
1929 if (attr->priority == I915_PRIORITY_INVALID)
1930 return x;
1931
1932 x += snprintf(buf + x, len - x,
1933 " prio=%d", attr->priority);
1934
1935 return x;
1936}
1937
562675d0
CW
1938static char queue_status(const struct i915_request *rq)
1939{
1940 if (i915_request_is_active(rq))
1941 return 'E';
1942
1943 if (i915_request_is_ready(rq))
1944 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
1945
1946 return 'U';
1947}
1948
1949static const char *run_status(const struct i915_request *rq)
1950{
163433e5 1951 if (__i915_request_is_complete(rq))
562675d0
CW
1952 return "!";
1953
163433e5 1954 if (__i915_request_has_started(rq))
562675d0
CW
1955 return "*";
1956
1957 if (!i915_sw_fence_signaled(&rq->semaphore))
1958 return "&";
1959
1960 return "";
1961}
1962
1963static const char *fence_status(const struct i915_request *rq)
1964{
1965 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
1966 return "+";
1967
1968 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
1969 return "-";
1970
1971 return "";
1972}
1973
1f0e785a
CW
1974void i915_request_show(struct drm_printer *m,
1975 const struct i915_request *rq,
562675d0
CW
1976 const char *prefix,
1977 int indent)
1f0e785a
CW
1978{
1979 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
1980 char buf[80] = "";
1981 int x = 0;
1982
562675d0
CW
1983 /*
1984 * The prefix is used to show the queue status, for which we use
1985 * the following flags:
1986 *
1987 * U [Unready]
1988 * - initial status upon being submitted by the user
1989 *
1990 * - the request is not ready for execution as it is waiting
1991 * for external fences
1992 *
1993 * R [Ready]
1994 * - all fences the request was waiting on have been signaled,
1995 * and the request is now ready for execution and will be
1996 * in a backend queue
1997 *
1998 * - a ready request may still need to wait on semaphores
1999 * [internal fences]
2000 *
2001 * V [Ready/virtual]
2002 * - same as ready, but queued over multiple backends
2003 *
2004 * E [Executing]
2005 * - the request has been transferred from the backend queue and
2006 * submitted for execution on HW
2007 *
2008 * - a completed request may still be regarded as executing, its
2009 * status may not be updated until it is retired and removed
2010 * from the lists
2011 */
2012
1f0e785a
CW
2013 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2014
562675d0
CW
2015 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2016 prefix, indent, " ",
2017 queue_status(rq),
1f0e785a 2018 rq->fence.context, rq->fence.seqno,
562675d0
CW
2019 run_status(rq),
2020 fence_status(rq),
1f0e785a
CW
2021 buf,
2022 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2023 name);
2024}
2025
dc0dad36
JH
2026static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2027{
2028 u32 ring = ENGINE_READ(engine, RING_START);
2029
2030 return ring == i915_ggtt_offset(rq->ring->vma);
2031}
2032
2033static bool match_ring(struct i915_request *rq)
2034{
2035 struct intel_engine_cs *engine;
2036 bool found;
2037 int i;
2038
2039 if (!intel_engine_is_virtual(rq->engine))
2040 return engine_match_ring(rq->engine, rq);
2041
2042 found = false;
2043 i = 0;
2044 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2045 found = engine_match_ring(engine, rq);
2046 if (found)
2047 break;
2048 }
2049
2050 return found;
2051}
2052
2053enum i915_request_state i915_test_request_state(struct i915_request *rq)
2054{
2055 if (i915_request_completed(rq))
2056 return I915_REQUEST_COMPLETE;
2057
2058 if (!i915_request_started(rq))
2059 return I915_REQUEST_PENDING;
2060
2061 if (match_ring(rq))
2062 return I915_REQUEST_ACTIVE;
2063
2064 return I915_REQUEST_QUEUED;
2065}
2066
c835c550
CW
2067#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2068#include "selftests/mock_request.c"
e61e0f51 2069#include "selftests/i915_request.c"
c835c550 2070#endif
32eb6bcf 2071
47514ac7 2072void i915_request_module_exit(void)
103b76ee 2073{
47514ac7
DV
2074 kmem_cache_destroy(slab_execute_cbs);
2075 kmem_cache_destroy(slab_requests);
103b76ee
CW
2076}
2077
47514ac7 2078int __init i915_request_module_init(void)
32eb6bcf 2079{
47514ac7 2080 slab_requests =
67a3acaa
CW
2081 kmem_cache_create("i915_request",
2082 sizeof(struct i915_request),
2083 __alignof__(struct i915_request),
2084 SLAB_HWCACHE_ALIGN |
2085 SLAB_RECLAIM_ACCOUNT |
2086 SLAB_TYPESAFE_BY_RCU,
2087 __i915_request_ctor);
47514ac7 2088 if (!slab_requests)
32eb6bcf
CW
2089 return -ENOMEM;
2090
47514ac7 2091 slab_execute_cbs = KMEM_CACHE(execute_cb,
e8861964
CW
2092 SLAB_HWCACHE_ALIGN |
2093 SLAB_RECLAIM_ACCOUNT |
2094 SLAB_TYPESAFE_BY_RCU);
47514ac7 2095 if (!slab_execute_cbs)
e8861964
CW
2096 goto err_requests;
2097
32eb6bcf
CW
2098 return 0;
2099
2100err_requests:
47514ac7 2101 kmem_cache_destroy(slab_requests);
32eb6bcf
CW
2102 return -ENOMEM;
2103}