drm/i915/gt: Move intel_breadcrumbs_arm_irq earlier
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
3136deb7 26#include <linux/dma-fence-chain.h>
e8861964
CW
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
e6017571
IM
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
f361bf4a 31#include <linux/sched/signal.h>
fa545cbf 32
10be98a7 33#include "gem/i915_gem_context.h"
b3786b29 34#include "gt/intel_breadcrumbs.h"
10be98a7 35#include "gt/intel_context.h"
2871ea85 36#include "gt/intel_ring.h"
3e7abf81 37#include "gt/intel_rps.h"
10be98a7 38
21950ee7 39#include "i915_active.h"
696173b0 40#include "i915_drv.h"
103b76ee 41#include "i915_globals.h"
a09d9a80 42#include "i915_trace.h"
696173b0 43#include "intel_pm.h"
05235c53 44
e8861964 45struct execute_cb {
e8861964
CW
46 struct irq_work work;
47 struct i915_sw_fence *fence;
f71e01a7
CW
48 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 struct i915_request *signal;
e8861964
CW
50};
51
32eb6bcf 52static struct i915_global_request {
103b76ee 53 struct i915_global base;
32eb6bcf 54 struct kmem_cache *slab_requests;
e8861964 55 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
56} global;
57
f54d1867 58static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652 59{
5a833995 60 return dev_name(to_request(fence)->engine->i915->drm.dev);
04769652
CW
61}
62
f54d1867 63static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 64{
9f3ccd40
CW
65 const struct i915_gem_context *ctx;
66
e61e0f51
CW
67 /*
68 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
69 * may be freed when the request is no longer in use by the GPU.
70 * We could extend the life of a context to beyond that of all
71 * fences, possibly keeping the hw resource around indefinitely,
72 * or we just give them a false name. Since
73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 * lie seems justifiable.
75 */
76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 return "signaled";
78
6a8679c0 79 ctx = i915_request_gem_context(to_request(fence));
9f3ccd40
CW
80 if (!ctx)
81 return "[" DRIVER_NAME "]";
82
83 return ctx->name;
04769652
CW
84}
85
f54d1867 86static bool i915_fence_signaled(struct dma_fence *fence)
04769652 87{
e61e0f51 88 return i915_request_completed(to_request(fence));
04769652
CW
89}
90
f54d1867 91static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 92{
52c0fdb2 93 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
94}
95
f54d1867 96static signed long i915_fence_wait(struct dma_fence *fence,
04769652 97 bool interruptible,
e95433c7 98 signed long timeout)
04769652 99{
62eb3c24
CW
100 return i915_request_wait(to_request(fence),
101 interruptible | I915_WAIT_PRIORITY,
102 timeout);
04769652
CW
103}
104
43acd651
CW
105struct kmem_cache *i915_request_slab_cache(void)
106{
107 return global.slab_requests;
108}
109
f54d1867 110static void i915_fence_release(struct dma_fence *fence)
04769652 111{
e61e0f51 112 struct i915_request *rq = to_request(fence);
04769652 113
e61e0f51
CW
114 /*
115 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
116 * is immediately reused), mark the fences as being freed now.
117 * Otherwise the debugobjects for the fences are only marked as
118 * freed when the slab cache itself is freed, and so we would get
119 * caught trying to reuse dead objects.
120 */
e61e0f51 121 i915_sw_fence_fini(&rq->submit);
0c441cb6 122 i915_sw_fence_fini(&rq->semaphore);
fc158405 123
32a4605b
CW
124 /*
125 * Keep one request on each engine for reserved use under mempressure
126 *
127 * We do not hold a reference to the engine here and so have to be
128 * very careful in what rq->engine we poke. The virtual engine is
129 * referenced via the rq->context and we released that ref during
130 * i915_request_retire(), ergo we must not dereference a virtual
131 * engine here. Not that we would want to, as the only consumer of
132 * the reserved engine->request_pool is the power management parking,
133 * which must-not-fail, and that is only run on the physical engines.
134 *
135 * Since the request must have been executed to be have completed,
136 * we know that it will have been processed by the HW and will
137 * not be unsubmitted again, so rq->engine and rq->execution_mask
138 * at this point is stable. rq->execution_mask will be a single
139 * bit if the last and _only_ engine it could execution on was a
140 * physical engine, if it's multiple bits then it started on and
141 * could still be on a virtual engine. Thus if the mask is not a
142 * power-of-two we assume that rq->engine may still be a virtual
143 * engine and so a dangling invalid pointer that we cannot dereference
144 *
145 * For example, consider the flow of a bonded request through a virtual
146 * engine. The request is created with a wide engine mask (all engines
147 * that we might execute on). On processing the bond, the request mask
148 * is reduced to one or more engines. If the request is subsequently
149 * bound to a single engine, it will then be constrained to only
150 * execute on that engine and never returned to the virtual engine
151 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
152 * know that if the rq->execution_mask is a single bit, rq->engine
153 * can be a physical engine with the exact corresponding mask.
154 */
155 if (is_power_of_2(rq->execution_mask) &&
156 !cmpxchg(&rq->engine->request_pool, NULL, rq))
43acd651
CW
157 return;
158
32eb6bcf 159 kmem_cache_free(global.slab_requests, rq);
04769652
CW
160}
161
f54d1867 162const struct dma_fence_ops i915_fence_ops = {
04769652
CW
163 .get_driver_name = i915_fence_get_driver_name,
164 .get_timeline_name = i915_fence_get_timeline_name,
165 .enable_signaling = i915_fence_enable_signaling,
166 .signaled = i915_fence_signaled,
167 .wait = i915_fence_wait,
168 .release = i915_fence_release,
04769652
CW
169};
170
b87b6c0d
CW
171static void irq_execute_cb(struct irq_work *wrk)
172{
173 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174
175 i915_sw_fence_complete(cb->fence);
176 kmem_cache_free(global.slab_execute_cbs, cb);
177}
178
179static void irq_execute_cb_hook(struct irq_work *wrk)
180{
181 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182
183 cb->hook(container_of(cb->fence, struct i915_request, submit),
184 &cb->signal->fence);
185 i915_request_put(cb->signal);
186
187 irq_execute_cb(wrk);
188}
189
190static void __notify_execute_cb(struct i915_request *rq)
191{
fc0e1270 192 struct execute_cb *cb, *cn;
b87b6c0d
CW
193
194 lockdep_assert_held(&rq->lock);
195
98b7067a 196 GEM_BUG_ON(!i915_request_is_active(rq));
fc0e1270 197 if (llist_empty(&rq->execute_cb))
b87b6c0d
CW
198 return;
199
fc0e1270 200 llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
b87b6c0d
CW
201 irq_work_queue(&cb->work);
202
203 /*
204 * XXX Rollback on __i915_request_unsubmit()
205 *
206 * In the future, perhaps when we have an active time-slicing scheduler,
207 * it will be interesting to unsubmit parallel execution and remove
208 * busywaits from the GPU until their master is restarted. This is
209 * quite hairy, we have to carefully rollback the fence and do a
210 * preempt-to-idle cycle on the target engine, all the while the
211 * master execute_cb may refire.
212 */
fc0e1270 213 init_llist_head(&rq->execute_cb);
b87b6c0d
CW
214}
215
e61e0f51 216static void free_capture_list(struct i915_request *request)
b0fd47ad 217{
e61e0f51 218 struct i915_capture_list *capture;
b0fd47ad 219
67a3acaa 220 capture = fetch_and_zero(&request->capture_list);
b0fd47ad 221 while (capture) {
e61e0f51 222 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
223
224 kfree(capture);
225 capture = next;
226 }
227}
228
89dd019a
CW
229static void __i915_request_fill(struct i915_request *rq, u8 val)
230{
231 void *vaddr = rq->ring->vaddr;
232 u32 head;
233
234 head = rq->infix;
235 if (rq->postfix < head) {
236 memset(vaddr + head, val, rq->ring->size - head);
237 head = 0;
238 }
239 memset(vaddr + head, val, rq->postfix - head);
240}
241
37fa0de3
CW
242static void remove_from_engine(struct i915_request *rq)
243{
244 struct intel_engine_cs *engine, *locked;
245
246 /*
247 * Virtual engines complicate acquiring the engine timeline lock,
248 * as their rq->engine pointer is not stable until under that
249 * engine lock. The simple ploy we use is to take the lock then
250 * check that the rq still belongs to the newly locked engine.
251 */
252 locked = READ_ONCE(rq->engine);
1dfffa00 253 spin_lock_irq(&locked->active.lock);
37fa0de3
CW
254 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
255 spin_unlock(&locked->active.lock);
256 spin_lock(&engine->active.lock);
257 locked = engine;
258 }
67a3acaa 259 list_del_init(&rq->sched.link);
b4a9a149
CW
260 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
261 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
1dfffa00 262 spin_unlock_irq(&locked->active.lock);
37fa0de3
CW
263}
264
66101975 265bool i915_request_retire(struct i915_request *rq)
05235c53 266{
9db0c5ca
CW
267 if (!i915_request_completed(rq))
268 return false;
d9b13c4d 269
639f2f24 270 RQ_TRACE(rq, "\n");
4c7d62c6 271
9db0c5ca
CW
272 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
273 trace_i915_request_retire(rq);
80b204bc 274
e5dadff4
CW
275 /*
276 * We know the GPU must have read the request to have
277 * sent us the seqno + interrupt, so use the position
278 * of tail of the request to update the last known position
279 * of the GPU head.
280 *
281 * Note this requires that we are always called in request
282 * completion order.
283 */
d19d71fc
CW
284 GEM_BUG_ON(!list_is_first(&rq->link,
285 &i915_request_timeline(rq)->requests));
89dd019a
CW
286 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
287 /* Poison before we release our space in the ring */
288 __i915_request_fill(rq, POISON_FREE);
e5dadff4 289 rq->ring->head = rq->postfix;
b0fd47ad 290
22b7a426
CW
291 /*
292 * We only loosely track inflight requests across preemption,
293 * and so we may find ourselves attempting to retire a _completed_
294 * request that we have removed from the HW and put back on a run
295 * queue.
296 */
37fa0de3 297 remove_from_engine(rq);
52e54209 298
1dfffa00 299 spin_lock_irq(&rq->lock);
9db0c5ca
CW
300 i915_request_mark_complete(rq);
301 if (!i915_request_signaled(rq))
302 dma_fence_signal_locked(&rq->fence);
303 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
304 i915_request_cancel_breadcrumb(rq);
c18636f7
CW
305 spin_unlock_irq(&rq->lock);
306
2a98f4e6 307 if (i915_request_has_waitboost(rq)) {
3e7abf81
AS
308 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
309 atomic_dec(&rq->engine->gt->rps.num_waiters);
9db0c5ca 310 }
c18636f7
CW
311
312 /*
313 * We only loosely track inflight requests across preemption,
314 * and so we may find ourselves attempting to retire a _completed_
315 * request that we have removed from the HW and put back on a run
316 * queue.
317 *
318 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
319 * after removing the breadcrumb and signaling it, so that we do not
320 * inadvertently attach the breadcrumb to a completed request.
321 */
322 remove_from_engine(rq);
fc0e1270 323 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
1dfffa00 324 spin_unlock_irq(&rq->lock);
52d7f16e 325
dff2a11b 326 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
9db0c5ca 327
9f3ccd40
CW
328 intel_context_exit(rq->context);
329 intel_context_unpin(rq->context);
75d0a7f3 330
9db0c5ca
CW
331 free_capture_list(rq);
332 i915_sched_node_fini(&rq->sched);
333 i915_request_put(rq);
334
335 return true;
05235c53
CW
336}
337
e61e0f51 338void i915_request_retire_upto(struct i915_request *rq)
05235c53 339{
d19d71fc 340 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 341 struct i915_request *tmp;
05235c53 342
639f2f24 343 RQ_TRACE(rq, "\n");
b887d615 344
e61e0f51 345 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 346
05235c53 347 do {
e5dadff4 348 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
9db0c5ca 349 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
350}
351
fc0e1270
CW
352static void __llist_add(struct llist_node *node, struct llist_head *head)
353{
354 node->next = head->first;
355 head->first = node;
356}
357
b55230e5
CW
358static struct i915_request * const *
359__engine_active(struct intel_engine_cs *engine)
360{
361 return READ_ONCE(engine->execlists.active);
362}
363
364static bool __request_in_flight(const struct i915_request *signal)
365{
366 struct i915_request * const *port, *rq;
367 bool inflight = false;
368
369 if (!i915_request_is_ready(signal))
370 return false;
371
372 /*
373 * Even if we have unwound the request, it may still be on
374 * the GPU (preempt-to-busy). If that request is inside an
375 * unpreemptible critical section, it will not be removed. Some
376 * GPU functions may even be stuck waiting for the paired request
377 * (__await_execution) to be submitted and cannot be preempted
378 * until the bond is executing.
379 *
380 * As we know that there are always preemption points between
381 * requests, we know that only the currently executing request
382 * may be still active even though we have cleared the flag.
383 * However, we can't rely on our tracking of ELSP[0] to known
384 * which request is currently active and so maybe stuck, as
385 * the tracking maybe an event behind. Instead assume that
386 * if the context is still inflight, then it is still active
387 * even if the active flag has been cleared.
388 */
389 if (!intel_context_inflight(signal->context))
390 return false;
391
392 rcu_read_lock();
393 for (port = __engine_active(signal->engine); (rq = *port); port++) {
394 if (rq->context == signal->context) {
395 inflight = i915_seqno_passed(rq->fence.seqno,
396 signal->fence.seqno);
397 break;
398 }
399 }
400 rcu_read_unlock();
401
402 return inflight;
403}
404
e8861964 405static int
c81471f5
CW
406__await_execution(struct i915_request *rq,
407 struct i915_request *signal,
408 void (*hook)(struct i915_request *rq,
409 struct dma_fence *signal),
410 gfp_t gfp)
e8861964
CW
411{
412 struct execute_cb *cb;
413
f71e01a7
CW
414 if (i915_request_is_active(signal)) {
415 if (hook)
416 hook(rq, &signal->fence);
e8861964 417 return 0;
f71e01a7 418 }
e8861964
CW
419
420 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
421 if (!cb)
422 return -ENOMEM;
423
424 cb->fence = &rq->submit;
425 i915_sw_fence_await(cb->fence);
426 init_irq_work(&cb->work, irq_execute_cb);
427
f71e01a7
CW
428 if (hook) {
429 cb->hook = hook;
430 cb->signal = i915_request_get(signal);
431 cb->work.func = irq_execute_cb_hook;
432 }
433
e8861964 434 spin_lock_irq(&signal->lock);
b55230e5 435 if (i915_request_is_active(signal) || __request_in_flight(signal)) {
f71e01a7
CW
436 if (hook) {
437 hook(rq, &signal->fence);
438 i915_request_put(signal);
439 }
e8861964
CW
440 i915_sw_fence_complete(cb->fence);
441 kmem_cache_free(global.slab_execute_cbs, cb);
442 } else {
fc0e1270 443 __llist_add(&cb->work.llnode, &signal->execute_cb);
e8861964
CW
444 }
445 spin_unlock_irq(&signal->lock);
446
447 return 0;
448}
449
36e191f0
CW
450static bool fatal_error(int error)
451{
452 switch (error) {
453 case 0: /* not an error! */
454 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
455 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
456 return false;
457 default:
458 return true;
459 }
460}
461
462void __i915_request_skip(struct i915_request *rq)
463{
464 GEM_BUG_ON(!fatal_error(rq->fence.error));
465
466 if (rq->infix == rq->postfix)
467 return;
468
469 /*
470 * As this request likely depends on state from the lost
471 * context, clear out all the user operations leaving the
472 * breadcrumb at the end (so we get the fence notifications).
473 */
474 __i915_request_fill(rq, 0);
475 rq->infix = rq->postfix;
476}
477
478void i915_request_set_error_once(struct i915_request *rq, int error)
479{
480 int old;
481
482 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
483
484 if (i915_request_signaled(rq))
485 return;
486
487 old = READ_ONCE(rq->fence.error);
488 do {
489 if (fatal_error(old))
490 return;
491 } while (!try_cmpxchg(&rq->fence.error, &old, error));
492}
493
c0bb487d 494bool __i915_request_submit(struct i915_request *request)
5590af3e 495{
73cb9701 496 struct intel_engine_cs *engine = request->engine;
c0bb487d 497 bool result = false;
5590af3e 498
639f2f24 499 RQ_TRACE(request, "\n");
d9b13c4d 500
e60a870d 501 GEM_BUG_ON(!irqs_disabled());
422d7df4 502 lockdep_assert_held(&engine->active.lock);
e60a870d 503
c0bb487d
CW
504 /*
505 * With the advent of preempt-to-busy, we frequently encounter
506 * requests that we have unsubmitted from HW, but left running
507 * until the next ack and so have completed in the meantime. On
508 * resubmission of that completed request, we can skip
509 * updating the payload, and execlists can even skip submitting
510 * the request.
511 *
512 * We must remove the request from the caller's priority queue,
513 * and the caller must only call us when the request is in their
514 * priority queue, under the active.lock. This ensures that the
515 * request has *not* yet been retired and we can safely move
516 * the request into the engine->active.list where it will be
517 * dropped upon retiring. (Otherwise if resubmit a *retired*
518 * request, this would be a horrible use-after-free.)
519 */
520 if (i915_request_completed(request))
521 goto xfer;
522
36e191f0
CW
523 if (unlikely(intel_context_is_banned(request->context)))
524 i915_request_set_error_once(request, -EIO);
525 if (unlikely(fatal_error(request->fence.error)))
526 __i915_request_skip(request);
d9e61b66 527
ca6e56f6
CW
528 /*
529 * Are we using semaphores when the gpu is already saturated?
530 *
531 * Using semaphores incurs a cost in having the GPU poll a
532 * memory location, busywaiting for it to change. The continual
533 * memory reads can have a noticeable impact on the rest of the
534 * system with the extra bus traffic, stalling the cpu as it too
535 * tries to access memory across the bus (perf stat -e bus-cycles).
536 *
537 * If we installed a semaphore on this request and we only submit
538 * the request after the signaler completed, that indicates the
539 * system is overloaded and using semaphores at this time only
540 * increases the amount of work we are doing. If so, we disable
541 * further use of semaphores until we are idle again, whence we
542 * optimistically try again.
543 */
544 if (request->sched.semaphores &&
545 i915_sw_fence_signaled(&request->semaphore))
44d89409 546 engine->saturated |= request->sched.semaphores;
ca6e56f6 547
c0bb487d
CW
548 engine->emit_fini_breadcrumb(request,
549 request->ring->vaddr + request->postfix);
b5773a36 550
c0bb487d
CW
551 trace_i915_request_execute(request);
552 engine->serial++;
553 result = true;
422d7df4 554
1d9221e9 555xfer:
672c368f 556 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
c0bb487d 557 list_move_tail(&request->sched.link, &engine->active.requests);
672c368f
CW
558 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
559 }
b5773a36 560
c18636f7
CW
561 /*
562 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
563 *
564 * In the future, perhaps when we have an active time-slicing scheduler,
565 * it will be interesting to unsubmit parallel execution and remove
566 * busywaits from the GPU until their master is restarted. This is
567 * quite hairy, we have to carefully rollback the fence and do a
568 * preempt-to-idle cycle on the target engine, all the while the
569 * master execute_cb may refire.
570 */
571 __notify_execute_cb(request);
1d9221e9 572
2854d866
CW
573 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
574 i915_request_enable_breadcrumb(request);
f2d13290 575
c0bb487d 576 return result;
d55ac5bf
CW
577}
578
e61e0f51 579void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
580{
581 struct intel_engine_cs *engine = request->engine;
582 unsigned long flags;
23902e49 583
d55ac5bf 584 /* Will be called from irq-context when using foreign fences. */
422d7df4 585 spin_lock_irqsave(&engine->active.lock, flags);
d55ac5bf 586
e61e0f51 587 __i915_request_submit(request);
d55ac5bf 588
422d7df4 589 spin_unlock_irqrestore(&engine->active.lock, flags);
d55ac5bf
CW
590}
591
e61e0f51 592void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 593{
d6a2289d 594 struct intel_engine_cs *engine = request->engine;
d55ac5bf 595
c18636f7
CW
596 /*
597 * Only unwind in reverse order, required so that the per-context list
598 * is kept in seqno/ring order.
599 */
639f2f24 600 RQ_TRACE(request, "\n");
d9b13c4d 601
e60a870d 602 GEM_BUG_ON(!irqs_disabled());
422d7df4 603 lockdep_assert_held(&engine->active.lock);
48bc2a4a 604
e61e0f51 605 /*
c18636f7
CW
606 * Before we remove this breadcrumb from the signal list, we have
607 * to ensure that a concurrent dma_fence_enable_signaling() does not
608 * attach itself. We first mark the request as no longer active and
609 * make sure that is visible to other cores, and then remove the
610 * breadcrumb if attached.
d6a2289d 611 */
c18636f7
CW
612 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
613 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
d6a2289d 614 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 615 i915_request_cancel_breadcrumb(request);
b5773a36 616
dba5a7f3 617 /* We've already spun, don't charge on resubmitting. */
18e4af04 618 if (request->sched.semaphores && i915_request_started(request))
dba5a7f3 619 request->sched.semaphores = 0;
dba5a7f3 620
e61e0f51
CW
621 /*
622 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 623 * will get woken by any other event or us re-adding this request
e61e0f51 624 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
625 * should be quite adapt at finding that the request now has a new
626 * global_seqno to the one they went to sleep on.
627 */
628}
629
e61e0f51 630void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
631{
632 struct intel_engine_cs *engine = request->engine;
633 unsigned long flags;
634
635 /* Will be called from irq-context when using foreign fences. */
422d7df4 636 spin_lock_irqsave(&engine->active.lock, flags);
d6a2289d 637
e61e0f51 638 __i915_request_unsubmit(request);
d6a2289d 639
422d7df4 640 spin_unlock_irqrestore(&engine->active.lock, flags);
5590af3e
CW
641}
642
23902e49 643static int __i915_sw_fence_call
d55ac5bf 644submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 645{
e61e0f51 646 struct i915_request *request =
48bc2a4a 647 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
648
649 switch (state) {
650 case FENCE_COMPLETE:
e61e0f51 651 trace_i915_request_submit(request);
ef468849
CW
652
653 if (unlikely(fence->error))
36e191f0 654 i915_request_set_error_once(request, fence->error);
ef468849 655
af7a8ffa 656 /*
e61e0f51
CW
657 * We need to serialize use of the submit_request() callback
658 * with its hotplugging performed during an emergency
659 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
660 * critical section in order to force i915_gem_set_wedged() to
661 * wait until the submit_request() is completed before
662 * proceeding.
af7a8ffa
DV
663 */
664 rcu_read_lock();
d55ac5bf 665 request->engine->submit_request(request);
af7a8ffa 666 rcu_read_unlock();
48bc2a4a
CW
667 break;
668
669 case FENCE_FREE:
e61e0f51 670 i915_request_put(request);
48bc2a4a
CW
671 break;
672 }
673
23902e49
CW
674 return NOTIFY_DONE;
675}
676
b7404c7e
CW
677static int __i915_sw_fence_call
678semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
679{
209df10b 680 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
b7404c7e
CW
681
682 switch (state) {
683 case FENCE_COMPLETE:
b7404c7e
CW
684 break;
685
686 case FENCE_FREE:
209df10b 687 i915_request_put(rq);
b7404c7e
CW
688 break;
689 }
690
691 return NOTIFY_DONE;
692}
693
e5dadff4 694static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
695{
696 struct i915_request *rq, *rn;
697
e5dadff4 698 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 699 if (!i915_request_retire(rq))
d22ba0cb 700 break;
d22ba0cb
CW
701}
702
703static noinline struct i915_request *
43acd651
CW
704request_alloc_slow(struct intel_timeline *tl,
705 struct i915_request **rsvd,
706 gfp_t gfp)
d22ba0cb 707{
d22ba0cb
CW
708 struct i915_request *rq;
709
43acd651
CW
710 /* If we cannot wait, dip into our reserves */
711 if (!gfpflags_allow_blocking(gfp)) {
712 rq = xchg(rsvd, NULL);
713 if (!rq) /* Use the normal failure path for one final WARN */
714 goto out;
d22ba0cb 715
43acd651
CW
716 return rq;
717 }
718
719 if (list_empty(&tl->requests))
2ccdf6a1
CW
720 goto out;
721
9db0c5ca 722 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 723 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
724 i915_request_retire(rq);
725
726 rq = kmem_cache_alloc(global.slab_requests,
727 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
728 if (rq)
729 return rq;
730
d22ba0cb 731 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 732 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
733 cond_synchronize_rcu(rq->rcustate);
734
735 /* Retire our old requests in the hope that we free some */
e5dadff4 736 retire_requests(tl);
d22ba0cb
CW
737
738out:
2ccdf6a1 739 return kmem_cache_alloc(global.slab_requests, gfp);
d22ba0cb
CW
740}
741
67a3acaa
CW
742static void __i915_request_ctor(void *arg)
743{
744 struct i915_request *rq = arg;
745
746 spin_lock_init(&rq->lock);
747 i915_sched_node_init(&rq->sched);
748 i915_sw_fence_init(&rq->submit, submit_notify);
749 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
750
855e39e6
CW
751 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
752
67a3acaa
CW
753 rq->capture_list = NULL;
754
fc0e1270 755 init_llist_head(&rq->execute_cb);
67a3acaa
CW
756}
757
e61e0f51 758struct i915_request *
2ccdf6a1 759__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 760{
75d0a7f3 761 struct intel_timeline *tl = ce->timeline;
ebece753
CW
762 struct i915_request *rq;
763 u32 seqno;
05235c53
CW
764 int ret;
765
2ccdf6a1 766 might_sleep_if(gfpflags_allow_blocking(gfp));
28176ef4 767
2ccdf6a1
CW
768 /* Check that the caller provided an already pinned context */
769 __intel_context_pin(ce);
9b5f4e5e 770
e61e0f51
CW
771 /*
772 * Beware: Dragons be flying overhead.
5a198b8c
CW
773 *
774 * We use RCU to look up requests in flight. The lookups may
775 * race with the request being allocated from the slab freelist.
776 * That is the request we are writing to here, may be in the process
21950ee7 777 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
778 * we have to be very careful when overwriting the contents. During
779 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 780 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
781 *
782 * The reference count is incremented atomically. If it is zero,
783 * the lookup knows the request is unallocated and complete. Otherwise,
784 * it is either still in use, or has been reallocated and reset
f54d1867
CW
785 * with dma_fence_init(). This increment is safe for release as we
786 * check that the request we have a reference to and matches the active
5a198b8c
CW
787 * request.
788 *
789 * Before we increment the refcount, we chase the request->engine
790 * pointer. We must not call kmem_cache_zalloc() or else we set
791 * that pointer to NULL and cause a crash during the lookup. If
792 * we see the request is completed (based on the value of the
793 * old engine and seqno), the lookup is complete and reports NULL.
794 * If we decide the request is not completed (new engine or seqno),
795 * then we grab a reference and double check that it is still the
796 * active request - which it won't be and restart the lookup.
797 *
798 * Do not use kmem_cache_zalloc() here!
799 */
32eb6bcf 800 rq = kmem_cache_alloc(global.slab_requests,
2ccdf6a1 801 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 802 if (unlikely(!rq)) {
43acd651 803 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
e61e0f51 804 if (!rq) {
31c70f97
CW
805 ret = -ENOMEM;
806 goto err_unreserve;
807 }
28176ef4 808 }
05235c53 809
9f3ccd40 810 rq->context = ce;
2ccdf6a1 811 rq->engine = ce->engine;
1fc44d9b 812 rq->ring = ce->ring;
89b6d183 813 rq->execution_mask = ce->engine->mask;
d19d71fc 814
855e39e6
CW
815 kref_init(&rq->fence.refcount);
816 rq->fence.flags = 0;
817 rq->fence.error = 0;
818 INIT_LIST_HEAD(&rq->fence.cb_list);
819
820 ret = intel_timeline_get_seqno(tl, rq, &seqno);
821 if (ret)
822 goto err_free;
823
824 rq->fence.context = tl->fence_context;
825 rq->fence.seqno = seqno;
826
85bedbf1
CW
827 RCU_INIT_POINTER(rq->timeline, tl);
828 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
ebece753 829 rq->hwsp_seqno = tl->hwsp_seqno;
1eaa251b 830 GEM_BUG_ON(i915_request_completed(rq));
d19d71fc 831
ebece753 832 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 833
48bc2a4a 834 /* We bump the ref for the fence chain */
67a3acaa
CW
835 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
836 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
5590af3e 837
67a3acaa 838 i915_sched_node_reinit(&rq->sched);
52e54209 839
67a3acaa 840 /* No zalloc, everything must be cleared after use */
e61e0f51 841 rq->batch = NULL;
67a3acaa 842 GEM_BUG_ON(rq->capture_list);
fc0e1270 843 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
2ccdf6a1 844
05235c53
CW
845 /*
846 * Reserve space in the ring buffer for all the commands required to
847 * eventually emit this request. This is to guarantee that the
e61e0f51 848 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
849 * to be redone if the request is not actually submitted straight
850 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
851 *
852 * Note that due to how we add reserved_space to intel_ring_begin()
853 * we need to double our request to ensure that if we need to wrap
854 * around inside i915_request_add() there is sufficient space at
855 * the beginning of the ring as well.
05235c53 856 */
2ccdf6a1
CW
857 rq->reserved_space =
858 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 859
2113184c
CW
860 /*
861 * Record the position of the start of the request so that
d045446d
CW
862 * should we detect the updated seqno part-way through the
863 * GPU processing the request, we never over-estimate the
864 * position of the head.
865 */
e61e0f51 866 rq->head = rq->ring->emit;
d045446d 867
2ccdf6a1 868 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
869 if (ret)
870 goto err_unwind;
2113184c 871
b3ee09a4
CW
872 rq->infix = rq->ring->emit; /* end of header; start of user payload */
873
2ccdf6a1 874 intel_context_mark_active(ce);
d22d2d07
CW
875 list_add_tail_rcu(&rq->link, &tl->requests);
876
e61e0f51 877 return rq;
05235c53 878
b1c24a61 879err_unwind:
1fc44d9b 880 ce->ring->emit = rq->head;
b1c24a61 881
1618bdb8 882 /* Make sure we didn't add ourselves to external state before freeing */
0c7112a0
CW
883 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
884 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 885
ebece753 886err_free:
32eb6bcf 887 kmem_cache_free(global.slab_requests, rq);
28176ef4 888err_unreserve:
1fc44d9b 889 intel_context_unpin(ce);
8e637178 890 return ERR_PTR(ret);
05235c53
CW
891}
892
2ccdf6a1
CW
893struct i915_request *
894i915_request_create(struct intel_context *ce)
895{
896 struct i915_request *rq;
e5dadff4 897 struct intel_timeline *tl;
2ccdf6a1 898
e5dadff4
CW
899 tl = intel_context_timeline_lock(ce);
900 if (IS_ERR(tl))
901 return ERR_CAST(tl);
2ccdf6a1
CW
902
903 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
904 rq = list_first_entry(&tl->requests, typeof(*rq), link);
905 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
906 i915_request_retire(rq);
907
908 intel_context_enter(ce);
909 rq = __i915_request_create(ce, GFP_KERNEL);
910 intel_context_exit(ce); /* active reference transferred to request */
911 if (IS_ERR(rq))
912 goto err_unlock;
913
914 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 915 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
916
917 return rq;
918
919err_unlock:
e5dadff4 920 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
921 return rq;
922}
923
0d90ccb7
CW
924static int
925i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
926{
6a79d848
CW
927 struct dma_fence *fence;
928 int err;
0d90ccb7 929
ab7a6902
CW
930 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
931 return 0;
6a79d848 932
d22d2d07
CW
933 if (i915_request_started(signal))
934 return 0;
935
9ddc8ec0 936 fence = NULL;
6a79d848 937 rcu_read_lock();
9ddc8ec0 938 spin_lock_irq(&signal->lock);
d22d2d07
CW
939 do {
940 struct list_head *pos = READ_ONCE(signal->link.prev);
941 struct i915_request *prev;
942
943 /* Confirm signal has not been retired, the link is valid */
944 if (unlikely(i915_request_started(signal)))
945 break;
946
947 /* Is signal the earliest request on its timeline? */
948 if (pos == &rcu_dereference(signal->timeline)->requests)
949 break;
0d90ccb7 950
9ddc8ec0
CW
951 /*
952 * Peek at the request before us in the timeline. That
953 * request will only be valid before it is retired, so
954 * after acquiring a reference to it, confirm that it is
955 * still part of the signaler's timeline.
956 */
d22d2d07
CW
957 prev = list_entry(pos, typeof(*prev), link);
958 if (!i915_request_get_rcu(prev))
959 break;
960
961 /* After the strong barrier, confirm prev is still attached */
962 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
963 i915_request_put(prev);
964 break;
6a79d848 965 }
d22d2d07
CW
966
967 fence = &prev->fence;
968 } while (0);
9ddc8ec0
CW
969 spin_unlock_irq(&signal->lock);
970 rcu_read_unlock();
971 if (!fence)
972 return 0;
6a79d848
CW
973
974 err = 0;
07e9c59d 975 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
6a79d848
CW
976 err = i915_sw_fence_await_dma_fence(&rq->submit,
977 fence, 0,
978 I915_FENCE_GFP);
979 dma_fence_put(fence);
980
981 return err;
0d90ccb7
CW
982}
983
ca6e56f6
CW
984static intel_engine_mask_t
985already_busywaiting(struct i915_request *rq)
986{
987 /*
988 * Polling a semaphore causes bus traffic, delaying other users of
989 * both the GPU and CPU. We want to limit the impact on others,
990 * while taking advantage of early submission to reduce GPU
991 * latency. Therefore we restrict ourselves to not using more
992 * than one semaphore from each source, and not using a semaphore
993 * if we have detected the engine is saturated (i.e. would not be
994 * submitted early and cause bus traffic reading an already passed
995 * semaphore).
996 *
997 * See the are-we-too-late? check in __i915_request_submit().
998 */
60900add 999 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
ca6e56f6
CW
1000}
1001
e8861964 1002static int
c81471f5
CW
1003__emit_semaphore_wait(struct i915_request *to,
1004 struct i915_request *from,
1005 u32 seqno)
e8861964 1006{
5a833995 1007 const int has_token = INTEL_GEN(to->engine->i915) >= 12;
e8861964 1008 u32 hwsp_offset;
c81471f5 1009 int len, err;
e8861964 1010 u32 *cs;
e8861964 1011
5a833995 1012 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
795d4d7f 1013 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
e8861964 1014
c8a0e2ae 1015 /* We need to pin the signaler's HWSP until we are finished reading. */
c81471f5
CW
1016 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1017 if (err)
1018 return err;
e8861964 1019
c210e85b
CW
1020 len = 4;
1021 if (has_token)
1022 len += 2;
1023
1024 cs = intel_ring_begin(to, len);
e8861964
CW
1025 if (IS_ERR(cs))
1026 return PTR_ERR(cs);
1027
1028 /*
1029 * Using greater-than-or-equal here means we have to worry
1030 * about seqno wraparound. To side step that issue, we swap
1031 * the timeline HWSP upon wrapping, so that everyone listening
1032 * for the old (pre-wrap) values do not see the much smaller
1033 * (post-wrap) values than they were expecting (and so wait
1034 * forever).
1035 */
c210e85b
CW
1036 *cs++ = (MI_SEMAPHORE_WAIT |
1037 MI_SEMAPHORE_GLOBAL_GTT |
1038 MI_SEMAPHORE_POLL |
1039 MI_SEMAPHORE_SAD_GTE_SDD) +
1040 has_token;
c81471f5 1041 *cs++ = seqno;
e8861964
CW
1042 *cs++ = hwsp_offset;
1043 *cs++ = 0;
c210e85b
CW
1044 if (has_token) {
1045 *cs++ = 0;
1046 *cs++ = MI_NOOP;
1047 }
e8861964
CW
1048
1049 intel_ring_advance(to, cs);
c81471f5
CW
1050 return 0;
1051}
1052
1053static int
1054emit_semaphore_wait(struct i915_request *to,
1055 struct i915_request *from,
1056 gfp_t gfp)
1057{
326611dd 1058 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
18e4af04 1059 struct i915_sw_fence *wait = &to->submit;
326611dd 1060
f16ccb64
CW
1061 if (!intel_context_use_semaphores(to->context))
1062 goto await_fence;
1063
795d4d7f
CW
1064 if (i915_request_has_initial_breadcrumb(to))
1065 goto await_fence;
1066
f16ccb64
CW
1067 if (!rcu_access_pointer(from->hwsp_cacheline))
1068 goto await_fence;
1069
fcae4961
CW
1070 /*
1071 * If this or its dependents are waiting on an external fence
1072 * that may fail catastrophically, then we want to avoid using
1073 * sempahores as they bypass the fence signaling metadata, and we
1074 * lose the fence->error propagation.
1075 */
1076 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1077 goto await_fence;
1078
c81471f5 1079 /* Just emit the first semaphore we see as request space is limited. */
326611dd 1080 if (already_busywaiting(to) & mask)
c81471f5
CW
1081 goto await_fence;
1082
1083 if (i915_request_await_start(to, from) < 0)
1084 goto await_fence;
1085
1086 /* Only submit our spinner after the signaler is running! */
1087 if (__await_execution(to, from, NULL, gfp))
1088 goto await_fence;
1089
1090 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1091 goto await_fence;
1092
326611dd 1093 to->sched.semaphores |= mask;
18e4af04 1094 wait = &to->semaphore;
6a79d848
CW
1095
1096await_fence:
18e4af04 1097 return i915_sw_fence_await_dma_fence(wait,
6a79d848
CW
1098 &from->fence, 0,
1099 I915_FENCE_GFP);
e8861964
CW
1100}
1101
ffb0c600
CW
1102static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1103 struct dma_fence *fence)
1104{
1105 return __intel_timeline_sync_is_later(tl,
1106 fence->context,
1107 fence->seqno - 1);
1108}
1109
1110static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1111 const struct dma_fence *fence)
1112{
1113 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1114}
1115
a2bc4695 1116static int
ffb0c600
CW
1117__i915_request_await_execution(struct i915_request *to,
1118 struct i915_request *from,
1119 void (*hook)(struct i915_request *rq,
1120 struct dma_fence *signal))
a2bc4695 1121{
ffb0c600 1122 int err;
a2bc4695 1123
ffb0c600 1124 GEM_BUG_ON(intel_context_is_barrier(from->context));
a2bc4695 1125
ffb0c600
CW
1126 /* Submit both requests at the same time */
1127 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1128 if (err)
1129 return err;
1130
1131 /* Squash repeated depenendices to the same timelines */
1132 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1133 &from->fence))
ade0b0c9 1134 return 0;
ffb0c600
CW
1135
1136 /*
1137 * Wait until the start of this request.
1138 *
1139 * The execution cb fires when we submit the request to HW. But in
1140 * many cases this may be long before the request itself is ready to
1141 * run (consider that we submit 2 requests for the same context, where
1142 * the request of interest is behind an indefinite spinner). So we hook
1143 * up to both to reduce our queues and keep the execution lag minimised
1144 * in the worst case, though we hope that the await_start is elided.
1145 */
1146 err = i915_request_await_start(to, from);
1147 if (err < 0)
1148 return err;
1149
1150 /*
1151 * Ensure both start together [after all semaphores in signal]
1152 *
1153 * Now that we are queued to the HW at roughly the same time (thanks
1154 * to the execute cb) and are ready to run at roughly the same time
1155 * (thanks to the await start), our signaler may still be indefinitely
1156 * delayed by waiting on a semaphore from a remote engine. If our
1157 * signaler depends on a semaphore, so indirectly do we, and we do not
1158 * want to start our payload until our signaler also starts theirs.
1159 * So we wait.
1160 *
1161 * However, there is also a second condition for which we need to wait
1162 * for the precise start of the signaler. Consider that the signaler
1163 * was submitted in a chain of requests following another context
1164 * (with just an ordinary intra-engine fence dependency between the
1165 * two). In this case the signaler is queued to HW, but not for
1166 * immediate execution, and so we must wait until it reaches the
1167 * active slot.
1168 */
1169 if (intel_engine_has_semaphores(to->engine) &&
1170 !i915_request_has_initial_breadcrumb(to)) {
1171 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1172 if (err < 0)
1173 return err;
24fe5f2a 1174 }
ade0b0c9 1175
ffb0c600 1176 /* Couple the dependency tree for PI on this exposed to->fence */
52e54209 1177 if (to->engine->schedule) {
ffb0c600 1178 err = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1179 &from->sched,
ffb0c600
CW
1180 I915_DEPENDENCY_WEAK);
1181 if (err < 0)
1182 return err;
52e54209
CW
1183 }
1184
ffb0c600
CW
1185 return intel_timeline_sync_set_start(i915_request_timeline(to),
1186 &from->fence);
a2bc4695
CW
1187}
1188
fcae4961
CW
1189static void mark_external(struct i915_request *rq)
1190{
1191 /*
1192 * The downside of using semaphores is that we lose metadata passing
1193 * along the signaling chain. This is particularly nasty when we
1194 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1195 * fatal errors we want to scrub the request before it is executed,
1196 * which means that we cannot preload the request onto HW and have
1197 * it wait upon a semaphore.
1198 */
1199 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1200}
1201
ac938052 1202static int
3136deb7 1203__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
ac938052 1204{
fcae4961 1205 mark_external(rq);
ac938052 1206 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
5a833995 1207 i915_fence_context_timeout(rq->engine->i915,
16dc224f 1208 fence->context),
ac938052
CW
1209 I915_FENCE_GFP);
1210}
1211
3136deb7
LL
1212static int
1213i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1214{
1215 struct dma_fence *iter;
1216 int err = 0;
1217
1218 if (!to_dma_fence_chain(fence))
1219 return __i915_request_await_external(rq, fence);
1220
1221 dma_fence_chain_for_each(iter, fence) {
1222 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1223
1224 if (!dma_fence_is_i915(chain->fence)) {
1225 err = __i915_request_await_external(rq, iter);
1226 break;
1227 }
1228
1229 err = i915_request_await_dma_fence(rq, chain->fence);
1230 if (err < 0)
1231 break;
1232 }
1233
1234 dma_fence_put(iter);
1235 return err;
1236}
1237
b52992c0 1238int
ffb0c600
CW
1239i915_request_await_execution(struct i915_request *rq,
1240 struct dma_fence *fence,
1241 void (*hook)(struct i915_request *rq,
1242 struct dma_fence *signal))
b52992c0 1243{
29ef3fa9
CW
1244 struct dma_fence **child = &fence;
1245 unsigned int nchild = 1;
b52992c0 1246 int ret;
b52992c0 1247
29ef3fa9
CW
1248 if (dma_fence_is_array(fence)) {
1249 struct dma_fence_array *array = to_dma_fence_array(fence);
1250
ffb0c600
CW
1251 /* XXX Error for signal-on-any fence arrays */
1252
29ef3fa9
CW
1253 child = array->fences;
1254 nchild = array->num_fences;
1255 GEM_BUG_ON(!nchild);
1256 }
b52992c0 1257
29ef3fa9
CW
1258 do {
1259 fence = *child++;
9e31c1fe
CW
1260 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1261 i915_sw_fence_set_error_once(&rq->submit, fence->error);
29ef3fa9 1262 continue;
9e31c1fe 1263 }
b52992c0 1264
e61e0f51 1265 if (fence->context == rq->fence.context)
ceae14bd
CW
1266 continue;
1267
ffb0c600
CW
1268 /*
1269 * We don't squash repeated fence dependencies here as we
1270 * want to run our callback in all cases.
1271 */
47979480 1272
29ef3fa9 1273 if (dma_fence_is_i915(fence))
ffb0c600
CW
1274 ret = __i915_request_await_execution(rq,
1275 to_request(fence),
1276 hook);
b52992c0 1277 else
ac938052 1278 ret = i915_request_await_external(rq, fence);
b52992c0
CW
1279 if (ret < 0)
1280 return ret;
29ef3fa9 1281 } while (--nchild);
b52992c0
CW
1282
1283 return 0;
1284}
1285
511b6d9a
CW
1286static int
1287await_request_submit(struct i915_request *to, struct i915_request *from)
1288{
1289 /*
1290 * If we are waiting on a virtual engine, then it may be
1291 * constrained to execute on a single engine *prior* to submission.
1292 * When it is submitted, it will be first submitted to the virtual
1293 * engine and then passed to the physical engine. We cannot allow
1294 * the waiter to be submitted immediately to the physical engine
1295 * as it may then bypass the virtual request.
1296 */
1297 if (to->engine == READ_ONCE(from->engine))
1298 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1299 &from->submit,
1300 I915_FENCE_GFP);
1301 else
1302 return __i915_request_await_execution(to, from, NULL);
1303}
1304
c81471f5 1305static int
ffb0c600 1306i915_request_await_request(struct i915_request *to, struct i915_request *from)
c81471f5 1307{
ffb0c600 1308 int ret;
f16ccb64 1309
ffb0c600
CW
1310 GEM_BUG_ON(to == from);
1311 GEM_BUG_ON(to->timeline == from->timeline);
c81471f5 1312
ffb0c600
CW
1313 if (i915_request_completed(from)) {
1314 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
c81471f5 1315 return 0;
798fa870
CW
1316 }
1317
c81471f5 1318 if (to->engine->schedule) {
ffb0c600 1319 ret = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1320 &from->sched,
ffb0c600
CW
1321 I915_DEPENDENCY_EXTERNAL);
1322 if (ret < 0)
1323 return ret;
c81471f5
CW
1324 }
1325
511b6d9a
CW
1326 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1327 ret = await_request_submit(to, from);
ffb0c600
CW
1328 else
1329 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1330 if (ret < 0)
1331 return ret;
1332
1333 return 0;
c81471f5
CW
1334}
1335
f71e01a7 1336int
ffb0c600 1337i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
f71e01a7
CW
1338{
1339 struct dma_fence **child = &fence;
1340 unsigned int nchild = 1;
1341 int ret;
1342
ffb0c600
CW
1343 /*
1344 * Note that if the fence-array was created in signal-on-any mode,
1345 * we should *not* decompose it into its individual fences. However,
1346 * we don't currently store which mode the fence-array is operating
1347 * in. Fortunately, the only user of signal-on-any is private to
1348 * amdgpu and we should not see any incoming fence-array from
1349 * sync-file being in signal-on-any mode.
1350 */
f71e01a7
CW
1351 if (dma_fence_is_array(fence)) {
1352 struct dma_fence_array *array = to_dma_fence_array(fence);
1353
f71e01a7
CW
1354 child = array->fences;
1355 nchild = array->num_fences;
1356 GEM_BUG_ON(!nchild);
1357 }
1358
1359 do {
1360 fence = *child++;
9e31c1fe
CW
1361 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1362 i915_sw_fence_set_error_once(&rq->submit, fence->error);
f71e01a7 1363 continue;
9e31c1fe 1364 }
f71e01a7 1365
ffb0c600
CW
1366 /*
1367 * Requests on the same timeline are explicitly ordered, along
1368 * with their dependencies, by i915_request_add() which ensures
1369 * that requests are submitted in-order through each ring.
1370 */
2045d666
CW
1371 if (fence->context == rq->fence.context)
1372 continue;
1373
ffb0c600
CW
1374 /* Squash repeated waits to the same timelines */
1375 if (fence->context &&
1376 intel_timeline_sync_is_later(i915_request_timeline(rq),
1377 fence))
1378 continue;
f71e01a7
CW
1379
1380 if (dma_fence_is_i915(fence))
ffb0c600 1381 ret = i915_request_await_request(rq, to_request(fence));
f71e01a7 1382 else
ac938052 1383 ret = i915_request_await_external(rq, fence);
f71e01a7
CW
1384 if (ret < 0)
1385 return ret;
ffb0c600
CW
1386
1387 /* Record the latest fence used against each timeline */
1388 if (fence->context)
1389 intel_timeline_sync_set(i915_request_timeline(rq),
1390 fence);
f71e01a7
CW
1391 } while (--nchild);
1392
1393 return 0;
1394}
1395
a2bc4695 1396/**
e61e0f51 1397 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1398 * @to: request we are wishing to use
1399 * @obj: object which may be in use on another ring.
d8802126 1400 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1401 *
1402 * This code is meant to abstract object synchronization with the GPU.
1403 * Conceptually we serialise writes between engines inside the GPU.
1404 * We only allow one engine to write into a buffer at any time, but
1405 * multiple readers. To ensure each has a coherent view of memory, we must:
1406 *
1407 * - If there is an outstanding write request to the object, the new
1408 * request must wait for it to complete (either CPU or in hw, requests
1409 * on the same ring will be naturally ordered).
1410 *
1411 * - If we are a write request (pending_write_domain is set), the new
1412 * request must wait for outstanding read requests to complete.
1413 *
1414 * Returns 0 if successful, else propagates up the lower layer error.
1415 */
1416int
e61e0f51
CW
1417i915_request_await_object(struct i915_request *to,
1418 struct drm_i915_gem_object *obj,
1419 bool write)
a2bc4695 1420{
d07f0e59
CW
1421 struct dma_fence *excl;
1422 int ret = 0;
a2bc4695
CW
1423
1424 if (write) {
d07f0e59
CW
1425 struct dma_fence **shared;
1426 unsigned int count, i;
1427
52791eee 1428 ret = dma_resv_get_fences_rcu(obj->base.resv,
d07f0e59
CW
1429 &excl, &count, &shared);
1430 if (ret)
1431 return ret;
1432
1433 for (i = 0; i < count; i++) {
e61e0f51 1434 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1435 if (ret)
1436 break;
1437
1438 dma_fence_put(shared[i]);
1439 }
1440
1441 for (; i < count; i++)
1442 dma_fence_put(shared[i]);
1443 kfree(shared);
a2bc4695 1444 } else {
52791eee 1445 excl = dma_resv_get_excl_rcu(obj->base.resv);
a2bc4695
CW
1446 }
1447
d07f0e59
CW
1448 if (excl) {
1449 if (ret == 0)
e61e0f51 1450 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1451
d07f0e59 1452 dma_fence_put(excl);
a2bc4695
CW
1453 }
1454
d07f0e59 1455 return ret;
a2bc4695
CW
1456}
1457
ea593dbb
CW
1458static struct i915_request *
1459__i915_request_add_to_timeline(struct i915_request *rq)
1460{
d19d71fc 1461 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1462 struct i915_request *prev;
1463
1464 /*
1465 * Dependency tracking and request ordering along the timeline
1466 * is special cased so that we can eliminate redundant ordering
1467 * operations while building the request (we know that the timeline
1468 * itself is ordered, and here we guarantee it).
1469 *
1470 * As we know we will need to emit tracking along the timeline,
1471 * we embed the hooks into our request struct -- at the cost of
1472 * having to have specialised no-allocation interfaces (which will
1473 * be beneficial elsewhere).
1474 *
1475 * A second benefit to open-coding i915_request_await_request is
1476 * that we can apply a slight variant of the rules specialised
1477 * for timelines that jump between engines (such as virtual engines).
1478 * If we consider the case of virtual engine, we must emit a dma-fence
1479 * to prevent scheduling of the second request until the first is
1480 * complete (to maximise our greedy late load balancing) and this
1481 * precludes optimising to use semaphores serialisation of a single
1482 * timeline across engines.
1483 */
b1e3177b
CW
1484 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1485 &rq->fence));
ea593dbb 1486 if (prev && !i915_request_completed(prev)) {
1eaa251b
CW
1487 /*
1488 * The requests are supposed to be kept in order. However,
1489 * we need to be wary in case the timeline->last_request
1490 * is used as a barrier for external modification to this
1491 * context.
1492 */
1493 GEM_BUG_ON(prev->context == rq->context &&
1494 i915_seqno_passed(prev->fence.seqno,
1495 rq->fence.seqno));
1496
326611dd 1497 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
ea593dbb
CW
1498 i915_sw_fence_await_sw_fence(&rq->submit,
1499 &prev->submit,
1500 &rq->submitq);
1501 else
1502 __i915_sw_fence_await_dma_fence(&rq->submit,
1503 &prev->fence,
1504 &rq->dmaq);
1505 if (rq->engine->schedule)
1506 __i915_sched_node_add_dependency(&rq->sched,
1507 &prev->sched,
1508 &rq->dep,
1509 0);
1510 }
1511
2ccdf6a1
CW
1512 /*
1513 * Make sure that no request gazumped us - if it was allocated after
1514 * our i915_request_alloc() and called __i915_request_add() before
1515 * us, the timeline will hold its seqno which is later than ours.
1516 */
ea593dbb 1517 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
ea593dbb
CW
1518
1519 return prev;
1520}
1521
05235c53
CW
1522/*
1523 * NB: This function is not allowed to fail. Doing so would mean the the
1524 * request is not being tracked for completion but the work itself is
1525 * going to happen on the hardware. This would be a Bad Thing(tm).
1526 */
2ccdf6a1 1527struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1528{
2ccdf6a1
CW
1529 struct intel_engine_cs *engine = rq->engine;
1530 struct intel_ring *ring = rq->ring;
73dec95e 1531 u32 *cs;
05235c53 1532
639f2f24 1533 RQ_TRACE(rq, "\n");
c781c978 1534
05235c53
CW
1535 /*
1536 * To ensure that this call will not fail, space for its emissions
1537 * should already have been reserved in the ring buffer. Let the ring
1538 * know that it is time to use that space up.
1539 */
2ccdf6a1
CW
1540 GEM_BUG_ON(rq->reserved_space > ring->space);
1541 rq->reserved_space = 0;
e5dadff4 1542 rq->emitted_jiffies = jiffies;
05235c53 1543
8ac71d1d
CW
1544 /*
1545 * Record the position of the start of the breadcrumb so that
05235c53
CW
1546 * should we detect the updated seqno part-way through the
1547 * GPU processing the request, we never over-estimate the
d045446d 1548 * position of the ring's HEAD.
05235c53 1549 */
2ccdf6a1 1550 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1551 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1552 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1553
e5dadff4 1554 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1555}
1556
1557void __i915_request_queue(struct i915_request *rq,
1558 const struct i915_sched_attr *attr)
1559{
8ac71d1d
CW
1560 /*
1561 * Let the backend know a new request has arrived that may need
0de9136d
CW
1562 * to adjust the existing execution schedule due to a high priority
1563 * request - i.e. we may want to preempt the current request in order
1564 * to run a high priority dependency chain *before* we can execute this
1565 * request.
1566 *
1567 * This is called before the request is ready to run so that we can
1568 * decide whether to preempt the entire chain so that it is ready to
1569 * run at the earliest possible convenience.
1570 */
a79ca656
CW
1571 if (attr && rq->engine->schedule)
1572 rq->engine->schedule(rq, attr);
209df10b 1573 i915_sw_fence_commit(&rq->semaphore);
2ccdf6a1 1574 i915_sw_fence_commit(&rq->submit);
2ccdf6a1
CW
1575}
1576
1577void i915_request_add(struct i915_request *rq)
1578{
d19d71fc 1579 struct intel_timeline * const tl = i915_request_timeline(rq);
e6ba7648 1580 struct i915_sched_attr attr = {};
61231f6b 1581 struct i915_gem_context *ctx;
2ccdf6a1 1582
e5dadff4
CW
1583 lockdep_assert_held(&tl->mutex);
1584 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1585
1586 trace_i915_request_add(rq);
61231f6b 1587 __i915_request_commit(rq);
2ccdf6a1 1588
61231f6b
CW
1589 /* XXX placeholder for selftests */
1590 rcu_read_lock();
1591 ctx = rcu_dereference(rq->context->gem_context);
1592 if (ctx)
1593 attr = ctx->sched;
1594 rcu_read_unlock();
e6ba7648 1595
a79ca656
CW
1596 __i915_request_queue(rq, &attr);
1597
e5dadff4 1598 mutex_unlock(&tl->mutex);
05235c53
CW
1599}
1600
062444bb 1601static unsigned long local_clock_ns(unsigned int *cpu)
05235c53
CW
1602{
1603 unsigned long t;
1604
e61e0f51
CW
1605 /*
1606 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1607 * The result and subsequent calculations are also defined in the same
1608 * approximate microseconds units. The principal source of timing
1609 * error here is from the simple truncation.
1610 *
1611 * Note that local_clock() is only defined wrt to the current CPU;
1612 * the comparisons are no longer valid if we switch CPUs. Instead of
1613 * blocking preemption for the entire busywait, we can detect the CPU
1614 * switch and use that as indicator of system load and a reason to
1615 * stop busywaiting, see busywait_stop().
1616 */
1617 *cpu = get_cpu();
062444bb 1618 t = local_clock();
05235c53
CW
1619 put_cpu();
1620
1621 return t;
1622}
1623
1624static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1625{
1626 unsigned int this_cpu;
1627
062444bb 1628 if (time_after(local_clock_ns(&this_cpu), timeout))
05235c53
CW
1629 return true;
1630
1631 return this_cpu != cpu;
1632}
1633
3f6a6f34 1634static bool __i915_spin_request(struct i915_request * const rq, int state)
05235c53 1635{
062444bb 1636 unsigned long timeout_ns;
52c0fdb2 1637 unsigned int cpu;
b2f2f0fc
CW
1638
1639 /*
1640 * Only wait for the request if we know it is likely to complete.
1641 *
1642 * We don't track the timestamps around requests, nor the average
1643 * request length, so we do not have a good indicator that this
1644 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1645 * order in which requests are executed by the context and so we can
1646 * tell if the request has been started. If the request is not even
1647 * running yet, it is a fair assumption that it will not complete
1648 * within our relatively short timeout.
b2f2f0fc 1649 */
52c0fdb2 1650 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1651 return false;
1652
e61e0f51
CW
1653 /*
1654 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1655 * rendering split between the CPU and GPU, the finite amount of time
1656 * required to set up the irq and wait upon it limits the response
1657 * rate. By busywaiting on the request completion for a short while we
1658 * can service the high frequency waits as quick as possible. However,
1659 * if it is a slow request, we want to sleep as quickly as possible.
1660 * The tradeoff between waiting and sleeping is roughly the time it
1661 * takes to sleep on a request, on the order of a microsecond.
1662 */
1663
062444bb
CW
1664 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1665 timeout_ns += local_clock_ns(&cpu);
05235c53 1666 do {
3f6a6f34 1667 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1668 return true;
c33ed067 1669
05235c53
CW
1670 if (signal_pending_state(state, current))
1671 break;
1672
062444bb 1673 if (busywait_stop(timeout_ns, cpu))
05235c53
CW
1674 break;
1675
f2f09a4c 1676 cpu_relax();
05235c53
CW
1677 } while (!need_resched());
1678
1679 return false;
1680}
1681
52c0fdb2
CW
1682struct request_wait {
1683 struct dma_fence_cb cb;
1684 struct task_struct *tsk;
1685};
1686
1687static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1688{
1689 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1690
3f6a6f34 1691 wake_up_process(fetch_and_zero(&wait->tsk));
52c0fdb2
CW
1692}
1693
05235c53 1694/**
e532be89 1695 * i915_request_wait - wait until execution of request has finished
e61e0f51 1696 * @rq: the request to wait upon
ea746f36 1697 * @flags: how to wait
e95433c7
CW
1698 * @timeout: how long to wait in jiffies
1699 *
e532be89 1700 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1701 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1702 * unbounded wait).
05235c53 1703 *
e95433c7
CW
1704 * Returns the remaining time (in jiffies) if the request completed, which may
1705 * be zero or -ETIME if the request is unfinished after the timeout expires.
1706 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1707 * pending before the request completes.
05235c53 1708 */
e61e0f51 1709long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1710 unsigned int flags,
1711 long timeout)
05235c53 1712{
ea746f36
CW
1713 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1714 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1715 struct request_wait wait;
05235c53
CW
1716
1717 might_sleep();
e95433c7 1718 GEM_BUG_ON(timeout < 0);
05235c53 1719
6e4e9708 1720 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1721 return timeout;
05235c53 1722
e95433c7
CW
1723 if (!timeout)
1724 return -ETIME;
05235c53 1725
e61e0f51 1726 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1727
1728 /*
1729 * We must never wait on the GPU while holding a lock as we
1730 * may need to perform a GPU reset. So while we don't need to
1731 * serialise wait/reset with an explicit lock, we do want
1732 * lockdep to detect potential dependency cycles.
1733 */
cb823ed9 1734 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1735
7ce99d24
CW
1736 /*
1737 * Optimistic spin before touching IRQs.
1738 *
1739 * We may use a rather large value here to offset the penalty of
1740 * switching away from the active task. Frequently, the client will
1741 * wait upon an old swapbuffer to throttle itself to remain within a
1742 * frame of the gpu. If the client is running in lockstep with the gpu,
1743 * then it should not be waiting long at all, and a sleep now will incur
1744 * extra scheduler latency in producing the next frame. To try to
1745 * avoid adding the cost of enabling/disabling the interrupt to the
1746 * short wait, we first spin to see if the request would have completed
1747 * in the time taken to setup the interrupt.
1748 *
1749 * We need upto 5us to enable the irq, and upto 20us to hide the
1750 * scheduler latency of a context switch, ignoring the secondary
1751 * impacts from a context switch such as cache eviction.
1752 *
1753 * The scheme used for low-latency IO is called "hybrid interrupt
1754 * polling". The suggestion there is to sleep until just before you
1755 * expect to be woken by the device interrupt and then poll for its
1756 * completion. That requires having a good predictor for the request
1757 * duration, which we currently lack.
1758 */
062444bb 1759 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
3f6a6f34 1760 __i915_spin_request(rq, state))
52c0fdb2 1761 goto out;
541ca6ed 1762
62eb3c24
CW
1763 /*
1764 * This client is about to stall waiting for the GPU. In many cases
1765 * this is undesirable and limits the throughput of the system, as
1766 * many clients cannot continue processing user input/output whilst
1767 * blocked. RPS autotuning may take tens of milliseconds to respond
1768 * to the GPU load and thus incurs additional latency for the client.
1769 * We can circumvent that by promoting the GPU frequency to maximum
1770 * before we sleep. This makes the GPU throttle up much more quickly
1771 * (good for benchmarks and user experience, e.g. window animations),
1772 * but at a cost of spending more power processing the workload
1773 * (bad for battery).
1774 */
1840d40a
CW
1775 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1776 intel_rps_boost(rq);
4680816b 1777
52c0fdb2
CW
1778 wait.tsk = current;
1779 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1780 goto out;
4680816b 1781
3adee4ac
CW
1782 /*
1783 * Flush the submission tasklet, but only if it may help this request.
1784 *
1785 * We sometimes experience some latency between the HW interrupts and
1786 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1787 * be due to lazy CS events), so lets run the tasklet manually if there
1788 * is a chance it may submit this request. If the request is not ready
1789 * to run, as it is waiting for other fences to be signaled, flushing
1790 * the tasklet is busy work without any advantage for this client.
1791 *
1792 * If the HW is being lazy, this is the last chance before we go to
1793 * sleep to catch any pending events. We will check periodically in
1794 * the heartbeat to flush the submission tasklets as a last resort
1795 * for unhappy HW.
1796 */
1797 if (i915_request_is_ready(rq))
1798 intel_engine_flush_submission(rq->engine);
1799
52c0fdb2
CW
1800 for (;;) {
1801 set_current_state(state);
05235c53 1802
3f6a6f34 1803 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1804 break;
05235c53 1805
05235c53 1806 if (signal_pending_state(state, current)) {
e95433c7 1807 timeout = -ERESTARTSYS;
05235c53
CW
1808 break;
1809 }
1810
e95433c7
CW
1811 if (!timeout) {
1812 timeout = -ETIME;
05235c53
CW
1813 break;
1814 }
1815
e95433c7 1816 timeout = io_schedule_timeout(timeout);
05235c53 1817 }
a49625f9 1818 __set_current_state(TASK_RUNNING);
05235c53 1819
3f6a6f34
CW
1820 if (READ_ONCE(wait.tsk))
1821 dma_fence_remove_callback(&rq->fence, &wait.cb);
1822 GEM_BUG_ON(!list_empty(&wait.cb.node));
52c0fdb2
CW
1823
1824out:
5facae4f 1825 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
52c0fdb2 1826 trace_i915_request_wait_end(rq);
e95433c7 1827 return timeout;
05235c53 1828}
4b8de8e6 1829
c835c550
CW
1830#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1831#include "selftests/mock_request.c"
e61e0f51 1832#include "selftests/i915_request.c"
c835c550 1833#endif
32eb6bcf 1834
103b76ee
CW
1835static void i915_global_request_shrink(void)
1836{
103b76ee
CW
1837 kmem_cache_shrink(global.slab_execute_cbs);
1838 kmem_cache_shrink(global.slab_requests);
1839}
1840
1841static void i915_global_request_exit(void)
1842{
103b76ee
CW
1843 kmem_cache_destroy(global.slab_execute_cbs);
1844 kmem_cache_destroy(global.slab_requests);
1845}
1846
1847static struct i915_global_request global = { {
1848 .shrink = i915_global_request_shrink,
1849 .exit = i915_global_request_exit,
1850} };
1851
32eb6bcf
CW
1852int __init i915_global_request_init(void)
1853{
67a3acaa
CW
1854 global.slab_requests =
1855 kmem_cache_create("i915_request",
1856 sizeof(struct i915_request),
1857 __alignof__(struct i915_request),
1858 SLAB_HWCACHE_ALIGN |
1859 SLAB_RECLAIM_ACCOUNT |
1860 SLAB_TYPESAFE_BY_RCU,
1861 __i915_request_ctor);
32eb6bcf
CW
1862 if (!global.slab_requests)
1863 return -ENOMEM;
1864
e8861964
CW
1865 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1866 SLAB_HWCACHE_ALIGN |
1867 SLAB_RECLAIM_ACCOUNT |
1868 SLAB_TYPESAFE_BY_RCU);
1869 if (!global.slab_execute_cbs)
1870 goto err_requests;
1871
103b76ee 1872 i915_global_register(&global.base);
32eb6bcf
CW
1873 return 0;
1874
1875err_requests:
1876 kmem_cache_destroy(global.slab_requests);
1877 return -ENOMEM;
1878}