drm/i915/gem: Hold request reference for canceling an active context
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b52992c0 25#include <linux/dma-fence-array.h>
3136deb7 26#include <linux/dma-fence-chain.h>
e8861964
CW
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
e6017571
IM
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
f361bf4a 31#include <linux/sched/signal.h>
fa545cbf 32
10be98a7 33#include "gem/i915_gem_context.h"
b3786b29 34#include "gt/intel_breadcrumbs.h"
10be98a7 35#include "gt/intel_context.h"
2871ea85 36#include "gt/intel_ring.h"
3e7abf81 37#include "gt/intel_rps.h"
10be98a7 38
21950ee7 39#include "i915_active.h"
696173b0 40#include "i915_drv.h"
103b76ee 41#include "i915_globals.h"
a09d9a80 42#include "i915_trace.h"
696173b0 43#include "intel_pm.h"
05235c53 44
e8861964 45struct execute_cb {
e8861964
CW
46 struct irq_work work;
47 struct i915_sw_fence *fence;
f71e01a7
CW
48 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 struct i915_request *signal;
e8861964
CW
50};
51
32eb6bcf 52static struct i915_global_request {
103b76ee 53 struct i915_global base;
32eb6bcf 54 struct kmem_cache *slab_requests;
e8861964 55 struct kmem_cache *slab_execute_cbs;
32eb6bcf
CW
56} global;
57
f54d1867 58static const char *i915_fence_get_driver_name(struct dma_fence *fence)
04769652 59{
5a833995 60 return dev_name(to_request(fence)->engine->i915->drm.dev);
04769652
CW
61}
62
f54d1867 63static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
04769652 64{
9f3ccd40
CW
65 const struct i915_gem_context *ctx;
66
e61e0f51
CW
67 /*
68 * The timeline struct (as part of the ppgtt underneath a context)
05506b5b
CW
69 * may be freed when the request is no longer in use by the GPU.
70 * We could extend the life of a context to beyond that of all
71 * fences, possibly keeping the hw resource around indefinitely,
72 * or we just give them a false name. Since
73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 * lie seems justifiable.
75 */
76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 return "signaled";
78
6a8679c0 79 ctx = i915_request_gem_context(to_request(fence));
9f3ccd40
CW
80 if (!ctx)
81 return "[" DRIVER_NAME "]";
82
83 return ctx->name;
04769652
CW
84}
85
f54d1867 86static bool i915_fence_signaled(struct dma_fence *fence)
04769652 87{
e61e0f51 88 return i915_request_completed(to_request(fence));
04769652
CW
89}
90
f54d1867 91static bool i915_fence_enable_signaling(struct dma_fence *fence)
04769652 92{
52c0fdb2 93 return i915_request_enable_breadcrumb(to_request(fence));
04769652
CW
94}
95
f54d1867 96static signed long i915_fence_wait(struct dma_fence *fence,
04769652 97 bool interruptible,
e95433c7 98 signed long timeout)
04769652 99{
62eb3c24
CW
100 return i915_request_wait(to_request(fence),
101 interruptible | I915_WAIT_PRIORITY,
102 timeout);
04769652
CW
103}
104
43acd651
CW
105struct kmem_cache *i915_request_slab_cache(void)
106{
107 return global.slab_requests;
108}
109
f54d1867 110static void i915_fence_release(struct dma_fence *fence)
04769652 111{
e61e0f51 112 struct i915_request *rq = to_request(fence);
04769652 113
e61e0f51
CW
114 /*
115 * The request is put onto a RCU freelist (i.e. the address
fc158405
CW
116 * is immediately reused), mark the fences as being freed now.
117 * Otherwise the debugobjects for the fences are only marked as
118 * freed when the slab cache itself is freed, and so we would get
119 * caught trying to reuse dead objects.
120 */
e61e0f51 121 i915_sw_fence_fini(&rq->submit);
0c441cb6 122 i915_sw_fence_fini(&rq->semaphore);
fc158405 123
32a4605b
CW
124 /*
125 * Keep one request on each engine for reserved use under mempressure
126 *
127 * We do not hold a reference to the engine here and so have to be
128 * very careful in what rq->engine we poke. The virtual engine is
129 * referenced via the rq->context and we released that ref during
130 * i915_request_retire(), ergo we must not dereference a virtual
131 * engine here. Not that we would want to, as the only consumer of
132 * the reserved engine->request_pool is the power management parking,
133 * which must-not-fail, and that is only run on the physical engines.
134 *
135 * Since the request must have been executed to be have completed,
136 * we know that it will have been processed by the HW and will
137 * not be unsubmitted again, so rq->engine and rq->execution_mask
138 * at this point is stable. rq->execution_mask will be a single
139 * bit if the last and _only_ engine it could execution on was a
140 * physical engine, if it's multiple bits then it started on and
141 * could still be on a virtual engine. Thus if the mask is not a
142 * power-of-two we assume that rq->engine may still be a virtual
143 * engine and so a dangling invalid pointer that we cannot dereference
144 *
145 * For example, consider the flow of a bonded request through a virtual
146 * engine. The request is created with a wide engine mask (all engines
147 * that we might execute on). On processing the bond, the request mask
148 * is reduced to one or more engines. If the request is subsequently
149 * bound to a single engine, it will then be constrained to only
150 * execute on that engine and never returned to the virtual engine
151 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
152 * know that if the rq->execution_mask is a single bit, rq->engine
153 * can be a physical engine with the exact corresponding mask.
154 */
155 if (is_power_of_2(rq->execution_mask) &&
156 !cmpxchg(&rq->engine->request_pool, NULL, rq))
43acd651
CW
157 return;
158
32eb6bcf 159 kmem_cache_free(global.slab_requests, rq);
04769652
CW
160}
161
f54d1867 162const struct dma_fence_ops i915_fence_ops = {
04769652
CW
163 .get_driver_name = i915_fence_get_driver_name,
164 .get_timeline_name = i915_fence_get_timeline_name,
165 .enable_signaling = i915_fence_enable_signaling,
166 .signaled = i915_fence_signaled,
167 .wait = i915_fence_wait,
168 .release = i915_fence_release,
04769652
CW
169};
170
b87b6c0d
CW
171static void irq_execute_cb(struct irq_work *wrk)
172{
173 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174
175 i915_sw_fence_complete(cb->fence);
176 kmem_cache_free(global.slab_execute_cbs, cb);
177}
178
179static void irq_execute_cb_hook(struct irq_work *wrk)
180{
181 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182
183 cb->hook(container_of(cb->fence, struct i915_request, submit),
184 &cb->signal->fence);
185 i915_request_put(cb->signal);
186
187 irq_execute_cb(wrk);
188}
189
2e4c6c1a
CW
190static __always_inline void
191__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
b87b6c0d 192{
fc0e1270 193 struct execute_cb *cb, *cn;
b87b6c0d 194
fc0e1270 195 if (llist_empty(&rq->execute_cb))
b87b6c0d
CW
196 return;
197
2e4c6c1a
CW
198 llist_for_each_entry_safe(cb, cn,
199 llist_del_all(&rq->execute_cb),
200 work.llnode)
201 fn(&cb->work);
202}
b87b6c0d 203
2e4c6c1a
CW
204static void __notify_execute_cb_irq(struct i915_request *rq)
205{
206 __notify_execute_cb(rq, irq_work_queue);
207}
208
209static bool irq_work_imm(struct irq_work *wrk)
210{
211 wrk->func(wrk);
212 return false;
213}
214
215static void __notify_execute_cb_imm(struct i915_request *rq)
216{
217 __notify_execute_cb(rq, irq_work_imm);
b87b6c0d
CW
218}
219
e61e0f51 220static void free_capture_list(struct i915_request *request)
b0fd47ad 221{
e61e0f51 222 struct i915_capture_list *capture;
b0fd47ad 223
67a3acaa 224 capture = fetch_and_zero(&request->capture_list);
b0fd47ad 225 while (capture) {
e61e0f51 226 struct i915_capture_list *next = capture->next;
b0fd47ad
CW
227
228 kfree(capture);
229 capture = next;
230 }
231}
232
89dd019a
CW
233static void __i915_request_fill(struct i915_request *rq, u8 val)
234{
235 void *vaddr = rq->ring->vaddr;
236 u32 head;
237
238 head = rq->infix;
239 if (rq->postfix < head) {
240 memset(vaddr + head, val, rq->ring->size - head);
241 head = 0;
242 }
243 memset(vaddr + head, val, rq->postfix - head);
244}
245
37fa0de3
CW
246static void remove_from_engine(struct i915_request *rq)
247{
248 struct intel_engine_cs *engine, *locked;
249
250 /*
251 * Virtual engines complicate acquiring the engine timeline lock,
252 * as their rq->engine pointer is not stable until under that
253 * engine lock. The simple ploy we use is to take the lock then
254 * check that the rq still belongs to the newly locked engine.
255 */
256 locked = READ_ONCE(rq->engine);
1dfffa00 257 spin_lock_irq(&locked->active.lock);
37fa0de3
CW
258 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
259 spin_unlock(&locked->active.lock);
260 spin_lock(&engine->active.lock);
261 locked = engine;
262 }
67a3acaa 263 list_del_init(&rq->sched.link);
2e4c6c1a 264
b4a9a149
CW
265 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
266 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
2e4c6c1a
CW
267
268 /* Prevent further __await_execution() registering a cb, then flush */
269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270
1dfffa00 271 spin_unlock_irq(&locked->active.lock);
2e4c6c1a
CW
272
273 __notify_execute_cb_imm(rq);
37fa0de3
CW
274}
275
66101975 276bool i915_request_retire(struct i915_request *rq)
05235c53 277{
9db0c5ca
CW
278 if (!i915_request_completed(rq))
279 return false;
d9b13c4d 280
639f2f24 281 RQ_TRACE(rq, "\n");
4c7d62c6 282
9db0c5ca
CW
283 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
284 trace_i915_request_retire(rq);
2e4c6c1a 285 i915_request_mark_complete(rq);
80b204bc 286
e5dadff4
CW
287 /*
288 * We know the GPU must have read the request to have
289 * sent us the seqno + interrupt, so use the position
290 * of tail of the request to update the last known position
291 * of the GPU head.
292 *
293 * Note this requires that we are always called in request
294 * completion order.
295 */
d19d71fc
CW
296 GEM_BUG_ON(!list_is_first(&rq->link,
297 &i915_request_timeline(rq)->requests));
89dd019a
CW
298 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
299 /* Poison before we release our space in the ring */
300 __i915_request_fill(rq, POISON_FREE);
e5dadff4 301 rq->ring->head = rq->postfix;
b0fd47ad 302
e2300560
CW
303 if (!i915_request_signaled(rq)) {
304 spin_lock_irq(&rq->lock);
9db0c5ca 305 dma_fence_signal_locked(&rq->fence);
e2300560
CW
306 spin_unlock_irq(&rq->lock);
307 }
c18636f7 308
2a98f4e6 309 if (i915_request_has_waitboost(rq)) {
3e7abf81
AS
310 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
311 atomic_dec(&rq->engine->gt->rps.num_waiters);
9db0c5ca 312 }
c18636f7
CW
313
314 /*
315 * We only loosely track inflight requests across preemption,
316 * and so we may find ourselves attempting to retire a _completed_
317 * request that we have removed from the HW and put back on a run
318 * queue.
319 *
320 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
321 * after removing the breadcrumb and signaling it, so that we do not
322 * inadvertently attach the breadcrumb to a completed request.
323 */
324 remove_from_engine(rq);
fc0e1270 325 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
52d7f16e 326
dff2a11b 327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
9db0c5ca 328
9f3ccd40
CW
329 intel_context_exit(rq->context);
330 intel_context_unpin(rq->context);
75d0a7f3 331
9db0c5ca
CW
332 free_capture_list(rq);
333 i915_sched_node_fini(&rq->sched);
334 i915_request_put(rq);
335
336 return true;
05235c53
CW
337}
338
e61e0f51 339void i915_request_retire_upto(struct i915_request *rq)
05235c53 340{
d19d71fc 341 struct intel_timeline * const tl = i915_request_timeline(rq);
e61e0f51 342 struct i915_request *tmp;
05235c53 343
639f2f24 344 RQ_TRACE(rq, "\n");
b887d615 345
e61e0f51 346 GEM_BUG_ON(!i915_request_completed(rq));
4ffd6e0c 347
05235c53 348 do {
e5dadff4 349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
9db0c5ca 350 } while (i915_request_retire(tmp) && tmp != rq);
05235c53
CW
351}
352
b55230e5
CW
353static struct i915_request * const *
354__engine_active(struct intel_engine_cs *engine)
355{
356 return READ_ONCE(engine->execlists.active);
357}
358
359static bool __request_in_flight(const struct i915_request *signal)
360{
361 struct i915_request * const *port, *rq;
362 bool inflight = false;
363
364 if (!i915_request_is_ready(signal))
365 return false;
366
367 /*
368 * Even if we have unwound the request, it may still be on
369 * the GPU (preempt-to-busy). If that request is inside an
370 * unpreemptible critical section, it will not be removed. Some
371 * GPU functions may even be stuck waiting for the paired request
372 * (__await_execution) to be submitted and cannot be preempted
373 * until the bond is executing.
374 *
375 * As we know that there are always preemption points between
376 * requests, we know that only the currently executing request
377 * may be still active even though we have cleared the flag.
b4d9145b 378 * However, we can't rely on our tracking of ELSP[0] to know
b55230e5
CW
379 * which request is currently active and so maybe stuck, as
380 * the tracking maybe an event behind. Instead assume that
381 * if the context is still inflight, then it is still active
382 * even if the active flag has been cleared.
b4d9145b
CW
383 *
384 * To further complicate matters, if there a pending promotion, the HW
385 * may either perform a context switch to the second inflight execlists,
386 * or it may switch to the pending set of execlists. In the case of the
387 * latter, it may send the ACK and we process the event copying the
388 * pending[] over top of inflight[], _overwriting_ our *active. Since
389 * this implies the HW is arbitrating and not struck in *active, we do
390 * not worry about complete accuracy, but we do require no read/write
391 * tearing of the pointer [the read of the pointer must be valid, even
392 * as the array is being overwritten, for which we require the writes
393 * to avoid tearing.]
394 *
395 * Note that the read of *execlists->active may race with the promotion
396 * of execlists->pending[] to execlists->inflight[], overwritting
397 * the value at *execlists->active. This is fine. The promotion implies
398 * that we received an ACK from the HW, and so the context is not
399 * stuck -- if we do not see ourselves in *active, the inflight status
400 * is valid. If instead we see ourselves being copied into *active,
401 * we are inflight and may signal the callback.
b55230e5
CW
402 */
403 if (!intel_context_inflight(signal->context))
404 return false;
405
406 rcu_read_lock();
b4d9145b
CW
407 for (port = __engine_active(signal->engine);
408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
409 port++) {
b55230e5
CW
410 if (rq->context == signal->context) {
411 inflight = i915_seqno_passed(rq->fence.seqno,
412 signal->fence.seqno);
413 break;
414 }
415 }
416 rcu_read_unlock();
417
418 return inflight;
419}
420
e8861964 421static int
c81471f5
CW
422__await_execution(struct i915_request *rq,
423 struct i915_request *signal,
424 void (*hook)(struct i915_request *rq,
425 struct dma_fence *signal),
426 gfp_t gfp)
e8861964
CW
427{
428 struct execute_cb *cb;
429
f71e01a7
CW
430 if (i915_request_is_active(signal)) {
431 if (hook)
432 hook(rq, &signal->fence);
e8861964 433 return 0;
f71e01a7 434 }
e8861964
CW
435
436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
437 if (!cb)
438 return -ENOMEM;
439
440 cb->fence = &rq->submit;
441 i915_sw_fence_await(cb->fence);
442 init_irq_work(&cb->work, irq_execute_cb);
443
f71e01a7
CW
444 if (hook) {
445 cb->hook = hook;
446 cb->signal = i915_request_get(signal);
447 cb->work.func = irq_execute_cb_hook;
448 }
449
2e4c6c1a
CW
450 /*
451 * Register the callback first, then see if the signaler is already
452 * active. This ensures that if we race with the
453 * __notify_execute_cb from i915_request_submit() and we are not
454 * included in that list, we get a second bite of the cherry and
455 * execute it ourselves. After this point, a future
456 * i915_request_submit() will notify us.
457 *
458 * In i915_request_retire() we set the ACTIVE bit on a completed
459 * request (then flush the execute_cb). So by registering the
460 * callback first, then checking the ACTIVE bit, we serialise with
461 * the completed/retired request.
462 */
463 if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
464 if (i915_request_is_active(signal) ||
465 __request_in_flight(signal))
466 __notify_execute_cb_imm(signal);
e8861964 467 }
e8861964
CW
468
469 return 0;
470}
471
36e191f0
CW
472static bool fatal_error(int error)
473{
474 switch (error) {
475 case 0: /* not an error! */
476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
478 return false;
479 default:
480 return true;
481 }
482}
483
484void __i915_request_skip(struct i915_request *rq)
485{
486 GEM_BUG_ON(!fatal_error(rq->fence.error));
487
488 if (rq->infix == rq->postfix)
489 return;
490
491 /*
492 * As this request likely depends on state from the lost
493 * context, clear out all the user operations leaving the
494 * breadcrumb at the end (so we get the fence notifications).
495 */
496 __i915_request_fill(rq, 0);
497 rq->infix = rq->postfix;
498}
499
500void i915_request_set_error_once(struct i915_request *rq, int error)
501{
502 int old;
503
504 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
505
506 if (i915_request_signaled(rq))
507 return;
508
509 old = READ_ONCE(rq->fence.error);
510 do {
511 if (fatal_error(old))
512 return;
513 } while (!try_cmpxchg(&rq->fence.error, &old, error));
514}
515
c0bb487d 516bool __i915_request_submit(struct i915_request *request)
5590af3e 517{
73cb9701 518 struct intel_engine_cs *engine = request->engine;
c0bb487d 519 bool result = false;
5590af3e 520
639f2f24 521 RQ_TRACE(request, "\n");
d9b13c4d 522
e60a870d 523 GEM_BUG_ON(!irqs_disabled());
422d7df4 524 lockdep_assert_held(&engine->active.lock);
e60a870d 525
c0bb487d
CW
526 /*
527 * With the advent of preempt-to-busy, we frequently encounter
528 * requests that we have unsubmitted from HW, but left running
529 * until the next ack and so have completed in the meantime. On
530 * resubmission of that completed request, we can skip
531 * updating the payload, and execlists can even skip submitting
532 * the request.
533 *
534 * We must remove the request from the caller's priority queue,
535 * and the caller must only call us when the request is in their
536 * priority queue, under the active.lock. This ensures that the
537 * request has *not* yet been retired and we can safely move
538 * the request into the engine->active.list where it will be
539 * dropped upon retiring. (Otherwise if resubmit a *retired*
540 * request, this would be a horrible use-after-free.)
541 */
542 if (i915_request_completed(request))
543 goto xfer;
544
36e191f0
CW
545 if (unlikely(intel_context_is_banned(request->context)))
546 i915_request_set_error_once(request, -EIO);
547 if (unlikely(fatal_error(request->fence.error)))
548 __i915_request_skip(request);
d9e61b66 549
ca6e56f6
CW
550 /*
551 * Are we using semaphores when the gpu is already saturated?
552 *
553 * Using semaphores incurs a cost in having the GPU poll a
554 * memory location, busywaiting for it to change. The continual
555 * memory reads can have a noticeable impact on the rest of the
556 * system with the extra bus traffic, stalling the cpu as it too
557 * tries to access memory across the bus (perf stat -e bus-cycles).
558 *
559 * If we installed a semaphore on this request and we only submit
560 * the request after the signaler completed, that indicates the
561 * system is overloaded and using semaphores at this time only
562 * increases the amount of work we are doing. If so, we disable
563 * further use of semaphores until we are idle again, whence we
564 * optimistically try again.
565 */
566 if (request->sched.semaphores &&
567 i915_sw_fence_signaled(&request->semaphore))
44d89409 568 engine->saturated |= request->sched.semaphores;
ca6e56f6 569
c0bb487d
CW
570 engine->emit_fini_breadcrumb(request,
571 request->ring->vaddr + request->postfix);
b5773a36 572
c0bb487d
CW
573 trace_i915_request_execute(request);
574 engine->serial++;
575 result = true;
422d7df4 576
1d9221e9 577xfer:
672c368f 578 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
c0bb487d 579 list_move_tail(&request->sched.link, &engine->active.requests);
672c368f
CW
580 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
581 }
b5773a36 582
c18636f7
CW
583 /*
584 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
585 *
586 * In the future, perhaps when we have an active time-slicing scheduler,
587 * it will be interesting to unsubmit parallel execution and remove
588 * busywaits from the GPU until their master is restarted. This is
589 * quite hairy, we have to carefully rollback the fence and do a
590 * preempt-to-idle cycle on the target engine, all the while the
591 * master execute_cb may refire.
592 */
2e4c6c1a
CW
593 __notify_execute_cb_irq(request);
594
595 /* We may be recursing from the signal callback of another i915 fence */
5701a66e
CW
596 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
597 i915_request_enable_breadcrumb(request);
f2d13290 598
c0bb487d 599 return result;
d55ac5bf
CW
600}
601
e61e0f51 602void i915_request_submit(struct i915_request *request)
d55ac5bf
CW
603{
604 struct intel_engine_cs *engine = request->engine;
605 unsigned long flags;
23902e49 606
d55ac5bf 607 /* Will be called from irq-context when using foreign fences. */
422d7df4 608 spin_lock_irqsave(&engine->active.lock, flags);
d55ac5bf 609
e61e0f51 610 __i915_request_submit(request);
d55ac5bf 611
422d7df4 612 spin_unlock_irqrestore(&engine->active.lock, flags);
d55ac5bf
CW
613}
614
e61e0f51 615void __i915_request_unsubmit(struct i915_request *request)
d55ac5bf 616{
d6a2289d 617 struct intel_engine_cs *engine = request->engine;
d55ac5bf 618
c18636f7
CW
619 /*
620 * Only unwind in reverse order, required so that the per-context list
621 * is kept in seqno/ring order.
622 */
639f2f24 623 RQ_TRACE(request, "\n");
d9b13c4d 624
e60a870d 625 GEM_BUG_ON(!irqs_disabled());
422d7df4 626 lockdep_assert_held(&engine->active.lock);
48bc2a4a 627
e61e0f51 628 /*
c18636f7
CW
629 * Before we remove this breadcrumb from the signal list, we have
630 * to ensure that a concurrent dma_fence_enable_signaling() does not
631 * attach itself. We first mark the request as no longer active and
632 * make sure that is visible to other cores, and then remove the
633 * breadcrumb if attached.
d6a2289d 634 */
c18636f7
CW
635 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
636 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
d6a2289d 637 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
52c0fdb2 638 i915_request_cancel_breadcrumb(request);
b5773a36 639
dba5a7f3 640 /* We've already spun, don't charge on resubmitting. */
18e4af04 641 if (request->sched.semaphores && i915_request_started(request))
dba5a7f3 642 request->sched.semaphores = 0;
dba5a7f3 643
e61e0f51
CW
644 /*
645 * We don't need to wake_up any waiters on request->execute, they
d6a2289d 646 * will get woken by any other event or us re-adding this request
e61e0f51 647 * to the engine timeline (__i915_request_submit()). The waiters
d6a2289d
CW
648 * should be quite adapt at finding that the request now has a new
649 * global_seqno to the one they went to sleep on.
650 */
651}
652
e61e0f51 653void i915_request_unsubmit(struct i915_request *request)
d6a2289d
CW
654{
655 struct intel_engine_cs *engine = request->engine;
656 unsigned long flags;
657
658 /* Will be called from irq-context when using foreign fences. */
422d7df4 659 spin_lock_irqsave(&engine->active.lock, flags);
d6a2289d 660
e61e0f51 661 __i915_request_unsubmit(request);
d6a2289d 662
422d7df4 663 spin_unlock_irqrestore(&engine->active.lock, flags);
5590af3e
CW
664}
665
23902e49 666static int __i915_sw_fence_call
d55ac5bf 667submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
23902e49 668{
e61e0f51 669 struct i915_request *request =
48bc2a4a 670 container_of(fence, typeof(*request), submit);
48bc2a4a
CW
671
672 switch (state) {
673 case FENCE_COMPLETE:
e61e0f51 674 trace_i915_request_submit(request);
ef468849
CW
675
676 if (unlikely(fence->error))
36e191f0 677 i915_request_set_error_once(request, fence->error);
ef468849 678
af7a8ffa 679 /*
e61e0f51
CW
680 * We need to serialize use of the submit_request() callback
681 * with its hotplugging performed during an emergency
682 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
683 * critical section in order to force i915_gem_set_wedged() to
684 * wait until the submit_request() is completed before
685 * proceeding.
af7a8ffa
DV
686 */
687 rcu_read_lock();
d55ac5bf 688 request->engine->submit_request(request);
af7a8ffa 689 rcu_read_unlock();
48bc2a4a
CW
690 break;
691
692 case FENCE_FREE:
e61e0f51 693 i915_request_put(request);
48bc2a4a
CW
694 break;
695 }
696
23902e49
CW
697 return NOTIFY_DONE;
698}
699
b7404c7e
CW
700static int __i915_sw_fence_call
701semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
702{
209df10b 703 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
b7404c7e
CW
704
705 switch (state) {
706 case FENCE_COMPLETE:
b7404c7e
CW
707 break;
708
709 case FENCE_FREE:
209df10b 710 i915_request_put(rq);
b7404c7e
CW
711 break;
712 }
713
714 return NOTIFY_DONE;
715}
716
e5dadff4 717static void retire_requests(struct intel_timeline *tl)
d22ba0cb
CW
718{
719 struct i915_request *rq, *rn;
720
e5dadff4 721 list_for_each_entry_safe(rq, rn, &tl->requests, link)
9db0c5ca 722 if (!i915_request_retire(rq))
d22ba0cb 723 break;
d22ba0cb
CW
724}
725
726static noinline struct i915_request *
43acd651
CW
727request_alloc_slow(struct intel_timeline *tl,
728 struct i915_request **rsvd,
729 gfp_t gfp)
d22ba0cb 730{
d22ba0cb
CW
731 struct i915_request *rq;
732
43acd651
CW
733 /* If we cannot wait, dip into our reserves */
734 if (!gfpflags_allow_blocking(gfp)) {
735 rq = xchg(rsvd, NULL);
736 if (!rq) /* Use the normal failure path for one final WARN */
737 goto out;
d22ba0cb 738
43acd651
CW
739 return rq;
740 }
741
742 if (list_empty(&tl->requests))
2ccdf6a1
CW
743 goto out;
744
9db0c5ca 745 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4 746 rq = list_first_entry(&tl->requests, typeof(*rq), link);
9db0c5ca
CW
747 i915_request_retire(rq);
748
749 rq = kmem_cache_alloc(global.slab_requests,
750 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
751 if (rq)
752 return rq;
753
d22ba0cb 754 /* Ratelimit ourselves to prevent oom from malicious clients */
e5dadff4 755 rq = list_last_entry(&tl->requests, typeof(*rq), link);
d22ba0cb
CW
756 cond_synchronize_rcu(rq->rcustate);
757
758 /* Retire our old requests in the hope that we free some */
e5dadff4 759 retire_requests(tl);
d22ba0cb
CW
760
761out:
2ccdf6a1 762 return kmem_cache_alloc(global.slab_requests, gfp);
d22ba0cb
CW
763}
764
67a3acaa
CW
765static void __i915_request_ctor(void *arg)
766{
767 struct i915_request *rq = arg;
768
769 spin_lock_init(&rq->lock);
770 i915_sched_node_init(&rq->sched);
771 i915_sw_fence_init(&rq->submit, submit_notify);
772 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
773
855e39e6
CW
774 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
775
67a3acaa
CW
776 rq->capture_list = NULL;
777
fc0e1270 778 init_llist_head(&rq->execute_cb);
67a3acaa
CW
779}
780
e61e0f51 781struct i915_request *
2ccdf6a1 782__i915_request_create(struct intel_context *ce, gfp_t gfp)
05235c53 783{
75d0a7f3 784 struct intel_timeline *tl = ce->timeline;
ebece753
CW
785 struct i915_request *rq;
786 u32 seqno;
05235c53
CW
787 int ret;
788
2ccdf6a1 789 might_sleep_if(gfpflags_allow_blocking(gfp));
28176ef4 790
2ccdf6a1
CW
791 /* Check that the caller provided an already pinned context */
792 __intel_context_pin(ce);
9b5f4e5e 793
e61e0f51
CW
794 /*
795 * Beware: Dragons be flying overhead.
5a198b8c
CW
796 *
797 * We use RCU to look up requests in flight. The lookups may
798 * race with the request being allocated from the slab freelist.
799 * That is the request we are writing to here, may be in the process
21950ee7 800 * of being read by __i915_active_request_get_rcu(). As such,
5a198b8c
CW
801 * we have to be very careful when overwriting the contents. During
802 * the RCU lookup, we change chase the request->engine pointer,
65e4760e 803 * read the request->global_seqno and increment the reference count.
5a198b8c
CW
804 *
805 * The reference count is incremented atomically. If it is zero,
806 * the lookup knows the request is unallocated and complete. Otherwise,
807 * it is either still in use, or has been reallocated and reset
f54d1867
CW
808 * with dma_fence_init(). This increment is safe for release as we
809 * check that the request we have a reference to and matches the active
5a198b8c
CW
810 * request.
811 *
812 * Before we increment the refcount, we chase the request->engine
813 * pointer. We must not call kmem_cache_zalloc() or else we set
814 * that pointer to NULL and cause a crash during the lookup. If
815 * we see the request is completed (based on the value of the
816 * old engine and seqno), the lookup is complete and reports NULL.
817 * If we decide the request is not completed (new engine or seqno),
818 * then we grab a reference and double check that it is still the
819 * active request - which it won't be and restart the lookup.
820 *
821 * Do not use kmem_cache_zalloc() here!
822 */
32eb6bcf 823 rq = kmem_cache_alloc(global.slab_requests,
2ccdf6a1 824 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
e61e0f51 825 if (unlikely(!rq)) {
43acd651 826 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
e61e0f51 827 if (!rq) {
31c70f97
CW
828 ret = -ENOMEM;
829 goto err_unreserve;
830 }
28176ef4 831 }
05235c53 832
9f3ccd40 833 rq->context = ce;
2ccdf6a1 834 rq->engine = ce->engine;
1fc44d9b 835 rq->ring = ce->ring;
89b6d183 836 rq->execution_mask = ce->engine->mask;
d19d71fc 837
855e39e6
CW
838 kref_init(&rq->fence.refcount);
839 rq->fence.flags = 0;
840 rq->fence.error = 0;
841 INIT_LIST_HEAD(&rq->fence.cb_list);
842
843 ret = intel_timeline_get_seqno(tl, rq, &seqno);
844 if (ret)
845 goto err_free;
846
847 rq->fence.context = tl->fence_context;
848 rq->fence.seqno = seqno;
849
85bedbf1
CW
850 RCU_INIT_POINTER(rq->timeline, tl);
851 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
ebece753 852 rq->hwsp_seqno = tl->hwsp_seqno;
1eaa251b 853 GEM_BUG_ON(i915_request_completed(rq));
d19d71fc 854
ebece753 855 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
73cb9701 856
48bc2a4a 857 /* We bump the ref for the fence chain */
67a3acaa
CW
858 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
859 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
5590af3e 860
67a3acaa 861 i915_sched_node_reinit(&rq->sched);
52e54209 862
67a3acaa 863 /* No zalloc, everything must be cleared after use */
e61e0f51 864 rq->batch = NULL;
67a3acaa 865 GEM_BUG_ON(rq->capture_list);
fc0e1270 866 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
2ccdf6a1 867
05235c53
CW
868 /*
869 * Reserve space in the ring buffer for all the commands required to
870 * eventually emit this request. This is to guarantee that the
e61e0f51 871 * i915_request_add() call can't fail. Note that the reserve may need
05235c53
CW
872 * to be redone if the request is not actually submitted straight
873 * away, e.g. because a GPU scheduler has deferred it.
ed2922c0
CW
874 *
875 * Note that due to how we add reserved_space to intel_ring_begin()
876 * we need to double our request to ensure that if we need to wrap
877 * around inside i915_request_add() there is sufficient space at
878 * the beginning of the ring as well.
05235c53 879 */
2ccdf6a1
CW
880 rq->reserved_space =
881 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
05235c53 882
2113184c
CW
883 /*
884 * Record the position of the start of the request so that
d045446d
CW
885 * should we detect the updated seqno part-way through the
886 * GPU processing the request, we never over-estimate the
887 * position of the head.
888 */
e61e0f51 889 rq->head = rq->ring->emit;
d045446d 890
2ccdf6a1 891 ret = rq->engine->request_alloc(rq);
b1c24a61
CW
892 if (ret)
893 goto err_unwind;
2113184c 894
b3ee09a4
CW
895 rq->infix = rq->ring->emit; /* end of header; start of user payload */
896
2ccdf6a1 897 intel_context_mark_active(ce);
d22d2d07
CW
898 list_add_tail_rcu(&rq->link, &tl->requests);
899
e61e0f51 900 return rq;
05235c53 901
b1c24a61 902err_unwind:
1fc44d9b 903 ce->ring->emit = rq->head;
b1c24a61 904
1618bdb8 905 /* Make sure we didn't add ourselves to external state before freeing */
0c7112a0
CW
906 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
907 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1618bdb8 908
ebece753 909err_free:
32eb6bcf 910 kmem_cache_free(global.slab_requests, rq);
28176ef4 911err_unreserve:
1fc44d9b 912 intel_context_unpin(ce);
8e637178 913 return ERR_PTR(ret);
05235c53
CW
914}
915
2ccdf6a1
CW
916struct i915_request *
917i915_request_create(struct intel_context *ce)
918{
919 struct i915_request *rq;
e5dadff4 920 struct intel_timeline *tl;
2ccdf6a1 921
e5dadff4
CW
922 tl = intel_context_timeline_lock(ce);
923 if (IS_ERR(tl))
924 return ERR_CAST(tl);
2ccdf6a1
CW
925
926 /* Move our oldest request to the slab-cache (if not in use!) */
e5dadff4
CW
927 rq = list_first_entry(&tl->requests, typeof(*rq), link);
928 if (!list_is_last(&rq->link, &tl->requests))
2ccdf6a1
CW
929 i915_request_retire(rq);
930
931 intel_context_enter(ce);
932 rq = __i915_request_create(ce, GFP_KERNEL);
933 intel_context_exit(ce); /* active reference transferred to request */
934 if (IS_ERR(rq))
935 goto err_unlock;
936
937 /* Check that we do not interrupt ourselves with a new request */
e5dadff4 938 rq->cookie = lockdep_pin_lock(&tl->mutex);
2ccdf6a1
CW
939
940 return rq;
941
942err_unlock:
e5dadff4 943 intel_context_timeline_unlock(tl);
2ccdf6a1
CW
944 return rq;
945}
946
0d90ccb7
CW
947static int
948i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
949{
6a79d848
CW
950 struct dma_fence *fence;
951 int err;
0d90ccb7 952
ab7a6902
CW
953 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
954 return 0;
6a79d848 955
d22d2d07
CW
956 if (i915_request_started(signal))
957 return 0;
958
9ddc8ec0 959 fence = NULL;
6a79d848 960 rcu_read_lock();
9ddc8ec0 961 spin_lock_irq(&signal->lock);
d22d2d07
CW
962 do {
963 struct list_head *pos = READ_ONCE(signal->link.prev);
964 struct i915_request *prev;
965
966 /* Confirm signal has not been retired, the link is valid */
967 if (unlikely(i915_request_started(signal)))
968 break;
969
970 /* Is signal the earliest request on its timeline? */
971 if (pos == &rcu_dereference(signal->timeline)->requests)
972 break;
0d90ccb7 973
9ddc8ec0
CW
974 /*
975 * Peek at the request before us in the timeline. That
976 * request will only be valid before it is retired, so
977 * after acquiring a reference to it, confirm that it is
978 * still part of the signaler's timeline.
979 */
d22d2d07
CW
980 prev = list_entry(pos, typeof(*prev), link);
981 if (!i915_request_get_rcu(prev))
982 break;
983
984 /* After the strong barrier, confirm prev is still attached */
985 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
986 i915_request_put(prev);
987 break;
6a79d848 988 }
d22d2d07
CW
989
990 fence = &prev->fence;
991 } while (0);
9ddc8ec0
CW
992 spin_unlock_irq(&signal->lock);
993 rcu_read_unlock();
994 if (!fence)
995 return 0;
6a79d848
CW
996
997 err = 0;
07e9c59d 998 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
6a79d848
CW
999 err = i915_sw_fence_await_dma_fence(&rq->submit,
1000 fence, 0,
1001 I915_FENCE_GFP);
1002 dma_fence_put(fence);
1003
1004 return err;
0d90ccb7
CW
1005}
1006
ca6e56f6
CW
1007static intel_engine_mask_t
1008already_busywaiting(struct i915_request *rq)
1009{
1010 /*
1011 * Polling a semaphore causes bus traffic, delaying other users of
1012 * both the GPU and CPU. We want to limit the impact on others,
1013 * while taking advantage of early submission to reduce GPU
1014 * latency. Therefore we restrict ourselves to not using more
1015 * than one semaphore from each source, and not using a semaphore
1016 * if we have detected the engine is saturated (i.e. would not be
1017 * submitted early and cause bus traffic reading an already passed
1018 * semaphore).
1019 *
1020 * See the are-we-too-late? check in __i915_request_submit().
1021 */
60900add 1022 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
ca6e56f6
CW
1023}
1024
e8861964 1025static int
c81471f5
CW
1026__emit_semaphore_wait(struct i915_request *to,
1027 struct i915_request *from,
1028 u32 seqno)
e8861964 1029{
5a833995 1030 const int has_token = INTEL_GEN(to->engine->i915) >= 12;
e8861964 1031 u32 hwsp_offset;
c81471f5 1032 int len, err;
e8861964 1033 u32 *cs;
e8861964 1034
5a833995 1035 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
795d4d7f 1036 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
e8861964 1037
c8a0e2ae 1038 /* We need to pin the signaler's HWSP until we are finished reading. */
c81471f5
CW
1039 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1040 if (err)
1041 return err;
e8861964 1042
c210e85b
CW
1043 len = 4;
1044 if (has_token)
1045 len += 2;
1046
1047 cs = intel_ring_begin(to, len);
e8861964
CW
1048 if (IS_ERR(cs))
1049 return PTR_ERR(cs);
1050
1051 /*
1052 * Using greater-than-or-equal here means we have to worry
1053 * about seqno wraparound. To side step that issue, we swap
1054 * the timeline HWSP upon wrapping, so that everyone listening
1055 * for the old (pre-wrap) values do not see the much smaller
1056 * (post-wrap) values than they were expecting (and so wait
1057 * forever).
1058 */
c210e85b
CW
1059 *cs++ = (MI_SEMAPHORE_WAIT |
1060 MI_SEMAPHORE_GLOBAL_GTT |
1061 MI_SEMAPHORE_POLL |
1062 MI_SEMAPHORE_SAD_GTE_SDD) +
1063 has_token;
c81471f5 1064 *cs++ = seqno;
e8861964
CW
1065 *cs++ = hwsp_offset;
1066 *cs++ = 0;
c210e85b
CW
1067 if (has_token) {
1068 *cs++ = 0;
1069 *cs++ = MI_NOOP;
1070 }
e8861964
CW
1071
1072 intel_ring_advance(to, cs);
c81471f5
CW
1073 return 0;
1074}
1075
1076static int
1077emit_semaphore_wait(struct i915_request *to,
1078 struct i915_request *from,
1079 gfp_t gfp)
1080{
326611dd 1081 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
18e4af04 1082 struct i915_sw_fence *wait = &to->submit;
326611dd 1083
f16ccb64
CW
1084 if (!intel_context_use_semaphores(to->context))
1085 goto await_fence;
1086
795d4d7f
CW
1087 if (i915_request_has_initial_breadcrumb(to))
1088 goto await_fence;
1089
f16ccb64
CW
1090 if (!rcu_access_pointer(from->hwsp_cacheline))
1091 goto await_fence;
1092
fcae4961
CW
1093 /*
1094 * If this or its dependents are waiting on an external fence
1095 * that may fail catastrophically, then we want to avoid using
1096 * sempahores as they bypass the fence signaling metadata, and we
1097 * lose the fence->error propagation.
1098 */
1099 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1100 goto await_fence;
1101
c81471f5 1102 /* Just emit the first semaphore we see as request space is limited. */
326611dd 1103 if (already_busywaiting(to) & mask)
c81471f5
CW
1104 goto await_fence;
1105
1106 if (i915_request_await_start(to, from) < 0)
1107 goto await_fence;
1108
1109 /* Only submit our spinner after the signaler is running! */
1110 if (__await_execution(to, from, NULL, gfp))
1111 goto await_fence;
1112
1113 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1114 goto await_fence;
1115
326611dd 1116 to->sched.semaphores |= mask;
18e4af04 1117 wait = &to->semaphore;
6a79d848
CW
1118
1119await_fence:
18e4af04 1120 return i915_sw_fence_await_dma_fence(wait,
6a79d848
CW
1121 &from->fence, 0,
1122 I915_FENCE_GFP);
e8861964
CW
1123}
1124
ffb0c600
CW
1125static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1126 struct dma_fence *fence)
1127{
1128 return __intel_timeline_sync_is_later(tl,
1129 fence->context,
1130 fence->seqno - 1);
1131}
1132
1133static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1134 const struct dma_fence *fence)
1135{
1136 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1137}
1138
a2bc4695 1139static int
ffb0c600
CW
1140__i915_request_await_execution(struct i915_request *to,
1141 struct i915_request *from,
1142 void (*hook)(struct i915_request *rq,
1143 struct dma_fence *signal))
a2bc4695 1144{
ffb0c600 1145 int err;
a2bc4695 1146
ffb0c600 1147 GEM_BUG_ON(intel_context_is_barrier(from->context));
a2bc4695 1148
ffb0c600
CW
1149 /* Submit both requests at the same time */
1150 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1151 if (err)
1152 return err;
1153
1154 /* Squash repeated depenendices to the same timelines */
1155 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1156 &from->fence))
ade0b0c9 1157 return 0;
ffb0c600
CW
1158
1159 /*
1160 * Wait until the start of this request.
1161 *
1162 * The execution cb fires when we submit the request to HW. But in
1163 * many cases this may be long before the request itself is ready to
1164 * run (consider that we submit 2 requests for the same context, where
1165 * the request of interest is behind an indefinite spinner). So we hook
1166 * up to both to reduce our queues and keep the execution lag minimised
1167 * in the worst case, though we hope that the await_start is elided.
1168 */
1169 err = i915_request_await_start(to, from);
1170 if (err < 0)
1171 return err;
1172
1173 /*
1174 * Ensure both start together [after all semaphores in signal]
1175 *
1176 * Now that we are queued to the HW at roughly the same time (thanks
1177 * to the execute cb) and are ready to run at roughly the same time
1178 * (thanks to the await start), our signaler may still be indefinitely
1179 * delayed by waiting on a semaphore from a remote engine. If our
1180 * signaler depends on a semaphore, so indirectly do we, and we do not
1181 * want to start our payload until our signaler also starts theirs.
1182 * So we wait.
1183 *
1184 * However, there is also a second condition for which we need to wait
1185 * for the precise start of the signaler. Consider that the signaler
1186 * was submitted in a chain of requests following another context
1187 * (with just an ordinary intra-engine fence dependency between the
1188 * two). In this case the signaler is queued to HW, but not for
1189 * immediate execution, and so we must wait until it reaches the
1190 * active slot.
1191 */
1192 if (intel_engine_has_semaphores(to->engine) &&
1193 !i915_request_has_initial_breadcrumb(to)) {
1194 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1195 if (err < 0)
1196 return err;
24fe5f2a 1197 }
ade0b0c9 1198
ffb0c600 1199 /* Couple the dependency tree for PI on this exposed to->fence */
52e54209 1200 if (to->engine->schedule) {
ffb0c600 1201 err = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1202 &from->sched,
ffb0c600
CW
1203 I915_DEPENDENCY_WEAK);
1204 if (err < 0)
1205 return err;
52e54209
CW
1206 }
1207
ffb0c600
CW
1208 return intel_timeline_sync_set_start(i915_request_timeline(to),
1209 &from->fence);
a2bc4695
CW
1210}
1211
fcae4961
CW
1212static void mark_external(struct i915_request *rq)
1213{
1214 /*
1215 * The downside of using semaphores is that we lose metadata passing
1216 * along the signaling chain. This is particularly nasty when we
1217 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1218 * fatal errors we want to scrub the request before it is executed,
1219 * which means that we cannot preload the request onto HW and have
1220 * it wait upon a semaphore.
1221 */
1222 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1223}
1224
ac938052 1225static int
3136deb7 1226__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
ac938052 1227{
fcae4961 1228 mark_external(rq);
ac938052 1229 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
5a833995 1230 i915_fence_context_timeout(rq->engine->i915,
16dc224f 1231 fence->context),
ac938052
CW
1232 I915_FENCE_GFP);
1233}
1234
3136deb7
LL
1235static int
1236i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1237{
1238 struct dma_fence *iter;
1239 int err = 0;
1240
1241 if (!to_dma_fence_chain(fence))
1242 return __i915_request_await_external(rq, fence);
1243
1244 dma_fence_chain_for_each(iter, fence) {
1245 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1246
1247 if (!dma_fence_is_i915(chain->fence)) {
1248 err = __i915_request_await_external(rq, iter);
1249 break;
1250 }
1251
1252 err = i915_request_await_dma_fence(rq, chain->fence);
1253 if (err < 0)
1254 break;
1255 }
1256
1257 dma_fence_put(iter);
1258 return err;
1259}
1260
b52992c0 1261int
ffb0c600
CW
1262i915_request_await_execution(struct i915_request *rq,
1263 struct dma_fence *fence,
1264 void (*hook)(struct i915_request *rq,
1265 struct dma_fence *signal))
b52992c0 1266{
29ef3fa9
CW
1267 struct dma_fence **child = &fence;
1268 unsigned int nchild = 1;
b52992c0 1269 int ret;
b52992c0 1270
29ef3fa9
CW
1271 if (dma_fence_is_array(fence)) {
1272 struct dma_fence_array *array = to_dma_fence_array(fence);
1273
ffb0c600
CW
1274 /* XXX Error for signal-on-any fence arrays */
1275
29ef3fa9
CW
1276 child = array->fences;
1277 nchild = array->num_fences;
1278 GEM_BUG_ON(!nchild);
1279 }
b52992c0 1280
29ef3fa9
CW
1281 do {
1282 fence = *child++;
9e31c1fe
CW
1283 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1284 i915_sw_fence_set_error_once(&rq->submit, fence->error);
29ef3fa9 1285 continue;
9e31c1fe 1286 }
b52992c0 1287
e61e0f51 1288 if (fence->context == rq->fence.context)
ceae14bd
CW
1289 continue;
1290
ffb0c600
CW
1291 /*
1292 * We don't squash repeated fence dependencies here as we
1293 * want to run our callback in all cases.
1294 */
47979480 1295
29ef3fa9 1296 if (dma_fence_is_i915(fence))
ffb0c600
CW
1297 ret = __i915_request_await_execution(rq,
1298 to_request(fence),
1299 hook);
b52992c0 1300 else
ac938052 1301 ret = i915_request_await_external(rq, fence);
b52992c0
CW
1302 if (ret < 0)
1303 return ret;
29ef3fa9 1304 } while (--nchild);
b52992c0
CW
1305
1306 return 0;
1307}
1308
511b6d9a
CW
1309static int
1310await_request_submit(struct i915_request *to, struct i915_request *from)
1311{
1312 /*
1313 * If we are waiting on a virtual engine, then it may be
1314 * constrained to execute on a single engine *prior* to submission.
1315 * When it is submitted, it will be first submitted to the virtual
1316 * engine and then passed to the physical engine. We cannot allow
1317 * the waiter to be submitted immediately to the physical engine
1318 * as it may then bypass the virtual request.
1319 */
1320 if (to->engine == READ_ONCE(from->engine))
1321 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1322 &from->submit,
1323 I915_FENCE_GFP);
1324 else
1325 return __i915_request_await_execution(to, from, NULL);
1326}
1327
c81471f5 1328static int
ffb0c600 1329i915_request_await_request(struct i915_request *to, struct i915_request *from)
c81471f5 1330{
ffb0c600 1331 int ret;
f16ccb64 1332
ffb0c600
CW
1333 GEM_BUG_ON(to == from);
1334 GEM_BUG_ON(to->timeline == from->timeline);
c81471f5 1335
ffb0c600
CW
1336 if (i915_request_completed(from)) {
1337 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
c81471f5 1338 return 0;
798fa870
CW
1339 }
1340
c81471f5 1341 if (to->engine->schedule) {
ffb0c600 1342 ret = i915_sched_node_add_dependency(&to->sched,
6b6cd2eb 1343 &from->sched,
ffb0c600
CW
1344 I915_DEPENDENCY_EXTERNAL);
1345 if (ret < 0)
1346 return ret;
c81471f5
CW
1347 }
1348
511b6d9a
CW
1349 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1350 ret = await_request_submit(to, from);
ffb0c600
CW
1351 else
1352 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1353 if (ret < 0)
1354 return ret;
1355
1356 return 0;
c81471f5
CW
1357}
1358
f71e01a7 1359int
ffb0c600 1360i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
f71e01a7
CW
1361{
1362 struct dma_fence **child = &fence;
1363 unsigned int nchild = 1;
1364 int ret;
1365
ffb0c600
CW
1366 /*
1367 * Note that if the fence-array was created in signal-on-any mode,
1368 * we should *not* decompose it into its individual fences. However,
1369 * we don't currently store which mode the fence-array is operating
1370 * in. Fortunately, the only user of signal-on-any is private to
1371 * amdgpu and we should not see any incoming fence-array from
1372 * sync-file being in signal-on-any mode.
1373 */
f71e01a7
CW
1374 if (dma_fence_is_array(fence)) {
1375 struct dma_fence_array *array = to_dma_fence_array(fence);
1376
f71e01a7
CW
1377 child = array->fences;
1378 nchild = array->num_fences;
1379 GEM_BUG_ON(!nchild);
1380 }
1381
1382 do {
1383 fence = *child++;
9e31c1fe
CW
1384 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1385 i915_sw_fence_set_error_once(&rq->submit, fence->error);
f71e01a7 1386 continue;
9e31c1fe 1387 }
f71e01a7 1388
ffb0c600
CW
1389 /*
1390 * Requests on the same timeline are explicitly ordered, along
1391 * with their dependencies, by i915_request_add() which ensures
1392 * that requests are submitted in-order through each ring.
1393 */
2045d666
CW
1394 if (fence->context == rq->fence.context)
1395 continue;
1396
ffb0c600
CW
1397 /* Squash repeated waits to the same timelines */
1398 if (fence->context &&
1399 intel_timeline_sync_is_later(i915_request_timeline(rq),
1400 fence))
1401 continue;
f71e01a7
CW
1402
1403 if (dma_fence_is_i915(fence))
ffb0c600 1404 ret = i915_request_await_request(rq, to_request(fence));
f71e01a7 1405 else
ac938052 1406 ret = i915_request_await_external(rq, fence);
f71e01a7
CW
1407 if (ret < 0)
1408 return ret;
ffb0c600
CW
1409
1410 /* Record the latest fence used against each timeline */
1411 if (fence->context)
1412 intel_timeline_sync_set(i915_request_timeline(rq),
1413 fence);
f71e01a7
CW
1414 } while (--nchild);
1415
1416 return 0;
1417}
1418
a2bc4695 1419/**
e61e0f51 1420 * i915_request_await_object - set this request to (async) wait upon a bo
a2bc4695
CW
1421 * @to: request we are wishing to use
1422 * @obj: object which may be in use on another ring.
d8802126 1423 * @write: whether the wait is on behalf of a writer
a2bc4695
CW
1424 *
1425 * This code is meant to abstract object synchronization with the GPU.
1426 * Conceptually we serialise writes between engines inside the GPU.
1427 * We only allow one engine to write into a buffer at any time, but
1428 * multiple readers. To ensure each has a coherent view of memory, we must:
1429 *
1430 * - If there is an outstanding write request to the object, the new
1431 * request must wait for it to complete (either CPU or in hw, requests
1432 * on the same ring will be naturally ordered).
1433 *
1434 * - If we are a write request (pending_write_domain is set), the new
1435 * request must wait for outstanding read requests to complete.
1436 *
1437 * Returns 0 if successful, else propagates up the lower layer error.
1438 */
1439int
e61e0f51
CW
1440i915_request_await_object(struct i915_request *to,
1441 struct drm_i915_gem_object *obj,
1442 bool write)
a2bc4695 1443{
d07f0e59
CW
1444 struct dma_fence *excl;
1445 int ret = 0;
a2bc4695
CW
1446
1447 if (write) {
d07f0e59
CW
1448 struct dma_fence **shared;
1449 unsigned int count, i;
1450
52791eee 1451 ret = dma_resv_get_fences_rcu(obj->base.resv,
d07f0e59
CW
1452 &excl, &count, &shared);
1453 if (ret)
1454 return ret;
1455
1456 for (i = 0; i < count; i++) {
e61e0f51 1457 ret = i915_request_await_dma_fence(to, shared[i]);
d07f0e59
CW
1458 if (ret)
1459 break;
1460
1461 dma_fence_put(shared[i]);
1462 }
1463
1464 for (; i < count; i++)
1465 dma_fence_put(shared[i]);
1466 kfree(shared);
a2bc4695 1467 } else {
52791eee 1468 excl = dma_resv_get_excl_rcu(obj->base.resv);
a2bc4695
CW
1469 }
1470
d07f0e59
CW
1471 if (excl) {
1472 if (ret == 0)
e61e0f51 1473 ret = i915_request_await_dma_fence(to, excl);
a2bc4695 1474
d07f0e59 1475 dma_fence_put(excl);
a2bc4695
CW
1476 }
1477
d07f0e59 1478 return ret;
a2bc4695
CW
1479}
1480
ea593dbb
CW
1481static struct i915_request *
1482__i915_request_add_to_timeline(struct i915_request *rq)
1483{
d19d71fc 1484 struct intel_timeline *timeline = i915_request_timeline(rq);
ea593dbb
CW
1485 struct i915_request *prev;
1486
1487 /*
1488 * Dependency tracking and request ordering along the timeline
1489 * is special cased so that we can eliminate redundant ordering
1490 * operations while building the request (we know that the timeline
1491 * itself is ordered, and here we guarantee it).
1492 *
1493 * As we know we will need to emit tracking along the timeline,
1494 * we embed the hooks into our request struct -- at the cost of
1495 * having to have specialised no-allocation interfaces (which will
1496 * be beneficial elsewhere).
1497 *
1498 * A second benefit to open-coding i915_request_await_request is
1499 * that we can apply a slight variant of the rules specialised
1500 * for timelines that jump between engines (such as virtual engines).
1501 * If we consider the case of virtual engine, we must emit a dma-fence
1502 * to prevent scheduling of the second request until the first is
1503 * complete (to maximise our greedy late load balancing) and this
1504 * precludes optimising to use semaphores serialisation of a single
1505 * timeline across engines.
1506 */
b1e3177b
CW
1507 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1508 &rq->fence));
ea593dbb 1509 if (prev && !i915_request_completed(prev)) {
1eaa251b
CW
1510 /*
1511 * The requests are supposed to be kept in order. However,
1512 * we need to be wary in case the timeline->last_request
1513 * is used as a barrier for external modification to this
1514 * context.
1515 */
1516 GEM_BUG_ON(prev->context == rq->context &&
1517 i915_seqno_passed(prev->fence.seqno,
1518 rq->fence.seqno));
1519
326611dd 1520 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
ea593dbb
CW
1521 i915_sw_fence_await_sw_fence(&rq->submit,
1522 &prev->submit,
1523 &rq->submitq);
1524 else
1525 __i915_sw_fence_await_dma_fence(&rq->submit,
1526 &prev->fence,
1527 &rq->dmaq);
1528 if (rq->engine->schedule)
1529 __i915_sched_node_add_dependency(&rq->sched,
1530 &prev->sched,
1531 &rq->dep,
1532 0);
1533 }
1534
2ccdf6a1
CW
1535 /*
1536 * Make sure that no request gazumped us - if it was allocated after
1537 * our i915_request_alloc() and called __i915_request_add() before
1538 * us, the timeline will hold its seqno which is later than ours.
1539 */
ea593dbb 1540 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
ea593dbb
CW
1541
1542 return prev;
1543}
1544
05235c53
CW
1545/*
1546 * NB: This function is not allowed to fail. Doing so would mean the the
1547 * request is not being tracked for completion but the work itself is
1548 * going to happen on the hardware. This would be a Bad Thing(tm).
1549 */
2ccdf6a1 1550struct i915_request *__i915_request_commit(struct i915_request *rq)
05235c53 1551{
2ccdf6a1
CW
1552 struct intel_engine_cs *engine = rq->engine;
1553 struct intel_ring *ring = rq->ring;
73dec95e 1554 u32 *cs;
05235c53 1555
639f2f24 1556 RQ_TRACE(rq, "\n");
c781c978 1557
05235c53
CW
1558 /*
1559 * To ensure that this call will not fail, space for its emissions
1560 * should already have been reserved in the ring buffer. Let the ring
1561 * know that it is time to use that space up.
1562 */
2ccdf6a1
CW
1563 GEM_BUG_ON(rq->reserved_space > ring->space);
1564 rq->reserved_space = 0;
e5dadff4 1565 rq->emitted_jiffies = jiffies;
05235c53 1566
8ac71d1d
CW
1567 /*
1568 * Record the position of the start of the breadcrumb so that
05235c53
CW
1569 * should we detect the updated seqno part-way through the
1570 * GPU processing the request, we never over-estimate the
d045446d 1571 * position of the ring's HEAD.
05235c53 1572 */
2ccdf6a1 1573 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
73dec95e 1574 GEM_BUG_ON(IS_ERR(cs));
2ccdf6a1 1575 rq->postfix = intel_ring_offset(rq, cs);
05235c53 1576
e5dadff4 1577 return __i915_request_add_to_timeline(rq);
a79ca656
CW
1578}
1579
1580void __i915_request_queue(struct i915_request *rq,
1581 const struct i915_sched_attr *attr)
1582{
8ac71d1d
CW
1583 /*
1584 * Let the backend know a new request has arrived that may need
0de9136d
CW
1585 * to adjust the existing execution schedule due to a high priority
1586 * request - i.e. we may want to preempt the current request in order
1587 * to run a high priority dependency chain *before* we can execute this
1588 * request.
1589 *
1590 * This is called before the request is ready to run so that we can
1591 * decide whether to preempt the entire chain so that it is ready to
1592 * run at the earliest possible convenience.
1593 */
a79ca656
CW
1594 if (attr && rq->engine->schedule)
1595 rq->engine->schedule(rq, attr);
209df10b 1596 i915_sw_fence_commit(&rq->semaphore);
2ccdf6a1 1597 i915_sw_fence_commit(&rq->submit);
2ccdf6a1
CW
1598}
1599
1600void i915_request_add(struct i915_request *rq)
1601{
d19d71fc 1602 struct intel_timeline * const tl = i915_request_timeline(rq);
e6ba7648 1603 struct i915_sched_attr attr = {};
61231f6b 1604 struct i915_gem_context *ctx;
2ccdf6a1 1605
e5dadff4
CW
1606 lockdep_assert_held(&tl->mutex);
1607 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2ccdf6a1
CW
1608
1609 trace_i915_request_add(rq);
61231f6b 1610 __i915_request_commit(rq);
2ccdf6a1 1611
61231f6b
CW
1612 /* XXX placeholder for selftests */
1613 rcu_read_lock();
1614 ctx = rcu_dereference(rq->context->gem_context);
1615 if (ctx)
1616 attr = ctx->sched;
1617 rcu_read_unlock();
e6ba7648 1618
a79ca656
CW
1619 __i915_request_queue(rq, &attr);
1620
e5dadff4 1621 mutex_unlock(&tl->mutex);
05235c53
CW
1622}
1623
062444bb 1624static unsigned long local_clock_ns(unsigned int *cpu)
05235c53
CW
1625{
1626 unsigned long t;
1627
e61e0f51
CW
1628 /*
1629 * Cheaply and approximately convert from nanoseconds to microseconds.
05235c53
CW
1630 * The result and subsequent calculations are also defined in the same
1631 * approximate microseconds units. The principal source of timing
1632 * error here is from the simple truncation.
1633 *
1634 * Note that local_clock() is only defined wrt to the current CPU;
1635 * the comparisons are no longer valid if we switch CPUs. Instead of
1636 * blocking preemption for the entire busywait, we can detect the CPU
1637 * switch and use that as indicator of system load and a reason to
1638 * stop busywaiting, see busywait_stop().
1639 */
1640 *cpu = get_cpu();
062444bb 1641 t = local_clock();
05235c53
CW
1642 put_cpu();
1643
1644 return t;
1645}
1646
1647static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1648{
1649 unsigned int this_cpu;
1650
062444bb 1651 if (time_after(local_clock_ns(&this_cpu), timeout))
05235c53
CW
1652 return true;
1653
1654 return this_cpu != cpu;
1655}
1656
3f6a6f34 1657static bool __i915_spin_request(struct i915_request * const rq, int state)
05235c53 1658{
062444bb 1659 unsigned long timeout_ns;
52c0fdb2 1660 unsigned int cpu;
b2f2f0fc
CW
1661
1662 /*
1663 * Only wait for the request if we know it is likely to complete.
1664 *
1665 * We don't track the timestamps around requests, nor the average
1666 * request length, so we do not have a good indicator that this
1667 * request will complete within the timeout. What we do know is the
52c0fdb2
CW
1668 * order in which requests are executed by the context and so we can
1669 * tell if the request has been started. If the request is not even
1670 * running yet, it is a fair assumption that it will not complete
1671 * within our relatively short timeout.
b2f2f0fc 1672 */
52c0fdb2 1673 if (!i915_request_is_running(rq))
b2f2f0fc
CW
1674 return false;
1675
e61e0f51
CW
1676 /*
1677 * When waiting for high frequency requests, e.g. during synchronous
05235c53
CW
1678 * rendering split between the CPU and GPU, the finite amount of time
1679 * required to set up the irq and wait upon it limits the response
1680 * rate. By busywaiting on the request completion for a short while we
1681 * can service the high frequency waits as quick as possible. However,
1682 * if it is a slow request, we want to sleep as quickly as possible.
1683 * The tradeoff between waiting and sleeping is roughly the time it
1684 * takes to sleep on a request, on the order of a microsecond.
1685 */
1686
062444bb
CW
1687 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1688 timeout_ns += local_clock_ns(&cpu);
05235c53 1689 do {
3f6a6f34 1690 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1691 return true;
c33ed067 1692
05235c53
CW
1693 if (signal_pending_state(state, current))
1694 break;
1695
062444bb 1696 if (busywait_stop(timeout_ns, cpu))
05235c53
CW
1697 break;
1698
f2f09a4c 1699 cpu_relax();
05235c53
CW
1700 } while (!need_resched());
1701
1702 return false;
1703}
1704
52c0fdb2
CW
1705struct request_wait {
1706 struct dma_fence_cb cb;
1707 struct task_struct *tsk;
1708};
1709
1710static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1711{
1712 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1713
3f6a6f34 1714 wake_up_process(fetch_and_zero(&wait->tsk));
52c0fdb2
CW
1715}
1716
05235c53 1717/**
e532be89 1718 * i915_request_wait - wait until execution of request has finished
e61e0f51 1719 * @rq: the request to wait upon
ea746f36 1720 * @flags: how to wait
e95433c7
CW
1721 * @timeout: how long to wait in jiffies
1722 *
e532be89 1723 * i915_request_wait() waits for the request to be completed, for a
e95433c7
CW
1724 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1725 * unbounded wait).
05235c53 1726 *
e95433c7
CW
1727 * Returns the remaining time (in jiffies) if the request completed, which may
1728 * be zero or -ETIME if the request is unfinished after the timeout expires.
1729 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1730 * pending before the request completes.
05235c53 1731 */
e61e0f51 1732long i915_request_wait(struct i915_request *rq,
e95433c7
CW
1733 unsigned int flags,
1734 long timeout)
05235c53 1735{
ea746f36
CW
1736 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1737 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
52c0fdb2 1738 struct request_wait wait;
05235c53
CW
1739
1740 might_sleep();
e95433c7 1741 GEM_BUG_ON(timeout < 0);
05235c53 1742
6e4e9708 1743 if (dma_fence_is_signaled(&rq->fence))
e95433c7 1744 return timeout;
05235c53 1745
e95433c7
CW
1746 if (!timeout)
1747 return -ETIME;
05235c53 1748
e61e0f51 1749 trace_i915_request_wait_begin(rq, flags);
84383d2e
CW
1750
1751 /*
1752 * We must never wait on the GPU while holding a lock as we
1753 * may need to perform a GPU reset. So while we don't need to
1754 * serialise wait/reset with an explicit lock, we do want
1755 * lockdep to detect potential dependency cycles.
1756 */
cb823ed9 1757 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
4680816b 1758
7ce99d24
CW
1759 /*
1760 * Optimistic spin before touching IRQs.
1761 *
1762 * We may use a rather large value here to offset the penalty of
1763 * switching away from the active task. Frequently, the client will
1764 * wait upon an old swapbuffer to throttle itself to remain within a
1765 * frame of the gpu. If the client is running in lockstep with the gpu,
1766 * then it should not be waiting long at all, and a sleep now will incur
1767 * extra scheduler latency in producing the next frame. To try to
1768 * avoid adding the cost of enabling/disabling the interrupt to the
1769 * short wait, we first spin to see if the request would have completed
1770 * in the time taken to setup the interrupt.
1771 *
1772 * We need upto 5us to enable the irq, and upto 20us to hide the
1773 * scheduler latency of a context switch, ignoring the secondary
1774 * impacts from a context switch such as cache eviction.
1775 *
1776 * The scheme used for low-latency IO is called "hybrid interrupt
1777 * polling". The suggestion there is to sleep until just before you
1778 * expect to be woken by the device interrupt and then poll for its
1779 * completion. That requires having a good predictor for the request
1780 * duration, which we currently lack.
1781 */
062444bb 1782 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
3f6a6f34 1783 __i915_spin_request(rq, state))
52c0fdb2 1784 goto out;
541ca6ed 1785
62eb3c24
CW
1786 /*
1787 * This client is about to stall waiting for the GPU. In many cases
1788 * this is undesirable and limits the throughput of the system, as
1789 * many clients cannot continue processing user input/output whilst
1790 * blocked. RPS autotuning may take tens of milliseconds to respond
1791 * to the GPU load and thus incurs additional latency for the client.
1792 * We can circumvent that by promoting the GPU frequency to maximum
1793 * before we sleep. This makes the GPU throttle up much more quickly
1794 * (good for benchmarks and user experience, e.g. window animations),
1795 * but at a cost of spending more power processing the workload
1796 * (bad for battery).
1797 */
1840d40a
CW
1798 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1799 intel_rps_boost(rq);
4680816b 1800
52c0fdb2
CW
1801 wait.tsk = current;
1802 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1803 goto out;
4680816b 1804
3adee4ac
CW
1805 /*
1806 * Flush the submission tasklet, but only if it may help this request.
1807 *
1808 * We sometimes experience some latency between the HW interrupts and
1809 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1810 * be due to lazy CS events), so lets run the tasklet manually if there
1811 * is a chance it may submit this request. If the request is not ready
1812 * to run, as it is waiting for other fences to be signaled, flushing
1813 * the tasklet is busy work without any advantage for this client.
1814 *
1815 * If the HW is being lazy, this is the last chance before we go to
1816 * sleep to catch any pending events. We will check periodically in
1817 * the heartbeat to flush the submission tasklets as a last resort
1818 * for unhappy HW.
1819 */
1820 if (i915_request_is_ready(rq))
1821 intel_engine_flush_submission(rq->engine);
1822
52c0fdb2
CW
1823 for (;;) {
1824 set_current_state(state);
05235c53 1825
3f6a6f34 1826 if (dma_fence_is_signaled(&rq->fence))
52c0fdb2 1827 break;
05235c53 1828
05235c53 1829 if (signal_pending_state(state, current)) {
e95433c7 1830 timeout = -ERESTARTSYS;
05235c53
CW
1831 break;
1832 }
1833
e95433c7
CW
1834 if (!timeout) {
1835 timeout = -ETIME;
05235c53
CW
1836 break;
1837 }
1838
e95433c7 1839 timeout = io_schedule_timeout(timeout);
05235c53 1840 }
a49625f9 1841 __set_current_state(TASK_RUNNING);
05235c53 1842
3f6a6f34
CW
1843 if (READ_ONCE(wait.tsk))
1844 dma_fence_remove_callback(&rq->fence, &wait.cb);
1845 GEM_BUG_ON(!list_empty(&wait.cb.node));
52c0fdb2
CW
1846
1847out:
5facae4f 1848 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
52c0fdb2 1849 trace_i915_request_wait_end(rq);
e95433c7 1850 return timeout;
05235c53 1851}
4b8de8e6 1852
c835c550
CW
1853#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1854#include "selftests/mock_request.c"
e61e0f51 1855#include "selftests/i915_request.c"
c835c550 1856#endif
32eb6bcf 1857
103b76ee
CW
1858static void i915_global_request_shrink(void)
1859{
103b76ee
CW
1860 kmem_cache_shrink(global.slab_execute_cbs);
1861 kmem_cache_shrink(global.slab_requests);
1862}
1863
1864static void i915_global_request_exit(void)
1865{
103b76ee
CW
1866 kmem_cache_destroy(global.slab_execute_cbs);
1867 kmem_cache_destroy(global.slab_requests);
1868}
1869
1870static struct i915_global_request global = { {
1871 .shrink = i915_global_request_shrink,
1872 .exit = i915_global_request_exit,
1873} };
1874
32eb6bcf
CW
1875int __init i915_global_request_init(void)
1876{
67a3acaa
CW
1877 global.slab_requests =
1878 kmem_cache_create("i915_request",
1879 sizeof(struct i915_request),
1880 __alignof__(struct i915_request),
1881 SLAB_HWCACHE_ALIGN |
1882 SLAB_RECLAIM_ACCOUNT |
1883 SLAB_TYPESAFE_BY_RCU,
1884 __i915_request_ctor);
32eb6bcf
CW
1885 if (!global.slab_requests)
1886 return -ENOMEM;
1887
e8861964
CW
1888 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1889 SLAB_HWCACHE_ALIGN |
1890 SLAB_RECLAIM_ACCOUNT |
1891 SLAB_TYPESAFE_BY_RCU);
1892 if (!global.slab_execute_cbs)
1893 goto err_requests;
1894
103b76ee 1895 i915_global_register(&global.base);
32eb6bcf
CW
1896 return 0;
1897
1898err_requests:
1899 kmem_cache_destroy(global.slab_requests);
1900 return -ENOMEM;
1901}