drm/i915: Make intel_crtc_arm_fifo_underrun() functional on gen2
[linux-block.git] / drivers / gpu / drm / i915 / i915_perf.c
CommitLineData
eec688e1
RB
1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
7abbd8d6
RB
27
28/**
16d98b31 29 * DOC: i915 Perf Overview
7abbd8d6
RB
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
16d98b31
RB
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
7abbd8d6
RB
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
16d98b31
RB
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7abbd8d6
RB
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
16d98b31 142 * - As a side note on perf's grouping feature; there was also some concern
7abbd8d6
RB
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
eec688e1 194#include <linux/anon_inodes.h>
d7965152 195#include <linux/sizes.h>
f89823c2 196#include <linux/uuid.h>
eec688e1 197
10be98a7 198#include "gem/i915_gem_context.h"
a5efcde6 199#include "gt/intel_engine_pm.h"
9a61363a 200#include "gt/intel_engine_user.h"
daed3e44 201#include "gt/intel_gt.h"
112ed2d3 202#include "gt/intel_lrc_reg.h"
2871ea85 203#include "gt/intel_ring.h"
112ed2d3 204
eec688e1 205#include "i915_drv.h"
db94e9f1 206#include "i915_perf.h"
5ed7a0cf
MW
207#include "oa/i915_oa_hsw.h"
208#include "oa/i915_oa_bdw.h"
209#include "oa/i915_oa_chv.h"
210#include "oa/i915_oa_sklgt2.h"
211#include "oa/i915_oa_sklgt3.h"
212#include "oa/i915_oa_sklgt4.h"
213#include "oa/i915_oa_bxt.h"
214#include "oa/i915_oa_kblgt2.h"
215#include "oa/i915_oa_kblgt3.h"
216#include "oa/i915_oa_glk.h"
217#include "oa/i915_oa_cflgt2.h"
218#include "oa/i915_oa_cflgt3.h"
219#include "oa/i915_oa_cnl.h"
220#include "oa/i915_oa_icl.h"
00a7f0d7 221#include "oa/i915_oa_tgl.h"
d7965152 222
fe841686
JL
223/* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
226 */
227#define OA_BUFFER_SIZE SZ_16M
228
229#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
d7965152 230
0dd860cf
RB
231/**
232 * DOC: OA Tail Pointer Race
233 *
234 * There's a HW race condition between OA unit tail pointer register updates and
d7965152 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
0dd860cf
RB
236 * been written out to the OA buffer so far (in terms of what's visible to the
237 * CPU).
238 *
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
19f81df2 241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
0dd860cf
RB
242 * read() attempts.
243 *
244 * In effect we define a tail pointer for reading that lags the real tail
245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
246 * time for the corresponding reports to become visible to the CPU.
247 *
248 * To manage this we actually track two tail pointers:
249 * 1) An 'aging' tail with an associated timestamp that is tracked until we
250 * can trust the corresponding data is visible to the CPU; at which point
251 * it is considered 'aged'.
252 * 2) An 'aged' tail that can be used for read()ing.
d7965152 253 *
0dd860cf 254 * The two separate pointers let us decouple read()s from tail pointer aging.
d7965152 255 *
0dd860cf 256 * The tail pointers are checked and updated at a limited rate within a hrtimer
a9a08845 257 * callback (the same callback that is used for delivering EPOLLIN events)
d7965152 258 *
0dd860cf
RB
259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
260 * indicates that an updated tail pointer is needed.
261 *
262 * Most of the implementation details for this workaround are in
19f81df2 263 * oa_buffer_check_unlocked() and _append_oa_reports()
0dd860cf
RB
264 *
265 * Note for posterity: previously the driver used to define an effective tail
266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
268 * This was flawed considering that the OA unit may also automatically generate
269 * non-periodic reports (such as on context switch) or the OA unit may be
270 * enabled without any periodic sampling.
d7965152
RB
271 */
272#define OA_TAIL_MARGIN_NSEC 100000ULL
0dd860cf 273#define INVALID_TAIL_PTR 0xffffffff
d7965152
RB
274
275/* frequency for checking whether the OA unit has written new reports to the
276 * circular OA buffer...
277 */
278#define POLL_FREQUENCY 200
279#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
280
ccdf6341 281/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
ccdf6341
RB
282static u32 i915_perf_stream_paranoid = true;
283
d7965152
RB
284/* The maximum exponent the hardware accepts is 63 (essentially it selects one
285 * of the 64bit timestamp bits to trigger reports from) but there's currently
286 * no known use case for sampling as infrequently as once per 47 thousand years.
287 *
288 * Since the timestamps included in OA reports are only 32bits it seems
289 * reasonable to limit the OA exponent where it's still possible to account for
290 * overflow in OA report timestamps.
291 */
292#define OA_EXPONENT_MAX 31
293
294#define INVALID_CTX_ID 0xffffffff
295
19f81df2
RB
296/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
297#define OAREPORT_REASON_MASK 0x3f
00a7f0d7 298#define OAREPORT_REASON_MASK_EXTENDED 0x7f
19f81df2
RB
299#define OAREPORT_REASON_SHIFT 19
300#define OAREPORT_REASON_TIMER (1<<0)
301#define OAREPORT_REASON_CTX_SWITCH (1<<3)
302#define OAREPORT_REASON_CLK_RATIO (1<<5)
303
d7965152 304
00319ba0
RB
305/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
306 *
155e941f
RB
307 * The highest sampling frequency we can theoretically program the OA unit
308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
309 *
310 * Initialized just before we register the sysctl parameter.
00319ba0 311 */
155e941f 312static int oa_sample_rate_hard_limit;
00319ba0
RB
313
314/* Theoretically we can program the OA unit to sample every 160ns but don't
315 * allow that by default unless root...
316 *
317 * The default threshold of 100000Hz is based on perf's similar
318 * kernel.perf_event_max_sample_rate sysctl parameter.
319 */
320static u32 i915_oa_max_sample_rate = 100000;
321
d7965152
RB
322/* XXX: beware if future OA HW adds new report formats that the current
323 * code assumes all reports have a power-of-two size and ~(size - 1) can
324 * be used as a mask to align the OA tail pointer.
325 */
6ebb6d8e 326static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
d7965152
RB
327 [I915_OA_FORMAT_A13] = { 0, 64 },
328 [I915_OA_FORMAT_A29] = { 1, 128 },
329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
331 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
334 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
335};
336
6ebb6d8e 337static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
19f81df2
RB
338 [I915_OA_FORMAT_A12] = { 0, 64 },
339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
341 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
342};
343
00a7f0d7
LL
344static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
346};
347
d7965152 348#define SAMPLE_OA_REPORT (1<<0)
eec688e1 349
16d98b31
RB
350/**
351 * struct perf_open_properties - for validated properties given to open a stream
352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
353 * @single_context: Whether a single or all gpu contexts should be monitored
9cd20ef7
LL
354 * @hold_preemption: Whether the preemption is disabled for the filtered
355 * context
16d98b31
RB
356 * @ctx_handle: A gem ctx handle for use with @single_context
357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
358 * @oa_format: An OA unit HW report format
359 * @oa_periodic: Whether to enable periodic OA unit sampling
360 * @oa_period_exponent: The OA unit sampling period is derived from this
9a61363a 361 * @engine: The engine (typically rcs0) being monitored by the OA unit
16d98b31
RB
362 *
363 * As read_properties_unlocked() enumerates and validates the properties given
364 * to open a stream of metrics the configuration is built up in the structure
365 * which starts out zero initialized.
366 */
eec688e1
RB
367struct perf_open_properties {
368 u32 sample_flags;
369
370 u64 single_context:1;
9cd20ef7 371 u64 hold_preemption:1;
eec688e1 372 u64 ctx_handle;
d7965152
RB
373
374 /* OA sampling state */
375 int metrics_set;
376 int oa_format;
377 bool oa_periodic;
378 int oa_period_exponent;
9a61363a
LL
379
380 struct intel_engine_cs *engine;
d7965152
RB
381};
382
6a45008a
LL
383struct i915_oa_config_bo {
384 struct llist_node node;
385
386 struct i915_oa_config *oa_config;
387 struct i915_vma *vma;
388};
389
a37f08a8
UNR
390static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
391
6a45008a 392void i915_oa_config_release(struct kref *ref)
f89823c2 393{
6a45008a
LL
394 struct i915_oa_config *oa_config =
395 container_of(ref, typeof(*oa_config), ref);
396
c2fba936
CW
397 kfree(oa_config->flex_regs);
398 kfree(oa_config->b_counter_regs);
399 kfree(oa_config->mux_regs);
f89823c2 400
6a45008a 401 kfree_rcu(oa_config, rcu);
f89823c2
LL
402}
403
6a45008a
LL
404struct i915_oa_config *
405i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
f89823c2 406{
6a45008a 407 struct i915_oa_config *oa_config;
f89823c2 408
6a45008a
LL
409 rcu_read_lock();
410 if (metrics_set == 1)
411 oa_config = &perf->test_config;
f89823c2 412 else
6a45008a
LL
413 oa_config = idr_find(&perf->metrics_idr, metrics_set);
414 if (oa_config)
415 oa_config = i915_oa_config_get(oa_config);
416 rcu_read_unlock();
f89823c2 417
6a45008a
LL
418 return oa_config;
419}
f89823c2 420
6a45008a
LL
421static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
422{
423 i915_oa_config_put(oa_bo->oa_config);
424 i915_vma_put(oa_bo->vma);
425 kfree(oa_bo);
f89823c2
LL
426}
427
00a7f0d7
LL
428static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
429{
430 struct intel_uncore *uncore = stream->uncore;
431
432 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
433 GEN12_OAG_OATAILPTR_MASK;
434}
435
a37f08a8 436static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
19f81df2 437{
52111c46 438 struct intel_uncore *uncore = stream->uncore;
a37f08a8 439
8f8b1171 440 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
19f81df2
RB
441}
442
a37f08a8 443static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
19f81df2 444{
52111c46 445 struct intel_uncore *uncore = stream->uncore;
8f8b1171 446 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
19f81df2
RB
447
448 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
449}
450
0dd860cf 451/**
19f81df2 452 * oa_buffer_check_unlocked - check for data and update tail ptr state
a37f08a8 453 * @stream: i915 stream instance
d7965152 454 *
0dd860cf
RB
455 * This is either called via fops (for blocking reads in user ctx) or the poll
456 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
457 * if there is data available for userspace to read.
d7965152 458 *
0dd860cf
RB
459 * This function is central to providing a workaround for the OA unit tail
460 * pointer having a race with respect to what data is visible to the CPU.
461 * It is responsible for reading tail pointers from the hardware and giving
462 * the pointers time to 'age' before they are made available for reading.
463 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
464 *
465 * Besides returning true when there is data available to read() this function
466 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
467 * and .aged_tail_idx state used for reading.
468 *
469 * Note: It's safe to read OA config state here unlocked, assuming that this is
470 * only called while the stream is enabled, while the global OA configuration
471 * can't be modified.
472 *
473 * Returns: %true if the OA buffer contains data, else %false
d7965152 474 */
a37f08a8 475static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
d7965152 476{
a37f08a8 477 int report_size = stream->oa_buffer.format_size;
0dd860cf
RB
478 unsigned long flags;
479 unsigned int aged_idx;
0dd860cf
RB
480 u32 head, hw_tail, aged_tail, aging_tail;
481 u64 now;
482
483 /* We have to consider the (unlikely) possibility that read() errors
484 * could result in an OA buffer reset which might reset the head,
485 * tails[] and aged_tail state.
486 */
a37f08a8 487 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
0dd860cf
RB
488
489 /* NB: The head we observe here might effectively be a little out of
490 * date (between head and tails[aged_idx].offset if there is currently
491 * a read() in progress.
492 */
a37f08a8 493 head = stream->oa_buffer.head;
0dd860cf 494
a37f08a8
UNR
495 aged_idx = stream->oa_buffer.aged_tail_idx;
496 aged_tail = stream->oa_buffer.tails[aged_idx].offset;
497 aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
0dd860cf 498
8f8b1171 499 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
0dd860cf
RB
500
501 /* The tail pointer increases in 64 byte increments,
502 * not in report_size steps...
503 */
504 hw_tail &= ~(report_size - 1);
505
506 now = ktime_get_mono_fast_ns();
507
4117ebc7
RB
508 /* Update the aged tail
509 *
510 * Flip the tail pointer available for read()s once the aging tail is
511 * old enough to trust that the corresponding data will be visible to
512 * the CPU...
513 *
514 * Do this before updating the aging pointer in case we may be able to
515 * immediately start aging a new pointer too (if new data has become
516 * available) without needing to wait for a later hrtimer callback.
517 */
518 if (aging_tail != INVALID_TAIL_PTR &&
a37f08a8 519 ((now - stream->oa_buffer.aging_timestamp) >
4117ebc7 520 OA_TAIL_MARGIN_NSEC)) {
19f81df2 521
4117ebc7 522 aged_idx ^= 1;
a37f08a8 523 stream->oa_buffer.aged_tail_idx = aged_idx;
4117ebc7
RB
524
525 aged_tail = aging_tail;
526
527 /* Mark that we need a new pointer to start aging... */
a37f08a8 528 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
4117ebc7
RB
529 aging_tail = INVALID_TAIL_PTR;
530 }
531
0dd860cf
RB
532 /* Update the aging tail
533 *
534 * We throttle aging tail updates until we have a new tail that
535 * represents >= one report more data than is already available for
536 * reading. This ensures there will be enough data for a successful
537 * read once this new pointer has aged and ensures we will give the new
538 * pointer time to age.
539 */
540 if (aging_tail == INVALID_TAIL_PTR &&
541 (aged_tail == INVALID_TAIL_PTR ||
542 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
a37f08a8 543 struct i915_vma *vma = stream->oa_buffer.vma;
0dd860cf
RB
544 u32 gtt_offset = i915_ggtt_offset(vma);
545
546 /* Be paranoid and do a bounds check on the pointer read back
547 * from hardware, just in case some spurious hardware condition
548 * could put the tail out of bounds...
549 */
550 if (hw_tail >= gtt_offset &&
fe841686 551 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
a37f08a8 552 stream->oa_buffer.tails[!aged_idx].offset =
0dd860cf 553 aging_tail = hw_tail;
a37f08a8 554 stream->oa_buffer.aging_timestamp = now;
0dd860cf 555 } else {
00a7f0d7 556 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n",
0dd860cf
RB
557 hw_tail);
558 }
559 }
560
a37f08a8 561 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
0dd860cf
RB
562
563 return aged_tail == INVALID_TAIL_PTR ?
564 false : OA_TAKEN(aged_tail, head) >= report_size;
d7965152
RB
565}
566
567/**
16d98b31
RB
568 * append_oa_status - Appends a status record to a userspace read() buffer.
569 * @stream: An i915-perf stream opened for OA metrics
570 * @buf: destination buffer given by userspace
571 * @count: the number of bytes userspace wants to read
572 * @offset: (inout): the current position for writing into @buf
573 * @type: The kind of status to report to userspace
574 *
575 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
576 * into the userspace read() buffer.
577 *
578 * The @buf @offset will only be updated on success.
579 *
580 * Returns: 0 on success, negative error code on failure.
d7965152
RB
581 */
582static int append_oa_status(struct i915_perf_stream *stream,
583 char __user *buf,
584 size_t count,
585 size_t *offset,
586 enum drm_i915_perf_record_type type)
587{
588 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
589
590 if ((count - *offset) < header.size)
591 return -ENOSPC;
592
593 if (copy_to_user(buf + *offset, &header, sizeof(header)))
594 return -EFAULT;
595
596 (*offset) += header.size;
597
598 return 0;
599}
600
601/**
16d98b31
RB
602 * append_oa_sample - Copies single OA report into userspace read() buffer.
603 * @stream: An i915-perf stream opened for OA metrics
604 * @buf: destination buffer given by userspace
605 * @count: the number of bytes userspace wants to read
606 * @offset: (inout): the current position for writing into @buf
607 * @report: A single OA report to (optionally) include as part of the sample
608 *
609 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
610 * properties when opening a stream, tracked as `stream->sample_flags`. This
611 * function copies the requested components of a single sample to the given
612 * read() @buf.
613 *
614 * The @buf @offset will only be updated on success.
615 *
616 * Returns: 0 on success, negative error code on failure.
d7965152
RB
617 */
618static int append_oa_sample(struct i915_perf_stream *stream,
619 char __user *buf,
620 size_t count,
621 size_t *offset,
622 const u8 *report)
623{
a37f08a8 624 int report_size = stream->oa_buffer.format_size;
d7965152
RB
625 struct drm_i915_perf_record_header header;
626 u32 sample_flags = stream->sample_flags;
627
628 header.type = DRM_I915_PERF_RECORD_SAMPLE;
629 header.pad = 0;
630 header.size = stream->sample_size;
631
632 if ((count - *offset) < header.size)
633 return -ENOSPC;
634
635 buf += *offset;
636 if (copy_to_user(buf, &header, sizeof(header)))
637 return -EFAULT;
638 buf += sizeof(header);
639
640 if (sample_flags & SAMPLE_OA_REPORT) {
641 if (copy_to_user(buf, report, report_size))
642 return -EFAULT;
643 }
644
645 (*offset) += header.size;
646
647 return 0;
648}
649
19f81df2
RB
650/**
651 * Copies all buffered OA reports into userspace read() buffer.
652 * @stream: An i915-perf stream opened for OA metrics
653 * @buf: destination buffer given by userspace
654 * @count: the number of bytes userspace wants to read
655 * @offset: (inout): the current position for writing into @buf
656 *
657 * Notably any error condition resulting in a short read (-%ENOSPC or
658 * -%EFAULT) will be returned even though one or more records may
659 * have been successfully copied. In this case it's up to the caller
660 * to decide if the error should be squashed before returning to
661 * userspace.
662 *
663 * Note: reports are consumed from the head, and appended to the
664 * tail, so the tail chases the head?... If you think that's mad
665 * and back-to-front you're not alone, but this follows the
666 * Gen PRM naming convention.
667 *
668 * Returns: 0 on success, negative error code on failure.
669 */
670static int gen8_append_oa_reports(struct i915_perf_stream *stream,
671 char __user *buf,
672 size_t count,
673 size_t *offset)
674{
52111c46 675 struct intel_uncore *uncore = stream->uncore;
a37f08a8
UNR
676 int report_size = stream->oa_buffer.format_size;
677 u8 *oa_buf_base = stream->oa_buffer.vaddr;
678 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
fe841686 679 u32 mask = (OA_BUFFER_SIZE - 1);
19f81df2
RB
680 size_t start_offset = *offset;
681 unsigned long flags;
682 unsigned int aged_tail_idx;
683 u32 head, tail;
684 u32 taken;
685 int ret = 0;
686
687 if (WARN_ON(!stream->enabled))
688 return -EIO;
689
a37f08a8 690 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
19f81df2 691
a37f08a8
UNR
692 head = stream->oa_buffer.head;
693 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
694 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
19f81df2 695
a37f08a8 696 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
697
698 /*
699 * An invalid tail pointer here means we're still waiting for the poll
700 * hrtimer callback to give us a pointer
701 */
702 if (tail == INVALID_TAIL_PTR)
703 return -EAGAIN;
704
705 /*
706 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
707 * while indexing relative to oa_buf_base.
708 */
709 head -= gtt_offset;
710 tail -= gtt_offset;
711
712 /*
713 * An out of bounds or misaligned head or tail pointer implies a driver
714 * bug since we validate + align the tail pointers we read from the
715 * hardware and we are in full control of the head pointer which should
716 * only be incremented by multiples of the report size (notably also
717 * all a power of two).
718 */
fe841686
JL
719 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
720 tail > OA_BUFFER_SIZE || tail % report_size,
19f81df2
RB
721 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
722 head, tail))
723 return -EIO;
724
725
726 for (/* none */;
727 (taken = OA_TAKEN(tail, head));
728 head = (head + report_size) & mask) {
729 u8 *report = oa_buf_base + head;
730 u32 *report32 = (void *)report;
731 u32 ctx_id;
732 u32 reason;
733
734 /*
735 * All the report sizes factor neatly into the buffer
736 * size so we never expect to see a report split
737 * between the beginning and end of the buffer.
738 *
739 * Given the initial alignment check a misalignment
740 * here would imply a driver bug that would result
741 * in an overrun.
742 */
fe841686 743 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
19f81df2
RB
744 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
745 break;
746 }
747
748 /*
749 * The reason field includes flags identifying what
750 * triggered this specific report (mostly timer
751 * triggered or e.g. due to a context switch).
752 *
753 * This field is never expected to be zero so we can
754 * check that the report isn't invalid before copying
755 * it to userspace...
756 */
757 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
00a7f0d7
LL
758 (IS_GEN(stream->perf->i915, 12) ?
759 OAREPORT_REASON_MASK_EXTENDED :
760 OAREPORT_REASON_MASK));
19f81df2 761 if (reason == 0) {
8f8b1171 762 if (__ratelimit(&stream->perf->spurious_report_rs))
19f81df2
RB
763 DRM_NOTE("Skipping spurious, invalid OA report\n");
764 continue;
765 }
766
a37f08a8 767 ctx_id = report32[2] & stream->specific_ctx_id_mask;
19f81df2
RB
768
769 /*
770 * Squash whatever is in the CTX_ID field if it's marked as
771 * invalid to be sure we avoid false-positive, single-context
772 * filtering below...
773 *
774 * Note: that we don't clear the valid_ctx_bit so userspace can
775 * understand that the ID has been squashed by the kernel.
776 */
00a7f0d7
LL
777 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
778 INTEL_GEN(stream->perf->i915) <= 11)
19f81df2
RB
779 ctx_id = report32[2] = INVALID_CTX_ID;
780
781 /*
782 * NB: For Gen 8 the OA unit no longer supports clock gating
783 * off for a specific context and the kernel can't securely
784 * stop the counters from updating as system-wide / global
785 * values.
786 *
787 * Automatic reports now include a context ID so reports can be
788 * filtered on the cpu but it's not worth trying to
789 * automatically subtract/hide counter progress for other
790 * contexts while filtering since we can't stop userspace
791 * issuing MI_REPORT_PERF_COUNT commands which would still
792 * provide a side-band view of the real values.
793 *
794 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
795 * to normalize counters for a single filtered context then it
796 * needs be forwarded bookend context-switch reports so that it
797 * can track switches in between MI_REPORT_PERF_COUNT commands
798 * and can itself subtract/ignore the progress of counters
799 * associated with other contexts. Note that the hardware
800 * automatically triggers reports when switching to a new
801 * context which are tagged with the ID of the newly active
802 * context. To avoid the complexity (and likely fragility) of
803 * reading ahead while parsing reports to try and minimize
804 * forwarding redundant context switch reports (i.e. between
805 * other, unrelated contexts) we simply elect to forward them
806 * all.
807 *
808 * We don't rely solely on the reason field to identify context
809 * switches since it's not-uncommon for periodic samples to
810 * identify a switch before any 'context switch' report.
811 */
8f8b1171 812 if (!stream->perf->exclusive_stream->ctx ||
a37f08a8
UNR
813 stream->specific_ctx_id == ctx_id ||
814 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
19f81df2
RB
815 reason & OAREPORT_REASON_CTX_SWITCH) {
816
817 /*
818 * While filtering for a single context we avoid
819 * leaking the IDs of other contexts.
820 */
8f8b1171 821 if (stream->perf->exclusive_stream->ctx &&
a37f08a8 822 stream->specific_ctx_id != ctx_id) {
19f81df2
RB
823 report32[2] = INVALID_CTX_ID;
824 }
825
826 ret = append_oa_sample(stream, buf, count, offset,
827 report);
828 if (ret)
829 break;
830
a37f08a8 831 stream->oa_buffer.last_ctx_id = ctx_id;
19f81df2
RB
832 }
833
834 /*
835 * The above reason field sanity check is based on
836 * the assumption that the OA buffer is initially
837 * zeroed and we reset the field after copying so the
838 * check is still meaningful once old reports start
839 * being overwritten.
840 */
841 report32[0] = 0;
842 }
843
844 if (start_offset != *offset) {
00a7f0d7
LL
845 i915_reg_t oaheadptr;
846
847 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
848 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
849
a37f08a8 850 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
851
852 /*
853 * We removed the gtt_offset for the copy loop above, indexing
854 * relative to oa_buf_base so put back here...
855 */
856 head += gtt_offset;
00a7f0d7
LL
857 intel_uncore_write(uncore, oaheadptr,
858 head & GEN12_OAG_OAHEADPTR_MASK);
a37f08a8 859 stream->oa_buffer.head = head;
19f81df2 860
a37f08a8 861 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
862 }
863
864 return ret;
865}
866
867/**
868 * gen8_oa_read - copy status records then buffered OA reports
869 * @stream: An i915-perf stream opened for OA metrics
870 * @buf: destination buffer given by userspace
871 * @count: the number of bytes userspace wants to read
872 * @offset: (inout): the current position for writing into @buf
873 *
874 * Checks OA unit status registers and if necessary appends corresponding
875 * status records for userspace (such as for a buffer full condition) and then
876 * initiate appending any buffered OA reports.
877 *
878 * Updates @offset according to the number of bytes successfully copied into
879 * the userspace buffer.
880 *
881 * NB: some data may be successfully copied to the userspace buffer
882 * even if an error is returned, and this is reflected in the
883 * updated @offset.
884 *
885 * Returns: zero on success or a negative error code
886 */
887static int gen8_oa_read(struct i915_perf_stream *stream,
888 char __user *buf,
889 size_t count,
890 size_t *offset)
891{
52111c46 892 struct intel_uncore *uncore = stream->uncore;
19f81df2 893 u32 oastatus;
00a7f0d7 894 i915_reg_t oastatus_reg;
19f81df2
RB
895 int ret;
896
a37f08a8 897 if (WARN_ON(!stream->oa_buffer.vaddr))
19f81df2
RB
898 return -EIO;
899
00a7f0d7
LL
900 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
901 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
902
903 oastatus = intel_uncore_read(uncore, oastatus_reg);
19f81df2
RB
904
905 /*
906 * We treat OABUFFER_OVERFLOW as a significant error:
907 *
908 * Although theoretically we could handle this more gracefully
909 * sometimes, some Gens don't correctly suppress certain
910 * automatically triggered reports in this condition and so we
911 * have to assume that old reports are now being trampled
912 * over.
fe841686
JL
913 *
914 * Considering how we don't currently give userspace control
915 * over the OA buffer size and always configure a large 16MB
916 * buffer, then a buffer overflow does anyway likely indicate
917 * that something has gone quite badly wrong.
19f81df2
RB
918 */
919 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
920 ret = append_oa_status(stream, buf, count, offset,
921 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
922 if (ret)
923 return ret;
924
925 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
a37f08a8 926 stream->period_exponent);
19f81df2 927
8f8b1171
CW
928 stream->perf->ops.oa_disable(stream);
929 stream->perf->ops.oa_enable(stream);
19f81df2
RB
930
931 /*
932 * Note: .oa_enable() is expected to re-init the oabuffer and
933 * reset GEN8_OASTATUS for us
934 */
00a7f0d7 935 oastatus = intel_uncore_read(uncore, oastatus_reg);
19f81df2
RB
936 }
937
938 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
939 ret = append_oa_status(stream, buf, count, offset,
940 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
941 if (ret)
942 return ret;
00a7f0d7 943 intel_uncore_write(uncore, oastatus_reg,
8f8b1171 944 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
19f81df2
RB
945 }
946
947 return gen8_append_oa_reports(stream, buf, count, offset);
948}
949
d7965152
RB
950/**
951 * Copies all buffered OA reports into userspace read() buffer.
952 * @stream: An i915-perf stream opened for OA metrics
953 * @buf: destination buffer given by userspace
954 * @count: the number of bytes userspace wants to read
955 * @offset: (inout): the current position for writing into @buf
d7965152 956 *
16d98b31
RB
957 * Notably any error condition resulting in a short read (-%ENOSPC or
958 * -%EFAULT) will be returned even though one or more records may
d7965152
RB
959 * have been successfully copied. In this case it's up to the caller
960 * to decide if the error should be squashed before returning to
961 * userspace.
962 *
963 * Note: reports are consumed from the head, and appended to the
e81b3a55 964 * tail, so the tail chases the head?... If you think that's mad
d7965152
RB
965 * and back-to-front you're not alone, but this follows the
966 * Gen PRM naming convention.
16d98b31
RB
967 *
968 * Returns: 0 on success, negative error code on failure.
d7965152
RB
969 */
970static int gen7_append_oa_reports(struct i915_perf_stream *stream,
971 char __user *buf,
972 size_t count,
3bb335c1 973 size_t *offset)
d7965152 974{
52111c46 975 struct intel_uncore *uncore = stream->uncore;
a37f08a8
UNR
976 int report_size = stream->oa_buffer.format_size;
977 u8 *oa_buf_base = stream->oa_buffer.vaddr;
978 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
fe841686 979 u32 mask = (OA_BUFFER_SIZE - 1);
3bb335c1 980 size_t start_offset = *offset;
0dd860cf
RB
981 unsigned long flags;
982 unsigned int aged_tail_idx;
983 u32 head, tail;
d7965152
RB
984 u32 taken;
985 int ret = 0;
986
987 if (WARN_ON(!stream->enabled))
988 return -EIO;
989
a37f08a8 990 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
f279020a 991
a37f08a8
UNR
992 head = stream->oa_buffer.head;
993 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
994 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
f279020a 995
a37f08a8 996 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
d7965152 997
0dd860cf
RB
998 /* An invalid tail pointer here means we're still waiting for the poll
999 * hrtimer callback to give us a pointer
d7965152 1000 */
0dd860cf
RB
1001 if (tail == INVALID_TAIL_PTR)
1002 return -EAGAIN;
d7965152 1003
0dd860cf
RB
1004 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1005 * while indexing relative to oa_buf_base.
d7965152 1006 */
0dd860cf
RB
1007 head -= gtt_offset;
1008 tail -= gtt_offset;
d7965152 1009
0dd860cf
RB
1010 /* An out of bounds or misaligned head or tail pointer implies a driver
1011 * bug since we validate + align the tail pointers we read from the
1012 * hardware and we are in full control of the head pointer which should
1013 * only be incremented by multiples of the report size (notably also
1014 * all a power of two).
d7965152 1015 */
fe841686
JL
1016 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
1017 tail > OA_BUFFER_SIZE || tail % report_size,
0dd860cf
RB
1018 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1019 head, tail))
1020 return -EIO;
d7965152 1021
d7965152
RB
1022
1023 for (/* none */;
1024 (taken = OA_TAKEN(tail, head));
1025 head = (head + report_size) & mask) {
1026 u8 *report = oa_buf_base + head;
1027 u32 *report32 = (void *)report;
1028
1029 /* All the report sizes factor neatly into the buffer
1030 * size so we never expect to see a report split
1031 * between the beginning and end of the buffer.
1032 *
1033 * Given the initial alignment check a misalignment
1034 * here would imply a driver bug that would result
1035 * in an overrun.
1036 */
fe841686 1037 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
d7965152
RB
1038 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1039 break;
1040 }
1041
1042 /* The report-ID field for periodic samples includes
1043 * some undocumented flags related to what triggered
1044 * the report and is never expected to be zero so we
1045 * can check that the report isn't invalid before
1046 * copying it to userspace...
1047 */
1048 if (report32[0] == 0) {
8f8b1171 1049 if (__ratelimit(&stream->perf->spurious_report_rs))
712122ea 1050 DRM_NOTE("Skipping spurious, invalid OA report\n");
d7965152
RB
1051 continue;
1052 }
1053
1054 ret = append_oa_sample(stream, buf, count, offset, report);
1055 if (ret)
1056 break;
1057
1058 /* The above report-id field sanity check is based on
1059 * the assumption that the OA buffer is initially
1060 * zeroed and we reset the field after copying so the
1061 * check is still meaningful once old reports start
1062 * being overwritten.
1063 */
1064 report32[0] = 0;
1065 }
1066
3bb335c1 1067 if (start_offset != *offset) {
a37f08a8 1068 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
0dd860cf 1069
3bb335c1
RB
1070 /* We removed the gtt_offset for the copy loop above, indexing
1071 * relative to oa_buf_base so put back here...
1072 */
1073 head += gtt_offset;
1074
8f8b1171
CW
1075 intel_uncore_write(uncore, GEN7_OASTATUS2,
1076 (head & GEN7_OASTATUS2_HEAD_MASK) |
1077 GEN7_OASTATUS2_MEM_SELECT_GGTT);
a37f08a8 1078 stream->oa_buffer.head = head;
0dd860cf 1079
a37f08a8 1080 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
3bb335c1 1081 }
d7965152
RB
1082
1083 return ret;
1084}
1085
16d98b31
RB
1086/**
1087 * gen7_oa_read - copy status records then buffered OA reports
1088 * @stream: An i915-perf stream opened for OA metrics
1089 * @buf: destination buffer given by userspace
1090 * @count: the number of bytes userspace wants to read
1091 * @offset: (inout): the current position for writing into @buf
1092 *
1093 * Checks Gen 7 specific OA unit status registers and if necessary appends
1094 * corresponding status records for userspace (such as for a buffer full
1095 * condition) and then initiate appending any buffered OA reports.
1096 *
1097 * Updates @offset according to the number of bytes successfully copied into
1098 * the userspace buffer.
1099 *
1100 * Returns: zero on success or a negative error code
1101 */
d7965152
RB
1102static int gen7_oa_read(struct i915_perf_stream *stream,
1103 char __user *buf,
1104 size_t count,
1105 size_t *offset)
1106{
52111c46 1107 struct intel_uncore *uncore = stream->uncore;
d7965152 1108 u32 oastatus1;
d7965152
RB
1109 int ret;
1110
a37f08a8 1111 if (WARN_ON(!stream->oa_buffer.vaddr))
d7965152
RB
1112 return -EIO;
1113
8f8b1171 1114 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
d7965152 1115
d7965152
RB
1116 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1117 * bits while the OA unit is enabled (while the tail pointer
1118 * may be updated asynchronously) so we ignore status bits
1119 * that have already been reported to userspace.
1120 */
8f8b1171 1121 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
d7965152
RB
1122
1123 /* We treat OABUFFER_OVERFLOW as a significant error:
1124 *
1125 * - The status can be interpreted to mean that the buffer is
1126 * currently full (with a higher precedence than OA_TAKEN()
1127 * which will start to report a near-empty buffer after an
1128 * overflow) but it's awkward that we can't clear the status
1129 * on Haswell, so without a reset we won't be able to catch
1130 * the state again.
1131 *
1132 * - Since it also implies the HW has started overwriting old
1133 * reports it may also affect our sanity checks for invalid
1134 * reports when copying to userspace that assume new reports
1135 * are being written to cleared memory.
1136 *
1137 * - In the future we may want to introduce a flight recorder
1138 * mode where the driver will automatically maintain a safe
1139 * guard band between head/tail, avoiding this overflow
1140 * condition, but we avoid the added driver complexity for
1141 * now.
1142 */
1143 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1144 ret = append_oa_status(stream, buf, count, offset,
1145 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1146 if (ret)
1147 return ret;
1148
19f81df2 1149 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
a37f08a8 1150 stream->period_exponent);
d7965152 1151
8f8b1171
CW
1152 stream->perf->ops.oa_disable(stream);
1153 stream->perf->ops.oa_enable(stream);
d7965152 1154
8f8b1171 1155 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
d7965152
RB
1156 }
1157
1158 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1159 ret = append_oa_status(stream, buf, count, offset,
1160 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1161 if (ret)
1162 return ret;
8f8b1171 1163 stream->perf->gen7_latched_oastatus1 |=
d7965152
RB
1164 GEN7_OASTATUS1_REPORT_LOST;
1165 }
1166
3bb335c1 1167 return gen7_append_oa_reports(stream, buf, count, offset);
d7965152
RB
1168}
1169
16d98b31
RB
1170/**
1171 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1172 * @stream: An i915-perf stream opened for OA metrics
1173 *
1174 * Called when userspace tries to read() from a blocking stream FD opened
1175 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1176 * OA buffer and wakes us.
1177 *
1178 * Note: it's acceptable to have this return with some false positives
1179 * since any subsequent read handling will return -EAGAIN if there isn't
1180 * really data ready for userspace yet.
1181 *
1182 * Returns: zero on success or a negative error code
1183 */
d7965152
RB
1184static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1185{
d7965152 1186 /* We would wait indefinitely if periodic sampling is not enabled */
a37f08a8 1187 if (!stream->periodic)
d7965152
RB
1188 return -EIO;
1189
a37f08a8
UNR
1190 return wait_event_interruptible(stream->poll_wq,
1191 oa_buffer_check_unlocked(stream));
d7965152
RB
1192}
1193
16d98b31
RB
1194/**
1195 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1196 * @stream: An i915-perf stream opened for OA metrics
1197 * @file: An i915 perf stream file
1198 * @wait: poll() state table
1199 *
1200 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1201 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1202 * when it sees data ready to read in the circular OA buffer.
1203 */
d7965152
RB
1204static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1205 struct file *file,
1206 poll_table *wait)
1207{
a37f08a8 1208 poll_wait(file, &stream->poll_wq, wait);
d7965152
RB
1209}
1210
16d98b31
RB
1211/**
1212 * i915_oa_read - just calls through to &i915_oa_ops->read
1213 * @stream: An i915-perf stream opened for OA metrics
1214 * @buf: destination buffer given by userspace
1215 * @count: the number of bytes userspace wants to read
1216 * @offset: (inout): the current position for writing into @buf
1217 *
1218 * Updates @offset according to the number of bytes successfully copied into
1219 * the userspace buffer.
1220 *
1221 * Returns: zero on success or a negative error code
1222 */
d7965152
RB
1223static int i915_oa_read(struct i915_perf_stream *stream,
1224 char __user *buf,
1225 size_t count,
1226 size_t *offset)
1227{
8f8b1171 1228 return stream->perf->ops.read(stream, buf, count, offset);
d7965152
RB
1229}
1230
a37f08a8 1231static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
61d5676b 1232{
5e2a0419 1233 struct i915_gem_engines_iter it;
a37f08a8 1234 struct i915_gem_context *ctx = stream->ctx;
61d5676b 1235 struct intel_context *ce;
fa9f6681 1236 int err;
61d5676b 1237
5e2a0419 1238 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
9a61363a 1239 if (ce->engine != stream->engine) /* first match! */
5e2a0419
CW
1240 continue;
1241
1242 /*
1243 * As the ID is the gtt offset of the context's vma we
1244 * pin the vma to ensure the ID remains fixed.
1245 */
1246 err = intel_context_pin(ce);
1247 if (err == 0) {
a37f08a8 1248 stream->pinned_ctx = ce;
5e2a0419
CW
1249 break;
1250 }
fa9f6681 1251 }
5e2a0419 1252 i915_gem_context_unlock_engines(ctx);
61d5676b 1253
a37f08a8 1254 return stream->pinned_ctx;
61d5676b
LL
1255}
1256
16d98b31
RB
1257/**
1258 * oa_get_render_ctx_id - determine and hold ctx hw id
1259 * @stream: An i915-perf stream opened for OA metrics
1260 *
1261 * Determine the render context hw id, and ensure it remains fixed for the
d7965152
RB
1262 * lifetime of the stream. This ensures that we don't have to worry about
1263 * updating the context ID in OACONTROL on the fly.
16d98b31
RB
1264 *
1265 * Returns: zero on success or a negative error code
d7965152
RB
1266 */
1267static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1268{
61d5676b 1269 struct intel_context *ce;
d7965152 1270
a37f08a8 1271 ce = oa_pin_context(stream);
61d5676b
LL
1272 if (IS_ERR(ce))
1273 return PTR_ERR(ce);
19f81df2 1274
8f8b1171 1275 switch (INTEL_GEN(ce->engine->i915)) {
61d5676b 1276 case 7: {
19f81df2 1277 /*
61d5676b
LL
1278 * On Haswell we don't do any post processing of the reports
1279 * and don't need to use the mask.
19f81df2 1280 */
a37f08a8
UNR
1281 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1282 stream->specific_ctx_id_mask = 0;
61d5676b
LL
1283 break;
1284 }
d7965152 1285
61d5676b
LL
1286 case 8:
1287 case 9:
1288 case 10:
19c17b76
MW
1289 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1290 stream->specific_ctx_id_mask =
1291 (1U << GEN8_CTX_ID_WIDTH) - 1;
1292 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1293 } else {
61d5676b
LL
1294 /*
1295 * When using GuC, the context descriptor we write in
1296 * i915 is read by GuC and rewritten before it's
1297 * actually written into the hardware. The LRCA is
1298 * what is put into the context id field of the
1299 * context descriptor by GuC. Because it's aligned to
1300 * a page, the lower 12bits are always at 0 and
1301 * dropped by GuC. They won't be part of the context
1302 * ID in the OA reports, so squash those lower bits.
1303 */
a37f08a8 1304 stream->specific_ctx_id =
61d5676b 1305 lower_32_bits(ce->lrc_desc) >> 12;
19f81df2 1306
61d5676b
LL
1307 /*
1308 * GuC uses the top bit to signal proxy submission, so
1309 * ignore that bit.
1310 */
a37f08a8 1311 stream->specific_ctx_id_mask =
61d5676b 1312 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
61d5676b
LL
1313 }
1314 break;
1315
45e9c829
MT
1316 case 11:
1317 case 12: {
a37f08a8 1318 stream->specific_ctx_id_mask =
2935ed53
CW
1319 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1320 stream->specific_ctx_id = stream->specific_ctx_id_mask;
61d5676b
LL
1321 break;
1322 }
1323
1324 default:
8f8b1171 1325 MISSING_CASE(INTEL_GEN(ce->engine->i915));
19f81df2 1326 }
d7965152 1327
2935ed53
CW
1328 ce->tag = stream->specific_ctx_id_mask;
1329
61d5676b 1330 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
a37f08a8
UNR
1331 stream->specific_ctx_id,
1332 stream->specific_ctx_id_mask);
61d5676b 1333
266a240b 1334 return 0;
d7965152
RB
1335}
1336
16d98b31
RB
1337/**
1338 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1339 * @stream: An i915-perf stream opened for OA metrics
1340 *
1341 * In case anything needed doing to ensure the context HW ID would remain valid
1342 * for the lifetime of the stream, then that can be undone here.
1343 */
d7965152
RB
1344static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1345{
1fc44d9b 1346 struct intel_context *ce;
d7965152 1347
a37f08a8 1348 ce = fetch_and_zero(&stream->pinned_ctx);
2935ed53
CW
1349 if (ce) {
1350 ce->tag = 0; /* recomputed on next submission after parking */
1fc44d9b 1351 intel_context_unpin(ce);
2935ed53
CW
1352 }
1353
1354 stream->specific_ctx_id = INVALID_CTX_ID;
1355 stream->specific_ctx_id_mask = 0;
d7965152
RB
1356}
1357
1358static void
a37f08a8 1359free_oa_buffer(struct i915_perf_stream *stream)
d7965152 1360{
a37f08a8 1361 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
6a2f59e4 1362 I915_VMA_RELEASE_MAP);
d7965152 1363
a37f08a8 1364 stream->oa_buffer.vaddr = NULL;
d7965152
RB
1365}
1366
6a45008a
LL
1367static void
1368free_oa_configs(struct i915_perf_stream *stream)
1369{
1370 struct i915_oa_config_bo *oa_bo, *tmp;
1371
1372 i915_oa_config_put(stream->oa_config);
1373 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1374 free_oa_config_bo(oa_bo);
1375}
1376
daed3e44
LL
1377static void
1378free_noa_wait(struct i915_perf_stream *stream)
1379{
1380 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1381}
1382
d7965152
RB
1383static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1384{
8f8b1171 1385 struct i915_perf *perf = stream->perf;
d7965152 1386
8f8b1171 1387 BUG_ON(stream != perf->exclusive_stream);
d7965152 1388
19f81df2 1389 /*
f89823c2
LL
1390 * Unset exclusive_stream first, it will be checked while disabling
1391 * the metric set on gen8+.
19f81df2 1392 */
8f8b1171
CW
1393 perf->exclusive_stream = NULL;
1394 perf->ops.disable_metric_set(stream);
d7965152 1395
a37f08a8 1396 free_oa_buffer(stream);
d7965152 1397
52111c46 1398 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
a5efcde6 1399 intel_engine_pm_put(stream->engine);
d7965152
RB
1400
1401 if (stream->ctx)
1402 oa_put_render_ctx_id(stream);
1403
6a45008a 1404 free_oa_configs(stream);
daed3e44 1405 free_noa_wait(stream);
f89823c2 1406
8f8b1171 1407 if (perf->spurious_report_rs.missed) {
712122ea 1408 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
8f8b1171 1409 perf->spurious_report_rs.missed);
712122ea 1410 }
d7965152
RB
1411}
1412
a37f08a8 1413static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
d7965152 1414{
52111c46 1415 struct intel_uncore *uncore = stream->uncore;
a37f08a8 1416 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
0dd860cf
RB
1417 unsigned long flags;
1418
a37f08a8 1419 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
d7965152
RB
1420
1421 /* Pre-DevBDW: OABUFFER must be set with counters off,
1422 * before OASTATUS1, but after OASTATUS2
1423 */
8f8b1171
CW
1424 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1425 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
a37f08a8 1426 stream->oa_buffer.head = gtt_offset;
f279020a 1427
8f8b1171 1428 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
f279020a 1429
8f8b1171
CW
1430 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1431 gtt_offset | OABUFFER_SIZE_16M);
d7965152 1432
0dd860cf 1433 /* Mark that we need updated tail pointers to read from... */
a37f08a8
UNR
1434 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1435 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
0dd860cf 1436
a37f08a8 1437 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
0dd860cf 1438
d7965152
RB
1439 /* On Haswell we have to track which OASTATUS1 flags we've
1440 * already seen since they can't be cleared while periodic
1441 * sampling is enabled.
1442 */
8f8b1171 1443 stream->perf->gen7_latched_oastatus1 = 0;
d7965152
RB
1444
1445 /* NB: although the OA buffer will initially be allocated
1446 * zeroed via shmfs (and so this memset is redundant when
1447 * first allocating), we may re-init the OA buffer, either
1448 * when re-enabling a stream or in error/reset paths.
1449 *
1450 * The reason we clear the buffer for each re-init is for the
1451 * sanity check in gen7_append_oa_reports() that looks at the
1452 * report-id field to make sure it's non-zero which relies on
1453 * the assumption that new reports are being written to zeroed
1454 * memory...
1455 */
a37f08a8 1456 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
d7965152 1457
a37f08a8 1458 stream->pollin = false;
d7965152
RB
1459}
1460
a37f08a8 1461static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
19f81df2 1462{
52111c46 1463 struct intel_uncore *uncore = stream->uncore;
a37f08a8 1464 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
19f81df2
RB
1465 unsigned long flags;
1466
a37f08a8 1467 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
19f81df2 1468
8f8b1171
CW
1469 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1470 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
a37f08a8 1471 stream->oa_buffer.head = gtt_offset;
19f81df2 1472
8f8b1171 1473 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
19f81df2
RB
1474
1475 /*
1476 * PRM says:
1477 *
1478 * "This MMIO must be set before the OATAILPTR
1479 * register and after the OAHEADPTR register. This is
1480 * to enable proper functionality of the overflow
1481 * bit."
1482 */
8f8b1171 1483 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
fe841686 1484 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
8f8b1171 1485 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
19f81df2
RB
1486
1487 /* Mark that we need updated tail pointers to read from... */
a37f08a8
UNR
1488 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1489 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
19f81df2
RB
1490
1491 /*
1492 * Reset state used to recognise context switches, affecting which
1493 * reports we will forward to userspace while filtering for a single
1494 * context.
1495 */
a37f08a8 1496 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
19f81df2 1497
a37f08a8 1498 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
1499
1500 /*
1501 * NB: although the OA buffer will initially be allocated
1502 * zeroed via shmfs (and so this memset is redundant when
1503 * first allocating), we may re-init the OA buffer, either
1504 * when re-enabling a stream or in error/reset paths.
1505 *
1506 * The reason we clear the buffer for each re-init is for the
1507 * sanity check in gen8_append_oa_reports() that looks at the
1508 * reason field to make sure it's non-zero which relies on
1509 * the assumption that new reports are being written to zeroed
1510 * memory...
1511 */
a37f08a8 1512 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
19f81df2 1513
a37f08a8 1514 stream->pollin = false;
19f81df2
RB
1515}
1516
00a7f0d7
LL
1517static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1518{
1519 struct intel_uncore *uncore = stream->uncore;
1520 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1521 unsigned long flags;
1522
1523 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1524
1525 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1526 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1527 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1528 stream->oa_buffer.head = gtt_offset;
1529
1530 /*
1531 * PRM says:
1532 *
1533 * "This MMIO must be set before the OATAILPTR
1534 * register and after the OAHEADPTR register. This is
1535 * to enable proper functionality of the overflow
1536 * bit."
1537 */
1538 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1539 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1540 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1541 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1542
1543 /* Mark that we need updated tail pointers to read from... */
1544 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1545 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1546
1547 /*
1548 * Reset state used to recognise context switches, affecting which
1549 * reports we will forward to userspace while filtering for a single
1550 * context.
1551 */
1552 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1553
1554 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1555
1556 /*
1557 * NB: although the OA buffer will initially be allocated
1558 * zeroed via shmfs (and so this memset is redundant when
1559 * first allocating), we may re-init the OA buffer, either
1560 * when re-enabling a stream or in error/reset paths.
1561 *
1562 * The reason we clear the buffer for each re-init is for the
1563 * sanity check in gen8_append_oa_reports() that looks at the
1564 * reason field to make sure it's non-zero which relies on
1565 * the assumption that new reports are being written to zeroed
1566 * memory...
1567 */
1568 memset(stream->oa_buffer.vaddr, 0,
1569 stream->oa_buffer.vma->size);
1570
1571 stream->pollin = false;
1572}
1573
a37f08a8 1574static int alloc_oa_buffer(struct i915_perf_stream *stream)
d7965152
RB
1575{
1576 struct drm_i915_gem_object *bo;
1577 struct i915_vma *vma;
1578 int ret;
1579
a37f08a8 1580 if (WARN_ON(stream->oa_buffer.vma))
d7965152
RB
1581 return -ENODEV;
1582
fe841686
JL
1583 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1584 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1585
8f8b1171 1586 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
d7965152
RB
1587 if (IS_ERR(bo)) {
1588 DRM_ERROR("Failed to allocate OA buffer\n");
2850748e 1589 return PTR_ERR(bo);
d7965152
RB
1590 }
1591
a679f58d 1592 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
d7965152
RB
1593
1594 /* PreHSW required 512K alignment, HSW requires 16M */
1595 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1596 if (IS_ERR(vma)) {
1597 ret = PTR_ERR(vma);
1598 goto err_unref;
1599 }
a37f08a8 1600 stream->oa_buffer.vma = vma;
d7965152 1601
a37f08a8 1602 stream->oa_buffer.vaddr =
d7965152 1603 i915_gem_object_pin_map(bo, I915_MAP_WB);
a37f08a8
UNR
1604 if (IS_ERR(stream->oa_buffer.vaddr)) {
1605 ret = PTR_ERR(stream->oa_buffer.vaddr);
d7965152
RB
1606 goto err_unpin;
1607 }
1608
2850748e 1609 return 0;
d7965152
RB
1610
1611err_unpin:
1612 __i915_vma_unpin(vma);
1613
1614err_unref:
1615 i915_gem_object_put(bo);
1616
a37f08a8
UNR
1617 stream->oa_buffer.vaddr = NULL;
1618 stream->oa_buffer.vma = NULL;
d7965152 1619
d7965152
RB
1620 return ret;
1621}
1622
daed3e44
LL
1623static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1624 bool save, i915_reg_t reg, u32 offset,
1625 u32 dword_count)
1626{
1627 u32 cmd;
1628 u32 d;
1629
1630 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1631 if (INTEL_GEN(stream->perf->i915) >= 8)
1632 cmd++;
1633
1634 for (d = 0; d < dword_count; d++) {
1635 *cs++ = cmd;
1636 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1637 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1638 offset) + 4 * d;
1639 *cs++ = 0;
1640 }
1641
1642 return cs;
1643}
1644
1645static int alloc_noa_wait(struct i915_perf_stream *stream)
1646{
1647 struct drm_i915_private *i915 = stream->perf->i915;
1648 struct drm_i915_gem_object *bo;
1649 struct i915_vma *vma;
1650 const u64 delay_ticks = 0xffffffffffffffff -
1651 DIV64_U64_ROUND_UP(
1652 atomic64_read(&stream->perf->noa_programming_delay) *
1653 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
1654 1000000ull);
1655 const u32 base = stream->engine->mmio_base;
1656#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1657 u32 *batch, *ts0, *cs, *jump;
1658 int ret, i;
1659 enum {
1660 START_TS,
1661 NOW_TS,
1662 DELTA_TS,
1663 JUMP_PREDICATE,
1664 DELTA_TARGET,
1665 N_CS_GPR
1666 };
1667
1668 bo = i915_gem_object_create_internal(i915, 4096);
1669 if (IS_ERR(bo)) {
1670 DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
1671 return PTR_ERR(bo);
1672 }
1673
1674 /*
1675 * We pin in GGTT because we jump into this buffer now because
1676 * multiple OA config BOs will have a jump to this address and it
1677 * needs to be fixed during the lifetime of the i915/perf stream.
1678 */
1679 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1680 if (IS_ERR(vma)) {
1681 ret = PTR_ERR(vma);
1682 goto err_unref;
1683 }
1684
1685 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1686 if (IS_ERR(batch)) {
1687 ret = PTR_ERR(batch);
1688 goto err_unpin;
1689 }
1690
1691 /* Save registers. */
1692 for (i = 0; i < N_CS_GPR; i++)
1693 cs = save_restore_register(
1694 stream, cs, true /* save */, CS_GPR(i),
1695 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1696 cs = save_restore_register(
1697 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1698 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1699
1700 /* First timestamp snapshot location. */
1701 ts0 = cs;
1702
1703 /*
1704 * Initial snapshot of the timestamp register to implement the wait.
1705 * We work with 32b values, so clear out the top 32b bits of the
1706 * register because the ALU works 64bits.
1707 */
1708 *cs++ = MI_LOAD_REGISTER_IMM(1);
1709 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1710 *cs++ = 0;
1711 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1712 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1713 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1714
1715 /*
1716 * This is the location we're going to jump back into until the
1717 * required amount of time has passed.
1718 */
1719 jump = cs;
1720
1721 /*
1722 * Take another snapshot of the timestamp register. Take care to clear
1723 * up the top 32bits of CS_GPR(1) as we're using it for other
1724 * operations below.
1725 */
1726 *cs++ = MI_LOAD_REGISTER_IMM(1);
1727 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1728 *cs++ = 0;
1729 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1730 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1731 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1732
1733 /*
1734 * Do a diff between the 2 timestamps and store the result back into
1735 * CS_GPR(1).
1736 */
1737 *cs++ = MI_MATH(5);
1738 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1739 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1740 *cs++ = MI_MATH_SUB;
1741 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1742 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1743
1744 /*
1745 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1746 * timestamp have rolled over the 32bits) into the predicate register
1747 * to be used for the predicated jump.
1748 */
1749 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1750 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1751 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1752
1753 /* Restart from the beginning if we had timestamps roll over. */
1754 *cs++ = (INTEL_GEN(i915) < 8 ?
1755 MI_BATCH_BUFFER_START :
1756 MI_BATCH_BUFFER_START_GEN8) |
1757 MI_BATCH_PREDICATE;
1758 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1759 *cs++ = 0;
1760
1761 /*
1762 * Now add the diff between to previous timestamps and add it to :
1763 * (((1 * << 64) - 1) - delay_ns)
1764 *
1765 * When the Carry Flag contains 1 this means the elapsed time is
1766 * longer than the expected delay, and we can exit the wait loop.
1767 */
1768 *cs++ = MI_LOAD_REGISTER_IMM(2);
1769 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1770 *cs++ = lower_32_bits(delay_ticks);
1771 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1772 *cs++ = upper_32_bits(delay_ticks);
1773
1774 *cs++ = MI_MATH(4);
1775 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1776 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1777 *cs++ = MI_MATH_ADD;
1778 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1779
dd590f68
LL
1780 *cs++ = MI_ARB_CHECK;
1781
daed3e44
LL
1782 /*
1783 * Transfer the result into the predicate register to be used for the
1784 * predicated jump.
1785 */
1786 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1787 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1788 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1789
1790 /* Predicate the jump. */
1791 *cs++ = (INTEL_GEN(i915) < 8 ?
1792 MI_BATCH_BUFFER_START :
1793 MI_BATCH_BUFFER_START_GEN8) |
1794 MI_BATCH_PREDICATE;
1795 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1796 *cs++ = 0;
1797
1798 /* Restore registers. */
1799 for (i = 0; i < N_CS_GPR; i++)
1800 cs = save_restore_register(
1801 stream, cs, false /* restore */, CS_GPR(i),
1802 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1803 cs = save_restore_register(
1804 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1805 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1806
1807 /* And return to the ring. */
1808 *cs++ = MI_BATCH_BUFFER_END;
1809
1810 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1811
1812 i915_gem_object_flush_map(bo);
1813 i915_gem_object_unpin_map(bo);
1814
1815 stream->noa_wait = vma;
1816 return 0;
1817
1818err_unpin:
15d0ace1 1819 i915_vma_unpin_and_release(&vma, 0);
daed3e44
LL
1820err_unref:
1821 i915_gem_object_put(bo);
1822 return ret;
1823}
1824
15d0ace1
LL
1825static u32 *write_cs_mi_lri(u32 *cs,
1826 const struct i915_oa_reg *reg_data,
1827 u32 n_regs)
d7965152 1828{
701f8231 1829 u32 i;
d7965152
RB
1830
1831 for (i = 0; i < n_regs; i++) {
15d0ace1
LL
1832 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1833 u32 n_lri = min_t(u32,
1834 n_regs - i,
1835 MI_LOAD_REGISTER_IMM_MAX_REGS);
d7965152 1836
15d0ace1
LL
1837 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1838 }
1839 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1840 *cs++ = reg_data[i].value;
d7965152 1841 }
15d0ace1
LL
1842
1843 return cs;
d7965152
RB
1844}
1845
15d0ace1 1846static int num_lri_dwords(int num_regs)
d7965152 1847{
15d0ace1
LL
1848 int count = 0;
1849
1850 if (num_regs > 0) {
1851 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1852 count += num_regs * 2;
1853 }
1854
1855 return count;
1856}
1857
1858static struct i915_oa_config_bo *
1859alloc_oa_config_buffer(struct i915_perf_stream *stream,
1860 struct i915_oa_config *oa_config)
1861{
1862 struct drm_i915_gem_object *obj;
1863 struct i915_oa_config_bo *oa_bo;
1864 size_t config_length = 0;
1865 u32 *cs;
1866 int err;
1867
1868 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1869 if (!oa_bo)
1870 return ERR_PTR(-ENOMEM);
1871
1872 config_length += num_lri_dwords(oa_config->mux_regs_len);
1873 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1874 config_length += num_lri_dwords(oa_config->flex_regs_len);
93937659 1875 config_length += 3; /* MI_BATCH_BUFFER_START */
15d0ace1
LL
1876 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1877
1878 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1879 if (IS_ERR(obj)) {
1880 err = PTR_ERR(obj);
1881 goto err_free;
1882 }
1883
1884 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1885 if (IS_ERR(cs)) {
1886 err = PTR_ERR(cs);
1887 goto err_oa_bo;
1888 }
1889
1890 cs = write_cs_mi_lri(cs,
1891 oa_config->mux_regs,
1892 oa_config->mux_regs_len);
1893 cs = write_cs_mi_lri(cs,
1894 oa_config->b_counter_regs,
1895 oa_config->b_counter_regs_len);
1896 cs = write_cs_mi_lri(cs,
1897 oa_config->flex_regs,
1898 oa_config->flex_regs_len);
1899
93937659
LL
1900 /* Jump into the active wait. */
1901 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1902 MI_BATCH_BUFFER_START :
1903 MI_BATCH_BUFFER_START_GEN8);
1904 *cs++ = i915_ggtt_offset(stream->noa_wait);
1905 *cs++ = 0;
15d0ace1
LL
1906
1907 i915_gem_object_flush_map(obj);
1908 i915_gem_object_unpin_map(obj);
1909
1910 oa_bo->vma = i915_vma_instance(obj,
1911 &stream->engine->gt->ggtt->vm,
1912 NULL);
1913 if (IS_ERR(oa_bo->vma)) {
1914 err = PTR_ERR(oa_bo->vma);
1915 goto err_oa_bo;
1916 }
1917
1918 oa_bo->oa_config = i915_oa_config_get(oa_config);
1919 llist_add(&oa_bo->node, &stream->oa_config_bos);
1920
1921 return oa_bo;
1922
1923err_oa_bo:
1924 i915_gem_object_put(obj);
1925err_free:
1926 kfree(oa_bo);
1927 return ERR_PTR(err);
1928}
1929
1930static struct i915_vma *
1931get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1932{
1933 struct i915_oa_config_bo *oa_bo;
1934
14bfcd3e 1935 /*
15d0ace1
LL
1936 * Look for the buffer in the already allocated BOs attached
1937 * to the stream.
d7965152 1938 */
15d0ace1
LL
1939 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1940 if (oa_bo->oa_config == oa_config &&
1941 memcmp(oa_bo->oa_config->uuid,
1942 oa_config->uuid,
1943 sizeof(oa_config->uuid)) == 0)
1944 goto out;
1945 }
1946
1947 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1948 if (IS_ERR(oa_bo))
1949 return ERR_CAST(oa_bo);
1950
1951out:
1952 return i915_vma_get(oa_bo->vma);
1953}
1954
1955static int emit_oa_config(struct i915_perf_stream *stream,
8814c6d0 1956 struct i915_oa_config *oa_config,
15d0ace1
LL
1957 struct intel_context *ce)
1958{
1959 struct i915_request *rq;
1960 struct i915_vma *vma;
1961 int err;
1962
8814c6d0 1963 vma = get_oa_vma(stream, oa_config);
15d0ace1
LL
1964 if (IS_ERR(vma))
1965 return PTR_ERR(vma);
1966
1967 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1968 if (err)
1969 goto err_vma_put;
1970
de5825be 1971 intel_engine_pm_get(ce->engine);
15d0ace1 1972 rq = i915_request_create(ce);
de5825be 1973 intel_engine_pm_put(ce->engine);
15d0ace1
LL
1974 if (IS_ERR(rq)) {
1975 err = PTR_ERR(rq);
1976 goto err_vma_unpin;
1977 }
1978
1979 i915_vma_lock(vma);
1980 err = i915_request_await_object(rq, vma->obj, 0);
1981 if (!err)
1982 err = i915_vma_move_to_active(vma, rq, 0);
1983 i915_vma_unlock(vma);
1984 if (err)
1985 goto err_add_request;
1986
1987 err = rq->engine->emit_bb_start(rq,
1988 vma->node.start, 0,
1989 I915_DISPATCH_SECURE);
1990err_add_request:
1991 i915_request_add(rq);
1992err_vma_unpin:
1993 i915_vma_unpin(vma);
1994err_vma_put:
1995 i915_vma_put(vma);
1996 return err;
14bfcd3e
LL
1997}
1998
5f5c382e
CW
1999static struct intel_context *oa_context(struct i915_perf_stream *stream)
2000{
2001 return stream->pinned_ctx ?: stream->engine->kernel_context;
2002}
2003
14bfcd3e
LL
2004static int hsw_enable_metric_set(struct i915_perf_stream *stream)
2005{
52111c46 2006 struct intel_uncore *uncore = stream->uncore;
14bfcd3e
LL
2007
2008 /*
2009 * PRM:
2010 *
2011 * OA unit is using “crclk” for its functionality. When trunk
2012 * level clock gating takes place, OA clock would be gated,
2013 * unable to count the events from non-render clock domain.
2014 * Render clock gating must be disabled when OA is enabled to
2015 * count the events from non-render domain. Unit level clock
2016 * gating for RCS should also be disabled.
2017 */
8f8b1171
CW
2018 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2019 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2020 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2021 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
14bfcd3e 2022
8814c6d0 2023 return emit_oa_config(stream, stream->oa_config, oa_context(stream));
d7965152
RB
2024}
2025
a37f08a8 2026static void hsw_disable_metric_set(struct i915_perf_stream *stream)
d7965152 2027{
52111c46 2028 struct intel_uncore *uncore = stream->uncore;
a37f08a8 2029
8f8b1171
CW
2030 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2031 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2032 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2033 0, GEN7_DOP_CLOCK_GATE_ENABLE);
d7965152 2034
8f8b1171 2035 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
d7965152
RB
2036}
2037
a9877da2
CW
2038static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2039 i915_reg_t reg)
2040{
2041 u32 mmio = i915_mmio_reg_offset(reg);
2042 int i;
2043
2044 /*
2045 * This arbitrary default will select the 'EU FPU0 Pipeline
2046 * Active' event. In the future it's anticipated that there
2047 * will be an explicit 'No Event' we can select, but not yet...
2048 */
2049 if (!oa_config)
2050 return 0;
2051
2052 for (i = 0; i < oa_config->flex_regs_len; i++) {
2053 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2054 return oa_config->flex_regs[i].value;
2055 }
2056
2057 return 0;
2058}
19f81df2
RB
2059/*
2060 * NB: It must always remain pointer safe to run this even if the OA unit
2061 * has been disabled.
2062 *
2063 * It's fine to put out-of-date values into these per-context registers
2064 * in the case that the OA unit has been disabled.
2065 */
b146e5ef 2066static void
7dc56af5
CW
2067gen8_update_reg_state_unlocked(const struct intel_context *ce,
2068 const struct i915_perf_stream *stream)
19f81df2 2069{
8f8b1171
CW
2070 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2071 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
19f81df2 2072 /* The MMIO offsets for Flex EU registers aren't contiguous */
35ab4fd2
LL
2073 i915_reg_t flex_regs[] = {
2074 EU_PERF_CNTL0,
2075 EU_PERF_CNTL1,
2076 EU_PERF_CNTL2,
2077 EU_PERF_CNTL3,
2078 EU_PERF_CNTL4,
2079 EU_PERF_CNTL5,
2080 EU_PERF_CNTL6,
19f81df2 2081 };
7dc56af5 2082 u32 *reg_state = ce->lrc_reg_state;
19f81df2
RB
2083 int i;
2084
00a7f0d7
LL
2085 if (IS_GEN(stream->perf->i915, 12)) {
2086 u32 format = stream->oa_buffer.format;
19f81df2 2087
00a7f0d7
LL
2088 reg_state[ctx_oactxctrl + 1] =
2089 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2090 (stream->oa_config ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0);
2091 } else {
2092 reg_state[ctx_oactxctrl + 1] =
2093 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2094 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2095 GEN8_OA_COUNTER_RESUME;
2096 }
2097
2098 for (i = 0; !!ctx_flexeu0 && i < ARRAY_SIZE(flex_regs); i++)
7dc56af5
CW
2099 reg_state[ctx_flexeu0 + i * 2 + 1] =
2100 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
ec431eae 2101
8f8b1171
CW
2102 reg_state[CTX_R_PWR_CLK_STATE] =
2103 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
19f81df2
RB
2104}
2105
a9877da2
CW
2106struct flex {
2107 i915_reg_t reg;
2108 u32 offset;
2109 u32 value;
2110};
2111
2112static int
2113gen8_store_flex(struct i915_request *rq,
2114 struct intel_context *ce,
2115 const struct flex *flex, unsigned int count)
2116{
2117 u32 offset;
2118 u32 *cs;
2119
2120 cs = intel_ring_begin(rq, 4 * count);
2121 if (IS_ERR(cs))
2122 return PTR_ERR(cs);
2123
2124 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
2125 do {
2126 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
7dc56af5 2127 *cs++ = offset + flex->offset * sizeof(u32);
a9877da2
CW
2128 *cs++ = 0;
2129 *cs++ = flex->value;
2130 } while (flex++, --count);
2131
2132 intel_ring_advance(rq, cs);
2133
2134 return 0;
2135}
2136
2137static int
2138gen8_load_flex(struct i915_request *rq,
2139 struct intel_context *ce,
2140 const struct flex *flex, unsigned int count)
2141{
2142 u32 *cs;
2143
2144 GEM_BUG_ON(!count || count > 63);
2145
2146 cs = intel_ring_begin(rq, 2 * count + 2);
2147 if (IS_ERR(cs))
2148 return PTR_ERR(cs);
2149
2150 *cs++ = MI_LOAD_REGISTER_IMM(count);
2151 do {
2152 *cs++ = i915_mmio_reg_offset(flex->reg);
2153 *cs++ = flex->value;
2154 } while (flex++, --count);
2155 *cs++ = MI_NOOP;
2156
2157 intel_ring_advance(rq, cs);
2158
2159 return 0;
2160}
2161
2162static int gen8_modify_context(struct intel_context *ce,
2163 const struct flex *flex, unsigned int count)
2164{
2165 struct i915_request *rq;
2166 int err;
2167
2168 lockdep_assert_held(&ce->pin_mutex);
2169
de5825be 2170 rq = intel_engine_create_kernel_request(ce->engine);
a9877da2
CW
2171 if (IS_ERR(rq))
2172 return PTR_ERR(rq);
2173
2174 /* Serialise with the remote context */
2175 err = intel_context_prepare_remote_request(ce, rq);
2176 if (err == 0)
2177 err = gen8_store_flex(rq, ce, flex, count);
2178
2179 i915_request_add(rq);
2180 return err;
2181}
2182
2183static int gen8_modify_self(struct intel_context *ce,
2184 const struct flex *flex, unsigned int count)
2185{
2186 struct i915_request *rq;
2187 int err;
2188
2189 rq = i915_request_create(ce);
2190 if (IS_ERR(rq))
2191 return PTR_ERR(rq);
2192
2193 err = gen8_load_flex(rq, ce, flex, count);
2194
2195 i915_request_add(rq);
2196 return err;
2197}
2198
5cca5038
CW
2199static int gen8_configure_context(struct i915_gem_context *ctx,
2200 struct flex *flex, unsigned int count)
2201{
2202 struct i915_gem_engines_iter it;
2203 struct intel_context *ce;
2204 int err = 0;
2205
2206 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2207 GEM_BUG_ON(ce == ce->engine->kernel_context);
2208
2209 if (ce->engine->class != RENDER_CLASS)
2210 continue;
2211
2212 err = intel_context_lock_pinned(ce);
2213 if (err)
2214 break;
2215
2216 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2217
2218 /* Otherwise OA settings will be set upon first use */
2219 if (intel_context_is_pinned(ce))
2220 err = gen8_modify_context(ce, flex, count);
2221
2222 intel_context_unlock_pinned(ce);
2223 if (err)
2224 break;
2225 }
2226 i915_gem_context_unlock_engines(ctx);
2227
2228 return err;
2229}
2230
00a7f0d7
LL
2231static int gen12_emit_oar_config(struct intel_context *ce, bool enable)
2232{
2233 struct i915_request *rq;
2234 u32 *cs;
2235 int err = 0;
2236
2237 rq = i915_request_create(ce);
2238 if (IS_ERR(rq))
2239 return PTR_ERR(rq);
2240
2241 cs = intel_ring_begin(rq, 4);
2242 if (IS_ERR(cs)) {
2243 err = PTR_ERR(cs);
2244 goto out;
2245 }
2246
2247 *cs++ = MI_LOAD_REGISTER_IMM(1);
2248 *cs++ = i915_mmio_reg_offset(RING_CONTEXT_CONTROL(ce->engine->mmio_base));
2249 *cs++ = _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2250 enable ? GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 0);
2251 *cs++ = MI_NOOP;
2252
2253 intel_ring_advance(rq, cs);
2254
2255out:
2256 i915_request_add(rq);
2257
2258 return err;
2259}
2260
19f81df2
RB
2261/*
2262 * Manages updating the per-context aspects of the OA stream
2263 * configuration across all contexts.
2264 *
2265 * The awkward consideration here is that OACTXCONTROL controls the
2266 * exponent for periodic sampling which is primarily used for system
2267 * wide profiling where we'd like a consistent sampling period even in
2268 * the face of context switches.
2269 *
2270 * Our approach of updating the register state context (as opposed to
2271 * say using a workaround batch buffer) ensures that the hardware
2272 * won't automatically reload an out-of-date timer exponent even
2273 * transiently before a WA BB could be parsed.
2274 *
2275 * This function needs to:
2276 * - Ensure the currently running context's per-context OA state is
2277 * updated
2278 * - Ensure that all existing contexts will have the correct per-context
2279 * OA state if they are scheduled for use.
2280 * - Ensure any new contexts will be initialized with the correct
2281 * per-context OA state.
2282 *
2283 * Note: it's only the RCS/Render context that has any OA state.
2284 */
00a7f0d7
LL
2285static int lrc_configure_all_contexts(struct i915_perf_stream *stream,
2286 const struct i915_oa_config *oa_config)
19f81df2 2287{
8f8b1171 2288 struct drm_i915_private *i915 = stream->perf->i915;
a9877da2 2289 /* The MMIO offsets for Flex EU registers aren't contiguous */
8f8b1171 2290 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
7dc56af5 2291#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
a9877da2
CW
2292 struct flex regs[] = {
2293 {
2294 GEN8_R_PWR_CLK_STATE,
2295 CTX_R_PWR_CLK_STATE,
2296 },
2297 {
00a7f0d7
LL
2298 IS_GEN(i915, 12) ?
2299 GEN12_OAR_OACONTROL : GEN8_OACTXCONTROL,
8f8b1171 2300 stream->perf->ctx_oactxctrl_offset + 1,
a9877da2
CW
2301 },
2302 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2303 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2304 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2305 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2306 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2307 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2308 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2309 };
2310#undef ctx_flexeuN
2311 struct intel_engine_cs *engine;
a4e7ccda 2312 struct i915_gem_context *ctx, *cn;
00a7f0d7 2313 size_t array_size = IS_GEN(i915, 12) ? 2 : ARRAY_SIZE(regs);
a4e7ccda 2314 int i, err;
19f81df2 2315
00a7f0d7
LL
2316 if (IS_GEN(i915, 12)) {
2317 u32 format = stream->oa_buffer.format;
2318
2319 regs[1].value =
2320 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2321 (oa_config ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0);
2322 } else {
2323 regs[1].value =
2324 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2325 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2326 GEN8_OA_COUNTER_RESUME;
2327 }
2328
2329 for (i = 2; !!ctx_flexeu0 && i < array_size; i++)
a9877da2
CW
2330 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2331
a4c969d1 2332 lockdep_assert_held(&stream->perf->lock);
19f81df2 2333
19f81df2
RB
2334 /*
2335 * The OA register config is setup through the context image. This image
2336 * might be written to by the GPU on context switch (in particular on
2337 * lite-restore). This means we can't safely update a context's image,
2338 * if this context is scheduled/submitted to run on the GPU.
2339 *
2340 * We could emit the OA register config through the batch buffer but
2341 * this might leave small interval of time where the OA unit is
2342 * configured at an invalid sampling period.
2343 *
a9877da2
CW
2344 * Note that since we emit all requests from a single ring, there
2345 * is still an implicit global barrier here that may cause a high
2346 * priority context to wait for an otherwise independent low priority
2347 * context. Contexts idle at the time of reconfiguration are not
2348 * trapped behind the barrier.
19f81df2 2349 */
a4e7ccda
CW
2350 spin_lock(&i915->gem.contexts.lock);
2351 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
a9877da2
CW
2352 if (ctx == i915->kernel_context)
2353 continue;
2354
a4e7ccda
CW
2355 if (!kref_get_unless_zero(&ctx->ref))
2356 continue;
2357
2358 spin_unlock(&i915->gem.contexts.lock);
2359
00a7f0d7 2360 err = gen8_configure_context(ctx, regs, array_size);
a4e7ccda
CW
2361 if (err) {
2362 i915_gem_context_put(ctx);
a9877da2 2363 return err;
a4e7ccda
CW
2364 }
2365
2366 spin_lock(&i915->gem.contexts.lock);
2367 list_safe_reset_next(ctx, cn, link);
2368 i915_gem_context_put(ctx);
19f81df2 2369 }
a4e7ccda 2370 spin_unlock(&i915->gem.contexts.lock);
19f81df2 2371
722f3de3 2372 /*
a9877da2
CW
2373 * After updating all other contexts, we need to modify ourselves.
2374 * If we don't modify the kernel_context, we do not get events while
2375 * idle.
722f3de3 2376 */
750e76b4 2377 for_each_uabi_engine(engine, i915) {
a9877da2 2378 struct intel_context *ce = engine->kernel_context;
722f3de3 2379
a9877da2
CW
2380 if (engine->class != RENDER_CLASS)
2381 continue;
2382
2383 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
2384
00a7f0d7 2385 err = gen8_modify_self(ce, regs, array_size);
a9877da2
CW
2386 if (err)
2387 return err;
2388 }
722f3de3
TU
2389
2390 return 0;
19f81df2
RB
2391}
2392
5728de2f 2393static int gen8_enable_metric_set(struct i915_perf_stream *stream)
19f81df2 2394{
52111c46 2395 struct intel_uncore *uncore = stream->uncore;
8814c6d0 2396 struct i915_oa_config *oa_config = stream->oa_config;
701f8231 2397 int ret;
19f81df2
RB
2398
2399 /*
2400 * We disable slice/unslice clock ratio change reports on SKL since
2401 * they are too noisy. The HW generates a lot of redundant reports
2402 * where the ratio hasn't really changed causing a lot of redundant
2403 * work to processes and increasing the chances we'll hit buffer
2404 * overruns.
2405 *
2406 * Although we don't currently use the 'disable overrun' OABUFFER
2407 * feature it's worth noting that clock ratio reports have to be
2408 * disabled before considering to use that feature since the HW doesn't
2409 * correctly block these reports.
2410 *
2411 * Currently none of the high-level metrics we have depend on knowing
2412 * this ratio to normalize.
2413 *
2414 * Note: This register is not power context saved and restored, but
2415 * that's OK considering that we disable RC6 while the OA unit is
2416 * enabled.
2417 *
2418 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2419 * be read back from automatically triggered reports, as part of the
2420 * RPT_ID field.
2421 */
8f8b1171
CW
2422 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2423 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2424 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2425 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
19f81df2
RB
2426 }
2427
2428 /*
2429 * Update all contexts prior writing the mux configurations as we need
2430 * to make sure all slices/subslices are ON before writing to NOA
2431 * registers.
2432 */
00a7f0d7
LL
2433 ret = lrc_configure_all_contexts(stream, oa_config);
2434 if (ret)
2435 return ret;
2436
2437 return emit_oa_config(stream, oa_config, oa_context(stream));
2438}
2439
9278bbb6
CW
2440static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2441{
2442 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2443 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2444 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2445}
2446
00a7f0d7
LL
2447static int gen12_enable_metric_set(struct i915_perf_stream *stream)
2448{
2449 struct intel_uncore *uncore = stream->uncore;
2450 struct i915_oa_config *oa_config = stream->oa_config;
2451 bool periodic = stream->periodic;
2452 u32 period_exponent = stream->period_exponent;
2453 int ret;
2454
2455 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2456 /* Disable clk ratio reports, like previous Gens. */
2457 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2458 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2459 /*
9278bbb6
CW
2460 * If the user didn't require OA reports, instruct
2461 * the hardware not to emit ctx switch reports.
00a7f0d7 2462 */
9278bbb6 2463 oag_report_ctx_switches(stream));
00a7f0d7
LL
2464
2465 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2466 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2467 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2468 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2469 : 0);
2470
2471 /*
2472 * Update all contexts prior writing the mux configurations as we need
2473 * to make sure all slices/subslices are ON before writing to NOA
2474 * registers.
2475 */
2476 ret = lrc_configure_all_contexts(stream, oa_config);
19f81df2
RB
2477 if (ret)
2478 return ret;
2479
00a7f0d7
LL
2480 /*
2481 * For Gen12, performance counters are context
2482 * saved/restored. Only enable it for the context that
2483 * requested this.
2484 */
2485 if (stream->ctx) {
2486 ret = gen12_emit_oar_config(stream->pinned_ctx,
2487 oa_config != NULL);
2488 if (ret)
2489 return ret;
2490 }
2491
8814c6d0 2492 return emit_oa_config(stream, oa_config, oa_context(stream));
19f81df2
RB
2493}
2494
a37f08a8 2495static void gen8_disable_metric_set(struct i915_perf_stream *stream)
19f81df2 2496{
52111c46 2497 struct intel_uncore *uncore = stream->uncore;
a37f08a8 2498
19f81df2 2499 /* Reset all contexts' slices/subslices configurations. */
00a7f0d7 2500 lrc_configure_all_contexts(stream, NULL);
28964cf2 2501
8f8b1171 2502 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
19f81df2
RB
2503}
2504
a37f08a8 2505static void gen10_disable_metric_set(struct i915_perf_stream *stream)
95690a02 2506{
52111c46 2507 struct intel_uncore *uncore = stream->uncore;
a37f08a8 2508
95690a02 2509 /* Reset all contexts' slices/subslices configurations. */
00a7f0d7
LL
2510 lrc_configure_all_contexts(stream, NULL);
2511
2512 /* Make sure we disable noa to save power. */
2513 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2514}
2515
2516static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2517{
2518 struct intel_uncore *uncore = stream->uncore;
2519
2520 /* Reset all contexts' slices/subslices configurations. */
2521 lrc_configure_all_contexts(stream, NULL);
2522
2523 /* disable the context save/restore or OAR counters */
2524 if (stream->ctx)
2525 gen12_emit_oar_config(stream->pinned_ctx, false);
95690a02
LL
2526
2527 /* Make sure we disable noa to save power. */
8f8b1171 2528 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
95690a02
LL
2529}
2530
5728de2f 2531static void gen7_oa_enable(struct i915_perf_stream *stream)
d7965152 2532{
52111c46 2533 struct intel_uncore *uncore = stream->uncore;
5728de2f 2534 struct i915_gem_context *ctx = stream->ctx;
a37f08a8
UNR
2535 u32 ctx_id = stream->specific_ctx_id;
2536 bool periodic = stream->periodic;
2537 u32 period_exponent = stream->period_exponent;
2538 u32 report_format = stream->oa_buffer.format;
11051303 2539
1bef3409
RB
2540 /*
2541 * Reset buf pointers so we don't forward reports from before now.
2542 *
2543 * Think carefully if considering trying to avoid this, since it
2544 * also ensures status flags and the buffer itself are cleared
2545 * in error paths, and we have checks for invalid reports based
2546 * on the assumption that certain fields are written to zeroed
2547 * memory which this helps maintains.
2548 */
a37f08a8 2549 gen7_init_oa_buffer(stream);
d7965152 2550
8f8b1171
CW
2551 intel_uncore_write(uncore, GEN7_OACONTROL,
2552 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2553 (period_exponent <<
2554 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2555 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2556 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2557 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2558 GEN7_OACONTROL_ENABLE);
d7965152
RB
2559}
2560
5728de2f 2561static void gen8_oa_enable(struct i915_perf_stream *stream)
19f81df2 2562{
52111c46 2563 struct intel_uncore *uncore = stream->uncore;
a37f08a8 2564 u32 report_format = stream->oa_buffer.format;
19f81df2
RB
2565
2566 /*
2567 * Reset buf pointers so we don't forward reports from before now.
2568 *
2569 * Think carefully if considering trying to avoid this, since it
2570 * also ensures status flags and the buffer itself are cleared
2571 * in error paths, and we have checks for invalid reports based
2572 * on the assumption that certain fields are written to zeroed
2573 * memory which this helps maintains.
2574 */
a37f08a8 2575 gen8_init_oa_buffer(stream);
19f81df2
RB
2576
2577 /*
2578 * Note: we don't rely on the hardware to perform single context
2579 * filtering and instead filter on the cpu based on the context-id
2580 * field of reports
2581 */
8f8b1171
CW
2582 intel_uncore_write(uncore, GEN8_OACONTROL,
2583 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2584 GEN8_OA_COUNTER_ENABLE);
19f81df2
RB
2585}
2586
00a7f0d7
LL
2587static void gen12_oa_enable(struct i915_perf_stream *stream)
2588{
2589 struct intel_uncore *uncore = stream->uncore;
2590 u32 report_format = stream->oa_buffer.format;
2591
2592 /*
2593 * If we don't want OA reports from the OA buffer, then we don't even
2594 * need to program the OAG unit.
2595 */
2596 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2597 return;
2598
2599 gen12_init_oa_buffer(stream);
2600
2601 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2602 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2603 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2604}
2605
16d98b31
RB
2606/**
2607 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2608 * @stream: An i915 perf stream opened for OA metrics
2609 *
2610 * [Re]enables hardware periodic sampling according to the period configured
2611 * when opening the stream. This also starts a hrtimer that will periodically
2612 * check for data in the circular OA buffer for notifying userspace (e.g.
2613 * during a read() or poll()).
2614 */
d7965152
RB
2615static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2616{
8f8b1171 2617 stream->perf->ops.oa_enable(stream);
d7965152 2618
a37f08a8
UNR
2619 if (stream->periodic)
2620 hrtimer_start(&stream->poll_check_timer,
d7965152
RB
2621 ns_to_ktime(POLL_PERIOD),
2622 HRTIMER_MODE_REL_PINNED);
2623}
2624
5728de2f 2625static void gen7_oa_disable(struct i915_perf_stream *stream)
d7965152 2626{
52111c46 2627 struct intel_uncore *uncore = stream->uncore;
5728de2f 2628
97a04e0d
DCS
2629 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2630 if (intel_wait_for_register(uncore,
e896d29a
CW
2631 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2632 50))
2633 DRM_ERROR("wait for OA to be disabled timed out\n");
d7965152
RB
2634}
2635
5728de2f 2636static void gen8_oa_disable(struct i915_perf_stream *stream)
19f81df2 2637{
52111c46 2638 struct intel_uncore *uncore = stream->uncore;
5728de2f 2639
97a04e0d
DCS
2640 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2641 if (intel_wait_for_register(uncore,
e896d29a
CW
2642 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2643 50))
2644 DRM_ERROR("wait for OA to be disabled timed out\n");
19f81df2
RB
2645}
2646
00a7f0d7
LL
2647static void gen12_oa_disable(struct i915_perf_stream *stream)
2648{
2649 struct intel_uncore *uncore = stream->uncore;
2650
2651 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2652 if (intel_wait_for_register(uncore,
2653 GEN12_OAG_OACONTROL,
2654 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2655 50))
2656 DRM_ERROR("wait for OA to be disabled timed out\n");
2657}
2658
16d98b31
RB
2659/**
2660 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2661 * @stream: An i915 perf stream opened for OA metrics
2662 *
2663 * Stops the OA unit from periodically writing counter reports into the
2664 * circular OA buffer. This also stops the hrtimer that periodically checks for
2665 * data in the circular OA buffer, for notifying userspace.
2666 */
d7965152
RB
2667static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2668{
8f8b1171 2669 stream->perf->ops.oa_disable(stream);
d7965152 2670
a37f08a8
UNR
2671 if (stream->periodic)
2672 hrtimer_cancel(&stream->poll_check_timer);
d7965152
RB
2673}
2674
d7965152
RB
2675static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2676 .destroy = i915_oa_stream_destroy,
2677 .enable = i915_oa_stream_enable,
2678 .disable = i915_oa_stream_disable,
2679 .wait_unlocked = i915_oa_wait_unlocked,
2680 .poll_wait = i915_oa_poll_wait,
2681 .read = i915_oa_read,
eec688e1
RB
2682};
2683
16d98b31
RB
2684/**
2685 * i915_oa_stream_init - validate combined props for OA stream and init
2686 * @stream: An i915 perf stream
2687 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2688 * @props: The property state that configures stream (individually validated)
2689 *
2690 * While read_properties_unlocked() validates properties in isolation it
2691 * doesn't ensure that the combination necessarily makes sense.
2692 *
2693 * At this point it has been determined that userspace wants a stream of
2694 * OA metrics, but still we need to further validate the combined
2695 * properties are OK.
2696 *
2697 * If the configuration makes sense then we can allocate memory for
2698 * a circular OA buffer and apply the requested metric set configuration.
2699 *
2700 * Returns: zero on success or a negative error code.
2701 */
d7965152
RB
2702static int i915_oa_stream_init(struct i915_perf_stream *stream,
2703 struct drm_i915_perf_open_param *param,
2704 struct perf_open_properties *props)
2705{
8f8b1171 2706 struct i915_perf *perf = stream->perf;
d7965152
RB
2707 int format_size;
2708 int ret;
2709
9a61363a
LL
2710 if (!props->engine) {
2711 DRM_DEBUG("OA engine not specified\n");
2712 return -EINVAL;
2713 }
2714
2715 /*
2716 * If the sysfs metrics/ directory wasn't registered for some
442b8c06
RB
2717 * reason then don't let userspace try their luck with config
2718 * IDs
2719 */
8f8b1171 2720 if (!perf->metrics_kobj) {
7708550c 2721 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
442b8c06
RB
2722 return -EINVAL;
2723 }
2724
d7965152 2725 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
7708550c 2726 DRM_DEBUG("Only OA report sampling supported\n");
d7965152
RB
2727 return -EINVAL;
2728 }
2729
8f8b1171 2730 if (!perf->ops.enable_metric_set) {
7708550c 2731 DRM_DEBUG("OA unit not supported\n");
d7965152
RB
2732 return -ENODEV;
2733 }
2734
9a61363a
LL
2735 /*
2736 * To avoid the complexity of having to accurately filter
d7965152
RB
2737 * counter reports and marshal to the appropriate client
2738 * we currently only allow exclusive access
2739 */
8f8b1171 2740 if (perf->exclusive_stream) {
7708550c 2741 DRM_DEBUG("OA unit already in use\n");
d7965152
RB
2742 return -EBUSY;
2743 }
2744
d7965152 2745 if (!props->oa_format) {
7708550c 2746 DRM_DEBUG("OA report format not specified\n");
d7965152
RB
2747 return -EINVAL;
2748 }
2749
9a61363a 2750 stream->engine = props->engine;
52111c46 2751 stream->uncore = stream->engine->gt->uncore;
9a61363a 2752
d7965152
RB
2753 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2754
8f8b1171 2755 format_size = perf->oa_formats[props->oa_format].size;
d7965152
RB
2756
2757 stream->sample_flags |= SAMPLE_OA_REPORT;
2758 stream->sample_size += format_size;
2759
a37f08a8
UNR
2760 stream->oa_buffer.format_size = format_size;
2761 if (WARN_ON(stream->oa_buffer.format_size == 0))
d7965152
RB
2762 return -EINVAL;
2763
9cd20ef7
LL
2764 stream->hold_preemption = props->hold_preemption;
2765
a37f08a8 2766 stream->oa_buffer.format =
8f8b1171 2767 perf->oa_formats[props->oa_format].format;
d7965152 2768
a37f08a8
UNR
2769 stream->periodic = props->oa_periodic;
2770 if (stream->periodic)
2771 stream->period_exponent = props->oa_period_exponent;
d7965152 2772
d7965152
RB
2773 if (stream->ctx) {
2774 ret = oa_get_render_ctx_id(stream);
9bd9be66
LL
2775 if (ret) {
2776 DRM_DEBUG("Invalid context id to filter with\n");
d7965152 2777 return ret;
9bd9be66 2778 }
d7965152
RB
2779 }
2780
daed3e44
LL
2781 ret = alloc_noa_wait(stream);
2782 if (ret) {
2783 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2784 goto err_noa_wait_alloc;
2785 }
2786
6a45008a
LL
2787 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2788 if (!stream->oa_config) {
9bd9be66 2789 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
6a45008a 2790 ret = -EINVAL;
f89823c2 2791 goto err_config;
9bd9be66 2792 }
701f8231 2793
d7965152
RB
2794 /* PRM - observability performance counters:
2795 *
2796 * OACONTROL, performance counter enable, note:
2797 *
2798 * "When this bit is set, in order to have coherent counts,
2799 * RC6 power state and trunk clock gating must be disabled.
2800 * This can be achieved by programming MMIO registers as
2801 * 0xA094=0 and 0xA090[31]=1"
2802 *
2803 * In our case we are expecting that taking pm + FORCEWAKE
2804 * references will effectively disable RC6.
2805 */
a5efcde6 2806 intel_engine_pm_get(stream->engine);
52111c46 2807 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
d7965152 2808
a37f08a8 2809 ret = alloc_oa_buffer(stream);
987f8c44 2810 if (ret)
2811 goto err_oa_buf_alloc;
2812
ec431eae 2813 stream->ops = &i915_oa_stream_ops;
8f8b1171 2814 perf->exclusive_stream = stream;
ec431eae 2815
8f8b1171 2816 ret = perf->ops.enable_metric_set(stream);
9bd9be66
LL
2817 if (ret) {
2818 DRM_DEBUG("Unable to enable metric set\n");
d7965152 2819 goto err_enable;
9bd9be66 2820 }
d7965152 2821
6a45008a
LL
2822 DRM_DEBUG("opening stream oa config uuid=%s\n",
2823 stream->oa_config->uuid);
2824
a37f08a8
UNR
2825 hrtimer_init(&stream->poll_check_timer,
2826 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2827 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2828 init_waitqueue_head(&stream->poll_wq);
2829 spin_lock_init(&stream->oa_buffer.ptr_lock);
2830
d7965152
RB
2831 return 0;
2832
41d3fdcd 2833err_enable:
8f8b1171
CW
2834 perf->exclusive_stream = NULL;
2835 perf->ops.disable_metric_set(stream);
701f8231 2836
a37f08a8 2837 free_oa_buffer(stream);
d7965152
RB
2838
2839err_oa_buf_alloc:
6a45008a 2840 free_oa_configs(stream);
f89823c2 2841
52111c46 2842 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
a5efcde6 2843 intel_engine_pm_put(stream->engine);
f89823c2
LL
2844
2845err_config:
daed3e44
LL
2846 free_noa_wait(stream);
2847
2848err_noa_wait_alloc:
d7965152
RB
2849 if (stream->ctx)
2850 oa_put_render_ctx_id(stream);
2851
2852 return ret;
2853}
2854
7dc56af5
CW
2855void i915_oa_init_reg_state(const struct intel_context *ce,
2856 const struct intel_engine_cs *engine)
19f81df2 2857{
28b6cb08 2858 struct i915_perf_stream *stream;
19f81df2 2859
00a7f0d7 2860 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
dffa8feb 2861
8a68d464 2862 if (engine->class != RENDER_CLASS)
19f81df2
RB
2863 return;
2864
a37f08a8 2865 stream = engine->i915->perf.exclusive_stream;
701f8231 2866 if (stream)
7dc56af5 2867 gen8_update_reg_state_unlocked(ce, stream);
19f81df2
RB
2868}
2869
16d98b31
RB
2870/**
2871 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2872 * @stream: An i915 perf stream
2873 * @file: An i915 perf stream file
2874 * @buf: destination buffer given by userspace
2875 * @count: the number of bytes userspace wants to read
2876 * @ppos: (inout) file seek position (unused)
2877 *
2878 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2879 * ensure that if we've successfully copied any data then reporting that takes
2880 * precedence over any internal error status, so the data isn't lost.
2881 *
2882 * For example ret will be -ENOSPC whenever there is more buffered data than
2883 * can be copied to userspace, but that's only interesting if we weren't able
2884 * to copy some data because it implies the userspace buffer is too small to
2885 * receive a single record (and we never split records).
2886 *
2887 * Another case with ret == -EFAULT is more of a grey area since it would seem
2888 * like bad form for userspace to ask us to overrun its buffer, but the user
2889 * knows best:
2890 *
2891 * http://yarchive.net/comp/linux/partial_reads_writes.html
2892 *
2893 * Returns: The number of bytes copied or a negative error code on failure.
2894 */
eec688e1
RB
2895static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2896 struct file *file,
2897 char __user *buf,
2898 size_t count,
2899 loff_t *ppos)
2900{
2901 /* Note we keep the offset (aka bytes read) separate from any
2902 * error status so that the final check for whether we return
2903 * the bytes read with a higher precedence than any error (see
2904 * comment below) doesn't need to be handled/duplicated in
2905 * stream->ops->read() implementations.
2906 */
2907 size_t offset = 0;
2908 int ret = stream->ops->read(stream, buf, count, &offset);
2909
eec688e1
RB
2910 return offset ?: (ret ?: -EAGAIN);
2911}
2912
16d98b31
RB
2913/**
2914 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2915 * @file: An i915 perf stream file
2916 * @buf: destination buffer given by userspace
2917 * @count: the number of bytes userspace wants to read
2918 * @ppos: (inout) file seek position (unused)
2919 *
2920 * The entry point for handling a read() on a stream file descriptor from
2921 * userspace. Most of the work is left to the i915_perf_read_locked() and
2922 * &i915_perf_stream_ops->read but to save having stream implementations (of
2923 * which we might have multiple later) we handle blocking read here.
2924 *
2925 * We can also consistently treat trying to read from a disabled stream
2926 * as an IO error so implementations can assume the stream is enabled
2927 * while reading.
2928 *
2929 * Returns: The number of bytes copied or a negative error code on failure.
2930 */
eec688e1
RB
2931static ssize_t i915_perf_read(struct file *file,
2932 char __user *buf,
2933 size_t count,
2934 loff_t *ppos)
2935{
2936 struct i915_perf_stream *stream = file->private_data;
8f8b1171 2937 struct i915_perf *perf = stream->perf;
eec688e1
RB
2938 ssize_t ret;
2939
d7965152
RB
2940 /* To ensure it's handled consistently we simply treat all reads of a
2941 * disabled stream as an error. In particular it might otherwise lead
2942 * to a deadlock for blocking file descriptors...
2943 */
2944 if (!stream->enabled)
2945 return -EIO;
2946
eec688e1 2947 if (!(file->f_flags & O_NONBLOCK)) {
d7965152
RB
2948 /* There's the small chance of false positives from
2949 * stream->ops->wait_unlocked.
2950 *
2951 * E.g. with single context filtering since we only wait until
2952 * oabuffer has >= 1 report we don't immediately know whether
2953 * any reports really belong to the current context
eec688e1
RB
2954 */
2955 do {
2956 ret = stream->ops->wait_unlocked(stream);
2957 if (ret)
2958 return ret;
2959
8f8b1171 2960 mutex_lock(&perf->lock);
eec688e1
RB
2961 ret = i915_perf_read_locked(stream, file,
2962 buf, count, ppos);
8f8b1171 2963 mutex_unlock(&perf->lock);
eec688e1
RB
2964 } while (ret == -EAGAIN);
2965 } else {
8f8b1171 2966 mutex_lock(&perf->lock);
eec688e1 2967 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
8f8b1171 2968 mutex_unlock(&perf->lock);
eec688e1
RB
2969 }
2970
a9a08845 2971 /* We allow the poll checking to sometimes report false positive EPOLLIN
26ebd9c7
RB
2972 * events where we might actually report EAGAIN on read() if there's
2973 * not really any data available. In this situation though we don't
a9a08845 2974 * want to enter a busy loop between poll() reporting a EPOLLIN event
26ebd9c7
RB
2975 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2976 * effectively ensures we back off until the next hrtimer callback
a9a08845 2977 * before reporting another EPOLLIN event.
26ebd9c7
RB
2978 */
2979 if (ret >= 0 || ret == -EAGAIN) {
d7965152
RB
2980 /* Maybe make ->pollin per-stream state if we support multiple
2981 * concurrent streams in the future.
2982 */
a37f08a8 2983 stream->pollin = false;
d7965152
RB
2984 }
2985
eec688e1
RB
2986 return ret;
2987}
2988
d7965152
RB
2989static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2990{
a37f08a8
UNR
2991 struct i915_perf_stream *stream =
2992 container_of(hrtimer, typeof(*stream), poll_check_timer);
d7965152 2993
a37f08a8
UNR
2994 if (oa_buffer_check_unlocked(stream)) {
2995 stream->pollin = true;
2996 wake_up(&stream->poll_wq);
d7965152
RB
2997 }
2998
2999 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
3000
3001 return HRTIMER_RESTART;
3002}
3003
16d98b31
RB
3004/**
3005 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
16d98b31
RB
3006 * @stream: An i915 perf stream
3007 * @file: An i915 perf stream file
3008 * @wait: poll() state table
3009 *
3010 * For handling userspace polling on an i915 perf stream, this calls through to
3011 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3012 * will be woken for new stream data.
3013 *
8f8b1171 3014 * Note: The &perf->lock mutex has been taken to serialize
16d98b31
RB
3015 * with any non-file-operation driver hooks.
3016 *
3017 * Returns: any poll events that are ready without sleeping
3018 */
8f8b1171
CW
3019static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3020 struct file *file,
3021 poll_table *wait)
eec688e1 3022{
afc9a42b 3023 __poll_t events = 0;
eec688e1
RB
3024
3025 stream->ops->poll_wait(stream, file, wait);
3026
d7965152
RB
3027 /* Note: we don't explicitly check whether there's something to read
3028 * here since this path may be very hot depending on what else
3029 * userspace is polling, or on the timeout in use. We rely solely on
3030 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3031 * samples to read.
3032 */
a37f08a8 3033 if (stream->pollin)
a9a08845 3034 events |= EPOLLIN;
eec688e1 3035
d7965152 3036 return events;
eec688e1
RB
3037}
3038
16d98b31
RB
3039/**
3040 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3041 * @file: An i915 perf stream file
3042 * @wait: poll() state table
3043 *
3044 * For handling userspace polling on an i915 perf stream, this ensures
3045 * poll_wait() gets called with a wait queue that will be woken for new stream
3046 * data.
3047 *
3048 * Note: Implementation deferred to i915_perf_poll_locked()
3049 *
3050 * Returns: any poll events that are ready without sleeping
3051 */
afc9a42b 3052static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
eec688e1
RB
3053{
3054 struct i915_perf_stream *stream = file->private_data;
8f8b1171 3055 struct i915_perf *perf = stream->perf;
afc9a42b 3056 __poll_t ret;
eec688e1 3057
8f8b1171
CW
3058 mutex_lock(&perf->lock);
3059 ret = i915_perf_poll_locked(stream, file, wait);
3060 mutex_unlock(&perf->lock);
eec688e1
RB
3061
3062 return ret;
3063}
3064
16d98b31
RB
3065/**
3066 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3067 * @stream: A disabled i915 perf stream
3068 *
3069 * [Re]enables the associated capture of data for this stream.
3070 *
3071 * If a stream was previously enabled then there's currently no intention
3072 * to provide userspace any guarantee about the preservation of previously
3073 * buffered data.
3074 */
eec688e1
RB
3075static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3076{
3077 if (stream->enabled)
3078 return;
3079
3080 /* Allow stream->ops->enable() to refer to this */
3081 stream->enabled = true;
3082
3083 if (stream->ops->enable)
3084 stream->ops->enable(stream);
9cd20ef7
LL
3085
3086 if (stream->hold_preemption)
3087 i915_gem_context_set_nopreempt(stream->ctx);
eec688e1
RB
3088}
3089
16d98b31
RB
3090/**
3091 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3092 * @stream: An enabled i915 perf stream
3093 *
3094 * Disables the associated capture of data for this stream.
3095 *
3096 * The intention is that disabling an re-enabling a stream will ideally be
3097 * cheaper than destroying and re-opening a stream with the same configuration,
3098 * though there are no formal guarantees about what state or buffered data
3099 * must be retained between disabling and re-enabling a stream.
3100 *
3101 * Note: while a stream is disabled it's considered an error for userspace
3102 * to attempt to read from the stream (-EIO).
3103 */
eec688e1
RB
3104static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3105{
3106 if (!stream->enabled)
3107 return;
3108
3109 /* Allow stream->ops->disable() to refer to this */
3110 stream->enabled = false;
3111
9cd20ef7
LL
3112 if (stream->hold_preemption)
3113 i915_gem_context_clear_nopreempt(stream->ctx);
3114
eec688e1
RB
3115 if (stream->ops->disable)
3116 stream->ops->disable(stream);
3117}
3118
7831e9a9
CW
3119static long i915_perf_config_locked(struct i915_perf_stream *stream,
3120 unsigned long metrics_set)
3121{
3122 struct i915_oa_config *config;
3123 long ret = stream->oa_config->id;
3124
3125 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3126 if (!config)
3127 return -EINVAL;
3128
3129 if (config != stream->oa_config) {
3130 int err;
3131
3132 /*
3133 * If OA is bound to a specific context, emit the
3134 * reconfiguration inline from that context. The update
3135 * will then be ordered with respect to submission on that
3136 * context.
3137 *
3138 * When set globally, we use a low priority kernel context,
3139 * so it will effectively take effect when idle.
3140 */
8814c6d0 3141 err = emit_oa_config(stream, config, oa_context(stream));
7831e9a9
CW
3142 if (err == 0)
3143 config = xchg(&stream->oa_config, config);
3144 else
3145 ret = err;
3146 }
3147
3148 i915_oa_config_put(config);
3149
3150 return ret;
3151}
3152
16d98b31
RB
3153/**
3154 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3155 * @stream: An i915 perf stream
3156 * @cmd: the ioctl request
3157 * @arg: the ioctl data
3158 *
8f8b1171 3159 * Note: The &perf->lock mutex has been taken to serialize
16d98b31
RB
3160 * with any non-file-operation driver hooks.
3161 *
3162 * Returns: zero on success or a negative error code. Returns -EINVAL for
3163 * an unknown ioctl request.
3164 */
eec688e1
RB
3165static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3166 unsigned int cmd,
3167 unsigned long arg)
3168{
3169 switch (cmd) {
3170 case I915_PERF_IOCTL_ENABLE:
3171 i915_perf_enable_locked(stream);
3172 return 0;
3173 case I915_PERF_IOCTL_DISABLE:
3174 i915_perf_disable_locked(stream);
3175 return 0;
7831e9a9
CW
3176 case I915_PERF_IOCTL_CONFIG:
3177 return i915_perf_config_locked(stream, arg);
eec688e1
RB
3178 }
3179
3180 return -EINVAL;
3181}
3182
16d98b31
RB
3183/**
3184 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3185 * @file: An i915 perf stream file
3186 * @cmd: the ioctl request
3187 * @arg: the ioctl data
3188 *
3189 * Implementation deferred to i915_perf_ioctl_locked().
3190 *
3191 * Returns: zero on success or a negative error code. Returns -EINVAL for
3192 * an unknown ioctl request.
3193 */
eec688e1
RB
3194static long i915_perf_ioctl(struct file *file,
3195 unsigned int cmd,
3196 unsigned long arg)
3197{
3198 struct i915_perf_stream *stream = file->private_data;
8f8b1171 3199 struct i915_perf *perf = stream->perf;
eec688e1
RB
3200 long ret;
3201
8f8b1171 3202 mutex_lock(&perf->lock);
eec688e1 3203 ret = i915_perf_ioctl_locked(stream, cmd, arg);
8f8b1171 3204 mutex_unlock(&perf->lock);
eec688e1
RB
3205
3206 return ret;
3207}
3208
16d98b31
RB
3209/**
3210 * i915_perf_destroy_locked - destroy an i915 perf stream
3211 * @stream: An i915 perf stream
3212 *
3213 * Frees all resources associated with the given i915 perf @stream, disabling
3214 * any associated data capture in the process.
3215 *
8f8b1171 3216 * Note: The &perf->lock mutex has been taken to serialize
16d98b31
RB
3217 * with any non-file-operation driver hooks.
3218 */
eec688e1
RB
3219static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3220{
eec688e1
RB
3221 if (stream->enabled)
3222 i915_perf_disable_locked(stream);
3223
3224 if (stream->ops->destroy)
3225 stream->ops->destroy(stream);
3226
69df05e1 3227 if (stream->ctx)
5f09a9c8 3228 i915_gem_context_put(stream->ctx);
eec688e1
RB
3229
3230 kfree(stream);
3231}
3232
16d98b31
RB
3233/**
3234 * i915_perf_release - handles userspace close() of a stream file
3235 * @inode: anonymous inode associated with file
3236 * @file: An i915 perf stream file
3237 *
3238 * Cleans up any resources associated with an open i915 perf stream file.
3239 *
3240 * NB: close() can't really fail from the userspace point of view.
3241 *
3242 * Returns: zero on success or a negative error code.
3243 */
eec688e1
RB
3244static int i915_perf_release(struct inode *inode, struct file *file)
3245{
3246 struct i915_perf_stream *stream = file->private_data;
8f8b1171 3247 struct i915_perf *perf = stream->perf;
eec688e1 3248
8f8b1171 3249 mutex_lock(&perf->lock);
eec688e1 3250 i915_perf_destroy_locked(stream);
8f8b1171 3251 mutex_unlock(&perf->lock);
eec688e1 3252
a5af1df7 3253 /* Release the reference the perf stream kept on the driver. */
8f8b1171 3254 drm_dev_put(&perf->i915->drm);
a5af1df7 3255
eec688e1
RB
3256 return 0;
3257}
3258
3259
3260static const struct file_operations fops = {
3261 .owner = THIS_MODULE,
3262 .llseek = no_llseek,
3263 .release = i915_perf_release,
3264 .poll = i915_perf_poll,
3265 .read = i915_perf_read,
3266 .unlocked_ioctl = i915_perf_ioctl,
191f8960
LL
3267 /* Our ioctl have no arguments, so it's safe to use the same function
3268 * to handle 32bits compatibility.
3269 */
3270 .compat_ioctl = i915_perf_ioctl,
eec688e1
RB
3271};
3272
3273
16d98b31
RB
3274/**
3275 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
8f8b1171 3276 * @perf: i915 perf instance
16d98b31
RB
3277 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3278 * @props: individually validated u64 property value pairs
3279 * @file: drm file
3280 *
3281 * See i915_perf_ioctl_open() for interface details.
3282 *
3283 * Implements further stream config validation and stream initialization on
8f8b1171 3284 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
16d98b31
RB
3285 * taken to serialize with any non-file-operation driver hooks.
3286 *
3287 * Note: at this point the @props have only been validated in isolation and
3288 * it's still necessary to validate that the combination of properties makes
3289 * sense.
3290 *
3291 * In the case where userspace is interested in OA unit metrics then further
3292 * config validation and stream initialization details will be handled by
3293 * i915_oa_stream_init(). The code here should only validate config state that
3294 * will be relevant to all stream types / backends.
3295 *
3296 * Returns: zero on success or a negative error code.
3297 */
eec688e1 3298static int
8f8b1171 3299i915_perf_open_ioctl_locked(struct i915_perf *perf,
eec688e1
RB
3300 struct drm_i915_perf_open_param *param,
3301 struct perf_open_properties *props,
3302 struct drm_file *file)
3303{
3304 struct i915_gem_context *specific_ctx = NULL;
3305 struct i915_perf_stream *stream = NULL;
3306 unsigned long f_flags = 0;
19f81df2 3307 bool privileged_op = true;
eec688e1
RB
3308 int stream_fd;
3309 int ret;
3310
3311 if (props->single_context) {
3312 u32 ctx_handle = props->ctx_handle;
3313 struct drm_i915_file_private *file_priv = file->driver_priv;
3314
635f56c3
ID
3315 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3316 if (!specific_ctx) {
3317 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3318 ctx_handle);
3319 ret = -ENOENT;
eec688e1
RB
3320 goto err;
3321 }
3322 }
3323
19f81df2
RB
3324 /*
3325 * On Haswell the OA unit supports clock gating off for a specific
3326 * context and in this mode there's no visibility of metrics for the
3327 * rest of the system, which we consider acceptable for a
3328 * non-privileged client.
3329 *
00a7f0d7 3330 * For Gen8->11 the OA unit no longer supports clock gating off for a
19f81df2
RB
3331 * specific context and the kernel can't securely stop the counters
3332 * from updating as system-wide / global values. Even though we can
3333 * filter reports based on the included context ID we can't block
3334 * clients from seeing the raw / global counter values via
3335 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3336 * enable the OA unit by default.
00a7f0d7
LL
3337 *
3338 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3339 * per context basis. So we can relax requirements there if the user
3340 * doesn't request global stream access (i.e. query based sampling
3341 * using MI_RECORD_PERF_COUNT.
19f81df2 3342 */
0b0120d4 3343 if (IS_HASWELL(perf->i915) && specific_ctx)
19f81df2 3344 privileged_op = false;
00a7f0d7
LL
3345 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3346 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3347 privileged_op = false;
19f81df2 3348
0b0120d4
LL
3349 if (props->hold_preemption) {
3350 if (!props->single_context) {
3351 DRM_DEBUG("preemption disable with no context\n");
3352 ret = -EINVAL;
3353 goto err;
3354 }
3355 privileged_op = true;
3356 }
3357
ccdf6341
RB
3358 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3359 * we check a dev.i915.perf_stream_paranoid sysctl option
3360 * to determine if it's ok to access system wide OA counters
3361 * without CAP_SYS_ADMIN privileges.
3362 */
19f81df2 3363 if (privileged_op &&
ccdf6341 3364 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
9cd20ef7 3365 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
eec688e1
RB
3366 ret = -EACCES;
3367 goto err_ctx;
3368 }
3369
3370 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3371 if (!stream) {
3372 ret = -ENOMEM;
3373 goto err_ctx;
3374 }
3375
8f8b1171 3376 stream->perf = perf;
eec688e1
RB
3377 stream->ctx = specific_ctx;
3378
d7965152
RB
3379 ret = i915_oa_stream_init(stream, param, props);
3380 if (ret)
3381 goto err_alloc;
3382
3383 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3384 * to have _stream_init check the combination of sample flags more
3385 * thoroughly, but still this is the expected result at this point.
eec688e1 3386 */
d7965152
RB
3387 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3388 ret = -ENODEV;
22f880ca 3389 goto err_flags;
d7965152 3390 }
eec688e1 3391
eec688e1
RB
3392 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3393 f_flags |= O_CLOEXEC;
3394 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3395 f_flags |= O_NONBLOCK;
3396
3397 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3398 if (stream_fd < 0) {
3399 ret = stream_fd;
23b9e41a 3400 goto err_flags;
eec688e1
RB
3401 }
3402
3403 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3404 i915_perf_enable_locked(stream);
3405
a5af1df7
LL
3406 /* Take a reference on the driver that will be kept with stream_fd
3407 * until its release.
3408 */
8f8b1171 3409 drm_dev_get(&perf->i915->drm);
a5af1df7 3410
eec688e1
RB
3411 return stream_fd;
3412
22f880ca 3413err_flags:
eec688e1
RB
3414 if (stream->ops->destroy)
3415 stream->ops->destroy(stream);
3416err_alloc:
3417 kfree(stream);
3418err_ctx:
69df05e1 3419 if (specific_ctx)
5f09a9c8 3420 i915_gem_context_put(specific_ctx);
eec688e1
RB
3421err:
3422 return ret;
3423}
3424
8f8b1171 3425static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
155e941f 3426{
9f9b2792 3427 return div64_u64(1000000000ULL * (2ULL << exponent),
8f8b1171 3428 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
155e941f
RB
3429}
3430
16d98b31
RB
3431/**
3432 * read_properties_unlocked - validate + copy userspace stream open properties
8f8b1171 3433 * @perf: i915 perf instance
16d98b31
RB
3434 * @uprops: The array of u64 key value pairs given by userspace
3435 * @n_props: The number of key value pairs expected in @uprops
3436 * @props: The stream configuration built up while validating properties
eec688e1
RB
3437 *
3438 * Note this function only validates properties in isolation it doesn't
3439 * validate that the combination of properties makes sense or that all
3440 * properties necessary for a particular kind of stream have been set.
16d98b31
RB
3441 *
3442 * Note that there currently aren't any ordering requirements for properties so
3443 * we shouldn't validate or assume anything about ordering here. This doesn't
3444 * rule out defining new properties with ordering requirements in the future.
eec688e1 3445 */
8f8b1171 3446static int read_properties_unlocked(struct i915_perf *perf,
eec688e1
RB
3447 u64 __user *uprops,
3448 u32 n_props,
3449 struct perf_open_properties *props)
3450{
3451 u64 __user *uprop = uprops;
701f8231 3452 u32 i;
eec688e1
RB
3453
3454 memset(props, 0, sizeof(struct perf_open_properties));
3455
3456 if (!n_props) {
7708550c 3457 DRM_DEBUG("No i915 perf properties given\n");
eec688e1
RB
3458 return -EINVAL;
3459 }
3460
9a61363a
LL
3461 /* At the moment we only support using i915-perf on the RCS. */
3462 props->engine = intel_engine_lookup_user(perf->i915,
3463 I915_ENGINE_CLASS_RENDER,
3464 0);
3465 if (!props->engine) {
3466 DRM_DEBUG("No RENDER-capable engines\n");
3467 return -EINVAL;
3468 }
3469
eec688e1
RB
3470 /* Considering that ID = 0 is reserved and assuming that we don't
3471 * (currently) expect any configurations to ever specify duplicate
3472 * values for a particular property ID then the last _PROP_MAX value is
3473 * one greater than the maximum number of properties we expect to get
3474 * from userspace.
3475 */
3476 if (n_props >= DRM_I915_PERF_PROP_MAX) {
7708550c 3477 DRM_DEBUG("More i915 perf properties specified than exist\n");
eec688e1
RB
3478 return -EINVAL;
3479 }
3480
3481 for (i = 0; i < n_props; i++) {
00319ba0 3482 u64 oa_period, oa_freq_hz;
eec688e1
RB
3483 u64 id, value;
3484 int ret;
3485
3486 ret = get_user(id, uprop);
3487 if (ret)
3488 return ret;
3489
3490 ret = get_user(value, uprop + 1);
3491 if (ret)
3492 return ret;
3493
0a309f9e
MA
3494 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3495 DRM_DEBUG("Unknown i915 perf property ID\n");
3496 return -EINVAL;
3497 }
3498
eec688e1
RB
3499 switch ((enum drm_i915_perf_property_id)id) {
3500 case DRM_I915_PERF_PROP_CTX_HANDLE:
3501 props->single_context = 1;
3502 props->ctx_handle = value;
3503 break;
d7965152 3504 case DRM_I915_PERF_PROP_SAMPLE_OA:
b6dd47b9
LL
3505 if (value)
3506 props->sample_flags |= SAMPLE_OA_REPORT;
d7965152
RB
3507 break;
3508 case DRM_I915_PERF_PROP_OA_METRICS_SET:
701f8231 3509 if (value == 0) {
7708550c 3510 DRM_DEBUG("Unknown OA metric set ID\n");
d7965152
RB
3511 return -EINVAL;
3512 }
3513 props->metrics_set = value;
3514 break;
3515 case DRM_I915_PERF_PROP_OA_FORMAT:
3516 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
52c57c26
RB
3517 DRM_DEBUG("Out-of-range OA report format %llu\n",
3518 value);
d7965152
RB
3519 return -EINVAL;
3520 }
8f8b1171 3521 if (!perf->oa_formats[value].size) {
52c57c26
RB
3522 DRM_DEBUG("Unsupported OA report format %llu\n",
3523 value);
d7965152
RB
3524 return -EINVAL;
3525 }
3526 props->oa_format = value;
3527 break;
3528 case DRM_I915_PERF_PROP_OA_EXPONENT:
3529 if (value > OA_EXPONENT_MAX) {
7708550c
RB
3530 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3531 OA_EXPONENT_MAX);
d7965152
RB
3532 return -EINVAL;
3533 }
3534
00319ba0 3535 /* Theoretically we can program the OA unit to sample
155e941f
RB
3536 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3537 * for BXT. We don't allow such high sampling
3538 * frequencies by default unless root.
00319ba0 3539 */
155e941f 3540
00319ba0 3541 BUILD_BUG_ON(sizeof(oa_period) != 8);
8f8b1171 3542 oa_period = oa_exponent_to_ns(perf, value);
00319ba0
RB
3543
3544 /* This check is primarily to ensure that oa_period <=
3545 * UINT32_MAX (before passing to do_div which only
3546 * accepts a u32 denominator), but we can also skip
3547 * checking anything < 1Hz which implicitly can't be
3548 * limited via an integer oa_max_sample_rate.
d7965152 3549 */
00319ba0
RB
3550 if (oa_period <= NSEC_PER_SEC) {
3551 u64 tmp = NSEC_PER_SEC;
3552 do_div(tmp, oa_period);
3553 oa_freq_hz = tmp;
3554 } else
3555 oa_freq_hz = 0;
3556
3557 if (oa_freq_hz > i915_oa_max_sample_rate &&
3558 !capable(CAP_SYS_ADMIN)) {
7708550c 3559 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
00319ba0 3560 i915_oa_max_sample_rate);
d7965152
RB
3561 return -EACCES;
3562 }
3563
3564 props->oa_periodic = true;
3565 props->oa_period_exponent = value;
3566 break;
9cd20ef7
LL
3567 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3568 props->hold_preemption = !!value;
3569 break;
0a309f9e 3570 case DRM_I915_PERF_PROP_MAX:
eec688e1 3571 MISSING_CASE(id);
eec688e1
RB
3572 return -EINVAL;
3573 }
3574
3575 uprop += 2;
3576 }
3577
3578 return 0;
3579}
3580
16d98b31
RB
3581/**
3582 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3583 * @dev: drm device
3584 * @data: ioctl data copied from userspace (unvalidated)
3585 * @file: drm file
3586 *
3587 * Validates the stream open parameters given by userspace including flags
3588 * and an array of u64 key, value pair properties.
3589 *
3590 * Very little is assumed up front about the nature of the stream being
3591 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3592 * i915-perf stream is expected to be a suitable interface for other forms of
3593 * buffered data written by the GPU besides periodic OA metrics.
3594 *
3595 * Note we copy the properties from userspace outside of the i915 perf
3596 * mutex to avoid an awkward lockdep with mmap_sem.
3597 *
3598 * Most of the implementation details are handled by
8f8b1171 3599 * i915_perf_open_ioctl_locked() after taking the &perf->lock
16d98b31
RB
3600 * mutex for serializing with any non-file-operation driver hooks.
3601 *
3602 * Return: A newly opened i915 Perf stream file descriptor or negative
3603 * error code on failure.
3604 */
eec688e1
RB
3605int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3606 struct drm_file *file)
3607{
8f8b1171 3608 struct i915_perf *perf = &to_i915(dev)->perf;
eec688e1
RB
3609 struct drm_i915_perf_open_param *param = data;
3610 struct perf_open_properties props;
3611 u32 known_open_flags;
3612 int ret;
3613
8f8b1171 3614 if (!perf->i915) {
7708550c 3615 DRM_DEBUG("i915 perf interface not available for this system\n");
eec688e1
RB
3616 return -ENOTSUPP;
3617 }
3618
3619 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3620 I915_PERF_FLAG_FD_NONBLOCK |
3621 I915_PERF_FLAG_DISABLED;
3622 if (param->flags & ~known_open_flags) {
7708550c 3623 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
eec688e1
RB
3624 return -EINVAL;
3625 }
3626
8f8b1171 3627 ret = read_properties_unlocked(perf,
eec688e1
RB
3628 u64_to_user_ptr(param->properties_ptr),
3629 param->num_properties,
3630 &props);
3631 if (ret)
3632 return ret;
3633
8f8b1171
CW
3634 mutex_lock(&perf->lock);
3635 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3636 mutex_unlock(&perf->lock);
eec688e1
RB
3637
3638 return ret;
3639}
3640
16d98b31
RB
3641/**
3642 * i915_perf_register - exposes i915-perf to userspace
8f8b1171 3643 * @i915: i915 device instance
16d98b31
RB
3644 *
3645 * In particular OA metric sets are advertised under a sysfs metrics/
3646 * directory allowing userspace to enumerate valid IDs that can be
3647 * used to open an i915-perf stream.
3648 */
8f8b1171 3649void i915_perf_register(struct drm_i915_private *i915)
442b8c06 3650{
8f8b1171 3651 struct i915_perf *perf = &i915->perf;
701f8231
LL
3652 int ret;
3653
8f8b1171 3654 if (!perf->i915)
442b8c06
RB
3655 return;
3656
3657 /* To be sure we're synchronized with an attempted
3658 * i915_perf_open_ioctl(); considering that we register after
3659 * being exposed to userspace.
3660 */
8f8b1171 3661 mutex_lock(&perf->lock);
442b8c06 3662
8f8b1171 3663 perf->metrics_kobj =
442b8c06 3664 kobject_create_and_add("metrics",
8f8b1171
CW
3665 &i915->drm.primary->kdev->kobj);
3666 if (!perf->metrics_kobj)
442b8c06
RB
3667 goto exit;
3668
8f8b1171
CW
3669 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);
3670
00a7f0d7
LL
3671 if (IS_TIGERLAKE(i915)) {
3672 i915_perf_load_test_config_tgl(i915);
3673 } else if (INTEL_GEN(i915) >= 11) {
8f8b1171
CW
3674 i915_perf_load_test_config_icl(i915);
3675 } else if (IS_CANNONLAKE(i915)) {
3676 i915_perf_load_test_config_cnl(i915);
3677 } else if (IS_COFFEELAKE(i915)) {
3678 if (IS_CFL_GT2(i915))
3679 i915_perf_load_test_config_cflgt2(i915);
3680 if (IS_CFL_GT3(i915))
3681 i915_perf_load_test_config_cflgt3(i915);
3682 } else if (IS_GEMINILAKE(i915)) {
3683 i915_perf_load_test_config_glk(i915);
3684 } else if (IS_KABYLAKE(i915)) {
3685 if (IS_KBL_GT2(i915))
3686 i915_perf_load_test_config_kblgt2(i915);
3687 else if (IS_KBL_GT3(i915))
3688 i915_perf_load_test_config_kblgt3(i915);
3689 } else if (IS_BROXTON(i915)) {
3690 i915_perf_load_test_config_bxt(i915);
3691 } else if (IS_SKYLAKE(i915)) {
3692 if (IS_SKL_GT2(i915))
3693 i915_perf_load_test_config_sklgt2(i915);
3694 else if (IS_SKL_GT3(i915))
3695 i915_perf_load_test_config_sklgt3(i915);
3696 else if (IS_SKL_GT4(i915))
3697 i915_perf_load_test_config_sklgt4(i915);
3698 } else if (IS_CHERRYVIEW(i915)) {
3699 i915_perf_load_test_config_chv(i915);
3700 } else if (IS_BROADWELL(i915)) {
3701 i915_perf_load_test_config_bdw(i915);
3702 } else if (IS_HASWELL(i915)) {
3703 i915_perf_load_test_config_hsw(i915);
3704 }
3705
3706 if (perf->test_config.id == 0)
701f8231
LL
3707 goto sysfs_error;
3708
8f8b1171
CW
3709 ret = sysfs_create_group(perf->metrics_kobj,
3710 &perf->test_config.sysfs_metric);
701f8231
LL
3711 if (ret)
3712 goto sysfs_error;
f89823c2 3713
6a45008a
LL
3714 perf->test_config.perf = perf;
3715 kref_init(&perf->test_config.ref);
f89823c2 3716
19f81df2
RB
3717 goto exit;
3718
3719sysfs_error:
8f8b1171
CW
3720 kobject_put(perf->metrics_kobj);
3721 perf->metrics_kobj = NULL;
19f81df2 3722
442b8c06 3723exit:
8f8b1171 3724 mutex_unlock(&perf->lock);
442b8c06
RB
3725}
3726
16d98b31
RB
3727/**
3728 * i915_perf_unregister - hide i915-perf from userspace
8f8b1171 3729 * @i915: i915 device instance
16d98b31
RB
3730 *
3731 * i915-perf state cleanup is split up into an 'unregister' and
3732 * 'deinit' phase where the interface is first hidden from
3733 * userspace by i915_perf_unregister() before cleaning up
3734 * remaining state in i915_perf_fini().
3735 */
8f8b1171 3736void i915_perf_unregister(struct drm_i915_private *i915)
442b8c06 3737{
8f8b1171
CW
3738 struct i915_perf *perf = &i915->perf;
3739
3740 if (!perf->metrics_kobj)
442b8c06
RB
3741 return;
3742
8f8b1171
CW
3743 sysfs_remove_group(perf->metrics_kobj,
3744 &perf->test_config.sysfs_metric);
442b8c06 3745
8f8b1171
CW
3746 kobject_put(perf->metrics_kobj);
3747 perf->metrics_kobj = NULL;
442b8c06
RB
3748}
3749
8f8b1171 3750static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
f89823c2
LL
3751{
3752 static const i915_reg_t flex_eu_regs[] = {
3753 EU_PERF_CNTL0,
3754 EU_PERF_CNTL1,
3755 EU_PERF_CNTL2,
3756 EU_PERF_CNTL3,
3757 EU_PERF_CNTL4,
3758 EU_PERF_CNTL5,
3759 EU_PERF_CNTL6,
3760 };
3761 int i;
3762
3763 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
7c52a221 3764 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
f89823c2
LL
3765 return true;
3766 }
3767 return false;
3768}
3769
fc215230
UNR
3770#define ADDR_IN_RANGE(addr, start, end) \
3771 ((addr) >= (start) && \
3772 (addr) <= (end))
3773
3774#define REG_IN_RANGE(addr, start, end) \
3775 ((addr) >= i915_mmio_reg_offset(start) && \
3776 (addr) <= i915_mmio_reg_offset(end))
3777
3778#define REG_EQUAL(addr, mmio) \
3779 ((addr) == i915_mmio_reg_offset(mmio))
3780
8f8b1171 3781static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
f89823c2 3782{
fc215230
UNR
3783 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3784 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3785 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
f89823c2
LL
3786}
3787
8f8b1171 3788static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
f89823c2 3789{
fc215230
UNR
3790 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3791 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3792 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3793 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
f89823c2
LL
3794}
3795
8f8b1171 3796static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
f89823c2 3797{
8f8b1171 3798 return gen7_is_valid_mux_addr(perf, addr) ||
fc215230
UNR
3799 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3800 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
f89823c2
LL
3801}
3802
8f8b1171 3803static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
95690a02 3804{
8f8b1171 3805 return gen8_is_valid_mux_addr(perf, addr) ||
fc215230
UNR
3806 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3807 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
95690a02
LL
3808}
3809
8f8b1171 3810static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
f89823c2 3811{
8f8b1171 3812 return gen7_is_valid_mux_addr(perf, addr) ||
fc215230
UNR
3813 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3814 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3815 REG_EQUAL(addr, HSW_MBVID2_MISR0);
f89823c2
LL
3816}
3817
8f8b1171 3818static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
f89823c2 3819{
8f8b1171 3820 return gen7_is_valid_mux_addr(perf, addr) ||
fc215230 3821 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
f89823c2
LL
3822}
3823
00a7f0d7
LL
3824static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3825{
3826 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3827 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3828 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3829 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3830 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3831 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3832 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3833}
3834
3835static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3836{
3837 return REG_EQUAL(addr, NOA_WRITE) ||
3838 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3839 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3840 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3841 REG_EQUAL(addr, RPM_CONFIG0) ||
3842 REG_EQUAL(addr, RPM_CONFIG1) ||
3843 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3844}
3845
739f3abd 3846static u32 mask_reg_value(u32 reg, u32 val)
f89823c2
LL
3847{
3848 /* HALF_SLICE_CHICKEN2 is programmed with a the
3849 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3850 * programmed by userspace doesn't change this.
3851 */
fc215230 3852 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
f89823c2
LL
3853 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3854
3855 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3856 * indicated by its name and a bunch of selection fields used by OA
3857 * configs.
3858 */
fc215230 3859 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
f89823c2
LL
3860 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3861
3862 return val;
3863}
3864
8f8b1171
CW
3865static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3866 bool (*is_valid)(struct i915_perf *perf, u32 addr),
f89823c2
LL
3867 u32 __user *regs,
3868 u32 n_regs)
3869{
3870 struct i915_oa_reg *oa_regs;
3871 int err;
3872 u32 i;
3873
3874 if (!n_regs)
3875 return NULL;
3876
96d4f267 3877 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
f89823c2
LL
3878 return ERR_PTR(-EFAULT);
3879
3880 /* No is_valid function means we're not allowing any register to be programmed. */
3881 GEM_BUG_ON(!is_valid);
3882 if (!is_valid)
3883 return ERR_PTR(-EINVAL);
3884
3885 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3886 if (!oa_regs)
3887 return ERR_PTR(-ENOMEM);
3888
3889 for (i = 0; i < n_regs; i++) {
3890 u32 addr, value;
3891
3892 err = get_user(addr, regs);
3893 if (err)
3894 goto addr_err;
3895
8f8b1171 3896 if (!is_valid(perf, addr)) {
f89823c2
LL
3897 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3898 err = -EINVAL;
3899 goto addr_err;
3900 }
3901
3902 err = get_user(value, regs + 1);
3903 if (err)
3904 goto addr_err;
3905
3906 oa_regs[i].addr = _MMIO(addr);
3907 oa_regs[i].value = mask_reg_value(addr, value);
3908
3909 regs += 2;
3910 }
3911
3912 return oa_regs;
3913
3914addr_err:
3915 kfree(oa_regs);
3916 return ERR_PTR(err);
3917}
3918
3919static ssize_t show_dynamic_id(struct device *dev,
3920 struct device_attribute *attr,
3921 char *buf)
3922{
3923 struct i915_oa_config *oa_config =
3924 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3925
3926 return sprintf(buf, "%d\n", oa_config->id);
3927}
3928
8f8b1171 3929static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
f89823c2
LL
3930 struct i915_oa_config *oa_config)
3931{
28152a23 3932 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
f89823c2
LL
3933 oa_config->sysfs_metric_id.attr.name = "id";
3934 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3935 oa_config->sysfs_metric_id.show = show_dynamic_id;
3936 oa_config->sysfs_metric_id.store = NULL;
3937
3938 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3939 oa_config->attrs[1] = NULL;
3940
3941 oa_config->sysfs_metric.name = oa_config->uuid;
3942 oa_config->sysfs_metric.attrs = oa_config->attrs;
3943
8f8b1171 3944 return sysfs_create_group(perf->metrics_kobj,
f89823c2
LL
3945 &oa_config->sysfs_metric);
3946}
3947
3948/**
3949 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3950 * @dev: drm device
3951 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3952 * userspace (unvalidated)
3953 * @file: drm file
3954 *
3955 * Validates the submitted OA register to be saved into a new OA config that
3956 * can then be used for programming the OA unit and its NOA network.
3957 *
3958 * Returns: A new allocated config number to be used with the perf open ioctl
3959 * or a negative error code on failure.
3960 */
3961int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3962 struct drm_file *file)
3963{
8f8b1171 3964 struct i915_perf *perf = &to_i915(dev)->perf;
f89823c2
LL
3965 struct drm_i915_perf_oa_config *args = data;
3966 struct i915_oa_config *oa_config, *tmp;
c2fba936 3967 static struct i915_oa_reg *regs;
f89823c2
LL
3968 int err, id;
3969
8f8b1171 3970 if (!perf->i915) {
f89823c2
LL
3971 DRM_DEBUG("i915 perf interface not available for this system\n");
3972 return -ENOTSUPP;
3973 }
3974
8f8b1171 3975 if (!perf->metrics_kobj) {
f89823c2
LL
3976 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3977 return -EINVAL;
3978 }
3979
3980 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3981 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3982 return -EACCES;
3983 }
3984
3985 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3986 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3987 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3988 DRM_DEBUG("No OA registers given\n");
3989 return -EINVAL;
3990 }
3991
3992 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3993 if (!oa_config) {
3994 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3995 return -ENOMEM;
3996 }
3997
6a45008a
LL
3998 oa_config->perf = perf;
3999 kref_init(&oa_config->ref);
f89823c2
LL
4000
4001 if (!uuid_is_valid(args->uuid)) {
4002 DRM_DEBUG("Invalid uuid format for OA config\n");
4003 err = -EINVAL;
4004 goto reg_err;
4005 }
4006
4007 /* Last character in oa_config->uuid will be 0 because oa_config is
4008 * kzalloc.
4009 */
4010 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4011
4012 oa_config->mux_regs_len = args->n_mux_regs;
c2fba936
CW
4013 regs = alloc_oa_regs(perf,
4014 perf->ops.is_valid_mux_reg,
4015 u64_to_user_ptr(args->mux_regs_ptr),
4016 args->n_mux_regs);
f89823c2 4017
c2fba936 4018 if (IS_ERR(regs)) {
f89823c2 4019 DRM_DEBUG("Failed to create OA config for mux_regs\n");
c2fba936 4020 err = PTR_ERR(regs);
f89823c2
LL
4021 goto reg_err;
4022 }
c2fba936 4023 oa_config->mux_regs = regs;
f89823c2
LL
4024
4025 oa_config->b_counter_regs_len = args->n_boolean_regs;
c2fba936
CW
4026 regs = alloc_oa_regs(perf,
4027 perf->ops.is_valid_b_counter_reg,
4028 u64_to_user_ptr(args->boolean_regs_ptr),
4029 args->n_boolean_regs);
f89823c2 4030
c2fba936 4031 if (IS_ERR(regs)) {
f89823c2 4032 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
c2fba936 4033 err = PTR_ERR(regs);
f89823c2
LL
4034 goto reg_err;
4035 }
c2fba936 4036 oa_config->b_counter_regs = regs;
f89823c2 4037
8f8b1171 4038 if (INTEL_GEN(perf->i915) < 8) {
f89823c2
LL
4039 if (args->n_flex_regs != 0) {
4040 err = -EINVAL;
4041 goto reg_err;
4042 }
4043 } else {
4044 oa_config->flex_regs_len = args->n_flex_regs;
c2fba936
CW
4045 regs = alloc_oa_regs(perf,
4046 perf->ops.is_valid_flex_reg,
4047 u64_to_user_ptr(args->flex_regs_ptr),
4048 args->n_flex_regs);
f89823c2 4049
c2fba936 4050 if (IS_ERR(regs)) {
f89823c2 4051 DRM_DEBUG("Failed to create OA config for flex_regs\n");
c2fba936 4052 err = PTR_ERR(regs);
f89823c2
LL
4053 goto reg_err;
4054 }
c2fba936 4055 oa_config->flex_regs = regs;
f89823c2
LL
4056 }
4057
8f8b1171 4058 err = mutex_lock_interruptible(&perf->metrics_lock);
f89823c2
LL
4059 if (err)
4060 goto reg_err;
4061
4062 /* We shouldn't have too many configs, so this iteration shouldn't be
4063 * too costly.
4064 */
8f8b1171 4065 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
f89823c2
LL
4066 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4067 DRM_DEBUG("OA config already exists with this uuid\n");
4068 err = -EADDRINUSE;
4069 goto sysfs_err;
4070 }
4071 }
4072
8f8b1171 4073 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
f89823c2
LL
4074 if (err) {
4075 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4076 goto sysfs_err;
4077 }
4078
4079 /* Config id 0 is invalid, id 1 for kernel stored test config. */
8f8b1171 4080 oa_config->id = idr_alloc(&perf->metrics_idr,
f89823c2
LL
4081 oa_config, 2,
4082 0, GFP_KERNEL);
4083 if (oa_config->id < 0) {
4084 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4085 err = oa_config->id;
4086 goto sysfs_err;
4087 }
4088
8f8b1171 4089 mutex_unlock(&perf->metrics_lock);
f89823c2 4090
9bd9be66
LL
4091 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4092
f89823c2
LL
4093 return oa_config->id;
4094
4095sysfs_err:
8f8b1171 4096 mutex_unlock(&perf->metrics_lock);
f89823c2 4097reg_err:
6a45008a 4098 i915_oa_config_put(oa_config);
f89823c2
LL
4099 DRM_DEBUG("Failed to add new OA config\n");
4100 return err;
4101}
4102
4103/**
4104 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4105 * @dev: drm device
4106 * @data: ioctl data (pointer to u64 integer) copied from userspace
4107 * @file: drm file
4108 *
4109 * Configs can be removed while being used, the will stop appearing in sysfs
4110 * and their content will be freed when the stream using the config is closed.
4111 *
4112 * Returns: 0 on success or a negative error code on failure.
4113 */
4114int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4115 struct drm_file *file)
4116{
8f8b1171 4117 struct i915_perf *perf = &to_i915(dev)->perf;
f89823c2
LL
4118 u64 *arg = data;
4119 struct i915_oa_config *oa_config;
4120 int ret;
4121
8f8b1171 4122 if (!perf->i915) {
f89823c2
LL
4123 DRM_DEBUG("i915 perf interface not available for this system\n");
4124 return -ENOTSUPP;
4125 }
4126
4127 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4128 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4129 return -EACCES;
4130 }
4131
8f8b1171 4132 ret = mutex_lock_interruptible(&perf->metrics_lock);
f89823c2 4133 if (ret)
6a45008a 4134 return ret;
f89823c2 4135
8f8b1171 4136 oa_config = idr_find(&perf->metrics_idr, *arg);
f89823c2
LL
4137 if (!oa_config) {
4138 DRM_DEBUG("Failed to remove unknown OA config\n");
4139 ret = -ENOENT;
6a45008a 4140 goto err_unlock;
f89823c2
LL
4141 }
4142
4143 GEM_BUG_ON(*arg != oa_config->id);
4144
4f6ccc74 4145 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
f89823c2 4146
8f8b1171 4147 idr_remove(&perf->metrics_idr, *arg);
9bd9be66 4148
6a45008a
LL
4149 mutex_unlock(&perf->metrics_lock);
4150
9bd9be66
LL
4151 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4152
6a45008a
LL
4153 i915_oa_config_put(oa_config);
4154
4155 return 0;
f89823c2 4156
6a45008a 4157err_unlock:
8f8b1171 4158 mutex_unlock(&perf->metrics_lock);
f89823c2
LL
4159 return ret;
4160}
4161
ccdf6341
RB
4162static struct ctl_table oa_table[] = {
4163 {
4164 .procname = "perf_stream_paranoid",
4165 .data = &i915_perf_stream_paranoid,
4166 .maxlen = sizeof(i915_perf_stream_paranoid),
4167 .mode = 0644,
4168 .proc_handler = proc_dointvec_minmax,
eec4844f
MC
4169 .extra1 = SYSCTL_ZERO,
4170 .extra2 = SYSCTL_ONE,
ccdf6341 4171 },
00319ba0
RB
4172 {
4173 .procname = "oa_max_sample_rate",
4174 .data = &i915_oa_max_sample_rate,
4175 .maxlen = sizeof(i915_oa_max_sample_rate),
4176 .mode = 0644,
4177 .proc_handler = proc_dointvec_minmax,
eec4844f 4178 .extra1 = SYSCTL_ZERO,
00319ba0
RB
4179 .extra2 = &oa_sample_rate_hard_limit,
4180 },
ccdf6341
RB
4181 {}
4182};
4183
4184static struct ctl_table i915_root[] = {
4185 {
4186 .procname = "i915",
4187 .maxlen = 0,
4188 .mode = 0555,
4189 .child = oa_table,
4190 },
4191 {}
4192};
4193
4194static struct ctl_table dev_root[] = {
4195 {
4196 .procname = "dev",
4197 .maxlen = 0,
4198 .mode = 0555,
4199 .child = i915_root,
4200 },
4201 {}
4202};
4203
16d98b31
RB
4204/**
4205 * i915_perf_init - initialize i915-perf state on module load
8f8b1171 4206 * @i915: i915 device instance
16d98b31
RB
4207 *
4208 * Initializes i915-perf state without exposing anything to userspace.
4209 *
4210 * Note: i915-perf initialization is split into an 'init' and 'register'
4211 * phase with the i915_perf_register() exposing state to userspace.
4212 */
8f8b1171
CW
4213void i915_perf_init(struct drm_i915_private *i915)
4214{
4215 struct i915_perf *perf = &i915->perf;
4216
4217 /* XXX const struct i915_perf_ops! */
4218
4219 if (IS_HASWELL(i915)) {
4220 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4221 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4222 perf->ops.is_valid_flex_reg = NULL;
4223 perf->ops.enable_metric_set = hsw_enable_metric_set;
4224 perf->ops.disable_metric_set = hsw_disable_metric_set;
4225 perf->ops.oa_enable = gen7_oa_enable;
4226 perf->ops.oa_disable = gen7_oa_disable;
4227 perf->ops.read = gen7_oa_read;
4228 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4229
4230 perf->oa_formats = hsw_oa_formats;
4231 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
19f81df2
RB
4232 /* Note: that although we could theoretically also support the
4233 * legacy ringbuffer mode on BDW (and earlier iterations of
4234 * this driver, before upstreaming did this) it didn't seem
4235 * worth the complexity to maintain now that BDW+ enable
4236 * execlist mode by default.
4237 */
8f8b1171 4238 perf->ops.read = gen8_oa_read;
701f8231 4239
8f8b1171 4240 if (IS_GEN_RANGE(i915, 8, 9)) {
00a7f0d7
LL
4241 perf->oa_formats = gen8_plus_oa_formats;
4242
8f8b1171 4243 perf->ops.is_valid_b_counter_reg =
ba6b7c1a 4244 gen7_is_valid_b_counter_addr;
8f8b1171 4245 perf->ops.is_valid_mux_reg =
ba6b7c1a 4246 gen8_is_valid_mux_addr;
8f8b1171 4247 perf->ops.is_valid_flex_reg =
ba6b7c1a 4248 gen8_is_valid_flex_addr;
155e941f 4249
8f8b1171
CW
4250 if (IS_CHERRYVIEW(i915)) {
4251 perf->ops.is_valid_mux_reg =
f89823c2
LL
4252 chv_is_valid_mux_addr;
4253 }
155e941f 4254
00a7f0d7
LL
4255 perf->ops.oa_enable = gen8_oa_enable;
4256 perf->ops.oa_disable = gen8_oa_disable;
8f8b1171
CW
4257 perf->ops.enable_metric_set = gen8_enable_metric_set;
4258 perf->ops.disable_metric_set = gen8_disable_metric_set;
00a7f0d7 4259 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
ba6b7c1a 4260
8f8b1171
CW
4261 if (IS_GEN(i915, 8)) {
4262 perf->ctx_oactxctrl_offset = 0x120;
4263 perf->ctx_flexeu0_offset = 0x2ce;
ba6b7c1a 4264
8f8b1171 4265 perf->gen8_valid_ctx_bit = BIT(25);
ba6b7c1a 4266 } else {
8f8b1171
CW
4267 perf->ctx_oactxctrl_offset = 0x128;
4268 perf->ctx_flexeu0_offset = 0x3de;
ba6b7c1a 4269
8f8b1171 4270 perf->gen8_valid_ctx_bit = BIT(16);
ba6b7c1a 4271 }
8f8b1171 4272 } else if (IS_GEN_RANGE(i915, 10, 11)) {
00a7f0d7
LL
4273 perf->oa_formats = gen8_plus_oa_formats;
4274
8f8b1171 4275 perf->ops.is_valid_b_counter_reg =
95690a02 4276 gen7_is_valid_b_counter_addr;
8f8b1171 4277 perf->ops.is_valid_mux_reg =
95690a02 4278 gen10_is_valid_mux_addr;
8f8b1171 4279 perf->ops.is_valid_flex_reg =
95690a02
LL
4280 gen8_is_valid_flex_addr;
4281
00a7f0d7
LL
4282 perf->ops.oa_enable = gen8_oa_enable;
4283 perf->ops.oa_disable = gen8_oa_disable;
8f8b1171
CW
4284 perf->ops.enable_metric_set = gen8_enable_metric_set;
4285 perf->ops.disable_metric_set = gen10_disable_metric_set;
00a7f0d7 4286 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
95690a02 4287
8f8b1171
CW
4288 if (IS_GEN(i915, 10)) {
4289 perf->ctx_oactxctrl_offset = 0x128;
4290 perf->ctx_flexeu0_offset = 0x3de;
8dcfdfb4 4291 } else {
8f8b1171
CW
4292 perf->ctx_oactxctrl_offset = 0x124;
4293 perf->ctx_flexeu0_offset = 0x78e;
8dcfdfb4 4294 }
8f8b1171 4295 perf->gen8_valid_ctx_bit = BIT(16);
00a7f0d7
LL
4296 } else if (IS_GEN(i915, 12)) {
4297 perf->oa_formats = gen12_oa_formats;
4298
4299 perf->ops.is_valid_b_counter_reg =
4300 gen12_is_valid_b_counter_addr;
4301 perf->ops.is_valid_mux_reg =
4302 gen12_is_valid_mux_addr;
4303 perf->ops.is_valid_flex_reg =
4304 gen8_is_valid_flex_addr;
4305
4306 perf->ops.oa_enable = gen12_oa_enable;
4307 perf->ops.oa_disable = gen12_oa_disable;
4308 perf->ops.enable_metric_set = gen12_enable_metric_set;
4309 perf->ops.disable_metric_set = gen12_disable_metric_set;
4310 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4311
4312 perf->ctx_flexeu0_offset = 0;
4313 perf->ctx_oactxctrl_offset = 0x144;
19f81df2 4314 }
19f81df2 4315 }
d7965152 4316
8f8b1171 4317 if (perf->ops.enable_metric_set) {
8f8b1171 4318 mutex_init(&perf->lock);
eec688e1 4319
9f9b2792 4320 oa_sample_rate_hard_limit = 1000 *
8f8b1171
CW
4321 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4322 perf->sysctl_header = register_sysctl_table(dev_root);
ccdf6341 4323
8f8b1171
CW
4324 mutex_init(&perf->metrics_lock);
4325 idr_init(&perf->metrics_idr);
f89823c2 4326
a37f08a8
UNR
4327 /* We set up some ratelimit state to potentially throttle any
4328 * _NOTES about spurious, invalid OA reports which we don't
4329 * forward to userspace.
4330 *
4331 * We print a _NOTE about any throttling when closing the
4332 * stream instead of waiting until driver _fini which no one
4333 * would ever see.
4334 *
4335 * Using the same limiting factors as printk_ratelimit()
4336 */
8f8b1171 4337 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
a37f08a8
UNR
4338 /* Since we use a DRM_NOTE for spurious reports it would be
4339 * inconsistent to let __ratelimit() automatically print a
4340 * warning for throttling.
4341 */
8f8b1171 4342 ratelimit_set_flags(&perf->spurious_report_rs,
a37f08a8
UNR
4343 RATELIMIT_MSG_ON_RELEASE);
4344
daed3e44
LL
4345 atomic64_set(&perf->noa_programming_delay,
4346 500 * 1000 /* 500us */);
4347
8f8b1171 4348 perf->i915 = i915;
19f81df2 4349 }
eec688e1
RB
4350}
4351
f89823c2
LL
4352static int destroy_config(int id, void *p, void *data)
4353{
6a45008a 4354 i915_oa_config_put(p);
f89823c2
LL
4355 return 0;
4356}
4357
16d98b31
RB
4358/**
4359 * i915_perf_fini - Counter part to i915_perf_init()
8f8b1171 4360 * @i915: i915 device instance
16d98b31 4361 */
8f8b1171 4362void i915_perf_fini(struct drm_i915_private *i915)
eec688e1 4363{
8f8b1171 4364 struct i915_perf *perf = &i915->perf;
eec688e1 4365
8f8b1171
CW
4366 if (!perf->i915)
4367 return;
f89823c2 4368
8f8b1171
CW
4369 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4370 idr_destroy(&perf->metrics_idr);
ccdf6341 4371
8f8b1171 4372 unregister_sysctl_table(perf->sysctl_header);
19f81df2 4373
8f8b1171
CW
4374 memset(&perf->ops, 0, sizeof(perf->ops));
4375 perf->i915 = NULL;
eec688e1 4376}
daed3e44 4377
b8d49f28
LL
4378/**
4379 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4380 *
4381 * This version number is used by userspace to detect available features.
4382 */
4383int i915_perf_ioctl_version(void)
4384{
7831e9a9
CW
4385 /*
4386 * 1: Initial version
4387 * I915_PERF_IOCTL_ENABLE
4388 * I915_PERF_IOCTL_DISABLE
4389 *
4390 * 2: Added runtime modification of OA config.
4391 * I915_PERF_IOCTL_CONFIG
9cd20ef7
LL
4392 *
4393 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4394 * preemption on a particular context so that performance data is
4395 * accessible from a delta of MI_RPC reports without looking at the
4396 * OA buffer.
7831e9a9 4397 */
9cd20ef7 4398 return 3;
b8d49f28
LL
4399}
4400
daed3e44
LL
4401#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4402#include "selftests/i915_perf.c"
4403#endif