vfs: do bulk POLL* -> EPOLL* replacement
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_perf.c
CommitLineData
eec688e1
RB
1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
7abbd8d6
RB
27
28/**
16d98b31 29 * DOC: i915 Perf Overview
7abbd8d6
RB
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
16d98b31
RB
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
7abbd8d6
RB
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
16d98b31
RB
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7abbd8d6
RB
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
16d98b31 142 * - As a side note on perf's grouping feature; there was also some concern
7abbd8d6
RB
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
eec688e1 194#include <linux/anon_inodes.h>
d7965152 195#include <linux/sizes.h>
f89823c2 196#include <linux/uuid.h>
eec688e1
RB
197
198#include "i915_drv.h"
d7965152 199#include "i915_oa_hsw.h"
19f81df2
RB
200#include "i915_oa_bdw.h"
201#include "i915_oa_chv.h"
202#include "i915_oa_sklgt2.h"
203#include "i915_oa_sklgt3.h"
204#include "i915_oa_sklgt4.h"
205#include "i915_oa_bxt.h"
6c5c1d89
LL
206#include "i915_oa_kblgt2.h"
207#include "i915_oa_kblgt3.h"
28c7ef9e 208#include "i915_oa_glk.h"
22ea4f35 209#include "i915_oa_cflgt2.h"
4407eaa9 210#include "i915_oa_cflgt3.h"
95690a02 211#include "i915_oa_cnl.h"
d7965152
RB
212
213/* HW requires this to be a power of two, between 128k and 16M, though driver
214 * is currently generally designed assuming the largest 16M size is used such
215 * that the overflow cases are unlikely in normal operation.
216 */
217#define OA_BUFFER_SIZE SZ_16M
218
219#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
220
0dd860cf
RB
221/**
222 * DOC: OA Tail Pointer Race
223 *
224 * There's a HW race condition between OA unit tail pointer register updates and
d7965152 225 * writes to memory whereby the tail pointer can sometimes get ahead of what's
0dd860cf
RB
226 * been written out to the OA buffer so far (in terms of what's visible to the
227 * CPU).
228 *
229 * Although this can be observed explicitly while copying reports to userspace
230 * by checking for a zeroed report-id field in tail reports, we want to account
19f81df2 231 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
0dd860cf
RB
232 * read() attempts.
233 *
234 * In effect we define a tail pointer for reading that lags the real tail
235 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
236 * time for the corresponding reports to become visible to the CPU.
237 *
238 * To manage this we actually track two tail pointers:
239 * 1) An 'aging' tail with an associated timestamp that is tracked until we
240 * can trust the corresponding data is visible to the CPU; at which point
241 * it is considered 'aged'.
242 * 2) An 'aged' tail that can be used for read()ing.
d7965152 243 *
0dd860cf 244 * The two separate pointers let us decouple read()s from tail pointer aging.
d7965152 245 *
0dd860cf 246 * The tail pointers are checked and updated at a limited rate within a hrtimer
a9a08845 247 * callback (the same callback that is used for delivering EPOLLIN events)
d7965152 248 *
0dd860cf
RB
249 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
250 * indicates that an updated tail pointer is needed.
251 *
252 * Most of the implementation details for this workaround are in
19f81df2 253 * oa_buffer_check_unlocked() and _append_oa_reports()
0dd860cf
RB
254 *
255 * Note for posterity: previously the driver used to define an effective tail
256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258 * This was flawed considering that the OA unit may also automatically generate
259 * non-periodic reports (such as on context switch) or the OA unit may be
260 * enabled without any periodic sampling.
d7965152
RB
261 */
262#define OA_TAIL_MARGIN_NSEC 100000ULL
0dd860cf 263#define INVALID_TAIL_PTR 0xffffffff
d7965152
RB
264
265/* frequency for checking whether the OA unit has written new reports to the
266 * circular OA buffer...
267 */
268#define POLL_FREQUENCY 200
269#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
270
ccdf6341
RB
271/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272static int zero;
273static int one = 1;
274static u32 i915_perf_stream_paranoid = true;
275
d7965152
RB
276/* The maximum exponent the hardware accepts is 63 (essentially it selects one
277 * of the 64bit timestamp bits to trigger reports from) but there's currently
278 * no known use case for sampling as infrequently as once per 47 thousand years.
279 *
280 * Since the timestamps included in OA reports are only 32bits it seems
281 * reasonable to limit the OA exponent where it's still possible to account for
282 * overflow in OA report timestamps.
283 */
284#define OA_EXPONENT_MAX 31
285
286#define INVALID_CTX_ID 0xffffffff
287
19f81df2
RB
288/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
289#define OAREPORT_REASON_MASK 0x3f
290#define OAREPORT_REASON_SHIFT 19
291#define OAREPORT_REASON_TIMER (1<<0)
292#define OAREPORT_REASON_CTX_SWITCH (1<<3)
293#define OAREPORT_REASON_CLK_RATIO (1<<5)
294
d7965152 295
00319ba0
RB
296/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297 *
155e941f
RB
298 * The highest sampling frequency we can theoretically program the OA unit
299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300 *
301 * Initialized just before we register the sysctl parameter.
00319ba0 302 */
155e941f 303static int oa_sample_rate_hard_limit;
00319ba0
RB
304
305/* Theoretically we can program the OA unit to sample every 160ns but don't
306 * allow that by default unless root...
307 *
308 * The default threshold of 100000Hz is based on perf's similar
309 * kernel.perf_event_max_sample_rate sysctl parameter.
310 */
311static u32 i915_oa_max_sample_rate = 100000;
312
d7965152
RB
313/* XXX: beware if future OA HW adds new report formats that the current
314 * code assumes all reports have a power-of-two size and ~(size - 1) can
315 * be used as a mask to align the OA tail pointer.
316 */
317static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
318 [I915_OA_FORMAT_A13] = { 0, 64 },
319 [I915_OA_FORMAT_A29] = { 1, 128 },
320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
325 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
326};
327
19f81df2
RB
328static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
329 [I915_OA_FORMAT_A12] = { 0, 64 },
330 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
331 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
332 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
333};
334
d7965152 335#define SAMPLE_OA_REPORT (1<<0)
eec688e1 336
16d98b31
RB
337/**
338 * struct perf_open_properties - for validated properties given to open a stream
339 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
340 * @single_context: Whether a single or all gpu contexts should be monitored
341 * @ctx_handle: A gem ctx handle for use with @single_context
342 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
343 * @oa_format: An OA unit HW report format
344 * @oa_periodic: Whether to enable periodic OA unit sampling
345 * @oa_period_exponent: The OA unit sampling period is derived from this
346 *
347 * As read_properties_unlocked() enumerates and validates the properties given
348 * to open a stream of metrics the configuration is built up in the structure
349 * which starts out zero initialized.
350 */
eec688e1
RB
351struct perf_open_properties {
352 u32 sample_flags;
353
354 u64 single_context:1;
355 u64 ctx_handle;
d7965152
RB
356
357 /* OA sampling state */
358 int metrics_set;
359 int oa_format;
360 bool oa_periodic;
361 int oa_period_exponent;
362};
363
f89823c2
LL
364static void free_oa_config(struct drm_i915_private *dev_priv,
365 struct i915_oa_config *oa_config)
366{
367 if (!PTR_ERR(oa_config->flex_regs))
368 kfree(oa_config->flex_regs);
369 if (!PTR_ERR(oa_config->b_counter_regs))
370 kfree(oa_config->b_counter_regs);
371 if (!PTR_ERR(oa_config->mux_regs))
372 kfree(oa_config->mux_regs);
373 kfree(oa_config);
374}
375
376static void put_oa_config(struct drm_i915_private *dev_priv,
377 struct i915_oa_config *oa_config)
378{
379 if (!atomic_dec_and_test(&oa_config->ref_count))
380 return;
381
382 free_oa_config(dev_priv, oa_config);
383}
384
385static int get_oa_config(struct drm_i915_private *dev_priv,
386 int metrics_set,
387 struct i915_oa_config **out_config)
388{
389 int ret;
390
391 if (metrics_set == 1) {
392 *out_config = &dev_priv->perf.oa.test_config;
393 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
394 return 0;
395 }
396
397 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
398 if (ret)
399 return ret;
400
401 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
402 if (!*out_config)
403 ret = -EINVAL;
404 else
405 atomic_inc(&(*out_config)->ref_count);
406
407 mutex_unlock(&dev_priv->perf.metrics_lock);
408
409 return ret;
410}
411
19f81df2
RB
412static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
413{
414 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
415}
416
417static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
418{
419 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
420
421 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
422}
423
0dd860cf 424/**
19f81df2 425 * oa_buffer_check_unlocked - check for data and update tail ptr state
0dd860cf 426 * @dev_priv: i915 device instance
d7965152 427 *
0dd860cf
RB
428 * This is either called via fops (for blocking reads in user ctx) or the poll
429 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
430 * if there is data available for userspace to read.
d7965152 431 *
0dd860cf
RB
432 * This function is central to providing a workaround for the OA unit tail
433 * pointer having a race with respect to what data is visible to the CPU.
434 * It is responsible for reading tail pointers from the hardware and giving
435 * the pointers time to 'age' before they are made available for reading.
436 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
437 *
438 * Besides returning true when there is data available to read() this function
439 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
440 * and .aged_tail_idx state used for reading.
441 *
442 * Note: It's safe to read OA config state here unlocked, assuming that this is
443 * only called while the stream is enabled, while the global OA configuration
444 * can't be modified.
445 *
446 * Returns: %true if the OA buffer contains data, else %false
d7965152 447 */
19f81df2 448static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
d7965152
RB
449{
450 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
0dd860cf
RB
451 unsigned long flags;
452 unsigned int aged_idx;
0dd860cf
RB
453 u32 head, hw_tail, aged_tail, aging_tail;
454 u64 now;
455
456 /* We have to consider the (unlikely) possibility that read() errors
457 * could result in an OA buffer reset which might reset the head,
458 * tails[] and aged_tail state.
459 */
460 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
461
462 /* NB: The head we observe here might effectively be a little out of
463 * date (between head and tails[aged_idx].offset if there is currently
464 * a read() in progress.
465 */
466 head = dev_priv->perf.oa.oa_buffer.head;
467
468 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
469 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
470 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
471
19f81df2 472 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
0dd860cf
RB
473
474 /* The tail pointer increases in 64 byte increments,
475 * not in report_size steps...
476 */
477 hw_tail &= ~(report_size - 1);
478
479 now = ktime_get_mono_fast_ns();
480
4117ebc7
RB
481 /* Update the aged tail
482 *
483 * Flip the tail pointer available for read()s once the aging tail is
484 * old enough to trust that the corresponding data will be visible to
485 * the CPU...
486 *
487 * Do this before updating the aging pointer in case we may be able to
488 * immediately start aging a new pointer too (if new data has become
489 * available) without needing to wait for a later hrtimer callback.
490 */
491 if (aging_tail != INVALID_TAIL_PTR &&
492 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
493 OA_TAIL_MARGIN_NSEC)) {
19f81df2 494
4117ebc7
RB
495 aged_idx ^= 1;
496 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
497
498 aged_tail = aging_tail;
499
500 /* Mark that we need a new pointer to start aging... */
501 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
502 aging_tail = INVALID_TAIL_PTR;
503 }
504
0dd860cf
RB
505 /* Update the aging tail
506 *
507 * We throttle aging tail updates until we have a new tail that
508 * represents >= one report more data than is already available for
509 * reading. This ensures there will be enough data for a successful
510 * read once this new pointer has aged and ensures we will give the new
511 * pointer time to age.
512 */
513 if (aging_tail == INVALID_TAIL_PTR &&
514 (aged_tail == INVALID_TAIL_PTR ||
515 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
516 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
517 u32 gtt_offset = i915_ggtt_offset(vma);
518
519 /* Be paranoid and do a bounds check on the pointer read back
520 * from hardware, just in case some spurious hardware condition
521 * could put the tail out of bounds...
522 */
523 if (hw_tail >= gtt_offset &&
524 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
525 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
526 aging_tail = hw_tail;
527 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
528 } else {
529 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
530 hw_tail);
531 }
532 }
533
0dd860cf
RB
534 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
535
536 return aged_tail == INVALID_TAIL_PTR ?
537 false : OA_TAKEN(aged_tail, head) >= report_size;
d7965152
RB
538}
539
540/**
16d98b31
RB
541 * append_oa_status - Appends a status record to a userspace read() buffer.
542 * @stream: An i915-perf stream opened for OA metrics
543 * @buf: destination buffer given by userspace
544 * @count: the number of bytes userspace wants to read
545 * @offset: (inout): the current position for writing into @buf
546 * @type: The kind of status to report to userspace
547 *
548 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
549 * into the userspace read() buffer.
550 *
551 * The @buf @offset will only be updated on success.
552 *
553 * Returns: 0 on success, negative error code on failure.
d7965152
RB
554 */
555static int append_oa_status(struct i915_perf_stream *stream,
556 char __user *buf,
557 size_t count,
558 size_t *offset,
559 enum drm_i915_perf_record_type type)
560{
561 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
562
563 if ((count - *offset) < header.size)
564 return -ENOSPC;
565
566 if (copy_to_user(buf + *offset, &header, sizeof(header)))
567 return -EFAULT;
568
569 (*offset) += header.size;
570
571 return 0;
572}
573
574/**
16d98b31
RB
575 * append_oa_sample - Copies single OA report into userspace read() buffer.
576 * @stream: An i915-perf stream opened for OA metrics
577 * @buf: destination buffer given by userspace
578 * @count: the number of bytes userspace wants to read
579 * @offset: (inout): the current position for writing into @buf
580 * @report: A single OA report to (optionally) include as part of the sample
581 *
582 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
583 * properties when opening a stream, tracked as `stream->sample_flags`. This
584 * function copies the requested components of a single sample to the given
585 * read() @buf.
586 *
587 * The @buf @offset will only be updated on success.
588 *
589 * Returns: 0 on success, negative error code on failure.
d7965152
RB
590 */
591static int append_oa_sample(struct i915_perf_stream *stream,
592 char __user *buf,
593 size_t count,
594 size_t *offset,
595 const u8 *report)
596{
597 struct drm_i915_private *dev_priv = stream->dev_priv;
598 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
599 struct drm_i915_perf_record_header header;
600 u32 sample_flags = stream->sample_flags;
601
602 header.type = DRM_I915_PERF_RECORD_SAMPLE;
603 header.pad = 0;
604 header.size = stream->sample_size;
605
606 if ((count - *offset) < header.size)
607 return -ENOSPC;
608
609 buf += *offset;
610 if (copy_to_user(buf, &header, sizeof(header)))
611 return -EFAULT;
612 buf += sizeof(header);
613
614 if (sample_flags & SAMPLE_OA_REPORT) {
615 if (copy_to_user(buf, report, report_size))
616 return -EFAULT;
617 }
618
619 (*offset) += header.size;
620
621 return 0;
622}
623
19f81df2
RB
624/**
625 * Copies all buffered OA reports into userspace read() buffer.
626 * @stream: An i915-perf stream opened for OA metrics
627 * @buf: destination buffer given by userspace
628 * @count: the number of bytes userspace wants to read
629 * @offset: (inout): the current position for writing into @buf
630 *
631 * Notably any error condition resulting in a short read (-%ENOSPC or
632 * -%EFAULT) will be returned even though one or more records may
633 * have been successfully copied. In this case it's up to the caller
634 * to decide if the error should be squashed before returning to
635 * userspace.
636 *
637 * Note: reports are consumed from the head, and appended to the
638 * tail, so the tail chases the head?... If you think that's mad
639 * and back-to-front you're not alone, but this follows the
640 * Gen PRM naming convention.
641 *
642 * Returns: 0 on success, negative error code on failure.
643 */
644static int gen8_append_oa_reports(struct i915_perf_stream *stream,
645 char __user *buf,
646 size_t count,
647 size_t *offset)
648{
649 struct drm_i915_private *dev_priv = stream->dev_priv;
650 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
651 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
652 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
653 u32 mask = (OA_BUFFER_SIZE - 1);
654 size_t start_offset = *offset;
655 unsigned long flags;
656 unsigned int aged_tail_idx;
657 u32 head, tail;
658 u32 taken;
659 int ret = 0;
660
661 if (WARN_ON(!stream->enabled))
662 return -EIO;
663
664 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
665
666 head = dev_priv->perf.oa.oa_buffer.head;
667 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
668 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
669
670 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
671
672 /*
673 * An invalid tail pointer here means we're still waiting for the poll
674 * hrtimer callback to give us a pointer
675 */
676 if (tail == INVALID_TAIL_PTR)
677 return -EAGAIN;
678
679 /*
680 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
681 * while indexing relative to oa_buf_base.
682 */
683 head -= gtt_offset;
684 tail -= gtt_offset;
685
686 /*
687 * An out of bounds or misaligned head or tail pointer implies a driver
688 * bug since we validate + align the tail pointers we read from the
689 * hardware and we are in full control of the head pointer which should
690 * only be incremented by multiples of the report size (notably also
691 * all a power of two).
692 */
693 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
694 tail > OA_BUFFER_SIZE || tail % report_size,
695 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
696 head, tail))
697 return -EIO;
698
699
700 for (/* none */;
701 (taken = OA_TAKEN(tail, head));
702 head = (head + report_size) & mask) {
703 u8 *report = oa_buf_base + head;
704 u32 *report32 = (void *)report;
705 u32 ctx_id;
706 u32 reason;
707
708 /*
709 * All the report sizes factor neatly into the buffer
710 * size so we never expect to see a report split
711 * between the beginning and end of the buffer.
712 *
713 * Given the initial alignment check a misalignment
714 * here would imply a driver bug that would result
715 * in an overrun.
716 */
717 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
718 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
719 break;
720 }
721
722 /*
723 * The reason field includes flags identifying what
724 * triggered this specific report (mostly timer
725 * triggered or e.g. due to a context switch).
726 *
727 * This field is never expected to be zero so we can
728 * check that the report isn't invalid before copying
729 * it to userspace...
730 */
731 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
732 OAREPORT_REASON_MASK);
733 if (reason == 0) {
734 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
735 DRM_NOTE("Skipping spurious, invalid OA report\n");
736 continue;
737 }
738
739 /*
740 * XXX: Just keep the lower 21 bits for now since I'm not
741 * entirely sure if the HW touches any of the higher bits in
742 * this field
743 */
744 ctx_id = report32[2] & 0x1fffff;
745
746 /*
747 * Squash whatever is in the CTX_ID field if it's marked as
748 * invalid to be sure we avoid false-positive, single-context
749 * filtering below...
750 *
751 * Note: that we don't clear the valid_ctx_bit so userspace can
752 * understand that the ID has been squashed by the kernel.
753 */
754 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
755 ctx_id = report32[2] = INVALID_CTX_ID;
756
757 /*
758 * NB: For Gen 8 the OA unit no longer supports clock gating
759 * off for a specific context and the kernel can't securely
760 * stop the counters from updating as system-wide / global
761 * values.
762 *
763 * Automatic reports now include a context ID so reports can be
764 * filtered on the cpu but it's not worth trying to
765 * automatically subtract/hide counter progress for other
766 * contexts while filtering since we can't stop userspace
767 * issuing MI_REPORT_PERF_COUNT commands which would still
768 * provide a side-band view of the real values.
769 *
770 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
771 * to normalize counters for a single filtered context then it
772 * needs be forwarded bookend context-switch reports so that it
773 * can track switches in between MI_REPORT_PERF_COUNT commands
774 * and can itself subtract/ignore the progress of counters
775 * associated with other contexts. Note that the hardware
776 * automatically triggers reports when switching to a new
777 * context which are tagged with the ID of the newly active
778 * context. To avoid the complexity (and likely fragility) of
779 * reading ahead while parsing reports to try and minimize
780 * forwarding redundant context switch reports (i.e. between
781 * other, unrelated contexts) we simply elect to forward them
782 * all.
783 *
784 * We don't rely solely on the reason field to identify context
785 * switches since it's not-uncommon for periodic samples to
786 * identify a switch before any 'context switch' report.
787 */
788 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
789 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
790 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
791 dev_priv->perf.oa.specific_ctx_id) ||
792 reason & OAREPORT_REASON_CTX_SWITCH) {
793
794 /*
795 * While filtering for a single context we avoid
796 * leaking the IDs of other contexts.
797 */
798 if (dev_priv->perf.oa.exclusive_stream->ctx &&
799 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
800 report32[2] = INVALID_CTX_ID;
801 }
802
803 ret = append_oa_sample(stream, buf, count, offset,
804 report);
805 if (ret)
806 break;
807
808 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
809 }
810
811 /*
812 * The above reason field sanity check is based on
813 * the assumption that the OA buffer is initially
814 * zeroed and we reset the field after copying so the
815 * check is still meaningful once old reports start
816 * being overwritten.
817 */
818 report32[0] = 0;
819 }
820
821 if (start_offset != *offset) {
822 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
823
824 /*
825 * We removed the gtt_offset for the copy loop above, indexing
826 * relative to oa_buf_base so put back here...
827 */
828 head += gtt_offset;
829
830 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
831 dev_priv->perf.oa.oa_buffer.head = head;
832
833 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
834 }
835
836 return ret;
837}
838
839/**
840 * gen8_oa_read - copy status records then buffered OA reports
841 * @stream: An i915-perf stream opened for OA metrics
842 * @buf: destination buffer given by userspace
843 * @count: the number of bytes userspace wants to read
844 * @offset: (inout): the current position for writing into @buf
845 *
846 * Checks OA unit status registers and if necessary appends corresponding
847 * status records for userspace (such as for a buffer full condition) and then
848 * initiate appending any buffered OA reports.
849 *
850 * Updates @offset according to the number of bytes successfully copied into
851 * the userspace buffer.
852 *
853 * NB: some data may be successfully copied to the userspace buffer
854 * even if an error is returned, and this is reflected in the
855 * updated @offset.
856 *
857 * Returns: zero on success or a negative error code
858 */
859static int gen8_oa_read(struct i915_perf_stream *stream,
860 char __user *buf,
861 size_t count,
862 size_t *offset)
863{
864 struct drm_i915_private *dev_priv = stream->dev_priv;
865 u32 oastatus;
866 int ret;
867
868 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
869 return -EIO;
870
871 oastatus = I915_READ(GEN8_OASTATUS);
872
873 /*
874 * We treat OABUFFER_OVERFLOW as a significant error:
875 *
876 * Although theoretically we could handle this more gracefully
877 * sometimes, some Gens don't correctly suppress certain
878 * automatically triggered reports in this condition and so we
879 * have to assume that old reports are now being trampled
880 * over.
881 *
882 * Considering how we don't currently give userspace control
883 * over the OA buffer size and always configure a large 16MB
884 * buffer, then a buffer overflow does anyway likely indicate
885 * that something has gone quite badly wrong.
886 */
887 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
888 ret = append_oa_status(stream, buf, count, offset,
889 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
890 if (ret)
891 return ret;
892
893 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
894 dev_priv->perf.oa.period_exponent);
895
896 dev_priv->perf.oa.ops.oa_disable(dev_priv);
897 dev_priv->perf.oa.ops.oa_enable(dev_priv);
898
899 /*
900 * Note: .oa_enable() is expected to re-init the oabuffer and
901 * reset GEN8_OASTATUS for us
902 */
903 oastatus = I915_READ(GEN8_OASTATUS);
904 }
905
906 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
907 ret = append_oa_status(stream, buf, count, offset,
908 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
909 if (ret)
910 return ret;
911 I915_WRITE(GEN8_OASTATUS,
912 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
913 }
914
915 return gen8_append_oa_reports(stream, buf, count, offset);
916}
917
d7965152
RB
918/**
919 * Copies all buffered OA reports into userspace read() buffer.
920 * @stream: An i915-perf stream opened for OA metrics
921 * @buf: destination buffer given by userspace
922 * @count: the number of bytes userspace wants to read
923 * @offset: (inout): the current position for writing into @buf
d7965152 924 *
16d98b31
RB
925 * Notably any error condition resulting in a short read (-%ENOSPC or
926 * -%EFAULT) will be returned even though one or more records may
d7965152
RB
927 * have been successfully copied. In this case it's up to the caller
928 * to decide if the error should be squashed before returning to
929 * userspace.
930 *
931 * Note: reports are consumed from the head, and appended to the
e81b3a55 932 * tail, so the tail chases the head?... If you think that's mad
d7965152
RB
933 * and back-to-front you're not alone, but this follows the
934 * Gen PRM naming convention.
16d98b31
RB
935 *
936 * Returns: 0 on success, negative error code on failure.
d7965152
RB
937 */
938static int gen7_append_oa_reports(struct i915_perf_stream *stream,
939 char __user *buf,
940 size_t count,
3bb335c1 941 size_t *offset)
d7965152
RB
942{
943 struct drm_i915_private *dev_priv = stream->dev_priv;
944 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
945 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
d7965152
RB
946 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
947 u32 mask = (OA_BUFFER_SIZE - 1);
3bb335c1 948 size_t start_offset = *offset;
0dd860cf
RB
949 unsigned long flags;
950 unsigned int aged_tail_idx;
951 u32 head, tail;
d7965152
RB
952 u32 taken;
953 int ret = 0;
954
955 if (WARN_ON(!stream->enabled))
956 return -EIO;
957
0dd860cf 958 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
f279020a 959
0dd860cf
RB
960 head = dev_priv->perf.oa.oa_buffer.head;
961 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
962 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
f279020a 963
0dd860cf 964 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
d7965152 965
0dd860cf
RB
966 /* An invalid tail pointer here means we're still waiting for the poll
967 * hrtimer callback to give us a pointer
d7965152 968 */
0dd860cf
RB
969 if (tail == INVALID_TAIL_PTR)
970 return -EAGAIN;
d7965152 971
0dd860cf
RB
972 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 * while indexing relative to oa_buf_base.
d7965152 974 */
0dd860cf
RB
975 head -= gtt_offset;
976 tail -= gtt_offset;
d7965152 977
0dd860cf
RB
978 /* An out of bounds or misaligned head or tail pointer implies a driver
979 * bug since we validate + align the tail pointers we read from the
980 * hardware and we are in full control of the head pointer which should
981 * only be incremented by multiples of the report size (notably also
982 * all a power of two).
d7965152 983 */
0dd860cf
RB
984 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
985 tail > OA_BUFFER_SIZE || tail % report_size,
986 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
987 head, tail))
988 return -EIO;
d7965152 989
d7965152
RB
990
991 for (/* none */;
992 (taken = OA_TAKEN(tail, head));
993 head = (head + report_size) & mask) {
994 u8 *report = oa_buf_base + head;
995 u32 *report32 = (void *)report;
996
997 /* All the report sizes factor neatly into the buffer
998 * size so we never expect to see a report split
999 * between the beginning and end of the buffer.
1000 *
1001 * Given the initial alignment check a misalignment
1002 * here would imply a driver bug that would result
1003 * in an overrun.
1004 */
1005 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1006 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1007 break;
1008 }
1009
1010 /* The report-ID field for periodic samples includes
1011 * some undocumented flags related to what triggered
1012 * the report and is never expected to be zero so we
1013 * can check that the report isn't invalid before
1014 * copying it to userspace...
1015 */
1016 if (report32[0] == 0) {
712122ea
RB
1017 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1018 DRM_NOTE("Skipping spurious, invalid OA report\n");
d7965152
RB
1019 continue;
1020 }
1021
1022 ret = append_oa_sample(stream, buf, count, offset, report);
1023 if (ret)
1024 break;
1025
1026 /* The above report-id field sanity check is based on
1027 * the assumption that the OA buffer is initially
1028 * zeroed and we reset the field after copying so the
1029 * check is still meaningful once old reports start
1030 * being overwritten.
1031 */
1032 report32[0] = 0;
1033 }
1034
3bb335c1 1035 if (start_offset != *offset) {
0dd860cf
RB
1036 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1037
3bb335c1
RB
1038 /* We removed the gtt_offset for the copy loop above, indexing
1039 * relative to oa_buf_base so put back here...
1040 */
1041 head += gtt_offset;
1042
1043 I915_WRITE(GEN7_OASTATUS2,
1044 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1045 OA_MEM_SELECT_GGTT));
1046 dev_priv->perf.oa.oa_buffer.head = head;
0dd860cf
RB
1047
1048 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
3bb335c1 1049 }
d7965152
RB
1050
1051 return ret;
1052}
1053
16d98b31
RB
1054/**
1055 * gen7_oa_read - copy status records then buffered OA reports
1056 * @stream: An i915-perf stream opened for OA metrics
1057 * @buf: destination buffer given by userspace
1058 * @count: the number of bytes userspace wants to read
1059 * @offset: (inout): the current position for writing into @buf
1060 *
1061 * Checks Gen 7 specific OA unit status registers and if necessary appends
1062 * corresponding status records for userspace (such as for a buffer full
1063 * condition) and then initiate appending any buffered OA reports.
1064 *
1065 * Updates @offset according to the number of bytes successfully copied into
1066 * the userspace buffer.
1067 *
1068 * Returns: zero on success or a negative error code
1069 */
d7965152
RB
1070static int gen7_oa_read(struct i915_perf_stream *stream,
1071 char __user *buf,
1072 size_t count,
1073 size_t *offset)
1074{
1075 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152 1076 u32 oastatus1;
d7965152
RB
1077 int ret;
1078
1079 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1080 return -EIO;
1081
d7965152
RB
1082 oastatus1 = I915_READ(GEN7_OASTATUS1);
1083
d7965152
RB
1084 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1085 * bits while the OA unit is enabled (while the tail pointer
1086 * may be updated asynchronously) so we ignore status bits
1087 * that have already been reported to userspace.
1088 */
1089 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1090
1091 /* We treat OABUFFER_OVERFLOW as a significant error:
1092 *
1093 * - The status can be interpreted to mean that the buffer is
1094 * currently full (with a higher precedence than OA_TAKEN()
1095 * which will start to report a near-empty buffer after an
1096 * overflow) but it's awkward that we can't clear the status
1097 * on Haswell, so without a reset we won't be able to catch
1098 * the state again.
1099 *
1100 * - Since it also implies the HW has started overwriting old
1101 * reports it may also affect our sanity checks for invalid
1102 * reports when copying to userspace that assume new reports
1103 * are being written to cleared memory.
1104 *
1105 * - In the future we may want to introduce a flight recorder
1106 * mode where the driver will automatically maintain a safe
1107 * guard band between head/tail, avoiding this overflow
1108 * condition, but we avoid the added driver complexity for
1109 * now.
1110 */
1111 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1112 ret = append_oa_status(stream, buf, count, offset,
1113 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1114 if (ret)
1115 return ret;
1116
19f81df2
RB
1117 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1118 dev_priv->perf.oa.period_exponent);
d7965152
RB
1119
1120 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1121 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1122
d7965152 1123 oastatus1 = I915_READ(GEN7_OASTATUS1);
d7965152
RB
1124 }
1125
1126 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1127 ret = append_oa_status(stream, buf, count, offset,
1128 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1129 if (ret)
1130 return ret;
1131 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1132 GEN7_OASTATUS1_REPORT_LOST;
1133 }
1134
3bb335c1 1135 return gen7_append_oa_reports(stream, buf, count, offset);
d7965152
RB
1136}
1137
16d98b31
RB
1138/**
1139 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1140 * @stream: An i915-perf stream opened for OA metrics
1141 *
1142 * Called when userspace tries to read() from a blocking stream FD opened
1143 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1144 * OA buffer and wakes us.
1145 *
1146 * Note: it's acceptable to have this return with some false positives
1147 * since any subsequent read handling will return -EAGAIN if there isn't
1148 * really data ready for userspace yet.
1149 *
1150 * Returns: zero on success or a negative error code
1151 */
d7965152
RB
1152static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1153{
1154 struct drm_i915_private *dev_priv = stream->dev_priv;
1155
1156 /* We would wait indefinitely if periodic sampling is not enabled */
1157 if (!dev_priv->perf.oa.periodic)
1158 return -EIO;
1159
d7965152 1160 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
19f81df2 1161 oa_buffer_check_unlocked(dev_priv));
d7965152
RB
1162}
1163
16d98b31
RB
1164/**
1165 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1166 * @stream: An i915-perf stream opened for OA metrics
1167 * @file: An i915 perf stream file
1168 * @wait: poll() state table
1169 *
1170 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1171 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1172 * when it sees data ready to read in the circular OA buffer.
1173 */
d7965152
RB
1174static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1175 struct file *file,
1176 poll_table *wait)
1177{
1178 struct drm_i915_private *dev_priv = stream->dev_priv;
1179
1180 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1181}
1182
16d98b31
RB
1183/**
1184 * i915_oa_read - just calls through to &i915_oa_ops->read
1185 * @stream: An i915-perf stream opened for OA metrics
1186 * @buf: destination buffer given by userspace
1187 * @count: the number of bytes userspace wants to read
1188 * @offset: (inout): the current position for writing into @buf
1189 *
1190 * Updates @offset according to the number of bytes successfully copied into
1191 * the userspace buffer.
1192 *
1193 * Returns: zero on success or a negative error code
1194 */
d7965152
RB
1195static int i915_oa_read(struct i915_perf_stream *stream,
1196 char __user *buf,
1197 size_t count,
1198 size_t *offset)
1199{
1200 struct drm_i915_private *dev_priv = stream->dev_priv;
1201
1202 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1203}
1204
16d98b31
RB
1205/**
1206 * oa_get_render_ctx_id - determine and hold ctx hw id
1207 * @stream: An i915-perf stream opened for OA metrics
1208 *
1209 * Determine the render context hw id, and ensure it remains fixed for the
d7965152
RB
1210 * lifetime of the stream. This ensures that we don't have to worry about
1211 * updating the context ID in OACONTROL on the fly.
16d98b31
RB
1212 *
1213 * Returns: zero on success or a negative error code
d7965152
RB
1214 */
1215static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1216{
1217 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152 1218
fb5c551a 1219 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
19f81df2 1220 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
fb5c551a 1221 } else {
19f81df2
RB
1222 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1223 struct intel_ring *ring;
1224 int ret;
d7965152 1225
19f81df2
RB
1226 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1227 if (ret)
1228 return ret;
1229
1230 /*
1231 * As the ID is the gtt offset of the context's vma we
1232 * pin the vma to ensure the ID remains fixed.
1233 *
1234 * NB: implied RCS engine...
1235 */
1236 ring = engine->context_pin(engine, stream->ctx);
1237 mutex_unlock(&dev_priv->drm.struct_mutex);
1238 if (IS_ERR(ring))
1239 return PTR_ERR(ring);
d7965152 1240
19f81df2
RB
1241
1242 /*
1243 * Explicitly track the ID (instead of calling
1244 * i915_ggtt_offset() on the fly) considering the difference
1245 * with gen8+ and execlists
1246 */
1247 dev_priv->perf.oa.specific_ctx_id =
1248 i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1249 }
d7965152 1250
266a240b 1251 return 0;
d7965152
RB
1252}
1253
16d98b31
RB
1254/**
1255 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1256 * @stream: An i915-perf stream opened for OA metrics
1257 *
1258 * In case anything needed doing to ensure the context HW ID would remain valid
1259 * for the lifetime of the stream, then that can be undone here.
1260 */
d7965152
RB
1261static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1262{
1263 struct drm_i915_private *dev_priv = stream->dev_priv;
1264
fb5c551a 1265 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
19f81df2
RB
1266 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1267 } else {
1268 struct intel_engine_cs *engine = dev_priv->engine[RCS];
d7965152 1269
19f81df2 1270 mutex_lock(&dev_priv->drm.struct_mutex);
d7965152 1271
19f81df2
RB
1272 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1273 engine->context_unpin(engine, stream->ctx);
1274
1275 mutex_unlock(&dev_priv->drm.struct_mutex);
1276 }
d7965152
RB
1277}
1278
1279static void
1280free_oa_buffer(struct drm_i915_private *i915)
1281{
1282 mutex_lock(&i915->drm.struct_mutex);
1283
1284 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1285 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1286 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1287
1288 i915->perf.oa.oa_buffer.vma = NULL;
1289 i915->perf.oa.oa_buffer.vaddr = NULL;
1290
1291 mutex_unlock(&i915->drm.struct_mutex);
1292}
1293
1294static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1295{
1296 struct drm_i915_private *dev_priv = stream->dev_priv;
1297
1298 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1299
19f81df2 1300 /*
f89823c2
LL
1301 * Unset exclusive_stream first, it will be checked while disabling
1302 * the metric set on gen8+.
19f81df2 1303 */
701f8231 1304 mutex_lock(&dev_priv->drm.struct_mutex);
19f81df2 1305 dev_priv->perf.oa.exclusive_stream = NULL;
701f8231 1306 mutex_unlock(&dev_priv->drm.struct_mutex);
19f81df2 1307
d7965152
RB
1308 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1309
1310 free_oa_buffer(dev_priv);
1311
1312 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1313 intel_runtime_pm_put(dev_priv);
1314
1315 if (stream->ctx)
1316 oa_put_render_ctx_id(stream);
1317
f89823c2
LL
1318 put_oa_config(dev_priv, stream->oa_config);
1319
712122ea
RB
1320 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1321 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1322 dev_priv->perf.oa.spurious_report_rs.missed);
1323 }
d7965152
RB
1324}
1325
1326static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1327{
1328 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
0dd860cf
RB
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
d7965152
RB
1332
1333 /* Pre-DevBDW: OABUFFER must be set with counters off,
1334 * before OASTATUS1, but after OASTATUS2
1335 */
1336 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
f279020a
RB
1337 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1338
d7965152 1339 I915_WRITE(GEN7_OABUFFER, gtt_offset);
f279020a 1340
d7965152
RB
1341 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1342
0dd860cf
RB
1343 /* Mark that we need updated tail pointers to read from... */
1344 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1345 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1346
1347 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1348
d7965152
RB
1349 /* On Haswell we have to track which OASTATUS1 flags we've
1350 * already seen since they can't be cleared while periodic
1351 * sampling is enabled.
1352 */
1353 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1354
1355 /* NB: although the OA buffer will initially be allocated
1356 * zeroed via shmfs (and so this memset is redundant when
1357 * first allocating), we may re-init the OA buffer, either
1358 * when re-enabling a stream or in error/reset paths.
1359 *
1360 * The reason we clear the buffer for each re-init is for the
1361 * sanity check in gen7_append_oa_reports() that looks at the
1362 * report-id field to make sure it's non-zero which relies on
1363 * the assumption that new reports are being written to zeroed
1364 * memory...
1365 */
1366 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1367
1368 /* Maybe make ->pollin per-stream state if we support multiple
1369 * concurrent streams in the future.
1370 */
1371 dev_priv->perf.oa.pollin = false;
1372}
1373
19f81df2
RB
1374static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1375{
1376 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1377 unsigned long flags;
1378
1379 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1380
1381 I915_WRITE(GEN8_OASTATUS, 0);
1382 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1383 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1384
1385 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1386
1387 /*
1388 * PRM says:
1389 *
1390 * "This MMIO must be set before the OATAILPTR
1391 * register and after the OAHEADPTR register. This is
1392 * to enable proper functionality of the overflow
1393 * bit."
1394 */
1395 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1396 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1397 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1398
1399 /* Mark that we need updated tail pointers to read from... */
1400 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1401 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1402
1403 /*
1404 * Reset state used to recognise context switches, affecting which
1405 * reports we will forward to userspace while filtering for a single
1406 * context.
1407 */
1408 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1409
1410 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1411
1412 /*
1413 * NB: although the OA buffer will initially be allocated
1414 * zeroed via shmfs (and so this memset is redundant when
1415 * first allocating), we may re-init the OA buffer, either
1416 * when re-enabling a stream or in error/reset paths.
1417 *
1418 * The reason we clear the buffer for each re-init is for the
1419 * sanity check in gen8_append_oa_reports() that looks at the
1420 * reason field to make sure it's non-zero which relies on
1421 * the assumption that new reports are being written to zeroed
1422 * memory...
1423 */
1424 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1425
1426 /*
1427 * Maybe make ->pollin per-stream state if we support multiple
1428 * concurrent streams in the future.
1429 */
1430 dev_priv->perf.oa.pollin = false;
1431}
1432
d7965152
RB
1433static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1434{
1435 struct drm_i915_gem_object *bo;
1436 struct i915_vma *vma;
1437 int ret;
1438
1439 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1440 return -ENODEV;
1441
1442 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1443 if (ret)
1444 return ret;
1445
1446 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1447 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1448
12d79d78 1449 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
d7965152
RB
1450 if (IS_ERR(bo)) {
1451 DRM_ERROR("Failed to allocate OA buffer\n");
1452 ret = PTR_ERR(bo);
1453 goto unlock;
1454 }
1455
1456 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1457 if (ret)
1458 goto err_unref;
1459
1460 /* PreHSW required 512K alignment, HSW requires 16M */
1461 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1462 if (IS_ERR(vma)) {
1463 ret = PTR_ERR(vma);
1464 goto err_unref;
1465 }
1466 dev_priv->perf.oa.oa_buffer.vma = vma;
1467
1468 dev_priv->perf.oa.oa_buffer.vaddr =
1469 i915_gem_object_pin_map(bo, I915_MAP_WB);
1470 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1471 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1472 goto err_unpin;
1473 }
1474
1475 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1476
1477 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1478 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1479 dev_priv->perf.oa.oa_buffer.vaddr);
1480
1481 goto unlock;
1482
1483err_unpin:
1484 __i915_vma_unpin(vma);
1485
1486err_unref:
1487 i915_gem_object_put(bo);
1488
1489 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1490 dev_priv->perf.oa.oa_buffer.vma = NULL;
1491
1492unlock:
1493 mutex_unlock(&dev_priv->drm.struct_mutex);
1494 return ret;
1495}
1496
1497static void config_oa_regs(struct drm_i915_private *dev_priv,
1498 const struct i915_oa_reg *regs,
701f8231 1499 u32 n_regs)
d7965152 1500{
701f8231 1501 u32 i;
d7965152
RB
1502
1503 for (i = 0; i < n_regs; i++) {
1504 const struct i915_oa_reg *reg = regs + i;
1505
1506 I915_WRITE(reg->addr, reg->value);
1507 }
1508}
1509
701f8231
LL
1510static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1511 const struct i915_oa_config *oa_config)
d7965152 1512{
d7965152
RB
1513 /* PRM:
1514 *
1515 * OA unit is using “crclk” for its functionality. When trunk
1516 * level clock gating takes place, OA clock would be gated,
1517 * unable to count the events from non-render clock domain.
1518 * Render clock gating must be disabled when OA is enabled to
1519 * count the events from non-render domain. Unit level clock
1520 * gating for RCS should also be disabled.
1521 */
1522 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1523 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1524 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1525 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1526
701f8231 1527 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
d7965152
RB
1528
1529 /* It apparently takes a fairly long time for a new MUX
1530 * configuration to be be applied after these register writes.
1531 * This delay duration was derived empirically based on the
1532 * render_basic config but hopefully it covers the maximum
1533 * configuration latency.
1534 *
1535 * As a fallback, the checks in _append_oa_reports() to skip
1536 * invalid OA reports do also seem to work to discard reports
1537 * generated before this config has completed - albeit not
1538 * silently.
1539 *
1540 * Unfortunately this is essentially a magic number, since we
1541 * don't currently know of a reliable mechanism for predicting
1542 * how long the MUX config will take to apply and besides
1543 * seeing invalid reports we don't know of a reliable way to
1544 * explicitly check that the MUX config has landed.
1545 *
1546 * It's even possible we've miss characterized the underlying
1547 * problem - it just seems like the simplest explanation why
1548 * a delay at this location would mitigate any invalid reports.
1549 */
1550 usleep_range(15000, 20000);
1551
701f8231
LL
1552 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1553 oa_config->b_counter_regs_len);
d7965152
RB
1554
1555 return 0;
1556}
1557
1558static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1559{
1560 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1561 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1562 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1563 GEN7_DOP_CLOCK_GATE_ENABLE));
1564
1565 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1566 ~GT_NOA_ENABLE));
1567}
1568
19f81df2
RB
1569/*
1570 * NB: It must always remain pointer safe to run this even if the OA unit
1571 * has been disabled.
1572 *
1573 * It's fine to put out-of-date values into these per-context registers
1574 * in the case that the OA unit has been disabled.
1575 */
1576static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
701f8231
LL
1577 u32 *reg_state,
1578 const struct i915_oa_config *oa_config)
19f81df2
RB
1579{
1580 struct drm_i915_private *dev_priv = ctx->i915;
19f81df2
RB
1581 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1582 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1583 /* The MMIO offsets for Flex EU registers aren't contiguous */
1584 u32 flex_mmio[] = {
1585 i915_mmio_reg_offset(EU_PERF_CNTL0),
1586 i915_mmio_reg_offset(EU_PERF_CNTL1),
1587 i915_mmio_reg_offset(EU_PERF_CNTL2),
1588 i915_mmio_reg_offset(EU_PERF_CNTL3),
1589 i915_mmio_reg_offset(EU_PERF_CNTL4),
1590 i915_mmio_reg_offset(EU_PERF_CNTL5),
1591 i915_mmio_reg_offset(EU_PERF_CNTL6),
1592 };
1593 int i;
1594
1595 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1596 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1597 GEN8_OA_TIMER_PERIOD_SHIFT) |
1598 (dev_priv->perf.oa.periodic ?
1599 GEN8_OA_TIMER_ENABLE : 0) |
1600 GEN8_OA_COUNTER_RESUME;
1601
1602 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1603 u32 state_offset = ctx_flexeu0 + i * 2;
1604 u32 mmio = flex_mmio[i];
1605
1606 /*
1607 * This arbitrary default will select the 'EU FPU0 Pipeline
1608 * Active' event. In the future it's anticipated that there
1609 * will be an explicit 'No Event' we can select, but not yet...
1610 */
1611 u32 value = 0;
19f81df2 1612
701f8231
LL
1613 if (oa_config) {
1614 u32 j;
1615
1616 for (j = 0; j < oa_config->flex_regs_len; j++) {
1617 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1618 value = oa_config->flex_regs[j].value;
1619 break;
1620 }
19f81df2
RB
1621 }
1622 }
1623
1624 reg_state[state_offset] = mmio;
1625 reg_state[state_offset+1] = value;
1626 }
1627}
1628
1629/*
1630 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1631 * is only used by the kernel context.
1632 */
701f8231
LL
1633static int gen8_emit_oa_config(struct drm_i915_gem_request *req,
1634 const struct i915_oa_config *oa_config)
19f81df2
RB
1635{
1636 struct drm_i915_private *dev_priv = req->i915;
19f81df2
RB
1637 /* The MMIO offsets for Flex EU registers aren't contiguous */
1638 u32 flex_mmio[] = {
1639 i915_mmio_reg_offset(EU_PERF_CNTL0),
1640 i915_mmio_reg_offset(EU_PERF_CNTL1),
1641 i915_mmio_reg_offset(EU_PERF_CNTL2),
1642 i915_mmio_reg_offset(EU_PERF_CNTL3),
1643 i915_mmio_reg_offset(EU_PERF_CNTL4),
1644 i915_mmio_reg_offset(EU_PERF_CNTL5),
1645 i915_mmio_reg_offset(EU_PERF_CNTL6),
1646 };
1647 u32 *cs;
1648 int i;
1649
01d928e9 1650 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4);
19f81df2
RB
1651 if (IS_ERR(cs))
1652 return PTR_ERR(cs);
1653
01d928e9 1654 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
19f81df2
RB
1655
1656 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1657 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1658 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1659 GEN8_OA_COUNTER_RESUME;
1660
1661 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1662 u32 mmio = flex_mmio[i];
1663
1664 /*
1665 * This arbitrary default will select the 'EU FPU0 Pipeline
1666 * Active' event. In the future it's anticipated that there
1667 * will be an explicit 'No Event' we can select, but not
1668 * yet...
1669 */
1670 u32 value = 0;
19f81df2 1671
701f8231
LL
1672 if (oa_config) {
1673 u32 j;
1674
1675 for (j = 0; j < oa_config->flex_regs_len; j++) {
1676 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1677 value = oa_config->flex_regs[j].value;
1678 break;
1679 }
19f81df2
RB
1680 }
1681 }
1682
1683 *cs++ = mmio;
1684 *cs++ = value;
1685 }
1686
1687 *cs++ = MI_NOOP;
1688 intel_ring_advance(req, cs);
1689
1690 return 0;
1691}
1692
701f8231
LL
1693static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1694 const struct i915_oa_config *oa_config)
19f81df2
RB
1695{
1696 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1697 struct i915_gem_timeline *timeline;
1698 struct drm_i915_gem_request *req;
1699 int ret;
1700
1701 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1702
1703 i915_gem_retire_requests(dev_priv);
1704
1705 req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1706 if (IS_ERR(req))
1707 return PTR_ERR(req);
1708
701f8231 1709 ret = gen8_emit_oa_config(req, oa_config);
19f81df2
RB
1710 if (ret) {
1711 i915_add_request(req);
1712 return ret;
1713 }
1714
1715 /* Queue this switch after all other activity */
1716 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1717 struct drm_i915_gem_request *prev;
1718 struct intel_timeline *tl;
1719
1720 tl = &timeline->engine[engine->id];
1721 prev = i915_gem_active_raw(&tl->last_request,
1722 &dev_priv->drm.struct_mutex);
1723 if (prev)
1724 i915_sw_fence_await_sw_fence_gfp(&req->submit,
1725 &prev->submit,
1726 GFP_KERNEL);
1727 }
1728
19f81df2
RB
1729 i915_add_request(req);
1730
3fef5cda 1731 return 0;
19f81df2
RB
1732}
1733
1734/*
1735 * Manages updating the per-context aspects of the OA stream
1736 * configuration across all contexts.
1737 *
1738 * The awkward consideration here is that OACTXCONTROL controls the
1739 * exponent for periodic sampling which is primarily used for system
1740 * wide profiling where we'd like a consistent sampling period even in
1741 * the face of context switches.
1742 *
1743 * Our approach of updating the register state context (as opposed to
1744 * say using a workaround batch buffer) ensures that the hardware
1745 * won't automatically reload an out-of-date timer exponent even
1746 * transiently before a WA BB could be parsed.
1747 *
1748 * This function needs to:
1749 * - Ensure the currently running context's per-context OA state is
1750 * updated
1751 * - Ensure that all existing contexts will have the correct per-context
1752 * OA state if they are scheduled for use.
1753 * - Ensure any new contexts will be initialized with the correct
1754 * per-context OA state.
1755 *
1756 * Note: it's only the RCS/Render context that has any OA state.
1757 */
1758static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
701f8231 1759 const struct i915_oa_config *oa_config,
19f81df2
RB
1760 bool interruptible)
1761{
1762 struct i915_gem_context *ctx;
1763 int ret;
1764 unsigned int wait_flags = I915_WAIT_LOCKED;
1765
1766 if (interruptible) {
1767 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1768 if (ret)
1769 return ret;
1770
1771 wait_flags |= I915_WAIT_INTERRUPTIBLE;
1772 } else {
1773 mutex_lock(&dev_priv->drm.struct_mutex);
1774 }
1775
1776 /* Switch away from any user context. */
701f8231 1777 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
19f81df2
RB
1778 if (ret)
1779 goto out;
1780
1781 /*
1782 * The OA register config is setup through the context image. This image
1783 * might be written to by the GPU on context switch (in particular on
1784 * lite-restore). This means we can't safely update a context's image,
1785 * if this context is scheduled/submitted to run on the GPU.
1786 *
1787 * We could emit the OA register config through the batch buffer but
1788 * this might leave small interval of time where the OA unit is
1789 * configured at an invalid sampling period.
1790 *
1791 * So far the best way to work around this issue seems to be draining
1792 * the GPU from any submitted work.
1793 */
1794 ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1795 if (ret)
1796 goto out;
1797
1798 /* Update all contexts now that we've stalled the submission. */
829a0af2 1799 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
19f81df2
RB
1800 struct intel_context *ce = &ctx->engine[RCS];
1801 u32 *regs;
1802
1803 /* OA settings will be set upon first use */
1804 if (!ce->state)
1805 continue;
1806
1807 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1808 if (IS_ERR(regs)) {
1809 ret = PTR_ERR(regs);
1810 goto out;
1811 }
1812
1813 ce->state->obj->mm.dirty = true;
1814 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1815
701f8231 1816 gen8_update_reg_state_unlocked(ctx, regs, oa_config);
19f81df2
RB
1817
1818 i915_gem_object_unpin_map(ce->state->obj);
1819 }
1820
1821 out:
1822 mutex_unlock(&dev_priv->drm.struct_mutex);
1823
1824 return ret;
1825}
1826
701f8231
LL
1827static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1828 const struct i915_oa_config *oa_config)
19f81df2 1829{
701f8231 1830 int ret;
19f81df2
RB
1831
1832 /*
1833 * We disable slice/unslice clock ratio change reports on SKL since
1834 * they are too noisy. The HW generates a lot of redundant reports
1835 * where the ratio hasn't really changed causing a lot of redundant
1836 * work to processes and increasing the chances we'll hit buffer
1837 * overruns.
1838 *
1839 * Although we don't currently use the 'disable overrun' OABUFFER
1840 * feature it's worth noting that clock ratio reports have to be
1841 * disabled before considering to use that feature since the HW doesn't
1842 * correctly block these reports.
1843 *
1844 * Currently none of the high-level metrics we have depend on knowing
1845 * this ratio to normalize.
1846 *
1847 * Note: This register is not power context saved and restored, but
1848 * that's OK considering that we disable RC6 while the OA unit is
1849 * enabled.
1850 *
1851 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1852 * be read back from automatically triggered reports, as part of the
1853 * RPT_ID field.
1854 */
95690a02 1855 if (IS_GEN9(dev_priv) || IS_GEN10(dev_priv)) {
19f81df2
RB
1856 I915_WRITE(GEN8_OA_DEBUG,
1857 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1858 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1859 }
1860
1861 /*
1862 * Update all contexts prior writing the mux configurations as we need
1863 * to make sure all slices/subslices are ON before writing to NOA
1864 * registers.
1865 */
701f8231 1866 ret = gen8_configure_all_contexts(dev_priv, oa_config, true);
19f81df2
RB
1867 if (ret)
1868 return ret;
1869
701f8231
LL
1870 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1871
701f8231
LL
1872 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1873 oa_config->b_counter_regs_len);
19f81df2
RB
1874
1875 return 0;
1876}
1877
1878static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1879{
1880 /* Reset all contexts' slices/subslices configurations. */
701f8231 1881 gen8_configure_all_contexts(dev_priv, NULL, false);
28964cf2
LL
1882
1883 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1884 ~GT_NOA_ENABLE));
1885
19f81df2
RB
1886}
1887
95690a02
LL
1888static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1889{
1890 /* Reset all contexts' slices/subslices configurations. */
1891 gen8_configure_all_contexts(dev_priv, NULL, false);
1892
1893 /* Make sure we disable noa to save power. */
1894 I915_WRITE(RPM_CONFIG1,
1895 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1896}
1897
1bef3409 1898static void gen7_oa_enable(struct drm_i915_private *dev_priv)
d7965152 1899{
1bef3409
RB
1900 /*
1901 * Reset buf pointers so we don't forward reports from before now.
1902 *
1903 * Think carefully if considering trying to avoid this, since it
1904 * also ensures status flags and the buffer itself are cleared
1905 * in error paths, and we have checks for invalid reports based
1906 * on the assumption that certain fields are written to zeroed
1907 * memory which this helps maintains.
1908 */
1909 gen7_init_oa_buffer(dev_priv);
d7965152
RB
1910
1911 if (dev_priv->perf.oa.exclusive_stream->enabled) {
1912 struct i915_gem_context *ctx =
1913 dev_priv->perf.oa.exclusive_stream->ctx;
1914 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1915
1916 bool periodic = dev_priv->perf.oa.periodic;
1917 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1918 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1919
1920 I915_WRITE(GEN7_OACONTROL,
1921 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1922 (period_exponent <<
1923 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1924 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1925 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1926 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1927 GEN7_OACONTROL_ENABLE);
1928 } else
1929 I915_WRITE(GEN7_OACONTROL, 0);
1930}
1931
19f81df2
RB
1932static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1933{
1934 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1935
1936 /*
1937 * Reset buf pointers so we don't forward reports from before now.
1938 *
1939 * Think carefully if considering trying to avoid this, since it
1940 * also ensures status flags and the buffer itself are cleared
1941 * in error paths, and we have checks for invalid reports based
1942 * on the assumption that certain fields are written to zeroed
1943 * memory which this helps maintains.
1944 */
1945 gen8_init_oa_buffer(dev_priv);
1946
1947 /*
1948 * Note: we don't rely on the hardware to perform single context
1949 * filtering and instead filter on the cpu based on the context-id
1950 * field of reports
1951 */
1952 I915_WRITE(GEN8_OACONTROL, (report_format <<
1953 GEN8_OA_REPORT_FORMAT_SHIFT) |
1954 GEN8_OA_COUNTER_ENABLE);
1955}
1956
16d98b31
RB
1957/**
1958 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1959 * @stream: An i915 perf stream opened for OA metrics
1960 *
1961 * [Re]enables hardware periodic sampling according to the period configured
1962 * when opening the stream. This also starts a hrtimer that will periodically
1963 * check for data in the circular OA buffer for notifying userspace (e.g.
1964 * during a read() or poll()).
1965 */
d7965152
RB
1966static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1967{
1968 struct drm_i915_private *dev_priv = stream->dev_priv;
1969
1970 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1971
1972 if (dev_priv->perf.oa.periodic)
1973 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1974 ns_to_ktime(POLL_PERIOD),
1975 HRTIMER_MODE_REL_PINNED);
1976}
1977
1978static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1979{
1980 I915_WRITE(GEN7_OACONTROL, 0);
1981}
1982
19f81df2
RB
1983static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1984{
1985 I915_WRITE(GEN8_OACONTROL, 0);
1986}
1987
16d98b31
RB
1988/**
1989 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1990 * @stream: An i915 perf stream opened for OA metrics
1991 *
1992 * Stops the OA unit from periodically writing counter reports into the
1993 * circular OA buffer. This also stops the hrtimer that periodically checks for
1994 * data in the circular OA buffer, for notifying userspace.
1995 */
d7965152
RB
1996static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1997{
1998 struct drm_i915_private *dev_priv = stream->dev_priv;
1999
2000 dev_priv->perf.oa.ops.oa_disable(dev_priv);
2001
2002 if (dev_priv->perf.oa.periodic)
2003 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
2004}
2005
d7965152
RB
2006static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2007 .destroy = i915_oa_stream_destroy,
2008 .enable = i915_oa_stream_enable,
2009 .disable = i915_oa_stream_disable,
2010 .wait_unlocked = i915_oa_wait_unlocked,
2011 .poll_wait = i915_oa_poll_wait,
2012 .read = i915_oa_read,
eec688e1
RB
2013};
2014
16d98b31
RB
2015/**
2016 * i915_oa_stream_init - validate combined props for OA stream and init
2017 * @stream: An i915 perf stream
2018 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2019 * @props: The property state that configures stream (individually validated)
2020 *
2021 * While read_properties_unlocked() validates properties in isolation it
2022 * doesn't ensure that the combination necessarily makes sense.
2023 *
2024 * At this point it has been determined that userspace wants a stream of
2025 * OA metrics, but still we need to further validate the combined
2026 * properties are OK.
2027 *
2028 * If the configuration makes sense then we can allocate memory for
2029 * a circular OA buffer and apply the requested metric set configuration.
2030 *
2031 * Returns: zero on success or a negative error code.
2032 */
d7965152
RB
2033static int i915_oa_stream_init(struct i915_perf_stream *stream,
2034 struct drm_i915_perf_open_param *param,
2035 struct perf_open_properties *props)
2036{
2037 struct drm_i915_private *dev_priv = stream->dev_priv;
2038 int format_size;
2039 int ret;
2040
442b8c06
RB
2041 /* If the sysfs metrics/ directory wasn't registered for some
2042 * reason then don't let userspace try their luck with config
2043 * IDs
2044 */
2045 if (!dev_priv->perf.metrics_kobj) {
7708550c 2046 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
442b8c06
RB
2047 return -EINVAL;
2048 }
2049
d7965152 2050 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
7708550c 2051 DRM_DEBUG("Only OA report sampling supported\n");
d7965152
RB
2052 return -EINVAL;
2053 }
2054
2055 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
7708550c 2056 DRM_DEBUG("OA unit not supported\n");
d7965152
RB
2057 return -ENODEV;
2058 }
2059
2060 /* To avoid the complexity of having to accurately filter
2061 * counter reports and marshal to the appropriate client
2062 * we currently only allow exclusive access
2063 */
2064 if (dev_priv->perf.oa.exclusive_stream) {
7708550c 2065 DRM_DEBUG("OA unit already in use\n");
d7965152
RB
2066 return -EBUSY;
2067 }
2068
d7965152 2069 if (!props->oa_format) {
7708550c 2070 DRM_DEBUG("OA report format not specified\n");
d7965152
RB
2071 return -EINVAL;
2072 }
2073
712122ea
RB
2074 /* We set up some ratelimit state to potentially throttle any _NOTES
2075 * about spurious, invalid OA reports which we don't forward to
2076 * userspace.
2077 *
2078 * The initialization is associated with opening the stream (not driver
2079 * init) considering we print a _NOTE about any throttling when closing
2080 * the stream instead of waiting until driver _fini which no one would
2081 * ever see.
2082 *
2083 * Using the same limiting factors as printk_ratelimit()
2084 */
2085 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2086 5 * HZ, 10);
2087 /* Since we use a DRM_NOTE for spurious reports it would be
2088 * inconsistent to let __ratelimit() automatically print a warning for
2089 * throttling.
2090 */
2091 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2092 RATELIMIT_MSG_ON_RELEASE);
2093
d7965152
RB
2094 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2095
2096 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2097
2098 stream->sample_flags |= SAMPLE_OA_REPORT;
2099 stream->sample_size += format_size;
2100
2101 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2102 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2103 return -EINVAL;
2104
2105 dev_priv->perf.oa.oa_buffer.format =
2106 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2107
d7965152 2108 dev_priv->perf.oa.periodic = props->oa_periodic;
0dd860cf 2109 if (dev_priv->perf.oa.periodic)
d7965152
RB
2110 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2111
d7965152
RB
2112 if (stream->ctx) {
2113 ret = oa_get_render_ctx_id(stream);
2114 if (ret)
2115 return ret;
2116 }
2117
f89823c2
LL
2118 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2119 if (ret)
2120 goto err_config;
701f8231 2121
d7965152
RB
2122 /* PRM - observability performance counters:
2123 *
2124 * OACONTROL, performance counter enable, note:
2125 *
2126 * "When this bit is set, in order to have coherent counts,
2127 * RC6 power state and trunk clock gating must be disabled.
2128 * This can be achieved by programming MMIO registers as
2129 * 0xA094=0 and 0xA090[31]=1"
2130 *
2131 * In our case we are expecting that taking pm + FORCEWAKE
2132 * references will effectively disable RC6.
2133 */
2134 intel_runtime_pm_get(dev_priv);
2135 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2136
987f8c44 2137 ret = alloc_oa_buffer(dev_priv);
2138 if (ret)
2139 goto err_oa_buf_alloc;
2140
701f8231
LL
2141 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2142 stream->oa_config);
d7965152
RB
2143 if (ret)
2144 goto err_enable;
2145
2146 stream->ops = &i915_oa_stream_ops;
2147
701f8231
LL
2148 /* Lock device for exclusive_stream access late because
2149 * enable_metric_set() might lock as well on gen8+.
2150 */
2151 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2152 if (ret)
2153 goto err_lock;
2154
d7965152
RB
2155 dev_priv->perf.oa.exclusive_stream = stream;
2156
701f8231
LL
2157 mutex_unlock(&dev_priv->drm.struct_mutex);
2158
d7965152
RB
2159 return 0;
2160
701f8231
LL
2161err_lock:
2162 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2163
d7965152 2164err_enable:
d7965152
RB
2165 free_oa_buffer(dev_priv);
2166
2167err_oa_buf_alloc:
f89823c2
LL
2168 put_oa_config(dev_priv, stream->oa_config);
2169
987f8c44 2170 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2171 intel_runtime_pm_put(dev_priv);
f89823c2
LL
2172
2173err_config:
d7965152
RB
2174 if (stream->ctx)
2175 oa_put_render_ctx_id(stream);
2176
2177 return ret;
2178}
2179
19f81df2
RB
2180void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2181 struct i915_gem_context *ctx,
2182 u32 *reg_state)
2183{
28b6cb08 2184 struct i915_perf_stream *stream;
19f81df2
RB
2185
2186 if (engine->id != RCS)
2187 return;
2188
28b6cb08 2189 stream = engine->i915->perf.oa.exclusive_stream;
701f8231
LL
2190 if (stream)
2191 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
19f81df2
RB
2192}
2193
16d98b31
RB
2194/**
2195 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2196 * @stream: An i915 perf stream
2197 * @file: An i915 perf stream file
2198 * @buf: destination buffer given by userspace
2199 * @count: the number of bytes userspace wants to read
2200 * @ppos: (inout) file seek position (unused)
2201 *
2202 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2203 * ensure that if we've successfully copied any data then reporting that takes
2204 * precedence over any internal error status, so the data isn't lost.
2205 *
2206 * For example ret will be -ENOSPC whenever there is more buffered data than
2207 * can be copied to userspace, but that's only interesting if we weren't able
2208 * to copy some data because it implies the userspace buffer is too small to
2209 * receive a single record (and we never split records).
2210 *
2211 * Another case with ret == -EFAULT is more of a grey area since it would seem
2212 * like bad form for userspace to ask us to overrun its buffer, but the user
2213 * knows best:
2214 *
2215 * http://yarchive.net/comp/linux/partial_reads_writes.html
2216 *
2217 * Returns: The number of bytes copied or a negative error code on failure.
2218 */
eec688e1
RB
2219static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2220 struct file *file,
2221 char __user *buf,
2222 size_t count,
2223 loff_t *ppos)
2224{
2225 /* Note we keep the offset (aka bytes read) separate from any
2226 * error status so that the final check for whether we return
2227 * the bytes read with a higher precedence than any error (see
2228 * comment below) doesn't need to be handled/duplicated in
2229 * stream->ops->read() implementations.
2230 */
2231 size_t offset = 0;
2232 int ret = stream->ops->read(stream, buf, count, &offset);
2233
eec688e1
RB
2234 return offset ?: (ret ?: -EAGAIN);
2235}
2236
16d98b31
RB
2237/**
2238 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2239 * @file: An i915 perf stream file
2240 * @buf: destination buffer given by userspace
2241 * @count: the number of bytes userspace wants to read
2242 * @ppos: (inout) file seek position (unused)
2243 *
2244 * The entry point for handling a read() on a stream file descriptor from
2245 * userspace. Most of the work is left to the i915_perf_read_locked() and
2246 * &i915_perf_stream_ops->read but to save having stream implementations (of
2247 * which we might have multiple later) we handle blocking read here.
2248 *
2249 * We can also consistently treat trying to read from a disabled stream
2250 * as an IO error so implementations can assume the stream is enabled
2251 * while reading.
2252 *
2253 * Returns: The number of bytes copied or a negative error code on failure.
2254 */
eec688e1
RB
2255static ssize_t i915_perf_read(struct file *file,
2256 char __user *buf,
2257 size_t count,
2258 loff_t *ppos)
2259{
2260 struct i915_perf_stream *stream = file->private_data;
2261 struct drm_i915_private *dev_priv = stream->dev_priv;
2262 ssize_t ret;
2263
d7965152
RB
2264 /* To ensure it's handled consistently we simply treat all reads of a
2265 * disabled stream as an error. In particular it might otherwise lead
2266 * to a deadlock for blocking file descriptors...
2267 */
2268 if (!stream->enabled)
2269 return -EIO;
2270
eec688e1 2271 if (!(file->f_flags & O_NONBLOCK)) {
d7965152
RB
2272 /* There's the small chance of false positives from
2273 * stream->ops->wait_unlocked.
2274 *
2275 * E.g. with single context filtering since we only wait until
2276 * oabuffer has >= 1 report we don't immediately know whether
2277 * any reports really belong to the current context
eec688e1
RB
2278 */
2279 do {
2280 ret = stream->ops->wait_unlocked(stream);
2281 if (ret)
2282 return ret;
2283
2284 mutex_lock(&dev_priv->perf.lock);
2285 ret = i915_perf_read_locked(stream, file,
2286 buf, count, ppos);
2287 mutex_unlock(&dev_priv->perf.lock);
2288 } while (ret == -EAGAIN);
2289 } else {
2290 mutex_lock(&dev_priv->perf.lock);
2291 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2292 mutex_unlock(&dev_priv->perf.lock);
2293 }
2294
a9a08845 2295 /* We allow the poll checking to sometimes report false positive EPOLLIN
26ebd9c7
RB
2296 * events where we might actually report EAGAIN on read() if there's
2297 * not really any data available. In this situation though we don't
a9a08845 2298 * want to enter a busy loop between poll() reporting a EPOLLIN event
26ebd9c7
RB
2299 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2300 * effectively ensures we back off until the next hrtimer callback
a9a08845 2301 * before reporting another EPOLLIN event.
26ebd9c7
RB
2302 */
2303 if (ret >= 0 || ret == -EAGAIN) {
d7965152
RB
2304 /* Maybe make ->pollin per-stream state if we support multiple
2305 * concurrent streams in the future.
2306 */
2307 dev_priv->perf.oa.pollin = false;
2308 }
2309
eec688e1
RB
2310 return ret;
2311}
2312
d7965152
RB
2313static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2314{
2315 struct drm_i915_private *dev_priv =
2316 container_of(hrtimer, typeof(*dev_priv),
2317 perf.oa.poll_check_timer);
2318
19f81df2 2319 if (oa_buffer_check_unlocked(dev_priv)) {
d7965152
RB
2320 dev_priv->perf.oa.pollin = true;
2321 wake_up(&dev_priv->perf.oa.poll_wq);
2322 }
2323
2324 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2325
2326 return HRTIMER_RESTART;
2327}
2328
16d98b31
RB
2329/**
2330 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2331 * @dev_priv: i915 device instance
2332 * @stream: An i915 perf stream
2333 * @file: An i915 perf stream file
2334 * @wait: poll() state table
2335 *
2336 * For handling userspace polling on an i915 perf stream, this calls through to
2337 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2338 * will be woken for new stream data.
2339 *
2340 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2341 * with any non-file-operation driver hooks.
2342 *
2343 * Returns: any poll events that are ready without sleeping
2344 */
afc9a42b 2345static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
d7965152 2346 struct i915_perf_stream *stream,
eec688e1
RB
2347 struct file *file,
2348 poll_table *wait)
2349{
afc9a42b 2350 __poll_t events = 0;
eec688e1
RB
2351
2352 stream->ops->poll_wait(stream, file, wait);
2353
d7965152
RB
2354 /* Note: we don't explicitly check whether there's something to read
2355 * here since this path may be very hot depending on what else
2356 * userspace is polling, or on the timeout in use. We rely solely on
2357 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2358 * samples to read.
2359 */
2360 if (dev_priv->perf.oa.pollin)
a9a08845 2361 events |= EPOLLIN;
eec688e1 2362
d7965152 2363 return events;
eec688e1
RB
2364}
2365
16d98b31
RB
2366/**
2367 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2368 * @file: An i915 perf stream file
2369 * @wait: poll() state table
2370 *
2371 * For handling userspace polling on an i915 perf stream, this ensures
2372 * poll_wait() gets called with a wait queue that will be woken for new stream
2373 * data.
2374 *
2375 * Note: Implementation deferred to i915_perf_poll_locked()
2376 *
2377 * Returns: any poll events that are ready without sleeping
2378 */
afc9a42b 2379static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
eec688e1
RB
2380{
2381 struct i915_perf_stream *stream = file->private_data;
2382 struct drm_i915_private *dev_priv = stream->dev_priv;
afc9a42b 2383 __poll_t ret;
eec688e1
RB
2384
2385 mutex_lock(&dev_priv->perf.lock);
d7965152 2386 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
eec688e1
RB
2387 mutex_unlock(&dev_priv->perf.lock);
2388
2389 return ret;
2390}
2391
16d98b31
RB
2392/**
2393 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2394 * @stream: A disabled i915 perf stream
2395 *
2396 * [Re]enables the associated capture of data for this stream.
2397 *
2398 * If a stream was previously enabled then there's currently no intention
2399 * to provide userspace any guarantee about the preservation of previously
2400 * buffered data.
2401 */
eec688e1
RB
2402static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2403{
2404 if (stream->enabled)
2405 return;
2406
2407 /* Allow stream->ops->enable() to refer to this */
2408 stream->enabled = true;
2409
2410 if (stream->ops->enable)
2411 stream->ops->enable(stream);
2412}
2413
16d98b31
RB
2414/**
2415 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2416 * @stream: An enabled i915 perf stream
2417 *
2418 * Disables the associated capture of data for this stream.
2419 *
2420 * The intention is that disabling an re-enabling a stream will ideally be
2421 * cheaper than destroying and re-opening a stream with the same configuration,
2422 * though there are no formal guarantees about what state or buffered data
2423 * must be retained between disabling and re-enabling a stream.
2424 *
2425 * Note: while a stream is disabled it's considered an error for userspace
2426 * to attempt to read from the stream (-EIO).
2427 */
eec688e1
RB
2428static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2429{
2430 if (!stream->enabled)
2431 return;
2432
2433 /* Allow stream->ops->disable() to refer to this */
2434 stream->enabled = false;
2435
2436 if (stream->ops->disable)
2437 stream->ops->disable(stream);
2438}
2439
16d98b31
RB
2440/**
2441 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2442 * @stream: An i915 perf stream
2443 * @cmd: the ioctl request
2444 * @arg: the ioctl data
2445 *
2446 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2447 * with any non-file-operation driver hooks.
2448 *
2449 * Returns: zero on success or a negative error code. Returns -EINVAL for
2450 * an unknown ioctl request.
2451 */
eec688e1
RB
2452static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2453 unsigned int cmd,
2454 unsigned long arg)
2455{
2456 switch (cmd) {
2457 case I915_PERF_IOCTL_ENABLE:
2458 i915_perf_enable_locked(stream);
2459 return 0;
2460 case I915_PERF_IOCTL_DISABLE:
2461 i915_perf_disable_locked(stream);
2462 return 0;
2463 }
2464
2465 return -EINVAL;
2466}
2467
16d98b31
RB
2468/**
2469 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2470 * @file: An i915 perf stream file
2471 * @cmd: the ioctl request
2472 * @arg: the ioctl data
2473 *
2474 * Implementation deferred to i915_perf_ioctl_locked().
2475 *
2476 * Returns: zero on success or a negative error code. Returns -EINVAL for
2477 * an unknown ioctl request.
2478 */
eec688e1
RB
2479static long i915_perf_ioctl(struct file *file,
2480 unsigned int cmd,
2481 unsigned long arg)
2482{
2483 struct i915_perf_stream *stream = file->private_data;
2484 struct drm_i915_private *dev_priv = stream->dev_priv;
2485 long ret;
2486
2487 mutex_lock(&dev_priv->perf.lock);
2488 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2489 mutex_unlock(&dev_priv->perf.lock);
2490
2491 return ret;
2492}
2493
16d98b31
RB
2494/**
2495 * i915_perf_destroy_locked - destroy an i915 perf stream
2496 * @stream: An i915 perf stream
2497 *
2498 * Frees all resources associated with the given i915 perf @stream, disabling
2499 * any associated data capture in the process.
2500 *
2501 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2502 * with any non-file-operation driver hooks.
2503 */
eec688e1
RB
2504static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2505{
eec688e1
RB
2506 if (stream->enabled)
2507 i915_perf_disable_locked(stream);
2508
2509 if (stream->ops->destroy)
2510 stream->ops->destroy(stream);
2511
2512 list_del(&stream->link);
2513
69df05e1 2514 if (stream->ctx)
5f09a9c8 2515 i915_gem_context_put(stream->ctx);
eec688e1
RB
2516
2517 kfree(stream);
2518}
2519
16d98b31
RB
2520/**
2521 * i915_perf_release - handles userspace close() of a stream file
2522 * @inode: anonymous inode associated with file
2523 * @file: An i915 perf stream file
2524 *
2525 * Cleans up any resources associated with an open i915 perf stream file.
2526 *
2527 * NB: close() can't really fail from the userspace point of view.
2528 *
2529 * Returns: zero on success or a negative error code.
2530 */
eec688e1
RB
2531static int i915_perf_release(struct inode *inode, struct file *file)
2532{
2533 struct i915_perf_stream *stream = file->private_data;
2534 struct drm_i915_private *dev_priv = stream->dev_priv;
2535
2536 mutex_lock(&dev_priv->perf.lock);
2537 i915_perf_destroy_locked(stream);
2538 mutex_unlock(&dev_priv->perf.lock);
2539
2540 return 0;
2541}
2542
2543
2544static const struct file_operations fops = {
2545 .owner = THIS_MODULE,
2546 .llseek = no_llseek,
2547 .release = i915_perf_release,
2548 .poll = i915_perf_poll,
2549 .read = i915_perf_read,
2550 .unlocked_ioctl = i915_perf_ioctl,
7277f755
LL
2551 /* Our ioctl have no arguments, so it's safe to use the same function
2552 * to handle 32bits compatibility.
2553 */
2554 .compat_ioctl = i915_perf_ioctl,
eec688e1
RB
2555};
2556
2557
16d98b31
RB
2558/**
2559 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2560 * @dev_priv: i915 device instance
2561 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2562 * @props: individually validated u64 property value pairs
2563 * @file: drm file
2564 *
2565 * See i915_perf_ioctl_open() for interface details.
2566 *
2567 * Implements further stream config validation and stream initialization on
2568 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2569 * taken to serialize with any non-file-operation driver hooks.
2570 *
2571 * Note: at this point the @props have only been validated in isolation and
2572 * it's still necessary to validate that the combination of properties makes
2573 * sense.
2574 *
2575 * In the case where userspace is interested in OA unit metrics then further
2576 * config validation and stream initialization details will be handled by
2577 * i915_oa_stream_init(). The code here should only validate config state that
2578 * will be relevant to all stream types / backends.
2579 *
2580 * Returns: zero on success or a negative error code.
2581 */
eec688e1
RB
2582static int
2583i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2584 struct drm_i915_perf_open_param *param,
2585 struct perf_open_properties *props,
2586 struct drm_file *file)
2587{
2588 struct i915_gem_context *specific_ctx = NULL;
2589 struct i915_perf_stream *stream = NULL;
2590 unsigned long f_flags = 0;
19f81df2 2591 bool privileged_op = true;
eec688e1
RB
2592 int stream_fd;
2593 int ret;
2594
2595 if (props->single_context) {
2596 u32 ctx_handle = props->ctx_handle;
2597 struct drm_i915_file_private *file_priv = file->driver_priv;
2598
635f56c3
ID
2599 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2600 if (!specific_ctx) {
2601 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2602 ctx_handle);
2603 ret = -ENOENT;
eec688e1
RB
2604 goto err;
2605 }
2606 }
2607
19f81df2
RB
2608 /*
2609 * On Haswell the OA unit supports clock gating off for a specific
2610 * context and in this mode there's no visibility of metrics for the
2611 * rest of the system, which we consider acceptable for a
2612 * non-privileged client.
2613 *
2614 * For Gen8+ the OA unit no longer supports clock gating off for a
2615 * specific context and the kernel can't securely stop the counters
2616 * from updating as system-wide / global values. Even though we can
2617 * filter reports based on the included context ID we can't block
2618 * clients from seeing the raw / global counter values via
2619 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2620 * enable the OA unit by default.
2621 */
2622 if (IS_HASWELL(dev_priv) && specific_ctx)
2623 privileged_op = false;
2624
ccdf6341
RB
2625 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2626 * we check a dev.i915.perf_stream_paranoid sysctl option
2627 * to determine if it's ok to access system wide OA counters
2628 * without CAP_SYS_ADMIN privileges.
2629 */
19f81df2 2630 if (privileged_op &&
ccdf6341 2631 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
7708550c 2632 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
eec688e1
RB
2633 ret = -EACCES;
2634 goto err_ctx;
2635 }
2636
2637 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2638 if (!stream) {
2639 ret = -ENOMEM;
2640 goto err_ctx;
2641 }
2642
eec688e1
RB
2643 stream->dev_priv = dev_priv;
2644 stream->ctx = specific_ctx;
2645
d7965152
RB
2646 ret = i915_oa_stream_init(stream, param, props);
2647 if (ret)
2648 goto err_alloc;
2649
2650 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2651 * to have _stream_init check the combination of sample flags more
2652 * thoroughly, but still this is the expected result at this point.
eec688e1 2653 */
d7965152
RB
2654 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2655 ret = -ENODEV;
22f880ca 2656 goto err_flags;
d7965152 2657 }
eec688e1
RB
2658
2659 list_add(&stream->link, &dev_priv->perf.streams);
2660
2661 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2662 f_flags |= O_CLOEXEC;
2663 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2664 f_flags |= O_NONBLOCK;
2665
2666 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2667 if (stream_fd < 0) {
2668 ret = stream_fd;
2669 goto err_open;
2670 }
2671
2672 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2673 i915_perf_enable_locked(stream);
2674
2675 return stream_fd;
2676
2677err_open:
2678 list_del(&stream->link);
22f880ca 2679err_flags:
eec688e1
RB
2680 if (stream->ops->destroy)
2681 stream->ops->destroy(stream);
2682err_alloc:
2683 kfree(stream);
2684err_ctx:
69df05e1 2685 if (specific_ctx)
5f09a9c8 2686 i915_gem_context_put(specific_ctx);
eec688e1
RB
2687err:
2688 return ret;
2689}
2690
155e941f
RB
2691static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2692{
9f9b2792
LL
2693 return div64_u64(1000000000ULL * (2ULL << exponent),
2694 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz);
155e941f
RB
2695}
2696
16d98b31
RB
2697/**
2698 * read_properties_unlocked - validate + copy userspace stream open properties
2699 * @dev_priv: i915 device instance
2700 * @uprops: The array of u64 key value pairs given by userspace
2701 * @n_props: The number of key value pairs expected in @uprops
2702 * @props: The stream configuration built up while validating properties
eec688e1
RB
2703 *
2704 * Note this function only validates properties in isolation it doesn't
2705 * validate that the combination of properties makes sense or that all
2706 * properties necessary for a particular kind of stream have been set.
16d98b31
RB
2707 *
2708 * Note that there currently aren't any ordering requirements for properties so
2709 * we shouldn't validate or assume anything about ordering here. This doesn't
2710 * rule out defining new properties with ordering requirements in the future.
eec688e1
RB
2711 */
2712static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2713 u64 __user *uprops,
2714 u32 n_props,
2715 struct perf_open_properties *props)
2716{
2717 u64 __user *uprop = uprops;
701f8231 2718 u32 i;
eec688e1
RB
2719
2720 memset(props, 0, sizeof(struct perf_open_properties));
2721
2722 if (!n_props) {
7708550c 2723 DRM_DEBUG("No i915 perf properties given\n");
eec688e1
RB
2724 return -EINVAL;
2725 }
2726
2727 /* Considering that ID = 0 is reserved and assuming that we don't
2728 * (currently) expect any configurations to ever specify duplicate
2729 * values for a particular property ID then the last _PROP_MAX value is
2730 * one greater than the maximum number of properties we expect to get
2731 * from userspace.
2732 */
2733 if (n_props >= DRM_I915_PERF_PROP_MAX) {
7708550c 2734 DRM_DEBUG("More i915 perf properties specified than exist\n");
eec688e1
RB
2735 return -EINVAL;
2736 }
2737
2738 for (i = 0; i < n_props; i++) {
00319ba0 2739 u64 oa_period, oa_freq_hz;
eec688e1
RB
2740 u64 id, value;
2741 int ret;
2742
2743 ret = get_user(id, uprop);
2744 if (ret)
2745 return ret;
2746
2747 ret = get_user(value, uprop + 1);
2748 if (ret)
2749 return ret;
2750
0a309f9e
MA
2751 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2752 DRM_DEBUG("Unknown i915 perf property ID\n");
2753 return -EINVAL;
2754 }
2755
eec688e1
RB
2756 switch ((enum drm_i915_perf_property_id)id) {
2757 case DRM_I915_PERF_PROP_CTX_HANDLE:
2758 props->single_context = 1;
2759 props->ctx_handle = value;
2760 break;
d7965152
RB
2761 case DRM_I915_PERF_PROP_SAMPLE_OA:
2762 props->sample_flags |= SAMPLE_OA_REPORT;
2763 break;
2764 case DRM_I915_PERF_PROP_OA_METRICS_SET:
701f8231 2765 if (value == 0) {
7708550c 2766 DRM_DEBUG("Unknown OA metric set ID\n");
d7965152
RB
2767 return -EINVAL;
2768 }
2769 props->metrics_set = value;
2770 break;
2771 case DRM_I915_PERF_PROP_OA_FORMAT:
2772 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
52c57c26
RB
2773 DRM_DEBUG("Out-of-range OA report format %llu\n",
2774 value);
d7965152
RB
2775 return -EINVAL;
2776 }
2777 if (!dev_priv->perf.oa.oa_formats[value].size) {
52c57c26
RB
2778 DRM_DEBUG("Unsupported OA report format %llu\n",
2779 value);
d7965152
RB
2780 return -EINVAL;
2781 }
2782 props->oa_format = value;
2783 break;
2784 case DRM_I915_PERF_PROP_OA_EXPONENT:
2785 if (value > OA_EXPONENT_MAX) {
7708550c
RB
2786 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2787 OA_EXPONENT_MAX);
d7965152
RB
2788 return -EINVAL;
2789 }
2790
00319ba0 2791 /* Theoretically we can program the OA unit to sample
155e941f
RB
2792 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2793 * for BXT. We don't allow such high sampling
2794 * frequencies by default unless root.
00319ba0 2795 */
155e941f 2796
00319ba0 2797 BUILD_BUG_ON(sizeof(oa_period) != 8);
155e941f 2798 oa_period = oa_exponent_to_ns(dev_priv, value);
00319ba0
RB
2799
2800 /* This check is primarily to ensure that oa_period <=
2801 * UINT32_MAX (before passing to do_div which only
2802 * accepts a u32 denominator), but we can also skip
2803 * checking anything < 1Hz which implicitly can't be
2804 * limited via an integer oa_max_sample_rate.
d7965152 2805 */
00319ba0
RB
2806 if (oa_period <= NSEC_PER_SEC) {
2807 u64 tmp = NSEC_PER_SEC;
2808 do_div(tmp, oa_period);
2809 oa_freq_hz = tmp;
2810 } else
2811 oa_freq_hz = 0;
2812
2813 if (oa_freq_hz > i915_oa_max_sample_rate &&
2814 !capable(CAP_SYS_ADMIN)) {
7708550c 2815 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
00319ba0 2816 i915_oa_max_sample_rate);
d7965152
RB
2817 return -EACCES;
2818 }
2819
2820 props->oa_periodic = true;
2821 props->oa_period_exponent = value;
2822 break;
0a309f9e 2823 case DRM_I915_PERF_PROP_MAX:
eec688e1 2824 MISSING_CASE(id);
eec688e1
RB
2825 return -EINVAL;
2826 }
2827
2828 uprop += 2;
2829 }
2830
2831 return 0;
2832}
2833
16d98b31
RB
2834/**
2835 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2836 * @dev: drm device
2837 * @data: ioctl data copied from userspace (unvalidated)
2838 * @file: drm file
2839 *
2840 * Validates the stream open parameters given by userspace including flags
2841 * and an array of u64 key, value pair properties.
2842 *
2843 * Very little is assumed up front about the nature of the stream being
2844 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2845 * i915-perf stream is expected to be a suitable interface for other forms of
2846 * buffered data written by the GPU besides periodic OA metrics.
2847 *
2848 * Note we copy the properties from userspace outside of the i915 perf
2849 * mutex to avoid an awkward lockdep with mmap_sem.
2850 *
2851 * Most of the implementation details are handled by
2852 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2853 * mutex for serializing with any non-file-operation driver hooks.
2854 *
2855 * Return: A newly opened i915 Perf stream file descriptor or negative
2856 * error code on failure.
2857 */
eec688e1
RB
2858int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2859 struct drm_file *file)
2860{
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 struct drm_i915_perf_open_param *param = data;
2863 struct perf_open_properties props;
2864 u32 known_open_flags;
2865 int ret;
2866
2867 if (!dev_priv->perf.initialized) {
7708550c 2868 DRM_DEBUG("i915 perf interface not available for this system\n");
eec688e1
RB
2869 return -ENOTSUPP;
2870 }
2871
2872 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2873 I915_PERF_FLAG_FD_NONBLOCK |
2874 I915_PERF_FLAG_DISABLED;
2875 if (param->flags & ~known_open_flags) {
7708550c 2876 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
eec688e1
RB
2877 return -EINVAL;
2878 }
2879
2880 ret = read_properties_unlocked(dev_priv,
2881 u64_to_user_ptr(param->properties_ptr),
2882 param->num_properties,
2883 &props);
2884 if (ret)
2885 return ret;
2886
2887 mutex_lock(&dev_priv->perf.lock);
2888 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2889 mutex_unlock(&dev_priv->perf.lock);
2890
2891 return ret;
2892}
2893
16d98b31
RB
2894/**
2895 * i915_perf_register - exposes i915-perf to userspace
2896 * @dev_priv: i915 device instance
2897 *
2898 * In particular OA metric sets are advertised under a sysfs metrics/
2899 * directory allowing userspace to enumerate valid IDs that can be
2900 * used to open an i915-perf stream.
2901 */
442b8c06
RB
2902void i915_perf_register(struct drm_i915_private *dev_priv)
2903{
701f8231
LL
2904 int ret;
2905
442b8c06
RB
2906 if (!dev_priv->perf.initialized)
2907 return;
2908
2909 /* To be sure we're synchronized with an attempted
2910 * i915_perf_open_ioctl(); considering that we register after
2911 * being exposed to userspace.
2912 */
2913 mutex_lock(&dev_priv->perf.lock);
2914
2915 dev_priv->perf.metrics_kobj =
2916 kobject_create_and_add("metrics",
2917 &dev_priv->drm.primary->kdev->kobj);
2918 if (!dev_priv->perf.metrics_kobj)
2919 goto exit;
2920
40f75ea4 2921 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
701f8231 2922
19f81df2 2923 if (IS_HASWELL(dev_priv)) {
701f8231 2924 i915_perf_load_test_config_hsw(dev_priv);
19f81df2 2925 } else if (IS_BROADWELL(dev_priv)) {
701f8231 2926 i915_perf_load_test_config_bdw(dev_priv);
19f81df2 2927 } else if (IS_CHERRYVIEW(dev_priv)) {
701f8231 2928 i915_perf_load_test_config_chv(dev_priv);
19f81df2 2929 } else if (IS_SKYLAKE(dev_priv)) {
701f8231
LL
2930 if (IS_SKL_GT2(dev_priv))
2931 i915_perf_load_test_config_sklgt2(dev_priv);
2932 else if (IS_SKL_GT3(dev_priv))
2933 i915_perf_load_test_config_sklgt3(dev_priv);
2934 else if (IS_SKL_GT4(dev_priv))
2935 i915_perf_load_test_config_sklgt4(dev_priv);
19f81df2 2936 } else if (IS_BROXTON(dev_priv)) {
701f8231 2937 i915_perf_load_test_config_bxt(dev_priv);
6c5c1d89 2938 } else if (IS_KABYLAKE(dev_priv)) {
701f8231
LL
2939 if (IS_KBL_GT2(dev_priv))
2940 i915_perf_load_test_config_kblgt2(dev_priv);
2941 else if (IS_KBL_GT3(dev_priv))
2942 i915_perf_load_test_config_kblgt3(dev_priv);
28c7ef9e 2943 } else if (IS_GEMINILAKE(dev_priv)) {
701f8231 2944 i915_perf_load_test_config_glk(dev_priv);
22ea4f35
LL
2945 } else if (IS_COFFEELAKE(dev_priv)) {
2946 if (IS_CFL_GT2(dev_priv))
2947 i915_perf_load_test_config_cflgt2(dev_priv);
4407eaa9
LL
2948 if (IS_CFL_GT3(dev_priv))
2949 i915_perf_load_test_config_cflgt3(dev_priv);
95690a02
LL
2950 } else if (IS_CANNONLAKE(dev_priv)) {
2951 i915_perf_load_test_config_cnl(dev_priv);
442b8c06
RB
2952 }
2953
701f8231
LL
2954 if (dev_priv->perf.oa.test_config.id == 0)
2955 goto sysfs_error;
2956
2957 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2958 &dev_priv->perf.oa.test_config.sysfs_metric);
2959 if (ret)
2960 goto sysfs_error;
f89823c2
LL
2961
2962 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2963
19f81df2
RB
2964 goto exit;
2965
2966sysfs_error:
2967 kobject_put(dev_priv->perf.metrics_kobj);
2968 dev_priv->perf.metrics_kobj = NULL;
2969
442b8c06
RB
2970exit:
2971 mutex_unlock(&dev_priv->perf.lock);
2972}
2973
16d98b31
RB
2974/**
2975 * i915_perf_unregister - hide i915-perf from userspace
2976 * @dev_priv: i915 device instance
2977 *
2978 * i915-perf state cleanup is split up into an 'unregister' and
2979 * 'deinit' phase where the interface is first hidden from
2980 * userspace by i915_perf_unregister() before cleaning up
2981 * remaining state in i915_perf_fini().
2982 */
442b8c06
RB
2983void i915_perf_unregister(struct drm_i915_private *dev_priv)
2984{
442b8c06
RB
2985 if (!dev_priv->perf.metrics_kobj)
2986 return;
2987
701f8231
LL
2988 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2989 &dev_priv->perf.oa.test_config.sysfs_metric);
442b8c06
RB
2990
2991 kobject_put(dev_priv->perf.metrics_kobj);
2992 dev_priv->perf.metrics_kobj = NULL;
2993}
2994
f89823c2
LL
2995static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2996{
2997 static const i915_reg_t flex_eu_regs[] = {
2998 EU_PERF_CNTL0,
2999 EU_PERF_CNTL1,
3000 EU_PERF_CNTL2,
3001 EU_PERF_CNTL3,
3002 EU_PERF_CNTL4,
3003 EU_PERF_CNTL5,
3004 EU_PERF_CNTL6,
3005 };
3006 int i;
3007
3008 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
7c52a221 3009 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
f89823c2
LL
3010 return true;
3011 }
3012 return false;
3013}
3014
3015static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3016{
7c52a221
LL
3017 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3018 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3019 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3020 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3021 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3022 addr <= i915_mmio_reg_offset(OACEC7_1));
f89823c2
LL
3023}
3024
3025static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3026{
7c52a221
LL
3027 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3028 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3029 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3030 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3031 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3032 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3033 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
f89823c2
LL
3034}
3035
3036static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3037{
3038 return gen7_is_valid_mux_addr(dev_priv, addr) ||
7c52a221
LL
3039 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3040 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3041 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
f89823c2
LL
3042}
3043
95690a02
LL
3044static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3045{
3046 return gen8_is_valid_mux_addr(dev_priv, addr) ||
7c52a221
LL
3047 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3048 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
f89823c2
LL
3049}
3050
3051static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3052{
3053 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3054 (addr >= 0x25100 && addr <= 0x2FF90) ||
7c52a221
LL
3055 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3056 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3057 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
f89823c2
LL
3058}
3059
3060static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3061{
3062 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3063 (addr >= 0x182300 && addr <= 0x1823A4);
3064}
3065
3066static uint32_t mask_reg_value(u32 reg, u32 val)
3067{
3068 /* HALF_SLICE_CHICKEN2 is programmed with a the
3069 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3070 * programmed by userspace doesn't change this.
3071 */
7c52a221 3072 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
f89823c2
LL
3073 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3074
3075 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3076 * indicated by its name and a bunch of selection fields used by OA
3077 * configs.
3078 */
7c52a221 3079 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
f89823c2
LL
3080 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3081
3082 return val;
3083}
3084
3085static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3086 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3087 u32 __user *regs,
3088 u32 n_regs)
3089{
3090 struct i915_oa_reg *oa_regs;
3091 int err;
3092 u32 i;
3093
3094 if (!n_regs)
3095 return NULL;
3096
3097 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3098 return ERR_PTR(-EFAULT);
3099
3100 /* No is_valid function means we're not allowing any register to be programmed. */
3101 GEM_BUG_ON(!is_valid);
3102 if (!is_valid)
3103 return ERR_PTR(-EINVAL);
3104
3105 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3106 if (!oa_regs)
3107 return ERR_PTR(-ENOMEM);
3108
3109 for (i = 0; i < n_regs; i++) {
3110 u32 addr, value;
3111
3112 err = get_user(addr, regs);
3113 if (err)
3114 goto addr_err;
3115
3116 if (!is_valid(dev_priv, addr)) {
3117 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3118 err = -EINVAL;
3119 goto addr_err;
3120 }
3121
3122 err = get_user(value, regs + 1);
3123 if (err)
3124 goto addr_err;
3125
3126 oa_regs[i].addr = _MMIO(addr);
3127 oa_regs[i].value = mask_reg_value(addr, value);
3128
3129 regs += 2;
3130 }
3131
3132 return oa_regs;
3133
3134addr_err:
3135 kfree(oa_regs);
3136 return ERR_PTR(err);
3137}
3138
3139static ssize_t show_dynamic_id(struct device *dev,
3140 struct device_attribute *attr,
3141 char *buf)
3142{
3143 struct i915_oa_config *oa_config =
3144 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3145
3146 return sprintf(buf, "%d\n", oa_config->id);
3147}
3148
3149static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3150 struct i915_oa_config *oa_config)
3151{
28152a23 3152 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
f89823c2
LL
3153 oa_config->sysfs_metric_id.attr.name = "id";
3154 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3155 oa_config->sysfs_metric_id.show = show_dynamic_id;
3156 oa_config->sysfs_metric_id.store = NULL;
3157
3158 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3159 oa_config->attrs[1] = NULL;
3160
3161 oa_config->sysfs_metric.name = oa_config->uuid;
3162 oa_config->sysfs_metric.attrs = oa_config->attrs;
3163
3164 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3165 &oa_config->sysfs_metric);
3166}
3167
3168/**
3169 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3170 * @dev: drm device
3171 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3172 * userspace (unvalidated)
3173 * @file: drm file
3174 *
3175 * Validates the submitted OA register to be saved into a new OA config that
3176 * can then be used for programming the OA unit and its NOA network.
3177 *
3178 * Returns: A new allocated config number to be used with the perf open ioctl
3179 * or a negative error code on failure.
3180 */
3181int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3182 struct drm_file *file)
3183{
3184 struct drm_i915_private *dev_priv = dev->dev_private;
3185 struct drm_i915_perf_oa_config *args = data;
3186 struct i915_oa_config *oa_config, *tmp;
3187 int err, id;
3188
3189 if (!dev_priv->perf.initialized) {
3190 DRM_DEBUG("i915 perf interface not available for this system\n");
3191 return -ENOTSUPP;
3192 }
3193
3194 if (!dev_priv->perf.metrics_kobj) {
3195 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3196 return -EINVAL;
3197 }
3198
3199 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3200 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3201 return -EACCES;
3202 }
3203
3204 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3205 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3206 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3207 DRM_DEBUG("No OA registers given\n");
3208 return -EINVAL;
3209 }
3210
3211 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3212 if (!oa_config) {
3213 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3214 return -ENOMEM;
3215 }
3216
3217 atomic_set(&oa_config->ref_count, 1);
3218
3219 if (!uuid_is_valid(args->uuid)) {
3220 DRM_DEBUG("Invalid uuid format for OA config\n");
3221 err = -EINVAL;
3222 goto reg_err;
3223 }
3224
3225 /* Last character in oa_config->uuid will be 0 because oa_config is
3226 * kzalloc.
3227 */
3228 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3229
3230 oa_config->mux_regs_len = args->n_mux_regs;
3231 oa_config->mux_regs =
3232 alloc_oa_regs(dev_priv,
3233 dev_priv->perf.oa.ops.is_valid_mux_reg,
3234 u64_to_user_ptr(args->mux_regs_ptr),
3235 args->n_mux_regs);
3236
3237 if (IS_ERR(oa_config->mux_regs)) {
3238 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3239 err = PTR_ERR(oa_config->mux_regs);
3240 goto reg_err;
3241 }
3242
3243 oa_config->b_counter_regs_len = args->n_boolean_regs;
3244 oa_config->b_counter_regs =
3245 alloc_oa_regs(dev_priv,
3246 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3247 u64_to_user_ptr(args->boolean_regs_ptr),
3248 args->n_boolean_regs);
3249
3250 if (IS_ERR(oa_config->b_counter_regs)) {
3251 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3252 err = PTR_ERR(oa_config->b_counter_regs);
3253 goto reg_err;
3254 }
3255
3256 if (INTEL_GEN(dev_priv) < 8) {
3257 if (args->n_flex_regs != 0) {
3258 err = -EINVAL;
3259 goto reg_err;
3260 }
3261 } else {
3262 oa_config->flex_regs_len = args->n_flex_regs;
3263 oa_config->flex_regs =
3264 alloc_oa_regs(dev_priv,
3265 dev_priv->perf.oa.ops.is_valid_flex_reg,
3266 u64_to_user_ptr(args->flex_regs_ptr),
3267 args->n_flex_regs);
3268
3269 if (IS_ERR(oa_config->flex_regs)) {
3270 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3271 err = PTR_ERR(oa_config->flex_regs);
3272 goto reg_err;
3273 }
3274 }
3275
3276 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3277 if (err)
3278 goto reg_err;
3279
3280 /* We shouldn't have too many configs, so this iteration shouldn't be
3281 * too costly.
3282 */
3283 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3284 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3285 DRM_DEBUG("OA config already exists with this uuid\n");
3286 err = -EADDRINUSE;
3287 goto sysfs_err;
3288 }
3289 }
3290
3291 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3292 if (err) {
3293 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3294 goto sysfs_err;
3295 }
3296
3297 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3298 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3299 oa_config, 2,
3300 0, GFP_KERNEL);
3301 if (oa_config->id < 0) {
3302 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3303 err = oa_config->id;
3304 goto sysfs_err;
3305 }
3306
3307 mutex_unlock(&dev_priv->perf.metrics_lock);
3308
3309 return oa_config->id;
3310
3311sysfs_err:
3312 mutex_unlock(&dev_priv->perf.metrics_lock);
3313reg_err:
3314 put_oa_config(dev_priv, oa_config);
3315 DRM_DEBUG("Failed to add new OA config\n");
3316 return err;
3317}
3318
3319/**
3320 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3321 * @dev: drm device
3322 * @data: ioctl data (pointer to u64 integer) copied from userspace
3323 * @file: drm file
3324 *
3325 * Configs can be removed while being used, the will stop appearing in sysfs
3326 * and their content will be freed when the stream using the config is closed.
3327 *
3328 * Returns: 0 on success or a negative error code on failure.
3329 */
3330int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3331 struct drm_file *file)
3332{
3333 struct drm_i915_private *dev_priv = dev->dev_private;
3334 u64 *arg = data;
3335 struct i915_oa_config *oa_config;
3336 int ret;
3337
3338 if (!dev_priv->perf.initialized) {
3339 DRM_DEBUG("i915 perf interface not available for this system\n");
3340 return -ENOTSUPP;
3341 }
3342
3343 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3344 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3345 return -EACCES;
3346 }
3347
3348 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3349 if (ret)
3350 goto lock_err;
3351
3352 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3353 if (!oa_config) {
3354 DRM_DEBUG("Failed to remove unknown OA config\n");
3355 ret = -ENOENT;
3356 goto config_err;
3357 }
3358
3359 GEM_BUG_ON(*arg != oa_config->id);
3360
3361 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3362 &oa_config->sysfs_metric);
3363
3364 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3365 put_oa_config(dev_priv, oa_config);
3366
3367config_err:
3368 mutex_unlock(&dev_priv->perf.metrics_lock);
3369lock_err:
3370 return ret;
3371}
3372
ccdf6341
RB
3373static struct ctl_table oa_table[] = {
3374 {
3375 .procname = "perf_stream_paranoid",
3376 .data = &i915_perf_stream_paranoid,
3377 .maxlen = sizeof(i915_perf_stream_paranoid),
3378 .mode = 0644,
3379 .proc_handler = proc_dointvec_minmax,
3380 .extra1 = &zero,
3381 .extra2 = &one,
3382 },
00319ba0
RB
3383 {
3384 .procname = "oa_max_sample_rate",
3385 .data = &i915_oa_max_sample_rate,
3386 .maxlen = sizeof(i915_oa_max_sample_rate),
3387 .mode = 0644,
3388 .proc_handler = proc_dointvec_minmax,
3389 .extra1 = &zero,
3390 .extra2 = &oa_sample_rate_hard_limit,
3391 },
ccdf6341
RB
3392 {}
3393};
3394
3395static struct ctl_table i915_root[] = {
3396 {
3397 .procname = "i915",
3398 .maxlen = 0,
3399 .mode = 0555,
3400 .child = oa_table,
3401 },
3402 {}
3403};
3404
3405static struct ctl_table dev_root[] = {
3406 {
3407 .procname = "dev",
3408 .maxlen = 0,
3409 .mode = 0555,
3410 .child = i915_root,
3411 },
3412 {}
3413};
3414
16d98b31
RB
3415/**
3416 * i915_perf_init - initialize i915-perf state on module load
3417 * @dev_priv: i915 device instance
3418 *
3419 * Initializes i915-perf state without exposing anything to userspace.
3420 *
3421 * Note: i915-perf initialization is split into an 'init' and 'register'
3422 * phase with the i915_perf_register() exposing state to userspace.
3423 */
eec688e1
RB
3424void i915_perf_init(struct drm_i915_private *dev_priv)
3425{
19f81df2 3426 if (IS_HASWELL(dev_priv)) {
f89823c2
LL
3427 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3428 gen7_is_valid_b_counter_addr;
3429 dev_priv->perf.oa.ops.is_valid_mux_reg =
3430 hsw_is_valid_mux_addr;
3431 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
19f81df2
RB
3432 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3433 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3434 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3435 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3436 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3437 dev_priv->perf.oa.ops.read = gen7_oa_read;
3438 dev_priv->perf.oa.ops.oa_hw_tail_read =
3439 gen7_oa_hw_tail_read;
3440
3441 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
fb5c551a 3442 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
19f81df2
RB
3443 /* Note: that although we could theoretically also support the
3444 * legacy ringbuffer mode on BDW (and earlier iterations of
3445 * this driver, before upstreaming did this) it didn't seem
3446 * worth the complexity to maintain now that BDW+ enable
3447 * execlist mode by default.
3448 */
ba6b7c1a 3449 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
d7965152 3450
701f8231 3451 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
701f8231
LL
3452 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3453 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3454 dev_priv->perf.oa.ops.read = gen8_oa_read;
3455 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3456
ba6b7c1a
LL
3457 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3458 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3459 gen7_is_valid_b_counter_addr;
3460 dev_priv->perf.oa.ops.is_valid_mux_reg =
3461 gen8_is_valid_mux_addr;
3462 dev_priv->perf.oa.ops.is_valid_flex_reg =
3463 gen8_is_valid_flex_addr;
155e941f 3464
f89823c2
LL
3465 if (IS_CHERRYVIEW(dev_priv)) {
3466 dev_priv->perf.oa.ops.is_valid_mux_reg =
3467 chv_is_valid_mux_addr;
3468 }
155e941f 3469
ba6b7c1a
LL
3470 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3471 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3472
3473 if (IS_GEN8(dev_priv)) {
3474 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3475 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3476
3477 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3478 } else {
3479 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3480 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3481
3482 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3483 }
95690a02
LL
3484 } else if (IS_GEN10(dev_priv)) {
3485 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3486 gen7_is_valid_b_counter_addr;
3487 dev_priv->perf.oa.ops.is_valid_mux_reg =
3488 gen10_is_valid_mux_addr;
3489 dev_priv->perf.oa.ops.is_valid_flex_reg =
3490 gen8_is_valid_flex_addr;
3491
3492 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3493 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3494
19f81df2
RB
3495 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3496 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
155e941f 3497
19f81df2 3498 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
19f81df2 3499 }
19f81df2 3500 }
d7965152 3501
9f9b2792 3502 if (dev_priv->perf.oa.ops.enable_metric_set) {
19f81df2
RB
3503 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3504 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3505 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3506 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
d7965152 3507
19f81df2
RB
3508 INIT_LIST_HEAD(&dev_priv->perf.streams);
3509 mutex_init(&dev_priv->perf.lock);
19f81df2 3510 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
eec688e1 3511
9f9b2792
LL
3512 oa_sample_rate_hard_limit = 1000 *
3513 (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
19f81df2 3514 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
ccdf6341 3515
f89823c2
LL
3516 mutex_init(&dev_priv->perf.metrics_lock);
3517 idr_init(&dev_priv->perf.metrics_idr);
3518
19f81df2
RB
3519 dev_priv->perf.initialized = true;
3520 }
eec688e1
RB
3521}
3522
f89823c2
LL
3523static int destroy_config(int id, void *p, void *data)
3524{
3525 struct drm_i915_private *dev_priv = data;
3526 struct i915_oa_config *oa_config = p;
3527
3528 put_oa_config(dev_priv, oa_config);
3529
3530 return 0;
3531}
3532
16d98b31
RB
3533/**
3534 * i915_perf_fini - Counter part to i915_perf_init()
3535 * @dev_priv: i915 device instance
3536 */
eec688e1
RB
3537void i915_perf_fini(struct drm_i915_private *dev_priv)
3538{
3539 if (!dev_priv->perf.initialized)
3540 return;
3541
f89823c2
LL
3542 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3543 idr_destroy(&dev_priv->perf.metrics_idr);
3544
ccdf6341
RB
3545 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3546
d7965152 3547 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
19f81df2 3548
eec688e1
RB
3549 dev_priv->perf.initialized = false;
3550}