drm/i915/tgl: Do not apply WaIncreaseDefaultTLBEntries from GEN12 onwards
[linux-block.git] / drivers / gpu / drm / i915 / i915_perf.c
CommitLineData
eec688e1
RB
1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
7abbd8d6
RB
27
28/**
16d98b31 29 * DOC: i915 Perf Overview
7abbd8d6
RB
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
16d98b31
RB
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
7abbd8d6
RB
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
16d98b31
RB
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7abbd8d6
RB
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
16d98b31 142 * - As a side note on perf's grouping feature; there was also some concern
7abbd8d6
RB
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
eec688e1 194#include <linux/anon_inodes.h>
d7965152 195#include <linux/sizes.h>
f89823c2 196#include <linux/uuid.h>
eec688e1 197
10be98a7
CW
198#include "gem/i915_gem_context.h"
199#include "gem/i915_gem_pm.h"
112ed2d3
CW
200#include "gt/intel_lrc_reg.h"
201
eec688e1 202#include "i915_drv.h"
db94e9f1 203#include "i915_perf.h"
5ed7a0cf
MW
204#include "oa/i915_oa_hsw.h"
205#include "oa/i915_oa_bdw.h"
206#include "oa/i915_oa_chv.h"
207#include "oa/i915_oa_sklgt2.h"
208#include "oa/i915_oa_sklgt3.h"
209#include "oa/i915_oa_sklgt4.h"
210#include "oa/i915_oa_bxt.h"
211#include "oa/i915_oa_kblgt2.h"
212#include "oa/i915_oa_kblgt3.h"
213#include "oa/i915_oa_glk.h"
214#include "oa/i915_oa_cflgt2.h"
215#include "oa/i915_oa_cflgt3.h"
216#include "oa/i915_oa_cnl.h"
217#include "oa/i915_oa_icl.h"
d7965152 218
fe841686
JL
219/* HW requires this to be a power of two, between 128k and 16M, though driver
220 * is currently generally designed assuming the largest 16M size is used such
221 * that the overflow cases are unlikely in normal operation.
222 */
223#define OA_BUFFER_SIZE SZ_16M
224
225#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
d7965152 226
0dd860cf
RB
227/**
228 * DOC: OA Tail Pointer Race
229 *
230 * There's a HW race condition between OA unit tail pointer register updates and
d7965152 231 * writes to memory whereby the tail pointer can sometimes get ahead of what's
0dd860cf
RB
232 * been written out to the OA buffer so far (in terms of what's visible to the
233 * CPU).
234 *
235 * Although this can be observed explicitly while copying reports to userspace
236 * by checking for a zeroed report-id field in tail reports, we want to account
19f81df2 237 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
0dd860cf
RB
238 * read() attempts.
239 *
240 * In effect we define a tail pointer for reading that lags the real tail
241 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
242 * time for the corresponding reports to become visible to the CPU.
243 *
244 * To manage this we actually track two tail pointers:
245 * 1) An 'aging' tail with an associated timestamp that is tracked until we
246 * can trust the corresponding data is visible to the CPU; at which point
247 * it is considered 'aged'.
248 * 2) An 'aged' tail that can be used for read()ing.
d7965152 249 *
0dd860cf 250 * The two separate pointers let us decouple read()s from tail pointer aging.
d7965152 251 *
0dd860cf 252 * The tail pointers are checked and updated at a limited rate within a hrtimer
a9a08845 253 * callback (the same callback that is used for delivering EPOLLIN events)
d7965152 254 *
0dd860cf
RB
255 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
256 * indicates that an updated tail pointer is needed.
257 *
258 * Most of the implementation details for this workaround are in
19f81df2 259 * oa_buffer_check_unlocked() and _append_oa_reports()
0dd860cf
RB
260 *
261 * Note for posterity: previously the driver used to define an effective tail
262 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
263 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
264 * This was flawed considering that the OA unit may also automatically generate
265 * non-periodic reports (such as on context switch) or the OA unit may be
266 * enabled without any periodic sampling.
d7965152
RB
267 */
268#define OA_TAIL_MARGIN_NSEC 100000ULL
0dd860cf 269#define INVALID_TAIL_PTR 0xffffffff
d7965152
RB
270
271/* frequency for checking whether the OA unit has written new reports to the
272 * circular OA buffer...
273 */
274#define POLL_FREQUENCY 200
275#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
276
ccdf6341 277/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
ccdf6341
RB
278static u32 i915_perf_stream_paranoid = true;
279
d7965152
RB
280/* The maximum exponent the hardware accepts is 63 (essentially it selects one
281 * of the 64bit timestamp bits to trigger reports from) but there's currently
282 * no known use case for sampling as infrequently as once per 47 thousand years.
283 *
284 * Since the timestamps included in OA reports are only 32bits it seems
285 * reasonable to limit the OA exponent where it's still possible to account for
286 * overflow in OA report timestamps.
287 */
288#define OA_EXPONENT_MAX 31
289
290#define INVALID_CTX_ID 0xffffffff
291
19f81df2
RB
292/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
293#define OAREPORT_REASON_MASK 0x3f
294#define OAREPORT_REASON_SHIFT 19
295#define OAREPORT_REASON_TIMER (1<<0)
296#define OAREPORT_REASON_CTX_SWITCH (1<<3)
297#define OAREPORT_REASON_CLK_RATIO (1<<5)
298
d7965152 299
00319ba0
RB
300/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
301 *
155e941f
RB
302 * The highest sampling frequency we can theoretically program the OA unit
303 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
304 *
305 * Initialized just before we register the sysctl parameter.
00319ba0 306 */
155e941f 307static int oa_sample_rate_hard_limit;
00319ba0
RB
308
309/* Theoretically we can program the OA unit to sample every 160ns but don't
310 * allow that by default unless root...
311 *
312 * The default threshold of 100000Hz is based on perf's similar
313 * kernel.perf_event_max_sample_rate sysctl parameter.
314 */
315static u32 i915_oa_max_sample_rate = 100000;
316
d7965152
RB
317/* XXX: beware if future OA HW adds new report formats that the current
318 * code assumes all reports have a power-of-two size and ~(size - 1) can
319 * be used as a mask to align the OA tail pointer.
320 */
6ebb6d8e 321static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
d7965152
RB
322 [I915_OA_FORMAT_A13] = { 0, 64 },
323 [I915_OA_FORMAT_A29] = { 1, 128 },
324 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
325 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
326 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
327 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
328 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
329 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
330};
331
6ebb6d8e 332static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
19f81df2
RB
333 [I915_OA_FORMAT_A12] = { 0, 64 },
334 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
335 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
336 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
337};
338
d7965152 339#define SAMPLE_OA_REPORT (1<<0)
eec688e1 340
16d98b31
RB
341/**
342 * struct perf_open_properties - for validated properties given to open a stream
343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344 * @single_context: Whether a single or all gpu contexts should be monitored
345 * @ctx_handle: A gem ctx handle for use with @single_context
346 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
347 * @oa_format: An OA unit HW report format
348 * @oa_periodic: Whether to enable periodic OA unit sampling
349 * @oa_period_exponent: The OA unit sampling period is derived from this
350 *
351 * As read_properties_unlocked() enumerates and validates the properties given
352 * to open a stream of metrics the configuration is built up in the structure
353 * which starts out zero initialized.
354 */
eec688e1
RB
355struct perf_open_properties {
356 u32 sample_flags;
357
358 u64 single_context:1;
359 u64 ctx_handle;
d7965152
RB
360
361 /* OA sampling state */
362 int metrics_set;
363 int oa_format;
364 bool oa_periodic;
365 int oa_period_exponent;
366};
367
a37f08a8
UNR
368static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
369
f89823c2
LL
370static void free_oa_config(struct drm_i915_private *dev_priv,
371 struct i915_oa_config *oa_config)
372{
373 if (!PTR_ERR(oa_config->flex_regs))
374 kfree(oa_config->flex_regs);
375 if (!PTR_ERR(oa_config->b_counter_regs))
376 kfree(oa_config->b_counter_regs);
377 if (!PTR_ERR(oa_config->mux_regs))
378 kfree(oa_config->mux_regs);
379 kfree(oa_config);
380}
381
382static void put_oa_config(struct drm_i915_private *dev_priv,
383 struct i915_oa_config *oa_config)
384{
385 if (!atomic_dec_and_test(&oa_config->ref_count))
386 return;
387
388 free_oa_config(dev_priv, oa_config);
389}
390
391static int get_oa_config(struct drm_i915_private *dev_priv,
392 int metrics_set,
393 struct i915_oa_config **out_config)
394{
395 int ret;
396
397 if (metrics_set == 1) {
a37f08a8
UNR
398 *out_config = &dev_priv->perf.test_config;
399 atomic_inc(&dev_priv->perf.test_config.ref_count);
f89823c2
LL
400 return 0;
401 }
402
403 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
404 if (ret)
405 return ret;
406
407 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
408 if (!*out_config)
409 ret = -EINVAL;
410 else
411 atomic_inc(&(*out_config)->ref_count);
412
413 mutex_unlock(&dev_priv->perf.metrics_lock);
414
415 return ret;
416}
417
a37f08a8 418static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
19f81df2 419{
a37f08a8
UNR
420 struct drm_i915_private *dev_priv = stream->dev_priv;
421
19f81df2
RB
422 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
423}
424
a37f08a8 425static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
19f81df2 426{
a37f08a8 427 struct drm_i915_private *dev_priv = stream->dev_priv;
19f81df2
RB
428 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
429
430 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
431}
432
0dd860cf 433/**
19f81df2 434 * oa_buffer_check_unlocked - check for data and update tail ptr state
a37f08a8 435 * @stream: i915 stream instance
d7965152 436 *
0dd860cf
RB
437 * This is either called via fops (for blocking reads in user ctx) or the poll
438 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
439 * if there is data available for userspace to read.
d7965152 440 *
0dd860cf
RB
441 * This function is central to providing a workaround for the OA unit tail
442 * pointer having a race with respect to what data is visible to the CPU.
443 * It is responsible for reading tail pointers from the hardware and giving
444 * the pointers time to 'age' before they are made available for reading.
445 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
446 *
447 * Besides returning true when there is data available to read() this function
448 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
449 * and .aged_tail_idx state used for reading.
450 *
451 * Note: It's safe to read OA config state here unlocked, assuming that this is
452 * only called while the stream is enabled, while the global OA configuration
453 * can't be modified.
454 *
455 * Returns: %true if the OA buffer contains data, else %false
d7965152 456 */
a37f08a8 457static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
d7965152 458{
a37f08a8
UNR
459 struct drm_i915_private *dev_priv = stream->dev_priv;
460 int report_size = stream->oa_buffer.format_size;
0dd860cf
RB
461 unsigned long flags;
462 unsigned int aged_idx;
0dd860cf
RB
463 u32 head, hw_tail, aged_tail, aging_tail;
464 u64 now;
465
466 /* We have to consider the (unlikely) possibility that read() errors
467 * could result in an OA buffer reset which might reset the head,
468 * tails[] and aged_tail state.
469 */
a37f08a8 470 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
0dd860cf
RB
471
472 /* NB: The head we observe here might effectively be a little out of
473 * date (between head and tails[aged_idx].offset if there is currently
474 * a read() in progress.
475 */
a37f08a8 476 head = stream->oa_buffer.head;
0dd860cf 477
a37f08a8
UNR
478 aged_idx = stream->oa_buffer.aged_tail_idx;
479 aged_tail = stream->oa_buffer.tails[aged_idx].offset;
480 aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
0dd860cf 481
a37f08a8 482 hw_tail = dev_priv->perf.ops.oa_hw_tail_read(stream);
0dd860cf
RB
483
484 /* The tail pointer increases in 64 byte increments,
485 * not in report_size steps...
486 */
487 hw_tail &= ~(report_size - 1);
488
489 now = ktime_get_mono_fast_ns();
490
4117ebc7
RB
491 /* Update the aged tail
492 *
493 * Flip the tail pointer available for read()s once the aging tail is
494 * old enough to trust that the corresponding data will be visible to
495 * the CPU...
496 *
497 * Do this before updating the aging pointer in case we may be able to
498 * immediately start aging a new pointer too (if new data has become
499 * available) without needing to wait for a later hrtimer callback.
500 */
501 if (aging_tail != INVALID_TAIL_PTR &&
a37f08a8 502 ((now - stream->oa_buffer.aging_timestamp) >
4117ebc7 503 OA_TAIL_MARGIN_NSEC)) {
19f81df2 504
4117ebc7 505 aged_idx ^= 1;
a37f08a8 506 stream->oa_buffer.aged_tail_idx = aged_idx;
4117ebc7
RB
507
508 aged_tail = aging_tail;
509
510 /* Mark that we need a new pointer to start aging... */
a37f08a8 511 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
4117ebc7
RB
512 aging_tail = INVALID_TAIL_PTR;
513 }
514
0dd860cf
RB
515 /* Update the aging tail
516 *
517 * We throttle aging tail updates until we have a new tail that
518 * represents >= one report more data than is already available for
519 * reading. This ensures there will be enough data for a successful
520 * read once this new pointer has aged and ensures we will give the new
521 * pointer time to age.
522 */
523 if (aging_tail == INVALID_TAIL_PTR &&
524 (aged_tail == INVALID_TAIL_PTR ||
525 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
a37f08a8 526 struct i915_vma *vma = stream->oa_buffer.vma;
0dd860cf
RB
527 u32 gtt_offset = i915_ggtt_offset(vma);
528
529 /* Be paranoid and do a bounds check on the pointer read back
530 * from hardware, just in case some spurious hardware condition
531 * could put the tail out of bounds...
532 */
533 if (hw_tail >= gtt_offset &&
fe841686 534 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
a37f08a8 535 stream->oa_buffer.tails[!aged_idx].offset =
0dd860cf 536 aging_tail = hw_tail;
a37f08a8 537 stream->oa_buffer.aging_timestamp = now;
0dd860cf
RB
538 } else {
539 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
540 hw_tail);
541 }
542 }
543
a37f08a8 544 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
0dd860cf
RB
545
546 return aged_tail == INVALID_TAIL_PTR ?
547 false : OA_TAKEN(aged_tail, head) >= report_size;
d7965152
RB
548}
549
550/**
16d98b31
RB
551 * append_oa_status - Appends a status record to a userspace read() buffer.
552 * @stream: An i915-perf stream opened for OA metrics
553 * @buf: destination buffer given by userspace
554 * @count: the number of bytes userspace wants to read
555 * @offset: (inout): the current position for writing into @buf
556 * @type: The kind of status to report to userspace
557 *
558 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
559 * into the userspace read() buffer.
560 *
561 * The @buf @offset will only be updated on success.
562 *
563 * Returns: 0 on success, negative error code on failure.
d7965152
RB
564 */
565static int append_oa_status(struct i915_perf_stream *stream,
566 char __user *buf,
567 size_t count,
568 size_t *offset,
569 enum drm_i915_perf_record_type type)
570{
571 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
572
573 if ((count - *offset) < header.size)
574 return -ENOSPC;
575
576 if (copy_to_user(buf + *offset, &header, sizeof(header)))
577 return -EFAULT;
578
579 (*offset) += header.size;
580
581 return 0;
582}
583
584/**
16d98b31
RB
585 * append_oa_sample - Copies single OA report into userspace read() buffer.
586 * @stream: An i915-perf stream opened for OA metrics
587 * @buf: destination buffer given by userspace
588 * @count: the number of bytes userspace wants to read
589 * @offset: (inout): the current position for writing into @buf
590 * @report: A single OA report to (optionally) include as part of the sample
591 *
592 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
593 * properties when opening a stream, tracked as `stream->sample_flags`. This
594 * function copies the requested components of a single sample to the given
595 * read() @buf.
596 *
597 * The @buf @offset will only be updated on success.
598 *
599 * Returns: 0 on success, negative error code on failure.
d7965152
RB
600 */
601static int append_oa_sample(struct i915_perf_stream *stream,
602 char __user *buf,
603 size_t count,
604 size_t *offset,
605 const u8 *report)
606{
a37f08a8 607 int report_size = stream->oa_buffer.format_size;
d7965152
RB
608 struct drm_i915_perf_record_header header;
609 u32 sample_flags = stream->sample_flags;
610
611 header.type = DRM_I915_PERF_RECORD_SAMPLE;
612 header.pad = 0;
613 header.size = stream->sample_size;
614
615 if ((count - *offset) < header.size)
616 return -ENOSPC;
617
618 buf += *offset;
619 if (copy_to_user(buf, &header, sizeof(header)))
620 return -EFAULT;
621 buf += sizeof(header);
622
623 if (sample_flags & SAMPLE_OA_REPORT) {
624 if (copy_to_user(buf, report, report_size))
625 return -EFAULT;
626 }
627
628 (*offset) += header.size;
629
630 return 0;
631}
632
19f81df2
RB
633/**
634 * Copies all buffered OA reports into userspace read() buffer.
635 * @stream: An i915-perf stream opened for OA metrics
636 * @buf: destination buffer given by userspace
637 * @count: the number of bytes userspace wants to read
638 * @offset: (inout): the current position for writing into @buf
639 *
640 * Notably any error condition resulting in a short read (-%ENOSPC or
641 * -%EFAULT) will be returned even though one or more records may
642 * have been successfully copied. In this case it's up to the caller
643 * to decide if the error should be squashed before returning to
644 * userspace.
645 *
646 * Note: reports are consumed from the head, and appended to the
647 * tail, so the tail chases the head?... If you think that's mad
648 * and back-to-front you're not alone, but this follows the
649 * Gen PRM naming convention.
650 *
651 * Returns: 0 on success, negative error code on failure.
652 */
653static int gen8_append_oa_reports(struct i915_perf_stream *stream,
654 char __user *buf,
655 size_t count,
656 size_t *offset)
657{
658 struct drm_i915_private *dev_priv = stream->dev_priv;
a37f08a8
UNR
659 int report_size = stream->oa_buffer.format_size;
660 u8 *oa_buf_base = stream->oa_buffer.vaddr;
661 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
fe841686 662 u32 mask = (OA_BUFFER_SIZE - 1);
19f81df2
RB
663 size_t start_offset = *offset;
664 unsigned long flags;
665 unsigned int aged_tail_idx;
666 u32 head, tail;
667 u32 taken;
668 int ret = 0;
669
670 if (WARN_ON(!stream->enabled))
671 return -EIO;
672
a37f08a8 673 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
19f81df2 674
a37f08a8
UNR
675 head = stream->oa_buffer.head;
676 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
677 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
19f81df2 678
a37f08a8 679 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
680
681 /*
682 * An invalid tail pointer here means we're still waiting for the poll
683 * hrtimer callback to give us a pointer
684 */
685 if (tail == INVALID_TAIL_PTR)
686 return -EAGAIN;
687
688 /*
689 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
690 * while indexing relative to oa_buf_base.
691 */
692 head -= gtt_offset;
693 tail -= gtt_offset;
694
695 /*
696 * An out of bounds or misaligned head or tail pointer implies a driver
697 * bug since we validate + align the tail pointers we read from the
698 * hardware and we are in full control of the head pointer which should
699 * only be incremented by multiples of the report size (notably also
700 * all a power of two).
701 */
fe841686
JL
702 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
703 tail > OA_BUFFER_SIZE || tail % report_size,
19f81df2
RB
704 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
705 head, tail))
706 return -EIO;
707
708
709 for (/* none */;
710 (taken = OA_TAKEN(tail, head));
711 head = (head + report_size) & mask) {
712 u8 *report = oa_buf_base + head;
713 u32 *report32 = (void *)report;
714 u32 ctx_id;
715 u32 reason;
716
717 /*
718 * All the report sizes factor neatly into the buffer
719 * size so we never expect to see a report split
720 * between the beginning and end of the buffer.
721 *
722 * Given the initial alignment check a misalignment
723 * here would imply a driver bug that would result
724 * in an overrun.
725 */
fe841686 726 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
19f81df2
RB
727 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
728 break;
729 }
730
731 /*
732 * The reason field includes flags identifying what
733 * triggered this specific report (mostly timer
734 * triggered or e.g. due to a context switch).
735 *
736 * This field is never expected to be zero so we can
737 * check that the report isn't invalid before copying
738 * it to userspace...
739 */
740 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
741 OAREPORT_REASON_MASK);
742 if (reason == 0) {
a37f08a8 743 if (__ratelimit(&dev_priv->perf.spurious_report_rs))
19f81df2
RB
744 DRM_NOTE("Skipping spurious, invalid OA report\n");
745 continue;
746 }
747
a37f08a8 748 ctx_id = report32[2] & stream->specific_ctx_id_mask;
19f81df2
RB
749
750 /*
751 * Squash whatever is in the CTX_ID field if it's marked as
752 * invalid to be sure we avoid false-positive, single-context
753 * filtering below...
754 *
755 * Note: that we don't clear the valid_ctx_bit so userspace can
756 * understand that the ID has been squashed by the kernel.
757 */
a37f08a8 758 if (!(report32[0] & dev_priv->perf.gen8_valid_ctx_bit))
19f81df2
RB
759 ctx_id = report32[2] = INVALID_CTX_ID;
760
761 /*
762 * NB: For Gen 8 the OA unit no longer supports clock gating
763 * off for a specific context and the kernel can't securely
764 * stop the counters from updating as system-wide / global
765 * values.
766 *
767 * Automatic reports now include a context ID so reports can be
768 * filtered on the cpu but it's not worth trying to
769 * automatically subtract/hide counter progress for other
770 * contexts while filtering since we can't stop userspace
771 * issuing MI_REPORT_PERF_COUNT commands which would still
772 * provide a side-band view of the real values.
773 *
774 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
775 * to normalize counters for a single filtered context then it
776 * needs be forwarded bookend context-switch reports so that it
777 * can track switches in between MI_REPORT_PERF_COUNT commands
778 * and can itself subtract/ignore the progress of counters
779 * associated with other contexts. Note that the hardware
780 * automatically triggers reports when switching to a new
781 * context which are tagged with the ID of the newly active
782 * context. To avoid the complexity (and likely fragility) of
783 * reading ahead while parsing reports to try and minimize
784 * forwarding redundant context switch reports (i.e. between
785 * other, unrelated contexts) we simply elect to forward them
786 * all.
787 *
788 * We don't rely solely on the reason field to identify context
789 * switches since it's not-uncommon for periodic samples to
790 * identify a switch before any 'context switch' report.
791 */
a37f08a8
UNR
792 if (!dev_priv->perf.exclusive_stream->ctx ||
793 stream->specific_ctx_id == ctx_id ||
794 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
19f81df2
RB
795 reason & OAREPORT_REASON_CTX_SWITCH) {
796
797 /*
798 * While filtering for a single context we avoid
799 * leaking the IDs of other contexts.
800 */
a37f08a8
UNR
801 if (dev_priv->perf.exclusive_stream->ctx &&
802 stream->specific_ctx_id != ctx_id) {
19f81df2
RB
803 report32[2] = INVALID_CTX_ID;
804 }
805
806 ret = append_oa_sample(stream, buf, count, offset,
807 report);
808 if (ret)
809 break;
810
a37f08a8 811 stream->oa_buffer.last_ctx_id = ctx_id;
19f81df2
RB
812 }
813
814 /*
815 * The above reason field sanity check is based on
816 * the assumption that the OA buffer is initially
817 * zeroed and we reset the field after copying so the
818 * check is still meaningful once old reports start
819 * being overwritten.
820 */
821 report32[0] = 0;
822 }
823
824 if (start_offset != *offset) {
a37f08a8 825 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
826
827 /*
828 * We removed the gtt_offset for the copy loop above, indexing
829 * relative to oa_buf_base so put back here...
830 */
831 head += gtt_offset;
832
833 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
a37f08a8 834 stream->oa_buffer.head = head;
19f81df2 835
a37f08a8 836 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
837 }
838
839 return ret;
840}
841
842/**
843 * gen8_oa_read - copy status records then buffered OA reports
844 * @stream: An i915-perf stream opened for OA metrics
845 * @buf: destination buffer given by userspace
846 * @count: the number of bytes userspace wants to read
847 * @offset: (inout): the current position for writing into @buf
848 *
849 * Checks OA unit status registers and if necessary appends corresponding
850 * status records for userspace (such as for a buffer full condition) and then
851 * initiate appending any buffered OA reports.
852 *
853 * Updates @offset according to the number of bytes successfully copied into
854 * the userspace buffer.
855 *
856 * NB: some data may be successfully copied to the userspace buffer
857 * even if an error is returned, and this is reflected in the
858 * updated @offset.
859 *
860 * Returns: zero on success or a negative error code
861 */
862static int gen8_oa_read(struct i915_perf_stream *stream,
863 char __user *buf,
864 size_t count,
865 size_t *offset)
866{
867 struct drm_i915_private *dev_priv = stream->dev_priv;
868 u32 oastatus;
869 int ret;
870
a37f08a8 871 if (WARN_ON(!stream->oa_buffer.vaddr))
19f81df2
RB
872 return -EIO;
873
874 oastatus = I915_READ(GEN8_OASTATUS);
875
876 /*
877 * We treat OABUFFER_OVERFLOW as a significant error:
878 *
879 * Although theoretically we could handle this more gracefully
880 * sometimes, some Gens don't correctly suppress certain
881 * automatically triggered reports in this condition and so we
882 * have to assume that old reports are now being trampled
883 * over.
fe841686
JL
884 *
885 * Considering how we don't currently give userspace control
886 * over the OA buffer size and always configure a large 16MB
887 * buffer, then a buffer overflow does anyway likely indicate
888 * that something has gone quite badly wrong.
19f81df2
RB
889 */
890 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
891 ret = append_oa_status(stream, buf, count, offset,
892 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
893 if (ret)
894 return ret;
895
896 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
a37f08a8 897 stream->period_exponent);
19f81df2 898
a37f08a8
UNR
899 dev_priv->perf.ops.oa_disable(stream);
900 dev_priv->perf.ops.oa_enable(stream);
19f81df2
RB
901
902 /*
903 * Note: .oa_enable() is expected to re-init the oabuffer and
904 * reset GEN8_OASTATUS for us
905 */
906 oastatus = I915_READ(GEN8_OASTATUS);
907 }
908
909 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
910 ret = append_oa_status(stream, buf, count, offset,
911 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
912 if (ret)
913 return ret;
914 I915_WRITE(GEN8_OASTATUS,
915 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
916 }
917
918 return gen8_append_oa_reports(stream, buf, count, offset);
919}
920
d7965152
RB
921/**
922 * Copies all buffered OA reports into userspace read() buffer.
923 * @stream: An i915-perf stream opened for OA metrics
924 * @buf: destination buffer given by userspace
925 * @count: the number of bytes userspace wants to read
926 * @offset: (inout): the current position for writing into @buf
d7965152 927 *
16d98b31
RB
928 * Notably any error condition resulting in a short read (-%ENOSPC or
929 * -%EFAULT) will be returned even though one or more records may
d7965152
RB
930 * have been successfully copied. In this case it's up to the caller
931 * to decide if the error should be squashed before returning to
932 * userspace.
933 *
934 * Note: reports are consumed from the head, and appended to the
e81b3a55 935 * tail, so the tail chases the head?... If you think that's mad
d7965152
RB
936 * and back-to-front you're not alone, but this follows the
937 * Gen PRM naming convention.
16d98b31
RB
938 *
939 * Returns: 0 on success, negative error code on failure.
d7965152
RB
940 */
941static int gen7_append_oa_reports(struct i915_perf_stream *stream,
942 char __user *buf,
943 size_t count,
3bb335c1 944 size_t *offset)
d7965152
RB
945{
946 struct drm_i915_private *dev_priv = stream->dev_priv;
a37f08a8
UNR
947 int report_size = stream->oa_buffer.format_size;
948 u8 *oa_buf_base = stream->oa_buffer.vaddr;
949 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
fe841686 950 u32 mask = (OA_BUFFER_SIZE - 1);
3bb335c1 951 size_t start_offset = *offset;
0dd860cf
RB
952 unsigned long flags;
953 unsigned int aged_tail_idx;
954 u32 head, tail;
d7965152
RB
955 u32 taken;
956 int ret = 0;
957
958 if (WARN_ON(!stream->enabled))
959 return -EIO;
960
a37f08a8 961 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
f279020a 962
a37f08a8
UNR
963 head = stream->oa_buffer.head;
964 aged_tail_idx = stream->oa_buffer.aged_tail_idx;
965 tail = stream->oa_buffer.tails[aged_tail_idx].offset;
f279020a 966
a37f08a8 967 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
d7965152 968
0dd860cf
RB
969 /* An invalid tail pointer here means we're still waiting for the poll
970 * hrtimer callback to give us a pointer
d7965152 971 */
0dd860cf
RB
972 if (tail == INVALID_TAIL_PTR)
973 return -EAGAIN;
d7965152 974
0dd860cf
RB
975 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
976 * while indexing relative to oa_buf_base.
d7965152 977 */
0dd860cf
RB
978 head -= gtt_offset;
979 tail -= gtt_offset;
d7965152 980
0dd860cf
RB
981 /* An out of bounds or misaligned head or tail pointer implies a driver
982 * bug since we validate + align the tail pointers we read from the
983 * hardware and we are in full control of the head pointer which should
984 * only be incremented by multiples of the report size (notably also
985 * all a power of two).
d7965152 986 */
fe841686
JL
987 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
988 tail > OA_BUFFER_SIZE || tail % report_size,
0dd860cf
RB
989 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
990 head, tail))
991 return -EIO;
d7965152 992
d7965152
RB
993
994 for (/* none */;
995 (taken = OA_TAKEN(tail, head));
996 head = (head + report_size) & mask) {
997 u8 *report = oa_buf_base + head;
998 u32 *report32 = (void *)report;
999
1000 /* All the report sizes factor neatly into the buffer
1001 * size so we never expect to see a report split
1002 * between the beginning and end of the buffer.
1003 *
1004 * Given the initial alignment check a misalignment
1005 * here would imply a driver bug that would result
1006 * in an overrun.
1007 */
fe841686 1008 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
d7965152
RB
1009 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1010 break;
1011 }
1012
1013 /* The report-ID field for periodic samples includes
1014 * some undocumented flags related to what triggered
1015 * the report and is never expected to be zero so we
1016 * can check that the report isn't invalid before
1017 * copying it to userspace...
1018 */
1019 if (report32[0] == 0) {
a37f08a8 1020 if (__ratelimit(&dev_priv->perf.spurious_report_rs))
712122ea 1021 DRM_NOTE("Skipping spurious, invalid OA report\n");
d7965152
RB
1022 continue;
1023 }
1024
1025 ret = append_oa_sample(stream, buf, count, offset, report);
1026 if (ret)
1027 break;
1028
1029 /* The above report-id field sanity check is based on
1030 * the assumption that the OA buffer is initially
1031 * zeroed and we reset the field after copying so the
1032 * check is still meaningful once old reports start
1033 * being overwritten.
1034 */
1035 report32[0] = 0;
1036 }
1037
3bb335c1 1038 if (start_offset != *offset) {
a37f08a8 1039 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
0dd860cf 1040
3bb335c1
RB
1041 /* We removed the gtt_offset for the copy loop above, indexing
1042 * relative to oa_buf_base so put back here...
1043 */
1044 head += gtt_offset;
1045
1046 I915_WRITE(GEN7_OASTATUS2,
1047 ((head & GEN7_OASTATUS2_HEAD_MASK) |
b82ed43d 1048 GEN7_OASTATUS2_MEM_SELECT_GGTT));
a37f08a8 1049 stream->oa_buffer.head = head;
0dd860cf 1050
a37f08a8 1051 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
3bb335c1 1052 }
d7965152
RB
1053
1054 return ret;
1055}
1056
16d98b31
RB
1057/**
1058 * gen7_oa_read - copy status records then buffered OA reports
1059 * @stream: An i915-perf stream opened for OA metrics
1060 * @buf: destination buffer given by userspace
1061 * @count: the number of bytes userspace wants to read
1062 * @offset: (inout): the current position for writing into @buf
1063 *
1064 * Checks Gen 7 specific OA unit status registers and if necessary appends
1065 * corresponding status records for userspace (such as for a buffer full
1066 * condition) and then initiate appending any buffered OA reports.
1067 *
1068 * Updates @offset according to the number of bytes successfully copied into
1069 * the userspace buffer.
1070 *
1071 * Returns: zero on success or a negative error code
1072 */
d7965152
RB
1073static int gen7_oa_read(struct i915_perf_stream *stream,
1074 char __user *buf,
1075 size_t count,
1076 size_t *offset)
1077{
1078 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152 1079 u32 oastatus1;
d7965152
RB
1080 int ret;
1081
a37f08a8 1082 if (WARN_ON(!stream->oa_buffer.vaddr))
d7965152
RB
1083 return -EIO;
1084
d7965152
RB
1085 oastatus1 = I915_READ(GEN7_OASTATUS1);
1086
d7965152
RB
1087 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1088 * bits while the OA unit is enabled (while the tail pointer
1089 * may be updated asynchronously) so we ignore status bits
1090 * that have already been reported to userspace.
1091 */
a37f08a8 1092 oastatus1 &= ~dev_priv->perf.gen7_latched_oastatus1;
d7965152
RB
1093
1094 /* We treat OABUFFER_OVERFLOW as a significant error:
1095 *
1096 * - The status can be interpreted to mean that the buffer is
1097 * currently full (with a higher precedence than OA_TAKEN()
1098 * which will start to report a near-empty buffer after an
1099 * overflow) but it's awkward that we can't clear the status
1100 * on Haswell, so without a reset we won't be able to catch
1101 * the state again.
1102 *
1103 * - Since it also implies the HW has started overwriting old
1104 * reports it may also affect our sanity checks for invalid
1105 * reports when copying to userspace that assume new reports
1106 * are being written to cleared memory.
1107 *
1108 * - In the future we may want to introduce a flight recorder
1109 * mode where the driver will automatically maintain a safe
1110 * guard band between head/tail, avoiding this overflow
1111 * condition, but we avoid the added driver complexity for
1112 * now.
1113 */
1114 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1115 ret = append_oa_status(stream, buf, count, offset,
1116 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1117 if (ret)
1118 return ret;
1119
19f81df2 1120 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
a37f08a8 1121 stream->period_exponent);
d7965152 1122
a37f08a8
UNR
1123 dev_priv->perf.ops.oa_disable(stream);
1124 dev_priv->perf.ops.oa_enable(stream);
d7965152 1125
d7965152 1126 oastatus1 = I915_READ(GEN7_OASTATUS1);
d7965152
RB
1127 }
1128
1129 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1130 ret = append_oa_status(stream, buf, count, offset,
1131 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1132 if (ret)
1133 return ret;
a37f08a8 1134 dev_priv->perf.gen7_latched_oastatus1 |=
d7965152
RB
1135 GEN7_OASTATUS1_REPORT_LOST;
1136 }
1137
3bb335c1 1138 return gen7_append_oa_reports(stream, buf, count, offset);
d7965152
RB
1139}
1140
16d98b31
RB
1141/**
1142 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1143 * @stream: An i915-perf stream opened for OA metrics
1144 *
1145 * Called when userspace tries to read() from a blocking stream FD opened
1146 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1147 * OA buffer and wakes us.
1148 *
1149 * Note: it's acceptable to have this return with some false positives
1150 * since any subsequent read handling will return -EAGAIN if there isn't
1151 * really data ready for userspace yet.
1152 *
1153 * Returns: zero on success or a negative error code
1154 */
d7965152
RB
1155static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1156{
d7965152 1157 /* We would wait indefinitely if periodic sampling is not enabled */
a37f08a8 1158 if (!stream->periodic)
d7965152
RB
1159 return -EIO;
1160
a37f08a8
UNR
1161 return wait_event_interruptible(stream->poll_wq,
1162 oa_buffer_check_unlocked(stream));
d7965152
RB
1163}
1164
16d98b31
RB
1165/**
1166 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1167 * @stream: An i915-perf stream opened for OA metrics
1168 * @file: An i915 perf stream file
1169 * @wait: poll() state table
1170 *
1171 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1172 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1173 * when it sees data ready to read in the circular OA buffer.
1174 */
d7965152
RB
1175static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1176 struct file *file,
1177 poll_table *wait)
1178{
a37f08a8 1179 poll_wait(file, &stream->poll_wq, wait);
d7965152
RB
1180}
1181
16d98b31
RB
1182/**
1183 * i915_oa_read - just calls through to &i915_oa_ops->read
1184 * @stream: An i915-perf stream opened for OA metrics
1185 * @buf: destination buffer given by userspace
1186 * @count: the number of bytes userspace wants to read
1187 * @offset: (inout): the current position for writing into @buf
1188 *
1189 * Updates @offset according to the number of bytes successfully copied into
1190 * the userspace buffer.
1191 *
1192 * Returns: zero on success or a negative error code
1193 */
d7965152
RB
1194static int i915_oa_read(struct i915_perf_stream *stream,
1195 char __user *buf,
1196 size_t count,
1197 size_t *offset)
1198{
1199 struct drm_i915_private *dev_priv = stream->dev_priv;
1200
a37f08a8 1201 return dev_priv->perf.ops.read(stream, buf, count, offset);
d7965152
RB
1202}
1203
a37f08a8 1204static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
61d5676b 1205{
5e2a0419 1206 struct i915_gem_engines_iter it;
a37f08a8
UNR
1207 struct drm_i915_private *i915 = stream->dev_priv;
1208 struct i915_gem_context *ctx = stream->ctx;
61d5676b 1209 struct intel_context *ce;
fa9f6681 1210 int err;
61d5676b 1211
fa9f6681 1212 err = i915_mutex_lock_interruptible(&i915->drm);
5e2a0419 1213 if (err)
fa9f6681 1214 return ERR_PTR(err);
5e2a0419
CW
1215
1216 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1217 if (ce->engine->class != RENDER_CLASS)
1218 continue;
1219
1220 /*
1221 * As the ID is the gtt offset of the context's vma we
1222 * pin the vma to ensure the ID remains fixed.
1223 */
1224 err = intel_context_pin(ce);
1225 if (err == 0) {
a37f08a8 1226 stream->pinned_ctx = ce;
5e2a0419
CW
1227 break;
1228 }
fa9f6681 1229 }
5e2a0419 1230 i915_gem_context_unlock_engines(ctx);
61d5676b 1231
61d5676b 1232 mutex_unlock(&i915->drm.struct_mutex);
fa9f6681
CW
1233 if (err)
1234 return ERR_PTR(err);
61d5676b 1235
a37f08a8 1236 return stream->pinned_ctx;
61d5676b
LL
1237}
1238
16d98b31
RB
1239/**
1240 * oa_get_render_ctx_id - determine and hold ctx hw id
1241 * @stream: An i915-perf stream opened for OA metrics
1242 *
1243 * Determine the render context hw id, and ensure it remains fixed for the
d7965152
RB
1244 * lifetime of the stream. This ensures that we don't have to worry about
1245 * updating the context ID in OACONTROL on the fly.
16d98b31
RB
1246 *
1247 * Returns: zero on success or a negative error code
d7965152
RB
1248 */
1249static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1250{
61d5676b
LL
1251 struct drm_i915_private *i915 = stream->dev_priv;
1252 struct intel_context *ce;
d7965152 1253
a37f08a8 1254 ce = oa_pin_context(stream);
61d5676b
LL
1255 if (IS_ERR(ce))
1256 return PTR_ERR(ce);
19f81df2 1257
61d5676b
LL
1258 switch (INTEL_GEN(i915)) {
1259 case 7: {
19f81df2 1260 /*
61d5676b
LL
1261 * On Haswell we don't do any post processing of the reports
1262 * and don't need to use the mask.
19f81df2 1263 */
a37f08a8
UNR
1264 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1265 stream->specific_ctx_id_mask = 0;
61d5676b
LL
1266 break;
1267 }
d7965152 1268
61d5676b
LL
1269 case 8:
1270 case 9:
1271 case 10:
1272 if (USES_GUC_SUBMISSION(i915)) {
1273 /*
1274 * When using GuC, the context descriptor we write in
1275 * i915 is read by GuC and rewritten before it's
1276 * actually written into the hardware. The LRCA is
1277 * what is put into the context id field of the
1278 * context descriptor by GuC. Because it's aligned to
1279 * a page, the lower 12bits are always at 0 and
1280 * dropped by GuC. They won't be part of the context
1281 * ID in the OA reports, so squash those lower bits.
1282 */
a37f08a8 1283 stream->specific_ctx_id =
61d5676b 1284 lower_32_bits(ce->lrc_desc) >> 12;
19f81df2 1285
61d5676b
LL
1286 /*
1287 * GuC uses the top bit to signal proxy submission, so
1288 * ignore that bit.
1289 */
a37f08a8 1290 stream->specific_ctx_id_mask =
61d5676b
LL
1291 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1292 } else {
a37f08a8 1293 stream->specific_ctx_id_mask =
61d5676b 1294 (1U << GEN8_CTX_ID_WIDTH) - 1;
a37f08a8 1295 stream->specific_ctx_id =
9904b156 1296 upper_32_bits(ce->lrc_desc);
a37f08a8
UNR
1297 stream->specific_ctx_id &=
1298 stream->specific_ctx_id_mask;
61d5676b
LL
1299 }
1300 break;
1301
1302 case 11: {
a37f08a8 1303 stream->specific_ctx_id_mask =
61d5676b
LL
1304 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1305 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1306 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
a37f08a8
UNR
1307 stream->specific_ctx_id = upper_32_bits(ce->lrc_desc);
1308 stream->specific_ctx_id &=
1309 stream->specific_ctx_id_mask;
61d5676b
LL
1310 break;
1311 }
1312
1313 default:
1314 MISSING_CASE(INTEL_GEN(i915));
19f81df2 1315 }
d7965152 1316
61d5676b 1317 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
a37f08a8
UNR
1318 stream->specific_ctx_id,
1319 stream->specific_ctx_id_mask);
61d5676b 1320
266a240b 1321 return 0;
d7965152
RB
1322}
1323
16d98b31
RB
1324/**
1325 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1326 * @stream: An i915-perf stream opened for OA metrics
1327 *
1328 * In case anything needed doing to ensure the context HW ID would remain valid
1329 * for the lifetime of the stream, then that can be undone here.
1330 */
d7965152
RB
1331static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1332{
1333 struct drm_i915_private *dev_priv = stream->dev_priv;
1fc44d9b 1334 struct intel_context *ce;
d7965152 1335
a37f08a8
UNR
1336 stream->specific_ctx_id = INVALID_CTX_ID;
1337 stream->specific_ctx_id_mask = 0;
d7965152 1338
a37f08a8 1339 ce = fetch_and_zero(&stream->pinned_ctx);
1fc44d9b 1340 if (ce) {
19f81df2 1341 mutex_lock(&dev_priv->drm.struct_mutex);
1fc44d9b 1342 intel_context_unpin(ce);
19f81df2
RB
1343 mutex_unlock(&dev_priv->drm.struct_mutex);
1344 }
d7965152
RB
1345}
1346
1347static void
a37f08a8 1348free_oa_buffer(struct i915_perf_stream *stream)
d7965152 1349{
a37f08a8
UNR
1350 struct drm_i915_private *i915 = stream->dev_priv;
1351
d7965152
RB
1352 mutex_lock(&i915->drm.struct_mutex);
1353
a37f08a8 1354 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
6a2f59e4 1355 I915_VMA_RELEASE_MAP);
d7965152
RB
1356
1357 mutex_unlock(&i915->drm.struct_mutex);
6a2f59e4 1358
a37f08a8 1359 stream->oa_buffer.vaddr = NULL;
d7965152
RB
1360}
1361
1362static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1363{
1364 struct drm_i915_private *dev_priv = stream->dev_priv;
1365
a37f08a8 1366 BUG_ON(stream != dev_priv->perf.exclusive_stream);
d7965152 1367
19f81df2 1368 /*
f89823c2
LL
1369 * Unset exclusive_stream first, it will be checked while disabling
1370 * the metric set on gen8+.
19f81df2 1371 */
701f8231 1372 mutex_lock(&dev_priv->drm.struct_mutex);
a37f08a8
UNR
1373 dev_priv->perf.exclusive_stream = NULL;
1374 dev_priv->perf.ops.disable_metric_set(stream);
41d3fdcd 1375 mutex_unlock(&dev_priv->drm.struct_mutex);
d7965152 1376
a37f08a8 1377 free_oa_buffer(stream);
d7965152 1378
3ceea6a1 1379 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
d858d569 1380 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
d7965152
RB
1381
1382 if (stream->ctx)
1383 oa_put_render_ctx_id(stream);
1384
f89823c2
LL
1385 put_oa_config(dev_priv, stream->oa_config);
1386
a37f08a8 1387 if (dev_priv->perf.spurious_report_rs.missed) {
712122ea 1388 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
a37f08a8 1389 dev_priv->perf.spurious_report_rs.missed);
712122ea 1390 }
d7965152
RB
1391}
1392
a37f08a8 1393static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
d7965152 1394{
a37f08a8
UNR
1395 struct drm_i915_private *dev_priv = stream->dev_priv;
1396 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
0dd860cf
RB
1397 unsigned long flags;
1398
a37f08a8 1399 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
d7965152
RB
1400
1401 /* Pre-DevBDW: OABUFFER must be set with counters off,
1402 * before OASTATUS1, but after OASTATUS2
1403 */
b82ed43d
LL
1404 I915_WRITE(GEN7_OASTATUS2,
1405 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
a37f08a8 1406 stream->oa_buffer.head = gtt_offset;
f279020a 1407
d7965152 1408 I915_WRITE(GEN7_OABUFFER, gtt_offset);
f279020a 1409
fe841686 1410 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
d7965152 1411
0dd860cf 1412 /* Mark that we need updated tail pointers to read from... */
a37f08a8
UNR
1413 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1414 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
0dd860cf 1415
a37f08a8 1416 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
0dd860cf 1417
d7965152
RB
1418 /* On Haswell we have to track which OASTATUS1 flags we've
1419 * already seen since they can't be cleared while periodic
1420 * sampling is enabled.
1421 */
a37f08a8 1422 dev_priv->perf.gen7_latched_oastatus1 = 0;
d7965152
RB
1423
1424 /* NB: although the OA buffer will initially be allocated
1425 * zeroed via shmfs (and so this memset is redundant when
1426 * first allocating), we may re-init the OA buffer, either
1427 * when re-enabling a stream or in error/reset paths.
1428 *
1429 * The reason we clear the buffer for each re-init is for the
1430 * sanity check in gen7_append_oa_reports() that looks at the
1431 * report-id field to make sure it's non-zero which relies on
1432 * the assumption that new reports are being written to zeroed
1433 * memory...
1434 */
a37f08a8 1435 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
d7965152
RB
1436
1437 /* Maybe make ->pollin per-stream state if we support multiple
1438 * concurrent streams in the future.
1439 */
a37f08a8 1440 stream->pollin = false;
d7965152
RB
1441}
1442
a37f08a8 1443static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
19f81df2 1444{
a37f08a8
UNR
1445 struct drm_i915_private *dev_priv = stream->dev_priv;
1446 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
19f81df2
RB
1447 unsigned long flags;
1448
a37f08a8 1449 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
1450
1451 I915_WRITE(GEN8_OASTATUS, 0);
1452 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
a37f08a8 1453 stream->oa_buffer.head = gtt_offset;
19f81df2
RB
1454
1455 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1456
1457 /*
1458 * PRM says:
1459 *
1460 * "This MMIO must be set before the OATAILPTR
1461 * register and after the OAHEADPTR register. This is
1462 * to enable proper functionality of the overflow
1463 * bit."
1464 */
1465 I915_WRITE(GEN8_OABUFFER, gtt_offset |
fe841686 1466 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
19f81df2
RB
1467 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1468
1469 /* Mark that we need updated tail pointers to read from... */
a37f08a8
UNR
1470 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1471 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
19f81df2
RB
1472
1473 /*
1474 * Reset state used to recognise context switches, affecting which
1475 * reports we will forward to userspace while filtering for a single
1476 * context.
1477 */
a37f08a8 1478 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
19f81df2 1479
a37f08a8 1480 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
19f81df2
RB
1481
1482 /*
1483 * NB: although the OA buffer will initially be allocated
1484 * zeroed via shmfs (and so this memset is redundant when
1485 * first allocating), we may re-init the OA buffer, either
1486 * when re-enabling a stream or in error/reset paths.
1487 *
1488 * The reason we clear the buffer for each re-init is for the
1489 * sanity check in gen8_append_oa_reports() that looks at the
1490 * reason field to make sure it's non-zero which relies on
1491 * the assumption that new reports are being written to zeroed
1492 * memory...
1493 */
a37f08a8 1494 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
19f81df2
RB
1495
1496 /*
1497 * Maybe make ->pollin per-stream state if we support multiple
1498 * concurrent streams in the future.
1499 */
a37f08a8 1500 stream->pollin = false;
19f81df2
RB
1501}
1502
a37f08a8 1503static int alloc_oa_buffer(struct i915_perf_stream *stream)
d7965152
RB
1504{
1505 struct drm_i915_gem_object *bo;
a37f08a8 1506 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152
RB
1507 struct i915_vma *vma;
1508 int ret;
1509
a37f08a8 1510 if (WARN_ON(stream->oa_buffer.vma))
d7965152
RB
1511 return -ENODEV;
1512
1513 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1514 if (ret)
1515 return ret;
1516
fe841686
JL
1517 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1518 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1519
8475355f 1520 bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE);
d7965152
RB
1521 if (IS_ERR(bo)) {
1522 DRM_ERROR("Failed to allocate OA buffer\n");
1523 ret = PTR_ERR(bo);
1524 goto unlock;
1525 }
1526
a679f58d 1527 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
d7965152
RB
1528
1529 /* PreHSW required 512K alignment, HSW requires 16M */
1530 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1531 if (IS_ERR(vma)) {
1532 ret = PTR_ERR(vma);
1533 goto err_unref;
1534 }
a37f08a8 1535 stream->oa_buffer.vma = vma;
d7965152 1536
a37f08a8 1537 stream->oa_buffer.vaddr =
d7965152 1538 i915_gem_object_pin_map(bo, I915_MAP_WB);
a37f08a8
UNR
1539 if (IS_ERR(stream->oa_buffer.vaddr)) {
1540 ret = PTR_ERR(stream->oa_buffer.vaddr);
d7965152
RB
1541 goto err_unpin;
1542 }
1543
fe841686 1544 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
a37f08a8
UNR
1545 i915_ggtt_offset(stream->oa_buffer.vma),
1546 stream->oa_buffer.vaddr);
d7965152
RB
1547
1548 goto unlock;
1549
1550err_unpin:
1551 __i915_vma_unpin(vma);
1552
1553err_unref:
1554 i915_gem_object_put(bo);
1555
a37f08a8
UNR
1556 stream->oa_buffer.vaddr = NULL;
1557 stream->oa_buffer.vma = NULL;
d7965152
RB
1558
1559unlock:
1560 mutex_unlock(&dev_priv->drm.struct_mutex);
1561 return ret;
1562}
1563
1564static void config_oa_regs(struct drm_i915_private *dev_priv,
1565 const struct i915_oa_reg *regs,
701f8231 1566 u32 n_regs)
d7965152 1567{
701f8231 1568 u32 i;
d7965152
RB
1569
1570 for (i = 0; i < n_regs; i++) {
1571 const struct i915_oa_reg *reg = regs + i;
1572
1573 I915_WRITE(reg->addr, reg->value);
1574 }
1575}
1576
14bfcd3e 1577static void delay_after_mux(void)
d7965152 1578{
14bfcd3e
LL
1579 /*
1580 * It apparently takes a fairly long time for a new MUX
d7965152
RB
1581 * configuration to be be applied after these register writes.
1582 * This delay duration was derived empirically based on the
1583 * render_basic config but hopefully it covers the maximum
1584 * configuration latency.
1585 *
1586 * As a fallback, the checks in _append_oa_reports() to skip
1587 * invalid OA reports do also seem to work to discard reports
1588 * generated before this config has completed - albeit not
1589 * silently.
1590 *
1591 * Unfortunately this is essentially a magic number, since we
1592 * don't currently know of a reliable mechanism for predicting
1593 * how long the MUX config will take to apply and besides
1594 * seeing invalid reports we don't know of a reliable way to
1595 * explicitly check that the MUX config has landed.
1596 *
1597 * It's even possible we've miss characterized the underlying
1598 * problem - it just seems like the simplest explanation why
1599 * a delay at this location would mitigate any invalid reports.
1600 */
1601 usleep_range(15000, 20000);
14bfcd3e
LL
1602}
1603
1604static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1605{
1606 struct drm_i915_private *dev_priv = stream->dev_priv;
1607 const struct i915_oa_config *oa_config = stream->oa_config;
1608
1609 /*
1610 * PRM:
1611 *
1612 * OA unit is using “crclk” for its functionality. When trunk
1613 * level clock gating takes place, OA clock would be gated,
1614 * unable to count the events from non-render clock domain.
1615 * Render clock gating must be disabled when OA is enabled to
1616 * count the events from non-render domain. Unit level clock
1617 * gating for RCS should also be disabled.
1618 */
1619 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1620 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1621 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1622 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1623
1624 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1625 delay_after_mux();
d7965152 1626
701f8231
LL
1627 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1628 oa_config->b_counter_regs_len);
d7965152
RB
1629
1630 return 0;
1631}
1632
a37f08a8 1633static void hsw_disable_metric_set(struct i915_perf_stream *stream)
d7965152 1634{
a37f08a8
UNR
1635 struct drm_i915_private *dev_priv = stream->dev_priv;
1636
d7965152
RB
1637 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1638 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1639 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1640 GEN7_DOP_CLOCK_GATE_ENABLE));
1641
1642 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1643 ~GT_NOA_ENABLE));
1644}
1645
a9877da2
CW
1646static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
1647 i915_reg_t reg)
1648{
1649 u32 mmio = i915_mmio_reg_offset(reg);
1650 int i;
1651
1652 /*
1653 * This arbitrary default will select the 'EU FPU0 Pipeline
1654 * Active' event. In the future it's anticipated that there
1655 * will be an explicit 'No Event' we can select, but not yet...
1656 */
1657 if (!oa_config)
1658 return 0;
1659
1660 for (i = 0; i < oa_config->flex_regs_len; i++) {
1661 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
1662 return oa_config->flex_regs[i].value;
1663 }
1664
1665 return 0;
1666}
19f81df2
RB
1667/*
1668 * NB: It must always remain pointer safe to run this even if the OA unit
1669 * has been disabled.
1670 *
1671 * It's fine to put out-of-date values into these per-context registers
1672 * in the case that the OA unit has been disabled.
1673 */
b146e5ef 1674static void
a37f08a8
UNR
1675gen8_update_reg_state_unlocked(struct i915_perf_stream *stream,
1676 struct intel_context *ce,
b146e5ef
CW
1677 u32 *reg_state,
1678 const struct i915_oa_config *oa_config)
19f81df2 1679{
cb0c43f3 1680 struct drm_i915_private *i915 = ce->engine->i915;
a37f08a8
UNR
1681 u32 ctx_oactxctrl = i915->perf.ctx_oactxctrl_offset;
1682 u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
19f81df2 1683 /* The MMIO offsets for Flex EU registers aren't contiguous */
35ab4fd2
LL
1684 i915_reg_t flex_regs[] = {
1685 EU_PERF_CNTL0,
1686 EU_PERF_CNTL1,
1687 EU_PERF_CNTL2,
1688 EU_PERF_CNTL3,
1689 EU_PERF_CNTL4,
1690 EU_PERF_CNTL5,
1691 EU_PERF_CNTL6,
19f81df2
RB
1692 };
1693 int i;
1694
35ab4fd2 1695 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
a37f08a8
UNR
1696 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1697 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
35ab4fd2 1698 GEN8_OA_COUNTER_RESUME);
19f81df2 1699
35ab4fd2 1700 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
a9877da2
CW
1701 CTX_REG(reg_state, ctx_flexeu0 + i * 2, flex_regs[i],
1702 oa_config_flex_reg(oa_config, flex_regs[i]));
19f81df2 1703 }
ec431eae 1704
b146e5ef
CW
1705 CTX_REG(reg_state,
1706 CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
09407579 1707 intel_sseu_make_rpcs(i915, &ce->sseu));
19f81df2
RB
1708}
1709
a9877da2
CW
1710struct flex {
1711 i915_reg_t reg;
1712 u32 offset;
1713 u32 value;
1714};
1715
1716static int
1717gen8_store_flex(struct i915_request *rq,
1718 struct intel_context *ce,
1719 const struct flex *flex, unsigned int count)
1720{
1721 u32 offset;
1722 u32 *cs;
1723
1724 cs = intel_ring_begin(rq, 4 * count);
1725 if (IS_ERR(cs))
1726 return PTR_ERR(cs);
1727
1728 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
1729 do {
1730 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1731 *cs++ = offset + (flex->offset + 1) * sizeof(u32);
1732 *cs++ = 0;
1733 *cs++ = flex->value;
1734 } while (flex++, --count);
1735
1736 intel_ring_advance(rq, cs);
1737
1738 return 0;
1739}
1740
1741static int
1742gen8_load_flex(struct i915_request *rq,
1743 struct intel_context *ce,
1744 const struct flex *flex, unsigned int count)
1745{
1746 u32 *cs;
1747
1748 GEM_BUG_ON(!count || count > 63);
1749
1750 cs = intel_ring_begin(rq, 2 * count + 2);
1751 if (IS_ERR(cs))
1752 return PTR_ERR(cs);
1753
1754 *cs++ = MI_LOAD_REGISTER_IMM(count);
1755 do {
1756 *cs++ = i915_mmio_reg_offset(flex->reg);
1757 *cs++ = flex->value;
1758 } while (flex++, --count);
1759 *cs++ = MI_NOOP;
1760
1761 intel_ring_advance(rq, cs);
1762
1763 return 0;
1764}
1765
1766static int gen8_modify_context(struct intel_context *ce,
1767 const struct flex *flex, unsigned int count)
1768{
1769 struct i915_request *rq;
1770 int err;
1771
1772 lockdep_assert_held(&ce->pin_mutex);
1773
1774 rq = i915_request_create(ce->engine->kernel_context);
1775 if (IS_ERR(rq))
1776 return PTR_ERR(rq);
1777
1778 /* Serialise with the remote context */
1779 err = intel_context_prepare_remote_request(ce, rq);
1780 if (err == 0)
1781 err = gen8_store_flex(rq, ce, flex, count);
1782
1783 i915_request_add(rq);
1784 return err;
1785}
1786
1787static int gen8_modify_self(struct intel_context *ce,
1788 const struct flex *flex, unsigned int count)
1789{
1790 struct i915_request *rq;
1791 int err;
1792
1793 rq = i915_request_create(ce);
1794 if (IS_ERR(rq))
1795 return PTR_ERR(rq);
1796
1797 err = gen8_load_flex(rq, ce, flex, count);
1798
1799 i915_request_add(rq);
1800 return err;
1801}
1802
5cca5038
CW
1803static int gen8_configure_context(struct i915_gem_context *ctx,
1804 struct flex *flex, unsigned int count)
1805{
1806 struct i915_gem_engines_iter it;
1807 struct intel_context *ce;
1808 int err = 0;
1809
1810 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1811 GEM_BUG_ON(ce == ce->engine->kernel_context);
1812
1813 if (ce->engine->class != RENDER_CLASS)
1814 continue;
1815
1816 err = intel_context_lock_pinned(ce);
1817 if (err)
1818 break;
1819
1820 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
1821
1822 /* Otherwise OA settings will be set upon first use */
1823 if (intel_context_is_pinned(ce))
1824 err = gen8_modify_context(ce, flex, count);
1825
1826 intel_context_unlock_pinned(ce);
1827 if (err)
1828 break;
1829 }
1830 i915_gem_context_unlock_engines(ctx);
1831
1832 return err;
1833}
1834
19f81df2
RB
1835/*
1836 * Manages updating the per-context aspects of the OA stream
1837 * configuration across all contexts.
1838 *
1839 * The awkward consideration here is that OACTXCONTROL controls the
1840 * exponent for periodic sampling which is primarily used for system
1841 * wide profiling where we'd like a consistent sampling period even in
1842 * the face of context switches.
1843 *
1844 * Our approach of updating the register state context (as opposed to
1845 * say using a workaround batch buffer) ensures that the hardware
1846 * won't automatically reload an out-of-date timer exponent even
1847 * transiently before a WA BB could be parsed.
1848 *
1849 * This function needs to:
1850 * - Ensure the currently running context's per-context OA state is
1851 * updated
1852 * - Ensure that all existing contexts will have the correct per-context
1853 * OA state if they are scheduled for use.
1854 * - Ensure any new contexts will be initialized with the correct
1855 * per-context OA state.
1856 *
1857 * Note: it's only the RCS/Render context that has any OA state.
1858 */
a37f08a8 1859static int gen8_configure_all_contexts(struct i915_perf_stream *stream,
41d3fdcd 1860 const struct i915_oa_config *oa_config)
19f81df2 1861{
a37f08a8 1862 struct drm_i915_private *i915 = stream->dev_priv;
a9877da2 1863 /* The MMIO offsets for Flex EU registers aren't contiguous */
a37f08a8 1864 const u32 ctx_flexeu0 = i915->perf.ctx_flexeu0_offset;
a9877da2
CW
1865#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N))
1866 struct flex regs[] = {
1867 {
1868 GEN8_R_PWR_CLK_STATE,
1869 CTX_R_PWR_CLK_STATE,
1870 },
1871 {
1872 GEN8_OACTXCONTROL,
a37f08a8
UNR
1873 i915->perf.ctx_oactxctrl_offset,
1874 ((stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1875 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
a9877da2
CW
1876 GEN8_OA_COUNTER_RESUME)
1877 },
1878 { EU_PERF_CNTL0, ctx_flexeuN(0) },
1879 { EU_PERF_CNTL1, ctx_flexeuN(1) },
1880 { EU_PERF_CNTL2, ctx_flexeuN(2) },
1881 { EU_PERF_CNTL3, ctx_flexeuN(3) },
1882 { EU_PERF_CNTL4, ctx_flexeuN(4) },
1883 { EU_PERF_CNTL5, ctx_flexeuN(5) },
1884 { EU_PERF_CNTL6, ctx_flexeuN(6) },
1885 };
1886#undef ctx_flexeuN
1887 struct intel_engine_cs *engine;
19f81df2 1888 struct i915_gem_context *ctx;
a9877da2 1889 int i;
19f81df2 1890
a9877da2
CW
1891 for (i = 2; i < ARRAY_SIZE(regs); i++)
1892 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
1893
1894 lockdep_assert_held(&i915->drm.struct_mutex);
19f81df2 1895
19f81df2
RB
1896 /*
1897 * The OA register config is setup through the context image. This image
1898 * might be written to by the GPU on context switch (in particular on
1899 * lite-restore). This means we can't safely update a context's image,
1900 * if this context is scheduled/submitted to run on the GPU.
1901 *
1902 * We could emit the OA register config through the batch buffer but
1903 * this might leave small interval of time where the OA unit is
1904 * configured at an invalid sampling period.
1905 *
a9877da2
CW
1906 * Note that since we emit all requests from a single ring, there
1907 * is still an implicit global barrier here that may cause a high
1908 * priority context to wait for an otherwise independent low priority
1909 * context. Contexts idle at the time of reconfiguration are not
1910 * trapped behind the barrier.
19f81df2 1911 */
a9877da2 1912 list_for_each_entry(ctx, &i915->contexts.list, link) {
5cca5038 1913 int err;
5e2a0419 1914
a9877da2
CW
1915 if (ctx == i915->kernel_context)
1916 continue;
1917
5cca5038 1918 err = gen8_configure_context(ctx, regs, ARRAY_SIZE(regs));
a9877da2
CW
1919 if (err)
1920 return err;
19f81df2
RB
1921 }
1922
722f3de3 1923 /*
a9877da2
CW
1924 * After updating all other contexts, we need to modify ourselves.
1925 * If we don't modify the kernel_context, we do not get events while
1926 * idle.
722f3de3 1927 */
750e76b4 1928 for_each_uabi_engine(engine, i915) {
a9877da2 1929 struct intel_context *ce = engine->kernel_context;
5cca5038 1930 int err;
722f3de3 1931
a9877da2
CW
1932 if (engine->class != RENDER_CLASS)
1933 continue;
1934
1935 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
1936
1937 err = gen8_modify_self(ce, regs, ARRAY_SIZE(regs));
1938 if (err)
1939 return err;
1940 }
722f3de3
TU
1941
1942 return 0;
19f81df2
RB
1943}
1944
5728de2f 1945static int gen8_enable_metric_set(struct i915_perf_stream *stream)
19f81df2 1946{
5728de2f
LL
1947 struct drm_i915_private *dev_priv = stream->dev_priv;
1948 const struct i915_oa_config *oa_config = stream->oa_config;
701f8231 1949 int ret;
19f81df2
RB
1950
1951 /*
1952 * We disable slice/unslice clock ratio change reports on SKL since
1953 * they are too noisy. The HW generates a lot of redundant reports
1954 * where the ratio hasn't really changed causing a lot of redundant
1955 * work to processes and increasing the chances we'll hit buffer
1956 * overruns.
1957 *
1958 * Although we don't currently use the 'disable overrun' OABUFFER
1959 * feature it's worth noting that clock ratio reports have to be
1960 * disabled before considering to use that feature since the HW doesn't
1961 * correctly block these reports.
1962 *
1963 * Currently none of the high-level metrics we have depend on knowing
1964 * this ratio to normalize.
1965 *
1966 * Note: This register is not power context saved and restored, but
1967 * that's OK considering that we disable RC6 while the OA unit is
1968 * enabled.
1969 *
1970 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1971 * be read back from automatically triggered reports, as part of the
1972 * RPT_ID field.
1973 */
00690008 1974 if (IS_GEN_RANGE(dev_priv, 9, 11)) {
19f81df2
RB
1975 I915_WRITE(GEN8_OA_DEBUG,
1976 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1977 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1978 }
1979
1980 /*
1981 * Update all contexts prior writing the mux configurations as we need
1982 * to make sure all slices/subslices are ON before writing to NOA
1983 * registers.
1984 */
a37f08a8 1985 ret = gen8_configure_all_contexts(stream, oa_config);
19f81df2
RB
1986 if (ret)
1987 return ret;
1988
701f8231 1989 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
14bfcd3e 1990 delay_after_mux();
701f8231 1991
701f8231
LL
1992 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1993 oa_config->b_counter_regs_len);
19f81df2
RB
1994
1995 return 0;
1996}
1997
a37f08a8 1998static void gen8_disable_metric_set(struct i915_perf_stream *stream)
19f81df2 1999{
a37f08a8
UNR
2000 struct drm_i915_private *dev_priv = stream->dev_priv;
2001
19f81df2 2002 /* Reset all contexts' slices/subslices configurations. */
a37f08a8 2003 gen8_configure_all_contexts(stream, NULL);
28964cf2
LL
2004
2005 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
2006 ~GT_NOA_ENABLE));
19f81df2
RB
2007}
2008
a37f08a8 2009static void gen10_disable_metric_set(struct i915_perf_stream *stream)
95690a02 2010{
a37f08a8
UNR
2011 struct drm_i915_private *dev_priv = stream->dev_priv;
2012
95690a02 2013 /* Reset all contexts' slices/subslices configurations. */
a37f08a8 2014 gen8_configure_all_contexts(stream, NULL);
95690a02
LL
2015
2016 /* Make sure we disable noa to save power. */
2017 I915_WRITE(RPM_CONFIG1,
2018 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
2019}
2020
5728de2f 2021static void gen7_oa_enable(struct i915_perf_stream *stream)
d7965152 2022{
5728de2f
LL
2023 struct drm_i915_private *dev_priv = stream->dev_priv;
2024 struct i915_gem_context *ctx = stream->ctx;
a37f08a8
UNR
2025 u32 ctx_id = stream->specific_ctx_id;
2026 bool periodic = stream->periodic;
2027 u32 period_exponent = stream->period_exponent;
2028 u32 report_format = stream->oa_buffer.format;
11051303 2029
1bef3409
RB
2030 /*
2031 * Reset buf pointers so we don't forward reports from before now.
2032 *
2033 * Think carefully if considering trying to avoid this, since it
2034 * also ensures status flags and the buffer itself are cleared
2035 * in error paths, and we have checks for invalid reports based
2036 * on the assumption that certain fields are written to zeroed
2037 * memory which this helps maintains.
2038 */
a37f08a8 2039 gen7_init_oa_buffer(stream);
d7965152 2040
11051303
LL
2041 I915_WRITE(GEN7_OACONTROL,
2042 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2043 (period_exponent <<
2044 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2045 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2046 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2047 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2048 GEN7_OACONTROL_ENABLE);
d7965152
RB
2049}
2050
5728de2f 2051static void gen8_oa_enable(struct i915_perf_stream *stream)
19f81df2 2052{
5728de2f 2053 struct drm_i915_private *dev_priv = stream->dev_priv;
a37f08a8 2054 u32 report_format = stream->oa_buffer.format;
19f81df2
RB
2055
2056 /*
2057 * Reset buf pointers so we don't forward reports from before now.
2058 *
2059 * Think carefully if considering trying to avoid this, since it
2060 * also ensures status flags and the buffer itself are cleared
2061 * in error paths, and we have checks for invalid reports based
2062 * on the assumption that certain fields are written to zeroed
2063 * memory which this helps maintains.
2064 */
a37f08a8 2065 gen8_init_oa_buffer(stream);
19f81df2
RB
2066
2067 /*
2068 * Note: we don't rely on the hardware to perform single context
2069 * filtering and instead filter on the cpu based on the context-id
2070 * field of reports
2071 */
2072 I915_WRITE(GEN8_OACONTROL, (report_format <<
2073 GEN8_OA_REPORT_FORMAT_SHIFT) |
2074 GEN8_OA_COUNTER_ENABLE);
2075}
2076
16d98b31
RB
2077/**
2078 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2079 * @stream: An i915 perf stream opened for OA metrics
2080 *
2081 * [Re]enables hardware periodic sampling according to the period configured
2082 * when opening the stream. This also starts a hrtimer that will periodically
2083 * check for data in the circular OA buffer for notifying userspace (e.g.
2084 * during a read() or poll()).
2085 */
d7965152
RB
2086static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2087{
2088 struct drm_i915_private *dev_priv = stream->dev_priv;
2089
a37f08a8 2090 dev_priv->perf.ops.oa_enable(stream);
d7965152 2091
a37f08a8
UNR
2092 if (stream->periodic)
2093 hrtimer_start(&stream->poll_check_timer,
d7965152
RB
2094 ns_to_ktime(POLL_PERIOD),
2095 HRTIMER_MODE_REL_PINNED);
2096}
2097
5728de2f 2098static void gen7_oa_disable(struct i915_perf_stream *stream)
d7965152 2099{
97a04e0d 2100 struct intel_uncore *uncore = &stream->dev_priv->uncore;
5728de2f 2101
97a04e0d
DCS
2102 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2103 if (intel_wait_for_register(uncore,
e896d29a
CW
2104 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2105 50))
2106 DRM_ERROR("wait for OA to be disabled timed out\n");
d7965152
RB
2107}
2108
5728de2f 2109static void gen8_oa_disable(struct i915_perf_stream *stream)
19f81df2 2110{
97a04e0d 2111 struct intel_uncore *uncore = &stream->dev_priv->uncore;
5728de2f 2112
97a04e0d
DCS
2113 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2114 if (intel_wait_for_register(uncore,
e896d29a
CW
2115 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2116 50))
2117 DRM_ERROR("wait for OA to be disabled timed out\n");
19f81df2
RB
2118}
2119
16d98b31
RB
2120/**
2121 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2122 * @stream: An i915 perf stream opened for OA metrics
2123 *
2124 * Stops the OA unit from periodically writing counter reports into the
2125 * circular OA buffer. This also stops the hrtimer that periodically checks for
2126 * data in the circular OA buffer, for notifying userspace.
2127 */
d7965152
RB
2128static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2129{
2130 struct drm_i915_private *dev_priv = stream->dev_priv;
2131
a37f08a8 2132 dev_priv->perf.ops.oa_disable(stream);
d7965152 2133
a37f08a8
UNR
2134 if (stream->periodic)
2135 hrtimer_cancel(&stream->poll_check_timer);
d7965152
RB
2136}
2137
d7965152
RB
2138static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2139 .destroy = i915_oa_stream_destroy,
2140 .enable = i915_oa_stream_enable,
2141 .disable = i915_oa_stream_disable,
2142 .wait_unlocked = i915_oa_wait_unlocked,
2143 .poll_wait = i915_oa_poll_wait,
2144 .read = i915_oa_read,
eec688e1
RB
2145};
2146
16d98b31
RB
2147/**
2148 * i915_oa_stream_init - validate combined props for OA stream and init
2149 * @stream: An i915 perf stream
2150 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2151 * @props: The property state that configures stream (individually validated)
2152 *
2153 * While read_properties_unlocked() validates properties in isolation it
2154 * doesn't ensure that the combination necessarily makes sense.
2155 *
2156 * At this point it has been determined that userspace wants a stream of
2157 * OA metrics, but still we need to further validate the combined
2158 * properties are OK.
2159 *
2160 * If the configuration makes sense then we can allocate memory for
2161 * a circular OA buffer and apply the requested metric set configuration.
2162 *
2163 * Returns: zero on success or a negative error code.
2164 */
d7965152
RB
2165static int i915_oa_stream_init(struct i915_perf_stream *stream,
2166 struct drm_i915_perf_open_param *param,
2167 struct perf_open_properties *props)
2168{
2169 struct drm_i915_private *dev_priv = stream->dev_priv;
2170 int format_size;
2171 int ret;
2172
442b8c06
RB
2173 /* If the sysfs metrics/ directory wasn't registered for some
2174 * reason then don't let userspace try their luck with config
2175 * IDs
2176 */
2177 if (!dev_priv->perf.metrics_kobj) {
7708550c 2178 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
442b8c06
RB
2179 return -EINVAL;
2180 }
2181
d7965152 2182 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
7708550c 2183 DRM_DEBUG("Only OA report sampling supported\n");
d7965152
RB
2184 return -EINVAL;
2185 }
2186
a37f08a8 2187 if (!dev_priv->perf.ops.enable_metric_set) {
7708550c 2188 DRM_DEBUG("OA unit not supported\n");
d7965152
RB
2189 return -ENODEV;
2190 }
2191
2192 /* To avoid the complexity of having to accurately filter
2193 * counter reports and marshal to the appropriate client
2194 * we currently only allow exclusive access
2195 */
a37f08a8 2196 if (dev_priv->perf.exclusive_stream) {
7708550c 2197 DRM_DEBUG("OA unit already in use\n");
d7965152
RB
2198 return -EBUSY;
2199 }
2200
d7965152 2201 if (!props->oa_format) {
7708550c 2202 DRM_DEBUG("OA report format not specified\n");
d7965152
RB
2203 return -EINVAL;
2204 }
2205
2206 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2207
a37f08a8 2208 format_size = dev_priv->perf.oa_formats[props->oa_format].size;
d7965152
RB
2209
2210 stream->sample_flags |= SAMPLE_OA_REPORT;
2211 stream->sample_size += format_size;
2212
a37f08a8
UNR
2213 stream->oa_buffer.format_size = format_size;
2214 if (WARN_ON(stream->oa_buffer.format_size == 0))
d7965152
RB
2215 return -EINVAL;
2216
a37f08a8
UNR
2217 stream->oa_buffer.format =
2218 dev_priv->perf.oa_formats[props->oa_format].format;
d7965152 2219
a37f08a8
UNR
2220 stream->periodic = props->oa_periodic;
2221 if (stream->periodic)
2222 stream->period_exponent = props->oa_period_exponent;
d7965152 2223
d7965152
RB
2224 if (stream->ctx) {
2225 ret = oa_get_render_ctx_id(stream);
9bd9be66
LL
2226 if (ret) {
2227 DRM_DEBUG("Invalid context id to filter with\n");
d7965152 2228 return ret;
9bd9be66 2229 }
d7965152
RB
2230 }
2231
f89823c2 2232 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
9bd9be66
LL
2233 if (ret) {
2234 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
f89823c2 2235 goto err_config;
9bd9be66 2236 }
701f8231 2237
d7965152
RB
2238 /* PRM - observability performance counters:
2239 *
2240 * OACONTROL, performance counter enable, note:
2241 *
2242 * "When this bit is set, in order to have coherent counts,
2243 * RC6 power state and trunk clock gating must be disabled.
2244 * This can be achieved by programming MMIO registers as
2245 * 0xA094=0 and 0xA090[31]=1"
2246 *
2247 * In our case we are expecting that taking pm + FORCEWAKE
2248 * references will effectively disable RC6.
2249 */
d858d569 2250 stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
3ceea6a1 2251 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
d7965152 2252
a37f08a8 2253 ret = alloc_oa_buffer(stream);
987f8c44 2254 if (ret)
2255 goto err_oa_buf_alloc;
2256
41d3fdcd
LL
2257 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2258 if (ret)
2259 goto err_lock;
2260
ec431eae 2261 stream->ops = &i915_oa_stream_ops;
a37f08a8 2262 dev_priv->perf.exclusive_stream = stream;
ec431eae 2263
a37f08a8 2264 ret = dev_priv->perf.ops.enable_metric_set(stream);
9bd9be66
LL
2265 if (ret) {
2266 DRM_DEBUG("Unable to enable metric set\n");
d7965152 2267 goto err_enable;
9bd9be66 2268 }
d7965152 2269
701f8231
LL
2270 mutex_unlock(&dev_priv->drm.struct_mutex);
2271
a37f08a8
UNR
2272 hrtimer_init(&stream->poll_check_timer,
2273 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2274 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2275 init_waitqueue_head(&stream->poll_wq);
2276 spin_lock_init(&stream->oa_buffer.ptr_lock);
2277
d7965152
RB
2278 return 0;
2279
41d3fdcd 2280err_enable:
a37f08a8
UNR
2281 dev_priv->perf.exclusive_stream = NULL;
2282 dev_priv->perf.ops.disable_metric_set(stream);
41d3fdcd 2283 mutex_unlock(&dev_priv->drm.struct_mutex);
701f8231 2284
41d3fdcd 2285err_lock:
a37f08a8 2286 free_oa_buffer(stream);
d7965152
RB
2287
2288err_oa_buf_alloc:
f89823c2
LL
2289 put_oa_config(dev_priv, stream->oa_config);
2290
3ceea6a1 2291 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
d858d569 2292 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
f89823c2
LL
2293
2294err_config:
d7965152
RB
2295 if (stream->ctx)
2296 oa_put_render_ctx_id(stream);
2297
2298 return ret;
2299}
2300
19f81df2 2301void i915_oa_init_reg_state(struct intel_engine_cs *engine,
b146e5ef
CW
2302 struct intel_context *ce,
2303 u32 *regs)
19f81df2 2304{
28b6cb08 2305 struct i915_perf_stream *stream;
19f81df2 2306
8a68d464 2307 if (engine->class != RENDER_CLASS)
19f81df2
RB
2308 return;
2309
a37f08a8 2310 stream = engine->i915->perf.exclusive_stream;
701f8231 2311 if (stream)
a37f08a8 2312 gen8_update_reg_state_unlocked(stream, ce, regs, stream->oa_config);
19f81df2
RB
2313}
2314
16d98b31
RB
2315/**
2316 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2317 * @stream: An i915 perf stream
2318 * @file: An i915 perf stream file
2319 * @buf: destination buffer given by userspace
2320 * @count: the number of bytes userspace wants to read
2321 * @ppos: (inout) file seek position (unused)
2322 *
2323 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2324 * ensure that if we've successfully copied any data then reporting that takes
2325 * precedence over any internal error status, so the data isn't lost.
2326 *
2327 * For example ret will be -ENOSPC whenever there is more buffered data than
2328 * can be copied to userspace, but that's only interesting if we weren't able
2329 * to copy some data because it implies the userspace buffer is too small to
2330 * receive a single record (and we never split records).
2331 *
2332 * Another case with ret == -EFAULT is more of a grey area since it would seem
2333 * like bad form for userspace to ask us to overrun its buffer, but the user
2334 * knows best:
2335 *
2336 * http://yarchive.net/comp/linux/partial_reads_writes.html
2337 *
2338 * Returns: The number of bytes copied or a negative error code on failure.
2339 */
eec688e1
RB
2340static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2341 struct file *file,
2342 char __user *buf,
2343 size_t count,
2344 loff_t *ppos)
2345{
2346 /* Note we keep the offset (aka bytes read) separate from any
2347 * error status so that the final check for whether we return
2348 * the bytes read with a higher precedence than any error (see
2349 * comment below) doesn't need to be handled/duplicated in
2350 * stream->ops->read() implementations.
2351 */
2352 size_t offset = 0;
2353 int ret = stream->ops->read(stream, buf, count, &offset);
2354
eec688e1
RB
2355 return offset ?: (ret ?: -EAGAIN);
2356}
2357
16d98b31
RB
2358/**
2359 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2360 * @file: An i915 perf stream file
2361 * @buf: destination buffer given by userspace
2362 * @count: the number of bytes userspace wants to read
2363 * @ppos: (inout) file seek position (unused)
2364 *
2365 * The entry point for handling a read() on a stream file descriptor from
2366 * userspace. Most of the work is left to the i915_perf_read_locked() and
2367 * &i915_perf_stream_ops->read but to save having stream implementations (of
2368 * which we might have multiple later) we handle blocking read here.
2369 *
2370 * We can also consistently treat trying to read from a disabled stream
2371 * as an IO error so implementations can assume the stream is enabled
2372 * while reading.
2373 *
2374 * Returns: The number of bytes copied or a negative error code on failure.
2375 */
eec688e1
RB
2376static ssize_t i915_perf_read(struct file *file,
2377 char __user *buf,
2378 size_t count,
2379 loff_t *ppos)
2380{
2381 struct i915_perf_stream *stream = file->private_data;
2382 struct drm_i915_private *dev_priv = stream->dev_priv;
2383 ssize_t ret;
2384
d7965152
RB
2385 /* To ensure it's handled consistently we simply treat all reads of a
2386 * disabled stream as an error. In particular it might otherwise lead
2387 * to a deadlock for blocking file descriptors...
2388 */
2389 if (!stream->enabled)
2390 return -EIO;
2391
eec688e1 2392 if (!(file->f_flags & O_NONBLOCK)) {
d7965152
RB
2393 /* There's the small chance of false positives from
2394 * stream->ops->wait_unlocked.
2395 *
2396 * E.g. with single context filtering since we only wait until
2397 * oabuffer has >= 1 report we don't immediately know whether
2398 * any reports really belong to the current context
eec688e1
RB
2399 */
2400 do {
2401 ret = stream->ops->wait_unlocked(stream);
2402 if (ret)
2403 return ret;
2404
2405 mutex_lock(&dev_priv->perf.lock);
2406 ret = i915_perf_read_locked(stream, file,
2407 buf, count, ppos);
2408 mutex_unlock(&dev_priv->perf.lock);
2409 } while (ret == -EAGAIN);
2410 } else {
2411 mutex_lock(&dev_priv->perf.lock);
2412 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2413 mutex_unlock(&dev_priv->perf.lock);
2414 }
2415
a9a08845 2416 /* We allow the poll checking to sometimes report false positive EPOLLIN
26ebd9c7
RB
2417 * events where we might actually report EAGAIN on read() if there's
2418 * not really any data available. In this situation though we don't
a9a08845 2419 * want to enter a busy loop between poll() reporting a EPOLLIN event
26ebd9c7
RB
2420 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2421 * effectively ensures we back off until the next hrtimer callback
a9a08845 2422 * before reporting another EPOLLIN event.
26ebd9c7
RB
2423 */
2424 if (ret >= 0 || ret == -EAGAIN) {
d7965152
RB
2425 /* Maybe make ->pollin per-stream state if we support multiple
2426 * concurrent streams in the future.
2427 */
a37f08a8 2428 stream->pollin = false;
d7965152
RB
2429 }
2430
eec688e1
RB
2431 return ret;
2432}
2433
d7965152
RB
2434static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2435{
a37f08a8
UNR
2436 struct i915_perf_stream *stream =
2437 container_of(hrtimer, typeof(*stream), poll_check_timer);
d7965152 2438
a37f08a8
UNR
2439 if (oa_buffer_check_unlocked(stream)) {
2440 stream->pollin = true;
2441 wake_up(&stream->poll_wq);
d7965152
RB
2442 }
2443
2444 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2445
2446 return HRTIMER_RESTART;
2447}
2448
16d98b31
RB
2449/**
2450 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2451 * @dev_priv: i915 device instance
2452 * @stream: An i915 perf stream
2453 * @file: An i915 perf stream file
2454 * @wait: poll() state table
2455 *
2456 * For handling userspace polling on an i915 perf stream, this calls through to
2457 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2458 * will be woken for new stream data.
2459 *
2460 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2461 * with any non-file-operation driver hooks.
2462 *
2463 * Returns: any poll events that are ready without sleeping
2464 */
afc9a42b 2465static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
d7965152 2466 struct i915_perf_stream *stream,
eec688e1
RB
2467 struct file *file,
2468 poll_table *wait)
2469{
afc9a42b 2470 __poll_t events = 0;
eec688e1
RB
2471
2472 stream->ops->poll_wait(stream, file, wait);
2473
d7965152
RB
2474 /* Note: we don't explicitly check whether there's something to read
2475 * here since this path may be very hot depending on what else
2476 * userspace is polling, or on the timeout in use. We rely solely on
2477 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2478 * samples to read.
2479 */
a37f08a8 2480 if (stream->pollin)
a9a08845 2481 events |= EPOLLIN;
eec688e1 2482
d7965152 2483 return events;
eec688e1
RB
2484}
2485
16d98b31
RB
2486/**
2487 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2488 * @file: An i915 perf stream file
2489 * @wait: poll() state table
2490 *
2491 * For handling userspace polling on an i915 perf stream, this ensures
2492 * poll_wait() gets called with a wait queue that will be woken for new stream
2493 * data.
2494 *
2495 * Note: Implementation deferred to i915_perf_poll_locked()
2496 *
2497 * Returns: any poll events that are ready without sleeping
2498 */
afc9a42b 2499static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
eec688e1
RB
2500{
2501 struct i915_perf_stream *stream = file->private_data;
2502 struct drm_i915_private *dev_priv = stream->dev_priv;
afc9a42b 2503 __poll_t ret;
eec688e1
RB
2504
2505 mutex_lock(&dev_priv->perf.lock);
d7965152 2506 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
eec688e1
RB
2507 mutex_unlock(&dev_priv->perf.lock);
2508
2509 return ret;
2510}
2511
16d98b31
RB
2512/**
2513 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2514 * @stream: A disabled i915 perf stream
2515 *
2516 * [Re]enables the associated capture of data for this stream.
2517 *
2518 * If a stream was previously enabled then there's currently no intention
2519 * to provide userspace any guarantee about the preservation of previously
2520 * buffered data.
2521 */
eec688e1
RB
2522static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2523{
2524 if (stream->enabled)
2525 return;
2526
2527 /* Allow stream->ops->enable() to refer to this */
2528 stream->enabled = true;
2529
2530 if (stream->ops->enable)
2531 stream->ops->enable(stream);
2532}
2533
16d98b31
RB
2534/**
2535 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2536 * @stream: An enabled i915 perf stream
2537 *
2538 * Disables the associated capture of data for this stream.
2539 *
2540 * The intention is that disabling an re-enabling a stream will ideally be
2541 * cheaper than destroying and re-opening a stream with the same configuration,
2542 * though there are no formal guarantees about what state or buffered data
2543 * must be retained between disabling and re-enabling a stream.
2544 *
2545 * Note: while a stream is disabled it's considered an error for userspace
2546 * to attempt to read from the stream (-EIO).
2547 */
eec688e1
RB
2548static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2549{
2550 if (!stream->enabled)
2551 return;
2552
2553 /* Allow stream->ops->disable() to refer to this */
2554 stream->enabled = false;
2555
2556 if (stream->ops->disable)
2557 stream->ops->disable(stream);
2558}
2559
16d98b31
RB
2560/**
2561 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2562 * @stream: An i915 perf stream
2563 * @cmd: the ioctl request
2564 * @arg: the ioctl data
2565 *
2566 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2567 * with any non-file-operation driver hooks.
2568 *
2569 * Returns: zero on success or a negative error code. Returns -EINVAL for
2570 * an unknown ioctl request.
2571 */
eec688e1
RB
2572static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2573 unsigned int cmd,
2574 unsigned long arg)
2575{
2576 switch (cmd) {
2577 case I915_PERF_IOCTL_ENABLE:
2578 i915_perf_enable_locked(stream);
2579 return 0;
2580 case I915_PERF_IOCTL_DISABLE:
2581 i915_perf_disable_locked(stream);
2582 return 0;
2583 }
2584
2585 return -EINVAL;
2586}
2587
16d98b31
RB
2588/**
2589 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2590 * @file: An i915 perf stream file
2591 * @cmd: the ioctl request
2592 * @arg: the ioctl data
2593 *
2594 * Implementation deferred to i915_perf_ioctl_locked().
2595 *
2596 * Returns: zero on success or a negative error code. Returns -EINVAL for
2597 * an unknown ioctl request.
2598 */
eec688e1
RB
2599static long i915_perf_ioctl(struct file *file,
2600 unsigned int cmd,
2601 unsigned long arg)
2602{
2603 struct i915_perf_stream *stream = file->private_data;
2604 struct drm_i915_private *dev_priv = stream->dev_priv;
2605 long ret;
2606
2607 mutex_lock(&dev_priv->perf.lock);
2608 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2609 mutex_unlock(&dev_priv->perf.lock);
2610
2611 return ret;
2612}
2613
16d98b31
RB
2614/**
2615 * i915_perf_destroy_locked - destroy an i915 perf stream
2616 * @stream: An i915 perf stream
2617 *
2618 * Frees all resources associated with the given i915 perf @stream, disabling
2619 * any associated data capture in the process.
2620 *
2621 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2622 * with any non-file-operation driver hooks.
2623 */
eec688e1
RB
2624static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2625{
eec688e1
RB
2626 if (stream->enabled)
2627 i915_perf_disable_locked(stream);
2628
2629 if (stream->ops->destroy)
2630 stream->ops->destroy(stream);
2631
2632 list_del(&stream->link);
2633
69df05e1 2634 if (stream->ctx)
5f09a9c8 2635 i915_gem_context_put(stream->ctx);
eec688e1
RB
2636
2637 kfree(stream);
2638}
2639
16d98b31
RB
2640/**
2641 * i915_perf_release - handles userspace close() of a stream file
2642 * @inode: anonymous inode associated with file
2643 * @file: An i915 perf stream file
2644 *
2645 * Cleans up any resources associated with an open i915 perf stream file.
2646 *
2647 * NB: close() can't really fail from the userspace point of view.
2648 *
2649 * Returns: zero on success or a negative error code.
2650 */
eec688e1
RB
2651static int i915_perf_release(struct inode *inode, struct file *file)
2652{
2653 struct i915_perf_stream *stream = file->private_data;
2654 struct drm_i915_private *dev_priv = stream->dev_priv;
2655
2656 mutex_lock(&dev_priv->perf.lock);
2657 i915_perf_destroy_locked(stream);
2658 mutex_unlock(&dev_priv->perf.lock);
2659
a5af1df7
LL
2660 /* Release the reference the perf stream kept on the driver. */
2661 drm_dev_put(&dev_priv->drm);
2662
eec688e1
RB
2663 return 0;
2664}
2665
2666
2667static const struct file_operations fops = {
2668 .owner = THIS_MODULE,
2669 .llseek = no_llseek,
2670 .release = i915_perf_release,
2671 .poll = i915_perf_poll,
2672 .read = i915_perf_read,
2673 .unlocked_ioctl = i915_perf_ioctl,
191f8960
LL
2674 /* Our ioctl have no arguments, so it's safe to use the same function
2675 * to handle 32bits compatibility.
2676 */
2677 .compat_ioctl = i915_perf_ioctl,
eec688e1
RB
2678};
2679
2680
16d98b31
RB
2681/**
2682 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2683 * @dev_priv: i915 device instance
2684 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2685 * @props: individually validated u64 property value pairs
2686 * @file: drm file
2687 *
2688 * See i915_perf_ioctl_open() for interface details.
2689 *
2690 * Implements further stream config validation and stream initialization on
2691 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2692 * taken to serialize with any non-file-operation driver hooks.
2693 *
2694 * Note: at this point the @props have only been validated in isolation and
2695 * it's still necessary to validate that the combination of properties makes
2696 * sense.
2697 *
2698 * In the case where userspace is interested in OA unit metrics then further
2699 * config validation and stream initialization details will be handled by
2700 * i915_oa_stream_init(). The code here should only validate config state that
2701 * will be relevant to all stream types / backends.
2702 *
2703 * Returns: zero on success or a negative error code.
2704 */
eec688e1
RB
2705static int
2706i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2707 struct drm_i915_perf_open_param *param,
2708 struct perf_open_properties *props,
2709 struct drm_file *file)
2710{
2711 struct i915_gem_context *specific_ctx = NULL;
2712 struct i915_perf_stream *stream = NULL;
2713 unsigned long f_flags = 0;
19f81df2 2714 bool privileged_op = true;
eec688e1
RB
2715 int stream_fd;
2716 int ret;
2717
2718 if (props->single_context) {
2719 u32 ctx_handle = props->ctx_handle;
2720 struct drm_i915_file_private *file_priv = file->driver_priv;
2721
635f56c3
ID
2722 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2723 if (!specific_ctx) {
2724 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2725 ctx_handle);
2726 ret = -ENOENT;
eec688e1
RB
2727 goto err;
2728 }
2729 }
2730
19f81df2
RB
2731 /*
2732 * On Haswell the OA unit supports clock gating off for a specific
2733 * context and in this mode there's no visibility of metrics for the
2734 * rest of the system, which we consider acceptable for a
2735 * non-privileged client.
2736 *
2737 * For Gen8+ the OA unit no longer supports clock gating off for a
2738 * specific context and the kernel can't securely stop the counters
2739 * from updating as system-wide / global values. Even though we can
2740 * filter reports based on the included context ID we can't block
2741 * clients from seeing the raw / global counter values via
2742 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2743 * enable the OA unit by default.
2744 */
2745 if (IS_HASWELL(dev_priv) && specific_ctx)
2746 privileged_op = false;
2747
ccdf6341
RB
2748 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2749 * we check a dev.i915.perf_stream_paranoid sysctl option
2750 * to determine if it's ok to access system wide OA counters
2751 * without CAP_SYS_ADMIN privileges.
2752 */
19f81df2 2753 if (privileged_op &&
ccdf6341 2754 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
7708550c 2755 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
eec688e1
RB
2756 ret = -EACCES;
2757 goto err_ctx;
2758 }
2759
2760 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2761 if (!stream) {
2762 ret = -ENOMEM;
2763 goto err_ctx;
2764 }
2765
eec688e1
RB
2766 stream->dev_priv = dev_priv;
2767 stream->ctx = specific_ctx;
2768
d7965152
RB
2769 ret = i915_oa_stream_init(stream, param, props);
2770 if (ret)
2771 goto err_alloc;
2772
2773 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2774 * to have _stream_init check the combination of sample flags more
2775 * thoroughly, but still this is the expected result at this point.
eec688e1 2776 */
d7965152
RB
2777 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2778 ret = -ENODEV;
22f880ca 2779 goto err_flags;
d7965152 2780 }
eec688e1
RB
2781
2782 list_add(&stream->link, &dev_priv->perf.streams);
2783
2784 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2785 f_flags |= O_CLOEXEC;
2786 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2787 f_flags |= O_NONBLOCK;
2788
2789 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2790 if (stream_fd < 0) {
2791 ret = stream_fd;
2792 goto err_open;
2793 }
2794
2795 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2796 i915_perf_enable_locked(stream);
2797
a5af1df7
LL
2798 /* Take a reference on the driver that will be kept with stream_fd
2799 * until its release.
2800 */
2801 drm_dev_get(&dev_priv->drm);
2802
eec688e1
RB
2803 return stream_fd;
2804
2805err_open:
2806 list_del(&stream->link);
22f880ca 2807err_flags:
eec688e1
RB
2808 if (stream->ops->destroy)
2809 stream->ops->destroy(stream);
2810err_alloc:
2811 kfree(stream);
2812err_ctx:
69df05e1 2813 if (specific_ctx)
5f09a9c8 2814 i915_gem_context_put(specific_ctx);
eec688e1
RB
2815err:
2816 return ret;
2817}
2818
155e941f
RB
2819static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2820{
9f9b2792 2821 return div64_u64(1000000000ULL * (2ULL << exponent),
0258404f 2822 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
155e941f
RB
2823}
2824
16d98b31
RB
2825/**
2826 * read_properties_unlocked - validate + copy userspace stream open properties
2827 * @dev_priv: i915 device instance
2828 * @uprops: The array of u64 key value pairs given by userspace
2829 * @n_props: The number of key value pairs expected in @uprops
2830 * @props: The stream configuration built up while validating properties
eec688e1
RB
2831 *
2832 * Note this function only validates properties in isolation it doesn't
2833 * validate that the combination of properties makes sense or that all
2834 * properties necessary for a particular kind of stream have been set.
16d98b31
RB
2835 *
2836 * Note that there currently aren't any ordering requirements for properties so
2837 * we shouldn't validate or assume anything about ordering here. This doesn't
2838 * rule out defining new properties with ordering requirements in the future.
eec688e1
RB
2839 */
2840static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2841 u64 __user *uprops,
2842 u32 n_props,
2843 struct perf_open_properties *props)
2844{
2845 u64 __user *uprop = uprops;
701f8231 2846 u32 i;
eec688e1
RB
2847
2848 memset(props, 0, sizeof(struct perf_open_properties));
2849
2850 if (!n_props) {
7708550c 2851 DRM_DEBUG("No i915 perf properties given\n");
eec688e1
RB
2852 return -EINVAL;
2853 }
2854
2855 /* Considering that ID = 0 is reserved and assuming that we don't
2856 * (currently) expect any configurations to ever specify duplicate
2857 * values for a particular property ID then the last _PROP_MAX value is
2858 * one greater than the maximum number of properties we expect to get
2859 * from userspace.
2860 */
2861 if (n_props >= DRM_I915_PERF_PROP_MAX) {
7708550c 2862 DRM_DEBUG("More i915 perf properties specified than exist\n");
eec688e1
RB
2863 return -EINVAL;
2864 }
2865
2866 for (i = 0; i < n_props; i++) {
00319ba0 2867 u64 oa_period, oa_freq_hz;
eec688e1
RB
2868 u64 id, value;
2869 int ret;
2870
2871 ret = get_user(id, uprop);
2872 if (ret)
2873 return ret;
2874
2875 ret = get_user(value, uprop + 1);
2876 if (ret)
2877 return ret;
2878
0a309f9e
MA
2879 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2880 DRM_DEBUG("Unknown i915 perf property ID\n");
2881 return -EINVAL;
2882 }
2883
eec688e1
RB
2884 switch ((enum drm_i915_perf_property_id)id) {
2885 case DRM_I915_PERF_PROP_CTX_HANDLE:
2886 props->single_context = 1;
2887 props->ctx_handle = value;
2888 break;
d7965152 2889 case DRM_I915_PERF_PROP_SAMPLE_OA:
b6dd47b9
LL
2890 if (value)
2891 props->sample_flags |= SAMPLE_OA_REPORT;
d7965152
RB
2892 break;
2893 case DRM_I915_PERF_PROP_OA_METRICS_SET:
701f8231 2894 if (value == 0) {
7708550c 2895 DRM_DEBUG("Unknown OA metric set ID\n");
d7965152
RB
2896 return -EINVAL;
2897 }
2898 props->metrics_set = value;
2899 break;
2900 case DRM_I915_PERF_PROP_OA_FORMAT:
2901 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
52c57c26
RB
2902 DRM_DEBUG("Out-of-range OA report format %llu\n",
2903 value);
d7965152
RB
2904 return -EINVAL;
2905 }
a37f08a8 2906 if (!dev_priv->perf.oa_formats[value].size) {
52c57c26
RB
2907 DRM_DEBUG("Unsupported OA report format %llu\n",
2908 value);
d7965152
RB
2909 return -EINVAL;
2910 }
2911 props->oa_format = value;
2912 break;
2913 case DRM_I915_PERF_PROP_OA_EXPONENT:
2914 if (value > OA_EXPONENT_MAX) {
7708550c
RB
2915 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2916 OA_EXPONENT_MAX);
d7965152
RB
2917 return -EINVAL;
2918 }
2919
00319ba0 2920 /* Theoretically we can program the OA unit to sample
155e941f
RB
2921 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2922 * for BXT. We don't allow such high sampling
2923 * frequencies by default unless root.
00319ba0 2924 */
155e941f 2925
00319ba0 2926 BUILD_BUG_ON(sizeof(oa_period) != 8);
155e941f 2927 oa_period = oa_exponent_to_ns(dev_priv, value);
00319ba0
RB
2928
2929 /* This check is primarily to ensure that oa_period <=
2930 * UINT32_MAX (before passing to do_div which only
2931 * accepts a u32 denominator), but we can also skip
2932 * checking anything < 1Hz which implicitly can't be
2933 * limited via an integer oa_max_sample_rate.
d7965152 2934 */
00319ba0
RB
2935 if (oa_period <= NSEC_PER_SEC) {
2936 u64 tmp = NSEC_PER_SEC;
2937 do_div(tmp, oa_period);
2938 oa_freq_hz = tmp;
2939 } else
2940 oa_freq_hz = 0;
2941
2942 if (oa_freq_hz > i915_oa_max_sample_rate &&
2943 !capable(CAP_SYS_ADMIN)) {
7708550c 2944 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
00319ba0 2945 i915_oa_max_sample_rate);
d7965152
RB
2946 return -EACCES;
2947 }
2948
2949 props->oa_periodic = true;
2950 props->oa_period_exponent = value;
2951 break;
0a309f9e 2952 case DRM_I915_PERF_PROP_MAX:
eec688e1 2953 MISSING_CASE(id);
eec688e1
RB
2954 return -EINVAL;
2955 }
2956
2957 uprop += 2;
2958 }
2959
2960 return 0;
2961}
2962
16d98b31
RB
2963/**
2964 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2965 * @dev: drm device
2966 * @data: ioctl data copied from userspace (unvalidated)
2967 * @file: drm file
2968 *
2969 * Validates the stream open parameters given by userspace including flags
2970 * and an array of u64 key, value pair properties.
2971 *
2972 * Very little is assumed up front about the nature of the stream being
2973 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2974 * i915-perf stream is expected to be a suitable interface for other forms of
2975 * buffered data written by the GPU besides periodic OA metrics.
2976 *
2977 * Note we copy the properties from userspace outside of the i915 perf
2978 * mutex to avoid an awkward lockdep with mmap_sem.
2979 *
2980 * Most of the implementation details are handled by
2981 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2982 * mutex for serializing with any non-file-operation driver hooks.
2983 *
2984 * Return: A newly opened i915 Perf stream file descriptor or negative
2985 * error code on failure.
2986 */
eec688e1
RB
2987int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2988 struct drm_file *file)
2989{
2990 struct drm_i915_private *dev_priv = dev->dev_private;
2991 struct drm_i915_perf_open_param *param = data;
2992 struct perf_open_properties props;
2993 u32 known_open_flags;
2994 int ret;
2995
2996 if (!dev_priv->perf.initialized) {
7708550c 2997 DRM_DEBUG("i915 perf interface not available for this system\n");
eec688e1
RB
2998 return -ENOTSUPP;
2999 }
3000
3001 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3002 I915_PERF_FLAG_FD_NONBLOCK |
3003 I915_PERF_FLAG_DISABLED;
3004 if (param->flags & ~known_open_flags) {
7708550c 3005 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
eec688e1
RB
3006 return -EINVAL;
3007 }
3008
3009 ret = read_properties_unlocked(dev_priv,
3010 u64_to_user_ptr(param->properties_ptr),
3011 param->num_properties,
3012 &props);
3013 if (ret)
3014 return ret;
3015
3016 mutex_lock(&dev_priv->perf.lock);
3017 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
3018 mutex_unlock(&dev_priv->perf.lock);
3019
3020 return ret;
3021}
3022
16d98b31
RB
3023/**
3024 * i915_perf_register - exposes i915-perf to userspace
3025 * @dev_priv: i915 device instance
3026 *
3027 * In particular OA metric sets are advertised under a sysfs metrics/
3028 * directory allowing userspace to enumerate valid IDs that can be
3029 * used to open an i915-perf stream.
3030 */
442b8c06
RB
3031void i915_perf_register(struct drm_i915_private *dev_priv)
3032{
701f8231
LL
3033 int ret;
3034
442b8c06
RB
3035 if (!dev_priv->perf.initialized)
3036 return;
3037
3038 /* To be sure we're synchronized with an attempted
3039 * i915_perf_open_ioctl(); considering that we register after
3040 * being exposed to userspace.
3041 */
3042 mutex_lock(&dev_priv->perf.lock);
3043
3044 dev_priv->perf.metrics_kobj =
3045 kobject_create_and_add("metrics",
3046 &dev_priv->drm.primary->kdev->kobj);
3047 if (!dev_priv->perf.metrics_kobj)
3048 goto exit;
3049
a37f08a8 3050 sysfs_attr_init(&dev_priv->perf.test_config.sysfs_metric_id.attr);
701f8231 3051
2dd24a9c 3052 if (INTEL_GEN(dev_priv) >= 11) {
993298af
RV
3053 i915_perf_load_test_config_icl(dev_priv);
3054 } else if (IS_CANNONLAKE(dev_priv)) {
3055 i915_perf_load_test_config_cnl(dev_priv);
3056 } else if (IS_COFFEELAKE(dev_priv)) {
3057 if (IS_CFL_GT2(dev_priv))
3058 i915_perf_load_test_config_cflgt2(dev_priv);
3059 if (IS_CFL_GT3(dev_priv))
3060 i915_perf_load_test_config_cflgt3(dev_priv);
3061 } else if (IS_GEMINILAKE(dev_priv)) {
3062 i915_perf_load_test_config_glk(dev_priv);
3063 } else if (IS_KABYLAKE(dev_priv)) {
3064 if (IS_KBL_GT2(dev_priv))
3065 i915_perf_load_test_config_kblgt2(dev_priv);
3066 else if (IS_KBL_GT3(dev_priv))
3067 i915_perf_load_test_config_kblgt3(dev_priv);
3068 } else if (IS_BROXTON(dev_priv)) {
3069 i915_perf_load_test_config_bxt(dev_priv);
19f81df2 3070 } else if (IS_SKYLAKE(dev_priv)) {
701f8231
LL
3071 if (IS_SKL_GT2(dev_priv))
3072 i915_perf_load_test_config_sklgt2(dev_priv);
3073 else if (IS_SKL_GT3(dev_priv))
3074 i915_perf_load_test_config_sklgt3(dev_priv);
3075 else if (IS_SKL_GT4(dev_priv))
3076 i915_perf_load_test_config_sklgt4(dev_priv);
993298af
RV
3077 } else if (IS_CHERRYVIEW(dev_priv)) {
3078 i915_perf_load_test_config_chv(dev_priv);
3079 } else if (IS_BROADWELL(dev_priv)) {
3080 i915_perf_load_test_config_bdw(dev_priv);
3081 } else if (IS_HASWELL(dev_priv)) {
3082 i915_perf_load_test_config_hsw(dev_priv);
3083}
442b8c06 3084
a37f08a8 3085 if (dev_priv->perf.test_config.id == 0)
701f8231
LL
3086 goto sysfs_error;
3087
3088 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
a37f08a8 3089 &dev_priv->perf.test_config.sysfs_metric);
701f8231
LL
3090 if (ret)
3091 goto sysfs_error;
f89823c2 3092
a37f08a8 3093 atomic_set(&dev_priv->perf.test_config.ref_count, 1);
f89823c2 3094
19f81df2
RB
3095 goto exit;
3096
3097sysfs_error:
3098 kobject_put(dev_priv->perf.metrics_kobj);
3099 dev_priv->perf.metrics_kobj = NULL;
3100
442b8c06
RB
3101exit:
3102 mutex_unlock(&dev_priv->perf.lock);
3103}
3104
16d98b31
RB
3105/**
3106 * i915_perf_unregister - hide i915-perf from userspace
3107 * @dev_priv: i915 device instance
3108 *
3109 * i915-perf state cleanup is split up into an 'unregister' and
3110 * 'deinit' phase where the interface is first hidden from
3111 * userspace by i915_perf_unregister() before cleaning up
3112 * remaining state in i915_perf_fini().
3113 */
442b8c06
RB
3114void i915_perf_unregister(struct drm_i915_private *dev_priv)
3115{
442b8c06
RB
3116 if (!dev_priv->perf.metrics_kobj)
3117 return;
3118
701f8231 3119 sysfs_remove_group(dev_priv->perf.metrics_kobj,
a37f08a8 3120 &dev_priv->perf.test_config.sysfs_metric);
442b8c06
RB
3121
3122 kobject_put(dev_priv->perf.metrics_kobj);
3123 dev_priv->perf.metrics_kobj = NULL;
3124}
3125
f89823c2
LL
3126static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
3127{
3128 static const i915_reg_t flex_eu_regs[] = {
3129 EU_PERF_CNTL0,
3130 EU_PERF_CNTL1,
3131 EU_PERF_CNTL2,
3132 EU_PERF_CNTL3,
3133 EU_PERF_CNTL4,
3134 EU_PERF_CNTL5,
3135 EU_PERF_CNTL6,
3136 };
3137 int i;
3138
3139 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
7c52a221 3140 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
f89823c2
LL
3141 return true;
3142 }
3143 return false;
3144}
3145
3146static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3147{
7c52a221
LL
3148 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3149 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3150 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3151 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3152 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3153 addr <= i915_mmio_reg_offset(OACEC7_1));
f89823c2
LL
3154}
3155
3156static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3157{
7c52a221
LL
3158 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3159 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3160 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3161 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3162 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3163 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3164 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
f89823c2
LL
3165}
3166
3167static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3168{
3169 return gen7_is_valid_mux_addr(dev_priv, addr) ||
7c52a221
LL
3170 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3171 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3172 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
f89823c2
LL
3173}
3174
95690a02
LL
3175static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3176{
3177 return gen8_is_valid_mux_addr(dev_priv, addr) ||
bf210f6c 3178 addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
7c52a221
LL
3179 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3180 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
95690a02
LL
3181}
3182
f89823c2
LL
3183static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3184{
3185 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3186 (addr >= 0x25100 && addr <= 0x2FF90) ||
7c52a221
LL
3187 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3188 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3189 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
f89823c2
LL
3190}
3191
3192static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3193{
3194 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3195 (addr >= 0x182300 && addr <= 0x1823A4);
3196}
3197
739f3abd 3198static u32 mask_reg_value(u32 reg, u32 val)
f89823c2
LL
3199{
3200 /* HALF_SLICE_CHICKEN2 is programmed with a the
3201 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3202 * programmed by userspace doesn't change this.
3203 */
7c52a221 3204 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
f89823c2
LL
3205 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3206
3207 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3208 * indicated by its name and a bunch of selection fields used by OA
3209 * configs.
3210 */
7c52a221 3211 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
f89823c2
LL
3212 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3213
3214 return val;
3215}
3216
3217static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3218 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3219 u32 __user *regs,
3220 u32 n_regs)
3221{
3222 struct i915_oa_reg *oa_regs;
3223 int err;
3224 u32 i;
3225
3226 if (!n_regs)
3227 return NULL;
3228
96d4f267 3229 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
f89823c2
LL
3230 return ERR_PTR(-EFAULT);
3231
3232 /* No is_valid function means we're not allowing any register to be programmed. */
3233 GEM_BUG_ON(!is_valid);
3234 if (!is_valid)
3235 return ERR_PTR(-EINVAL);
3236
3237 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3238 if (!oa_regs)
3239 return ERR_PTR(-ENOMEM);
3240
3241 for (i = 0; i < n_regs; i++) {
3242 u32 addr, value;
3243
3244 err = get_user(addr, regs);
3245 if (err)
3246 goto addr_err;
3247
3248 if (!is_valid(dev_priv, addr)) {
3249 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3250 err = -EINVAL;
3251 goto addr_err;
3252 }
3253
3254 err = get_user(value, regs + 1);
3255 if (err)
3256 goto addr_err;
3257
3258 oa_regs[i].addr = _MMIO(addr);
3259 oa_regs[i].value = mask_reg_value(addr, value);
3260
3261 regs += 2;
3262 }
3263
3264 return oa_regs;
3265
3266addr_err:
3267 kfree(oa_regs);
3268 return ERR_PTR(err);
3269}
3270
3271static ssize_t show_dynamic_id(struct device *dev,
3272 struct device_attribute *attr,
3273 char *buf)
3274{
3275 struct i915_oa_config *oa_config =
3276 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3277
3278 return sprintf(buf, "%d\n", oa_config->id);
3279}
3280
3281static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3282 struct i915_oa_config *oa_config)
3283{
28152a23 3284 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
f89823c2
LL
3285 oa_config->sysfs_metric_id.attr.name = "id";
3286 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3287 oa_config->sysfs_metric_id.show = show_dynamic_id;
3288 oa_config->sysfs_metric_id.store = NULL;
3289
3290 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3291 oa_config->attrs[1] = NULL;
3292
3293 oa_config->sysfs_metric.name = oa_config->uuid;
3294 oa_config->sysfs_metric.attrs = oa_config->attrs;
3295
3296 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3297 &oa_config->sysfs_metric);
3298}
3299
3300/**
3301 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3302 * @dev: drm device
3303 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3304 * userspace (unvalidated)
3305 * @file: drm file
3306 *
3307 * Validates the submitted OA register to be saved into a new OA config that
3308 * can then be used for programming the OA unit and its NOA network.
3309 *
3310 * Returns: A new allocated config number to be used with the perf open ioctl
3311 * or a negative error code on failure.
3312 */
3313int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3314 struct drm_file *file)
3315{
3316 struct drm_i915_private *dev_priv = dev->dev_private;
3317 struct drm_i915_perf_oa_config *args = data;
3318 struct i915_oa_config *oa_config, *tmp;
3319 int err, id;
3320
3321 if (!dev_priv->perf.initialized) {
3322 DRM_DEBUG("i915 perf interface not available for this system\n");
3323 return -ENOTSUPP;
3324 }
3325
3326 if (!dev_priv->perf.metrics_kobj) {
3327 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3328 return -EINVAL;
3329 }
3330
3331 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3332 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3333 return -EACCES;
3334 }
3335
3336 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3337 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3338 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3339 DRM_DEBUG("No OA registers given\n");
3340 return -EINVAL;
3341 }
3342
3343 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3344 if (!oa_config) {
3345 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3346 return -ENOMEM;
3347 }
3348
3349 atomic_set(&oa_config->ref_count, 1);
3350
3351 if (!uuid_is_valid(args->uuid)) {
3352 DRM_DEBUG("Invalid uuid format for OA config\n");
3353 err = -EINVAL;
3354 goto reg_err;
3355 }
3356
3357 /* Last character in oa_config->uuid will be 0 because oa_config is
3358 * kzalloc.
3359 */
3360 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3361
3362 oa_config->mux_regs_len = args->n_mux_regs;
3363 oa_config->mux_regs =
3364 alloc_oa_regs(dev_priv,
a37f08a8 3365 dev_priv->perf.ops.is_valid_mux_reg,
f89823c2
LL
3366 u64_to_user_ptr(args->mux_regs_ptr),
3367 args->n_mux_regs);
3368
3369 if (IS_ERR(oa_config->mux_regs)) {
3370 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3371 err = PTR_ERR(oa_config->mux_regs);
3372 goto reg_err;
3373 }
3374
3375 oa_config->b_counter_regs_len = args->n_boolean_regs;
3376 oa_config->b_counter_regs =
3377 alloc_oa_regs(dev_priv,
a37f08a8 3378 dev_priv->perf.ops.is_valid_b_counter_reg,
f89823c2
LL
3379 u64_to_user_ptr(args->boolean_regs_ptr),
3380 args->n_boolean_regs);
3381
3382 if (IS_ERR(oa_config->b_counter_regs)) {
3383 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3384 err = PTR_ERR(oa_config->b_counter_regs);
3385 goto reg_err;
3386 }
3387
3388 if (INTEL_GEN(dev_priv) < 8) {
3389 if (args->n_flex_regs != 0) {
3390 err = -EINVAL;
3391 goto reg_err;
3392 }
3393 } else {
3394 oa_config->flex_regs_len = args->n_flex_regs;
3395 oa_config->flex_regs =
3396 alloc_oa_regs(dev_priv,
a37f08a8 3397 dev_priv->perf.ops.is_valid_flex_reg,
f89823c2
LL
3398 u64_to_user_ptr(args->flex_regs_ptr),
3399 args->n_flex_regs);
3400
3401 if (IS_ERR(oa_config->flex_regs)) {
3402 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3403 err = PTR_ERR(oa_config->flex_regs);
3404 goto reg_err;
3405 }
3406 }
3407
3408 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3409 if (err)
3410 goto reg_err;
3411
3412 /* We shouldn't have too many configs, so this iteration shouldn't be
3413 * too costly.
3414 */
3415 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3416 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3417 DRM_DEBUG("OA config already exists with this uuid\n");
3418 err = -EADDRINUSE;
3419 goto sysfs_err;
3420 }
3421 }
3422
3423 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3424 if (err) {
3425 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3426 goto sysfs_err;
3427 }
3428
3429 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3430 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3431 oa_config, 2,
3432 0, GFP_KERNEL);
3433 if (oa_config->id < 0) {
3434 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3435 err = oa_config->id;
3436 goto sysfs_err;
3437 }
3438
3439 mutex_unlock(&dev_priv->perf.metrics_lock);
3440
9bd9be66
LL
3441 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3442
f89823c2
LL
3443 return oa_config->id;
3444
3445sysfs_err:
3446 mutex_unlock(&dev_priv->perf.metrics_lock);
3447reg_err:
3448 put_oa_config(dev_priv, oa_config);
3449 DRM_DEBUG("Failed to add new OA config\n");
3450 return err;
3451}
3452
3453/**
3454 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3455 * @dev: drm device
3456 * @data: ioctl data (pointer to u64 integer) copied from userspace
3457 * @file: drm file
3458 *
3459 * Configs can be removed while being used, the will stop appearing in sysfs
3460 * and their content will be freed when the stream using the config is closed.
3461 *
3462 * Returns: 0 on success or a negative error code on failure.
3463 */
3464int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3465 struct drm_file *file)
3466{
3467 struct drm_i915_private *dev_priv = dev->dev_private;
3468 u64 *arg = data;
3469 struct i915_oa_config *oa_config;
3470 int ret;
3471
3472 if (!dev_priv->perf.initialized) {
3473 DRM_DEBUG("i915 perf interface not available for this system\n");
3474 return -ENOTSUPP;
3475 }
3476
3477 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3478 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3479 return -EACCES;
3480 }
3481
3482 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3483 if (ret)
3484 goto lock_err;
3485
3486 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3487 if (!oa_config) {
3488 DRM_DEBUG("Failed to remove unknown OA config\n");
3489 ret = -ENOENT;
3490 goto config_err;
3491 }
3492
3493 GEM_BUG_ON(*arg != oa_config->id);
3494
3495 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3496 &oa_config->sysfs_metric);
3497
3498 idr_remove(&dev_priv->perf.metrics_idr, *arg);
9bd9be66
LL
3499
3500 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3501
f89823c2
LL
3502 put_oa_config(dev_priv, oa_config);
3503
3504config_err:
3505 mutex_unlock(&dev_priv->perf.metrics_lock);
3506lock_err:
3507 return ret;
3508}
3509
ccdf6341
RB
3510static struct ctl_table oa_table[] = {
3511 {
3512 .procname = "perf_stream_paranoid",
3513 .data = &i915_perf_stream_paranoid,
3514 .maxlen = sizeof(i915_perf_stream_paranoid),
3515 .mode = 0644,
3516 .proc_handler = proc_dointvec_minmax,
eec4844f
MC
3517 .extra1 = SYSCTL_ZERO,
3518 .extra2 = SYSCTL_ONE,
ccdf6341 3519 },
00319ba0
RB
3520 {
3521 .procname = "oa_max_sample_rate",
3522 .data = &i915_oa_max_sample_rate,
3523 .maxlen = sizeof(i915_oa_max_sample_rate),
3524 .mode = 0644,
3525 .proc_handler = proc_dointvec_minmax,
eec4844f 3526 .extra1 = SYSCTL_ZERO,
00319ba0
RB
3527 .extra2 = &oa_sample_rate_hard_limit,
3528 },
ccdf6341
RB
3529 {}
3530};
3531
3532static struct ctl_table i915_root[] = {
3533 {
3534 .procname = "i915",
3535 .maxlen = 0,
3536 .mode = 0555,
3537 .child = oa_table,
3538 },
3539 {}
3540};
3541
3542static struct ctl_table dev_root[] = {
3543 {
3544 .procname = "dev",
3545 .maxlen = 0,
3546 .mode = 0555,
3547 .child = i915_root,
3548 },
3549 {}
3550};
3551
16d98b31
RB
3552/**
3553 * i915_perf_init - initialize i915-perf state on module load
3554 * @dev_priv: i915 device instance
3555 *
3556 * Initializes i915-perf state without exposing anything to userspace.
3557 *
3558 * Note: i915-perf initialization is split into an 'init' and 'register'
3559 * phase with the i915_perf_register() exposing state to userspace.
3560 */
eec688e1
RB
3561void i915_perf_init(struct drm_i915_private *dev_priv)
3562{
19f81df2 3563 if (IS_HASWELL(dev_priv)) {
a37f08a8 3564 dev_priv->perf.ops.is_valid_b_counter_reg =
f89823c2 3565 gen7_is_valid_b_counter_addr;
a37f08a8 3566 dev_priv->perf.ops.is_valid_mux_reg =
f89823c2 3567 hsw_is_valid_mux_addr;
a37f08a8
UNR
3568 dev_priv->perf.ops.is_valid_flex_reg = NULL;
3569 dev_priv->perf.ops.enable_metric_set = hsw_enable_metric_set;
3570 dev_priv->perf.ops.disable_metric_set = hsw_disable_metric_set;
3571 dev_priv->perf.ops.oa_enable = gen7_oa_enable;
3572 dev_priv->perf.ops.oa_disable = gen7_oa_disable;
3573 dev_priv->perf.ops.read = gen7_oa_read;
3574 dev_priv->perf.ops.oa_hw_tail_read =
19f81df2
RB
3575 gen7_oa_hw_tail_read;
3576
a37f08a8 3577 dev_priv->perf.oa_formats = hsw_oa_formats;
fb5c551a 3578 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
19f81df2
RB
3579 /* Note: that although we could theoretically also support the
3580 * legacy ringbuffer mode on BDW (and earlier iterations of
3581 * this driver, before upstreaming did this) it didn't seem
3582 * worth the complexity to maintain now that BDW+ enable
3583 * execlist mode by default.
3584 */
a37f08a8 3585 dev_priv->perf.oa_formats = gen8_plus_oa_formats;
d7965152 3586
a37f08a8
UNR
3587 dev_priv->perf.ops.oa_enable = gen8_oa_enable;
3588 dev_priv->perf.ops.oa_disable = gen8_oa_disable;
3589 dev_priv->perf.ops.read = gen8_oa_read;
3590 dev_priv->perf.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
701f8231 3591
f3ce44a0 3592 if (IS_GEN_RANGE(dev_priv, 8, 9)) {
a37f08a8 3593 dev_priv->perf.ops.is_valid_b_counter_reg =
ba6b7c1a 3594 gen7_is_valid_b_counter_addr;
a37f08a8 3595 dev_priv->perf.ops.is_valid_mux_reg =
ba6b7c1a 3596 gen8_is_valid_mux_addr;
a37f08a8 3597 dev_priv->perf.ops.is_valid_flex_reg =
ba6b7c1a 3598 gen8_is_valid_flex_addr;
155e941f 3599
f89823c2 3600 if (IS_CHERRYVIEW(dev_priv)) {
a37f08a8 3601 dev_priv->perf.ops.is_valid_mux_reg =
f89823c2
LL
3602 chv_is_valid_mux_addr;
3603 }
155e941f 3604
a37f08a8
UNR
3605 dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3606 dev_priv->perf.ops.disable_metric_set = gen8_disable_metric_set;
ba6b7c1a 3607
cf819eff 3608 if (IS_GEN(dev_priv, 8)) {
a37f08a8
UNR
3609 dev_priv->perf.ctx_oactxctrl_offset = 0x120;
3610 dev_priv->perf.ctx_flexeu0_offset = 0x2ce;
ba6b7c1a 3611
a37f08a8 3612 dev_priv->perf.gen8_valid_ctx_bit = BIT(25);
ba6b7c1a 3613 } else {
a37f08a8
UNR
3614 dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3615 dev_priv->perf.ctx_flexeu0_offset = 0x3de;
ba6b7c1a 3616
a37f08a8 3617 dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
ba6b7c1a 3618 }
00690008 3619 } else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
a37f08a8 3620 dev_priv->perf.ops.is_valid_b_counter_reg =
95690a02 3621 gen7_is_valid_b_counter_addr;
a37f08a8 3622 dev_priv->perf.ops.is_valid_mux_reg =
95690a02 3623 gen10_is_valid_mux_addr;
a37f08a8 3624 dev_priv->perf.ops.is_valid_flex_reg =
95690a02
LL
3625 gen8_is_valid_flex_addr;
3626
a37f08a8
UNR
3627 dev_priv->perf.ops.enable_metric_set = gen8_enable_metric_set;
3628 dev_priv->perf.ops.disable_metric_set = gen10_disable_metric_set;
95690a02 3629
8dcfdfb4 3630 if (IS_GEN(dev_priv, 10)) {
a37f08a8
UNR
3631 dev_priv->perf.ctx_oactxctrl_offset = 0x128;
3632 dev_priv->perf.ctx_flexeu0_offset = 0x3de;
8dcfdfb4 3633 } else {
a37f08a8
UNR
3634 dev_priv->perf.ctx_oactxctrl_offset = 0x124;
3635 dev_priv->perf.ctx_flexeu0_offset = 0x78e;
8dcfdfb4 3636 }
a37f08a8 3637 dev_priv->perf.gen8_valid_ctx_bit = BIT(16);
19f81df2 3638 }
19f81df2 3639 }
d7965152 3640
a37f08a8 3641 if (dev_priv->perf.ops.enable_metric_set) {
19f81df2
RB
3642 INIT_LIST_HEAD(&dev_priv->perf.streams);
3643 mutex_init(&dev_priv->perf.lock);
eec688e1 3644
9f9b2792 3645 oa_sample_rate_hard_limit = 1000 *
0258404f 3646 (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
19f81df2 3647 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
ccdf6341 3648
f89823c2
LL
3649 mutex_init(&dev_priv->perf.metrics_lock);
3650 idr_init(&dev_priv->perf.metrics_idr);
3651
a37f08a8
UNR
3652 /* We set up some ratelimit state to potentially throttle any
3653 * _NOTES about spurious, invalid OA reports which we don't
3654 * forward to userspace.
3655 *
3656 * We print a _NOTE about any throttling when closing the
3657 * stream instead of waiting until driver _fini which no one
3658 * would ever see.
3659 *
3660 * Using the same limiting factors as printk_ratelimit()
3661 */
3662 ratelimit_state_init(&dev_priv->perf.spurious_report_rs,
3663 5 * HZ, 10);
3664 /* Since we use a DRM_NOTE for spurious reports it would be
3665 * inconsistent to let __ratelimit() automatically print a
3666 * warning for throttling.
3667 */
3668 ratelimit_set_flags(&dev_priv->perf.spurious_report_rs,
3669 RATELIMIT_MSG_ON_RELEASE);
3670
19f81df2
RB
3671 dev_priv->perf.initialized = true;
3672 }
eec688e1
RB
3673}
3674
f89823c2
LL
3675static int destroy_config(int id, void *p, void *data)
3676{
3677 struct drm_i915_private *dev_priv = data;
3678 struct i915_oa_config *oa_config = p;
3679
3680 put_oa_config(dev_priv, oa_config);
3681
3682 return 0;
3683}
3684
16d98b31
RB
3685/**
3686 * i915_perf_fini - Counter part to i915_perf_init()
3687 * @dev_priv: i915 device instance
3688 */
eec688e1
RB
3689void i915_perf_fini(struct drm_i915_private *dev_priv)
3690{
3691 if (!dev_priv->perf.initialized)
3692 return;
3693
f89823c2
LL
3694 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3695 idr_destroy(&dev_priv->perf.metrics_idr);
3696
ccdf6341
RB
3697 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3698
a37f08a8 3699 memset(&dev_priv->perf.ops, 0, sizeof(dev_priv->perf.ops));
19f81df2 3700
eec688e1
RB
3701 dev_priv->perf.initialized = false;
3702}