drm/i915/perf: add support for Coffeelake GT3
[linux-block.git] / drivers / gpu / drm / i915 / i915_perf.c
CommitLineData
eec688e1
RB
1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
7abbd8d6
RB
27
28/**
16d98b31 29 * DOC: i915 Perf Overview
7abbd8d6
RB
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
16d98b31
RB
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
7abbd8d6
RB
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
16d98b31
RB
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7abbd8d6
RB
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
16d98b31 142 * - As a side note on perf's grouping feature; there was also some concern
7abbd8d6
RB
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
eec688e1 194#include <linux/anon_inodes.h>
d7965152 195#include <linux/sizes.h>
f89823c2 196#include <linux/uuid.h>
eec688e1
RB
197
198#include "i915_drv.h"
d7965152 199#include "i915_oa_hsw.h"
19f81df2
RB
200#include "i915_oa_bdw.h"
201#include "i915_oa_chv.h"
202#include "i915_oa_sklgt2.h"
203#include "i915_oa_sklgt3.h"
204#include "i915_oa_sklgt4.h"
205#include "i915_oa_bxt.h"
6c5c1d89
LL
206#include "i915_oa_kblgt2.h"
207#include "i915_oa_kblgt3.h"
28c7ef9e 208#include "i915_oa_glk.h"
22ea4f35 209#include "i915_oa_cflgt2.h"
4407eaa9 210#include "i915_oa_cflgt3.h"
d7965152
RB
211
212/* HW requires this to be a power of two, between 128k and 16M, though driver
213 * is currently generally designed assuming the largest 16M size is used such
214 * that the overflow cases are unlikely in normal operation.
215 */
216#define OA_BUFFER_SIZE SZ_16M
217
218#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
219
0dd860cf
RB
220/**
221 * DOC: OA Tail Pointer Race
222 *
223 * There's a HW race condition between OA unit tail pointer register updates and
d7965152 224 * writes to memory whereby the tail pointer can sometimes get ahead of what's
0dd860cf
RB
225 * been written out to the OA buffer so far (in terms of what's visible to the
226 * CPU).
227 *
228 * Although this can be observed explicitly while copying reports to userspace
229 * by checking for a zeroed report-id field in tail reports, we want to account
19f81df2 230 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
0dd860cf
RB
231 * read() attempts.
232 *
233 * In effect we define a tail pointer for reading that lags the real tail
234 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
235 * time for the corresponding reports to become visible to the CPU.
236 *
237 * To manage this we actually track two tail pointers:
238 * 1) An 'aging' tail with an associated timestamp that is tracked until we
239 * can trust the corresponding data is visible to the CPU; at which point
240 * it is considered 'aged'.
241 * 2) An 'aged' tail that can be used for read()ing.
d7965152 242 *
0dd860cf 243 * The two separate pointers let us decouple read()s from tail pointer aging.
d7965152 244 *
0dd860cf
RB
245 * The tail pointers are checked and updated at a limited rate within a hrtimer
246 * callback (the same callback that is used for delivering POLLIN events)
d7965152 247 *
0dd860cf
RB
248 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
249 * indicates that an updated tail pointer is needed.
250 *
251 * Most of the implementation details for this workaround are in
19f81df2 252 * oa_buffer_check_unlocked() and _append_oa_reports()
0dd860cf
RB
253 *
254 * Note for posterity: previously the driver used to define an effective tail
255 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
256 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
257 * This was flawed considering that the OA unit may also automatically generate
258 * non-periodic reports (such as on context switch) or the OA unit may be
259 * enabled without any periodic sampling.
d7965152
RB
260 */
261#define OA_TAIL_MARGIN_NSEC 100000ULL
0dd860cf 262#define INVALID_TAIL_PTR 0xffffffff
d7965152
RB
263
264/* frequency for checking whether the OA unit has written new reports to the
265 * circular OA buffer...
266 */
267#define POLL_FREQUENCY 200
268#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
269
ccdf6341
RB
270/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
271static int zero;
272static int one = 1;
273static u32 i915_perf_stream_paranoid = true;
274
d7965152
RB
275/* The maximum exponent the hardware accepts is 63 (essentially it selects one
276 * of the 64bit timestamp bits to trigger reports from) but there's currently
277 * no known use case for sampling as infrequently as once per 47 thousand years.
278 *
279 * Since the timestamps included in OA reports are only 32bits it seems
280 * reasonable to limit the OA exponent where it's still possible to account for
281 * overflow in OA report timestamps.
282 */
283#define OA_EXPONENT_MAX 31
284
285#define INVALID_CTX_ID 0xffffffff
286
19f81df2
RB
287/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
288#define OAREPORT_REASON_MASK 0x3f
289#define OAREPORT_REASON_SHIFT 19
290#define OAREPORT_REASON_TIMER (1<<0)
291#define OAREPORT_REASON_CTX_SWITCH (1<<3)
292#define OAREPORT_REASON_CLK_RATIO (1<<5)
293
d7965152 294
00319ba0
RB
295/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
296 *
155e941f
RB
297 * The highest sampling frequency we can theoretically program the OA unit
298 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
299 *
300 * Initialized just before we register the sysctl parameter.
00319ba0 301 */
155e941f 302static int oa_sample_rate_hard_limit;
00319ba0
RB
303
304/* Theoretically we can program the OA unit to sample every 160ns but don't
305 * allow that by default unless root...
306 *
307 * The default threshold of 100000Hz is based on perf's similar
308 * kernel.perf_event_max_sample_rate sysctl parameter.
309 */
310static u32 i915_oa_max_sample_rate = 100000;
311
d7965152
RB
312/* XXX: beware if future OA HW adds new report formats that the current
313 * code assumes all reports have a power-of-two size and ~(size - 1) can
314 * be used as a mask to align the OA tail pointer.
315 */
316static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
317 [I915_OA_FORMAT_A13] = { 0, 64 },
318 [I915_OA_FORMAT_A29] = { 1, 128 },
319 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
320 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
321 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
322 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
323 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
324 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
325};
326
19f81df2
RB
327static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
328 [I915_OA_FORMAT_A12] = { 0, 64 },
329 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
330 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
331 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
332};
333
d7965152 334#define SAMPLE_OA_REPORT (1<<0)
eec688e1 335
16d98b31
RB
336/**
337 * struct perf_open_properties - for validated properties given to open a stream
338 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
339 * @single_context: Whether a single or all gpu contexts should be monitored
340 * @ctx_handle: A gem ctx handle for use with @single_context
341 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
342 * @oa_format: An OA unit HW report format
343 * @oa_periodic: Whether to enable periodic OA unit sampling
344 * @oa_period_exponent: The OA unit sampling period is derived from this
345 *
346 * As read_properties_unlocked() enumerates and validates the properties given
347 * to open a stream of metrics the configuration is built up in the structure
348 * which starts out zero initialized.
349 */
eec688e1
RB
350struct perf_open_properties {
351 u32 sample_flags;
352
353 u64 single_context:1;
354 u64 ctx_handle;
d7965152
RB
355
356 /* OA sampling state */
357 int metrics_set;
358 int oa_format;
359 bool oa_periodic;
360 int oa_period_exponent;
361};
362
f89823c2
LL
363static void free_oa_config(struct drm_i915_private *dev_priv,
364 struct i915_oa_config *oa_config)
365{
366 if (!PTR_ERR(oa_config->flex_regs))
367 kfree(oa_config->flex_regs);
368 if (!PTR_ERR(oa_config->b_counter_regs))
369 kfree(oa_config->b_counter_regs);
370 if (!PTR_ERR(oa_config->mux_regs))
371 kfree(oa_config->mux_regs);
372 kfree(oa_config);
373}
374
375static void put_oa_config(struct drm_i915_private *dev_priv,
376 struct i915_oa_config *oa_config)
377{
378 if (!atomic_dec_and_test(&oa_config->ref_count))
379 return;
380
381 free_oa_config(dev_priv, oa_config);
382}
383
384static int get_oa_config(struct drm_i915_private *dev_priv,
385 int metrics_set,
386 struct i915_oa_config **out_config)
387{
388 int ret;
389
390 if (metrics_set == 1) {
391 *out_config = &dev_priv->perf.oa.test_config;
392 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
393 return 0;
394 }
395
396 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
397 if (ret)
398 return ret;
399
400 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
401 if (!*out_config)
402 ret = -EINVAL;
403 else
404 atomic_inc(&(*out_config)->ref_count);
405
406 mutex_unlock(&dev_priv->perf.metrics_lock);
407
408 return ret;
409}
410
19f81df2
RB
411static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
412{
413 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
414}
415
416static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
417{
418 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
419
420 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
421}
422
0dd860cf 423/**
19f81df2 424 * oa_buffer_check_unlocked - check for data and update tail ptr state
0dd860cf 425 * @dev_priv: i915 device instance
d7965152 426 *
0dd860cf
RB
427 * This is either called via fops (for blocking reads in user ctx) or the poll
428 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
429 * if there is data available for userspace to read.
d7965152 430 *
0dd860cf
RB
431 * This function is central to providing a workaround for the OA unit tail
432 * pointer having a race with respect to what data is visible to the CPU.
433 * It is responsible for reading tail pointers from the hardware and giving
434 * the pointers time to 'age' before they are made available for reading.
435 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
436 *
437 * Besides returning true when there is data available to read() this function
438 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
439 * and .aged_tail_idx state used for reading.
440 *
441 * Note: It's safe to read OA config state here unlocked, assuming that this is
442 * only called while the stream is enabled, while the global OA configuration
443 * can't be modified.
444 *
445 * Returns: %true if the OA buffer contains data, else %false
d7965152 446 */
19f81df2 447static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
d7965152
RB
448{
449 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
0dd860cf
RB
450 unsigned long flags;
451 unsigned int aged_idx;
0dd860cf
RB
452 u32 head, hw_tail, aged_tail, aging_tail;
453 u64 now;
454
455 /* We have to consider the (unlikely) possibility that read() errors
456 * could result in an OA buffer reset which might reset the head,
457 * tails[] and aged_tail state.
458 */
459 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
460
461 /* NB: The head we observe here might effectively be a little out of
462 * date (between head and tails[aged_idx].offset if there is currently
463 * a read() in progress.
464 */
465 head = dev_priv->perf.oa.oa_buffer.head;
466
467 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
468 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
469 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
470
19f81df2 471 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
0dd860cf
RB
472
473 /* The tail pointer increases in 64 byte increments,
474 * not in report_size steps...
475 */
476 hw_tail &= ~(report_size - 1);
477
478 now = ktime_get_mono_fast_ns();
479
4117ebc7
RB
480 /* Update the aged tail
481 *
482 * Flip the tail pointer available for read()s once the aging tail is
483 * old enough to trust that the corresponding data will be visible to
484 * the CPU...
485 *
486 * Do this before updating the aging pointer in case we may be able to
487 * immediately start aging a new pointer too (if new data has become
488 * available) without needing to wait for a later hrtimer callback.
489 */
490 if (aging_tail != INVALID_TAIL_PTR &&
491 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
492 OA_TAIL_MARGIN_NSEC)) {
19f81df2 493
4117ebc7
RB
494 aged_idx ^= 1;
495 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
496
497 aged_tail = aging_tail;
498
499 /* Mark that we need a new pointer to start aging... */
500 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
501 aging_tail = INVALID_TAIL_PTR;
502 }
503
0dd860cf
RB
504 /* Update the aging tail
505 *
506 * We throttle aging tail updates until we have a new tail that
507 * represents >= one report more data than is already available for
508 * reading. This ensures there will be enough data for a successful
509 * read once this new pointer has aged and ensures we will give the new
510 * pointer time to age.
511 */
512 if (aging_tail == INVALID_TAIL_PTR &&
513 (aged_tail == INVALID_TAIL_PTR ||
514 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
515 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
516 u32 gtt_offset = i915_ggtt_offset(vma);
517
518 /* Be paranoid and do a bounds check on the pointer read back
519 * from hardware, just in case some spurious hardware condition
520 * could put the tail out of bounds...
521 */
522 if (hw_tail >= gtt_offset &&
523 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
524 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
525 aging_tail = hw_tail;
526 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
527 } else {
528 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
529 hw_tail);
530 }
531 }
532
0dd860cf
RB
533 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
534
535 return aged_tail == INVALID_TAIL_PTR ?
536 false : OA_TAKEN(aged_tail, head) >= report_size;
d7965152
RB
537}
538
539/**
16d98b31
RB
540 * append_oa_status - Appends a status record to a userspace read() buffer.
541 * @stream: An i915-perf stream opened for OA metrics
542 * @buf: destination buffer given by userspace
543 * @count: the number of bytes userspace wants to read
544 * @offset: (inout): the current position for writing into @buf
545 * @type: The kind of status to report to userspace
546 *
547 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
548 * into the userspace read() buffer.
549 *
550 * The @buf @offset will only be updated on success.
551 *
552 * Returns: 0 on success, negative error code on failure.
d7965152
RB
553 */
554static int append_oa_status(struct i915_perf_stream *stream,
555 char __user *buf,
556 size_t count,
557 size_t *offset,
558 enum drm_i915_perf_record_type type)
559{
560 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
561
562 if ((count - *offset) < header.size)
563 return -ENOSPC;
564
565 if (copy_to_user(buf + *offset, &header, sizeof(header)))
566 return -EFAULT;
567
568 (*offset) += header.size;
569
570 return 0;
571}
572
573/**
16d98b31
RB
574 * append_oa_sample - Copies single OA report into userspace read() buffer.
575 * @stream: An i915-perf stream opened for OA metrics
576 * @buf: destination buffer given by userspace
577 * @count: the number of bytes userspace wants to read
578 * @offset: (inout): the current position for writing into @buf
579 * @report: A single OA report to (optionally) include as part of the sample
580 *
581 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
582 * properties when opening a stream, tracked as `stream->sample_flags`. This
583 * function copies the requested components of a single sample to the given
584 * read() @buf.
585 *
586 * The @buf @offset will only be updated on success.
587 *
588 * Returns: 0 on success, negative error code on failure.
d7965152
RB
589 */
590static int append_oa_sample(struct i915_perf_stream *stream,
591 char __user *buf,
592 size_t count,
593 size_t *offset,
594 const u8 *report)
595{
596 struct drm_i915_private *dev_priv = stream->dev_priv;
597 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
598 struct drm_i915_perf_record_header header;
599 u32 sample_flags = stream->sample_flags;
600
601 header.type = DRM_I915_PERF_RECORD_SAMPLE;
602 header.pad = 0;
603 header.size = stream->sample_size;
604
605 if ((count - *offset) < header.size)
606 return -ENOSPC;
607
608 buf += *offset;
609 if (copy_to_user(buf, &header, sizeof(header)))
610 return -EFAULT;
611 buf += sizeof(header);
612
613 if (sample_flags & SAMPLE_OA_REPORT) {
614 if (copy_to_user(buf, report, report_size))
615 return -EFAULT;
616 }
617
618 (*offset) += header.size;
619
620 return 0;
621}
622
19f81df2
RB
623/**
624 * Copies all buffered OA reports into userspace read() buffer.
625 * @stream: An i915-perf stream opened for OA metrics
626 * @buf: destination buffer given by userspace
627 * @count: the number of bytes userspace wants to read
628 * @offset: (inout): the current position for writing into @buf
629 *
630 * Notably any error condition resulting in a short read (-%ENOSPC or
631 * -%EFAULT) will be returned even though one or more records may
632 * have been successfully copied. In this case it's up to the caller
633 * to decide if the error should be squashed before returning to
634 * userspace.
635 *
636 * Note: reports are consumed from the head, and appended to the
637 * tail, so the tail chases the head?... If you think that's mad
638 * and back-to-front you're not alone, but this follows the
639 * Gen PRM naming convention.
640 *
641 * Returns: 0 on success, negative error code on failure.
642 */
643static int gen8_append_oa_reports(struct i915_perf_stream *stream,
644 char __user *buf,
645 size_t count,
646 size_t *offset)
647{
648 struct drm_i915_private *dev_priv = stream->dev_priv;
649 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
650 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
651 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
652 u32 mask = (OA_BUFFER_SIZE - 1);
653 size_t start_offset = *offset;
654 unsigned long flags;
655 unsigned int aged_tail_idx;
656 u32 head, tail;
657 u32 taken;
658 int ret = 0;
659
660 if (WARN_ON(!stream->enabled))
661 return -EIO;
662
663 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
664
665 head = dev_priv->perf.oa.oa_buffer.head;
666 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
667 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
668
669 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
670
671 /*
672 * An invalid tail pointer here means we're still waiting for the poll
673 * hrtimer callback to give us a pointer
674 */
675 if (tail == INVALID_TAIL_PTR)
676 return -EAGAIN;
677
678 /*
679 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
680 * while indexing relative to oa_buf_base.
681 */
682 head -= gtt_offset;
683 tail -= gtt_offset;
684
685 /*
686 * An out of bounds or misaligned head or tail pointer implies a driver
687 * bug since we validate + align the tail pointers we read from the
688 * hardware and we are in full control of the head pointer which should
689 * only be incremented by multiples of the report size (notably also
690 * all a power of two).
691 */
692 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
693 tail > OA_BUFFER_SIZE || tail % report_size,
694 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
695 head, tail))
696 return -EIO;
697
698
699 for (/* none */;
700 (taken = OA_TAKEN(tail, head));
701 head = (head + report_size) & mask) {
702 u8 *report = oa_buf_base + head;
703 u32 *report32 = (void *)report;
704 u32 ctx_id;
705 u32 reason;
706
707 /*
708 * All the report sizes factor neatly into the buffer
709 * size so we never expect to see a report split
710 * between the beginning and end of the buffer.
711 *
712 * Given the initial alignment check a misalignment
713 * here would imply a driver bug that would result
714 * in an overrun.
715 */
716 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
717 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
718 break;
719 }
720
721 /*
722 * The reason field includes flags identifying what
723 * triggered this specific report (mostly timer
724 * triggered or e.g. due to a context switch).
725 *
726 * This field is never expected to be zero so we can
727 * check that the report isn't invalid before copying
728 * it to userspace...
729 */
730 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
731 OAREPORT_REASON_MASK);
732 if (reason == 0) {
733 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
734 DRM_NOTE("Skipping spurious, invalid OA report\n");
735 continue;
736 }
737
738 /*
739 * XXX: Just keep the lower 21 bits for now since I'm not
740 * entirely sure if the HW touches any of the higher bits in
741 * this field
742 */
743 ctx_id = report32[2] & 0x1fffff;
744
745 /*
746 * Squash whatever is in the CTX_ID field if it's marked as
747 * invalid to be sure we avoid false-positive, single-context
748 * filtering below...
749 *
750 * Note: that we don't clear the valid_ctx_bit so userspace can
751 * understand that the ID has been squashed by the kernel.
752 */
753 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
754 ctx_id = report32[2] = INVALID_CTX_ID;
755
756 /*
757 * NB: For Gen 8 the OA unit no longer supports clock gating
758 * off for a specific context and the kernel can't securely
759 * stop the counters from updating as system-wide / global
760 * values.
761 *
762 * Automatic reports now include a context ID so reports can be
763 * filtered on the cpu but it's not worth trying to
764 * automatically subtract/hide counter progress for other
765 * contexts while filtering since we can't stop userspace
766 * issuing MI_REPORT_PERF_COUNT commands which would still
767 * provide a side-band view of the real values.
768 *
769 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
770 * to normalize counters for a single filtered context then it
771 * needs be forwarded bookend context-switch reports so that it
772 * can track switches in between MI_REPORT_PERF_COUNT commands
773 * and can itself subtract/ignore the progress of counters
774 * associated with other contexts. Note that the hardware
775 * automatically triggers reports when switching to a new
776 * context which are tagged with the ID of the newly active
777 * context. To avoid the complexity (and likely fragility) of
778 * reading ahead while parsing reports to try and minimize
779 * forwarding redundant context switch reports (i.e. between
780 * other, unrelated contexts) we simply elect to forward them
781 * all.
782 *
783 * We don't rely solely on the reason field to identify context
784 * switches since it's not-uncommon for periodic samples to
785 * identify a switch before any 'context switch' report.
786 */
787 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
788 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
789 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
790 dev_priv->perf.oa.specific_ctx_id) ||
791 reason & OAREPORT_REASON_CTX_SWITCH) {
792
793 /*
794 * While filtering for a single context we avoid
795 * leaking the IDs of other contexts.
796 */
797 if (dev_priv->perf.oa.exclusive_stream->ctx &&
798 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
799 report32[2] = INVALID_CTX_ID;
800 }
801
802 ret = append_oa_sample(stream, buf, count, offset,
803 report);
804 if (ret)
805 break;
806
807 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
808 }
809
810 /*
811 * The above reason field sanity check is based on
812 * the assumption that the OA buffer is initially
813 * zeroed and we reset the field after copying so the
814 * check is still meaningful once old reports start
815 * being overwritten.
816 */
817 report32[0] = 0;
818 }
819
820 if (start_offset != *offset) {
821 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
822
823 /*
824 * We removed the gtt_offset for the copy loop above, indexing
825 * relative to oa_buf_base so put back here...
826 */
827 head += gtt_offset;
828
829 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
830 dev_priv->perf.oa.oa_buffer.head = head;
831
832 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
833 }
834
835 return ret;
836}
837
838/**
839 * gen8_oa_read - copy status records then buffered OA reports
840 * @stream: An i915-perf stream opened for OA metrics
841 * @buf: destination buffer given by userspace
842 * @count: the number of bytes userspace wants to read
843 * @offset: (inout): the current position for writing into @buf
844 *
845 * Checks OA unit status registers and if necessary appends corresponding
846 * status records for userspace (such as for a buffer full condition) and then
847 * initiate appending any buffered OA reports.
848 *
849 * Updates @offset according to the number of bytes successfully copied into
850 * the userspace buffer.
851 *
852 * NB: some data may be successfully copied to the userspace buffer
853 * even if an error is returned, and this is reflected in the
854 * updated @offset.
855 *
856 * Returns: zero on success or a negative error code
857 */
858static int gen8_oa_read(struct i915_perf_stream *stream,
859 char __user *buf,
860 size_t count,
861 size_t *offset)
862{
863 struct drm_i915_private *dev_priv = stream->dev_priv;
864 u32 oastatus;
865 int ret;
866
867 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
868 return -EIO;
869
870 oastatus = I915_READ(GEN8_OASTATUS);
871
872 /*
873 * We treat OABUFFER_OVERFLOW as a significant error:
874 *
875 * Although theoretically we could handle this more gracefully
876 * sometimes, some Gens don't correctly suppress certain
877 * automatically triggered reports in this condition and so we
878 * have to assume that old reports are now being trampled
879 * over.
880 *
881 * Considering how we don't currently give userspace control
882 * over the OA buffer size and always configure a large 16MB
883 * buffer, then a buffer overflow does anyway likely indicate
884 * that something has gone quite badly wrong.
885 */
886 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
887 ret = append_oa_status(stream, buf, count, offset,
888 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
889 if (ret)
890 return ret;
891
892 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
893 dev_priv->perf.oa.period_exponent);
894
895 dev_priv->perf.oa.ops.oa_disable(dev_priv);
896 dev_priv->perf.oa.ops.oa_enable(dev_priv);
897
898 /*
899 * Note: .oa_enable() is expected to re-init the oabuffer and
900 * reset GEN8_OASTATUS for us
901 */
902 oastatus = I915_READ(GEN8_OASTATUS);
903 }
904
905 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
906 ret = append_oa_status(stream, buf, count, offset,
907 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
908 if (ret)
909 return ret;
910 I915_WRITE(GEN8_OASTATUS,
911 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
912 }
913
914 return gen8_append_oa_reports(stream, buf, count, offset);
915}
916
d7965152
RB
917/**
918 * Copies all buffered OA reports into userspace read() buffer.
919 * @stream: An i915-perf stream opened for OA metrics
920 * @buf: destination buffer given by userspace
921 * @count: the number of bytes userspace wants to read
922 * @offset: (inout): the current position for writing into @buf
d7965152 923 *
16d98b31
RB
924 * Notably any error condition resulting in a short read (-%ENOSPC or
925 * -%EFAULT) will be returned even though one or more records may
d7965152
RB
926 * have been successfully copied. In this case it's up to the caller
927 * to decide if the error should be squashed before returning to
928 * userspace.
929 *
930 * Note: reports are consumed from the head, and appended to the
e81b3a55 931 * tail, so the tail chases the head?... If you think that's mad
d7965152
RB
932 * and back-to-front you're not alone, but this follows the
933 * Gen PRM naming convention.
16d98b31
RB
934 *
935 * Returns: 0 on success, negative error code on failure.
d7965152
RB
936 */
937static int gen7_append_oa_reports(struct i915_perf_stream *stream,
938 char __user *buf,
939 size_t count,
3bb335c1 940 size_t *offset)
d7965152
RB
941{
942 struct drm_i915_private *dev_priv = stream->dev_priv;
943 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
944 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
d7965152
RB
945 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
946 u32 mask = (OA_BUFFER_SIZE - 1);
3bb335c1 947 size_t start_offset = *offset;
0dd860cf
RB
948 unsigned long flags;
949 unsigned int aged_tail_idx;
950 u32 head, tail;
d7965152
RB
951 u32 taken;
952 int ret = 0;
953
954 if (WARN_ON(!stream->enabled))
955 return -EIO;
956
0dd860cf 957 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
f279020a 958
0dd860cf
RB
959 head = dev_priv->perf.oa.oa_buffer.head;
960 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
961 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
f279020a 962
0dd860cf 963 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
d7965152 964
0dd860cf
RB
965 /* An invalid tail pointer here means we're still waiting for the poll
966 * hrtimer callback to give us a pointer
d7965152 967 */
0dd860cf
RB
968 if (tail == INVALID_TAIL_PTR)
969 return -EAGAIN;
d7965152 970
0dd860cf
RB
971 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
972 * while indexing relative to oa_buf_base.
d7965152 973 */
0dd860cf
RB
974 head -= gtt_offset;
975 tail -= gtt_offset;
d7965152 976
0dd860cf
RB
977 /* An out of bounds or misaligned head or tail pointer implies a driver
978 * bug since we validate + align the tail pointers we read from the
979 * hardware and we are in full control of the head pointer which should
980 * only be incremented by multiples of the report size (notably also
981 * all a power of two).
d7965152 982 */
0dd860cf
RB
983 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
984 tail > OA_BUFFER_SIZE || tail % report_size,
985 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
986 head, tail))
987 return -EIO;
d7965152 988
d7965152
RB
989
990 for (/* none */;
991 (taken = OA_TAKEN(tail, head));
992 head = (head + report_size) & mask) {
993 u8 *report = oa_buf_base + head;
994 u32 *report32 = (void *)report;
995
996 /* All the report sizes factor neatly into the buffer
997 * size so we never expect to see a report split
998 * between the beginning and end of the buffer.
999 *
1000 * Given the initial alignment check a misalignment
1001 * here would imply a driver bug that would result
1002 * in an overrun.
1003 */
1004 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1005 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1006 break;
1007 }
1008
1009 /* The report-ID field for periodic samples includes
1010 * some undocumented flags related to what triggered
1011 * the report and is never expected to be zero so we
1012 * can check that the report isn't invalid before
1013 * copying it to userspace...
1014 */
1015 if (report32[0] == 0) {
712122ea
RB
1016 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1017 DRM_NOTE("Skipping spurious, invalid OA report\n");
d7965152
RB
1018 continue;
1019 }
1020
1021 ret = append_oa_sample(stream, buf, count, offset, report);
1022 if (ret)
1023 break;
1024
1025 /* The above report-id field sanity check is based on
1026 * the assumption that the OA buffer is initially
1027 * zeroed and we reset the field after copying so the
1028 * check is still meaningful once old reports start
1029 * being overwritten.
1030 */
1031 report32[0] = 0;
1032 }
1033
3bb335c1 1034 if (start_offset != *offset) {
0dd860cf
RB
1035 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1036
3bb335c1
RB
1037 /* We removed the gtt_offset for the copy loop above, indexing
1038 * relative to oa_buf_base so put back here...
1039 */
1040 head += gtt_offset;
1041
1042 I915_WRITE(GEN7_OASTATUS2,
1043 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1044 OA_MEM_SELECT_GGTT));
1045 dev_priv->perf.oa.oa_buffer.head = head;
0dd860cf
RB
1046
1047 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
3bb335c1 1048 }
d7965152
RB
1049
1050 return ret;
1051}
1052
16d98b31
RB
1053/**
1054 * gen7_oa_read - copy status records then buffered OA reports
1055 * @stream: An i915-perf stream opened for OA metrics
1056 * @buf: destination buffer given by userspace
1057 * @count: the number of bytes userspace wants to read
1058 * @offset: (inout): the current position for writing into @buf
1059 *
1060 * Checks Gen 7 specific OA unit status registers and if necessary appends
1061 * corresponding status records for userspace (such as for a buffer full
1062 * condition) and then initiate appending any buffered OA reports.
1063 *
1064 * Updates @offset according to the number of bytes successfully copied into
1065 * the userspace buffer.
1066 *
1067 * Returns: zero on success or a negative error code
1068 */
d7965152
RB
1069static int gen7_oa_read(struct i915_perf_stream *stream,
1070 char __user *buf,
1071 size_t count,
1072 size_t *offset)
1073{
1074 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152 1075 u32 oastatus1;
d7965152
RB
1076 int ret;
1077
1078 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1079 return -EIO;
1080
d7965152
RB
1081 oastatus1 = I915_READ(GEN7_OASTATUS1);
1082
d7965152
RB
1083 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1084 * bits while the OA unit is enabled (while the tail pointer
1085 * may be updated asynchronously) so we ignore status bits
1086 * that have already been reported to userspace.
1087 */
1088 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1089
1090 /* We treat OABUFFER_OVERFLOW as a significant error:
1091 *
1092 * - The status can be interpreted to mean that the buffer is
1093 * currently full (with a higher precedence than OA_TAKEN()
1094 * which will start to report a near-empty buffer after an
1095 * overflow) but it's awkward that we can't clear the status
1096 * on Haswell, so without a reset we won't be able to catch
1097 * the state again.
1098 *
1099 * - Since it also implies the HW has started overwriting old
1100 * reports it may also affect our sanity checks for invalid
1101 * reports when copying to userspace that assume new reports
1102 * are being written to cleared memory.
1103 *
1104 * - In the future we may want to introduce a flight recorder
1105 * mode where the driver will automatically maintain a safe
1106 * guard band between head/tail, avoiding this overflow
1107 * condition, but we avoid the added driver complexity for
1108 * now.
1109 */
1110 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1111 ret = append_oa_status(stream, buf, count, offset,
1112 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1113 if (ret)
1114 return ret;
1115
19f81df2
RB
1116 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1117 dev_priv->perf.oa.period_exponent);
d7965152
RB
1118
1119 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1120 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1121
d7965152 1122 oastatus1 = I915_READ(GEN7_OASTATUS1);
d7965152
RB
1123 }
1124
1125 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1126 ret = append_oa_status(stream, buf, count, offset,
1127 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1128 if (ret)
1129 return ret;
1130 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1131 GEN7_OASTATUS1_REPORT_LOST;
1132 }
1133
3bb335c1 1134 return gen7_append_oa_reports(stream, buf, count, offset);
d7965152
RB
1135}
1136
16d98b31
RB
1137/**
1138 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1139 * @stream: An i915-perf stream opened for OA metrics
1140 *
1141 * Called when userspace tries to read() from a blocking stream FD opened
1142 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1143 * OA buffer and wakes us.
1144 *
1145 * Note: it's acceptable to have this return with some false positives
1146 * since any subsequent read handling will return -EAGAIN if there isn't
1147 * really data ready for userspace yet.
1148 *
1149 * Returns: zero on success or a negative error code
1150 */
d7965152
RB
1151static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1152{
1153 struct drm_i915_private *dev_priv = stream->dev_priv;
1154
1155 /* We would wait indefinitely if periodic sampling is not enabled */
1156 if (!dev_priv->perf.oa.periodic)
1157 return -EIO;
1158
d7965152 1159 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
19f81df2 1160 oa_buffer_check_unlocked(dev_priv));
d7965152
RB
1161}
1162
16d98b31
RB
1163/**
1164 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165 * @stream: An i915-perf stream opened for OA metrics
1166 * @file: An i915 perf stream file
1167 * @wait: poll() state table
1168 *
1169 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171 * when it sees data ready to read in the circular OA buffer.
1172 */
d7965152
RB
1173static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1174 struct file *file,
1175 poll_table *wait)
1176{
1177 struct drm_i915_private *dev_priv = stream->dev_priv;
1178
1179 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1180}
1181
16d98b31
RB
1182/**
1183 * i915_oa_read - just calls through to &i915_oa_ops->read
1184 * @stream: An i915-perf stream opened for OA metrics
1185 * @buf: destination buffer given by userspace
1186 * @count: the number of bytes userspace wants to read
1187 * @offset: (inout): the current position for writing into @buf
1188 *
1189 * Updates @offset according to the number of bytes successfully copied into
1190 * the userspace buffer.
1191 *
1192 * Returns: zero on success or a negative error code
1193 */
d7965152
RB
1194static int i915_oa_read(struct i915_perf_stream *stream,
1195 char __user *buf,
1196 size_t count,
1197 size_t *offset)
1198{
1199 struct drm_i915_private *dev_priv = stream->dev_priv;
1200
1201 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1202}
1203
16d98b31
RB
1204/**
1205 * oa_get_render_ctx_id - determine and hold ctx hw id
1206 * @stream: An i915-perf stream opened for OA metrics
1207 *
1208 * Determine the render context hw id, and ensure it remains fixed for the
d7965152
RB
1209 * lifetime of the stream. This ensures that we don't have to worry about
1210 * updating the context ID in OACONTROL on the fly.
16d98b31
RB
1211 *
1212 * Returns: zero on success or a negative error code
d7965152
RB
1213 */
1214static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1215{
1216 struct drm_i915_private *dev_priv = stream->dev_priv;
d7965152 1217
4f044a88 1218 if (i915_modparams.enable_execlists)
19f81df2
RB
1219 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1220 else {
1221 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1222 struct intel_ring *ring;
1223 int ret;
d7965152 1224
19f81df2
RB
1225 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1226 if (ret)
1227 return ret;
1228
1229 /*
1230 * As the ID is the gtt offset of the context's vma we
1231 * pin the vma to ensure the ID remains fixed.
1232 *
1233 * NB: implied RCS engine...
1234 */
1235 ring = engine->context_pin(engine, stream->ctx);
1236 mutex_unlock(&dev_priv->drm.struct_mutex);
1237 if (IS_ERR(ring))
1238 return PTR_ERR(ring);
d7965152 1239
19f81df2
RB
1240
1241 /*
1242 * Explicitly track the ID (instead of calling
1243 * i915_ggtt_offset() on the fly) considering the difference
1244 * with gen8+ and execlists
1245 */
1246 dev_priv->perf.oa.specific_ctx_id =
1247 i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1248 }
d7965152 1249
266a240b 1250 return 0;
d7965152
RB
1251}
1252
16d98b31
RB
1253/**
1254 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1255 * @stream: An i915-perf stream opened for OA metrics
1256 *
1257 * In case anything needed doing to ensure the context HW ID would remain valid
1258 * for the lifetime of the stream, then that can be undone here.
1259 */
d7965152
RB
1260static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1261{
1262 struct drm_i915_private *dev_priv = stream->dev_priv;
1263
4f044a88 1264 if (i915_modparams.enable_execlists) {
19f81df2
RB
1265 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1266 } else {
1267 struct intel_engine_cs *engine = dev_priv->engine[RCS];
d7965152 1268
19f81df2 1269 mutex_lock(&dev_priv->drm.struct_mutex);
d7965152 1270
19f81df2
RB
1271 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1272 engine->context_unpin(engine, stream->ctx);
1273
1274 mutex_unlock(&dev_priv->drm.struct_mutex);
1275 }
d7965152
RB
1276}
1277
1278static void
1279free_oa_buffer(struct drm_i915_private *i915)
1280{
1281 mutex_lock(&i915->drm.struct_mutex);
1282
1283 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1284 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1285 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1286
1287 i915->perf.oa.oa_buffer.vma = NULL;
1288 i915->perf.oa.oa_buffer.vaddr = NULL;
1289
1290 mutex_unlock(&i915->drm.struct_mutex);
1291}
1292
1293static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1294{
1295 struct drm_i915_private *dev_priv = stream->dev_priv;
1296
1297 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1298
19f81df2 1299 /*
f89823c2
LL
1300 * Unset exclusive_stream first, it will be checked while disabling
1301 * the metric set on gen8+.
19f81df2 1302 */
701f8231 1303 mutex_lock(&dev_priv->drm.struct_mutex);
19f81df2 1304 dev_priv->perf.oa.exclusive_stream = NULL;
701f8231 1305 mutex_unlock(&dev_priv->drm.struct_mutex);
19f81df2 1306
d7965152
RB
1307 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1308
1309 free_oa_buffer(dev_priv);
1310
1311 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1312 intel_runtime_pm_put(dev_priv);
1313
1314 if (stream->ctx)
1315 oa_put_render_ctx_id(stream);
1316
f89823c2
LL
1317 put_oa_config(dev_priv, stream->oa_config);
1318
712122ea
RB
1319 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1320 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1321 dev_priv->perf.oa.spurious_report_rs.missed);
1322 }
d7965152
RB
1323}
1324
1325static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1326{
1327 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
0dd860cf
RB
1328 unsigned long flags;
1329
1330 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
d7965152
RB
1331
1332 /* Pre-DevBDW: OABUFFER must be set with counters off,
1333 * before OASTATUS1, but after OASTATUS2
1334 */
1335 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
f279020a
RB
1336 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1337
d7965152 1338 I915_WRITE(GEN7_OABUFFER, gtt_offset);
f279020a 1339
d7965152
RB
1340 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1341
0dd860cf
RB
1342 /* Mark that we need updated tail pointers to read from... */
1343 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1344 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1345
1346 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1347
d7965152
RB
1348 /* On Haswell we have to track which OASTATUS1 flags we've
1349 * already seen since they can't be cleared while periodic
1350 * sampling is enabled.
1351 */
1352 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1353
1354 /* NB: although the OA buffer will initially be allocated
1355 * zeroed via shmfs (and so this memset is redundant when
1356 * first allocating), we may re-init the OA buffer, either
1357 * when re-enabling a stream or in error/reset paths.
1358 *
1359 * The reason we clear the buffer for each re-init is for the
1360 * sanity check in gen7_append_oa_reports() that looks at the
1361 * report-id field to make sure it's non-zero which relies on
1362 * the assumption that new reports are being written to zeroed
1363 * memory...
1364 */
1365 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1366
1367 /* Maybe make ->pollin per-stream state if we support multiple
1368 * concurrent streams in the future.
1369 */
1370 dev_priv->perf.oa.pollin = false;
1371}
1372
19f81df2
RB
1373static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1374{
1375 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1376 unsigned long flags;
1377
1378 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1379
1380 I915_WRITE(GEN8_OASTATUS, 0);
1381 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1382 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1383
1384 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1385
1386 /*
1387 * PRM says:
1388 *
1389 * "This MMIO must be set before the OATAILPTR
1390 * register and after the OAHEADPTR register. This is
1391 * to enable proper functionality of the overflow
1392 * bit."
1393 */
1394 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1395 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1396 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1397
1398 /* Mark that we need updated tail pointers to read from... */
1399 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1400 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1401
1402 /*
1403 * Reset state used to recognise context switches, affecting which
1404 * reports we will forward to userspace while filtering for a single
1405 * context.
1406 */
1407 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1408
1409 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1410
1411 /*
1412 * NB: although the OA buffer will initially be allocated
1413 * zeroed via shmfs (and so this memset is redundant when
1414 * first allocating), we may re-init the OA buffer, either
1415 * when re-enabling a stream or in error/reset paths.
1416 *
1417 * The reason we clear the buffer for each re-init is for the
1418 * sanity check in gen8_append_oa_reports() that looks at the
1419 * reason field to make sure it's non-zero which relies on
1420 * the assumption that new reports are being written to zeroed
1421 * memory...
1422 */
1423 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1424
1425 /*
1426 * Maybe make ->pollin per-stream state if we support multiple
1427 * concurrent streams in the future.
1428 */
1429 dev_priv->perf.oa.pollin = false;
1430}
1431
d7965152
RB
1432static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1433{
1434 struct drm_i915_gem_object *bo;
1435 struct i915_vma *vma;
1436 int ret;
1437
1438 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1439 return -ENODEV;
1440
1441 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1442 if (ret)
1443 return ret;
1444
1445 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1446 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1447
12d79d78 1448 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
d7965152
RB
1449 if (IS_ERR(bo)) {
1450 DRM_ERROR("Failed to allocate OA buffer\n");
1451 ret = PTR_ERR(bo);
1452 goto unlock;
1453 }
1454
1455 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1456 if (ret)
1457 goto err_unref;
1458
1459 /* PreHSW required 512K alignment, HSW requires 16M */
1460 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1461 if (IS_ERR(vma)) {
1462 ret = PTR_ERR(vma);
1463 goto err_unref;
1464 }
1465 dev_priv->perf.oa.oa_buffer.vma = vma;
1466
1467 dev_priv->perf.oa.oa_buffer.vaddr =
1468 i915_gem_object_pin_map(bo, I915_MAP_WB);
1469 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1470 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1471 goto err_unpin;
1472 }
1473
1474 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1475
1476 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1477 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1478 dev_priv->perf.oa.oa_buffer.vaddr);
1479
1480 goto unlock;
1481
1482err_unpin:
1483 __i915_vma_unpin(vma);
1484
1485err_unref:
1486 i915_gem_object_put(bo);
1487
1488 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1489 dev_priv->perf.oa.oa_buffer.vma = NULL;
1490
1491unlock:
1492 mutex_unlock(&dev_priv->drm.struct_mutex);
1493 return ret;
1494}
1495
1496static void config_oa_regs(struct drm_i915_private *dev_priv,
1497 const struct i915_oa_reg *regs,
701f8231 1498 u32 n_regs)
d7965152 1499{
701f8231 1500 u32 i;
d7965152
RB
1501
1502 for (i = 0; i < n_regs; i++) {
1503 const struct i915_oa_reg *reg = regs + i;
1504
1505 I915_WRITE(reg->addr, reg->value);
1506 }
1507}
1508
701f8231
LL
1509static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1510 const struct i915_oa_config *oa_config)
d7965152 1511{
d7965152
RB
1512 /* PRM:
1513 *
1514 * OA unit is using “crclk” for its functionality. When trunk
1515 * level clock gating takes place, OA clock would be gated,
1516 * unable to count the events from non-render clock domain.
1517 * Render clock gating must be disabled when OA is enabled to
1518 * count the events from non-render domain. Unit level clock
1519 * gating for RCS should also be disabled.
1520 */
1521 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1522 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1523 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1524 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1525
701f8231 1526 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
d7965152
RB
1527
1528 /* It apparently takes a fairly long time for a new MUX
1529 * configuration to be be applied after these register writes.
1530 * This delay duration was derived empirically based on the
1531 * render_basic config but hopefully it covers the maximum
1532 * configuration latency.
1533 *
1534 * As a fallback, the checks in _append_oa_reports() to skip
1535 * invalid OA reports do also seem to work to discard reports
1536 * generated before this config has completed - albeit not
1537 * silently.
1538 *
1539 * Unfortunately this is essentially a magic number, since we
1540 * don't currently know of a reliable mechanism for predicting
1541 * how long the MUX config will take to apply and besides
1542 * seeing invalid reports we don't know of a reliable way to
1543 * explicitly check that the MUX config has landed.
1544 *
1545 * It's even possible we've miss characterized the underlying
1546 * problem - it just seems like the simplest explanation why
1547 * a delay at this location would mitigate any invalid reports.
1548 */
1549 usleep_range(15000, 20000);
1550
701f8231
LL
1551 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1552 oa_config->b_counter_regs_len);
d7965152
RB
1553
1554 return 0;
1555}
1556
1557static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1558{
1559 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1560 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1561 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1562 GEN7_DOP_CLOCK_GATE_ENABLE));
1563
1564 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1565 ~GT_NOA_ENABLE));
1566}
1567
19f81df2
RB
1568/*
1569 * NB: It must always remain pointer safe to run this even if the OA unit
1570 * has been disabled.
1571 *
1572 * It's fine to put out-of-date values into these per-context registers
1573 * in the case that the OA unit has been disabled.
1574 */
1575static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
701f8231
LL
1576 u32 *reg_state,
1577 const struct i915_oa_config *oa_config)
19f81df2
RB
1578{
1579 struct drm_i915_private *dev_priv = ctx->i915;
19f81df2
RB
1580 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1581 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1582 /* The MMIO offsets for Flex EU registers aren't contiguous */
1583 u32 flex_mmio[] = {
1584 i915_mmio_reg_offset(EU_PERF_CNTL0),
1585 i915_mmio_reg_offset(EU_PERF_CNTL1),
1586 i915_mmio_reg_offset(EU_PERF_CNTL2),
1587 i915_mmio_reg_offset(EU_PERF_CNTL3),
1588 i915_mmio_reg_offset(EU_PERF_CNTL4),
1589 i915_mmio_reg_offset(EU_PERF_CNTL5),
1590 i915_mmio_reg_offset(EU_PERF_CNTL6),
1591 };
1592 int i;
1593
1594 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1595 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1596 GEN8_OA_TIMER_PERIOD_SHIFT) |
1597 (dev_priv->perf.oa.periodic ?
1598 GEN8_OA_TIMER_ENABLE : 0) |
1599 GEN8_OA_COUNTER_RESUME;
1600
1601 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1602 u32 state_offset = ctx_flexeu0 + i * 2;
1603 u32 mmio = flex_mmio[i];
1604
1605 /*
1606 * This arbitrary default will select the 'EU FPU0 Pipeline
1607 * Active' event. In the future it's anticipated that there
1608 * will be an explicit 'No Event' we can select, but not yet...
1609 */
1610 u32 value = 0;
19f81df2 1611
701f8231
LL
1612 if (oa_config) {
1613 u32 j;
1614
1615 for (j = 0; j < oa_config->flex_regs_len; j++) {
1616 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1617 value = oa_config->flex_regs[j].value;
1618 break;
1619 }
19f81df2
RB
1620 }
1621 }
1622
1623 reg_state[state_offset] = mmio;
1624 reg_state[state_offset+1] = value;
1625 }
1626}
1627
1628/*
1629 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1630 * is only used by the kernel context.
1631 */
701f8231
LL
1632static int gen8_emit_oa_config(struct drm_i915_gem_request *req,
1633 const struct i915_oa_config *oa_config)
19f81df2
RB
1634{
1635 struct drm_i915_private *dev_priv = req->i915;
19f81df2
RB
1636 /* The MMIO offsets for Flex EU registers aren't contiguous */
1637 u32 flex_mmio[] = {
1638 i915_mmio_reg_offset(EU_PERF_CNTL0),
1639 i915_mmio_reg_offset(EU_PERF_CNTL1),
1640 i915_mmio_reg_offset(EU_PERF_CNTL2),
1641 i915_mmio_reg_offset(EU_PERF_CNTL3),
1642 i915_mmio_reg_offset(EU_PERF_CNTL4),
1643 i915_mmio_reg_offset(EU_PERF_CNTL5),
1644 i915_mmio_reg_offset(EU_PERF_CNTL6),
1645 };
1646 u32 *cs;
1647 int i;
1648
01d928e9 1649 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4);
19f81df2
RB
1650 if (IS_ERR(cs))
1651 return PTR_ERR(cs);
1652
01d928e9 1653 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
19f81df2
RB
1654
1655 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1656 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1657 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1658 GEN8_OA_COUNTER_RESUME;
1659
1660 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1661 u32 mmio = flex_mmio[i];
1662
1663 /*
1664 * This arbitrary default will select the 'EU FPU0 Pipeline
1665 * Active' event. In the future it's anticipated that there
1666 * will be an explicit 'No Event' we can select, but not
1667 * yet...
1668 */
1669 u32 value = 0;
19f81df2 1670
701f8231
LL
1671 if (oa_config) {
1672 u32 j;
1673
1674 for (j = 0; j < oa_config->flex_regs_len; j++) {
1675 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1676 value = oa_config->flex_regs[j].value;
1677 break;
1678 }
19f81df2
RB
1679 }
1680 }
1681
1682 *cs++ = mmio;
1683 *cs++ = value;
1684 }
1685
1686 *cs++ = MI_NOOP;
1687 intel_ring_advance(req, cs);
1688
1689 return 0;
1690}
1691
701f8231
LL
1692static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1693 const struct i915_oa_config *oa_config)
19f81df2
RB
1694{
1695 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1696 struct i915_gem_timeline *timeline;
1697 struct drm_i915_gem_request *req;
1698 int ret;
1699
1700 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1701
1702 i915_gem_retire_requests(dev_priv);
1703
1704 req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1705 if (IS_ERR(req))
1706 return PTR_ERR(req);
1707
701f8231 1708 ret = gen8_emit_oa_config(req, oa_config);
19f81df2
RB
1709 if (ret) {
1710 i915_add_request(req);
1711 return ret;
1712 }
1713
1714 /* Queue this switch after all other activity */
1715 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1716 struct drm_i915_gem_request *prev;
1717 struct intel_timeline *tl;
1718
1719 tl = &timeline->engine[engine->id];
1720 prev = i915_gem_active_raw(&tl->last_request,
1721 &dev_priv->drm.struct_mutex);
1722 if (prev)
1723 i915_sw_fence_await_sw_fence_gfp(&req->submit,
1724 &prev->submit,
1725 GFP_KERNEL);
1726 }
1727
1728 ret = i915_switch_context(req);
1729 i915_add_request(req);
1730
1731 return ret;
1732}
1733
1734/*
1735 * Manages updating the per-context aspects of the OA stream
1736 * configuration across all contexts.
1737 *
1738 * The awkward consideration here is that OACTXCONTROL controls the
1739 * exponent for periodic sampling which is primarily used for system
1740 * wide profiling where we'd like a consistent sampling period even in
1741 * the face of context switches.
1742 *
1743 * Our approach of updating the register state context (as opposed to
1744 * say using a workaround batch buffer) ensures that the hardware
1745 * won't automatically reload an out-of-date timer exponent even
1746 * transiently before a WA BB could be parsed.
1747 *
1748 * This function needs to:
1749 * - Ensure the currently running context's per-context OA state is
1750 * updated
1751 * - Ensure that all existing contexts will have the correct per-context
1752 * OA state if they are scheduled for use.
1753 * - Ensure any new contexts will be initialized with the correct
1754 * per-context OA state.
1755 *
1756 * Note: it's only the RCS/Render context that has any OA state.
1757 */
1758static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
701f8231 1759 const struct i915_oa_config *oa_config,
19f81df2
RB
1760 bool interruptible)
1761{
1762 struct i915_gem_context *ctx;
1763 int ret;
1764 unsigned int wait_flags = I915_WAIT_LOCKED;
1765
1766 if (interruptible) {
1767 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1768 if (ret)
1769 return ret;
1770
1771 wait_flags |= I915_WAIT_INTERRUPTIBLE;
1772 } else {
1773 mutex_lock(&dev_priv->drm.struct_mutex);
1774 }
1775
1776 /* Switch away from any user context. */
701f8231 1777 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
19f81df2
RB
1778 if (ret)
1779 goto out;
1780
1781 /*
1782 * The OA register config is setup through the context image. This image
1783 * might be written to by the GPU on context switch (in particular on
1784 * lite-restore). This means we can't safely update a context's image,
1785 * if this context is scheduled/submitted to run on the GPU.
1786 *
1787 * We could emit the OA register config through the batch buffer but
1788 * this might leave small interval of time where the OA unit is
1789 * configured at an invalid sampling period.
1790 *
1791 * So far the best way to work around this issue seems to be draining
1792 * the GPU from any submitted work.
1793 */
1794 ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1795 if (ret)
1796 goto out;
1797
1798 /* Update all contexts now that we've stalled the submission. */
829a0af2 1799 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
19f81df2
RB
1800 struct intel_context *ce = &ctx->engine[RCS];
1801 u32 *regs;
1802
1803 /* OA settings will be set upon first use */
1804 if (!ce->state)
1805 continue;
1806
1807 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1808 if (IS_ERR(regs)) {
1809 ret = PTR_ERR(regs);
1810 goto out;
1811 }
1812
1813 ce->state->obj->mm.dirty = true;
1814 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1815
701f8231 1816 gen8_update_reg_state_unlocked(ctx, regs, oa_config);
19f81df2
RB
1817
1818 i915_gem_object_unpin_map(ce->state->obj);
1819 }
1820
1821 out:
1822 mutex_unlock(&dev_priv->drm.struct_mutex);
1823
1824 return ret;
1825}
1826
701f8231
LL
1827static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1828 const struct i915_oa_config *oa_config)
19f81df2 1829{
701f8231 1830 int ret;
19f81df2
RB
1831
1832 /*
1833 * We disable slice/unslice clock ratio change reports on SKL since
1834 * they are too noisy. The HW generates a lot of redundant reports
1835 * where the ratio hasn't really changed causing a lot of redundant
1836 * work to processes and increasing the chances we'll hit buffer
1837 * overruns.
1838 *
1839 * Although we don't currently use the 'disable overrun' OABUFFER
1840 * feature it's worth noting that clock ratio reports have to be
1841 * disabled before considering to use that feature since the HW doesn't
1842 * correctly block these reports.
1843 *
1844 * Currently none of the high-level metrics we have depend on knowing
1845 * this ratio to normalize.
1846 *
1847 * Note: This register is not power context saved and restored, but
1848 * that's OK considering that we disable RC6 while the OA unit is
1849 * enabled.
1850 *
1851 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1852 * be read back from automatically triggered reports, as part of the
1853 * RPT_ID field.
1854 */
342a2c84 1855 if (IS_GEN9(dev_priv)) {
19f81df2
RB
1856 I915_WRITE(GEN8_OA_DEBUG,
1857 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1858 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1859 }
1860
1861 /*
1862 * Update all contexts prior writing the mux configurations as we need
1863 * to make sure all slices/subslices are ON before writing to NOA
1864 * registers.
1865 */
701f8231 1866 ret = gen8_configure_all_contexts(dev_priv, oa_config, true);
19f81df2
RB
1867 if (ret)
1868 return ret;
1869
701f8231
LL
1870 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1871
701f8231
LL
1872 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1873 oa_config->b_counter_regs_len);
19f81df2
RB
1874
1875 return 0;
1876}
1877
1878static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1879{
1880 /* Reset all contexts' slices/subslices configurations. */
701f8231 1881 gen8_configure_all_contexts(dev_priv, NULL, false);
28964cf2
LL
1882
1883 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1884 ~GT_NOA_ENABLE));
1885
19f81df2
RB
1886}
1887
1bef3409 1888static void gen7_oa_enable(struct drm_i915_private *dev_priv)
d7965152 1889{
1bef3409
RB
1890 /*
1891 * Reset buf pointers so we don't forward reports from before now.
1892 *
1893 * Think carefully if considering trying to avoid this, since it
1894 * also ensures status flags and the buffer itself are cleared
1895 * in error paths, and we have checks for invalid reports based
1896 * on the assumption that certain fields are written to zeroed
1897 * memory which this helps maintains.
1898 */
1899 gen7_init_oa_buffer(dev_priv);
d7965152
RB
1900
1901 if (dev_priv->perf.oa.exclusive_stream->enabled) {
1902 struct i915_gem_context *ctx =
1903 dev_priv->perf.oa.exclusive_stream->ctx;
1904 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1905
1906 bool periodic = dev_priv->perf.oa.periodic;
1907 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1908 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1909
1910 I915_WRITE(GEN7_OACONTROL,
1911 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1912 (period_exponent <<
1913 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1914 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1915 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1916 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1917 GEN7_OACONTROL_ENABLE);
1918 } else
1919 I915_WRITE(GEN7_OACONTROL, 0);
1920}
1921
19f81df2
RB
1922static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1923{
1924 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1925
1926 /*
1927 * Reset buf pointers so we don't forward reports from before now.
1928 *
1929 * Think carefully if considering trying to avoid this, since it
1930 * also ensures status flags and the buffer itself are cleared
1931 * in error paths, and we have checks for invalid reports based
1932 * on the assumption that certain fields are written to zeroed
1933 * memory which this helps maintains.
1934 */
1935 gen8_init_oa_buffer(dev_priv);
1936
1937 /*
1938 * Note: we don't rely on the hardware to perform single context
1939 * filtering and instead filter on the cpu based on the context-id
1940 * field of reports
1941 */
1942 I915_WRITE(GEN8_OACONTROL, (report_format <<
1943 GEN8_OA_REPORT_FORMAT_SHIFT) |
1944 GEN8_OA_COUNTER_ENABLE);
1945}
1946
16d98b31
RB
1947/**
1948 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1949 * @stream: An i915 perf stream opened for OA metrics
1950 *
1951 * [Re]enables hardware periodic sampling according to the period configured
1952 * when opening the stream. This also starts a hrtimer that will periodically
1953 * check for data in the circular OA buffer for notifying userspace (e.g.
1954 * during a read() or poll()).
1955 */
d7965152
RB
1956static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1957{
1958 struct drm_i915_private *dev_priv = stream->dev_priv;
1959
1960 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1961
1962 if (dev_priv->perf.oa.periodic)
1963 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1964 ns_to_ktime(POLL_PERIOD),
1965 HRTIMER_MODE_REL_PINNED);
1966}
1967
1968static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1969{
1970 I915_WRITE(GEN7_OACONTROL, 0);
1971}
1972
19f81df2
RB
1973static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1974{
1975 I915_WRITE(GEN8_OACONTROL, 0);
1976}
1977
16d98b31
RB
1978/**
1979 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1980 * @stream: An i915 perf stream opened for OA metrics
1981 *
1982 * Stops the OA unit from periodically writing counter reports into the
1983 * circular OA buffer. This also stops the hrtimer that periodically checks for
1984 * data in the circular OA buffer, for notifying userspace.
1985 */
d7965152
RB
1986static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1987{
1988 struct drm_i915_private *dev_priv = stream->dev_priv;
1989
1990 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1991
1992 if (dev_priv->perf.oa.periodic)
1993 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1994}
1995
d7965152
RB
1996static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1997 .destroy = i915_oa_stream_destroy,
1998 .enable = i915_oa_stream_enable,
1999 .disable = i915_oa_stream_disable,
2000 .wait_unlocked = i915_oa_wait_unlocked,
2001 .poll_wait = i915_oa_poll_wait,
2002 .read = i915_oa_read,
eec688e1
RB
2003};
2004
16d98b31
RB
2005/**
2006 * i915_oa_stream_init - validate combined props for OA stream and init
2007 * @stream: An i915 perf stream
2008 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2009 * @props: The property state that configures stream (individually validated)
2010 *
2011 * While read_properties_unlocked() validates properties in isolation it
2012 * doesn't ensure that the combination necessarily makes sense.
2013 *
2014 * At this point it has been determined that userspace wants a stream of
2015 * OA metrics, but still we need to further validate the combined
2016 * properties are OK.
2017 *
2018 * If the configuration makes sense then we can allocate memory for
2019 * a circular OA buffer and apply the requested metric set configuration.
2020 *
2021 * Returns: zero on success or a negative error code.
2022 */
d7965152
RB
2023static int i915_oa_stream_init(struct i915_perf_stream *stream,
2024 struct drm_i915_perf_open_param *param,
2025 struct perf_open_properties *props)
2026{
2027 struct drm_i915_private *dev_priv = stream->dev_priv;
2028 int format_size;
2029 int ret;
2030
442b8c06
RB
2031 /* If the sysfs metrics/ directory wasn't registered for some
2032 * reason then don't let userspace try their luck with config
2033 * IDs
2034 */
2035 if (!dev_priv->perf.metrics_kobj) {
7708550c 2036 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
442b8c06
RB
2037 return -EINVAL;
2038 }
2039
d7965152 2040 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
7708550c 2041 DRM_DEBUG("Only OA report sampling supported\n");
d7965152
RB
2042 return -EINVAL;
2043 }
2044
2045 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
7708550c 2046 DRM_DEBUG("OA unit not supported\n");
d7965152
RB
2047 return -ENODEV;
2048 }
2049
2050 /* To avoid the complexity of having to accurately filter
2051 * counter reports and marshal to the appropriate client
2052 * we currently only allow exclusive access
2053 */
2054 if (dev_priv->perf.oa.exclusive_stream) {
7708550c 2055 DRM_DEBUG("OA unit already in use\n");
d7965152
RB
2056 return -EBUSY;
2057 }
2058
d7965152 2059 if (!props->oa_format) {
7708550c 2060 DRM_DEBUG("OA report format not specified\n");
d7965152
RB
2061 return -EINVAL;
2062 }
2063
712122ea
RB
2064 /* We set up some ratelimit state to potentially throttle any _NOTES
2065 * about spurious, invalid OA reports which we don't forward to
2066 * userspace.
2067 *
2068 * The initialization is associated with opening the stream (not driver
2069 * init) considering we print a _NOTE about any throttling when closing
2070 * the stream instead of waiting until driver _fini which no one would
2071 * ever see.
2072 *
2073 * Using the same limiting factors as printk_ratelimit()
2074 */
2075 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2076 5 * HZ, 10);
2077 /* Since we use a DRM_NOTE for spurious reports it would be
2078 * inconsistent to let __ratelimit() automatically print a warning for
2079 * throttling.
2080 */
2081 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2082 RATELIMIT_MSG_ON_RELEASE);
2083
d7965152
RB
2084 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2085
2086 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2087
2088 stream->sample_flags |= SAMPLE_OA_REPORT;
2089 stream->sample_size += format_size;
2090
2091 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2092 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2093 return -EINVAL;
2094
2095 dev_priv->perf.oa.oa_buffer.format =
2096 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2097
d7965152 2098 dev_priv->perf.oa.periodic = props->oa_periodic;
0dd860cf 2099 if (dev_priv->perf.oa.periodic)
d7965152
RB
2100 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2101
d7965152
RB
2102 if (stream->ctx) {
2103 ret = oa_get_render_ctx_id(stream);
2104 if (ret)
2105 return ret;
2106 }
2107
f89823c2
LL
2108 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2109 if (ret)
2110 goto err_config;
701f8231 2111
d7965152
RB
2112 /* PRM - observability performance counters:
2113 *
2114 * OACONTROL, performance counter enable, note:
2115 *
2116 * "When this bit is set, in order to have coherent counts,
2117 * RC6 power state and trunk clock gating must be disabled.
2118 * This can be achieved by programming MMIO registers as
2119 * 0xA094=0 and 0xA090[31]=1"
2120 *
2121 * In our case we are expecting that taking pm + FORCEWAKE
2122 * references will effectively disable RC6.
2123 */
2124 intel_runtime_pm_get(dev_priv);
2125 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2126
987f8c44 2127 ret = alloc_oa_buffer(dev_priv);
2128 if (ret)
2129 goto err_oa_buf_alloc;
2130
701f8231
LL
2131 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2132 stream->oa_config);
d7965152
RB
2133 if (ret)
2134 goto err_enable;
2135
2136 stream->ops = &i915_oa_stream_ops;
2137
701f8231
LL
2138 /* Lock device for exclusive_stream access late because
2139 * enable_metric_set() might lock as well on gen8+.
2140 */
2141 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2142 if (ret)
2143 goto err_lock;
2144
d7965152
RB
2145 dev_priv->perf.oa.exclusive_stream = stream;
2146
701f8231
LL
2147 mutex_unlock(&dev_priv->drm.struct_mutex);
2148
d7965152
RB
2149 return 0;
2150
701f8231
LL
2151err_lock:
2152 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2153
d7965152 2154err_enable:
d7965152
RB
2155 free_oa_buffer(dev_priv);
2156
2157err_oa_buf_alloc:
f89823c2
LL
2158 put_oa_config(dev_priv, stream->oa_config);
2159
987f8c44 2160 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2161 intel_runtime_pm_put(dev_priv);
f89823c2
LL
2162
2163err_config:
d7965152
RB
2164 if (stream->ctx)
2165 oa_put_render_ctx_id(stream);
2166
2167 return ret;
2168}
2169
19f81df2
RB
2170void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2171 struct i915_gem_context *ctx,
2172 u32 *reg_state)
2173{
28b6cb08 2174 struct i915_perf_stream *stream;
19f81df2
RB
2175
2176 if (engine->id != RCS)
2177 return;
2178
28b6cb08 2179 stream = engine->i915->perf.oa.exclusive_stream;
701f8231
LL
2180 if (stream)
2181 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
19f81df2
RB
2182}
2183
16d98b31
RB
2184/**
2185 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2186 * @stream: An i915 perf stream
2187 * @file: An i915 perf stream file
2188 * @buf: destination buffer given by userspace
2189 * @count: the number of bytes userspace wants to read
2190 * @ppos: (inout) file seek position (unused)
2191 *
2192 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2193 * ensure that if we've successfully copied any data then reporting that takes
2194 * precedence over any internal error status, so the data isn't lost.
2195 *
2196 * For example ret will be -ENOSPC whenever there is more buffered data than
2197 * can be copied to userspace, but that's only interesting if we weren't able
2198 * to copy some data because it implies the userspace buffer is too small to
2199 * receive a single record (and we never split records).
2200 *
2201 * Another case with ret == -EFAULT is more of a grey area since it would seem
2202 * like bad form for userspace to ask us to overrun its buffer, but the user
2203 * knows best:
2204 *
2205 * http://yarchive.net/comp/linux/partial_reads_writes.html
2206 *
2207 * Returns: The number of bytes copied or a negative error code on failure.
2208 */
eec688e1
RB
2209static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2210 struct file *file,
2211 char __user *buf,
2212 size_t count,
2213 loff_t *ppos)
2214{
2215 /* Note we keep the offset (aka bytes read) separate from any
2216 * error status so that the final check for whether we return
2217 * the bytes read with a higher precedence than any error (see
2218 * comment below) doesn't need to be handled/duplicated in
2219 * stream->ops->read() implementations.
2220 */
2221 size_t offset = 0;
2222 int ret = stream->ops->read(stream, buf, count, &offset);
2223
eec688e1
RB
2224 return offset ?: (ret ?: -EAGAIN);
2225}
2226
16d98b31
RB
2227/**
2228 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2229 * @file: An i915 perf stream file
2230 * @buf: destination buffer given by userspace
2231 * @count: the number of bytes userspace wants to read
2232 * @ppos: (inout) file seek position (unused)
2233 *
2234 * The entry point for handling a read() on a stream file descriptor from
2235 * userspace. Most of the work is left to the i915_perf_read_locked() and
2236 * &i915_perf_stream_ops->read but to save having stream implementations (of
2237 * which we might have multiple later) we handle blocking read here.
2238 *
2239 * We can also consistently treat trying to read from a disabled stream
2240 * as an IO error so implementations can assume the stream is enabled
2241 * while reading.
2242 *
2243 * Returns: The number of bytes copied or a negative error code on failure.
2244 */
eec688e1
RB
2245static ssize_t i915_perf_read(struct file *file,
2246 char __user *buf,
2247 size_t count,
2248 loff_t *ppos)
2249{
2250 struct i915_perf_stream *stream = file->private_data;
2251 struct drm_i915_private *dev_priv = stream->dev_priv;
2252 ssize_t ret;
2253
d7965152
RB
2254 /* To ensure it's handled consistently we simply treat all reads of a
2255 * disabled stream as an error. In particular it might otherwise lead
2256 * to a deadlock for blocking file descriptors...
2257 */
2258 if (!stream->enabled)
2259 return -EIO;
2260
eec688e1 2261 if (!(file->f_flags & O_NONBLOCK)) {
d7965152
RB
2262 /* There's the small chance of false positives from
2263 * stream->ops->wait_unlocked.
2264 *
2265 * E.g. with single context filtering since we only wait until
2266 * oabuffer has >= 1 report we don't immediately know whether
2267 * any reports really belong to the current context
eec688e1
RB
2268 */
2269 do {
2270 ret = stream->ops->wait_unlocked(stream);
2271 if (ret)
2272 return ret;
2273
2274 mutex_lock(&dev_priv->perf.lock);
2275 ret = i915_perf_read_locked(stream, file,
2276 buf, count, ppos);
2277 mutex_unlock(&dev_priv->perf.lock);
2278 } while (ret == -EAGAIN);
2279 } else {
2280 mutex_lock(&dev_priv->perf.lock);
2281 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2282 mutex_unlock(&dev_priv->perf.lock);
2283 }
2284
26ebd9c7
RB
2285 /* We allow the poll checking to sometimes report false positive POLLIN
2286 * events where we might actually report EAGAIN on read() if there's
2287 * not really any data available. In this situation though we don't
2288 * want to enter a busy loop between poll() reporting a POLLIN event
2289 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2290 * effectively ensures we back off until the next hrtimer callback
2291 * before reporting another POLLIN event.
2292 */
2293 if (ret >= 0 || ret == -EAGAIN) {
d7965152
RB
2294 /* Maybe make ->pollin per-stream state if we support multiple
2295 * concurrent streams in the future.
2296 */
2297 dev_priv->perf.oa.pollin = false;
2298 }
2299
eec688e1
RB
2300 return ret;
2301}
2302
d7965152
RB
2303static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2304{
2305 struct drm_i915_private *dev_priv =
2306 container_of(hrtimer, typeof(*dev_priv),
2307 perf.oa.poll_check_timer);
2308
19f81df2 2309 if (oa_buffer_check_unlocked(dev_priv)) {
d7965152
RB
2310 dev_priv->perf.oa.pollin = true;
2311 wake_up(&dev_priv->perf.oa.poll_wq);
2312 }
2313
2314 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2315
2316 return HRTIMER_RESTART;
2317}
2318
16d98b31
RB
2319/**
2320 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2321 * @dev_priv: i915 device instance
2322 * @stream: An i915 perf stream
2323 * @file: An i915 perf stream file
2324 * @wait: poll() state table
2325 *
2326 * For handling userspace polling on an i915 perf stream, this calls through to
2327 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2328 * will be woken for new stream data.
2329 *
2330 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2331 * with any non-file-operation driver hooks.
2332 *
2333 * Returns: any poll events that are ready without sleeping
2334 */
d7965152
RB
2335static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2336 struct i915_perf_stream *stream,
eec688e1
RB
2337 struct file *file,
2338 poll_table *wait)
2339{
d7965152 2340 unsigned int events = 0;
eec688e1
RB
2341
2342 stream->ops->poll_wait(stream, file, wait);
2343
d7965152
RB
2344 /* Note: we don't explicitly check whether there's something to read
2345 * here since this path may be very hot depending on what else
2346 * userspace is polling, or on the timeout in use. We rely solely on
2347 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2348 * samples to read.
2349 */
2350 if (dev_priv->perf.oa.pollin)
2351 events |= POLLIN;
eec688e1 2352
d7965152 2353 return events;
eec688e1
RB
2354}
2355
16d98b31
RB
2356/**
2357 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2358 * @file: An i915 perf stream file
2359 * @wait: poll() state table
2360 *
2361 * For handling userspace polling on an i915 perf stream, this ensures
2362 * poll_wait() gets called with a wait queue that will be woken for new stream
2363 * data.
2364 *
2365 * Note: Implementation deferred to i915_perf_poll_locked()
2366 *
2367 * Returns: any poll events that are ready without sleeping
2368 */
eec688e1
RB
2369static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
2370{
2371 struct i915_perf_stream *stream = file->private_data;
2372 struct drm_i915_private *dev_priv = stream->dev_priv;
2373 int ret;
2374
2375 mutex_lock(&dev_priv->perf.lock);
d7965152 2376 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
eec688e1
RB
2377 mutex_unlock(&dev_priv->perf.lock);
2378
2379 return ret;
2380}
2381
16d98b31
RB
2382/**
2383 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2384 * @stream: A disabled i915 perf stream
2385 *
2386 * [Re]enables the associated capture of data for this stream.
2387 *
2388 * If a stream was previously enabled then there's currently no intention
2389 * to provide userspace any guarantee about the preservation of previously
2390 * buffered data.
2391 */
eec688e1
RB
2392static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2393{
2394 if (stream->enabled)
2395 return;
2396
2397 /* Allow stream->ops->enable() to refer to this */
2398 stream->enabled = true;
2399
2400 if (stream->ops->enable)
2401 stream->ops->enable(stream);
2402}
2403
16d98b31
RB
2404/**
2405 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2406 * @stream: An enabled i915 perf stream
2407 *
2408 * Disables the associated capture of data for this stream.
2409 *
2410 * The intention is that disabling an re-enabling a stream will ideally be
2411 * cheaper than destroying and re-opening a stream with the same configuration,
2412 * though there are no formal guarantees about what state or buffered data
2413 * must be retained between disabling and re-enabling a stream.
2414 *
2415 * Note: while a stream is disabled it's considered an error for userspace
2416 * to attempt to read from the stream (-EIO).
2417 */
eec688e1
RB
2418static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2419{
2420 if (!stream->enabled)
2421 return;
2422
2423 /* Allow stream->ops->disable() to refer to this */
2424 stream->enabled = false;
2425
2426 if (stream->ops->disable)
2427 stream->ops->disable(stream);
2428}
2429
16d98b31
RB
2430/**
2431 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2432 * @stream: An i915 perf stream
2433 * @cmd: the ioctl request
2434 * @arg: the ioctl data
2435 *
2436 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2437 * with any non-file-operation driver hooks.
2438 *
2439 * Returns: zero on success or a negative error code. Returns -EINVAL for
2440 * an unknown ioctl request.
2441 */
eec688e1
RB
2442static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2443 unsigned int cmd,
2444 unsigned long arg)
2445{
2446 switch (cmd) {
2447 case I915_PERF_IOCTL_ENABLE:
2448 i915_perf_enable_locked(stream);
2449 return 0;
2450 case I915_PERF_IOCTL_DISABLE:
2451 i915_perf_disable_locked(stream);
2452 return 0;
2453 }
2454
2455 return -EINVAL;
2456}
2457
16d98b31
RB
2458/**
2459 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2460 * @file: An i915 perf stream file
2461 * @cmd: the ioctl request
2462 * @arg: the ioctl data
2463 *
2464 * Implementation deferred to i915_perf_ioctl_locked().
2465 *
2466 * Returns: zero on success or a negative error code. Returns -EINVAL for
2467 * an unknown ioctl request.
2468 */
eec688e1
RB
2469static long i915_perf_ioctl(struct file *file,
2470 unsigned int cmd,
2471 unsigned long arg)
2472{
2473 struct i915_perf_stream *stream = file->private_data;
2474 struct drm_i915_private *dev_priv = stream->dev_priv;
2475 long ret;
2476
2477 mutex_lock(&dev_priv->perf.lock);
2478 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2479 mutex_unlock(&dev_priv->perf.lock);
2480
2481 return ret;
2482}
2483
16d98b31
RB
2484/**
2485 * i915_perf_destroy_locked - destroy an i915 perf stream
2486 * @stream: An i915 perf stream
2487 *
2488 * Frees all resources associated with the given i915 perf @stream, disabling
2489 * any associated data capture in the process.
2490 *
2491 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2492 * with any non-file-operation driver hooks.
2493 */
eec688e1
RB
2494static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2495{
eec688e1
RB
2496 if (stream->enabled)
2497 i915_perf_disable_locked(stream);
2498
2499 if (stream->ops->destroy)
2500 stream->ops->destroy(stream);
2501
2502 list_del(&stream->link);
2503
69df05e1 2504 if (stream->ctx)
5f09a9c8 2505 i915_gem_context_put(stream->ctx);
eec688e1
RB
2506
2507 kfree(stream);
2508}
2509
16d98b31
RB
2510/**
2511 * i915_perf_release - handles userspace close() of a stream file
2512 * @inode: anonymous inode associated with file
2513 * @file: An i915 perf stream file
2514 *
2515 * Cleans up any resources associated with an open i915 perf stream file.
2516 *
2517 * NB: close() can't really fail from the userspace point of view.
2518 *
2519 * Returns: zero on success or a negative error code.
2520 */
eec688e1
RB
2521static int i915_perf_release(struct inode *inode, struct file *file)
2522{
2523 struct i915_perf_stream *stream = file->private_data;
2524 struct drm_i915_private *dev_priv = stream->dev_priv;
2525
2526 mutex_lock(&dev_priv->perf.lock);
2527 i915_perf_destroy_locked(stream);
2528 mutex_unlock(&dev_priv->perf.lock);
2529
2530 return 0;
2531}
2532
2533
2534static const struct file_operations fops = {
2535 .owner = THIS_MODULE,
2536 .llseek = no_llseek,
2537 .release = i915_perf_release,
2538 .poll = i915_perf_poll,
2539 .read = i915_perf_read,
2540 .unlocked_ioctl = i915_perf_ioctl,
191f8960
LL
2541 /* Our ioctl have no arguments, so it's safe to use the same function
2542 * to handle 32bits compatibility.
2543 */
2544 .compat_ioctl = i915_perf_ioctl,
eec688e1
RB
2545};
2546
2547
16d98b31
RB
2548/**
2549 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2550 * @dev_priv: i915 device instance
2551 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2552 * @props: individually validated u64 property value pairs
2553 * @file: drm file
2554 *
2555 * See i915_perf_ioctl_open() for interface details.
2556 *
2557 * Implements further stream config validation and stream initialization on
2558 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2559 * taken to serialize with any non-file-operation driver hooks.
2560 *
2561 * Note: at this point the @props have only been validated in isolation and
2562 * it's still necessary to validate that the combination of properties makes
2563 * sense.
2564 *
2565 * In the case where userspace is interested in OA unit metrics then further
2566 * config validation and stream initialization details will be handled by
2567 * i915_oa_stream_init(). The code here should only validate config state that
2568 * will be relevant to all stream types / backends.
2569 *
2570 * Returns: zero on success or a negative error code.
2571 */
eec688e1
RB
2572static int
2573i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2574 struct drm_i915_perf_open_param *param,
2575 struct perf_open_properties *props,
2576 struct drm_file *file)
2577{
2578 struct i915_gem_context *specific_ctx = NULL;
2579 struct i915_perf_stream *stream = NULL;
2580 unsigned long f_flags = 0;
19f81df2 2581 bool privileged_op = true;
eec688e1
RB
2582 int stream_fd;
2583 int ret;
2584
2585 if (props->single_context) {
2586 u32 ctx_handle = props->ctx_handle;
2587 struct drm_i915_file_private *file_priv = file->driver_priv;
2588
635f56c3
ID
2589 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2590 if (!specific_ctx) {
2591 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2592 ctx_handle);
2593 ret = -ENOENT;
eec688e1
RB
2594 goto err;
2595 }
2596 }
2597
19f81df2
RB
2598 /*
2599 * On Haswell the OA unit supports clock gating off for a specific
2600 * context and in this mode there's no visibility of metrics for the
2601 * rest of the system, which we consider acceptable for a
2602 * non-privileged client.
2603 *
2604 * For Gen8+ the OA unit no longer supports clock gating off for a
2605 * specific context and the kernel can't securely stop the counters
2606 * from updating as system-wide / global values. Even though we can
2607 * filter reports based on the included context ID we can't block
2608 * clients from seeing the raw / global counter values via
2609 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2610 * enable the OA unit by default.
2611 */
2612 if (IS_HASWELL(dev_priv) && specific_ctx)
2613 privileged_op = false;
2614
ccdf6341
RB
2615 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2616 * we check a dev.i915.perf_stream_paranoid sysctl option
2617 * to determine if it's ok to access system wide OA counters
2618 * without CAP_SYS_ADMIN privileges.
2619 */
19f81df2 2620 if (privileged_op &&
ccdf6341 2621 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
7708550c 2622 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
eec688e1
RB
2623 ret = -EACCES;
2624 goto err_ctx;
2625 }
2626
2627 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2628 if (!stream) {
2629 ret = -ENOMEM;
2630 goto err_ctx;
2631 }
2632
eec688e1
RB
2633 stream->dev_priv = dev_priv;
2634 stream->ctx = specific_ctx;
2635
d7965152
RB
2636 ret = i915_oa_stream_init(stream, param, props);
2637 if (ret)
2638 goto err_alloc;
2639
2640 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2641 * to have _stream_init check the combination of sample flags more
2642 * thoroughly, but still this is the expected result at this point.
eec688e1 2643 */
d7965152
RB
2644 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2645 ret = -ENODEV;
22f880ca 2646 goto err_flags;
d7965152 2647 }
eec688e1
RB
2648
2649 list_add(&stream->link, &dev_priv->perf.streams);
2650
2651 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2652 f_flags |= O_CLOEXEC;
2653 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2654 f_flags |= O_NONBLOCK;
2655
2656 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2657 if (stream_fd < 0) {
2658 ret = stream_fd;
2659 goto err_open;
2660 }
2661
2662 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2663 i915_perf_enable_locked(stream);
2664
2665 return stream_fd;
2666
2667err_open:
2668 list_del(&stream->link);
22f880ca 2669err_flags:
eec688e1
RB
2670 if (stream->ops->destroy)
2671 stream->ops->destroy(stream);
2672err_alloc:
2673 kfree(stream);
2674err_ctx:
69df05e1 2675 if (specific_ctx)
5f09a9c8 2676 i915_gem_context_put(specific_ctx);
eec688e1
RB
2677err:
2678 return ret;
2679}
2680
155e941f
RB
2681static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2682{
2683 return div_u64(1000000000ULL * (2ULL << exponent),
2684 dev_priv->perf.oa.timestamp_frequency);
2685}
2686
16d98b31
RB
2687/**
2688 * read_properties_unlocked - validate + copy userspace stream open properties
2689 * @dev_priv: i915 device instance
2690 * @uprops: The array of u64 key value pairs given by userspace
2691 * @n_props: The number of key value pairs expected in @uprops
2692 * @props: The stream configuration built up while validating properties
eec688e1
RB
2693 *
2694 * Note this function only validates properties in isolation it doesn't
2695 * validate that the combination of properties makes sense or that all
2696 * properties necessary for a particular kind of stream have been set.
16d98b31
RB
2697 *
2698 * Note that there currently aren't any ordering requirements for properties so
2699 * we shouldn't validate or assume anything about ordering here. This doesn't
2700 * rule out defining new properties with ordering requirements in the future.
eec688e1
RB
2701 */
2702static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2703 u64 __user *uprops,
2704 u32 n_props,
2705 struct perf_open_properties *props)
2706{
2707 u64 __user *uprop = uprops;
701f8231 2708 u32 i;
eec688e1
RB
2709
2710 memset(props, 0, sizeof(struct perf_open_properties));
2711
2712 if (!n_props) {
7708550c 2713 DRM_DEBUG("No i915 perf properties given\n");
eec688e1
RB
2714 return -EINVAL;
2715 }
2716
2717 /* Considering that ID = 0 is reserved and assuming that we don't
2718 * (currently) expect any configurations to ever specify duplicate
2719 * values for a particular property ID then the last _PROP_MAX value is
2720 * one greater than the maximum number of properties we expect to get
2721 * from userspace.
2722 */
2723 if (n_props >= DRM_I915_PERF_PROP_MAX) {
7708550c 2724 DRM_DEBUG("More i915 perf properties specified than exist\n");
eec688e1
RB
2725 return -EINVAL;
2726 }
2727
2728 for (i = 0; i < n_props; i++) {
00319ba0 2729 u64 oa_period, oa_freq_hz;
eec688e1
RB
2730 u64 id, value;
2731 int ret;
2732
2733 ret = get_user(id, uprop);
2734 if (ret)
2735 return ret;
2736
2737 ret = get_user(value, uprop + 1);
2738 if (ret)
2739 return ret;
2740
0a309f9e
MA
2741 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2742 DRM_DEBUG("Unknown i915 perf property ID\n");
2743 return -EINVAL;
2744 }
2745
eec688e1
RB
2746 switch ((enum drm_i915_perf_property_id)id) {
2747 case DRM_I915_PERF_PROP_CTX_HANDLE:
2748 props->single_context = 1;
2749 props->ctx_handle = value;
2750 break;
d7965152
RB
2751 case DRM_I915_PERF_PROP_SAMPLE_OA:
2752 props->sample_flags |= SAMPLE_OA_REPORT;
2753 break;
2754 case DRM_I915_PERF_PROP_OA_METRICS_SET:
701f8231 2755 if (value == 0) {
7708550c 2756 DRM_DEBUG("Unknown OA metric set ID\n");
d7965152
RB
2757 return -EINVAL;
2758 }
2759 props->metrics_set = value;
2760 break;
2761 case DRM_I915_PERF_PROP_OA_FORMAT:
2762 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
52c57c26
RB
2763 DRM_DEBUG("Out-of-range OA report format %llu\n",
2764 value);
d7965152
RB
2765 return -EINVAL;
2766 }
2767 if (!dev_priv->perf.oa.oa_formats[value].size) {
52c57c26
RB
2768 DRM_DEBUG("Unsupported OA report format %llu\n",
2769 value);
d7965152
RB
2770 return -EINVAL;
2771 }
2772 props->oa_format = value;
2773 break;
2774 case DRM_I915_PERF_PROP_OA_EXPONENT:
2775 if (value > OA_EXPONENT_MAX) {
7708550c
RB
2776 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2777 OA_EXPONENT_MAX);
d7965152
RB
2778 return -EINVAL;
2779 }
2780
00319ba0 2781 /* Theoretically we can program the OA unit to sample
155e941f
RB
2782 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2783 * for BXT. We don't allow such high sampling
2784 * frequencies by default unless root.
00319ba0 2785 */
155e941f 2786
00319ba0 2787 BUILD_BUG_ON(sizeof(oa_period) != 8);
155e941f 2788 oa_period = oa_exponent_to_ns(dev_priv, value);
00319ba0
RB
2789
2790 /* This check is primarily to ensure that oa_period <=
2791 * UINT32_MAX (before passing to do_div which only
2792 * accepts a u32 denominator), but we can also skip
2793 * checking anything < 1Hz which implicitly can't be
2794 * limited via an integer oa_max_sample_rate.
d7965152 2795 */
00319ba0
RB
2796 if (oa_period <= NSEC_PER_SEC) {
2797 u64 tmp = NSEC_PER_SEC;
2798 do_div(tmp, oa_period);
2799 oa_freq_hz = tmp;
2800 } else
2801 oa_freq_hz = 0;
2802
2803 if (oa_freq_hz > i915_oa_max_sample_rate &&
2804 !capable(CAP_SYS_ADMIN)) {
7708550c 2805 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
00319ba0 2806 i915_oa_max_sample_rate);
d7965152
RB
2807 return -EACCES;
2808 }
2809
2810 props->oa_periodic = true;
2811 props->oa_period_exponent = value;
2812 break;
0a309f9e 2813 case DRM_I915_PERF_PROP_MAX:
eec688e1 2814 MISSING_CASE(id);
eec688e1
RB
2815 return -EINVAL;
2816 }
2817
2818 uprop += 2;
2819 }
2820
2821 return 0;
2822}
2823
16d98b31
RB
2824/**
2825 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2826 * @dev: drm device
2827 * @data: ioctl data copied from userspace (unvalidated)
2828 * @file: drm file
2829 *
2830 * Validates the stream open parameters given by userspace including flags
2831 * and an array of u64 key, value pair properties.
2832 *
2833 * Very little is assumed up front about the nature of the stream being
2834 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2835 * i915-perf stream is expected to be a suitable interface for other forms of
2836 * buffered data written by the GPU besides periodic OA metrics.
2837 *
2838 * Note we copy the properties from userspace outside of the i915 perf
2839 * mutex to avoid an awkward lockdep with mmap_sem.
2840 *
2841 * Most of the implementation details are handled by
2842 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2843 * mutex for serializing with any non-file-operation driver hooks.
2844 *
2845 * Return: A newly opened i915 Perf stream file descriptor or negative
2846 * error code on failure.
2847 */
eec688e1
RB
2848int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2849 struct drm_file *file)
2850{
2851 struct drm_i915_private *dev_priv = dev->dev_private;
2852 struct drm_i915_perf_open_param *param = data;
2853 struct perf_open_properties props;
2854 u32 known_open_flags;
2855 int ret;
2856
2857 if (!dev_priv->perf.initialized) {
7708550c 2858 DRM_DEBUG("i915 perf interface not available for this system\n");
eec688e1
RB
2859 return -ENOTSUPP;
2860 }
2861
2862 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2863 I915_PERF_FLAG_FD_NONBLOCK |
2864 I915_PERF_FLAG_DISABLED;
2865 if (param->flags & ~known_open_flags) {
7708550c 2866 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
eec688e1
RB
2867 return -EINVAL;
2868 }
2869
2870 ret = read_properties_unlocked(dev_priv,
2871 u64_to_user_ptr(param->properties_ptr),
2872 param->num_properties,
2873 &props);
2874 if (ret)
2875 return ret;
2876
2877 mutex_lock(&dev_priv->perf.lock);
2878 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2879 mutex_unlock(&dev_priv->perf.lock);
2880
2881 return ret;
2882}
2883
16d98b31
RB
2884/**
2885 * i915_perf_register - exposes i915-perf to userspace
2886 * @dev_priv: i915 device instance
2887 *
2888 * In particular OA metric sets are advertised under a sysfs metrics/
2889 * directory allowing userspace to enumerate valid IDs that can be
2890 * used to open an i915-perf stream.
2891 */
442b8c06
RB
2892void i915_perf_register(struct drm_i915_private *dev_priv)
2893{
701f8231
LL
2894 int ret;
2895
442b8c06
RB
2896 if (!dev_priv->perf.initialized)
2897 return;
2898
2899 /* To be sure we're synchronized with an attempted
2900 * i915_perf_open_ioctl(); considering that we register after
2901 * being exposed to userspace.
2902 */
2903 mutex_lock(&dev_priv->perf.lock);
2904
2905 dev_priv->perf.metrics_kobj =
2906 kobject_create_and_add("metrics",
2907 &dev_priv->drm.primary->kdev->kobj);
2908 if (!dev_priv->perf.metrics_kobj)
2909 goto exit;
2910
40f75ea4 2911 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
701f8231 2912
19f81df2 2913 if (IS_HASWELL(dev_priv)) {
701f8231 2914 i915_perf_load_test_config_hsw(dev_priv);
19f81df2 2915 } else if (IS_BROADWELL(dev_priv)) {
701f8231 2916 i915_perf_load_test_config_bdw(dev_priv);
19f81df2 2917 } else if (IS_CHERRYVIEW(dev_priv)) {
701f8231 2918 i915_perf_load_test_config_chv(dev_priv);
19f81df2 2919 } else if (IS_SKYLAKE(dev_priv)) {
701f8231
LL
2920 if (IS_SKL_GT2(dev_priv))
2921 i915_perf_load_test_config_sklgt2(dev_priv);
2922 else if (IS_SKL_GT3(dev_priv))
2923 i915_perf_load_test_config_sklgt3(dev_priv);
2924 else if (IS_SKL_GT4(dev_priv))
2925 i915_perf_load_test_config_sklgt4(dev_priv);
19f81df2 2926 } else if (IS_BROXTON(dev_priv)) {
701f8231 2927 i915_perf_load_test_config_bxt(dev_priv);
6c5c1d89 2928 } else if (IS_KABYLAKE(dev_priv)) {
701f8231
LL
2929 if (IS_KBL_GT2(dev_priv))
2930 i915_perf_load_test_config_kblgt2(dev_priv);
2931 else if (IS_KBL_GT3(dev_priv))
2932 i915_perf_load_test_config_kblgt3(dev_priv);
28c7ef9e 2933 } else if (IS_GEMINILAKE(dev_priv)) {
701f8231 2934 i915_perf_load_test_config_glk(dev_priv);
22ea4f35
LL
2935 } else if (IS_COFFEELAKE(dev_priv)) {
2936 if (IS_CFL_GT2(dev_priv))
2937 i915_perf_load_test_config_cflgt2(dev_priv);
4407eaa9
LL
2938 if (IS_CFL_GT3(dev_priv))
2939 i915_perf_load_test_config_cflgt3(dev_priv);
442b8c06
RB
2940 }
2941
701f8231
LL
2942 if (dev_priv->perf.oa.test_config.id == 0)
2943 goto sysfs_error;
2944
2945 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2946 &dev_priv->perf.oa.test_config.sysfs_metric);
2947 if (ret)
2948 goto sysfs_error;
f89823c2
LL
2949
2950 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2951
19f81df2
RB
2952 goto exit;
2953
2954sysfs_error:
2955 kobject_put(dev_priv->perf.metrics_kobj);
2956 dev_priv->perf.metrics_kobj = NULL;
2957
442b8c06
RB
2958exit:
2959 mutex_unlock(&dev_priv->perf.lock);
2960}
2961
16d98b31
RB
2962/**
2963 * i915_perf_unregister - hide i915-perf from userspace
2964 * @dev_priv: i915 device instance
2965 *
2966 * i915-perf state cleanup is split up into an 'unregister' and
2967 * 'deinit' phase where the interface is first hidden from
2968 * userspace by i915_perf_unregister() before cleaning up
2969 * remaining state in i915_perf_fini().
2970 */
442b8c06
RB
2971void i915_perf_unregister(struct drm_i915_private *dev_priv)
2972{
442b8c06
RB
2973 if (!dev_priv->perf.metrics_kobj)
2974 return;
2975
701f8231
LL
2976 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2977 &dev_priv->perf.oa.test_config.sysfs_metric);
442b8c06
RB
2978
2979 kobject_put(dev_priv->perf.metrics_kobj);
2980 dev_priv->perf.metrics_kobj = NULL;
2981}
2982
f89823c2
LL
2983static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2984{
2985 static const i915_reg_t flex_eu_regs[] = {
2986 EU_PERF_CNTL0,
2987 EU_PERF_CNTL1,
2988 EU_PERF_CNTL2,
2989 EU_PERF_CNTL3,
2990 EU_PERF_CNTL4,
2991 EU_PERF_CNTL5,
2992 EU_PERF_CNTL6,
2993 };
2994 int i;
2995
2996 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2997 if (flex_eu_regs[i].reg == addr)
2998 return true;
2999 }
3000 return false;
3001}
3002
3003static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3004{
3005 return (addr >= OASTARTTRIG1.reg && addr <= OASTARTTRIG8.reg) ||
3006 (addr >= OAREPORTTRIG1.reg && addr <= OAREPORTTRIG8.reg) ||
3007 (addr >= OACEC0_0.reg && addr <= OACEC7_1.reg);
3008}
3009
3010static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3011{
3012 return addr == HALF_SLICE_CHICKEN2.reg ||
3013 (addr >= MICRO_BP0_0.reg && addr <= NOA_WRITE.reg) ||
3014 (addr >= OA_PERFCNT1_LO.reg && addr <= OA_PERFCNT2_HI.reg) ||
3015 (addr >= OA_PERFMATRIX_LO.reg && addr <= OA_PERFMATRIX_HI.reg);
3016}
3017
3018static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3019{
3020 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3021 addr == WAIT_FOR_RC6_EXIT.reg ||
3022 (addr >= RPM_CONFIG0.reg && addr <= NOA_CONFIG(8).reg);
3023}
3024
3025static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3026{
3027 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3028 (addr >= 0x25100 && addr <= 0x2FF90) ||
a54b19f1
LL
3029 (addr >= HSW_MBVID2_NOA0.reg && addr <= HSW_MBVID2_NOA9.reg) ||
3030 addr == HSW_MBVID2_MISR0.reg;
f89823c2
LL
3031}
3032
3033static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3034{
3035 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3036 (addr >= 0x182300 && addr <= 0x1823A4);
3037}
3038
3039static uint32_t mask_reg_value(u32 reg, u32 val)
3040{
3041 /* HALF_SLICE_CHICKEN2 is programmed with a the
3042 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3043 * programmed by userspace doesn't change this.
3044 */
3045 if (HALF_SLICE_CHICKEN2.reg == reg)
3046 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3047
3048 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3049 * indicated by its name and a bunch of selection fields used by OA
3050 * configs.
3051 */
3052 if (WAIT_FOR_RC6_EXIT.reg == reg)
3053 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3054
3055 return val;
3056}
3057
3058static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3059 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3060 u32 __user *regs,
3061 u32 n_regs)
3062{
3063 struct i915_oa_reg *oa_regs;
3064 int err;
3065 u32 i;
3066
3067 if (!n_regs)
3068 return NULL;
3069
3070 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3071 return ERR_PTR(-EFAULT);
3072
3073 /* No is_valid function means we're not allowing any register to be programmed. */
3074 GEM_BUG_ON(!is_valid);
3075 if (!is_valid)
3076 return ERR_PTR(-EINVAL);
3077
3078 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3079 if (!oa_regs)
3080 return ERR_PTR(-ENOMEM);
3081
3082 for (i = 0; i < n_regs; i++) {
3083 u32 addr, value;
3084
3085 err = get_user(addr, regs);
3086 if (err)
3087 goto addr_err;
3088
3089 if (!is_valid(dev_priv, addr)) {
3090 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3091 err = -EINVAL;
3092 goto addr_err;
3093 }
3094
3095 err = get_user(value, regs + 1);
3096 if (err)
3097 goto addr_err;
3098
3099 oa_regs[i].addr = _MMIO(addr);
3100 oa_regs[i].value = mask_reg_value(addr, value);
3101
3102 regs += 2;
3103 }
3104
3105 return oa_regs;
3106
3107addr_err:
3108 kfree(oa_regs);
3109 return ERR_PTR(err);
3110}
3111
3112static ssize_t show_dynamic_id(struct device *dev,
3113 struct device_attribute *attr,
3114 char *buf)
3115{
3116 struct i915_oa_config *oa_config =
3117 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3118
3119 return sprintf(buf, "%d\n", oa_config->id);
3120}
3121
3122static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3123 struct i915_oa_config *oa_config)
3124{
28152a23 3125 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
f89823c2
LL
3126 oa_config->sysfs_metric_id.attr.name = "id";
3127 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3128 oa_config->sysfs_metric_id.show = show_dynamic_id;
3129 oa_config->sysfs_metric_id.store = NULL;
3130
3131 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3132 oa_config->attrs[1] = NULL;
3133
3134 oa_config->sysfs_metric.name = oa_config->uuid;
3135 oa_config->sysfs_metric.attrs = oa_config->attrs;
3136
3137 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3138 &oa_config->sysfs_metric);
3139}
3140
3141/**
3142 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3143 * @dev: drm device
3144 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3145 * userspace (unvalidated)
3146 * @file: drm file
3147 *
3148 * Validates the submitted OA register to be saved into a new OA config that
3149 * can then be used for programming the OA unit and its NOA network.
3150 *
3151 * Returns: A new allocated config number to be used with the perf open ioctl
3152 * or a negative error code on failure.
3153 */
3154int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3155 struct drm_file *file)
3156{
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct drm_i915_perf_oa_config *args = data;
3159 struct i915_oa_config *oa_config, *tmp;
3160 int err, id;
3161
3162 if (!dev_priv->perf.initialized) {
3163 DRM_DEBUG("i915 perf interface not available for this system\n");
3164 return -ENOTSUPP;
3165 }
3166
3167 if (!dev_priv->perf.metrics_kobj) {
3168 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3169 return -EINVAL;
3170 }
3171
3172 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3173 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3174 return -EACCES;
3175 }
3176
3177 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3178 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3179 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3180 DRM_DEBUG("No OA registers given\n");
3181 return -EINVAL;
3182 }
3183
3184 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3185 if (!oa_config) {
3186 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3187 return -ENOMEM;
3188 }
3189
3190 atomic_set(&oa_config->ref_count, 1);
3191
3192 if (!uuid_is_valid(args->uuid)) {
3193 DRM_DEBUG("Invalid uuid format for OA config\n");
3194 err = -EINVAL;
3195 goto reg_err;
3196 }
3197
3198 /* Last character in oa_config->uuid will be 0 because oa_config is
3199 * kzalloc.
3200 */
3201 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3202
3203 oa_config->mux_regs_len = args->n_mux_regs;
3204 oa_config->mux_regs =
3205 alloc_oa_regs(dev_priv,
3206 dev_priv->perf.oa.ops.is_valid_mux_reg,
3207 u64_to_user_ptr(args->mux_regs_ptr),
3208 args->n_mux_regs);
3209
3210 if (IS_ERR(oa_config->mux_regs)) {
3211 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3212 err = PTR_ERR(oa_config->mux_regs);
3213 goto reg_err;
3214 }
3215
3216 oa_config->b_counter_regs_len = args->n_boolean_regs;
3217 oa_config->b_counter_regs =
3218 alloc_oa_regs(dev_priv,
3219 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3220 u64_to_user_ptr(args->boolean_regs_ptr),
3221 args->n_boolean_regs);
3222
3223 if (IS_ERR(oa_config->b_counter_regs)) {
3224 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3225 err = PTR_ERR(oa_config->b_counter_regs);
3226 goto reg_err;
3227 }
3228
3229 if (INTEL_GEN(dev_priv) < 8) {
3230 if (args->n_flex_regs != 0) {
3231 err = -EINVAL;
3232 goto reg_err;
3233 }
3234 } else {
3235 oa_config->flex_regs_len = args->n_flex_regs;
3236 oa_config->flex_regs =
3237 alloc_oa_regs(dev_priv,
3238 dev_priv->perf.oa.ops.is_valid_flex_reg,
3239 u64_to_user_ptr(args->flex_regs_ptr),
3240 args->n_flex_regs);
3241
3242 if (IS_ERR(oa_config->flex_regs)) {
3243 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3244 err = PTR_ERR(oa_config->flex_regs);
3245 goto reg_err;
3246 }
3247 }
3248
3249 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3250 if (err)
3251 goto reg_err;
3252
3253 /* We shouldn't have too many configs, so this iteration shouldn't be
3254 * too costly.
3255 */
3256 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3257 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3258 DRM_DEBUG("OA config already exists with this uuid\n");
3259 err = -EADDRINUSE;
3260 goto sysfs_err;
3261 }
3262 }
3263
3264 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3265 if (err) {
3266 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3267 goto sysfs_err;
3268 }
3269
3270 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3271 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3272 oa_config, 2,
3273 0, GFP_KERNEL);
3274 if (oa_config->id < 0) {
3275 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3276 err = oa_config->id;
3277 goto sysfs_err;
3278 }
3279
3280 mutex_unlock(&dev_priv->perf.metrics_lock);
3281
3282 return oa_config->id;
3283
3284sysfs_err:
3285 mutex_unlock(&dev_priv->perf.metrics_lock);
3286reg_err:
3287 put_oa_config(dev_priv, oa_config);
3288 DRM_DEBUG("Failed to add new OA config\n");
3289 return err;
3290}
3291
3292/**
3293 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3294 * @dev: drm device
3295 * @data: ioctl data (pointer to u64 integer) copied from userspace
3296 * @file: drm file
3297 *
3298 * Configs can be removed while being used, the will stop appearing in sysfs
3299 * and their content will be freed when the stream using the config is closed.
3300 *
3301 * Returns: 0 on success or a negative error code on failure.
3302 */
3303int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3304 struct drm_file *file)
3305{
3306 struct drm_i915_private *dev_priv = dev->dev_private;
3307 u64 *arg = data;
3308 struct i915_oa_config *oa_config;
3309 int ret;
3310
3311 if (!dev_priv->perf.initialized) {
3312 DRM_DEBUG("i915 perf interface not available for this system\n");
3313 return -ENOTSUPP;
3314 }
3315
3316 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3317 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3318 return -EACCES;
3319 }
3320
3321 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3322 if (ret)
3323 goto lock_err;
3324
3325 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3326 if (!oa_config) {
3327 DRM_DEBUG("Failed to remove unknown OA config\n");
3328 ret = -ENOENT;
3329 goto config_err;
3330 }
3331
3332 GEM_BUG_ON(*arg != oa_config->id);
3333
3334 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3335 &oa_config->sysfs_metric);
3336
3337 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3338 put_oa_config(dev_priv, oa_config);
3339
3340config_err:
3341 mutex_unlock(&dev_priv->perf.metrics_lock);
3342lock_err:
3343 return ret;
3344}
3345
ccdf6341
RB
3346static struct ctl_table oa_table[] = {
3347 {
3348 .procname = "perf_stream_paranoid",
3349 .data = &i915_perf_stream_paranoid,
3350 .maxlen = sizeof(i915_perf_stream_paranoid),
3351 .mode = 0644,
3352 .proc_handler = proc_dointvec_minmax,
3353 .extra1 = &zero,
3354 .extra2 = &one,
3355 },
00319ba0
RB
3356 {
3357 .procname = "oa_max_sample_rate",
3358 .data = &i915_oa_max_sample_rate,
3359 .maxlen = sizeof(i915_oa_max_sample_rate),
3360 .mode = 0644,
3361 .proc_handler = proc_dointvec_minmax,
3362 .extra1 = &zero,
3363 .extra2 = &oa_sample_rate_hard_limit,
3364 },
ccdf6341
RB
3365 {}
3366};
3367
3368static struct ctl_table i915_root[] = {
3369 {
3370 .procname = "i915",
3371 .maxlen = 0,
3372 .mode = 0555,
3373 .child = oa_table,
3374 },
3375 {}
3376};
3377
3378static struct ctl_table dev_root[] = {
3379 {
3380 .procname = "dev",
3381 .maxlen = 0,
3382 .mode = 0555,
3383 .child = i915_root,
3384 },
3385 {}
3386};
3387
16d98b31
RB
3388/**
3389 * i915_perf_init - initialize i915-perf state on module load
3390 * @dev_priv: i915 device instance
3391 *
3392 * Initializes i915-perf state without exposing anything to userspace.
3393 *
3394 * Note: i915-perf initialization is split into an 'init' and 'register'
3395 * phase with the i915_perf_register() exposing state to userspace.
3396 */
eec688e1
RB
3397void i915_perf_init(struct drm_i915_private *dev_priv)
3398{
701f8231 3399 dev_priv->perf.oa.timestamp_frequency = 0;
19f81df2
RB
3400
3401 if (IS_HASWELL(dev_priv)) {
f89823c2
LL
3402 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3403 gen7_is_valid_b_counter_addr;
3404 dev_priv->perf.oa.ops.is_valid_mux_reg =
3405 hsw_is_valid_mux_addr;
3406 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
19f81df2
RB
3407 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3408 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3409 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3410 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3411 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3412 dev_priv->perf.oa.ops.read = gen7_oa_read;
3413 dev_priv->perf.oa.ops.oa_hw_tail_read =
3414 gen7_oa_hw_tail_read;
3415
155e941f
RB
3416 dev_priv->perf.oa.timestamp_frequency = 12500000;
3417
19f81df2 3418 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
4f044a88 3419 } else if (i915_modparams.enable_execlists) {
19f81df2
RB
3420 /* Note: that although we could theoretically also support the
3421 * legacy ringbuffer mode on BDW (and earlier iterations of
3422 * this driver, before upstreaming did this) it didn't seem
3423 * worth the complexity to maintain now that BDW+ enable
3424 * execlist mode by default.
3425 */
f89823c2
LL
3426 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3427 gen7_is_valid_b_counter_addr;
3428 dev_priv->perf.oa.ops.is_valid_mux_reg =
3429 gen8_is_valid_mux_addr;
3430 dev_priv->perf.oa.ops.is_valid_flex_reg =
3431 gen8_is_valid_flex_addr;
d7965152 3432
701f8231
LL
3433 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3434 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3435 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3436 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3437 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3438 dev_priv->perf.oa.ops.read = gen8_oa_read;
3439 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3440
3441 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3442
19f81df2
RB
3443 if (IS_GEN8(dev_priv)) {
3444 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3445 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
155e941f
RB
3446
3447 dev_priv->perf.oa.timestamp_frequency = 12500000;
3448
19f81df2 3449 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
f89823c2
LL
3450 if (IS_CHERRYVIEW(dev_priv)) {
3451 dev_priv->perf.oa.ops.is_valid_mux_reg =
3452 chv_is_valid_mux_addr;
3453 }
19f81df2
RB
3454 } else if (IS_GEN9(dev_priv)) {
3455 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3456 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
155e941f 3457
19f81df2
RB
3458 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3459
701f8231
LL
3460 switch (dev_priv->info.platform) {
3461 case INTEL_BROXTON:
3462 case INTEL_GEMINILAKE:
155e941f 3463 dev_priv->perf.oa.timestamp_frequency = 19200000;
701f8231
LL
3464 break;
3465 case INTEL_SKYLAKE:
3466 case INTEL_KABYLAKE:
22ea4f35 3467 case INTEL_COFFEELAKE:
701f8231
LL
3468 dev_priv->perf.oa.timestamp_frequency = 12000000;
3469 break;
3470 default:
3471 /* Leave timestamp_frequency to 0 so we can
3472 * detect unsupported platforms.
3473 */
3474 break;
19f81df2
RB
3475 }
3476 }
19f81df2 3477 }
d7965152 3478
701f8231 3479 if (dev_priv->perf.oa.timestamp_frequency) {
19f81df2
RB
3480 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3481 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3482 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3483 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
d7965152 3484
19f81df2
RB
3485 INIT_LIST_HEAD(&dev_priv->perf.streams);
3486 mutex_init(&dev_priv->perf.lock);
19f81df2 3487 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
eec688e1 3488
155e941f
RB
3489 oa_sample_rate_hard_limit =
3490 dev_priv->perf.oa.timestamp_frequency / 2;
19f81df2 3491 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
ccdf6341 3492
f89823c2
LL
3493 mutex_init(&dev_priv->perf.metrics_lock);
3494 idr_init(&dev_priv->perf.metrics_idr);
3495
19f81df2
RB
3496 dev_priv->perf.initialized = true;
3497 }
eec688e1
RB
3498}
3499
f89823c2
LL
3500static int destroy_config(int id, void *p, void *data)
3501{
3502 struct drm_i915_private *dev_priv = data;
3503 struct i915_oa_config *oa_config = p;
3504
3505 put_oa_config(dev_priv, oa_config);
3506
3507 return 0;
3508}
3509
16d98b31
RB
3510/**
3511 * i915_perf_fini - Counter part to i915_perf_init()
3512 * @dev_priv: i915 device instance
3513 */
eec688e1
RB
3514void i915_perf_fini(struct drm_i915_private *dev_priv)
3515{
3516 if (!dev_priv->perf.initialized)
3517 return;
3518
f89823c2
LL
3519 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3520 idr_destroy(&dev_priv->perf.metrics_idr);
3521
ccdf6341
RB
3522 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3523
d7965152 3524 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
19f81df2 3525
eec688e1
RB
3526 dev_priv->perf.initialized = false;
3527}