sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-block.git] / drivers / gpu / drm / i915 / i915_gem_userptr.c
CommitLineData
5cc9ed4b
CW
1/*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b588c92b
ML
25#include <drm/drmP.h>
26#include <drm/i915_drm.h>
5cc9ed4b
CW
27#include "i915_drv.h"
28#include "i915_trace.h"
29#include "intel_drv.h"
30#include <linux/mmu_context.h>
31#include <linux/mmu_notifier.h>
32#include <linux/mempolicy.h>
33#include <linux/swap.h>
6e84f315 34#include <linux/sched/mm.h>
5cc9ed4b 35
ad46cb53
CW
36struct i915_mm_struct {
37 struct mm_struct *mm;
f470b190 38 struct drm_i915_private *i915;
ad46cb53
CW
39 struct i915_mmu_notifier *mn;
40 struct hlist_node node;
41 struct kref kref;
42 struct work_struct work;
43};
44
5cc9ed4b
CW
45#if defined(CONFIG_MMU_NOTIFIER)
46#include <linux/interval_tree.h>
47
48struct i915_mmu_notifier {
49 spinlock_t lock;
50 struct hlist_node node;
51 struct mmu_notifier mn;
52 struct rb_root objects;
393afc2c 53 struct workqueue_struct *wq;
5cc9ed4b
CW
54};
55
56struct i915_mmu_object {
ad46cb53 57 struct i915_mmu_notifier *mn;
768e159f 58 struct drm_i915_gem_object *obj;
5cc9ed4b 59 struct interval_tree_node it;
ec8b0dd5 60 struct list_head link;
380996aa 61 struct work_struct work;
768e159f 62 bool attached;
5cc9ed4b
CW
63};
64
768e159f 65static void cancel_userptr(struct work_struct *work)
ec8b0dd5 66{
380996aa
CW
67 struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
68 struct drm_i915_gem_object *obj = mo->obj;
ec8b0dd5 69 struct drm_device *dev = obj->base.dev;
ec8b0dd5 70
e95433c7 71 i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
8a3b3d57 72
ec8b0dd5
CW
73 mutex_lock(&dev->struct_mutex);
74 /* Cancel any active worker and force us to re-evaluate gup */
75 obj->userptr.work = NULL;
76
03ac84f1
CW
77 /* We are inside a kthread context and can't be interrupted */
78 if (i915_gem_object_unbind(obj) == 0)
548625ee 79 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
80 WARN_ONCE(obj->mm.pages,
81 "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_display=%d\n",
82 obj->bind_count,
1233e2db 83 atomic_read(&obj->mm.pages_pin_count),
03ac84f1 84 obj->pin_display);
ec8b0dd5 85
f8c417cd 86 i915_gem_object_put(obj);
ec8b0dd5 87 mutex_unlock(&dev->struct_mutex);
ec8b0dd5
CW
88}
89
768e159f 90static void add_object(struct i915_mmu_object *mo)
ec8b0dd5 91{
768e159f
CW
92 if (mo->attached)
93 return;
ec8b0dd5 94
768e159f
CW
95 interval_tree_insert(&mo->it, &mo->mn->objects);
96 mo->attached = true;
97}
98
99static void del_object(struct i915_mmu_object *mo)
100{
101 if (!mo->attached)
102 return;
103
104 interval_tree_remove(&mo->it, &mo->mn->objects);
105 mo->attached = false;
ec8b0dd5
CW
106}
107
5cc9ed4b
CW
108static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
109 struct mm_struct *mm,
110 unsigned long start,
111 unsigned long end)
112{
380996aa
CW
113 struct i915_mmu_notifier *mn =
114 container_of(_mn, struct i915_mmu_notifier, mn);
115 struct i915_mmu_object *mo;
768e159f
CW
116 struct interval_tree_node *it;
117 LIST_HEAD(cancelled);
118
119 if (RB_EMPTY_ROOT(&mn->objects))
120 return;
380996aa
CW
121
122 /* interval ranges are inclusive, but invalidate range is exclusive */
123 end--;
124
125 spin_lock(&mn->lock);
768e159f
CW
126 it = interval_tree_iter_first(&mn->objects, start, end);
127 while (it) {
128 /* The mmu_object is released late when destroying the
129 * GEM object so it is entirely possible to gain a
130 * reference on an object in the process of being freed
131 * since our serialisation is via the spinlock and not
132 * the struct_mutex - and consequently use it after it
133 * is freed and then double free it. To prevent that
134 * use-after-free we only acquire a reference on the
135 * object if it is not in the process of being destroyed.
136 */
137 mo = container_of(it, struct i915_mmu_object, it);
138 if (kref_get_unless_zero(&mo->obj->base.refcount))
393afc2c 139 queue_work(mn->wq, &mo->work);
5cc9ed4b 140
768e159f
CW
141 list_add(&mo->link, &cancelled);
142 it = interval_tree_iter_next(it, start, end);
5cc9ed4b 143 }
768e159f
CW
144 list_for_each_entry(mo, &cancelled, link)
145 del_object(mo);
380996aa 146 spin_unlock(&mn->lock);
393afc2c
CW
147
148 flush_workqueue(mn->wq);
5cc9ed4b
CW
149}
150
151static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
152 .invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
153};
154
155static struct i915_mmu_notifier *
ad46cb53 156i915_mmu_notifier_create(struct mm_struct *mm)
5cc9ed4b 157{
ad46cb53 158 struct i915_mmu_notifier *mn;
5cc9ed4b
CW
159 int ret;
160
ad46cb53
CW
161 mn = kmalloc(sizeof(*mn), GFP_KERNEL);
162 if (mn == NULL)
5cc9ed4b
CW
163 return ERR_PTR(-ENOMEM);
164
ad46cb53
CW
165 spin_lock_init(&mn->lock);
166 mn->mn.ops = &i915_gem_userptr_notifier;
167 mn->objects = RB_ROOT;
393afc2c
CW
168 mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
169 if (mn->wq == NULL) {
170 kfree(mn);
171 return ERR_PTR(-ENOMEM);
172 }
ad46cb53
CW
173
174 /* Protected by mmap_sem (write-lock) */
175 ret = __mmu_notifier_register(&mn->mn, mm);
5cc9ed4b 176 if (ret) {
393afc2c 177 destroy_workqueue(mn->wq);
ad46cb53 178 kfree(mn);
5cc9ed4b
CW
179 return ERR_PTR(ret);
180 }
181
ad46cb53 182 return mn;
5cc9ed4b
CW
183}
184
5cc9ed4b
CW
185static void
186i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
187{
ad46cb53 188 struct i915_mmu_object *mo;
5cc9ed4b 189
ad46cb53
CW
190 mo = obj->userptr.mmu_object;
191 if (mo == NULL)
5cc9ed4b
CW
192 return;
193
768e159f
CW
194 spin_lock(&mo->mn->lock);
195 del_object(mo);
196 spin_unlock(&mo->mn->lock);
ad46cb53
CW
197 kfree(mo);
198
199 obj->userptr.mmu_object = NULL;
200}
201
202static struct i915_mmu_notifier *
203i915_mmu_notifier_find(struct i915_mm_struct *mm)
204{
e9681366
CW
205 struct i915_mmu_notifier *mn = mm->mn;
206
207 mn = mm->mn;
208 if (mn)
209 return mn;
210
211 down_write(&mm->mm->mmap_sem);
f470b190 212 mutex_lock(&mm->i915->mm_lock);
e9681366
CW
213 if ((mn = mm->mn) == NULL) {
214 mn = i915_mmu_notifier_create(mm->mm);
215 if (!IS_ERR(mn))
216 mm->mn = mn;
ad46cb53 217 }
f470b190 218 mutex_unlock(&mm->i915->mm_lock);
e9681366
CW
219 up_write(&mm->mm->mmap_sem);
220
221 return mn;
5cc9ed4b
CW
222}
223
224static int
225i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
226 unsigned flags)
227{
ad46cb53
CW
228 struct i915_mmu_notifier *mn;
229 struct i915_mmu_object *mo;
5cc9ed4b
CW
230
231 if (flags & I915_USERPTR_UNSYNCHRONIZED)
232 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
233
ad46cb53
CW
234 if (WARN_ON(obj->userptr.mm == NULL))
235 return -EINVAL;
5cc9ed4b 236
ad46cb53
CW
237 mn = i915_mmu_notifier_find(obj->userptr.mm);
238 if (IS_ERR(mn))
239 return PTR_ERR(mn);
5cc9ed4b 240
ad46cb53
CW
241 mo = kzalloc(sizeof(*mo), GFP_KERNEL);
242 if (mo == NULL)
243 return -ENOMEM;
5cc9ed4b 244
ad46cb53 245 mo->mn = mn;
ad46cb53 246 mo->obj = obj;
768e159f
CW
247 mo->it.start = obj->userptr.ptr;
248 mo->it.last = obj->userptr.ptr + obj->base.size - 1;
249 INIT_WORK(&mo->work, cancel_userptr);
ad46cb53
CW
250
251 obj->userptr.mmu_object = mo;
5cc9ed4b 252 return 0;
ad46cb53
CW
253}
254
255static void
256i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
257 struct mm_struct *mm)
258{
259 if (mn == NULL)
260 return;
5cc9ed4b 261
ad46cb53 262 mmu_notifier_unregister(&mn->mn, mm);
393afc2c 263 destroy_workqueue(mn->wq);
5cc9ed4b 264 kfree(mn);
5cc9ed4b
CW
265}
266
267#else
268
269static void
270i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
271{
272}
273
274static int
275i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
276 unsigned flags)
277{
278 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
279 return -ENODEV;
280
281 if (!capable(CAP_SYS_ADMIN))
282 return -EPERM;
283
284 return 0;
285}
ad46cb53
CW
286
287static void
288i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
289 struct mm_struct *mm)
290{
291}
292
5cc9ed4b
CW
293#endif
294
ad46cb53
CW
295static struct i915_mm_struct *
296__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
297{
298 struct i915_mm_struct *mm;
299
300 /* Protected by dev_priv->mm_lock */
301 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
302 if (mm->mm == real)
303 return mm;
304
305 return NULL;
306}
307
308static int
309i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
310{
311 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
312 struct i915_mm_struct *mm;
313 int ret = 0;
314
315 /* During release of the GEM object we hold the struct_mutex. This
316 * precludes us from calling mmput() at that time as that may be
317 * the last reference and so call exit_mmap(). exit_mmap() will
318 * attempt to reap the vma, and if we were holding a GTT mmap
319 * would then call drm_gem_vm_close() and attempt to reacquire
320 * the struct mutex. So in order to avoid that recursion, we have
321 * to defer releasing the mm reference until after we drop the
322 * struct_mutex, i.e. we need to schedule a worker to do the clean
323 * up.
324 */
325 mutex_lock(&dev_priv->mm_lock);
326 mm = __i915_mm_struct_find(dev_priv, current->mm);
327 if (mm == NULL) {
328 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
329 if (mm == NULL) {
330 ret = -ENOMEM;
331 goto out;
332 }
333
334 kref_init(&mm->kref);
f470b190 335 mm->i915 = to_i915(obj->base.dev);
ad46cb53
CW
336
337 mm->mm = current->mm;
f1f10076 338 mmgrab(current->mm);
ad46cb53
CW
339
340 mm->mn = NULL;
341
342 /* Protected by dev_priv->mm_lock */
343 hash_add(dev_priv->mm_structs,
344 &mm->node, (unsigned long)mm->mm);
345 } else
346 kref_get(&mm->kref);
347
348 obj->userptr.mm = mm;
349out:
350 mutex_unlock(&dev_priv->mm_lock);
351 return ret;
352}
353
354static void
355__i915_mm_struct_free__worker(struct work_struct *work)
356{
357 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
358 i915_mmu_notifier_free(mm->mn, mm->mm);
359 mmdrop(mm->mm);
360 kfree(mm);
361}
362
363static void
364__i915_mm_struct_free(struct kref *kref)
365{
366 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
367
368 /* Protected by dev_priv->mm_lock */
369 hash_del(&mm->node);
f470b190 370 mutex_unlock(&mm->i915->mm_lock);
ad46cb53
CW
371
372 INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
373 schedule_work(&mm->work);
374}
375
376static void
377i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
378{
379 if (obj->userptr.mm == NULL)
380 return;
381
382 kref_put_mutex(&obj->userptr.mm->kref,
383 __i915_mm_struct_free,
384 &to_i915(obj->base.dev)->mm_lock);
385 obj->userptr.mm = NULL;
386}
387
5cc9ed4b
CW
388struct get_pages_work {
389 struct work_struct work;
390 struct drm_i915_gem_object *obj;
391 struct task_struct *task;
392};
393
5cc9ed4b
CW
394#if IS_ENABLED(CONFIG_SWIOTLB)
395#define swiotlb_active() swiotlb_nr_tbl()
396#else
397#define swiotlb_active() 0
398#endif
399
400static int
401st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
402{
403 struct scatterlist *sg;
404 int ret, n;
405
406 *st = kmalloc(sizeof(**st), GFP_KERNEL);
407 if (*st == NULL)
408 return -ENOMEM;
409
410 if (swiotlb_active()) {
411 ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
412 if (ret)
413 goto err;
414
415 for_each_sg((*st)->sgl, sg, num_pages, n)
416 sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
417 } else {
418 ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
419 0, num_pages << PAGE_SHIFT,
420 GFP_KERNEL);
421 if (ret)
422 goto err;
423 }
424
425 return 0;
426
427err:
428 kfree(*st);
429 *st = NULL;
430 return ret;
431}
432
03ac84f1 433static struct sg_table *
e2273302
ID
434__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
435 struct page **pvec, int num_pages)
436{
03ac84f1 437 struct sg_table *pages;
e2273302
ID
438 int ret;
439
03ac84f1 440 ret = st_set_pages(&pages, pvec, num_pages);
e2273302 441 if (ret)
03ac84f1 442 return ERR_PTR(ret);
e2273302 443
03ac84f1 444 ret = i915_gem_gtt_prepare_pages(obj, pages);
e2273302 445 if (ret) {
03ac84f1
CW
446 sg_free_table(pages);
447 kfree(pages);
448 return ERR_PTR(ret);
e2273302
ID
449 }
450
03ac84f1 451 return pages;
e2273302
ID
452}
453
380996aa 454static int
e4b946bf
CW
455__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
456 bool value)
457{
380996aa
CW
458 int ret = 0;
459
e4b946bf
CW
460 /* During mm_invalidate_range we need to cancel any userptr that
461 * overlaps the range being invalidated. Doing so requires the
462 * struct_mutex, and that risks recursion. In order to cause
463 * recursion, the user must alias the userptr address space with
464 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
465 * to invalidate that mmaping, mm_invalidate_range is called with
466 * the userptr address *and* the struct_mutex held. To prevent that
467 * we set a flag under the i915_mmu_notifier spinlock to indicate
468 * whether this object is valid.
469 */
470#if defined(CONFIG_MMU_NOTIFIER)
471 if (obj->userptr.mmu_object == NULL)
380996aa 472 return 0;
e4b946bf
CW
473
474 spin_lock(&obj->userptr.mmu_object->mn->lock);
380996aa
CW
475 /* In order to serialise get_pages with an outstanding
476 * cancel_userptr, we must drop the struct_mutex and try again.
477 */
768e159f
CW
478 if (!value)
479 del_object(obj->userptr.mmu_object);
480 else if (!work_pending(&obj->userptr.mmu_object->work))
481 add_object(obj->userptr.mmu_object);
380996aa
CW
482 else
483 ret = -EAGAIN;
e4b946bf
CW
484 spin_unlock(&obj->userptr.mmu_object->mn->lock);
485#endif
380996aa
CW
486
487 return ret;
e4b946bf
CW
488}
489
5cc9ed4b
CW
490static void
491__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
492{
493 struct get_pages_work *work = container_of(_work, typeof(*work), work);
494 struct drm_i915_gem_object *obj = work->obj;
68d6c840 495 const int npages = obj->base.size >> PAGE_SHIFT;
5cc9ed4b
CW
496 struct page **pvec;
497 int pinned, ret;
498
499 ret = -ENOMEM;
500 pinned = 0;
501
f2a85e19 502 pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
5cc9ed4b 503 if (pvec != NULL) {
ad46cb53 504 struct mm_struct *mm = obj->userptr.mm->mm;
9beae1ea
LS
505 unsigned int flags = 0;
506
507 if (!obj->userptr.read_only)
508 flags |= FOLL_WRITE;
5cc9ed4b 509
40313f0c 510 ret = -EFAULT;
388f7934 511 if (mmget_not_zero(mm)) {
40313f0c
CW
512 down_read(&mm->mmap_sem);
513 while (pinned < npages) {
514 ret = get_user_pages_remote
515 (work->task, mm,
516 obj->userptr.ptr + pinned * PAGE_SIZE,
517 npages - pinned,
9beae1ea 518 flags,
5b56d49f 519 pvec + pinned, NULL, NULL);
40313f0c
CW
520 if (ret < 0)
521 break;
522
523 pinned += ret;
524 }
525 up_read(&mm->mmap_sem);
526 mmput(mm);
5cc9ed4b 527 }
5cc9ed4b
CW
528 }
529
1233e2db 530 mutex_lock(&obj->mm.lock);
68d6c840 531 if (obj->userptr.work == &work->work) {
03ac84f1
CW
532 struct sg_table *pages = ERR_PTR(ret);
533
68d6c840 534 if (pinned == npages) {
03ac84f1
CW
535 pages = __i915_gem_userptr_set_pages(obj, pvec, npages);
536 if (!IS_ERR(pages)) {
537 __i915_gem_object_set_pages(obj, pages);
68d6c840 538 pinned = 0;
03ac84f1 539 pages = NULL;
68d6c840 540 }
5cc9ed4b 541 }
03ac84f1
CW
542
543 obj->userptr.work = ERR_CAST(pages);
5cc9ed4b 544 }
1233e2db 545 mutex_unlock(&obj->mm.lock);
5cc9ed4b
CW
546
547 release_pages(pvec, pinned, 0);
548 drm_free_large(pvec);
549
f0cd5182 550 i915_gem_object_put(obj);
5cc9ed4b
CW
551 put_task_struct(work->task);
552 kfree(work);
553}
554
03ac84f1 555static struct sg_table *
e4b946bf
CW
556__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
557 bool *active)
558{
559 struct get_pages_work *work;
560
561 /* Spawn a worker so that we can acquire the
562 * user pages without holding our mutex. Access
563 * to the user pages requires mmap_sem, and we have
564 * a strict lock ordering of mmap_sem, struct_mutex -
565 * we already hold struct_mutex here and so cannot
566 * call gup without encountering a lock inversion.
567 *
568 * Userspace will keep on repeating the operation
569 * (thanks to EAGAIN) until either we hit the fast
570 * path or the worker completes. If the worker is
571 * cancelled or superseded, the task is still run
572 * but the results ignored. (This leads to
573 * complications that we may have a stray object
574 * refcount that we need to be wary of when
575 * checking for existing objects during creation.)
576 * If the worker encounters an error, it reports
577 * that error back to this function through
578 * obj->userptr.work = ERR_PTR.
579 */
e4b946bf
CW
580 work = kmalloc(sizeof(*work), GFP_KERNEL);
581 if (work == NULL)
03ac84f1 582 return ERR_PTR(-ENOMEM);
e4b946bf
CW
583
584 obj->userptr.work = &work->work;
e4b946bf 585
25dc556a 586 work->obj = i915_gem_object_get(obj);
e4b946bf
CW
587
588 work->task = current;
589 get_task_struct(work->task);
590
591 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
592 schedule_work(&work->work);
593
594 *active = true;
03ac84f1 595 return ERR_PTR(-EAGAIN);
e4b946bf
CW
596}
597
03ac84f1 598static struct sg_table *
5cc9ed4b
CW
599i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
600{
601 const int num_pages = obj->base.size >> PAGE_SHIFT;
602 struct page **pvec;
03ac84f1 603 struct sg_table *pages;
5cc9ed4b 604 int pinned, ret;
e4b946bf 605 bool active;
5cc9ed4b
CW
606
607 /* If userspace should engineer that these pages are replaced in
608 * the vma between us binding this page into the GTT and completion
609 * of rendering... Their loss. If they change the mapping of their
610 * pages they need to create a new bo to point to the new vma.
611 *
612 * However, that still leaves open the possibility of the vma
613 * being copied upon fork. Which falls under the same userspace
614 * synchronisation issue as a regular bo, except that this time
615 * the process may not be expecting that a particular piece of
616 * memory is tied to the GPU.
617 *
618 * Fortunately, we can hook into the mmu_notifier in order to
619 * discard the page references prior to anything nasty happening
620 * to the vma (discard or cloning) which should prevent the more
621 * egregious cases from causing harm.
622 */
364c8172
CW
623
624 if (obj->userptr.work) {
e4b946bf 625 /* active flag should still be held for the pending work */
364c8172 626 if (IS_ERR(obj->userptr.work))
03ac84f1 627 return ERR_CAST(obj->userptr.work);
364c8172 628 else
03ac84f1 629 return ERR_PTR(-EAGAIN);
364c8172 630 }
e4b946bf
CW
631
632 /* Let the mmu-notifier know that we have begun and need cancellation */
380996aa
CW
633 ret = __i915_gem_userptr_set_active(obj, true);
634 if (ret)
03ac84f1 635 return ERR_PTR(ret);
5cc9ed4b
CW
636
637 pvec = NULL;
638 pinned = 0;
ad46cb53 639 if (obj->userptr.mm->mm == current->mm) {
f2a85e19
CW
640 pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
641 GFP_TEMPORARY);
5cc9ed4b 642 if (pvec == NULL) {
f2a85e19 643 __i915_gem_userptr_set_active(obj, false);
03ac84f1 644 return ERR_PTR(-ENOMEM);
5cc9ed4b
CW
645 }
646
647 pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
648 !obj->userptr.read_only, pvec);
649 }
e4b946bf
CW
650
651 active = false;
652 if (pinned < 0)
03ac84f1 653 pages = ERR_PTR(pinned), pinned = 0;
e4b946bf 654 else if (pinned < num_pages)
03ac84f1 655 pages = __i915_gem_userptr_get_pages_schedule(obj, &active);
e4b946bf 656 else
03ac84f1
CW
657 pages = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
658 if (IS_ERR(pages)) {
e4b946bf
CW
659 __i915_gem_userptr_set_active(obj, active);
660 release_pages(pvec, pinned, 0);
5cc9ed4b 661 }
5cc9ed4b 662 drm_free_large(pvec);
03ac84f1 663 return pages;
5cc9ed4b
CW
664}
665
666static void
03ac84f1
CW
667i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
668 struct sg_table *pages)
5cc9ed4b 669{
85d1225e
DG
670 struct sgt_iter sgt_iter;
671 struct page *page;
5cc9ed4b
CW
672
673 BUG_ON(obj->userptr.work != NULL);
e4b946bf 674 __i915_gem_userptr_set_active(obj, false);
5cc9ed4b 675
a4f5ea64
CW
676 if (obj->mm.madv != I915_MADV_WILLNEED)
677 obj->mm.dirty = false;
5cc9ed4b 678
03ac84f1 679 i915_gem_gtt_finish_pages(obj, pages);
e2273302 680
03ac84f1 681 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 682 if (obj->mm.dirty)
5cc9ed4b
CW
683 set_page_dirty(page);
684
685 mark_page_accessed(page);
09cbfeaf 686 put_page(page);
5cc9ed4b 687 }
a4f5ea64 688 obj->mm.dirty = false;
5cc9ed4b 689
03ac84f1
CW
690 sg_free_table(pages);
691 kfree(pages);
5cc9ed4b
CW
692}
693
694static void
695i915_gem_userptr_release(struct drm_i915_gem_object *obj)
696{
697 i915_gem_userptr_release__mmu_notifier(obj);
ad46cb53 698 i915_gem_userptr_release__mm_struct(obj);
5cc9ed4b
CW
699}
700
701static int
702i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
703{
ad46cb53 704 if (obj->userptr.mmu_object)
5cc9ed4b
CW
705 return 0;
706
707 return i915_gem_userptr_init__mmu_notifier(obj, 0);
708}
709
710static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
3599a91c
TU
711 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
712 I915_GEM_OBJECT_IS_SHRINKABLE,
5cc9ed4b
CW
713 .get_pages = i915_gem_userptr_get_pages,
714 .put_pages = i915_gem_userptr_put_pages,
de472664 715 .dmabuf_export = i915_gem_userptr_dmabuf_export,
5cc9ed4b
CW
716 .release = i915_gem_userptr_release,
717};
718
719/**
720 * Creates a new mm object that wraps some normal memory from the process
721 * context - user memory.
722 *
723 * We impose several restrictions upon the memory being mapped
724 * into the GPU.
725 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
ec8b0dd5 726 * 2. It must be normal system memory, not a pointer into another map of IO
5cc9ed4b 727 * space (e.g. it must not be a GTT mmapping of another object).
ec8b0dd5 728 * 3. We only allow a bo as large as we could in theory map into the GTT,
5cc9ed4b 729 * that is we limit the size to the total size of the GTT.
ec8b0dd5 730 * 4. The bo is marked as being snoopable. The backing pages are left
5cc9ed4b
CW
731 * accessible directly by the CPU, but reads and writes by the GPU may
732 * incur the cost of a snoop (unless you have an LLC architecture).
733 *
734 * Synchronisation between multiple users and the GPU is left to userspace
735 * through the normal set-domain-ioctl. The kernel will enforce that the
736 * GPU relinquishes the VMA before it is returned back to the system
737 * i.e. upon free(), munmap() or process termination. However, the userspace
738 * malloc() library may not immediately relinquish the VMA after free() and
739 * instead reuse it whilst the GPU is still reading and writing to the VMA.
740 * Caveat emptor.
741 *
742 * Also note, that the object created here is not currently a "first class"
743 * object, in that several ioctls are banned. These are the CPU access
744 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
cc917ab4
CW
745 * direct access via your pointer rather than use those ioctls. Another
746 * restriction is that we do not allow userptr surfaces to be pinned to the
747 * hardware and so we reject any attempt to create a framebuffer out of a
748 * userptr.
5cc9ed4b
CW
749 *
750 * If you think this is a good interface to use to pass GPU memory between
751 * drivers, please use dma-buf instead. In fact, wherever possible use
752 * dma-buf instead.
753 */
754int
755i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
756{
0031fb96 757 struct drm_i915_private *dev_priv = to_i915(dev);
5cc9ed4b
CW
758 struct drm_i915_gem_userptr *args = data;
759 struct drm_i915_gem_object *obj;
760 int ret;
761 u32 handle;
762
0031fb96 763 if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
ca377809
TU
764 /* We cannot support coherent userptr objects on hw without
765 * LLC and broken snooping.
766 */
767 return -ENODEV;
768 }
769
5cc9ed4b
CW
770 if (args->flags & ~(I915_USERPTR_READ_ONLY |
771 I915_USERPTR_UNSYNCHRONIZED))
772 return -EINVAL;
773
774 if (offset_in_page(args->user_ptr | args->user_size))
775 return -EINVAL;
776
5cc9ed4b
CW
777 if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
778 (char __user *)(unsigned long)args->user_ptr, args->user_size))
779 return -EFAULT;
780
781 if (args->flags & I915_USERPTR_READ_ONLY) {
782 /* On almost all of the current hw, we cannot tell the GPU that a
783 * page is readonly, so this is just a placeholder in the uAPI.
784 */
785 return -ENODEV;
786 }
787
187685cb 788 obj = i915_gem_object_alloc(dev_priv);
5cc9ed4b
CW
789 if (obj == NULL)
790 return -ENOMEM;
791
792 drm_gem_private_object_init(dev, &obj->base, args->user_size);
793 i915_gem_object_init(obj, &i915_gem_userptr_ops);
794 obj->cache_level = I915_CACHE_LLC;
795 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
796 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
797
798 obj->userptr.ptr = args->user_ptr;
799 obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
800
801 /* And keep a pointer to the current->mm for resolving the user pages
802 * at binding. This means that we need to hook into the mmu_notifier
803 * in order to detect if the mmu is destroyed.
804 */
ad46cb53
CW
805 ret = i915_gem_userptr_init__mm_struct(obj);
806 if (ret == 0)
5cc9ed4b
CW
807 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
808 if (ret == 0)
809 ret = drm_gem_handle_create(file, &obj->base, &handle);
810
811 /* drop reference from allocate - handle holds it now */
f0cd5182 812 i915_gem_object_put(obj);
5cc9ed4b
CW
813 if (ret)
814 return ret;
815
816 args->handle = handle;
817 return 0;
818}
819
72778cb2 820void i915_gem_init_userptr(struct drm_i915_private *dev_priv)
5cc9ed4b 821{
ad46cb53
CW
822 mutex_init(&dev_priv->mm_lock);
823 hash_init(dev_priv->mm_structs);
5cc9ed4b 824}