drm/i915: Simplify request_alloc by returning the allocated request
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "i915_drv.h"
26
04769652
CW
27static const char *i915_fence_get_driver_name(struct fence *fence)
28{
29 return "i915";
30}
31
32static const char *i915_fence_get_timeline_name(struct fence *fence)
33{
34 /* Timelines are bound by eviction to a VM. However, since
35 * we only have a global seqno at the moment, we only have
36 * a single timeline. Note that each timeline will have
37 * multiple execution contexts (fence contexts) as we allow
38 * engines within a single timeline to execute in parallel.
39 */
40 return "global";
41}
42
43static bool i915_fence_signaled(struct fence *fence)
44{
45 return i915_gem_request_completed(to_request(fence));
46}
47
48static bool i915_fence_enable_signaling(struct fence *fence)
49{
50 if (i915_fence_signaled(fence))
51 return false;
52
53 intel_engine_enable_signaling(to_request(fence));
54 return true;
55}
56
57static signed long i915_fence_wait(struct fence *fence,
58 bool interruptible,
59 signed long timeout_jiffies)
60{
61 s64 timeout_ns, *timeout;
62 int ret;
63
64 if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
65 timeout_ns = jiffies_to_nsecs(timeout_jiffies);
66 timeout = &timeout_ns;
67 } else {
68 timeout = NULL;
69 }
70
71 ret = __i915_wait_request(to_request(fence),
72 interruptible, timeout,
42df2714 73 NO_WAITBOOST);
04769652
CW
74 if (ret == -ETIME)
75 return 0;
76
77 if (ret < 0)
78 return ret;
79
80 if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
81 timeout_jiffies = nsecs_to_jiffies(timeout_ns);
82
83 return timeout_jiffies;
84}
85
86static void i915_fence_value_str(struct fence *fence, char *str, int size)
87{
88 snprintf(str, size, "%u", fence->seqno);
89}
90
91static void i915_fence_timeline_value_str(struct fence *fence, char *str,
92 int size)
93{
94 snprintf(str, size, "%u",
95 intel_engine_get_seqno(to_request(fence)->engine));
96}
97
98static void i915_fence_release(struct fence *fence)
99{
100 struct drm_i915_gem_request *req = to_request(fence);
101
102 kmem_cache_free(req->i915->requests, req);
103}
104
105const struct fence_ops i915_fence_ops = {
106 .get_driver_name = i915_fence_get_driver_name,
107 .get_timeline_name = i915_fence_get_timeline_name,
108 .enable_signaling = i915_fence_enable_signaling,
109 .signaled = i915_fence_signaled,
110 .wait = i915_fence_wait,
111 .release = i915_fence_release,
112 .fence_value_str = i915_fence_value_str,
113 .timeline_value_str = i915_fence_timeline_value_str,
114};
115
05235c53
CW
116int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
117 struct drm_file *file)
118{
119 struct drm_i915_private *dev_private;
120 struct drm_i915_file_private *file_priv;
121
122 WARN_ON(!req || !file || req->file_priv);
123
124 if (!req || !file)
125 return -EINVAL;
126
127 if (req->file_priv)
128 return -EINVAL;
129
130 dev_private = req->i915;
131 file_priv = file->driver_priv;
132
133 spin_lock(&file_priv->mm.lock);
134 req->file_priv = file_priv;
135 list_add_tail(&req->client_list, &file_priv->mm.request_list);
136 spin_unlock(&file_priv->mm.lock);
137
138 req->pid = get_pid(task_pid(current));
139
140 return 0;
141}
142
143static inline void
144i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
145{
146 struct drm_i915_file_private *file_priv = request->file_priv;
147
148 if (!file_priv)
149 return;
150
151 spin_lock(&file_priv->mm.lock);
152 list_del(&request->client_list);
153 request->file_priv = NULL;
154 spin_unlock(&file_priv->mm.lock);
155
156 put_pid(request->pid);
157 request->pid = NULL;
158}
159
160static void i915_gem_request_retire(struct drm_i915_gem_request *request)
161{
162 trace_i915_gem_request_retire(request);
163 list_del_init(&request->list);
164
165 /* We know the GPU must have read the request to have
166 * sent us the seqno + interrupt, so use the position
167 * of tail of the request to update the last known position
168 * of the GPU head.
169 *
170 * Note this requires that we are always called in request
171 * completion order.
172 */
1dae2dfb 173 request->ring->last_retired_head = request->postfix;
05235c53
CW
174
175 i915_gem_request_remove_from_client(request);
176
177 if (request->previous_context) {
178 if (i915.enable_execlists)
179 intel_lr_context_unpin(request->previous_context,
180 request->engine);
181 }
182
9a6feaf0 183 i915_gem_context_put(request->ctx);
e8a261ea 184 i915_gem_request_put(request);
05235c53
CW
185}
186
187void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
188{
189 struct intel_engine_cs *engine = req->engine;
190 struct drm_i915_gem_request *tmp;
191
192 lockdep_assert_held(&req->i915->drm.struct_mutex);
193
194 if (list_empty(&req->list))
195 return;
196
197 do {
198 tmp = list_first_entry(&engine->request_list,
199 typeof(*tmp), list);
200
201 i915_gem_request_retire(tmp);
202 } while (tmp != req);
203
204 WARN_ON(i915_verify_lists(engine->dev));
205}
206
207static int i915_gem_check_wedge(unsigned int reset_counter, bool interruptible)
208{
209 if (__i915_terminally_wedged(reset_counter))
210 return -EIO;
211
212 if (__i915_reset_in_progress(reset_counter)) {
213 /* Non-interruptible callers can't handle -EAGAIN, hence return
214 * -EIO unconditionally for these.
215 */
216 if (!interruptible)
217 return -EIO;
218
219 return -EAGAIN;
220 }
221
222 return 0;
223}
224
225static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
226{
227 struct intel_engine_cs *engine;
228 int ret;
229
230 /* Carefully retire all requests without writing to the rings */
231 for_each_engine(engine, dev_priv) {
232 ret = intel_engine_idle(engine);
233 if (ret)
234 return ret;
235 }
236 i915_gem_retire_requests(dev_priv);
237
238 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
239 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
240 while (intel_kick_waiters(dev_priv) ||
241 intel_kick_signalers(dev_priv))
242 yield();
243 }
244
245 /* Finally reset hw state */
246 for_each_engine(engine, dev_priv)
7e37f889 247 intel_engine_init_seqno(engine, seqno);
05235c53
CW
248
249 return 0;
250}
251
252int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
253{
254 struct drm_i915_private *dev_priv = to_i915(dev);
255 int ret;
256
257 if (seqno == 0)
258 return -EINVAL;
259
260 /* HWS page needs to be set less than what we
261 * will inject to ring
262 */
263 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
264 if (ret)
265 return ret;
266
267 /* Carefully set the last_seqno value so that wrap
268 * detection still works
269 */
270 dev_priv->next_seqno = seqno;
271 dev_priv->last_seqno = seqno - 1;
272 if (dev_priv->last_seqno == 0)
273 dev_priv->last_seqno--;
274
275 return 0;
276}
277
278static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
279{
280 /* reserve 0 for non-seqno */
281 if (unlikely(dev_priv->next_seqno == 0)) {
282 int ret;
283
284 ret = i915_gem_init_seqno(dev_priv, 0);
285 if (ret)
286 return ret;
287
288 dev_priv->next_seqno = 1;
289 }
290
291 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
292 return 0;
293}
294
8e637178
CW
295/**
296 * i915_gem_request_alloc - allocate a request structure
297 *
298 * @engine: engine that we wish to issue the request on.
299 * @ctx: context that the request will be associated with.
300 * This can be NULL if the request is not directly related to
301 * any specific user context, in which case this function will
302 * choose an appropriate context to use.
303 *
304 * Returns a pointer to the allocated request if successful,
305 * or an error code if not.
306 */
307struct drm_i915_gem_request *
308i915_gem_request_alloc(struct intel_engine_cs *engine,
309 struct i915_gem_context *ctx)
05235c53
CW
310{
311 struct drm_i915_private *dev_priv = engine->i915;
312 unsigned int reset_counter = i915_reset_counter(&dev_priv->gpu_error);
313 struct drm_i915_gem_request *req;
04769652 314 u32 seqno;
05235c53
CW
315 int ret;
316
05235c53
CW
317 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
318 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
319 * and restart.
320 */
321 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
322 if (ret)
8e637178 323 return ERR_PTR(ret);
05235c53 324
9b5f4e5e 325 /* Move the oldest request to the slab-cache (if not in use!) */
2a1d7752 326 req = list_first_entry_or_null(&engine->request_list,
9b5f4e5e 327 typeof(*req), list);
2a1d7752
CW
328 if (req && i915_gem_request_completed(req))
329 i915_gem_request_retire(req);
9b5f4e5e 330
05235c53
CW
331 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
332 if (!req)
8e637178 333 return ERR_PTR(-ENOMEM);
05235c53 334
04769652 335 ret = i915_gem_get_seqno(dev_priv, &seqno);
05235c53
CW
336 if (ret)
337 goto err;
338
04769652
CW
339 spin_lock_init(&req->lock);
340 fence_init(&req->fence,
341 &i915_fence_ops,
342 &req->lock,
343 engine->fence_context,
344 seqno);
345
05235c53
CW
346 req->i915 = dev_priv;
347 req->engine = engine;
9a6feaf0 348 req->ctx = i915_gem_context_get(ctx);
05235c53
CW
349
350 /*
351 * Reserve space in the ring buffer for all the commands required to
352 * eventually emit this request. This is to guarantee that the
353 * i915_add_request() call can't fail. Note that the reserve may need
354 * to be redone if the request is not actually submitted straight
355 * away, e.g. because a GPU scheduler has deferred it.
356 */
357 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
358
359 if (i915.enable_execlists)
360 ret = intel_logical_ring_alloc_request_extras(req);
361 else
362 ret = intel_ring_alloc_request_extras(req);
363 if (ret)
364 goto err_ctx;
365
8e637178 366 return req;
05235c53
CW
367
368err_ctx:
9a6feaf0 369 i915_gem_context_put(ctx);
05235c53
CW
370err:
371 kmem_cache_free(dev_priv->requests, req);
8e637178 372 return ERR_PTR(ret);
05235c53
CW
373}
374
375static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
376{
377 struct drm_i915_private *dev_priv = engine->i915;
378
379 dev_priv->gt.active_engines |= intel_engine_flag(engine);
380 if (dev_priv->gt.awake)
381 return;
382
383 intel_runtime_pm_get_noresume(dev_priv);
384 dev_priv->gt.awake = true;
385
54b4f68f 386 intel_enable_gt_powersave(dev_priv);
05235c53
CW
387 i915_update_gfx_val(dev_priv);
388 if (INTEL_GEN(dev_priv) >= 6)
389 gen6_rps_busy(dev_priv);
390
391 queue_delayed_work(dev_priv->wq,
392 &dev_priv->gt.retire_work,
393 round_jiffies_up_relative(HZ));
394}
395
396/*
397 * NB: This function is not allowed to fail. Doing so would mean the the
398 * request is not being tracked for completion but the work itself is
399 * going to happen on the hardware. This would be a Bad Thing(tm).
400 */
401void __i915_add_request(struct drm_i915_gem_request *request,
402 struct drm_i915_gem_object *obj,
403 bool flush_caches)
404{
405 struct intel_engine_cs *engine;
7e37f889 406 struct intel_ring *ring;
05235c53
CW
407 u32 request_start;
408 u32 reserved_tail;
409 int ret;
410
411 if (WARN_ON(!request))
412 return;
413
414 engine = request->engine;
1dae2dfb 415 ring = request->ring;
05235c53
CW
416
417 /*
418 * To ensure that this call will not fail, space for its emissions
419 * should already have been reserved in the ring buffer. Let the ring
420 * know that it is time to use that space up.
421 */
1dae2dfb 422 request_start = intel_ring_get_tail(ring);
05235c53
CW
423 reserved_tail = request->reserved_space;
424 request->reserved_space = 0;
425
426 /*
427 * Emit any outstanding flushes - execbuf can fail to emit the flush
428 * after having emitted the batchbuffer command. Hence we need to fix
429 * things up similar to emitting the lazy request. The difference here
430 * is that the flush _must_ happen before the next request, no matter
431 * what.
432 */
433 if (flush_caches) {
7c9cf4e3 434 ret = engine->emit_flush(request, EMIT_FLUSH);
c7fe7d25 435
05235c53 436 /* Not allowed to fail! */
c7fe7d25 437 WARN(ret, "engine->emit_flush() failed: %d!\n", ret);
05235c53
CW
438 }
439
440 trace_i915_gem_request_add(request);
441
442 request->head = request_start;
443
444 /* Whilst this request exists, batch_obj will be on the
445 * active_list, and so will hold the active reference. Only when this
446 * request is retired will the the batch_obj be moved onto the
447 * inactive_list and lose its active reference. Hence we do not need
448 * to explicitly hold another reference here.
449 */
450 request->batch_obj = obj;
451
452 /* Seal the request and mark it as pending execution. Note that
453 * we may inspect this state, without holding any locks, during
454 * hangcheck. Hence we apply the barrier to ensure that we do not
455 * see a more recent value in the hws than we are tracking.
456 */
457 request->emitted_jiffies = jiffies;
458 request->previous_seqno = engine->last_submitted_seqno;
04769652 459 smp_store_mb(engine->last_submitted_seqno, request->fence.seqno);
05235c53
CW
460 list_add_tail(&request->list, &engine->request_list);
461
462 /* Record the position of the start of the request so that
463 * should we detect the updated seqno part-way through the
464 * GPU processing the request, we never over-estimate the
465 * position of the head.
466 */
1dae2dfb 467 request->postfix = intel_ring_get_tail(ring);
05235c53
CW
468
469 if (i915.enable_execlists) {
470 ret = engine->emit_request(request);
471 } else {
472 ret = engine->add_request(request);
473
1dae2dfb 474 request->tail = intel_ring_get_tail(ring);
05235c53
CW
475 }
476 /* Not allowed to fail! */
477 WARN(ret, "emit|add_request failed: %d!\n", ret);
478 /* Sanity check that the reserved size was large enough. */
1dae2dfb 479 ret = intel_ring_get_tail(ring) - request_start;
05235c53 480 if (ret < 0)
1dae2dfb 481 ret += ring->size;
05235c53
CW
482 WARN_ONCE(ret > reserved_tail,
483 "Not enough space reserved (%d bytes) "
484 "for adding the request (%d bytes)\n",
485 reserved_tail, ret);
486
487 i915_gem_mark_busy(engine);
488}
489
490static unsigned long local_clock_us(unsigned int *cpu)
491{
492 unsigned long t;
493
494 /* Cheaply and approximately convert from nanoseconds to microseconds.
495 * The result and subsequent calculations are also defined in the same
496 * approximate microseconds units. The principal source of timing
497 * error here is from the simple truncation.
498 *
499 * Note that local_clock() is only defined wrt to the current CPU;
500 * the comparisons are no longer valid if we switch CPUs. Instead of
501 * blocking preemption for the entire busywait, we can detect the CPU
502 * switch and use that as indicator of system load and a reason to
503 * stop busywaiting, see busywait_stop().
504 */
505 *cpu = get_cpu();
506 t = local_clock() >> 10;
507 put_cpu();
508
509 return t;
510}
511
512static bool busywait_stop(unsigned long timeout, unsigned int cpu)
513{
514 unsigned int this_cpu;
515
516 if (time_after(local_clock_us(&this_cpu), timeout))
517 return true;
518
519 return this_cpu != cpu;
520}
521
522bool __i915_spin_request(const struct drm_i915_gem_request *req,
523 int state, unsigned long timeout_us)
524{
525 unsigned int cpu;
526
527 /* When waiting for high frequency requests, e.g. during synchronous
528 * rendering split between the CPU and GPU, the finite amount of time
529 * required to set up the irq and wait upon it limits the response
530 * rate. By busywaiting on the request completion for a short while we
531 * can service the high frequency waits as quick as possible. However,
532 * if it is a slow request, we want to sleep as quickly as possible.
533 * The tradeoff between waiting and sleeping is roughly the time it
534 * takes to sleep on a request, on the order of a microsecond.
535 */
536
537 timeout_us += local_clock_us(&cpu);
538 do {
539 if (i915_gem_request_completed(req))
540 return true;
541
542 if (signal_pending_state(state, current))
543 break;
544
545 if (busywait_stop(timeout_us, cpu))
546 break;
547
548 cpu_relax_lowlatency();
549 } while (!need_resched());
550
551 return false;
552}
553
554/**
555 * __i915_wait_request - wait until execution of request has finished
556 * @req: duh!
557 * @interruptible: do an interruptible wait (normally yes)
558 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
559 * @rps: client to charge for RPS boosting
560 *
561 * Note: It is of utmost importance that the passed in seqno and reset_counter
562 * values have been read by the caller in an smp safe manner. Where read-side
563 * locks are involved, it is sufficient to read the reset_counter before
564 * unlocking the lock that protects the seqno. For lockless tricks, the
565 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
566 * inserted.
567 *
568 * Returns 0 if the request was found within the alloted time. Else returns the
569 * errno with remaining time filled in timeout argument.
570 */
571int __i915_wait_request(struct drm_i915_gem_request *req,
572 bool interruptible,
573 s64 *timeout,
574 struct intel_rps_client *rps)
575{
576 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
577 DEFINE_WAIT(reset);
578 struct intel_wait wait;
579 unsigned long timeout_remain;
580 int ret = 0;
581
582 might_sleep();
583
584 if (list_empty(&req->list))
585 return 0;
586
587 if (i915_gem_request_completed(req))
588 return 0;
589
590 timeout_remain = MAX_SCHEDULE_TIMEOUT;
591 if (timeout) {
592 if (WARN_ON(*timeout < 0))
593 return -EINVAL;
594
595 if (*timeout == 0)
596 return -ETIME;
597
598 /* Record current time in case interrupted, or wedged */
599 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
600 *timeout += ktime_get_raw_ns();
601 }
602
603 trace_i915_gem_request_wait_begin(req);
604
605 /* This client is about to stall waiting for the GPU. In many cases
606 * this is undesirable and limits the throughput of the system, as
607 * many clients cannot continue processing user input/output whilst
608 * blocked. RPS autotuning may take tens of milliseconds to respond
609 * to the GPU load and thus incurs additional latency for the client.
610 * We can circumvent that by promoting the GPU frequency to maximum
611 * before we wait. This makes the GPU throttle up much more quickly
612 * (good for benchmarks and user experience, e.g. window animations),
613 * but at a cost of spending more power processing the workload
614 * (bad for battery). Not all clients even want their results
615 * immediately and for them we should just let the GPU select its own
616 * frequency to maximise efficiency. To prevent a single client from
617 * forcing the clocks too high for the whole system, we only allow
618 * each client to waitboost once in a busy period.
619 */
42df2714 620 if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
05235c53
CW
621 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
622
623 /* Optimistic spin for the next ~jiffie before touching IRQs */
624 if (i915_spin_request(req, state, 5))
625 goto complete;
626
627 set_current_state(state);
628 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
629
04769652 630 intel_wait_init(&wait, req->fence.seqno);
05235c53
CW
631 if (intel_engine_add_wait(req->engine, &wait))
632 /* In order to check that we haven't missed the interrupt
633 * as we enabled it, we need to kick ourselves to do a
634 * coherent check on the seqno before we sleep.
635 */
636 goto wakeup;
637
638 for (;;) {
639 if (signal_pending_state(state, current)) {
640 ret = -ERESTARTSYS;
641 break;
642 }
643
644 timeout_remain = io_schedule_timeout(timeout_remain);
645 if (timeout_remain == 0) {
646 ret = -ETIME;
647 break;
648 }
649
650 if (intel_wait_complete(&wait))
651 break;
652
653 set_current_state(state);
654
655wakeup:
656 /* Carefully check if the request is complete, giving time
657 * for the seqno to be visible following the interrupt.
658 * We also have to check in case we are kicked by the GPU
659 * reset in order to drop the struct_mutex.
660 */
661 if (__i915_request_irq_complete(req))
662 break;
663
664 /* Only spin if we know the GPU is processing this request */
665 if (i915_spin_request(req, state, 2))
666 break;
667 }
668 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
669
670 intel_engine_remove_wait(req->engine, &wait);
671 __set_current_state(TASK_RUNNING);
672complete:
673 trace_i915_gem_request_wait_end(req);
674
675 if (timeout) {
676 *timeout -= ktime_get_raw_ns();
677 if (*timeout < 0)
678 *timeout = 0;
679
680 /*
681 * Apparently ktime isn't accurate enough and occasionally has a
682 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
683 * things up to make the test happy. We allow up to 1 jiffy.
684 *
685 * This is a regrssion from the timespec->ktime conversion.
686 */
687 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
688 *timeout = 0;
689 }
690
42df2714
CW
691 if (IS_RPS_USER(rps) &&
692 req->fence.seqno == req->engine->last_submitted_seqno) {
05235c53
CW
693 /* The GPU is now idle and this client has stalled.
694 * Since no other client has submitted a request in the
695 * meantime, assume that this client is the only one
696 * supplying work to the GPU but is unable to keep that
697 * work supplied because it is waiting. Since the GPU is
698 * then never kept fully busy, RPS autoclocking will
699 * keep the clocks relatively low, causing further delays.
700 * Compensate by giving the synchronous client credit for
701 * a waitboost next time.
702 */
703 spin_lock(&req->i915->rps.client_lock);
704 list_del_init(&rps->link);
705 spin_unlock(&req->i915->rps.client_lock);
706 }
707
708 return ret;
709}
710
711/**
712 * Waits for a request to be signaled, and cleans up the
713 * request and object lists appropriately for that event.
714 */
715int i915_wait_request(struct drm_i915_gem_request *req)
716{
717 int ret;
718
719 GEM_BUG_ON(!req);
720 lockdep_assert_held(&req->i915->drm.struct_mutex);
721
722 ret = __i915_wait_request(req, req->i915->mm.interruptible, NULL, NULL);
723 if (ret)
724 return ret;
725
726 /* If the GPU hung, we want to keep the requests to find the guilty. */
727 if (!i915_reset_in_progress(&req->i915->gpu_error))
728 i915_gem_request_retire_upto(req);
729
730 return 0;
731}