drm/i915: Drive request submission through fence callbacks
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_request.c
CommitLineData
05235c53
CW
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
fa545cbf
CW
25#include <linux/prefetch.h>
26
05235c53
CW
27#include "i915_drv.h"
28
04769652
CW
29static const char *i915_fence_get_driver_name(struct fence *fence)
30{
31 return "i915";
32}
33
34static const char *i915_fence_get_timeline_name(struct fence *fence)
35{
36 /* Timelines are bound by eviction to a VM. However, since
37 * we only have a global seqno at the moment, we only have
38 * a single timeline. Note that each timeline will have
39 * multiple execution contexts (fence contexts) as we allow
40 * engines within a single timeline to execute in parallel.
41 */
42 return "global";
43}
44
45static bool i915_fence_signaled(struct fence *fence)
46{
47 return i915_gem_request_completed(to_request(fence));
48}
49
50static bool i915_fence_enable_signaling(struct fence *fence)
51{
52 if (i915_fence_signaled(fence))
53 return false;
54
55 intel_engine_enable_signaling(to_request(fence));
56 return true;
57}
58
59static signed long i915_fence_wait(struct fence *fence,
60 bool interruptible,
61 signed long timeout_jiffies)
62{
63 s64 timeout_ns, *timeout;
64 int ret;
65
66 if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
67 timeout_ns = jiffies_to_nsecs(timeout_jiffies);
68 timeout = &timeout_ns;
69 } else {
70 timeout = NULL;
71 }
72
776f3236
CW
73 ret = i915_wait_request(to_request(fence),
74 interruptible, timeout,
75 NO_WAITBOOST);
04769652
CW
76 if (ret == -ETIME)
77 return 0;
78
79 if (ret < 0)
80 return ret;
81
82 if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
83 timeout_jiffies = nsecs_to_jiffies(timeout_ns);
84
85 return timeout_jiffies;
86}
87
88static void i915_fence_value_str(struct fence *fence, char *str, int size)
89{
90 snprintf(str, size, "%u", fence->seqno);
91}
92
93static void i915_fence_timeline_value_str(struct fence *fence, char *str,
94 int size)
95{
96 snprintf(str, size, "%u",
97 intel_engine_get_seqno(to_request(fence)->engine));
98}
99
100static void i915_fence_release(struct fence *fence)
101{
102 struct drm_i915_gem_request *req = to_request(fence);
103
104 kmem_cache_free(req->i915->requests, req);
105}
106
107const struct fence_ops i915_fence_ops = {
108 .get_driver_name = i915_fence_get_driver_name,
109 .get_timeline_name = i915_fence_get_timeline_name,
110 .enable_signaling = i915_fence_enable_signaling,
111 .signaled = i915_fence_signaled,
112 .wait = i915_fence_wait,
113 .release = i915_fence_release,
114 .fence_value_str = i915_fence_value_str,
115 .timeline_value_str = i915_fence_timeline_value_str,
116};
117
05235c53
CW
118int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
119 struct drm_file *file)
120{
121 struct drm_i915_private *dev_private;
122 struct drm_i915_file_private *file_priv;
123
124 WARN_ON(!req || !file || req->file_priv);
125
126 if (!req || !file)
127 return -EINVAL;
128
129 if (req->file_priv)
130 return -EINVAL;
131
132 dev_private = req->i915;
133 file_priv = file->driver_priv;
134
135 spin_lock(&file_priv->mm.lock);
136 req->file_priv = file_priv;
137 list_add_tail(&req->client_list, &file_priv->mm.request_list);
138 spin_unlock(&file_priv->mm.lock);
139
05235c53
CW
140 return 0;
141}
142
143static inline void
144i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
145{
146 struct drm_i915_file_private *file_priv = request->file_priv;
147
148 if (!file_priv)
149 return;
150
151 spin_lock(&file_priv->mm.lock);
152 list_del(&request->client_list);
153 request->file_priv = NULL;
154 spin_unlock(&file_priv->mm.lock);
05235c53
CW
155}
156
fa545cbf
CW
157void i915_gem_retire_noop(struct i915_gem_active *active,
158 struct drm_i915_gem_request *request)
159{
160 /* Space left intentionally blank */
161}
162
05235c53
CW
163static void i915_gem_request_retire(struct drm_i915_gem_request *request)
164{
fa545cbf
CW
165 struct i915_gem_active *active, *next;
166
05235c53 167 trace_i915_gem_request_retire(request);
209b3f7e 168 list_del(&request->link);
05235c53
CW
169
170 /* We know the GPU must have read the request to have
171 * sent us the seqno + interrupt, so use the position
172 * of tail of the request to update the last known position
173 * of the GPU head.
174 *
175 * Note this requires that we are always called in request
176 * completion order.
177 */
675d9ad7 178 list_del(&request->ring_link);
1dae2dfb 179 request->ring->last_retired_head = request->postfix;
05235c53 180
fa545cbf
CW
181 /* Walk through the active list, calling retire on each. This allows
182 * objects to track their GPU activity and mark themselves as idle
183 * when their *last* active request is completed (updating state
184 * tracking lists for eviction, active references for GEM, etc).
185 *
186 * As the ->retire() may free the node, we decouple it first and
187 * pass along the auxiliary information (to avoid dereferencing
188 * the node after the callback).
189 */
190 list_for_each_entry_safe(active, next, &request->active_list, link) {
191 /* In microbenchmarks or focusing upon time inside the kernel,
192 * we may spend an inordinate amount of time simply handling
193 * the retirement of requests and processing their callbacks.
194 * Of which, this loop itself is particularly hot due to the
195 * cache misses when jumping around the list of i915_gem_active.
196 * So we try to keep this loop as streamlined as possible and
197 * also prefetch the next i915_gem_active to try and hide
198 * the likely cache miss.
199 */
200 prefetchw(next);
201
202 INIT_LIST_HEAD(&active->link);
0eafec6d 203 RCU_INIT_POINTER(active->request, NULL);
fa545cbf
CW
204
205 active->retire(active, request);
206 }
207
05235c53
CW
208 i915_gem_request_remove_from_client(request);
209
210 if (request->previous_context) {
211 if (i915.enable_execlists)
212 intel_lr_context_unpin(request->previous_context,
213 request->engine);
214 }
215
9a6feaf0 216 i915_gem_context_put(request->ctx);
e8a261ea 217 i915_gem_request_put(request);
05235c53
CW
218}
219
220void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
221{
222 struct intel_engine_cs *engine = req->engine;
223 struct drm_i915_gem_request *tmp;
224
225 lockdep_assert_held(&req->i915->drm.struct_mutex);
209b3f7e 226 GEM_BUG_ON(list_empty(&req->link));
05235c53
CW
227
228 do {
229 tmp = list_first_entry(&engine->request_list,
efdf7c06 230 typeof(*tmp), link);
05235c53
CW
231
232 i915_gem_request_retire(tmp);
233 } while (tmp != req);
05235c53
CW
234}
235
8af29b0c 236static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
05235c53 237{
8af29b0c
CW
238 struct i915_gpu_error *error = &dev_priv->gpu_error;
239
240 if (i915_terminally_wedged(error))
05235c53
CW
241 return -EIO;
242
8af29b0c 243 if (i915_reset_in_progress(error)) {
05235c53
CW
244 /* Non-interruptible callers can't handle -EAGAIN, hence return
245 * -EIO unconditionally for these.
246 */
8af29b0c 247 if (!dev_priv->mm.interruptible)
05235c53
CW
248 return -EIO;
249
250 return -EAGAIN;
251 }
252
253 return 0;
254}
255
256static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
257{
258 struct intel_engine_cs *engine;
259 int ret;
260
261 /* Carefully retire all requests without writing to the rings */
262 for_each_engine(engine, dev_priv) {
22dd3bb9
CW
263 ret = intel_engine_idle(engine,
264 I915_WAIT_INTERRUPTIBLE |
265 I915_WAIT_LOCKED);
05235c53
CW
266 if (ret)
267 return ret;
268 }
269 i915_gem_retire_requests(dev_priv);
270
271 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
272 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
273 while (intel_kick_waiters(dev_priv) ||
274 intel_kick_signalers(dev_priv))
275 yield();
276 }
277
278 /* Finally reset hw state */
279 for_each_engine(engine, dev_priv)
7e37f889 280 intel_engine_init_seqno(engine, seqno);
05235c53
CW
281
282 return 0;
283}
284
285int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
286{
287 struct drm_i915_private *dev_priv = to_i915(dev);
288 int ret;
289
290 if (seqno == 0)
291 return -EINVAL;
292
293 /* HWS page needs to be set less than what we
294 * will inject to ring
295 */
296 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
297 if (ret)
298 return ret;
299
05235c53 300 dev_priv->next_seqno = seqno;
05235c53
CW
301 return 0;
302}
303
304static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
305{
306 /* reserve 0 for non-seqno */
307 if (unlikely(dev_priv->next_seqno == 0)) {
308 int ret;
309
310 ret = i915_gem_init_seqno(dev_priv, 0);
311 if (ret)
312 return ret;
313
314 dev_priv->next_seqno = 1;
315 }
316
ddf07be7 317 *seqno = dev_priv->next_seqno++;
05235c53
CW
318 return 0;
319}
320
5590af3e
CW
321static int __i915_sw_fence_call
322submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
323{
324 struct drm_i915_gem_request *request =
325 container_of(fence, typeof(*request), submit);
326
327 /* Will be called from irq-context when using foreign DMA fences */
328
329 switch (state) {
330 case FENCE_COMPLETE:
331 request->engine->submit_request(request);
332 break;
333
334 case FENCE_FREE:
335 break;
336 }
337
338 return NOTIFY_DONE;
339}
340
8e637178
CW
341/**
342 * i915_gem_request_alloc - allocate a request structure
343 *
344 * @engine: engine that we wish to issue the request on.
345 * @ctx: context that the request will be associated with.
346 * This can be NULL if the request is not directly related to
347 * any specific user context, in which case this function will
348 * choose an appropriate context to use.
349 *
350 * Returns a pointer to the allocated request if successful,
351 * or an error code if not.
352 */
353struct drm_i915_gem_request *
354i915_gem_request_alloc(struct intel_engine_cs *engine,
355 struct i915_gem_context *ctx)
05235c53
CW
356{
357 struct drm_i915_private *dev_priv = engine->i915;
05235c53 358 struct drm_i915_gem_request *req;
04769652 359 u32 seqno;
05235c53
CW
360 int ret;
361
05235c53
CW
362 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
363 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
364 * and restart.
365 */
8af29b0c 366 ret = i915_gem_check_wedge(dev_priv);
05235c53 367 if (ret)
8e637178 368 return ERR_PTR(ret);
05235c53 369
9b5f4e5e 370 /* Move the oldest request to the slab-cache (if not in use!) */
2a1d7752 371 req = list_first_entry_or_null(&engine->request_list,
efdf7c06 372 typeof(*req), link);
2a1d7752
CW
373 if (req && i915_gem_request_completed(req))
374 i915_gem_request_retire(req);
9b5f4e5e 375
5a198b8c
CW
376 /* Beware: Dragons be flying overhead.
377 *
378 * We use RCU to look up requests in flight. The lookups may
379 * race with the request being allocated from the slab freelist.
380 * That is the request we are writing to here, may be in the process
1426f715 381 * of being read by __i915_gem_active_get_rcu(). As such,
5a198b8c
CW
382 * we have to be very careful when overwriting the contents. During
383 * the RCU lookup, we change chase the request->engine pointer,
384 * read the request->fence.seqno and increment the reference count.
385 *
386 * The reference count is incremented atomically. If it is zero,
387 * the lookup knows the request is unallocated and complete. Otherwise,
388 * it is either still in use, or has been reallocated and reset
389 * with fence_init(). This increment is safe for release as we check
390 * that the request we have a reference to and matches the active
391 * request.
392 *
393 * Before we increment the refcount, we chase the request->engine
394 * pointer. We must not call kmem_cache_zalloc() or else we set
395 * that pointer to NULL and cause a crash during the lookup. If
396 * we see the request is completed (based on the value of the
397 * old engine and seqno), the lookup is complete and reports NULL.
398 * If we decide the request is not completed (new engine or seqno),
399 * then we grab a reference and double check that it is still the
400 * active request - which it won't be and restart the lookup.
401 *
402 * Do not use kmem_cache_zalloc() here!
403 */
404 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
05235c53 405 if (!req)
8e637178 406 return ERR_PTR(-ENOMEM);
05235c53 407
04769652 408 ret = i915_gem_get_seqno(dev_priv, &seqno);
05235c53
CW
409 if (ret)
410 goto err;
411
04769652
CW
412 spin_lock_init(&req->lock);
413 fence_init(&req->fence,
414 &i915_fence_ops,
415 &req->lock,
416 engine->fence_context,
417 seqno);
418
5590af3e
CW
419 i915_sw_fence_init(&req->submit, submit_notify);
420
fa545cbf 421 INIT_LIST_HEAD(&req->active_list);
05235c53
CW
422 req->i915 = dev_priv;
423 req->engine = engine;
9a6feaf0 424 req->ctx = i915_gem_context_get(ctx);
05235c53 425
5a198b8c
CW
426 /* No zalloc, must clear what we need by hand */
427 req->previous_context = NULL;
428 req->file_priv = NULL;
058d88c4 429 req->batch = NULL;
5a198b8c 430
05235c53
CW
431 /*
432 * Reserve space in the ring buffer for all the commands required to
433 * eventually emit this request. This is to guarantee that the
434 * i915_add_request() call can't fail. Note that the reserve may need
435 * to be redone if the request is not actually submitted straight
436 * away, e.g. because a GPU scheduler has deferred it.
437 */
438 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
439
440 if (i915.enable_execlists)
441 ret = intel_logical_ring_alloc_request_extras(req);
442 else
443 ret = intel_ring_alloc_request_extras(req);
444 if (ret)
445 goto err_ctx;
446
d045446d
CW
447 /* Record the position of the start of the request so that
448 * should we detect the updated seqno part-way through the
449 * GPU processing the request, we never over-estimate the
450 * position of the head.
451 */
452 req->head = req->ring->tail;
453
8e637178 454 return req;
05235c53
CW
455
456err_ctx:
9a6feaf0 457 i915_gem_context_put(ctx);
05235c53
CW
458err:
459 kmem_cache_free(dev_priv->requests, req);
8e637178 460 return ERR_PTR(ret);
05235c53
CW
461}
462
463static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
464{
465 struct drm_i915_private *dev_priv = engine->i915;
466
467 dev_priv->gt.active_engines |= intel_engine_flag(engine);
468 if (dev_priv->gt.awake)
469 return;
470
471 intel_runtime_pm_get_noresume(dev_priv);
472 dev_priv->gt.awake = true;
473
54b4f68f 474 intel_enable_gt_powersave(dev_priv);
05235c53
CW
475 i915_update_gfx_val(dev_priv);
476 if (INTEL_GEN(dev_priv) >= 6)
477 gen6_rps_busy(dev_priv);
478
479 queue_delayed_work(dev_priv->wq,
480 &dev_priv->gt.retire_work,
481 round_jiffies_up_relative(HZ));
482}
483
484/*
485 * NB: This function is not allowed to fail. Doing so would mean the the
486 * request is not being tracked for completion but the work itself is
487 * going to happen on the hardware. This would be a Bad Thing(tm).
488 */
17f298cf 489void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
05235c53 490{
95b2ab56
CW
491 struct intel_engine_cs *engine = request->engine;
492 struct intel_ring *ring = request->ring;
05235c53
CW
493 u32 request_start;
494 u32 reserved_tail;
495 int ret;
496
05235c53
CW
497 /*
498 * To ensure that this call will not fail, space for its emissions
499 * should already have been reserved in the ring buffer. Let the ring
500 * know that it is time to use that space up.
501 */
ba76d91b 502 request_start = ring->tail;
05235c53
CW
503 reserved_tail = request->reserved_space;
504 request->reserved_space = 0;
505
506 /*
507 * Emit any outstanding flushes - execbuf can fail to emit the flush
508 * after having emitted the batchbuffer command. Hence we need to fix
509 * things up similar to emitting the lazy request. The difference here
510 * is that the flush _must_ happen before the next request, no matter
511 * what.
512 */
513 if (flush_caches) {
7c9cf4e3 514 ret = engine->emit_flush(request, EMIT_FLUSH);
c7fe7d25 515
05235c53 516 /* Not allowed to fail! */
c7fe7d25 517 WARN(ret, "engine->emit_flush() failed: %d!\n", ret);
05235c53
CW
518 }
519
520 trace_i915_gem_request_add(request);
521
05235c53
CW
522 /* Seal the request and mark it as pending execution. Note that
523 * we may inspect this state, without holding any locks, during
524 * hangcheck. Hence we apply the barrier to ensure that we do not
525 * see a more recent value in the hws than we are tracking.
526 */
527 request->emitted_jiffies = jiffies;
528 request->previous_seqno = engine->last_submitted_seqno;
dcff85c8
CW
529 engine->last_submitted_seqno = request->fence.seqno;
530 i915_gem_active_set(&engine->last_request, request);
efdf7c06 531 list_add_tail(&request->link, &engine->request_list);
675d9ad7 532 list_add_tail(&request->ring_link, &ring->request_list);
05235c53 533
d045446d 534 /* Record the position of the start of the breadcrumb so that
05235c53
CW
535 * should we detect the updated seqno part-way through the
536 * GPU processing the request, we never over-estimate the
d045446d 537 * position of the ring's HEAD.
05235c53 538 */
ba76d91b 539 request->postfix = ring->tail;
05235c53 540
05235c53 541 /* Not allowed to fail! */
ddd66c51
CW
542 ret = engine->emit_request(request);
543 WARN(ret, "(%s)->emit_request failed: %d!\n", engine->name, ret);
c5efa1ad 544
05235c53 545 /* Sanity check that the reserved size was large enough. */
ba76d91b 546 ret = ring->tail - request_start;
05235c53 547 if (ret < 0)
1dae2dfb 548 ret += ring->size;
05235c53
CW
549 WARN_ONCE(ret > reserved_tail,
550 "Not enough space reserved (%d bytes) "
551 "for adding the request (%d bytes)\n",
552 reserved_tail, ret);
553
554 i915_gem_mark_busy(engine);
5590af3e
CW
555
556 local_bh_disable();
557 i915_sw_fence_commit(&request->submit);
558 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
05235c53
CW
559}
560
221fe799
CW
561static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
562{
563 unsigned long flags;
564
565 spin_lock_irqsave(&q->lock, flags);
566 if (list_empty(&wait->task_list))
567 __add_wait_queue(q, wait);
568 spin_unlock_irqrestore(&q->lock, flags);
569}
570
05235c53
CW
571static unsigned long local_clock_us(unsigned int *cpu)
572{
573 unsigned long t;
574
575 /* Cheaply and approximately convert from nanoseconds to microseconds.
576 * The result and subsequent calculations are also defined in the same
577 * approximate microseconds units. The principal source of timing
578 * error here is from the simple truncation.
579 *
580 * Note that local_clock() is only defined wrt to the current CPU;
581 * the comparisons are no longer valid if we switch CPUs. Instead of
582 * blocking preemption for the entire busywait, we can detect the CPU
583 * switch and use that as indicator of system load and a reason to
584 * stop busywaiting, see busywait_stop().
585 */
586 *cpu = get_cpu();
587 t = local_clock() >> 10;
588 put_cpu();
589
590 return t;
591}
592
593static bool busywait_stop(unsigned long timeout, unsigned int cpu)
594{
595 unsigned int this_cpu;
596
597 if (time_after(local_clock_us(&this_cpu), timeout))
598 return true;
599
600 return this_cpu != cpu;
601}
602
603bool __i915_spin_request(const struct drm_i915_gem_request *req,
604 int state, unsigned long timeout_us)
605{
606 unsigned int cpu;
607
608 /* When waiting for high frequency requests, e.g. during synchronous
609 * rendering split between the CPU and GPU, the finite amount of time
610 * required to set up the irq and wait upon it limits the response
611 * rate. By busywaiting on the request completion for a short while we
612 * can service the high frequency waits as quick as possible. However,
613 * if it is a slow request, we want to sleep as quickly as possible.
614 * The tradeoff between waiting and sleeping is roughly the time it
615 * takes to sleep on a request, on the order of a microsecond.
616 */
617
618 timeout_us += local_clock_us(&cpu);
619 do {
620 if (i915_gem_request_completed(req))
621 return true;
622
623 if (signal_pending_state(state, current))
624 break;
625
626 if (busywait_stop(timeout_us, cpu))
627 break;
628
629 cpu_relax_lowlatency();
630 } while (!need_resched());
631
632 return false;
633}
634
635/**
776f3236 636 * i915_wait_request - wait until execution of request has finished
05235c53 637 * @req: duh!
ea746f36 638 * @flags: how to wait
05235c53
CW
639 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
640 * @rps: client to charge for RPS boosting
641 *
642 * Note: It is of utmost importance that the passed in seqno and reset_counter
643 * values have been read by the caller in an smp safe manner. Where read-side
644 * locks are involved, it is sufficient to read the reset_counter before
645 * unlocking the lock that protects the seqno. For lockless tricks, the
646 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
647 * inserted.
648 *
649 * Returns 0 if the request was found within the alloted time. Else returns the
650 * errno with remaining time filled in timeout argument.
651 */
776f3236 652int i915_wait_request(struct drm_i915_gem_request *req,
ea746f36 653 unsigned int flags,
776f3236
CW
654 s64 *timeout,
655 struct intel_rps_client *rps)
05235c53 656{
ea746f36
CW
657 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
658 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
05235c53
CW
659 DEFINE_WAIT(reset);
660 struct intel_wait wait;
661 unsigned long timeout_remain;
662 int ret = 0;
663
664 might_sleep();
22dd3bb9
CW
665#if IS_ENABLED(CONFIG_LOCKDEP)
666 GEM_BUG_ON(!!lockdep_is_held(&req->i915->drm.struct_mutex) !=
667 !!(flags & I915_WAIT_LOCKED));
668#endif
05235c53 669
05235c53
CW
670 if (i915_gem_request_completed(req))
671 return 0;
672
673 timeout_remain = MAX_SCHEDULE_TIMEOUT;
674 if (timeout) {
675 if (WARN_ON(*timeout < 0))
676 return -EINVAL;
677
678 if (*timeout == 0)
679 return -ETIME;
680
681 /* Record current time in case interrupted, or wedged */
682 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
683 *timeout += ktime_get_raw_ns();
684 }
685
686 trace_i915_gem_request_wait_begin(req);
687
688 /* This client is about to stall waiting for the GPU. In many cases
689 * this is undesirable and limits the throughput of the system, as
690 * many clients cannot continue processing user input/output whilst
691 * blocked. RPS autotuning may take tens of milliseconds to respond
692 * to the GPU load and thus incurs additional latency for the client.
693 * We can circumvent that by promoting the GPU frequency to maximum
694 * before we wait. This makes the GPU throttle up much more quickly
695 * (good for benchmarks and user experience, e.g. window animations),
696 * but at a cost of spending more power processing the workload
697 * (bad for battery). Not all clients even want their results
698 * immediately and for them we should just let the GPU select its own
699 * frequency to maximise efficiency. To prevent a single client from
700 * forcing the clocks too high for the whole system, we only allow
701 * each client to waitboost once in a busy period.
702 */
42df2714 703 if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
05235c53
CW
704 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
705
437c3087 706 /* Optimistic short spin before touching IRQs */
05235c53
CW
707 if (i915_spin_request(req, state, 5))
708 goto complete;
709
710 set_current_state(state);
22dd3bb9
CW
711 if (flags & I915_WAIT_LOCKED)
712 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
05235c53 713
04769652 714 intel_wait_init(&wait, req->fence.seqno);
05235c53
CW
715 if (intel_engine_add_wait(req->engine, &wait))
716 /* In order to check that we haven't missed the interrupt
717 * as we enabled it, we need to kick ourselves to do a
718 * coherent check on the seqno before we sleep.
719 */
720 goto wakeup;
721
722 for (;;) {
723 if (signal_pending_state(state, current)) {
724 ret = -ERESTARTSYS;
725 break;
726 }
727
728 timeout_remain = io_schedule_timeout(timeout_remain);
729 if (timeout_remain == 0) {
730 ret = -ETIME;
731 break;
732 }
733
734 if (intel_wait_complete(&wait))
735 break;
736
737 set_current_state(state);
738
739wakeup:
740 /* Carefully check if the request is complete, giving time
741 * for the seqno to be visible following the interrupt.
742 * We also have to check in case we are kicked by the GPU
743 * reset in order to drop the struct_mutex.
744 */
745 if (__i915_request_irq_complete(req))
746 break;
747
221fe799
CW
748 /* If the GPU is hung, and we hold the lock, reset the GPU
749 * and then check for completion. On a full reset, the engine's
750 * HW seqno will be advanced passed us and we are complete.
751 * If we do a partial reset, we have to wait for the GPU to
752 * resume and update the breadcrumb.
753 *
754 * If we don't hold the mutex, we can just wait for the worker
755 * to come along and update the breadcrumb (either directly
756 * itself, or indirectly by recovering the GPU).
757 */
758 if (flags & I915_WAIT_LOCKED &&
759 i915_reset_in_progress(&req->i915->gpu_error)) {
760 __set_current_state(TASK_RUNNING);
761 i915_reset(req->i915);
762 reset_wait_queue(&req->i915->gpu_error.wait_queue,
763 &reset);
764 continue;
765 }
766
05235c53
CW
767 /* Only spin if we know the GPU is processing this request */
768 if (i915_spin_request(req, state, 2))
769 break;
770 }
05235c53
CW
771
772 intel_engine_remove_wait(req->engine, &wait);
22dd3bb9
CW
773 if (flags & I915_WAIT_LOCKED)
774 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
05235c53 775 __set_current_state(TASK_RUNNING);
22dd3bb9 776
05235c53
CW
777complete:
778 trace_i915_gem_request_wait_end(req);
779
780 if (timeout) {
781 *timeout -= ktime_get_raw_ns();
782 if (*timeout < 0)
783 *timeout = 0;
784
785 /*
786 * Apparently ktime isn't accurate enough and occasionally has a
787 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
788 * things up to make the test happy. We allow up to 1 jiffy.
789 *
790 * This is a regrssion from the timespec->ktime conversion.
791 */
792 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
793 *timeout = 0;
794 }
795
42df2714
CW
796 if (IS_RPS_USER(rps) &&
797 req->fence.seqno == req->engine->last_submitted_seqno) {
05235c53
CW
798 /* The GPU is now idle and this client has stalled.
799 * Since no other client has submitted a request in the
800 * meantime, assume that this client is the only one
801 * supplying work to the GPU but is unable to keep that
802 * work supplied because it is waiting. Since the GPU is
803 * then never kept fully busy, RPS autoclocking will
804 * keep the clocks relatively low, causing further delays.
805 * Compensate by giving the synchronous client credit for
806 * a waitboost next time.
807 */
808 spin_lock(&req->i915->rps.client_lock);
809 list_del_init(&rps->link);
810 spin_unlock(&req->i915->rps.client_lock);
811 }
812
813 return ret;
814}
4b8de8e6 815
f6407193 816static bool engine_retire_requests(struct intel_engine_cs *engine)
4b8de8e6
CW
817{
818 struct drm_i915_gem_request *request, *next;
819
820 list_for_each_entry_safe(request, next, &engine->request_list, link) {
821 if (!i915_gem_request_completed(request))
f6407193 822 return false;
4b8de8e6
CW
823
824 i915_gem_request_retire(request);
825 }
f6407193
CW
826
827 return true;
4b8de8e6
CW
828}
829
830void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
831{
832 struct intel_engine_cs *engine;
bafb0fce 833 unsigned int tmp;
4b8de8e6
CW
834
835 lockdep_assert_held(&dev_priv->drm.struct_mutex);
836
837 if (dev_priv->gt.active_engines == 0)
838 return;
839
840 GEM_BUG_ON(!dev_priv->gt.awake);
841
bafb0fce 842 for_each_engine_masked(engine, dev_priv, dev_priv->gt.active_engines, tmp)
f6407193 843 if (engine_retire_requests(engine))
4b8de8e6 844 dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
4b8de8e6
CW
845
846 if (dev_priv->gt.active_engines == 0)
847 queue_delayed_work(dev_priv->wq,
848 &dev_priv->gt.idle_work,
849 msecs_to_jiffies(100));
850}