drm/i915: Clear breadcrumb node when cancelling signaling
[linux-block.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
CommitLineData
54cf91dc
CW
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
ad778f89
CW
29#include <linux/dma_remapping.h>
30#include <linux/reservation.h>
fec0445c 31#include <linux/sync_file.h>
ad778f89
CW
32#include <linux/uaccess.h>
33
760285e7 34#include <drm/drmP.h>
cf6e7bac 35#include <drm/drm_syncobj.h>
760285e7 36#include <drm/i915_drm.h>
ad778f89 37
54cf91dc 38#include "i915_drv.h"
57822dc6 39#include "i915_gem_clflush.h"
54cf91dc
CW
40#include "i915_trace.h"
41#include "intel_drv.h"
5d723d7a 42#include "intel_frontbuffer.h"
54cf91dc 43
7dd4f672
CW
44enum {
45 FORCE_CPU_RELOC = 1,
46 FORCE_GTT_RELOC,
47 FORCE_GPU_RELOC,
48#define DBG_FORCE_RELOC 0 /* choose one of the above! */
49};
d50415cc 50
dade2a61
CW
51#define __EXEC_OBJECT_HAS_REF BIT(31)
52#define __EXEC_OBJECT_HAS_PIN BIT(30)
53#define __EXEC_OBJECT_HAS_FENCE BIT(29)
54#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
2889caa9
CW
57#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
58
59#define __EXEC_HAS_RELOC BIT(31)
60#define __EXEC_VALIDATED BIT(30)
74c1c694 61#define __EXEC_INTERNAL_FLAGS (~0u << 30)
2889caa9 62#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
63
64#define BATCH_OFFSET_BIAS (256*1024)
a415d355 65
650bc635
CW
66#define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
5b043f4e 68
2889caa9
CW
69/**
70 * DOC: User command execution
71 *
72 * Userspace submits commands to be executed on the GPU as an instruction
73 * stream within a GEM object we call a batchbuffer. This instructions may
74 * refer to other GEM objects containing auxiliary state such as kernels,
75 * samplers, render targets and even secondary batchbuffers. Userspace does
76 * not know where in the GPU memory these objects reside and so before the
77 * batchbuffer is passed to the GPU for execution, those addresses in the
78 * batchbuffer and auxiliary objects are updated. This is known as relocation,
79 * or patching. To try and avoid having to relocate each object on the next
80 * execution, userspace is told the location of those objects in this pass,
81 * but this remains just a hint as the kernel may choose a new location for
82 * any object in the future.
83 *
84 * Processing an execbuf ioctl is conceptually split up into a few phases.
85 *
86 * 1. Validation - Ensure all the pointers, handles and flags are valid.
87 * 2. Reservation - Assign GPU address space for every object
88 * 3. Relocation - Update any addresses to point to the final locations
89 * 4. Serialisation - Order the request with respect to its dependencies
90 * 5. Construction - Construct a request to execute the batchbuffer
91 * 6. Submission (at some point in the future execution)
92 *
93 * Reserving resources for the execbuf is the most complicated phase. We
94 * neither want to have to migrate the object in the address space, nor do
95 * we want to have to update any relocations pointing to this object. Ideally,
96 * we want to leave the object where it is and for all the existing relocations
97 * to match. If the object is given a new address, or if userspace thinks the
98 * object is elsewhere, we have to parse all the relocation entries and update
99 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
100 * all the target addresses in all of its objects match the value in the
101 * relocation entries and that they all match the presumed offsets given by the
102 * list of execbuffer objects. Using this knowledge, we know that if we haven't
103 * moved any buffers, all the relocation entries are valid and we can skip
104 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
105 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
106 *
107 * The addresses written in the objects must match the corresponding
108 * reloc.presumed_offset which in turn must match the corresponding
109 * execobject.offset.
110 *
111 * Any render targets written to in the batch must be flagged with
112 * EXEC_OBJECT_WRITE.
113 *
114 * To avoid stalling, execobject.offset should match the current
115 * address of that object within the active context.
116 *
117 * The reservation is done is multiple phases. First we try and keep any
118 * object already bound in its current location - so as long as meets the
119 * constraints imposed by the new execbuffer. Any object left unbound after the
120 * first pass is then fitted into any available idle space. If an object does
121 * not fit, all objects are removed from the reservation and the process rerun
122 * after sorting the objects into a priority order (more difficult to fit
123 * objects are tried first). Failing that, the entire VM is cleared and we try
124 * to fit the execbuf once last time before concluding that it simply will not
125 * fit.
126 *
127 * A small complication to all of this is that we allow userspace not only to
128 * specify an alignment and a size for the object in the address space, but
129 * we also allow userspace to specify the exact offset. This objects are
130 * simpler to place (the location is known a priori) all we have to do is make
131 * sure the space is available.
132 *
133 * Once all the objects are in place, patching up the buried pointers to point
134 * to the final locations is a fairly simple job of walking over the relocation
135 * entry arrays, looking up the right address and rewriting the value into
136 * the object. Simple! ... The relocation entries are stored in user memory
137 * and so to access them we have to copy them into a local buffer. That copy
138 * has to avoid taking any pagefaults as they may lead back to a GEM object
139 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
140 * the relocation into multiple passes. First we try to do everything within an
141 * atomic context (avoid the pagefaults) which requires that we never wait. If
142 * we detect that we may wait, or if we need to fault, then we have to fallback
143 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
144 * bells yet?) Dropping the mutex means that we lose all the state we have
145 * built up so far for the execbuf and we must reset any global data. However,
146 * we do leave the objects pinned in their final locations - which is a
147 * potential issue for concurrent execbufs. Once we have left the mutex, we can
148 * allocate and copy all the relocation entries into a large array at our
149 * leisure, reacquire the mutex, reclaim all the objects and other state and
150 * then proceed to update any incorrect addresses with the objects.
151 *
152 * As we process the relocation entries, we maintain a record of whether the
153 * object is being written to. Using NORELOC, we expect userspace to provide
154 * this information instead. We also check whether we can skip the relocation
155 * by comparing the expected value inside the relocation entry with the target's
156 * final address. If they differ, we have to map the current object and rewrite
157 * the 4 or 8 byte pointer within.
158 *
159 * Serialising an execbuf is quite simple according to the rules of the GEM
160 * ABI. Execution within each context is ordered by the order of submission.
161 * Writes to any GEM object are in order of submission and are exclusive. Reads
162 * from a GEM object are unordered with respect to other reads, but ordered by
163 * writes. A write submitted after a read cannot occur before the read, and
164 * similarly any read submitted after a write cannot occur before the write.
165 * Writes are ordered between engines such that only one write occurs at any
166 * time (completing any reads beforehand) - using semaphores where available
167 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
168 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
169 * reads before starting, and any read (either using set-domain or pread) must
170 * flush all GPU writes before starting. (Note we only employ a barrier before,
171 * we currently rely on userspace not concurrently starting a new execution
172 * whilst reading or writing to an object. This may be an advantage or not
173 * depending on how much you trust userspace not to shoot themselves in the
174 * foot.) Serialisation may just result in the request being inserted into
175 * a DAG awaiting its turn, but most simple is to wait on the CPU until
176 * all dependencies are resolved.
177 *
178 * After all of that, is just a matter of closing the request and handing it to
179 * the hardware (well, leaving it in a queue to be executed). However, we also
180 * offer the ability for batchbuffers to be run with elevated privileges so
181 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
182 * Before any batch is given extra privileges we first must check that it
183 * contains no nefarious instructions, we check that each instruction is from
184 * our whitelist and all registers are also from an allowed list. We first
185 * copy the user's batchbuffer to a shadow (so that the user doesn't have
186 * access to it, either by the CPU or GPU as we scan it) and then parse each
187 * instruction. If everything is ok, we set a flag telling the hardware to run
188 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
189 */
190
650bc635 191struct i915_execbuffer {
2889caa9
CW
192 struct drm_i915_private *i915; /** i915 backpointer */
193 struct drm_file *file; /** per-file lookup tables and limits */
194 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
195 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
c7c6e46f
CW
196 struct i915_vma **vma;
197 unsigned int *flags;
2889caa9
CW
198
199 struct intel_engine_cs *engine; /** engine to queue the request to */
200 struct i915_gem_context *ctx; /** context for building the request */
201 struct i915_address_space *vm; /** GTT and vma for the request */
202
203 struct drm_i915_gem_request *request; /** our request to build */
204 struct i915_vma *batch; /** identity of the batch obj/vma */
205
206 /** actual size of execobj[] as we may extend it for the cmdparser */
207 unsigned int buffer_count;
208
209 /** list of vma not yet bound during reservation phase */
210 struct list_head unbound;
211
212 /** list of vma that have execobj.relocation_count */
213 struct list_head relocs;
214
215 /**
216 * Track the most recently used object for relocations, as we
217 * frequently have to perform multiple relocations within the same
218 * obj/page
219 */
650bc635 220 struct reloc_cache {
2889caa9
CW
221 struct drm_mm_node node; /** temporary GTT binding */
222 unsigned long vaddr; /** Current kmap address */
223 unsigned long page; /** Currently mapped page index */
7dd4f672 224 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 225 bool use_64bit_reloc : 1;
2889caa9
CW
226 bool has_llc : 1;
227 bool has_fence : 1;
228 bool needs_unfenced : 1;
7dd4f672
CW
229
230 struct drm_i915_gem_request *rq;
231 u32 *rq_cmd;
232 unsigned int rq_size;
650bc635 233 } reloc_cache;
2889caa9
CW
234
235 u64 invalid_flags; /** Set of execobj.flags that are invalid */
236 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
237
238 u32 batch_start_offset; /** Location within object of batch */
239 u32 batch_len; /** Length of batch within object */
240 u32 batch_flags; /** Flags composed for emit_bb_start() */
241
242 /**
243 * Indicate either the size of the hastable used to resolve
244 * relocation handles, or if negative that we are using a direct
245 * index into the execobj[].
246 */
247 int lut_size;
248 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
249};
250
c7c6e46f 251#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
4ff4b44c 252
2889caa9
CW
253/*
254 * Used to convert any address to canonical form.
255 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
256 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
257 * addresses to be in a canonical form:
258 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
259 * canonical form [63:48] == [47]."
260 */
261#define GEN8_HIGH_ADDRESS_BIT 47
262static inline u64 gen8_canonical_addr(u64 address)
263{
264 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
265}
266
267static inline u64 gen8_noncanonical_addr(u64 address)
268{
269 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
270}
271
3dbf26ed
CW
272static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
273{
274 return eb->engine->needs_cmd_parser && eb->batch_len;
275}
276
650bc635 277static int eb_create(struct i915_execbuffer *eb)
67731b87 278{
2889caa9
CW
279 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
280 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 281
2889caa9
CW
282 /*
283 * Without a 1:1 association between relocation handles and
284 * the execobject[] index, we instead create a hashtable.
285 * We size it dynamically based on available memory, starting
286 * first with 1:1 assocative hash and scaling back until
287 * the allocation succeeds.
288 *
289 * Later on we use a positive lut_size to indicate we are
290 * using this hashtable, and a negative value to indicate a
291 * direct lookup.
292 */
4ff4b44c 293 do {
0d95c883 294 gfp_t flags;
4d470f73
CW
295
296 /* While we can still reduce the allocation size, don't
297 * raise a warning and allow the allocation to fail.
298 * On the last pass though, we want to try as hard
299 * as possible to perform the allocation and warn
300 * if it fails.
301 */
0ee931c4 302 flags = GFP_KERNEL;
4d470f73
CW
303 if (size > 1)
304 flags |= __GFP_NORETRY | __GFP_NOWARN;
305
4ff4b44c 306 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 307 flags);
4ff4b44c
CW
308 if (eb->buckets)
309 break;
310 } while (--size);
311
4d470f73
CW
312 if (unlikely(!size))
313 return -ENOMEM;
eef90ccb 314
2889caa9 315 eb->lut_size = size;
650bc635 316 } else {
2889caa9 317 eb->lut_size = -eb->buffer_count;
650bc635 318 }
eef90ccb 319
650bc635 320 return 0;
67731b87
CW
321}
322
2889caa9
CW
323static bool
324eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
325 const struct i915_vma *vma,
326 unsigned int flags)
2889caa9 327{
2889caa9
CW
328 if (vma->node.size < entry->pad_to_size)
329 return true;
330
331 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
332 return true;
333
c7c6e46f 334 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
335 vma->node.start != entry->offset)
336 return true;
337
c7c6e46f 338 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
339 vma->node.start < BATCH_OFFSET_BIAS)
340 return true;
341
c7c6e46f 342 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
343 (vma->node.start + vma->node.size - 1) >> 32)
344 return true;
345
1d033beb
CW
346 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
347 !i915_vma_is_map_and_fenceable(vma))
348 return true;
349
2889caa9
CW
350 return false;
351}
352
c7c6e46f 353static inline bool
2889caa9 354eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 355 const struct drm_i915_gem_exec_object2 *entry,
2889caa9
CW
356 struct i915_vma *vma)
357{
c7c6e46f
CW
358 unsigned int exec_flags = *vma->exec_flags;
359 u64 pin_flags;
2889caa9 360
616d9cee 361 if (vma->node.size)
c7c6e46f 362 pin_flags = vma->node.start;
616d9cee 363 else
c7c6e46f 364 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 365
c7c6e46f
CW
366 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
367 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
368 pin_flags |= PIN_GLOBAL;
616d9cee 369
c7c6e46f
CW
370 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
371 return false;
2889caa9 372
c7c6e46f 373 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 374 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 375 i915_vma_unpin(vma);
c7c6e46f 376 return false;
2889caa9
CW
377 }
378
3bd40735 379 if (vma->fence)
c7c6e46f 380 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
381 }
382
c7c6e46f
CW
383 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
384 return !eb_vma_misplaced(entry, vma, exec_flags);
2889caa9
CW
385}
386
c7c6e46f 387static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
d55495b4 388{
c7c6e46f 389 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
2889caa9 390
c7c6e46f 391 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
3bd40735 392 __i915_vma_unpin_fence(vma);
d55495b4 393
2889caa9 394 __i915_vma_unpin(vma);
d55495b4
CW
395}
396
2889caa9 397static inline void
c7c6e46f 398eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
d55495b4 399{
c7c6e46f 400 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
2889caa9 401 return;
d55495b4 402
c7c6e46f
CW
403 __eb_unreserve_vma(vma, *flags);
404 *flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
405}
406
2889caa9
CW
407static int
408eb_validate_vma(struct i915_execbuffer *eb,
409 struct drm_i915_gem_exec_object2 *entry,
410 struct i915_vma *vma)
67731b87 411{
2889caa9
CW
412 if (unlikely(entry->flags & eb->invalid_flags))
413 return -EINVAL;
d55495b4 414
2889caa9
CW
415 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
416 return -EINVAL;
417
418 /*
419 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
420 * any non-page-aligned or non-canonical addresses.
421 */
422 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
423 entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
424 return -EINVAL;
425
426 /* pad_to_size was once a reserved field, so sanitize it */
427 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
428 if (unlikely(offset_in_page(entry->pad_to_size)))
429 return -EINVAL;
430 } else {
431 entry->pad_to_size = 0;
d55495b4
CW
432 }
433
c7c6e46f 434 if (unlikely(vma->exec_flags)) {
2889caa9
CW
435 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
436 entry->handle, (int)(entry - eb->exec));
437 return -EINVAL;
438 }
439
440 /*
441 * From drm_mm perspective address space is continuous,
442 * so from this point we're always using non-canonical
443 * form internally.
444 */
445 entry->offset = gen8_noncanonical_addr(entry->offset);
446
c7c6e46f
CW
447 if (!eb->reloc_cache.has_fence) {
448 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
449 } else {
450 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
451 eb->reloc_cache.needs_unfenced) &&
452 i915_gem_object_is_tiled(vma->obj))
453 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
454 }
455
456 if (!(entry->flags & EXEC_OBJECT_PINNED))
457 entry->flags |= eb->context_flags;
458
2889caa9 459 return 0;
67731b87
CW
460}
461
2889caa9 462static int
d1b48c1e 463eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
59bfa124 464{
c7c6e46f 465 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
2889caa9
CW
466 int err;
467
468 GEM_BUG_ON(i915_vma_is_closed(vma));
469
470 if (!(eb->args->flags & __EXEC_VALIDATED)) {
471 err = eb_validate_vma(eb, entry, vma);
472 if (unlikely(err))
473 return err;
4ff4b44c 474 }
4ff4b44c 475
4d470f73 476 if (eb->lut_size > 0) {
2889caa9 477 vma->exec_handle = entry->handle;
4ff4b44c 478 hlist_add_head(&vma->exec_node,
2889caa9
CW
479 &eb->buckets[hash_32(entry->handle,
480 eb->lut_size)]);
4ff4b44c 481 }
59bfa124 482
2889caa9
CW
483 if (entry->relocation_count)
484 list_add_tail(&vma->reloc_link, &eb->relocs);
485
2889caa9
CW
486 /*
487 * Stash a pointer from the vma to execobj, so we can query its flags,
488 * size, alignment etc as provided by the user. Also we stash a pointer
489 * to the vma inside the execobj so that we can use a direct lookup
490 * to find the right target VMA when doing relocations.
491 */
c7c6e46f 492 eb->vma[i] = vma;
d1b48c1e 493 eb->flags[i] = entry->flags;
c7c6e46f 494 vma->exec_flags = &eb->flags[i];
2889caa9
CW
495
496 err = 0;
c7c6e46f 497 if (eb_pin_vma(eb, entry, vma)) {
2889caa9
CW
498 if (entry->offset != vma->node.start) {
499 entry->offset = vma->node.start | UPDATE;
500 eb->args->flags |= __EXEC_HAS_RELOC;
501 }
c7c6e46f
CW
502 } else {
503 eb_unreserve_vma(vma, vma->exec_flags);
504
505 list_add_tail(&vma->exec_link, &eb->unbound);
506 if (drm_mm_node_allocated(&vma->node))
507 err = i915_vma_unbind(vma);
2889caa9
CW
508 }
509 return err;
510}
511
512static inline int use_cpu_reloc(const struct reloc_cache *cache,
513 const struct drm_i915_gem_object *obj)
514{
515 if (!i915_gem_object_has_struct_page(obj))
516 return false;
517
7dd4f672
CW
518 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
519 return true;
520
521 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
522 return false;
2889caa9
CW
523
524 return (cache->has_llc ||
525 obj->cache_dirty ||
526 obj->cache_level != I915_CACHE_NONE);
527}
528
529static int eb_reserve_vma(const struct i915_execbuffer *eb,
530 struct i915_vma *vma)
531{
c7c6e46f
CW
532 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
533 unsigned int exec_flags = *vma->exec_flags;
534 u64 pin_flags;
2889caa9
CW
535 int err;
536
c7c6e46f
CW
537 pin_flags = PIN_USER | PIN_NONBLOCK;
538 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
539 pin_flags |= PIN_GLOBAL;
2889caa9
CW
540
541 /*
542 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
543 * limit address to the first 4GBs for unflagged objects.
544 */
c7c6e46f
CW
545 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
546 pin_flags |= PIN_ZONE_4G;
2889caa9 547
c7c6e46f
CW
548 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
549 pin_flags |= PIN_MAPPABLE;
2889caa9 550
c7c6e46f
CW
551 if (exec_flags & EXEC_OBJECT_PINNED) {
552 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
553 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
554 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
555 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
2889caa9
CW
556 }
557
c7c6e46f
CW
558 err = i915_vma_pin(vma,
559 entry->pad_to_size, entry->alignment,
560 pin_flags);
2889caa9
CW
561 if (err)
562 return err;
563
564 if (entry->offset != vma->node.start) {
565 entry->offset = vma->node.start | UPDATE;
566 eb->args->flags |= __EXEC_HAS_RELOC;
567 }
568
c7c6e46f 569 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 570 err = i915_vma_pin_fence(vma);
2889caa9
CW
571 if (unlikely(err)) {
572 i915_vma_unpin(vma);
573 return err;
574 }
575
3bd40735 576 if (vma->fence)
c7c6e46f 577 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
578 }
579
c7c6e46f
CW
580 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
581 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
1da7b54c 582
2889caa9
CW
583 return 0;
584}
585
586static int eb_reserve(struct i915_execbuffer *eb)
587{
588 const unsigned int count = eb->buffer_count;
589 struct list_head last;
590 struct i915_vma *vma;
591 unsigned int i, pass;
592 int err;
593
594 /*
595 * Attempt to pin all of the buffers into the GTT.
596 * This is done in 3 phases:
597 *
598 * 1a. Unbind all objects that do not match the GTT constraints for
599 * the execbuffer (fenceable, mappable, alignment etc).
600 * 1b. Increment pin count for already bound objects.
601 * 2. Bind new objects.
602 * 3. Decrement pin count.
603 *
604 * This avoid unnecessary unbinding of later objects in order to make
605 * room for the earlier objects *unless* we need to defragment.
606 */
607
608 pass = 0;
609 err = 0;
610 do {
611 list_for_each_entry(vma, &eb->unbound, exec_link) {
612 err = eb_reserve_vma(eb, vma);
613 if (err)
614 break;
615 }
616 if (err != -ENOSPC)
617 return err;
618
619 /* Resort *all* the objects into priority order */
620 INIT_LIST_HEAD(&eb->unbound);
621 INIT_LIST_HEAD(&last);
622 for (i = 0; i < count; i++) {
c7c6e46f
CW
623 unsigned int flags = eb->flags[i];
624 struct i915_vma *vma = eb->vma[i];
2889caa9 625
c7c6e46f
CW
626 if (flags & EXEC_OBJECT_PINNED &&
627 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
628 continue;
629
c7c6e46f 630 eb_unreserve_vma(vma, &eb->flags[i]);
2889caa9 631
c7c6e46f 632 if (flags & EXEC_OBJECT_PINNED)
2889caa9 633 list_add(&vma->exec_link, &eb->unbound);
c7c6e46f 634 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
2889caa9
CW
635 list_add_tail(&vma->exec_link, &eb->unbound);
636 else
637 list_add_tail(&vma->exec_link, &last);
638 }
639 list_splice_tail(&last, &eb->unbound);
640
641 switch (pass++) {
642 case 0:
643 break;
644
645 case 1:
646 /* Too fragmented, unbind everything and retry */
647 err = i915_gem_evict_vm(eb->vm);
648 if (err)
649 return err;
650 break;
651
652 default:
653 return -ENOSPC;
654 }
655 } while (1);
4ff4b44c 656}
59bfa124 657
2889caa9
CW
658static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
659{
1a71cf2f
CW
660 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
661 return 0;
662 else
663 return eb->buffer_count - 1;
2889caa9
CW
664}
665
666static int eb_select_context(struct i915_execbuffer *eb)
667{
668 struct i915_gem_context *ctx;
669
670 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
671 if (unlikely(!ctx))
672 return -ENOENT;
2889caa9 673
1acfc104 674 eb->ctx = ctx;
2889caa9
CW
675 eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;
676
677 eb->context_flags = 0;
678 if (ctx->flags & CONTEXT_NO_ZEROMAP)
679 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
680
681 return 0;
682}
683
684static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 685{
d1b48c1e 686 struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
ac70ebe8 687 struct drm_i915_gem_object *obj;
2889caa9 688 unsigned int i;
2889caa9 689 int err;
3b96eff4 690
8bcbfb12
CW
691 if (unlikely(i915_gem_context_is_closed(eb->ctx)))
692 return -ENOENT;
693
694 if (unlikely(i915_gem_context_is_banned(eb->ctx)))
695 return -EIO;
696
2889caa9
CW
697 INIT_LIST_HEAD(&eb->relocs);
698 INIT_LIST_HEAD(&eb->unbound);
d55495b4 699
170fa29b
CW
700 for (i = 0; i < eb->buffer_count; i++) {
701 u32 handle = eb->exec[i].handle;
d1b48c1e 702 struct i915_lut_handle *lut;
170fa29b 703 struct i915_vma *vma;
4ff4b44c 704
d1b48c1e
CW
705 vma = radix_tree_lookup(handles_vma, handle);
706 if (likely(vma))
170fa29b 707 goto add_vma;
4ff4b44c 708
170fa29b 709 obj = i915_gem_object_lookup(eb->file, handle);
4ff4b44c 710 if (unlikely(!obj)) {
2889caa9 711 err = -ENOENT;
170fa29b 712 goto err_vma;
3b96eff4
CW
713 }
714
650bc635 715 vma = i915_vma_instance(obj, eb->vm, NULL);
058d88c4 716 if (unlikely(IS_ERR(vma))) {
2889caa9 717 err = PTR_ERR(vma);
170fa29b 718 goto err_obj;
27173f1f
BW
719 }
720
d1b48c1e
CW
721 lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
722 if (unlikely(!lut)) {
723 err = -ENOMEM;
724 goto err_obj;
725 }
726
727 err = radix_tree_insert(handles_vma, handle, vma);
728 if (unlikely(err)) {
729 kfree(lut);
730 goto err_obj;
eef90ccb 731 }
4ff4b44c 732
ac70ebe8 733 /* transfer ref to ctx */
3ffff017 734 vma->open_count++;
d1b48c1e
CW
735 list_add(&lut->obj_link, &obj->lut_list);
736 list_add(&lut->ctx_link, &eb->ctx->handles_list);
737 lut->ctx = eb->ctx;
738 lut->handle = handle;
739
170fa29b 740add_vma:
d1b48c1e 741 err = eb_add_vma(eb, i, vma);
2889caa9 742 if (unlikely(err))
ac70ebe8 743 goto err_vma;
dade2a61 744
c7c6e46f
CW
745 GEM_BUG_ON(vma != eb->vma[i]);
746 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
4ff4b44c
CW
747 }
748
2889caa9
CW
749 /* take note of the batch buffer before we might reorder the lists */
750 i = eb_batch_index(eb);
c7c6e46f
CW
751 eb->batch = eb->vma[i];
752 GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
27173f1f 753
9ae9ab52 754 /*
4ff4b44c
CW
755 * SNA is doing fancy tricks with compressing batch buffers, which leads
756 * to negative relocation deltas. Usually that works out ok since the
757 * relocate address is still positive, except when the batch is placed
758 * very low in the GTT. Ensure this doesn't happen.
759 *
760 * Note that actual hangs have only been observed on gen7, but for
761 * paranoia do it everywhere.
9ae9ab52 762 */
c7c6e46f
CW
763 if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
764 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
2889caa9 765 if (eb->reloc_cache.has_fence)
c7c6e46f 766 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
9ae9ab52 767
2889caa9
CW
768 eb->args->flags |= __EXEC_VALIDATED;
769 return eb_reserve(eb);
770
170fa29b 771err_obj:
ac70ebe8 772 i915_gem_object_put(obj);
170fa29b
CW
773err_vma:
774 eb->vma[i] = NULL;
2889caa9 775 return err;
3b96eff4
CW
776}
777
4ff4b44c 778static struct i915_vma *
2889caa9 779eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 780{
2889caa9
CW
781 if (eb->lut_size < 0) {
782 if (handle >= -eb->lut_size)
eef90ccb 783 return NULL;
c7c6e46f 784 return eb->vma[handle];
eef90ccb
CW
785 } else {
786 struct hlist_head *head;
aa45950b 787 struct i915_vma *vma;
67731b87 788
2889caa9 789 head = &eb->buckets[hash_32(handle, eb->lut_size)];
aa45950b 790 hlist_for_each_entry(vma, head, exec_node) {
27173f1f
BW
791 if (vma->exec_handle == handle)
792 return vma;
eef90ccb
CW
793 }
794 return NULL;
795 }
67731b87
CW
796}
797
2889caa9 798static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 799{
2889caa9
CW
800 const unsigned int count = eb->buffer_count;
801 unsigned int i;
802
803 for (i = 0; i < count; i++) {
c7c6e46f
CW
804 struct i915_vma *vma = eb->vma[i];
805 unsigned int flags = eb->flags[i];
650bc635 806
2889caa9 807 if (!vma)
170fa29b 808 break;
bcffc3fa 809
c7c6e46f
CW
810 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 vma->exec_flags = NULL;
812 eb->vma[i] = NULL;
9e53d9be 813
c7c6e46f
CW
814 if (flags & __EXEC_OBJECT_HAS_PIN)
815 __eb_unreserve_vma(vma, flags);
dade2a61 816
c7c6e46f 817 if (flags & __EXEC_OBJECT_HAS_REF)
dade2a61 818 i915_vma_put(vma);
2889caa9 819 }
dabdfe02
CW
820}
821
2889caa9 822static void eb_reset_vmas(const struct i915_execbuffer *eb)
934acce3 823{
2889caa9 824 eb_release_vmas(eb);
4d470f73 825 if (eb->lut_size > 0)
2889caa9
CW
826 memset(eb->buckets, 0,
827 sizeof(struct hlist_head) << eb->lut_size);
934acce3
MW
828}
829
2889caa9 830static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 831{
7dd4f672
CW
832 GEM_BUG_ON(eb->reloc_cache.rq);
833
4d470f73 834 if (eb->lut_size > 0)
2889caa9 835 kfree(eb->buckets);
934acce3
MW
836}
837
2889caa9 838static inline u64
d50415cc 839relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 840 const struct i915_vma *target)
934acce3 841{
2889caa9 842 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
843}
844
d50415cc
CW
845static void reloc_cache_init(struct reloc_cache *cache,
846 struct drm_i915_private *i915)
5032d871 847{
31a39207 848 cache->page = -1;
d50415cc 849 cache->vaddr = 0;
dfc5148f 850 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 851 cache->gen = INTEL_GEN(i915);
2889caa9 852 cache->has_llc = HAS_LLC(i915);
dfc5148f 853 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
854 cache->has_fence = cache->gen < 4;
855 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
e8cb909a 856 cache->node.allocated = false;
7dd4f672
CW
857 cache->rq = NULL;
858 cache->rq_size = 0;
d50415cc 859}
5032d871 860
d50415cc
CW
861static inline void *unmask_page(unsigned long p)
862{
863 return (void *)(uintptr_t)(p & PAGE_MASK);
864}
865
866static inline unsigned int unmask_flags(unsigned long p)
867{
868 return p & ~PAGE_MASK;
31a39207
CW
869}
870
d50415cc
CW
871#define KMAP 0x4 /* after CLFLUSH_FLAGS */
872
650bc635
CW
873static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
874{
875 struct drm_i915_private *i915 =
876 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
877 return &i915->ggtt;
878}
879
7dd4f672
CW
880static void reloc_gpu_flush(struct reloc_cache *cache)
881{
882 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
883 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
884 i915_gem_object_unpin_map(cache->rq->batch->obj);
885 i915_gem_chipset_flush(cache->rq->i915);
886
887 __i915_add_request(cache->rq, true);
888 cache->rq = NULL;
889}
890
650bc635 891static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 892{
d50415cc 893 void *vaddr;
5032d871 894
7dd4f672
CW
895 if (cache->rq)
896 reloc_gpu_flush(cache);
897
31a39207
CW
898 if (!cache->vaddr)
899 return;
3c94ceee 900
d50415cc
CW
901 vaddr = unmask_page(cache->vaddr);
902 if (cache->vaddr & KMAP) {
903 if (cache->vaddr & CLFLUSH_AFTER)
904 mb();
3c94ceee 905
d50415cc
CW
906 kunmap_atomic(vaddr);
907 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
908 } else {
e8cb909a 909 wmb();
d50415cc 910 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 911 if (cache->node.allocated) {
650bc635 912 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a
CW
913
914 ggtt->base.clear_range(&ggtt->base,
915 cache->node.start,
4fb84d99 916 cache->node.size);
e8cb909a
CW
917 drm_mm_remove_node(&cache->node);
918 } else {
919 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 920 }
31a39207 921 }
650bc635
CW
922
923 cache->vaddr = 0;
924 cache->page = -1;
31a39207
CW
925}
926
927static void *reloc_kmap(struct drm_i915_gem_object *obj,
928 struct reloc_cache *cache,
2889caa9 929 unsigned long page)
31a39207 930{
d50415cc
CW
931 void *vaddr;
932
933 if (cache->vaddr) {
934 kunmap_atomic(unmask_page(cache->vaddr));
935 } else {
936 unsigned int flushes;
2889caa9 937 int err;
31a39207 938
2889caa9
CW
939 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
940 if (err)
941 return ERR_PTR(err);
d50415cc
CW
942
943 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
944 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 945
d50415cc
CW
946 cache->vaddr = flushes | KMAP;
947 cache->node.mm = (void *)obj;
948 if (flushes)
949 mb();
3c94ceee
BW
950 }
951
d50415cc
CW
952 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
953 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 954 cache->page = page;
5032d871 955
d50415cc 956 return vaddr;
5032d871
RB
957}
958
d50415cc
CW
959static void *reloc_iomap(struct drm_i915_gem_object *obj,
960 struct reloc_cache *cache,
2889caa9 961 unsigned long page)
5032d871 962{
650bc635 963 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 964 unsigned long offset;
d50415cc 965 void *vaddr;
5032d871 966
d50415cc 967 if (cache->vaddr) {
615e5000 968 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
969 } else {
970 struct i915_vma *vma;
2889caa9 971 int err;
5032d871 972
2889caa9 973 if (use_cpu_reloc(cache, obj))
d50415cc 974 return NULL;
3c94ceee 975
2889caa9
CW
976 err = i915_gem_object_set_to_gtt_domain(obj, true);
977 if (err)
978 return ERR_PTR(err);
3c94ceee 979
d50415cc 980 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
3c755c5b
CW
981 PIN_MAPPABLE |
982 PIN_NONBLOCK |
983 PIN_NONFAULT);
e8cb909a
CW
984 if (IS_ERR(vma)) {
985 memset(&cache->node, 0, sizeof(cache->node));
2889caa9 986 err = drm_mm_insert_node_in_range
e8cb909a 987 (&ggtt->base.mm, &cache->node,
f51455d4 988 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 989 0, ggtt->mappable_end,
4e64e553 990 DRM_MM_INSERT_LOW);
2889caa9 991 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 992 return NULL;
e8cb909a 993 } else {
2889caa9
CW
994 err = i915_vma_put_fence(vma);
995 if (err) {
e8cb909a 996 i915_vma_unpin(vma);
2889caa9 997 return ERR_PTR(err);
e8cb909a 998 }
5032d871 999
e8cb909a
CW
1000 cache->node.start = vma->node.start;
1001 cache->node.mm = (void *)vma;
3c94ceee 1002 }
e8cb909a 1003 }
3c94ceee 1004
e8cb909a
CW
1005 offset = cache->node.start;
1006 if (cache->node.allocated) {
fc099090 1007 wmb();
e8cb909a
CW
1008 ggtt->base.insert_page(&ggtt->base,
1009 i915_gem_object_get_dma_address(obj, page),
1010 offset, I915_CACHE_NONE, 0);
1011 } else {
1012 offset += page << PAGE_SHIFT;
3c94ceee
BW
1013 }
1014
650bc635
CW
1015 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
1016 offset);
d50415cc
CW
1017 cache->page = page;
1018 cache->vaddr = (unsigned long)vaddr;
5032d871 1019
d50415cc 1020 return vaddr;
5032d871
RB
1021}
1022
d50415cc
CW
1023static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1024 struct reloc_cache *cache,
2889caa9 1025 unsigned long page)
edf4427b 1026{
d50415cc 1027 void *vaddr;
5032d871 1028
d50415cc
CW
1029 if (cache->page == page) {
1030 vaddr = unmask_page(cache->vaddr);
1031 } else {
1032 vaddr = NULL;
1033 if ((cache->vaddr & KMAP) == 0)
1034 vaddr = reloc_iomap(obj, cache, page);
1035 if (!vaddr)
1036 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1037 }
1038
d50415cc 1039 return vaddr;
edf4427b
CW
1040}
1041
d50415cc 1042static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1043{
d50415cc
CW
1044 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1045 if (flushes & CLFLUSH_BEFORE) {
1046 clflushopt(addr);
1047 mb();
1048 }
edf4427b 1049
d50415cc 1050 *addr = value;
edf4427b 1051
2889caa9
CW
1052 /*
1053 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1054 * (including clflush). On the write path, we only require
1055 * that it hits memory in an orderly fashion and place
1056 * mb barriers at the start and end of the relocation phase
1057 * to ensure ordering of clflush wrt to the system.
1058 */
1059 if (flushes & CLFLUSH_AFTER)
1060 clflushopt(addr);
1061 } else
1062 *addr = value;
edf4427b 1063}
edf4427b 1064
7dd4f672
CW
1065static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1066 struct i915_vma *vma,
1067 unsigned int len)
1068{
1069 struct reloc_cache *cache = &eb->reloc_cache;
1070 struct drm_i915_gem_object *obj;
1071 struct drm_i915_gem_request *rq;
1072 struct i915_vma *batch;
1073 u32 *cmd;
1074 int err;
1075
1076 GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);
1077
1078 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1079 if (IS_ERR(obj))
1080 return PTR_ERR(obj);
1081
1082 cmd = i915_gem_object_pin_map(obj,
a575c676
CW
1083 cache->has_llc ?
1084 I915_MAP_FORCE_WB :
1085 I915_MAP_FORCE_WC);
7dd4f672
CW
1086 i915_gem_object_unpin_pages(obj);
1087 if (IS_ERR(cmd))
1088 return PTR_ERR(cmd);
1089
1090 err = i915_gem_object_set_to_wc_domain(obj, false);
1091 if (err)
1092 goto err_unmap;
1093
1094 batch = i915_vma_instance(obj, vma->vm, NULL);
1095 if (IS_ERR(batch)) {
1096 err = PTR_ERR(batch);
1097 goto err_unmap;
1098 }
1099
1100 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1101 if (err)
1102 goto err_unmap;
1103
1104 rq = i915_gem_request_alloc(eb->engine, eb->ctx);
1105 if (IS_ERR(rq)) {
1106 err = PTR_ERR(rq);
1107 goto err_unpin;
1108 }
1109
1110 err = i915_gem_request_await_object(rq, vma->obj, true);
1111 if (err)
1112 goto err_request;
1113
1114 err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
1115 if (err)
1116 goto err_request;
1117
1118 err = i915_switch_context(rq);
1119 if (err)
1120 goto err_request;
1121
1122 err = eb->engine->emit_bb_start(rq,
1123 batch->node.start, PAGE_SIZE,
1124 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1125 if (err)
1126 goto err_request;
1127
95ff7c7d 1128 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
7dd4f672 1129 i915_vma_move_to_active(batch, rq, 0);
95ff7c7d
CW
1130 reservation_object_lock(batch->resv, NULL);
1131 reservation_object_add_excl_fence(batch->resv, &rq->fence);
1132 reservation_object_unlock(batch->resv);
7dd4f672
CW
1133 i915_vma_unpin(batch);
1134
25ffaa67 1135 i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
95ff7c7d
CW
1136 reservation_object_lock(vma->resv, NULL);
1137 reservation_object_add_excl_fence(vma->resv, &rq->fence);
1138 reservation_object_unlock(vma->resv);
7dd4f672
CW
1139
1140 rq->batch = batch;
1141
1142 cache->rq = rq;
1143 cache->rq_cmd = cmd;
1144 cache->rq_size = 0;
1145
1146 /* Return with batch mapping (cmd) still pinned */
1147 return 0;
1148
1149err_request:
1150 i915_add_request(rq);
1151err_unpin:
1152 i915_vma_unpin(batch);
1153err_unmap:
1154 i915_gem_object_unpin_map(obj);
1155 return err;
1156}
1157
1158static u32 *reloc_gpu(struct i915_execbuffer *eb,
1159 struct i915_vma *vma,
1160 unsigned int len)
1161{
1162 struct reloc_cache *cache = &eb->reloc_cache;
1163 u32 *cmd;
1164
1165 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1166 reloc_gpu_flush(cache);
1167
1168 if (unlikely(!cache->rq)) {
1169 int err;
1170
3dbf26ed
CW
1171 /* If we need to copy for the cmdparser, we will stall anyway */
1172 if (eb_use_cmdparser(eb))
1173 return ERR_PTR(-EWOULDBLOCK);
1174
90cad095
CW
1175 if (!intel_engine_can_store_dword(eb->engine))
1176 return ERR_PTR(-ENODEV);
1177
7dd4f672
CW
1178 err = __reloc_gpu_alloc(eb, vma, len);
1179 if (unlikely(err))
1180 return ERR_PTR(err);
1181 }
1182
1183 cmd = cache->rq_cmd + cache->rq_size;
1184 cache->rq_size += len;
1185
1186 return cmd;
1187}
1188
2889caa9
CW
1189static u64
1190relocate_entry(struct i915_vma *vma,
d50415cc 1191 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1192 struct i915_execbuffer *eb,
1193 const struct i915_vma *target)
edf4427b 1194{
d50415cc 1195 u64 offset = reloc->offset;
2889caa9
CW
1196 u64 target_offset = relocation_target(reloc, target);
1197 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1198 void *vaddr;
edf4427b 1199
7dd4f672
CW
1200 if (!eb->reloc_cache.vaddr &&
1201 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
90cad095 1202 !reservation_object_test_signaled_rcu(vma->resv, true))) {
7dd4f672
CW
1203 const unsigned int gen = eb->reloc_cache.gen;
1204 unsigned int len;
1205 u32 *batch;
1206 u64 addr;
1207
1208 if (wide)
1209 len = offset & 7 ? 8 : 5;
1210 else if (gen >= 4)
1211 len = 4;
f2f5c061 1212 else
7dd4f672 1213 len = 3;
7dd4f672
CW
1214
1215 batch = reloc_gpu(eb, vma, len);
1216 if (IS_ERR(batch))
1217 goto repeat;
1218
1219 addr = gen8_canonical_addr(vma->node.start + offset);
1220 if (wide) {
1221 if (offset & 7) {
1222 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1223 *batch++ = lower_32_bits(addr);
1224 *batch++ = upper_32_bits(addr);
1225 *batch++ = lower_32_bits(target_offset);
1226
1227 addr = gen8_canonical_addr(addr + 4);
1228
1229 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1230 *batch++ = lower_32_bits(addr);
1231 *batch++ = upper_32_bits(addr);
1232 *batch++ = upper_32_bits(target_offset);
1233 } else {
1234 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1235 *batch++ = lower_32_bits(addr);
1236 *batch++ = upper_32_bits(addr);
1237 *batch++ = lower_32_bits(target_offset);
1238 *batch++ = upper_32_bits(target_offset);
1239 }
1240 } else if (gen >= 6) {
1241 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1242 *batch++ = 0;
1243 *batch++ = addr;
1244 *batch++ = target_offset;
1245 } else if (gen >= 4) {
1246 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1247 *batch++ = 0;
1248 *batch++ = addr;
1249 *batch++ = target_offset;
1250 } else {
1251 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1252 *batch++ = addr;
1253 *batch++ = target_offset;
1254 }
1255
1256 goto out;
1257 }
1258
d50415cc 1259repeat:
95ff7c7d 1260 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1261 if (IS_ERR(vaddr))
1262 return PTR_ERR(vaddr);
1263
1264 clflush_write32(vaddr + offset_in_page(offset),
1265 lower_32_bits(target_offset),
2889caa9 1266 eb->reloc_cache.vaddr);
d50415cc
CW
1267
1268 if (wide) {
1269 offset += sizeof(u32);
1270 target_offset >>= 32;
1271 wide = false;
1272 goto repeat;
edf4427b 1273 }
edf4427b 1274
7dd4f672 1275out:
2889caa9 1276 return target->node.start | UPDATE;
edf4427b 1277}
edf4427b 1278
2889caa9
CW
1279static u64
1280eb_relocate_entry(struct i915_execbuffer *eb,
1281 struct i915_vma *vma,
1282 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1283{
507d977f 1284 struct i915_vma *target;
2889caa9 1285 int err;
54cf91dc 1286
67731b87 1287 /* we've already hold a reference to all valid objects */
507d977f
CW
1288 target = eb_get_vma(eb, reloc->target_handle);
1289 if (unlikely(!target))
54cf91dc 1290 return -ENOENT;
e844b990 1291
54cf91dc 1292 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1293 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 1294 DRM_DEBUG("reloc with multiple write domains: "
507d977f 1295 "target %d offset %d "
54cf91dc 1296 "read %08x write %08x",
507d977f 1297 reloc->target_handle,
54cf91dc
CW
1298 (int) reloc->offset,
1299 reloc->read_domains,
1300 reloc->write_domain);
8b78f0e5 1301 return -EINVAL;
54cf91dc 1302 }
4ca4a250
DV
1303 if (unlikely((reloc->write_domain | reloc->read_domains)
1304 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 1305 DRM_DEBUG("reloc with read/write non-GPU domains: "
507d977f 1306 "target %d offset %d "
54cf91dc 1307 "read %08x write %08x",
507d977f 1308 reloc->target_handle,
54cf91dc
CW
1309 (int) reloc->offset,
1310 reloc->read_domains,
1311 reloc->write_domain);
8b78f0e5 1312 return -EINVAL;
54cf91dc 1313 }
54cf91dc 1314
2889caa9 1315 if (reloc->write_domain) {
c7c6e46f 1316 *target->exec_flags |= EXEC_OBJECT_WRITE;
507d977f 1317
2889caa9
CW
1318 /*
1319 * Sandybridge PPGTT errata: We need a global gtt mapping
1320 * for MI and pipe_control writes because the gpu doesn't
1321 * properly redirect them through the ppgtt for non_secure
1322 * batchbuffers.
1323 */
1324 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1325 IS_GEN6(eb->i915)) {
1326 err = i915_vma_bind(target, target->obj->cache_level,
1327 PIN_GLOBAL);
1328 if (WARN_ONCE(err,
1329 "Unexpected failure to bind target VMA!"))
1330 return err;
1331 }
507d977f 1332 }
54cf91dc 1333
2889caa9
CW
1334 /*
1335 * If the relocation already has the right value in it, no
54cf91dc
CW
1336 * more work needs to be done.
1337 */
7dd4f672
CW
1338 if (!DBG_FORCE_RELOC &&
1339 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
67731b87 1340 return 0;
54cf91dc
CW
1341
1342 /* Check that the relocation address is valid... */
3c94ceee 1343 if (unlikely(reloc->offset >
507d977f 1344 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
ff240199 1345 DRM_DEBUG("Relocation beyond object bounds: "
507d977f
CW
1346 "target %d offset %d size %d.\n",
1347 reloc->target_handle,
1348 (int)reloc->offset,
1349 (int)vma->size);
8b78f0e5 1350 return -EINVAL;
54cf91dc 1351 }
b8f7ab17 1352 if (unlikely(reloc->offset & 3)) {
ff240199 1353 DRM_DEBUG("Relocation not 4-byte aligned: "
507d977f
CW
1354 "target %d offset %d.\n",
1355 reloc->target_handle,
1356 (int)reloc->offset);
8b78f0e5 1357 return -EINVAL;
54cf91dc
CW
1358 }
1359
071750e5
CW
1360 /*
1361 * If we write into the object, we need to force the synchronisation
1362 * barrier, either with an asynchronous clflush or if we executed the
1363 * patching using the GPU (though that should be serialised by the
1364 * timeline). To be completely sure, and since we are required to
1365 * do relocations we are already stalling, disable the user's opt
0519bcb1 1366 * out of our synchronisation.
071750e5 1367 */
c7c6e46f 1368 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1369
54cf91dc 1370 /* and update the user's relocation entry */
2889caa9 1371 return relocate_entry(vma, reloc, eb, target);
54cf91dc
CW
1372}
1373
2889caa9 1374static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1375{
1d83f442 1376#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1377 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1378 struct drm_i915_gem_relocation_entry __user *urelocs;
c7c6e46f 1379 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9 1380 unsigned int remain;
54cf91dc 1381
2889caa9 1382 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1383 remain = entry->relocation_count;
2889caa9
CW
1384 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1385 return -EINVAL;
ebc0808f 1386
2889caa9
CW
1387 /*
1388 * We must check that the entire relocation array is safe
1389 * to read. However, if the array is not writable the user loses
1390 * the updated relocation values.
1391 */
edd9003f 1392 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
2889caa9
CW
1393 return -EFAULT;
1394
1395 do {
1396 struct drm_i915_gem_relocation_entry *r = stack;
1397 unsigned int count =
1398 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1399 unsigned int copied;
1d83f442 1400
2889caa9
CW
1401 /*
1402 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1403 * whilst holding the struct mutex lest the user pass in the
1404 * relocations contained within a mmaped bo. For in such a case
1405 * we, the page fault handler would call i915_gem_fault() and
1406 * we would try to acquire the struct mutex again. Obviously
1407 * this is bad and so lockdep complains vehemently.
1408 */
1409 pagefault_disable();
2889caa9 1410 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
ebc0808f 1411 pagefault_enable();
2889caa9
CW
1412 if (unlikely(copied)) {
1413 remain = -EFAULT;
31a39207
CW
1414 goto out;
1415 }
54cf91dc 1416
2889caa9 1417 remain -= count;
1d83f442 1418 do {
2889caa9 1419 u64 offset = eb_relocate_entry(eb, vma, r);
54cf91dc 1420
2889caa9
CW
1421 if (likely(offset == 0)) {
1422 } else if ((s64)offset < 0) {
1423 remain = (int)offset;
31a39207 1424 goto out;
2889caa9
CW
1425 } else {
1426 /*
1427 * Note that reporting an error now
1428 * leaves everything in an inconsistent
1429 * state as we have *already* changed
1430 * the relocation value inside the
1431 * object. As we have not changed the
1432 * reloc.presumed_offset or will not
1433 * change the execobject.offset, on the
1434 * call we may not rewrite the value
1435 * inside the object, leaving it
1436 * dangling and causing a GPU hang. Unless
1437 * userspace dynamically rebuilds the
1438 * relocations on each execbuf rather than
1439 * presume a static tree.
1440 *
1441 * We did previously check if the relocations
1442 * were writable (access_ok), an error now
1443 * would be a strange race with mprotect,
1444 * having already demonstrated that we
1445 * can read from this userspace address.
1446 */
1447 offset = gen8_canonical_addr(offset & ~UPDATE);
1448 __put_user(offset,
1449 &urelocs[r-stack].presumed_offset);
1d83f442 1450 }
2889caa9
CW
1451 } while (r++, --count);
1452 urelocs += ARRAY_SIZE(stack);
1453 } while (remain);
31a39207 1454out:
650bc635 1455 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1456 return remain;
54cf91dc
CW
1457}
1458
1459static int
2889caa9 1460eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1461{
c7c6e46f 1462 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9
CW
1463 struct drm_i915_gem_relocation_entry *relocs =
1464 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1465 unsigned int i;
1466 int err;
54cf91dc
CW
1467
1468 for (i = 0; i < entry->relocation_count; i++) {
2889caa9 1469 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
d4aeee77 1470
2889caa9
CW
1471 if ((s64)offset < 0) {
1472 err = (int)offset;
1473 goto err;
1474 }
54cf91dc 1475 }
2889caa9
CW
1476 err = 0;
1477err:
1478 reloc_cache_reset(&eb->reloc_cache);
1479 return err;
edf4427b
CW
1480}
1481
2889caa9 1482static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1690e1eb 1483{
2889caa9
CW
1484 const char __user *addr, *end;
1485 unsigned long size;
1486 char __maybe_unused c;
1690e1eb 1487
2889caa9
CW
1488 size = entry->relocation_count;
1489 if (size == 0)
1490 return 0;
7788a765 1491
2889caa9
CW
1492 if (size > N_RELOC(ULONG_MAX))
1493 return -EINVAL;
9a5a53b3 1494
2889caa9
CW
1495 addr = u64_to_user_ptr(entry->relocs_ptr);
1496 size *= sizeof(struct drm_i915_gem_relocation_entry);
1497 if (!access_ok(VERIFY_READ, addr, size))
1498 return -EFAULT;
1690e1eb 1499
2889caa9
CW
1500 end = addr + size;
1501 for (; addr < end; addr += PAGE_SIZE) {
1502 int err = __get_user(c, addr);
1503 if (err)
1504 return err;
ed5982e6 1505 }
2889caa9 1506 return __get_user(c, end - 1);
7788a765 1507}
1690e1eb 1508
2889caa9 1509static int eb_copy_relocations(const struct i915_execbuffer *eb)
d23db88c 1510{
2889caa9
CW
1511 const unsigned int count = eb->buffer_count;
1512 unsigned int i;
1513 int err;
e6a84468 1514
2889caa9
CW
1515 for (i = 0; i < count; i++) {
1516 const unsigned int nreloc = eb->exec[i].relocation_count;
1517 struct drm_i915_gem_relocation_entry __user *urelocs;
1518 struct drm_i915_gem_relocation_entry *relocs;
1519 unsigned long size;
1520 unsigned long copied;
e6a84468 1521
2889caa9
CW
1522 if (nreloc == 0)
1523 continue;
e6a84468 1524
2889caa9
CW
1525 err = check_relocations(&eb->exec[i]);
1526 if (err)
1527 goto err;
d23db88c 1528
2889caa9
CW
1529 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1530 size = nreloc * sizeof(*relocs);
d23db88c 1531
0ee931c4 1532 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
2889caa9
CW
1533 if (!relocs) {
1534 kvfree(relocs);
1535 err = -ENOMEM;
1536 goto err;
1537 }
d23db88c 1538
2889caa9
CW
1539 /* copy_from_user is limited to < 4GiB */
1540 copied = 0;
1541 do {
1542 unsigned int len =
1543 min_t(u64, BIT_ULL(31), size - copied);
1544
1545 if (__copy_from_user((char *)relocs + copied,
908a6105 1546 (char __user *)urelocs + copied,
2889caa9
CW
1547 len)) {
1548 kvfree(relocs);
1549 err = -EFAULT;
1550 goto err;
1551 }
91b2db6f 1552
2889caa9
CW
1553 copied += len;
1554 } while (copied < size);
506a8e87 1555
2889caa9
CW
1556 /*
1557 * As we do not update the known relocation offsets after
1558 * relocating (due to the complexities in lock handling),
1559 * we need to mark them as invalid now so that we force the
1560 * relocation processing next time. Just in case the target
1561 * object is evicted and then rebound into its old
1562 * presumed_offset before the next execbuffer - if that
1563 * happened we would make the mistake of assuming that the
1564 * relocations were valid.
1565 */
1566 user_access_begin();
1567 for (copied = 0; copied < nreloc; copied++)
1568 unsafe_put_user(-1,
1569 &urelocs[copied].presumed_offset,
1570 end_user);
1571end_user:
1572 user_access_end();
d23db88c 1573
2889caa9
CW
1574 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1575 }
edf4427b 1576
2889caa9 1577 return 0;
101b506a 1578
2889caa9
CW
1579err:
1580 while (i--) {
1581 struct drm_i915_gem_relocation_entry *relocs =
1582 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1583 if (eb->exec[i].relocation_count)
1584 kvfree(relocs);
1585 }
1586 return err;
d23db88c
CW
1587}
1588
2889caa9 1589static int eb_prefault_relocations(const struct i915_execbuffer *eb)
54cf91dc 1590{
2889caa9
CW
1591 const unsigned int count = eb->buffer_count;
1592 unsigned int i;
54cf91dc 1593
4f044a88 1594 if (unlikely(i915_modparams.prefault_disable))
2889caa9 1595 return 0;
54cf91dc 1596
2889caa9
CW
1597 for (i = 0; i < count; i++) {
1598 int err;
54cf91dc 1599
2889caa9
CW
1600 err = check_relocations(&eb->exec[i]);
1601 if (err)
1602 return err;
1603 }
a415d355 1604
2889caa9 1605 return 0;
54cf91dc
CW
1606}
1607
2889caa9 1608static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
54cf91dc 1609{
650bc635 1610 struct drm_device *dev = &eb->i915->drm;
2889caa9 1611 bool have_copy = false;
27173f1f 1612 struct i915_vma *vma;
2889caa9
CW
1613 int err = 0;
1614
1615repeat:
1616 if (signal_pending(current)) {
1617 err = -ERESTARTSYS;
1618 goto out;
1619 }
27173f1f 1620
67731b87 1621 /* We may process another execbuffer during the unlock... */
2889caa9 1622 eb_reset_vmas(eb);
54cf91dc
CW
1623 mutex_unlock(&dev->struct_mutex);
1624
2889caa9
CW
1625 /*
1626 * We take 3 passes through the slowpatch.
1627 *
1628 * 1 - we try to just prefault all the user relocation entries and
1629 * then attempt to reuse the atomic pagefault disabled fast path again.
1630 *
1631 * 2 - we copy the user entries to a local buffer here outside of the
1632 * local and allow ourselves to wait upon any rendering before
1633 * relocations
1634 *
1635 * 3 - we already have a local copy of the relocation entries, but
1636 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1637 */
1638 if (!err) {
1639 err = eb_prefault_relocations(eb);
1640 } else if (!have_copy) {
1641 err = eb_copy_relocations(eb);
1642 have_copy = err == 0;
1643 } else {
1644 cond_resched();
1645 err = 0;
54cf91dc 1646 }
2889caa9
CW
1647 if (err) {
1648 mutex_lock(&dev->struct_mutex);
1649 goto out;
54cf91dc
CW
1650 }
1651
8a2421bd
CW
1652 /* A frequent cause for EAGAIN are currently unavailable client pages */
1653 flush_workqueue(eb->i915->mm.userptr_wq);
1654
2889caa9
CW
1655 err = i915_mutex_lock_interruptible(dev);
1656 if (err) {
54cf91dc 1657 mutex_lock(&dev->struct_mutex);
2889caa9 1658 goto out;
54cf91dc
CW
1659 }
1660
67731b87 1661 /* reacquire the objects */
2889caa9
CW
1662 err = eb_lookup_vmas(eb);
1663 if (err)
3b96eff4 1664 goto err;
67731b87 1665
c7c6e46f
CW
1666 GEM_BUG_ON(!eb->batch);
1667
2889caa9
CW
1668 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1669 if (!have_copy) {
1670 pagefault_disable();
1671 err = eb_relocate_vma(eb, vma);
1672 pagefault_enable();
1673 if (err)
1674 goto repeat;
1675 } else {
1676 err = eb_relocate_vma_slow(eb, vma);
1677 if (err)
1678 goto err;
1679 }
54cf91dc
CW
1680 }
1681
2889caa9
CW
1682 /*
1683 * Leave the user relocations as are, this is the painfully slow path,
54cf91dc
CW
1684 * and we want to avoid the complication of dropping the lock whilst
1685 * having buffers reserved in the aperture and so causing spurious
1686 * ENOSPC for random operations.
1687 */
1688
1689err:
2889caa9
CW
1690 if (err == -EAGAIN)
1691 goto repeat;
1692
1693out:
1694 if (have_copy) {
1695 const unsigned int count = eb->buffer_count;
1696 unsigned int i;
1697
1698 for (i = 0; i < count; i++) {
1699 const struct drm_i915_gem_exec_object2 *entry =
1700 &eb->exec[i];
1701 struct drm_i915_gem_relocation_entry *relocs;
1702
1703 if (!entry->relocation_count)
1704 continue;
1705
1706 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1707 kvfree(relocs);
1708 }
1709 }
1710
1f727d9e 1711 return err;
54cf91dc
CW
1712}
1713
2889caa9 1714static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1715{
2889caa9
CW
1716 if (eb_lookup_vmas(eb))
1717 goto slow;
1718
1719 /* The objects are in their final locations, apply the relocations. */
1720 if (eb->args->flags & __EXEC_HAS_RELOC) {
1721 struct i915_vma *vma;
1722
1723 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1724 if (eb_relocate_vma(eb, vma))
1725 goto slow;
1726 }
1727 }
1728
1729 return 0;
1730
1731slow:
1732 return eb_relocate_slow(eb);
1733}
1734
95ff7c7d 1735static void eb_export_fence(struct i915_vma *vma,
2889caa9
CW
1736 struct drm_i915_gem_request *req,
1737 unsigned int flags)
1738{
95ff7c7d 1739 struct reservation_object *resv = vma->resv;
2889caa9
CW
1740
1741 /*
1742 * Ignore errors from failing to allocate the new fence, we can't
1743 * handle an error right now. Worst case should be missed
1744 * synchronisation leading to rendering corruption.
1745 */
1746 reservation_object_lock(resv, NULL);
1747 if (flags & EXEC_OBJECT_WRITE)
1748 reservation_object_add_excl_fence(resv, &req->fence);
1749 else if (reservation_object_reserve_shared(resv) == 0)
1750 reservation_object_add_shared_fence(resv, &req->fence);
1751 reservation_object_unlock(resv);
1752}
1753
1754static int eb_move_to_gpu(struct i915_execbuffer *eb)
1755{
1756 const unsigned int count = eb->buffer_count;
1757 unsigned int i;
1758 int err;
54cf91dc 1759
2889caa9 1760 for (i = 0; i < count; i++) {
c7c6e46f
CW
1761 unsigned int flags = eb->flags[i];
1762 struct i915_vma *vma = eb->vma[i];
27173f1f 1763 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1764
c7c6e46f 1765 if (flags & EXEC_OBJECT_CAPTURE) {
b0fd47ad
CW
1766 struct i915_gem_capture_list *capture;
1767
1768 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1769 if (unlikely(!capture))
1770 return -ENOMEM;
1771
650bc635 1772 capture->next = eb->request->capture_list;
c7c6e46f 1773 capture->vma = eb->vma[i];
650bc635 1774 eb->request->capture_list = capture;
b0fd47ad
CW
1775 }
1776
b8f55be6
CW
1777 /*
1778 * If the GPU is not _reading_ through the CPU cache, we need
1779 * to make sure that any writes (both previous GPU writes from
1780 * before a change in snooping levels and normal CPU writes)
1781 * caught in that cache are flushed to main memory.
1782 *
1783 * We want to say
1784 * obj->cache_dirty &&
1785 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1786 * but gcc's optimiser doesn't handle that as well and emits
1787 * two jumps instead of one. Maybe one day...
1788 */
1789 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1790 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1791 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1792 }
1793
c7c6e46f
CW
1794 if (flags & EXEC_OBJECT_ASYNC)
1795 continue;
77ae9957 1796
2889caa9 1797 err = i915_gem_request_await_object
c7c6e46f 1798 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2889caa9
CW
1799 if (err)
1800 return err;
2889caa9
CW
1801 }
1802
1803 for (i = 0; i < count; i++) {
c7c6e46f
CW
1804 unsigned int flags = eb->flags[i];
1805 struct i915_vma *vma = eb->vma[i];
1806
1807 i915_vma_move_to_active(vma, eb->request, flags);
1808 eb_export_fence(vma, eb->request, flags);
2889caa9 1809
c7c6e46f
CW
1810 __eb_unreserve_vma(vma, flags);
1811 vma->exec_flags = NULL;
1812
1813 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
dade2a61 1814 i915_vma_put(vma);
c59a333f 1815 }
2889caa9 1816 eb->exec = NULL;
c59a333f 1817
dcd79934 1818 /* Unconditionally flush any chipset caches (for streaming writes). */
650bc635 1819 i915_gem_chipset_flush(eb->i915);
6ac42f41 1820
c7fe7d25 1821 /* Unconditionally invalidate GPU caches and TLBs. */
650bc635 1822 return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
54cf91dc
CW
1823}
1824
2889caa9 1825static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1826{
650bc635 1827 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
ed5982e6
DV
1828 return false;
1829
2f5945bc 1830 /* Kernel clipping was a DRI1 misfeature */
cf6e7bac
JE
1831 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1832 if (exec->num_cliprects || exec->cliprects_ptr)
1833 return false;
1834 }
2f5945bc
CW
1835
1836 if (exec->DR4 == 0xffffffff) {
1837 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1838 exec->DR4 = 0;
1839 }
1840 if (exec->DR1 || exec->DR4)
1841 return false;
1842
1843 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1844 return false;
1845
1846 return true;
54cf91dc
CW
1847}
1848
5cf3d280
CW
1849void i915_vma_move_to_active(struct i915_vma *vma,
1850 struct drm_i915_gem_request *req,
1851 unsigned int flags)
1852{
1853 struct drm_i915_gem_object *obj = vma->obj;
1854 const unsigned int idx = req->engine->id;
1855
81147b07 1856 lockdep_assert_held(&req->i915->drm.struct_mutex);
5cf3d280
CW
1857 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1858
2889caa9
CW
1859 /*
1860 * Add a reference if we're newly entering the active list.
b0decaf7
CW
1861 * The order in which we add operations to the retirement queue is
1862 * vital here: mark_active adds to the start of the callback list,
1863 * such that subsequent callbacks are called first. Therefore we
1864 * add the active reference first and queue for it to be dropped
1865 * *last*.
1866 */
d07f0e59
CW
1867 if (!i915_vma_is_active(vma))
1868 obj->active_count++;
1869 i915_vma_set_active(vma, idx);
1870 i915_gem_active_set(&vma->last_read[idx], req);
1871 list_move_tail(&vma->vm_link, &vma->vm->active_list);
5cf3d280 1872
e27ab73d 1873 obj->base.write_domain = 0;
5cf3d280 1874 if (flags & EXEC_OBJECT_WRITE) {
e27ab73d
CW
1875 obj->base.write_domain = I915_GEM_DOMAIN_RENDER;
1876
5b8c8aec
CW
1877 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1878 i915_gem_active_set(&obj->frontbuffer_write, req);
5cf3d280 1879
e27ab73d 1880 obj->base.read_domains = 0;
5cf3d280 1881 }
e27ab73d 1882 obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
5cf3d280 1883
49ef5294
CW
1884 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1885 i915_gem_active_set(&vma->last_fence, req);
5cf3d280
CW
1886}
1887
2889caa9 1888static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
ae662d31 1889{
73dec95e
TU
1890 u32 *cs;
1891 int i;
ae662d31 1892
b5321f30 1893 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
9d662da8
DV
1894 DRM_DEBUG("sol reset is gen7/rcs only\n");
1895 return -EINVAL;
1896 }
ae662d31 1897
2889caa9 1898 cs = intel_ring_begin(req, 4 * 2 + 2);
73dec95e
TU
1899 if (IS_ERR(cs))
1900 return PTR_ERR(cs);
ae662d31 1901
2889caa9 1902 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 1903 for (i = 0; i < 4; i++) {
73dec95e
TU
1904 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1905 *cs++ = 0;
ae662d31 1906 }
2889caa9 1907 *cs++ = MI_NOOP;
73dec95e 1908 intel_ring_advance(req, cs);
ae662d31
EA
1909
1910 return 0;
1911}
1912
650bc635 1913static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
71745376 1914{
71745376 1915 struct drm_i915_gem_object *shadow_batch_obj;
17cabf57 1916 struct i915_vma *vma;
2889caa9 1917 int err;
71745376 1918
650bc635
CW
1919 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1920 PAGE_ALIGN(eb->batch_len));
71745376 1921 if (IS_ERR(shadow_batch_obj))
59bfa124 1922 return ERR_CAST(shadow_batch_obj);
71745376 1923
2889caa9 1924 err = intel_engine_cmd_parser(eb->engine,
650bc635 1925 eb->batch->obj,
33a051a5 1926 shadow_batch_obj,
650bc635
CW
1927 eb->batch_start_offset,
1928 eb->batch_len,
33a051a5 1929 is_master);
2889caa9
CW
1930 if (err) {
1931 if (err == -EACCES) /* unhandled chained batch */
058d88c4
CW
1932 vma = NULL;
1933 else
2889caa9 1934 vma = ERR_PTR(err);
058d88c4
CW
1935 goto out;
1936 }
71745376 1937
058d88c4
CW
1938 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1939 if (IS_ERR(vma))
1940 goto out;
de4e783a 1941
c7c6e46f
CW
1942 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1943 eb->flags[eb->buffer_count] =
1944 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1945 vma->exec_flags = &eb->flags[eb->buffer_count];
1946 eb->buffer_count++;
71745376 1947
058d88c4 1948out:
de4e783a 1949 i915_gem_object_unpin_pages(shadow_batch_obj);
058d88c4 1950 return vma;
71745376 1951}
5c6c6003 1952
c8659efa 1953static void
2889caa9 1954add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
c8659efa
CW
1955{
1956 req->file_priv = file->driver_priv;
1957 list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
1958}
1959
2889caa9 1960static int eb_submit(struct i915_execbuffer *eb)
78382593 1961{
2889caa9 1962 int err;
78382593 1963
2889caa9
CW
1964 err = eb_move_to_gpu(eb);
1965 if (err)
1966 return err;
78382593 1967
2889caa9
CW
1968 err = i915_switch_context(eb->request);
1969 if (err)
1970 return err;
78382593 1971
650bc635 1972 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
1973 err = i915_reset_gen7_sol_offsets(eb->request);
1974 if (err)
1975 return err;
78382593
OM
1976 }
1977
2889caa9 1978 err = eb->engine->emit_bb_start(eb->request,
650bc635
CW
1979 eb->batch->node.start +
1980 eb->batch_start_offset,
1981 eb->batch_len,
2889caa9
CW
1982 eb->batch_flags);
1983 if (err)
1984 return err;
78382593 1985
2f5945bc 1986 return 0;
78382593
OM
1987}
1988
a8ebba75
ZY
1989/**
1990 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 1991 * The engine index is returned.
a8ebba75 1992 */
de1add36 1993static unsigned int
c80ff16e
CW
1994gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1995 struct drm_file *file)
a8ebba75 1996{
a8ebba75
ZY
1997 struct drm_i915_file_private *file_priv = file->driver_priv;
1998
de1add36 1999 /* Check whether the file_priv has already selected one ring. */
6f633402
JL
2000 if ((int)file_priv->bsd_engine < 0)
2001 file_priv->bsd_engine = atomic_fetch_xor(1,
2002 &dev_priv->mm.bsd_engine_dispatch_index);
d23db88c 2003
c80ff16e 2004 return file_priv->bsd_engine;
d23db88c
CW
2005}
2006
de1add36
TU
2007#define I915_USER_RINGS (4)
2008
117897f4 2009static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
de1add36
TU
2010 [I915_EXEC_DEFAULT] = RCS,
2011 [I915_EXEC_RENDER] = RCS,
2012 [I915_EXEC_BLT] = BCS,
2013 [I915_EXEC_BSD] = VCS,
2014 [I915_EXEC_VEBOX] = VECS
2015};
2016
f8ca0c07
DG
2017static struct intel_engine_cs *
2018eb_select_engine(struct drm_i915_private *dev_priv,
2019 struct drm_file *file,
2020 struct drm_i915_gem_execbuffer2 *args)
de1add36
TU
2021{
2022 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
f8ca0c07 2023 struct intel_engine_cs *engine;
de1add36
TU
2024
2025 if (user_ring_id > I915_USER_RINGS) {
2026 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
f8ca0c07 2027 return NULL;
de1add36
TU
2028 }
2029
2030 if ((user_ring_id != I915_EXEC_BSD) &&
2031 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2032 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2033 "bsd dispatch flags: %d\n", (int)(args->flags));
f8ca0c07 2034 return NULL;
de1add36
TU
2035 }
2036
2037 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2038 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2039
2040 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
c80ff16e 2041 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
de1add36
TU
2042 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2043 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2044 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2045 bsd_idx--;
2046 } else {
2047 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2048 bsd_idx);
f8ca0c07 2049 return NULL;
de1add36
TU
2050 }
2051
3b3f1650 2052 engine = dev_priv->engine[_VCS(bsd_idx)];
de1add36 2053 } else {
3b3f1650 2054 engine = dev_priv->engine[user_ring_map[user_ring_id]];
de1add36
TU
2055 }
2056
3b3f1650 2057 if (!engine) {
de1add36 2058 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
f8ca0c07 2059 return NULL;
de1add36
TU
2060 }
2061
f8ca0c07 2062 return engine;
de1add36
TU
2063}
2064
cf6e7bac
JE
2065static void
2066__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2067{
2068 while (n--)
2069 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2070 kvfree(fences);
2071}
2072
2073static struct drm_syncobj **
2074get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2075 struct drm_file *file)
2076{
2077 const unsigned int nfences = args->num_cliprects;
2078 struct drm_i915_gem_exec_fence __user *user;
2079 struct drm_syncobj **fences;
2080 unsigned int n;
2081 int err;
2082
2083 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2084 return NULL;
2085
2086 if (nfences > SIZE_MAX / sizeof(*fences))
2087 return ERR_PTR(-EINVAL);
2088
2089 user = u64_to_user_ptr(args->cliprects_ptr);
2090 if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
2091 return ERR_PTR(-EFAULT);
2092
2093 fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
0ee931c4 2094 __GFP_NOWARN | GFP_KERNEL);
cf6e7bac
JE
2095 if (!fences)
2096 return ERR_PTR(-ENOMEM);
2097
2098 for (n = 0; n < nfences; n++) {
2099 struct drm_i915_gem_exec_fence fence;
2100 struct drm_syncobj *syncobj;
2101
2102 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2103 err = -EFAULT;
2104 goto err;
2105 }
2106
ebcaa1ff
TU
2107 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2108 err = -EINVAL;
2109 goto err;
2110 }
2111
cf6e7bac
JE
2112 syncobj = drm_syncobj_find(file, fence.handle);
2113 if (!syncobj) {
2114 DRM_DEBUG("Invalid syncobj handle provided\n");
2115 err = -ENOENT;
2116 goto err;
2117 }
2118
ebcaa1ff
TU
2119 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2120 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2121
cf6e7bac
JE
2122 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2123 }
2124
2125 return fences;
2126
2127err:
2128 __free_fence_array(fences, n);
2129 return ERR_PTR(err);
2130}
2131
2132static void
2133put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2134 struct drm_syncobj **fences)
2135{
2136 if (fences)
2137 __free_fence_array(fences, args->num_cliprects);
2138}
2139
2140static int
2141await_fence_array(struct i915_execbuffer *eb,
2142 struct drm_syncobj **fences)
2143{
2144 const unsigned int nfences = eb->args->num_cliprects;
2145 unsigned int n;
2146 int err;
2147
2148 for (n = 0; n < nfences; n++) {
2149 struct drm_syncobj *syncobj;
2150 struct dma_fence *fence;
2151 unsigned int flags;
2152
2153 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2154 if (!(flags & I915_EXEC_FENCE_WAIT))
2155 continue;
2156
afca4216 2157 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac
JE
2158 if (!fence)
2159 return -EINVAL;
2160
2161 err = i915_gem_request_await_dma_fence(eb->request, fence);
2162 dma_fence_put(fence);
2163 if (err < 0)
2164 return err;
2165 }
2166
2167 return 0;
2168}
2169
2170static void
2171signal_fence_array(struct i915_execbuffer *eb,
2172 struct drm_syncobj **fences)
2173{
2174 const unsigned int nfences = eb->args->num_cliprects;
2175 struct dma_fence * const fence = &eb->request->fence;
2176 unsigned int n;
2177
2178 for (n = 0; n < nfences; n++) {
2179 struct drm_syncobj *syncobj;
2180 unsigned int flags;
2181
2182 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2183 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2184 continue;
2185
2186 drm_syncobj_replace_fence(syncobj, fence);
2187 }
2188}
2189
54cf91dc 2190static int
650bc635 2191i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2192 struct drm_file *file,
2193 struct drm_i915_gem_execbuffer2 *args,
cf6e7bac
JE
2194 struct drm_i915_gem_exec_object2 *exec,
2195 struct drm_syncobj **fences)
54cf91dc 2196{
650bc635 2197 struct i915_execbuffer eb;
fec0445c
CW
2198 struct dma_fence *in_fence = NULL;
2199 struct sync_file *out_fence = NULL;
2200 int out_fence_fd = -1;
2889caa9 2201 int err;
432e58ed 2202
74c1c694 2203 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
2204 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2205 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2206
650bc635
CW
2207 eb.i915 = to_i915(dev);
2208 eb.file = file;
2209 eb.args = args;
7dd4f672 2210 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2211 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 2212
650bc635 2213 eb.exec = exec;
170fa29b
CW
2214 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2215 eb.vma[0] = NULL;
c7c6e46f
CW
2216 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2217
2889caa9
CW
2218 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2219 if (USES_FULL_PPGTT(eb.i915))
2220 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
650bc635
CW
2221 reloc_cache_init(&eb.reloc_cache, eb.i915);
2222
2889caa9 2223 eb.buffer_count = args->buffer_count;
650bc635
CW
2224 eb.batch_start_offset = args->batch_start_offset;
2225 eb.batch_len = args->batch_len;
2226
2889caa9 2227 eb.batch_flags = 0;
d7d4eedd 2228 if (args->flags & I915_EXEC_SECURE) {
b3ac9f25 2229 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
d7d4eedd
CW
2230 return -EPERM;
2231
2889caa9 2232 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2233 }
b45305fc 2234 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2235 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2236
650bc635
CW
2237 eb.engine = eb_select_engine(eb.i915, file, args);
2238 if (!eb.engine)
54cf91dc 2239 return -EINVAL;
54cf91dc 2240
a9ed33ca 2241 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
650bc635 2242 if (!HAS_RESOURCE_STREAMER(eb.i915)) {
a9ed33ca
AJ
2243 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2244 return -EINVAL;
2245 }
650bc635 2246 if (eb.engine->id != RCS) {
a9ed33ca 2247 DRM_DEBUG("RS is not available on %s\n",
650bc635 2248 eb.engine->name);
a9ed33ca
AJ
2249 return -EINVAL;
2250 }
2251
2889caa9 2252 eb.batch_flags |= I915_DISPATCH_RS;
a9ed33ca
AJ
2253 }
2254
fec0445c
CW
2255 if (args->flags & I915_EXEC_FENCE_IN) {
2256 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2257 if (!in_fence)
2258 return -EINVAL;
fec0445c
CW
2259 }
2260
2261 if (args->flags & I915_EXEC_FENCE_OUT) {
2262 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2263 if (out_fence_fd < 0) {
2889caa9 2264 err = out_fence_fd;
4a04e371 2265 goto err_in_fence;
fec0445c
CW
2266 }
2267 }
2268
4d470f73
CW
2269 err = eb_create(&eb);
2270 if (err)
2271 goto err_out_fence;
2272
2273 GEM_BUG_ON(!eb.lut_size);
2889caa9 2274
1acfc104
CW
2275 err = eb_select_context(&eb);
2276 if (unlikely(err))
2277 goto err_destroy;
2278
2889caa9
CW
2279 /*
2280 * Take a local wakeref for preparing to dispatch the execbuf as
67d97da3
CW
2281 * we expect to access the hardware fairly frequently in the
2282 * process. Upon first dispatch, we acquire another prolonged
2283 * wakeref that we hold until the GPU has been idle for at least
2284 * 100ms.
2285 */
650bc635 2286 intel_runtime_pm_get(eb.i915);
1acfc104 2287
2889caa9
CW
2288 err = i915_mutex_lock_interruptible(dev);
2289 if (err)
2290 goto err_rpm;
f65c9168 2291
2889caa9 2292 err = eb_relocate(&eb);
1f727d9e 2293 if (err) {
2889caa9
CW
2294 /*
2295 * If the user expects the execobject.offset and
2296 * reloc.presumed_offset to be an exact match,
2297 * as for using NO_RELOC, then we cannot update
2298 * the execobject.offset until we have completed
2299 * relocation.
2300 */
2301 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2302 goto err_vma;
1f727d9e 2303 }
54cf91dc 2304
c7c6e46f 2305 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
ff240199 2306 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2307 err = -EINVAL;
2308 goto err_vma;
54cf91dc 2309 }
650bc635
CW
2310 if (eb.batch_start_offset > eb.batch->size ||
2311 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
0b537272 2312 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2889caa9
CW
2313 err = -EINVAL;
2314 goto err_vma;
0b537272 2315 }
54cf91dc 2316
3dbf26ed 2317 if (eb_use_cmdparser(&eb)) {
59bfa124
CW
2318 struct i915_vma *vma;
2319
650bc635 2320 vma = eb_parse(&eb, drm_is_current_master(file));
59bfa124 2321 if (IS_ERR(vma)) {
2889caa9
CW
2322 err = PTR_ERR(vma);
2323 goto err_vma;
78a42377 2324 }
17cabf57 2325
59bfa124 2326 if (vma) {
c7c7372e
RP
2327 /*
2328 * Batch parsed and accepted:
2329 *
2330 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2331 * bit from MI_BATCH_BUFFER_START commands issued in
2332 * the dispatch_execbuffer implementations. We
2333 * specifically don't want that set on batches the
2334 * command parser has accepted.
2335 */
2889caa9 2336 eb.batch_flags |= I915_DISPATCH_SECURE;
650bc635
CW
2337 eb.batch_start_offset = 0;
2338 eb.batch = vma;
c7c7372e 2339 }
351e3db2
BV
2340 }
2341
650bc635
CW
2342 if (eb.batch_len == 0)
2343 eb.batch_len = eb.batch->size - eb.batch_start_offset;
78a42377 2344
2889caa9
CW
2345 /*
2346 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2347 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2348 * hsw should have this fixed, but bdw mucks it up again. */
2889caa9 2349 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2350 struct i915_vma *vma;
59bfa124 2351
da51a1e7
DV
2352 /*
2353 * So on first glance it looks freaky that we pin the batch here
2354 * outside of the reservation loop. But:
2355 * - The batch is already pinned into the relevant ppgtt, so we
2356 * already have the backing storage fully allocated.
2357 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2358 * so we don't really have issues with multiple objects not
da51a1e7
DV
2359 * fitting due to fragmentation.
2360 * So this is actually safe.
2361 */
2889caa9 2362 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
058d88c4 2363 if (IS_ERR(vma)) {
2889caa9
CW
2364 err = PTR_ERR(vma);
2365 goto err_vma;
058d88c4 2366 }
d7d4eedd 2367
650bc635 2368 eb.batch = vma;
59bfa124 2369 }
d7d4eedd 2370
7dd4f672
CW
2371 /* All GPU relocation batches must be submitted prior to the user rq */
2372 GEM_BUG_ON(eb.reloc_cache.rq);
2373
0c8dac88 2374 /* Allocate a request for this batch buffer nice and early. */
650bc635
CW
2375 eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
2376 if (IS_ERR(eb.request)) {
2889caa9 2377 err = PTR_ERR(eb.request);
0c8dac88 2378 goto err_batch_unpin;
26827088 2379 }
0c8dac88 2380
fec0445c 2381 if (in_fence) {
2889caa9
CW
2382 err = i915_gem_request_await_dma_fence(eb.request, in_fence);
2383 if (err < 0)
fec0445c
CW
2384 goto err_request;
2385 }
2386
cf6e7bac
JE
2387 if (fences) {
2388 err = await_fence_array(&eb, fences);
2389 if (err)
2390 goto err_request;
2391 }
2392
fec0445c 2393 if (out_fence_fd != -1) {
650bc635 2394 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2395 if (!out_fence) {
2889caa9 2396 err = -ENOMEM;
fec0445c
CW
2397 goto err_request;
2398 }
2399 }
2400
2889caa9
CW
2401 /*
2402 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2403 * active_list, and so will hold the active reference. Only when this
2404 * request is retired will the the batch_obj be moved onto the
2405 * inactive_list and lose its active reference. Hence we do not need
2406 * to explicitly hold another reference here.
2407 */
650bc635 2408 eb.request->batch = eb.batch;
5f19e2bf 2409
2889caa9
CW
2410 trace_i915_gem_request_queue(eb.request, eb.batch_flags);
2411 err = eb_submit(&eb);
aa9b7810 2412err_request:
2889caa9 2413 __i915_add_request(eb.request, err == 0);
650bc635 2414 add_to_client(eb.request, file);
c8659efa 2415
cf6e7bac
JE
2416 if (fences)
2417 signal_fence_array(&eb, fences);
2418
fec0445c 2419 if (out_fence) {
2889caa9 2420 if (err == 0) {
fec0445c
CW
2421 fd_install(out_fence_fd, out_fence->file);
2422 args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
2423 args->rsvd2 |= (u64)out_fence_fd << 32;
2424 out_fence_fd = -1;
2425 } else {
2426 fput(out_fence->file);
2427 }
2428 }
54cf91dc 2429
0c8dac88 2430err_batch_unpin:
2889caa9 2431 if (eb.batch_flags & I915_DISPATCH_SECURE)
650bc635 2432 i915_vma_unpin(eb.batch);
2889caa9
CW
2433err_vma:
2434 if (eb.exec)
2435 eb_release_vmas(&eb);
54cf91dc 2436 mutex_unlock(&dev->struct_mutex);
2889caa9 2437err_rpm:
650bc635 2438 intel_runtime_pm_put(eb.i915);
1acfc104
CW
2439 i915_gem_context_put(eb.ctx);
2440err_destroy:
2889caa9 2441 eb_destroy(&eb);
4d470f73 2442err_out_fence:
fec0445c
CW
2443 if (out_fence_fd != -1)
2444 put_unused_fd(out_fence_fd);
4a04e371 2445err_in_fence:
fec0445c 2446 dma_fence_put(in_fence);
2889caa9 2447 return err;
54cf91dc
CW
2448}
2449
2450/*
2451 * Legacy execbuffer just creates an exec2 list from the original exec object
2452 * list array and passes it to the real function.
2453 */
2454int
2455i915_gem_execbuffer(struct drm_device *dev, void *data,
2456 struct drm_file *file)
2457{
c7c6e46f
CW
2458 const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
2459 sizeof(struct i915_vma *) +
2460 sizeof(unsigned int));
54cf91dc
CW
2461 struct drm_i915_gem_execbuffer *args = data;
2462 struct drm_i915_gem_execbuffer2 exec2;
2463 struct drm_i915_gem_exec_object *exec_list = NULL;
2464 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2889caa9
CW
2465 unsigned int i;
2466 int err;
54cf91dc 2467
2889caa9
CW
2468 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2469 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
54cf91dc
CW
2470 return -EINVAL;
2471 }
2472
2889caa9
CW
2473 exec2.buffers_ptr = args->buffers_ptr;
2474 exec2.buffer_count = args->buffer_count;
2475 exec2.batch_start_offset = args->batch_start_offset;
2476 exec2.batch_len = args->batch_len;
2477 exec2.DR1 = args->DR1;
2478 exec2.DR4 = args->DR4;
2479 exec2.num_cliprects = args->num_cliprects;
2480 exec2.cliprects_ptr = args->cliprects_ptr;
2481 exec2.flags = I915_EXEC_RENDER;
2482 i915_execbuffer2_set_context_id(exec2, 0);
2483
2484 if (!i915_gem_check_execbuffer(&exec2))
2485 return -EINVAL;
2486
54cf91dc 2487 /* Copy in the exec list from userland */
2889caa9 2488 exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
0ee931c4 2489 __GFP_NOWARN | GFP_KERNEL);
2889caa9 2490 exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
0ee931c4 2491 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2492 if (exec_list == NULL || exec2_list == NULL) {
ff240199 2493 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc 2494 args->buffer_count);
2098105e
MH
2495 kvfree(exec_list);
2496 kvfree(exec2_list);
54cf91dc
CW
2497 return -ENOMEM;
2498 }
2889caa9 2499 err = copy_from_user(exec_list,
3ed605bc 2500 u64_to_user_ptr(args->buffers_ptr),
54cf91dc 2501 sizeof(*exec_list) * args->buffer_count);
2889caa9 2502 if (err) {
ff240199 2503 DRM_DEBUG("copy %d exec entries failed %d\n",
2889caa9 2504 args->buffer_count, err);
2098105e
MH
2505 kvfree(exec_list);
2506 kvfree(exec2_list);
54cf91dc
CW
2507 return -EFAULT;
2508 }
2509
2510 for (i = 0; i < args->buffer_count; i++) {
2511 exec2_list[i].handle = exec_list[i].handle;
2512 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2513 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2514 exec2_list[i].alignment = exec_list[i].alignment;
2515 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2516 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2517 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2518 else
2519 exec2_list[i].flags = 0;
2520 }
2521
cf6e7bac 2522 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2889caa9 2523 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2524 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2525 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2526
54cf91dc 2527 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2528 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2529 if (!(exec2_list[i].offset & UPDATE))
2530 continue;
2531
934acce3 2532 exec2_list[i].offset =
2889caa9
CW
2533 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2534 exec2_list[i].offset &= PIN_OFFSET_MASK;
2535 if (__copy_to_user(&user_exec_list[i].offset,
2536 &exec2_list[i].offset,
2537 sizeof(user_exec_list[i].offset)))
9aab8bff 2538 break;
54cf91dc
CW
2539 }
2540 }
2541
2098105e
MH
2542 kvfree(exec_list);
2543 kvfree(exec2_list);
2889caa9 2544 return err;
54cf91dc
CW
2545}
2546
2547int
2548i915_gem_execbuffer2(struct drm_device *dev, void *data,
2549 struct drm_file *file)
2550{
c7c6e46f
CW
2551 const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
2552 sizeof(struct i915_vma *) +
2553 sizeof(unsigned int));
54cf91dc 2554 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 2555 struct drm_i915_gem_exec_object2 *exec2_list;
cf6e7bac 2556 struct drm_syncobj **fences = NULL;
2889caa9 2557 int err;
54cf91dc 2558
2889caa9 2559 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
ff240199 2560 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
54cf91dc
CW
2561 return -EINVAL;
2562 }
2563
2889caa9
CW
2564 if (!i915_gem_check_execbuffer(args))
2565 return -EINVAL;
2566
2567 /* Allocate an extra slot for use by the command parser */
2568 exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
0ee931c4 2569 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2570 if (exec2_list == NULL) {
ff240199 2571 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc
CW
2572 args->buffer_count);
2573 return -ENOMEM;
2574 }
2889caa9
CW
2575 if (copy_from_user(exec2_list,
2576 u64_to_user_ptr(args->buffers_ptr),
2577 sizeof(*exec2_list) * args->buffer_count)) {
2578 DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
2098105e 2579 kvfree(exec2_list);
54cf91dc
CW
2580 return -EFAULT;
2581 }
2582
cf6e7bac
JE
2583 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2584 fences = get_fence_array(args, file);
2585 if (IS_ERR(fences)) {
2586 kvfree(exec2_list);
2587 return PTR_ERR(fences);
2588 }
2589 }
2590
2591 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2889caa9
CW
2592
2593 /*
2594 * Now that we have begun execution of the batchbuffer, we ignore
2595 * any new error after this point. Also given that we have already
2596 * updated the associated relocations, we try to write out the current
2597 * object locations irrespective of any error.
2598 */
2599 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2600 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2601 u64_to_user_ptr(args->buffers_ptr);
2602 unsigned int i;
9aab8bff 2603
2889caa9
CW
2604 /* Copy the new buffer offsets back to the user's exec list. */
2605 user_access_begin();
9aab8bff 2606 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2607 if (!(exec2_list[i].offset & UPDATE))
2608 continue;
2609
934acce3 2610 exec2_list[i].offset =
2889caa9
CW
2611 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2612 unsafe_put_user(exec2_list[i].offset,
2613 &user_exec_list[i].offset,
2614 end_user);
54cf91dc 2615 }
2889caa9
CW
2616end_user:
2617 user_access_end();
54cf91dc
CW
2618 }
2619
2889caa9 2620 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
cf6e7bac 2621 put_fence_array(args, fences);
2098105e 2622 kvfree(exec2_list);
2889caa9 2623 return err;
54cf91dc 2624}