drm/i915: Only skip updating execobject.offset after error
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
CommitLineData
54cf91dc
CW
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
ad778f89
CW
29#include <linux/dma_remapping.h>
30#include <linux/reservation.h>
fec0445c 31#include <linux/sync_file.h>
ad778f89
CW
32#include <linux/uaccess.h>
33
760285e7
DH
34#include <drm/drmP.h>
35#include <drm/i915_drm.h>
ad778f89 36
54cf91dc 37#include "i915_drv.h"
57822dc6 38#include "i915_gem_clflush.h"
54cf91dc
CW
39#include "i915_trace.h"
40#include "intel_drv.h"
5d723d7a 41#include "intel_frontbuffer.h"
54cf91dc 42
7dd4f672
CW
43enum {
44 FORCE_CPU_RELOC = 1,
45 FORCE_GTT_RELOC,
46 FORCE_GPU_RELOC,
47#define DBG_FORCE_RELOC 0 /* choose one of the above! */
48};
d50415cc 49
dade2a61
CW
50#define __EXEC_OBJECT_HAS_REF BIT(31)
51#define __EXEC_OBJECT_HAS_PIN BIT(30)
52#define __EXEC_OBJECT_HAS_FENCE BIT(29)
53#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
54#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
55#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
2889caa9
CW
56#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57
58#define __EXEC_HAS_RELOC BIT(31)
59#define __EXEC_VALIDATED BIT(30)
60#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
61
62#define BATCH_OFFSET_BIAS (256*1024)
a415d355 63
650bc635
CW
64#define __I915_EXEC_ILLEGAL_FLAGS \
65 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
5b043f4e 66
2889caa9
CW
67/**
68 * DOC: User command execution
69 *
70 * Userspace submits commands to be executed on the GPU as an instruction
71 * stream within a GEM object we call a batchbuffer. This instructions may
72 * refer to other GEM objects containing auxiliary state such as kernels,
73 * samplers, render targets and even secondary batchbuffers. Userspace does
74 * not know where in the GPU memory these objects reside and so before the
75 * batchbuffer is passed to the GPU for execution, those addresses in the
76 * batchbuffer and auxiliary objects are updated. This is known as relocation,
77 * or patching. To try and avoid having to relocate each object on the next
78 * execution, userspace is told the location of those objects in this pass,
79 * but this remains just a hint as the kernel may choose a new location for
80 * any object in the future.
81 *
82 * Processing an execbuf ioctl is conceptually split up into a few phases.
83 *
84 * 1. Validation - Ensure all the pointers, handles and flags are valid.
85 * 2. Reservation - Assign GPU address space for every object
86 * 3. Relocation - Update any addresses to point to the final locations
87 * 4. Serialisation - Order the request with respect to its dependencies
88 * 5. Construction - Construct a request to execute the batchbuffer
89 * 6. Submission (at some point in the future execution)
90 *
91 * Reserving resources for the execbuf is the most complicated phase. We
92 * neither want to have to migrate the object in the address space, nor do
93 * we want to have to update any relocations pointing to this object. Ideally,
94 * we want to leave the object where it is and for all the existing relocations
95 * to match. If the object is given a new address, or if userspace thinks the
96 * object is elsewhere, we have to parse all the relocation entries and update
97 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
98 * all the target addresses in all of its objects match the value in the
99 * relocation entries and that they all match the presumed offsets given by the
100 * list of execbuffer objects. Using this knowledge, we know that if we haven't
101 * moved any buffers, all the relocation entries are valid and we can skip
102 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
103 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
104 *
105 * The addresses written in the objects must match the corresponding
106 * reloc.presumed_offset which in turn must match the corresponding
107 * execobject.offset.
108 *
109 * Any render targets written to in the batch must be flagged with
110 * EXEC_OBJECT_WRITE.
111 *
112 * To avoid stalling, execobject.offset should match the current
113 * address of that object within the active context.
114 *
115 * The reservation is done is multiple phases. First we try and keep any
116 * object already bound in its current location - so as long as meets the
117 * constraints imposed by the new execbuffer. Any object left unbound after the
118 * first pass is then fitted into any available idle space. If an object does
119 * not fit, all objects are removed from the reservation and the process rerun
120 * after sorting the objects into a priority order (more difficult to fit
121 * objects are tried first). Failing that, the entire VM is cleared and we try
122 * to fit the execbuf once last time before concluding that it simply will not
123 * fit.
124 *
125 * A small complication to all of this is that we allow userspace not only to
126 * specify an alignment and a size for the object in the address space, but
127 * we also allow userspace to specify the exact offset. This objects are
128 * simpler to place (the location is known a priori) all we have to do is make
129 * sure the space is available.
130 *
131 * Once all the objects are in place, patching up the buried pointers to point
132 * to the final locations is a fairly simple job of walking over the relocation
133 * entry arrays, looking up the right address and rewriting the value into
134 * the object. Simple! ... The relocation entries are stored in user memory
135 * and so to access them we have to copy them into a local buffer. That copy
136 * has to avoid taking any pagefaults as they may lead back to a GEM object
137 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
138 * the relocation into multiple passes. First we try to do everything within an
139 * atomic context (avoid the pagefaults) which requires that we never wait. If
140 * we detect that we may wait, or if we need to fault, then we have to fallback
141 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
142 * bells yet?) Dropping the mutex means that we lose all the state we have
143 * built up so far for the execbuf and we must reset any global data. However,
144 * we do leave the objects pinned in their final locations - which is a
145 * potential issue for concurrent execbufs. Once we have left the mutex, we can
146 * allocate and copy all the relocation entries into a large array at our
147 * leisure, reacquire the mutex, reclaim all the objects and other state and
148 * then proceed to update any incorrect addresses with the objects.
149 *
150 * As we process the relocation entries, we maintain a record of whether the
151 * object is being written to. Using NORELOC, we expect userspace to provide
152 * this information instead. We also check whether we can skip the relocation
153 * by comparing the expected value inside the relocation entry with the target's
154 * final address. If they differ, we have to map the current object and rewrite
155 * the 4 or 8 byte pointer within.
156 *
157 * Serialising an execbuf is quite simple according to the rules of the GEM
158 * ABI. Execution within each context is ordered by the order of submission.
159 * Writes to any GEM object are in order of submission and are exclusive. Reads
160 * from a GEM object are unordered with respect to other reads, but ordered by
161 * writes. A write submitted after a read cannot occur before the read, and
162 * similarly any read submitted after a write cannot occur before the write.
163 * Writes are ordered between engines such that only one write occurs at any
164 * time (completing any reads beforehand) - using semaphores where available
165 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
166 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
167 * reads before starting, and any read (either using set-domain or pread) must
168 * flush all GPU writes before starting. (Note we only employ a barrier before,
169 * we currently rely on userspace not concurrently starting a new execution
170 * whilst reading or writing to an object. This may be an advantage or not
171 * depending on how much you trust userspace not to shoot themselves in the
172 * foot.) Serialisation may just result in the request being inserted into
173 * a DAG awaiting its turn, but most simple is to wait on the CPU until
174 * all dependencies are resolved.
175 *
176 * After all of that, is just a matter of closing the request and handing it to
177 * the hardware (well, leaving it in a queue to be executed). However, we also
178 * offer the ability for batchbuffers to be run with elevated privileges so
179 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
180 * Before any batch is given extra privileges we first must check that it
181 * contains no nefarious instructions, we check that each instruction is from
182 * our whitelist and all registers are also from an allowed list. We first
183 * copy the user's batchbuffer to a shadow (so that the user doesn't have
184 * access to it, either by the CPU or GPU as we scan it) and then parse each
185 * instruction. If everything is ok, we set a flag telling the hardware to run
186 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
187 */
188
650bc635 189struct i915_execbuffer {
2889caa9
CW
190 struct drm_i915_private *i915; /** i915 backpointer */
191 struct drm_file *file; /** per-file lookup tables and limits */
192 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
193 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
194
195 struct intel_engine_cs *engine; /** engine to queue the request to */
196 struct i915_gem_context *ctx; /** context for building the request */
197 struct i915_address_space *vm; /** GTT and vma for the request */
198
199 struct drm_i915_gem_request *request; /** our request to build */
200 struct i915_vma *batch; /** identity of the batch obj/vma */
201
202 /** actual size of execobj[] as we may extend it for the cmdparser */
203 unsigned int buffer_count;
204
205 /** list of vma not yet bound during reservation phase */
206 struct list_head unbound;
207
208 /** list of vma that have execobj.relocation_count */
209 struct list_head relocs;
210
211 /**
212 * Track the most recently used object for relocations, as we
213 * frequently have to perform multiple relocations within the same
214 * obj/page
215 */
650bc635 216 struct reloc_cache {
2889caa9
CW
217 struct drm_mm_node node; /** temporary GTT binding */
218 unsigned long vaddr; /** Current kmap address */
219 unsigned long page; /** Currently mapped page index */
7dd4f672 220 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 221 bool use_64bit_reloc : 1;
2889caa9
CW
222 bool has_llc : 1;
223 bool has_fence : 1;
224 bool needs_unfenced : 1;
7dd4f672
CW
225
226 struct drm_i915_gem_request *rq;
227 u32 *rq_cmd;
228 unsigned int rq_size;
650bc635 229 } reloc_cache;
2889caa9
CW
230
231 u64 invalid_flags; /** Set of execobj.flags that are invalid */
232 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
233
234 u32 batch_start_offset; /** Location within object of batch */
235 u32 batch_len; /** Length of batch within object */
236 u32 batch_flags; /** Flags composed for emit_bb_start() */
237
238 /**
239 * Indicate either the size of the hastable used to resolve
240 * relocation handles, or if negative that we are using a direct
241 * index into the execobj[].
242 */
243 int lut_size;
244 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
245};
246
4ff4b44c
CW
247/*
248 * As an alternative to creating a hashtable of handle-to-vma for a batch,
249 * we used the last available reserved field in the execobject[] and stash
250 * a link from the execobj to its vma.
251 */
252#define __exec_to_vma(ee) (ee)->rsvd2
253#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))
254
2889caa9
CW
255/*
256 * Used to convert any address to canonical form.
257 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
258 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
259 * addresses to be in a canonical form:
260 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
261 * canonical form [63:48] == [47]."
262 */
263#define GEN8_HIGH_ADDRESS_BIT 47
264static inline u64 gen8_canonical_addr(u64 address)
265{
266 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
267}
268
269static inline u64 gen8_noncanonical_addr(u64 address)
270{
271 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
272}
273
650bc635 274static int eb_create(struct i915_execbuffer *eb)
67731b87 275{
2889caa9
CW
276 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
277 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 278
2889caa9
CW
279 /*
280 * Without a 1:1 association between relocation handles and
281 * the execobject[] index, we instead create a hashtable.
282 * We size it dynamically based on available memory, starting
283 * first with 1:1 assocative hash and scaling back until
284 * the allocation succeeds.
285 *
286 * Later on we use a positive lut_size to indicate we are
287 * using this hashtable, and a negative value to indicate a
288 * direct lookup.
289 */
4ff4b44c 290 do {
4d470f73
CW
291 unsigned int flags;
292
293 /* While we can still reduce the allocation size, don't
294 * raise a warning and allow the allocation to fail.
295 * On the last pass though, we want to try as hard
296 * as possible to perform the allocation and warn
297 * if it fails.
298 */
299 flags = GFP_TEMPORARY;
300 if (size > 1)
301 flags |= __GFP_NORETRY | __GFP_NOWARN;
302
4ff4b44c 303 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 304 flags);
4ff4b44c
CW
305 if (eb->buckets)
306 break;
307 } while (--size);
308
4d470f73
CW
309 if (unlikely(!size))
310 return -ENOMEM;
eef90ccb 311
2889caa9 312 eb->lut_size = size;
650bc635 313 } else {
2889caa9 314 eb->lut_size = -eb->buffer_count;
650bc635 315 }
eef90ccb 316
650bc635 317 return 0;
67731b87
CW
318}
319
2889caa9
CW
320static bool
321eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
322 const struct i915_vma *vma)
323{
324 if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
325 return true;
326
327 if (vma->node.size < entry->pad_to_size)
328 return true;
329
330 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
331 return true;
332
333 if (entry->flags & EXEC_OBJECT_PINNED &&
334 vma->node.start != entry->offset)
335 return true;
336
337 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
338 vma->node.start < BATCH_OFFSET_BIAS)
339 return true;
340
341 if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
342 (vma->node.start + vma->node.size - 1) >> 32)
343 return true;
344
345 return false;
346}
347
348static inline void
349eb_pin_vma(struct i915_execbuffer *eb,
350 struct drm_i915_gem_exec_object2 *entry,
351 struct i915_vma *vma)
352{
353 u64 flags;
354
616d9cee
CW
355 if (vma->node.size)
356 flags = vma->node.start;
357 else
358 flags = entry->offset & PIN_OFFSET_MASK;
359
360 flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
2889caa9
CW
361 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
362 flags |= PIN_GLOBAL;
616d9cee 363
2889caa9
CW
364 if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
365 return;
366
367 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
368 if (unlikely(i915_vma_get_fence(vma))) {
369 i915_vma_unpin(vma);
370 return;
371 }
372
373 if (i915_vma_pin_fence(vma))
374 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
375 }
376
377 entry->flags |= __EXEC_OBJECT_HAS_PIN;
378}
379
d55495b4
CW
380static inline void
381__eb_unreserve_vma(struct i915_vma *vma,
382 const struct drm_i915_gem_exec_object2 *entry)
383{
2889caa9
CW
384 GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));
385
d55495b4
CW
386 if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
387 i915_vma_unpin_fence(vma);
388
2889caa9 389 __i915_vma_unpin(vma);
d55495b4
CW
390}
391
2889caa9
CW
392static inline void
393eb_unreserve_vma(struct i915_vma *vma,
394 struct drm_i915_gem_exec_object2 *entry)
d55495b4 395{
2889caa9
CW
396 if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
397 return;
d55495b4
CW
398
399 __eb_unreserve_vma(vma, entry);
2889caa9 400 entry->flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
401}
402
2889caa9
CW
403static int
404eb_validate_vma(struct i915_execbuffer *eb,
405 struct drm_i915_gem_exec_object2 *entry,
406 struct i915_vma *vma)
67731b87 407{
2889caa9
CW
408 if (unlikely(entry->flags & eb->invalid_flags))
409 return -EINVAL;
d55495b4 410
2889caa9
CW
411 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
412 return -EINVAL;
413
414 /*
415 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
416 * any non-page-aligned or non-canonical addresses.
417 */
418 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
419 entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
420 return -EINVAL;
421
422 /* pad_to_size was once a reserved field, so sanitize it */
423 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
424 if (unlikely(offset_in_page(entry->pad_to_size)))
425 return -EINVAL;
426 } else {
427 entry->pad_to_size = 0;
d55495b4
CW
428 }
429
2889caa9
CW
430 if (unlikely(vma->exec_entry)) {
431 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
432 entry->handle, (int)(entry - eb->exec));
433 return -EINVAL;
434 }
435
436 /*
437 * From drm_mm perspective address space is continuous,
438 * so from this point we're always using non-canonical
439 * form internally.
440 */
441 entry->offset = gen8_noncanonical_addr(entry->offset);
442
443 return 0;
67731b87
CW
444}
445
2889caa9
CW
446static int
447eb_add_vma(struct i915_execbuffer *eb,
448 struct drm_i915_gem_exec_object2 *entry,
449 struct i915_vma *vma)
59bfa124 450{
2889caa9
CW
451 int err;
452
453 GEM_BUG_ON(i915_vma_is_closed(vma));
454
455 if (!(eb->args->flags & __EXEC_VALIDATED)) {
456 err = eb_validate_vma(eb, entry, vma);
457 if (unlikely(err))
458 return err;
4ff4b44c 459 }
4ff4b44c 460
4d470f73 461 if (eb->lut_size > 0) {
2889caa9 462 vma->exec_handle = entry->handle;
4ff4b44c 463 hlist_add_head(&vma->exec_node,
2889caa9
CW
464 &eb->buckets[hash_32(entry->handle,
465 eb->lut_size)]);
4ff4b44c 466 }
59bfa124 467
2889caa9
CW
468 if (entry->relocation_count)
469 list_add_tail(&vma->reloc_link, &eb->relocs);
470
471 if (!eb->reloc_cache.has_fence) {
472 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
473 } else {
474 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
475 eb->reloc_cache.needs_unfenced) &&
476 i915_gem_object_is_tiled(vma->obj))
477 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
478 }
479
480 if (!(entry->flags & EXEC_OBJECT_PINNED))
481 entry->flags |= eb->context_flags;
482
483 /*
484 * Stash a pointer from the vma to execobj, so we can query its flags,
485 * size, alignment etc as provided by the user. Also we stash a pointer
486 * to the vma inside the execobj so that we can use a direct lookup
487 * to find the right target VMA when doing relocations.
488 */
489 vma->exec_entry = entry;
dade2a61 490 __exec_to_vma(entry) = (uintptr_t)vma;
2889caa9
CW
491
492 err = 0;
616d9cee 493 eb_pin_vma(eb, entry, vma);
2889caa9
CW
494 if (eb_vma_misplaced(entry, vma)) {
495 eb_unreserve_vma(vma, entry);
496
497 list_add_tail(&vma->exec_link, &eb->unbound);
498 if (drm_mm_node_allocated(&vma->node))
499 err = i915_vma_unbind(vma);
500 } else {
501 if (entry->offset != vma->node.start) {
502 entry->offset = vma->node.start | UPDATE;
503 eb->args->flags |= __EXEC_HAS_RELOC;
504 }
505 }
506 return err;
507}
508
509static inline int use_cpu_reloc(const struct reloc_cache *cache,
510 const struct drm_i915_gem_object *obj)
511{
512 if (!i915_gem_object_has_struct_page(obj))
513 return false;
514
7dd4f672
CW
515 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
516 return true;
517
518 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
519 return false;
2889caa9
CW
520
521 return (cache->has_llc ||
522 obj->cache_dirty ||
523 obj->cache_level != I915_CACHE_NONE);
524}
525
526static int eb_reserve_vma(const struct i915_execbuffer *eb,
527 struct i915_vma *vma)
528{
529 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
530 u64 flags;
531 int err;
532
533 flags = PIN_USER | PIN_NONBLOCK;
534 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
535 flags |= PIN_GLOBAL;
536
537 /*
538 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
539 * limit address to the first 4GBs for unflagged objects.
540 */
541 if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
542 flags |= PIN_ZONE_4G;
543
544 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
545 flags |= PIN_MAPPABLE;
546
547 if (entry->flags & EXEC_OBJECT_PINNED) {
548 flags |= entry->offset | PIN_OFFSET_FIXED;
549 flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
550 } else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
551 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
552 }
553
554 err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
555 if (err)
556 return err;
557
558 if (entry->offset != vma->node.start) {
559 entry->offset = vma->node.start | UPDATE;
560 eb->args->flags |= __EXEC_HAS_RELOC;
561 }
562
2889caa9
CW
563 if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
564 err = i915_vma_get_fence(vma);
565 if (unlikely(err)) {
566 i915_vma_unpin(vma);
567 return err;
568 }
569
570 if (i915_vma_pin_fence(vma))
571 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
572 }
573
1da7b54c
CW
574 entry->flags |= __EXEC_OBJECT_HAS_PIN;
575 GEM_BUG_ON(eb_vma_misplaced(entry, vma));
576
2889caa9
CW
577 return 0;
578}
579
580static int eb_reserve(struct i915_execbuffer *eb)
581{
582 const unsigned int count = eb->buffer_count;
583 struct list_head last;
584 struct i915_vma *vma;
585 unsigned int i, pass;
586 int err;
587
588 /*
589 * Attempt to pin all of the buffers into the GTT.
590 * This is done in 3 phases:
591 *
592 * 1a. Unbind all objects that do not match the GTT constraints for
593 * the execbuffer (fenceable, mappable, alignment etc).
594 * 1b. Increment pin count for already bound objects.
595 * 2. Bind new objects.
596 * 3. Decrement pin count.
597 *
598 * This avoid unnecessary unbinding of later objects in order to make
599 * room for the earlier objects *unless* we need to defragment.
600 */
601
602 pass = 0;
603 err = 0;
604 do {
605 list_for_each_entry(vma, &eb->unbound, exec_link) {
606 err = eb_reserve_vma(eb, vma);
607 if (err)
608 break;
609 }
610 if (err != -ENOSPC)
611 return err;
612
613 /* Resort *all* the objects into priority order */
614 INIT_LIST_HEAD(&eb->unbound);
615 INIT_LIST_HEAD(&last);
616 for (i = 0; i < count; i++) {
617 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
618
619 if (entry->flags & EXEC_OBJECT_PINNED &&
620 entry->flags & __EXEC_OBJECT_HAS_PIN)
621 continue;
622
623 vma = exec_to_vma(entry);
624 eb_unreserve_vma(vma, entry);
625
626 if (entry->flags & EXEC_OBJECT_PINNED)
627 list_add(&vma->exec_link, &eb->unbound);
628 else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
629 list_add_tail(&vma->exec_link, &eb->unbound);
630 else
631 list_add_tail(&vma->exec_link, &last);
632 }
633 list_splice_tail(&last, &eb->unbound);
634
635 switch (pass++) {
636 case 0:
637 break;
638
639 case 1:
640 /* Too fragmented, unbind everything and retry */
641 err = i915_gem_evict_vm(eb->vm);
642 if (err)
643 return err;
644 break;
645
646 default:
647 return -ENOSPC;
648 }
649 } while (1);
4ff4b44c 650}
59bfa124 651
4ff4b44c 652static inline struct hlist_head *
2889caa9 653ht_head(const struct i915_gem_context_vma_lut *lut, u32 handle)
4ff4b44c 654{
2889caa9 655 return &lut->ht[hash_32(handle, lut->ht_bits)];
4ff4b44c
CW
656}
657
658static inline bool
2889caa9 659ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
4ff4b44c 660{
2889caa9
CW
661 return (4*lut->ht_count > 3*lut->ht_size ||
662 4*lut->ht_count + 1 < lut->ht_size);
59bfa124
CW
663}
664
2889caa9
CW
665static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
666{
1a71cf2f
CW
667 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
668 return 0;
669 else
670 return eb->buffer_count - 1;
2889caa9
CW
671}
672
673static int eb_select_context(struct i915_execbuffer *eb)
674{
675 struct i915_gem_context *ctx;
676
677 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
678 if (unlikely(!ctx))
679 return -ENOENT;
2889caa9
CW
680
681 if (unlikely(i915_gem_context_is_banned(ctx))) {
682 DRM_DEBUG("Context %u tried to submit while banned\n",
683 ctx->user_handle);
1acfc104 684 i915_gem_context_put(ctx);
2889caa9
CW
685 return -EIO;
686 }
687
1acfc104 688 eb->ctx = ctx;
2889caa9
CW
689 eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;
690
691 eb->context_flags = 0;
692 if (ctx->flags & CONTEXT_NO_ZEROMAP)
693 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
694
695 return 0;
696}
697
698static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 699{
4ff4b44c 700#define INTERMEDIATE BIT(0)
2889caa9
CW
701 const unsigned int count = eb->buffer_count;
702 struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
4ff4b44c 703 struct i915_vma *vma;
2889caa9
CW
704 struct idr *idr;
705 unsigned int i;
4ff4b44c 706 int slow_pass = -1;
2889caa9 707 int err;
3b96eff4 708
2889caa9
CW
709 INIT_LIST_HEAD(&eb->relocs);
710 INIT_LIST_HEAD(&eb->unbound);
d55495b4 711
2889caa9
CW
712 if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
713 flush_work(&lut->resize);
714 GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
4ff4b44c
CW
715
716 for (i = 0; i < count; i++) {
717 __exec_to_vma(&eb->exec[i]) = 0;
718
719 hlist_for_each_entry(vma,
2889caa9 720 ht_head(lut, eb->exec[i].handle),
4ff4b44c
CW
721 ctx_node) {
722 if (vma->ctx_handle != eb->exec[i].handle)
723 continue;
724
2889caa9
CW
725 err = eb_add_vma(eb, &eb->exec[i], vma);
726 if (unlikely(err))
727 return err;
4ff4b44c
CW
728
729 goto next_vma;
730 }
731
732 if (slow_pass < 0)
733 slow_pass = i;
734next_vma: ;
735 }
736
737 if (slow_pass < 0)
2889caa9 738 goto out;
4ff4b44c 739
650bc635 740 spin_lock(&eb->file->table_lock);
2889caa9
CW
741 /*
742 * Grab a reference to the object and release the lock so we can lookup
743 * or create the VMA without using GFP_ATOMIC
744 */
745 idr = &eb->file->object_idr;
4ff4b44c
CW
746 for (i = slow_pass; i < count; i++) {
747 struct drm_i915_gem_object *obj;
3b96eff4 748
4ff4b44c
CW
749 if (__exec_to_vma(&eb->exec[i]))
750 continue;
751
2889caa9 752 obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
4ff4b44c 753 if (unlikely(!obj)) {
650bc635 754 spin_unlock(&eb->file->table_lock);
4ff4b44c
CW
755 DRM_DEBUG("Invalid object handle %d at index %d\n",
756 eb->exec[i].handle, i);
2889caa9
CW
757 err = -ENOENT;
758 goto err;
3b96eff4
CW
759 }
760
4ff4b44c 761 __exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
27173f1f 762 }
650bc635 763 spin_unlock(&eb->file->table_lock);
3b96eff4 764
4ff4b44c
CW
765 for (i = slow_pass; i < count; i++) {
766 struct drm_i915_gem_object *obj;
6f65e29a 767
2889caa9 768 if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
4ff4b44c 769 continue;
9ae9ab52 770
e656a6cb
DV
771 /*
772 * NOTE: We can leak any vmas created here when something fails
773 * later on. But that's no issue since vma_unbind can deal with
774 * vmas which are not actually bound. And since only
775 * lookup_or_create exists as an interface to get at the vma
776 * from the (obj, vm) we don't run the risk of creating
777 * duplicated vmas for the same vm.
778 */
2889caa9 779 obj = u64_to_ptr(typeof(*obj),
4ff4b44c 780 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
650bc635 781 vma = i915_vma_instance(obj, eb->vm, NULL);
058d88c4 782 if (unlikely(IS_ERR(vma))) {
27173f1f 783 DRM_DEBUG("Failed to lookup VMA\n");
2889caa9
CW
784 err = PTR_ERR(vma);
785 goto err;
27173f1f
BW
786 }
787
4ff4b44c
CW
788 /* First come, first served */
789 if (!vma->ctx) {
790 vma->ctx = eb->ctx;
791 vma->ctx_handle = eb->exec[i].handle;
792 hlist_add_head(&vma->ctx_node,
2889caa9
CW
793 ht_head(lut, eb->exec[i].handle));
794 lut->ht_count++;
795 lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
4ff4b44c
CW
796 if (i915_vma_is_ggtt(vma)) {
797 GEM_BUG_ON(obj->vma_hashed);
798 obj->vma_hashed = vma;
799 }
dade2a61
CW
800
801 i915_vma_get(vma);
eef90ccb 802 }
4ff4b44c 803
2889caa9
CW
804 err = eb_add_vma(eb, &eb->exec[i], vma);
805 if (unlikely(err))
806 goto err;
dade2a61
CW
807
808 /* Only after we validated the user didn't use our bits */
809 if (vma->ctx != eb->ctx) {
810 i915_vma_get(vma);
811 eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
812 }
4ff4b44c
CW
813 }
814
2889caa9
CW
815 if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
816 if (ht_needs_resize(lut))
817 queue_work(system_highpri_wq, &lut->resize);
818 else
819 lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
3b96eff4 820 }
3b96eff4 821
2889caa9
CW
822out:
823 /* take note of the batch buffer before we might reorder the lists */
824 i = eb_batch_index(eb);
825 eb->batch = exec_to_vma(&eb->exec[i]);
27173f1f 826
9ae9ab52 827 /*
4ff4b44c
CW
828 * SNA is doing fancy tricks with compressing batch buffers, which leads
829 * to negative relocation deltas. Usually that works out ok since the
830 * relocate address is still positive, except when the batch is placed
831 * very low in the GTT. Ensure this doesn't happen.
832 *
833 * Note that actual hangs have only been observed on gen7, but for
834 * paranoia do it everywhere.
9ae9ab52 835 */
2889caa9
CW
836 if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
837 eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
838 if (eb->reloc_cache.has_fence)
839 eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
9ae9ab52 840
2889caa9
CW
841 eb->args->flags |= __EXEC_VALIDATED;
842 return eb_reserve(eb);
843
844err:
845 for (i = slow_pass; i < count; i++) {
846 if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
847 __exec_to_vma(&eb->exec[i]) = 0;
848 }
849 lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
850 return err;
851#undef INTERMEDIATE
3b96eff4
CW
852}
853
4ff4b44c 854static struct i915_vma *
2889caa9 855eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 856{
2889caa9
CW
857 if (eb->lut_size < 0) {
858 if (handle >= -eb->lut_size)
eef90ccb 859 return NULL;
4ff4b44c 860 return exec_to_vma(&eb->exec[handle]);
eef90ccb
CW
861 } else {
862 struct hlist_head *head;
aa45950b 863 struct i915_vma *vma;
67731b87 864
2889caa9 865 head = &eb->buckets[hash_32(handle, eb->lut_size)];
aa45950b 866 hlist_for_each_entry(vma, head, exec_node) {
27173f1f
BW
867 if (vma->exec_handle == handle)
868 return vma;
eef90ccb
CW
869 }
870 return NULL;
871 }
67731b87
CW
872}
873
2889caa9 874static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 875{
2889caa9
CW
876 const unsigned int count = eb->buffer_count;
877 unsigned int i;
878
879 for (i = 0; i < count; i++) {
880 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
881 struct i915_vma *vma = exec_to_vma(entry);
650bc635 882
2889caa9 883 if (!vma)
d55495b4 884 continue;
bcffc3fa 885
2889caa9 886 GEM_BUG_ON(vma->exec_entry != entry);
172ae5b4 887 vma->exec_entry = NULL;
51d05e1b 888 __exec_to_vma(entry) = 0;
9e53d9be 889
dade2a61
CW
890 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
891 __eb_unreserve_vma(vma, entry);
892
893 if (entry->flags & __EXEC_OBJECT_HAS_REF)
894 i915_vma_put(vma);
d50415cc 895
dade2a61
CW
896 entry->flags &=
897 ~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
2889caa9 898 }
dabdfe02
CW
899}
900
2889caa9 901static void eb_reset_vmas(const struct i915_execbuffer *eb)
934acce3 902{
2889caa9 903 eb_release_vmas(eb);
4d470f73 904 if (eb->lut_size > 0)
2889caa9
CW
905 memset(eb->buckets, 0,
906 sizeof(struct hlist_head) << eb->lut_size);
934acce3
MW
907}
908
2889caa9 909static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 910{
7dd4f672
CW
911 GEM_BUG_ON(eb->reloc_cache.rq);
912
4d470f73 913 if (eb->lut_size > 0)
2889caa9 914 kfree(eb->buckets);
934acce3
MW
915}
916
2889caa9 917static inline u64
d50415cc 918relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 919 const struct i915_vma *target)
934acce3 920{
2889caa9 921 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
922}
923
d50415cc
CW
924static void reloc_cache_init(struct reloc_cache *cache,
925 struct drm_i915_private *i915)
5032d871 926{
31a39207 927 cache->page = -1;
d50415cc 928 cache->vaddr = 0;
dfc5148f 929 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 930 cache->gen = INTEL_GEN(i915);
2889caa9 931 cache->has_llc = HAS_LLC(i915);
dfc5148f 932 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
933 cache->has_fence = cache->gen < 4;
934 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
e8cb909a 935 cache->node.allocated = false;
7dd4f672
CW
936 cache->rq = NULL;
937 cache->rq_size = 0;
d50415cc 938}
5032d871 939
d50415cc
CW
940static inline void *unmask_page(unsigned long p)
941{
942 return (void *)(uintptr_t)(p & PAGE_MASK);
943}
944
945static inline unsigned int unmask_flags(unsigned long p)
946{
947 return p & ~PAGE_MASK;
31a39207
CW
948}
949
d50415cc
CW
950#define KMAP 0x4 /* after CLFLUSH_FLAGS */
951
650bc635
CW
952static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
953{
954 struct drm_i915_private *i915 =
955 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
956 return &i915->ggtt;
957}
958
7dd4f672
CW
959static void reloc_gpu_flush(struct reloc_cache *cache)
960{
961 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
962 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
963 i915_gem_object_unpin_map(cache->rq->batch->obj);
964 i915_gem_chipset_flush(cache->rq->i915);
965
966 __i915_add_request(cache->rq, true);
967 cache->rq = NULL;
968}
969
650bc635 970static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 971{
d50415cc 972 void *vaddr;
5032d871 973
7dd4f672
CW
974 if (cache->rq)
975 reloc_gpu_flush(cache);
976
31a39207
CW
977 if (!cache->vaddr)
978 return;
3c94ceee 979
d50415cc
CW
980 vaddr = unmask_page(cache->vaddr);
981 if (cache->vaddr & KMAP) {
982 if (cache->vaddr & CLFLUSH_AFTER)
983 mb();
3c94ceee 984
d50415cc
CW
985 kunmap_atomic(vaddr);
986 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
987 } else {
e8cb909a 988 wmb();
d50415cc 989 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 990 if (cache->node.allocated) {
650bc635 991 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a
CW
992
993 ggtt->base.clear_range(&ggtt->base,
994 cache->node.start,
4fb84d99 995 cache->node.size);
e8cb909a
CW
996 drm_mm_remove_node(&cache->node);
997 } else {
998 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 999 }
31a39207 1000 }
650bc635
CW
1001
1002 cache->vaddr = 0;
1003 cache->page = -1;
31a39207
CW
1004}
1005
1006static void *reloc_kmap(struct drm_i915_gem_object *obj,
1007 struct reloc_cache *cache,
2889caa9 1008 unsigned long page)
31a39207 1009{
d50415cc
CW
1010 void *vaddr;
1011
1012 if (cache->vaddr) {
1013 kunmap_atomic(unmask_page(cache->vaddr));
1014 } else {
1015 unsigned int flushes;
2889caa9 1016 int err;
31a39207 1017
2889caa9
CW
1018 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
1019 if (err)
1020 return ERR_PTR(err);
d50415cc
CW
1021
1022 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1023 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 1024
d50415cc
CW
1025 cache->vaddr = flushes | KMAP;
1026 cache->node.mm = (void *)obj;
1027 if (flushes)
1028 mb();
3c94ceee
BW
1029 }
1030
d50415cc
CW
1031 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1032 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 1033 cache->page = page;
5032d871 1034
d50415cc 1035 return vaddr;
5032d871
RB
1036}
1037
d50415cc
CW
1038static void *reloc_iomap(struct drm_i915_gem_object *obj,
1039 struct reloc_cache *cache,
2889caa9 1040 unsigned long page)
5032d871 1041{
650bc635 1042 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1043 unsigned long offset;
d50415cc 1044 void *vaddr;
5032d871 1045
d50415cc 1046 if (cache->vaddr) {
615e5000 1047 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
1048 } else {
1049 struct i915_vma *vma;
2889caa9 1050 int err;
5032d871 1051
2889caa9 1052 if (use_cpu_reloc(cache, obj))
d50415cc 1053 return NULL;
3c94ceee 1054
2889caa9
CW
1055 err = i915_gem_object_set_to_gtt_domain(obj, true);
1056 if (err)
1057 return ERR_PTR(err);
3c94ceee 1058
d50415cc
CW
1059 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1060 PIN_MAPPABLE | PIN_NONBLOCK);
e8cb909a
CW
1061 if (IS_ERR(vma)) {
1062 memset(&cache->node, 0, sizeof(cache->node));
2889caa9 1063 err = drm_mm_insert_node_in_range
e8cb909a 1064 (&ggtt->base.mm, &cache->node,
f51455d4 1065 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1066 0, ggtt->mappable_end,
4e64e553 1067 DRM_MM_INSERT_LOW);
2889caa9 1068 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1069 return NULL;
e8cb909a 1070 } else {
2889caa9
CW
1071 err = i915_vma_put_fence(vma);
1072 if (err) {
e8cb909a 1073 i915_vma_unpin(vma);
2889caa9 1074 return ERR_PTR(err);
e8cb909a 1075 }
5032d871 1076
e8cb909a
CW
1077 cache->node.start = vma->node.start;
1078 cache->node.mm = (void *)vma;
3c94ceee 1079 }
e8cb909a 1080 }
3c94ceee 1081
e8cb909a
CW
1082 offset = cache->node.start;
1083 if (cache->node.allocated) {
fc099090 1084 wmb();
e8cb909a
CW
1085 ggtt->base.insert_page(&ggtt->base,
1086 i915_gem_object_get_dma_address(obj, page),
1087 offset, I915_CACHE_NONE, 0);
1088 } else {
1089 offset += page << PAGE_SHIFT;
3c94ceee
BW
1090 }
1091
650bc635
CW
1092 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
1093 offset);
d50415cc
CW
1094 cache->page = page;
1095 cache->vaddr = (unsigned long)vaddr;
5032d871 1096
d50415cc 1097 return vaddr;
5032d871
RB
1098}
1099
d50415cc
CW
1100static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1101 struct reloc_cache *cache,
2889caa9 1102 unsigned long page)
edf4427b 1103{
d50415cc 1104 void *vaddr;
5032d871 1105
d50415cc
CW
1106 if (cache->page == page) {
1107 vaddr = unmask_page(cache->vaddr);
1108 } else {
1109 vaddr = NULL;
1110 if ((cache->vaddr & KMAP) == 0)
1111 vaddr = reloc_iomap(obj, cache, page);
1112 if (!vaddr)
1113 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1114 }
1115
d50415cc 1116 return vaddr;
edf4427b
CW
1117}
1118
d50415cc 1119static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1120{
d50415cc
CW
1121 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1122 if (flushes & CLFLUSH_BEFORE) {
1123 clflushopt(addr);
1124 mb();
1125 }
edf4427b 1126
d50415cc 1127 *addr = value;
edf4427b 1128
2889caa9
CW
1129 /*
1130 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1131 * (including clflush). On the write path, we only require
1132 * that it hits memory in an orderly fashion and place
1133 * mb barriers at the start and end of the relocation phase
1134 * to ensure ordering of clflush wrt to the system.
1135 */
1136 if (flushes & CLFLUSH_AFTER)
1137 clflushopt(addr);
1138 } else
1139 *addr = value;
edf4427b 1140}
edf4427b 1141
7dd4f672
CW
1142static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1143 struct i915_vma *vma,
1144 unsigned int len)
1145{
1146 struct reloc_cache *cache = &eb->reloc_cache;
1147 struct drm_i915_gem_object *obj;
1148 struct drm_i915_gem_request *rq;
1149 struct i915_vma *batch;
1150 u32 *cmd;
1151 int err;
1152
1153 GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);
1154
1155 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1156 if (IS_ERR(obj))
1157 return PTR_ERR(obj);
1158
1159 cmd = i915_gem_object_pin_map(obj,
1160 cache->has_llc ? I915_MAP_WB : I915_MAP_WC);
1161 i915_gem_object_unpin_pages(obj);
1162 if (IS_ERR(cmd))
1163 return PTR_ERR(cmd);
1164
1165 err = i915_gem_object_set_to_wc_domain(obj, false);
1166 if (err)
1167 goto err_unmap;
1168
1169 batch = i915_vma_instance(obj, vma->vm, NULL);
1170 if (IS_ERR(batch)) {
1171 err = PTR_ERR(batch);
1172 goto err_unmap;
1173 }
1174
1175 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1176 if (err)
1177 goto err_unmap;
1178
1179 rq = i915_gem_request_alloc(eb->engine, eb->ctx);
1180 if (IS_ERR(rq)) {
1181 err = PTR_ERR(rq);
1182 goto err_unpin;
1183 }
1184
1185 err = i915_gem_request_await_object(rq, vma->obj, true);
1186 if (err)
1187 goto err_request;
1188
1189 err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
1190 if (err)
1191 goto err_request;
1192
1193 err = i915_switch_context(rq);
1194 if (err)
1195 goto err_request;
1196
1197 err = eb->engine->emit_bb_start(rq,
1198 batch->node.start, PAGE_SIZE,
1199 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1200 if (err)
1201 goto err_request;
1202
95ff7c7d 1203 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
7dd4f672 1204 i915_vma_move_to_active(batch, rq, 0);
95ff7c7d
CW
1205 reservation_object_lock(batch->resv, NULL);
1206 reservation_object_add_excl_fence(batch->resv, &rq->fence);
1207 reservation_object_unlock(batch->resv);
7dd4f672
CW
1208 i915_vma_unpin(batch);
1209
25ffaa67 1210 i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
95ff7c7d
CW
1211 reservation_object_lock(vma->resv, NULL);
1212 reservation_object_add_excl_fence(vma->resv, &rq->fence);
1213 reservation_object_unlock(vma->resv);
7dd4f672
CW
1214
1215 rq->batch = batch;
1216
1217 cache->rq = rq;
1218 cache->rq_cmd = cmd;
1219 cache->rq_size = 0;
1220
1221 /* Return with batch mapping (cmd) still pinned */
1222 return 0;
1223
1224err_request:
1225 i915_add_request(rq);
1226err_unpin:
1227 i915_vma_unpin(batch);
1228err_unmap:
1229 i915_gem_object_unpin_map(obj);
1230 return err;
1231}
1232
1233static u32 *reloc_gpu(struct i915_execbuffer *eb,
1234 struct i915_vma *vma,
1235 unsigned int len)
1236{
1237 struct reloc_cache *cache = &eb->reloc_cache;
1238 u32 *cmd;
1239
1240 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1241 reloc_gpu_flush(cache);
1242
1243 if (unlikely(!cache->rq)) {
1244 int err;
1245
1246 err = __reloc_gpu_alloc(eb, vma, len);
1247 if (unlikely(err))
1248 return ERR_PTR(err);
1249 }
1250
1251 cmd = cache->rq_cmd + cache->rq_size;
1252 cache->rq_size += len;
1253
1254 return cmd;
1255}
1256
2889caa9
CW
1257static u64
1258relocate_entry(struct i915_vma *vma,
d50415cc 1259 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1260 struct i915_execbuffer *eb,
1261 const struct i915_vma *target)
edf4427b 1262{
d50415cc 1263 u64 offset = reloc->offset;
2889caa9
CW
1264 u64 target_offset = relocation_target(reloc, target);
1265 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1266 void *vaddr;
edf4427b 1267
7dd4f672
CW
1268 if (!eb->reloc_cache.vaddr &&
1269 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
95ff7c7d 1270 !reservation_object_test_signaled_rcu(vma->resv, true))) {
7dd4f672
CW
1271 const unsigned int gen = eb->reloc_cache.gen;
1272 unsigned int len;
1273 u32 *batch;
1274 u64 addr;
1275
1276 if (wide)
1277 len = offset & 7 ? 8 : 5;
1278 else if (gen >= 4)
1279 len = 4;
1280 else if (gen >= 3)
1281 len = 3;
1282 else /* On gen2 MI_STORE_DWORD_IMM uses a physical address */
1283 goto repeat;
1284
1285 batch = reloc_gpu(eb, vma, len);
1286 if (IS_ERR(batch))
1287 goto repeat;
1288
1289 addr = gen8_canonical_addr(vma->node.start + offset);
1290 if (wide) {
1291 if (offset & 7) {
1292 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1293 *batch++ = lower_32_bits(addr);
1294 *batch++ = upper_32_bits(addr);
1295 *batch++ = lower_32_bits(target_offset);
1296
1297 addr = gen8_canonical_addr(addr + 4);
1298
1299 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1300 *batch++ = lower_32_bits(addr);
1301 *batch++ = upper_32_bits(addr);
1302 *batch++ = upper_32_bits(target_offset);
1303 } else {
1304 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1305 *batch++ = lower_32_bits(addr);
1306 *batch++ = upper_32_bits(addr);
1307 *batch++ = lower_32_bits(target_offset);
1308 *batch++ = upper_32_bits(target_offset);
1309 }
1310 } else if (gen >= 6) {
1311 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1312 *batch++ = 0;
1313 *batch++ = addr;
1314 *batch++ = target_offset;
1315 } else if (gen >= 4) {
1316 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1317 *batch++ = 0;
1318 *batch++ = addr;
1319 *batch++ = target_offset;
1320 } else {
1321 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1322 *batch++ = addr;
1323 *batch++ = target_offset;
1324 }
1325
1326 goto out;
1327 }
1328
d50415cc 1329repeat:
95ff7c7d 1330 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1331 if (IS_ERR(vaddr))
1332 return PTR_ERR(vaddr);
1333
1334 clflush_write32(vaddr + offset_in_page(offset),
1335 lower_32_bits(target_offset),
2889caa9 1336 eb->reloc_cache.vaddr);
d50415cc
CW
1337
1338 if (wide) {
1339 offset += sizeof(u32);
1340 target_offset >>= 32;
1341 wide = false;
1342 goto repeat;
edf4427b 1343 }
edf4427b 1344
7dd4f672 1345out:
2889caa9 1346 return target->node.start | UPDATE;
edf4427b 1347}
edf4427b 1348
2889caa9
CW
1349static u64
1350eb_relocate_entry(struct i915_execbuffer *eb,
1351 struct i915_vma *vma,
1352 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1353{
507d977f 1354 struct i915_vma *target;
2889caa9 1355 int err;
54cf91dc 1356
67731b87 1357 /* we've already hold a reference to all valid objects */
507d977f
CW
1358 target = eb_get_vma(eb, reloc->target_handle);
1359 if (unlikely(!target))
54cf91dc 1360 return -ENOENT;
e844b990 1361
54cf91dc 1362 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1363 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 1364 DRM_DEBUG("reloc with multiple write domains: "
507d977f 1365 "target %d offset %d "
54cf91dc 1366 "read %08x write %08x",
507d977f 1367 reloc->target_handle,
54cf91dc
CW
1368 (int) reloc->offset,
1369 reloc->read_domains,
1370 reloc->write_domain);
8b78f0e5 1371 return -EINVAL;
54cf91dc 1372 }
4ca4a250
DV
1373 if (unlikely((reloc->write_domain | reloc->read_domains)
1374 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 1375 DRM_DEBUG("reloc with read/write non-GPU domains: "
507d977f 1376 "target %d offset %d "
54cf91dc 1377 "read %08x write %08x",
507d977f 1378 reloc->target_handle,
54cf91dc
CW
1379 (int) reloc->offset,
1380 reloc->read_domains,
1381 reloc->write_domain);
8b78f0e5 1382 return -EINVAL;
54cf91dc 1383 }
54cf91dc 1384
2889caa9 1385 if (reloc->write_domain) {
507d977f
CW
1386 target->exec_entry->flags |= EXEC_OBJECT_WRITE;
1387
2889caa9
CW
1388 /*
1389 * Sandybridge PPGTT errata: We need a global gtt mapping
1390 * for MI and pipe_control writes because the gpu doesn't
1391 * properly redirect them through the ppgtt for non_secure
1392 * batchbuffers.
1393 */
1394 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1395 IS_GEN6(eb->i915)) {
1396 err = i915_vma_bind(target, target->obj->cache_level,
1397 PIN_GLOBAL);
1398 if (WARN_ONCE(err,
1399 "Unexpected failure to bind target VMA!"))
1400 return err;
1401 }
507d977f 1402 }
54cf91dc 1403
2889caa9
CW
1404 /*
1405 * If the relocation already has the right value in it, no
54cf91dc
CW
1406 * more work needs to be done.
1407 */
7dd4f672
CW
1408 if (!DBG_FORCE_RELOC &&
1409 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
67731b87 1410 return 0;
54cf91dc
CW
1411
1412 /* Check that the relocation address is valid... */
3c94ceee 1413 if (unlikely(reloc->offset >
507d977f 1414 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
ff240199 1415 DRM_DEBUG("Relocation beyond object bounds: "
507d977f
CW
1416 "target %d offset %d size %d.\n",
1417 reloc->target_handle,
1418 (int)reloc->offset,
1419 (int)vma->size);
8b78f0e5 1420 return -EINVAL;
54cf91dc 1421 }
b8f7ab17 1422 if (unlikely(reloc->offset & 3)) {
ff240199 1423 DRM_DEBUG("Relocation not 4-byte aligned: "
507d977f
CW
1424 "target %d offset %d.\n",
1425 reloc->target_handle,
1426 (int)reloc->offset);
8b78f0e5 1427 return -EINVAL;
54cf91dc
CW
1428 }
1429
071750e5
CW
1430 /*
1431 * If we write into the object, we need to force the synchronisation
1432 * barrier, either with an asynchronous clflush or if we executed the
1433 * patching using the GPU (though that should be serialised by the
1434 * timeline). To be completely sure, and since we are required to
1435 * do relocations we are already stalling, disable the user's opt
1436 * of our synchronisation.
1437 */
1438 vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;
1439
54cf91dc 1440 /* and update the user's relocation entry */
2889caa9 1441 return relocate_entry(vma, reloc, eb, target);
54cf91dc
CW
1442}
1443
2889caa9 1444static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1445{
1d83f442 1446#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1447 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1448 struct drm_i915_gem_relocation_entry __user *urelocs;
1449 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1450 unsigned int remain;
54cf91dc 1451
2889caa9 1452 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1453 remain = entry->relocation_count;
2889caa9
CW
1454 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1455 return -EINVAL;
ebc0808f 1456
2889caa9
CW
1457 /*
1458 * We must check that the entire relocation array is safe
1459 * to read. However, if the array is not writable the user loses
1460 * the updated relocation values.
1461 */
edd9003f 1462 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
2889caa9
CW
1463 return -EFAULT;
1464
1465 do {
1466 struct drm_i915_gem_relocation_entry *r = stack;
1467 unsigned int count =
1468 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1469 unsigned int copied;
1d83f442 1470
2889caa9
CW
1471 /*
1472 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1473 * whilst holding the struct mutex lest the user pass in the
1474 * relocations contained within a mmaped bo. For in such a case
1475 * we, the page fault handler would call i915_gem_fault() and
1476 * we would try to acquire the struct mutex again. Obviously
1477 * this is bad and so lockdep complains vehemently.
1478 */
1479 pagefault_disable();
2889caa9 1480 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
ebc0808f 1481 pagefault_enable();
2889caa9
CW
1482 if (unlikely(copied)) {
1483 remain = -EFAULT;
31a39207
CW
1484 goto out;
1485 }
54cf91dc 1486
2889caa9 1487 remain -= count;
1d83f442 1488 do {
2889caa9 1489 u64 offset = eb_relocate_entry(eb, vma, r);
54cf91dc 1490
2889caa9
CW
1491 if (likely(offset == 0)) {
1492 } else if ((s64)offset < 0) {
1493 remain = (int)offset;
31a39207 1494 goto out;
2889caa9
CW
1495 } else {
1496 /*
1497 * Note that reporting an error now
1498 * leaves everything in an inconsistent
1499 * state as we have *already* changed
1500 * the relocation value inside the
1501 * object. As we have not changed the
1502 * reloc.presumed_offset or will not
1503 * change the execobject.offset, on the
1504 * call we may not rewrite the value
1505 * inside the object, leaving it
1506 * dangling and causing a GPU hang. Unless
1507 * userspace dynamically rebuilds the
1508 * relocations on each execbuf rather than
1509 * presume a static tree.
1510 *
1511 * We did previously check if the relocations
1512 * were writable (access_ok), an error now
1513 * would be a strange race with mprotect,
1514 * having already demonstrated that we
1515 * can read from this userspace address.
1516 */
1517 offset = gen8_canonical_addr(offset & ~UPDATE);
1518 __put_user(offset,
1519 &urelocs[r-stack].presumed_offset);
1d83f442 1520 }
2889caa9
CW
1521 } while (r++, --count);
1522 urelocs += ARRAY_SIZE(stack);
1523 } while (remain);
31a39207 1524out:
650bc635 1525 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1526 return remain;
54cf91dc
CW
1527}
1528
1529static int
2889caa9 1530eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1531{
27173f1f 1532 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
2889caa9
CW
1533 struct drm_i915_gem_relocation_entry *relocs =
1534 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1535 unsigned int i;
1536 int err;
54cf91dc
CW
1537
1538 for (i = 0; i < entry->relocation_count; i++) {
2889caa9 1539 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
d4aeee77 1540
2889caa9
CW
1541 if ((s64)offset < 0) {
1542 err = (int)offset;
1543 goto err;
1544 }
54cf91dc 1545 }
2889caa9
CW
1546 err = 0;
1547err:
1548 reloc_cache_reset(&eb->reloc_cache);
1549 return err;
edf4427b
CW
1550}
1551
2889caa9 1552static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1690e1eb 1553{
2889caa9
CW
1554 const char __user *addr, *end;
1555 unsigned long size;
1556 char __maybe_unused c;
1690e1eb 1557
2889caa9
CW
1558 size = entry->relocation_count;
1559 if (size == 0)
1560 return 0;
7788a765 1561
2889caa9
CW
1562 if (size > N_RELOC(ULONG_MAX))
1563 return -EINVAL;
9a5a53b3 1564
2889caa9
CW
1565 addr = u64_to_user_ptr(entry->relocs_ptr);
1566 size *= sizeof(struct drm_i915_gem_relocation_entry);
1567 if (!access_ok(VERIFY_READ, addr, size))
1568 return -EFAULT;
1690e1eb 1569
2889caa9
CW
1570 end = addr + size;
1571 for (; addr < end; addr += PAGE_SIZE) {
1572 int err = __get_user(c, addr);
1573 if (err)
1574 return err;
ed5982e6 1575 }
2889caa9 1576 return __get_user(c, end - 1);
7788a765 1577}
1690e1eb 1578
2889caa9 1579static int eb_copy_relocations(const struct i915_execbuffer *eb)
d23db88c 1580{
2889caa9
CW
1581 const unsigned int count = eb->buffer_count;
1582 unsigned int i;
1583 int err;
e6a84468 1584
2889caa9
CW
1585 for (i = 0; i < count; i++) {
1586 const unsigned int nreloc = eb->exec[i].relocation_count;
1587 struct drm_i915_gem_relocation_entry __user *urelocs;
1588 struct drm_i915_gem_relocation_entry *relocs;
1589 unsigned long size;
1590 unsigned long copied;
e6a84468 1591
2889caa9
CW
1592 if (nreloc == 0)
1593 continue;
e6a84468 1594
2889caa9
CW
1595 err = check_relocations(&eb->exec[i]);
1596 if (err)
1597 goto err;
d23db88c 1598
2889caa9
CW
1599 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1600 size = nreloc * sizeof(*relocs);
d23db88c 1601
2889caa9
CW
1602 relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
1603 if (!relocs) {
1604 kvfree(relocs);
1605 err = -ENOMEM;
1606 goto err;
1607 }
d23db88c 1608
2889caa9
CW
1609 /* copy_from_user is limited to < 4GiB */
1610 copied = 0;
1611 do {
1612 unsigned int len =
1613 min_t(u64, BIT_ULL(31), size - copied);
1614
1615 if (__copy_from_user((char *)relocs + copied,
1616 (char *)urelocs + copied,
1617 len)) {
1618 kvfree(relocs);
1619 err = -EFAULT;
1620 goto err;
1621 }
91b2db6f 1622
2889caa9
CW
1623 copied += len;
1624 } while (copied < size);
506a8e87 1625
2889caa9
CW
1626 /*
1627 * As we do not update the known relocation offsets after
1628 * relocating (due to the complexities in lock handling),
1629 * we need to mark them as invalid now so that we force the
1630 * relocation processing next time. Just in case the target
1631 * object is evicted and then rebound into its old
1632 * presumed_offset before the next execbuffer - if that
1633 * happened we would make the mistake of assuming that the
1634 * relocations were valid.
1635 */
1636 user_access_begin();
1637 for (copied = 0; copied < nreloc; copied++)
1638 unsafe_put_user(-1,
1639 &urelocs[copied].presumed_offset,
1640 end_user);
1641end_user:
1642 user_access_end();
d23db88c 1643
2889caa9
CW
1644 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1645 }
edf4427b 1646
2889caa9 1647 return 0;
101b506a 1648
2889caa9
CW
1649err:
1650 while (i--) {
1651 struct drm_i915_gem_relocation_entry *relocs =
1652 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1653 if (eb->exec[i].relocation_count)
1654 kvfree(relocs);
1655 }
1656 return err;
d23db88c
CW
1657}
1658
2889caa9 1659static int eb_prefault_relocations(const struct i915_execbuffer *eb)
54cf91dc 1660{
2889caa9
CW
1661 const unsigned int count = eb->buffer_count;
1662 unsigned int i;
54cf91dc 1663
2889caa9
CW
1664 if (unlikely(i915.prefault_disable))
1665 return 0;
54cf91dc 1666
2889caa9
CW
1667 for (i = 0; i < count; i++) {
1668 int err;
54cf91dc 1669
2889caa9
CW
1670 err = check_relocations(&eb->exec[i]);
1671 if (err)
1672 return err;
1673 }
a415d355 1674
2889caa9 1675 return 0;
54cf91dc
CW
1676}
1677
2889caa9 1678static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
54cf91dc 1679{
650bc635 1680 struct drm_device *dev = &eb->i915->drm;
2889caa9 1681 bool have_copy = false;
27173f1f 1682 struct i915_vma *vma;
2889caa9
CW
1683 int err = 0;
1684
1685repeat:
1686 if (signal_pending(current)) {
1687 err = -ERESTARTSYS;
1688 goto out;
1689 }
27173f1f 1690
67731b87 1691 /* We may process another execbuffer during the unlock... */
2889caa9 1692 eb_reset_vmas(eb);
54cf91dc
CW
1693 mutex_unlock(&dev->struct_mutex);
1694
2889caa9
CW
1695 /*
1696 * We take 3 passes through the slowpatch.
1697 *
1698 * 1 - we try to just prefault all the user relocation entries and
1699 * then attempt to reuse the atomic pagefault disabled fast path again.
1700 *
1701 * 2 - we copy the user entries to a local buffer here outside of the
1702 * local and allow ourselves to wait upon any rendering before
1703 * relocations
1704 *
1705 * 3 - we already have a local copy of the relocation entries, but
1706 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1707 */
1708 if (!err) {
1709 err = eb_prefault_relocations(eb);
1710 } else if (!have_copy) {
1711 err = eb_copy_relocations(eb);
1712 have_copy = err == 0;
1713 } else {
1714 cond_resched();
1715 err = 0;
54cf91dc 1716 }
2889caa9
CW
1717 if (err) {
1718 mutex_lock(&dev->struct_mutex);
1719 goto out;
54cf91dc
CW
1720 }
1721
8a2421bd
CW
1722 /* A frequent cause for EAGAIN are currently unavailable client pages */
1723 flush_workqueue(eb->i915->mm.userptr_wq);
1724
2889caa9
CW
1725 err = i915_mutex_lock_interruptible(dev);
1726 if (err) {
54cf91dc 1727 mutex_lock(&dev->struct_mutex);
2889caa9 1728 goto out;
54cf91dc
CW
1729 }
1730
67731b87 1731 /* reacquire the objects */
2889caa9
CW
1732 err = eb_lookup_vmas(eb);
1733 if (err)
3b96eff4 1734 goto err;
67731b87 1735
2889caa9
CW
1736 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1737 if (!have_copy) {
1738 pagefault_disable();
1739 err = eb_relocate_vma(eb, vma);
1740 pagefault_enable();
1741 if (err)
1742 goto repeat;
1743 } else {
1744 err = eb_relocate_vma_slow(eb, vma);
1745 if (err)
1746 goto err;
1747 }
54cf91dc
CW
1748 }
1749
2889caa9
CW
1750 /*
1751 * Leave the user relocations as are, this is the painfully slow path,
54cf91dc
CW
1752 * and we want to avoid the complication of dropping the lock whilst
1753 * having buffers reserved in the aperture and so causing spurious
1754 * ENOSPC for random operations.
1755 */
1756
1757err:
2889caa9
CW
1758 if (err == -EAGAIN)
1759 goto repeat;
1760
1761out:
1762 if (have_copy) {
1763 const unsigned int count = eb->buffer_count;
1764 unsigned int i;
1765
1766 for (i = 0; i < count; i++) {
1767 const struct drm_i915_gem_exec_object2 *entry =
1768 &eb->exec[i];
1769 struct drm_i915_gem_relocation_entry *relocs;
1770
1771 if (!entry->relocation_count)
1772 continue;
1773
1774 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1775 kvfree(relocs);
1776 }
1777 }
1778
1f727d9e 1779 return err;
54cf91dc
CW
1780}
1781
2889caa9 1782static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1783{
2889caa9
CW
1784 if (eb_lookup_vmas(eb))
1785 goto slow;
1786
1787 /* The objects are in their final locations, apply the relocations. */
1788 if (eb->args->flags & __EXEC_HAS_RELOC) {
1789 struct i915_vma *vma;
1790
1791 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1792 if (eb_relocate_vma(eb, vma))
1793 goto slow;
1794 }
1795 }
1796
1797 return 0;
1798
1799slow:
1800 return eb_relocate_slow(eb);
1801}
1802
95ff7c7d 1803static void eb_export_fence(struct i915_vma *vma,
2889caa9
CW
1804 struct drm_i915_gem_request *req,
1805 unsigned int flags)
1806{
95ff7c7d 1807 struct reservation_object *resv = vma->resv;
2889caa9
CW
1808
1809 /*
1810 * Ignore errors from failing to allocate the new fence, we can't
1811 * handle an error right now. Worst case should be missed
1812 * synchronisation leading to rendering corruption.
1813 */
1814 reservation_object_lock(resv, NULL);
1815 if (flags & EXEC_OBJECT_WRITE)
1816 reservation_object_add_excl_fence(resv, &req->fence);
1817 else if (reservation_object_reserve_shared(resv) == 0)
1818 reservation_object_add_shared_fence(resv, &req->fence);
1819 reservation_object_unlock(resv);
1820}
1821
1822static int eb_move_to_gpu(struct i915_execbuffer *eb)
1823{
1824 const unsigned int count = eb->buffer_count;
1825 unsigned int i;
1826 int err;
54cf91dc 1827
2889caa9
CW
1828 for (i = 0; i < count; i++) {
1829 const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1830 struct i915_vma *vma = exec_to_vma(entry);
27173f1f 1831 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1832
2889caa9 1833 if (entry->flags & EXEC_OBJECT_CAPTURE) {
b0fd47ad
CW
1834 struct i915_gem_capture_list *capture;
1835
1836 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1837 if (unlikely(!capture))
1838 return -ENOMEM;
1839
650bc635 1840 capture->next = eb->request->capture_list;
b0fd47ad 1841 capture->vma = vma;
650bc635 1842 eb->request->capture_list = capture;
b0fd47ad
CW
1843 }
1844
2889caa9
CW
1845 if (entry->flags & EXEC_OBJECT_ASYNC)
1846 goto skip_flushes;
77ae9957 1847
7fc92e96 1848 if (unlikely(obj->cache_dirty && !obj->cache_coherent))
57822dc6 1849 i915_gem_clflush_object(obj, 0);
57822dc6 1850
2889caa9
CW
1851 err = i915_gem_request_await_object
1852 (eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
1853 if (err)
1854 return err;
1855
1856skip_flushes:
1857 i915_vma_move_to_active(vma, eb->request, entry->flags);
1858 __eb_unreserve_vma(vma, entry);
1859 vma->exec_entry = NULL;
1860 }
1861
1862 for (i = 0; i < count; i++) {
1863 const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1864 struct i915_vma *vma = exec_to_vma(entry);
1865
95ff7c7d 1866 eb_export_fence(vma, eb->request, entry->flags);
dade2a61
CW
1867 if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
1868 i915_vma_put(vma);
c59a333f 1869 }
2889caa9 1870 eb->exec = NULL;
c59a333f 1871
dcd79934 1872 /* Unconditionally flush any chipset caches (for streaming writes). */
650bc635 1873 i915_gem_chipset_flush(eb->i915);
6ac42f41 1874
c7fe7d25 1875 /* Unconditionally invalidate GPU caches and TLBs. */
650bc635 1876 return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
54cf91dc
CW
1877}
1878
2889caa9 1879static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1880{
650bc635 1881 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
ed5982e6
DV
1882 return false;
1883
2f5945bc
CW
1884 /* Kernel clipping was a DRI1 misfeature */
1885 if (exec->num_cliprects || exec->cliprects_ptr)
1886 return false;
1887
1888 if (exec->DR4 == 0xffffffff) {
1889 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1890 exec->DR4 = 0;
1891 }
1892 if (exec->DR1 || exec->DR4)
1893 return false;
1894
1895 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1896 return false;
1897
1898 return true;
54cf91dc
CW
1899}
1900
5cf3d280
CW
1901void i915_vma_move_to_active(struct i915_vma *vma,
1902 struct drm_i915_gem_request *req,
1903 unsigned int flags)
1904{
1905 struct drm_i915_gem_object *obj = vma->obj;
1906 const unsigned int idx = req->engine->id;
1907
81147b07 1908 lockdep_assert_held(&req->i915->drm.struct_mutex);
5cf3d280
CW
1909 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1910
2889caa9
CW
1911 /*
1912 * Add a reference if we're newly entering the active list.
b0decaf7
CW
1913 * The order in which we add operations to the retirement queue is
1914 * vital here: mark_active adds to the start of the callback list,
1915 * such that subsequent callbacks are called first. Therefore we
1916 * add the active reference first and queue for it to be dropped
1917 * *last*.
1918 */
d07f0e59
CW
1919 if (!i915_vma_is_active(vma))
1920 obj->active_count++;
1921 i915_vma_set_active(vma, idx);
1922 i915_gem_active_set(&vma->last_read[idx], req);
1923 list_move_tail(&vma->vm_link, &vma->vm->active_list);
5cf3d280 1924
e27ab73d 1925 obj->base.write_domain = 0;
5cf3d280 1926 if (flags & EXEC_OBJECT_WRITE) {
e27ab73d
CW
1927 obj->base.write_domain = I915_GEM_DOMAIN_RENDER;
1928
5b8c8aec
CW
1929 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1930 i915_gem_active_set(&obj->frontbuffer_write, req);
5cf3d280 1931
e27ab73d 1932 obj->base.read_domains = 0;
5cf3d280 1933 }
e27ab73d 1934 obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
5cf3d280 1935
49ef5294
CW
1936 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1937 i915_gem_active_set(&vma->last_fence, req);
5cf3d280
CW
1938}
1939
2889caa9 1940static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
ae662d31 1941{
73dec95e
TU
1942 u32 *cs;
1943 int i;
ae662d31 1944
b5321f30 1945 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
9d662da8
DV
1946 DRM_DEBUG("sol reset is gen7/rcs only\n");
1947 return -EINVAL;
1948 }
ae662d31 1949
2889caa9 1950 cs = intel_ring_begin(req, 4 * 2 + 2);
73dec95e
TU
1951 if (IS_ERR(cs))
1952 return PTR_ERR(cs);
ae662d31 1953
2889caa9 1954 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 1955 for (i = 0; i < 4; i++) {
73dec95e
TU
1956 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1957 *cs++ = 0;
ae662d31 1958 }
2889caa9 1959 *cs++ = MI_NOOP;
73dec95e 1960 intel_ring_advance(req, cs);
ae662d31
EA
1961
1962 return 0;
1963}
1964
650bc635 1965static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
71745376 1966{
71745376 1967 struct drm_i915_gem_object *shadow_batch_obj;
17cabf57 1968 struct i915_vma *vma;
2889caa9 1969 int err;
71745376 1970
650bc635
CW
1971 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1972 PAGE_ALIGN(eb->batch_len));
71745376 1973 if (IS_ERR(shadow_batch_obj))
59bfa124 1974 return ERR_CAST(shadow_batch_obj);
71745376 1975
2889caa9 1976 err = intel_engine_cmd_parser(eb->engine,
650bc635 1977 eb->batch->obj,
33a051a5 1978 shadow_batch_obj,
650bc635
CW
1979 eb->batch_start_offset,
1980 eb->batch_len,
33a051a5 1981 is_master);
2889caa9
CW
1982 if (err) {
1983 if (err == -EACCES) /* unhandled chained batch */
058d88c4
CW
1984 vma = NULL;
1985 else
2889caa9 1986 vma = ERR_PTR(err);
058d88c4
CW
1987 goto out;
1988 }
71745376 1989
058d88c4
CW
1990 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1991 if (IS_ERR(vma))
1992 goto out;
de4e783a 1993
650bc635 1994 vma->exec_entry =
2889caa9
CW
1995 memset(&eb->exec[eb->buffer_count++],
1996 0, sizeof(*vma->exec_entry));
dade2a61 1997 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2889caa9 1998 __exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
71745376 1999
058d88c4 2000out:
de4e783a 2001 i915_gem_object_unpin_pages(shadow_batch_obj);
058d88c4 2002 return vma;
71745376 2003}
5c6c6003 2004
c8659efa 2005static void
2889caa9 2006add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
c8659efa
CW
2007{
2008 req->file_priv = file->driver_priv;
2009 list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
2010}
2011
2889caa9 2012static int eb_submit(struct i915_execbuffer *eb)
78382593 2013{
2889caa9 2014 int err;
78382593 2015
2889caa9
CW
2016 err = eb_move_to_gpu(eb);
2017 if (err)
2018 return err;
78382593 2019
2889caa9
CW
2020 err = i915_switch_context(eb->request);
2021 if (err)
2022 return err;
78382593 2023
650bc635 2024 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
2025 err = i915_reset_gen7_sol_offsets(eb->request);
2026 if (err)
2027 return err;
78382593
OM
2028 }
2029
2889caa9 2030 err = eb->engine->emit_bb_start(eb->request,
650bc635
CW
2031 eb->batch->node.start +
2032 eb->batch_start_offset,
2033 eb->batch_len,
2889caa9
CW
2034 eb->batch_flags);
2035 if (err)
2036 return err;
78382593 2037
2f5945bc 2038 return 0;
78382593
OM
2039}
2040
a8ebba75
ZY
2041/**
2042 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2043 * The engine index is returned.
a8ebba75 2044 */
de1add36 2045static unsigned int
c80ff16e
CW
2046gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2047 struct drm_file *file)
a8ebba75 2048{
a8ebba75
ZY
2049 struct drm_i915_file_private *file_priv = file->driver_priv;
2050
de1add36 2051 /* Check whether the file_priv has already selected one ring. */
6f633402
JL
2052 if ((int)file_priv->bsd_engine < 0)
2053 file_priv->bsd_engine = atomic_fetch_xor(1,
2054 &dev_priv->mm.bsd_engine_dispatch_index);
d23db88c 2055
c80ff16e 2056 return file_priv->bsd_engine;
d23db88c
CW
2057}
2058
de1add36
TU
2059#define I915_USER_RINGS (4)
2060
117897f4 2061static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
de1add36
TU
2062 [I915_EXEC_DEFAULT] = RCS,
2063 [I915_EXEC_RENDER] = RCS,
2064 [I915_EXEC_BLT] = BCS,
2065 [I915_EXEC_BSD] = VCS,
2066 [I915_EXEC_VEBOX] = VECS
2067};
2068
f8ca0c07
DG
2069static struct intel_engine_cs *
2070eb_select_engine(struct drm_i915_private *dev_priv,
2071 struct drm_file *file,
2072 struct drm_i915_gem_execbuffer2 *args)
de1add36
TU
2073{
2074 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
f8ca0c07 2075 struct intel_engine_cs *engine;
de1add36
TU
2076
2077 if (user_ring_id > I915_USER_RINGS) {
2078 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
f8ca0c07 2079 return NULL;
de1add36
TU
2080 }
2081
2082 if ((user_ring_id != I915_EXEC_BSD) &&
2083 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2084 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2085 "bsd dispatch flags: %d\n", (int)(args->flags));
f8ca0c07 2086 return NULL;
de1add36
TU
2087 }
2088
2089 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2090 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2091
2092 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
c80ff16e 2093 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
de1add36
TU
2094 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2095 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2096 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2097 bsd_idx--;
2098 } else {
2099 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2100 bsd_idx);
f8ca0c07 2101 return NULL;
de1add36
TU
2102 }
2103
3b3f1650 2104 engine = dev_priv->engine[_VCS(bsd_idx)];
de1add36 2105 } else {
3b3f1650 2106 engine = dev_priv->engine[user_ring_map[user_ring_id]];
de1add36
TU
2107 }
2108
3b3f1650 2109 if (!engine) {
de1add36 2110 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
f8ca0c07 2111 return NULL;
de1add36
TU
2112 }
2113
f8ca0c07 2114 return engine;
de1add36
TU
2115}
2116
54cf91dc 2117static int
650bc635 2118i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2119 struct drm_file *file,
2120 struct drm_i915_gem_execbuffer2 *args,
41bde553 2121 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 2122{
650bc635 2123 struct i915_execbuffer eb;
fec0445c
CW
2124 struct dma_fence *in_fence = NULL;
2125 struct sync_file *out_fence = NULL;
2126 int out_fence_fd = -1;
2889caa9 2127 int err;
432e58ed 2128
2889caa9
CW
2129 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2130 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2131
650bc635
CW
2132 eb.i915 = to_i915(dev);
2133 eb.file = file;
2134 eb.args = args;
7dd4f672 2135 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2136 args->flags |= __EXEC_HAS_RELOC;
650bc635 2137 eb.exec = exec;
2889caa9
CW
2138 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2139 if (USES_FULL_PPGTT(eb.i915))
2140 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
650bc635
CW
2141 reloc_cache_init(&eb.reloc_cache, eb.i915);
2142
2889caa9 2143 eb.buffer_count = args->buffer_count;
650bc635
CW
2144 eb.batch_start_offset = args->batch_start_offset;
2145 eb.batch_len = args->batch_len;
2146
2889caa9 2147 eb.batch_flags = 0;
d7d4eedd 2148 if (args->flags & I915_EXEC_SECURE) {
b3ac9f25 2149 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
d7d4eedd
CW
2150 return -EPERM;
2151
2889caa9 2152 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2153 }
b45305fc 2154 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2155 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2156
650bc635
CW
2157 eb.engine = eb_select_engine(eb.i915, file, args);
2158 if (!eb.engine)
54cf91dc 2159 return -EINVAL;
54cf91dc 2160
a9ed33ca 2161 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
650bc635 2162 if (!HAS_RESOURCE_STREAMER(eb.i915)) {
a9ed33ca
AJ
2163 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2164 return -EINVAL;
2165 }
650bc635 2166 if (eb.engine->id != RCS) {
a9ed33ca 2167 DRM_DEBUG("RS is not available on %s\n",
650bc635 2168 eb.engine->name);
a9ed33ca
AJ
2169 return -EINVAL;
2170 }
2171
2889caa9 2172 eb.batch_flags |= I915_DISPATCH_RS;
a9ed33ca
AJ
2173 }
2174
fec0445c
CW
2175 if (args->flags & I915_EXEC_FENCE_IN) {
2176 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2177 if (!in_fence)
2178 return -EINVAL;
fec0445c
CW
2179 }
2180
2181 if (args->flags & I915_EXEC_FENCE_OUT) {
2182 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2183 if (out_fence_fd < 0) {
2889caa9 2184 err = out_fence_fd;
4a04e371 2185 goto err_in_fence;
fec0445c
CW
2186 }
2187 }
2188
4d470f73
CW
2189 err = eb_create(&eb);
2190 if (err)
2191 goto err_out_fence;
2192
2193 GEM_BUG_ON(!eb.lut_size);
2889caa9 2194
1acfc104
CW
2195 err = eb_select_context(&eb);
2196 if (unlikely(err))
2197 goto err_destroy;
2198
2889caa9
CW
2199 /*
2200 * Take a local wakeref for preparing to dispatch the execbuf as
67d97da3
CW
2201 * we expect to access the hardware fairly frequently in the
2202 * process. Upon first dispatch, we acquire another prolonged
2203 * wakeref that we hold until the GPU has been idle for at least
2204 * 100ms.
2205 */
650bc635 2206 intel_runtime_pm_get(eb.i915);
1acfc104 2207
2889caa9
CW
2208 err = i915_mutex_lock_interruptible(dev);
2209 if (err)
2210 goto err_rpm;
f65c9168 2211
2889caa9 2212 err = eb_relocate(&eb);
1f727d9e 2213 if (err) {
2889caa9
CW
2214 /*
2215 * If the user expects the execobject.offset and
2216 * reloc.presumed_offset to be an exact match,
2217 * as for using NO_RELOC, then we cannot update
2218 * the execobject.offset until we have completed
2219 * relocation.
2220 */
2221 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2222 goto err_vma;
1f727d9e 2223 }
54cf91dc 2224
2889caa9 2225 if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
ff240199 2226 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2227 err = -EINVAL;
2228 goto err_vma;
54cf91dc 2229 }
650bc635
CW
2230 if (eb.batch_start_offset > eb.batch->size ||
2231 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
0b537272 2232 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2889caa9
CW
2233 err = -EINVAL;
2234 goto err_vma;
0b537272 2235 }
54cf91dc 2236
650bc635 2237 if (eb.engine->needs_cmd_parser && eb.batch_len) {
59bfa124
CW
2238 struct i915_vma *vma;
2239
650bc635 2240 vma = eb_parse(&eb, drm_is_current_master(file));
59bfa124 2241 if (IS_ERR(vma)) {
2889caa9
CW
2242 err = PTR_ERR(vma);
2243 goto err_vma;
78a42377 2244 }
17cabf57 2245
59bfa124 2246 if (vma) {
c7c7372e
RP
2247 /*
2248 * Batch parsed and accepted:
2249 *
2250 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2251 * bit from MI_BATCH_BUFFER_START commands issued in
2252 * the dispatch_execbuffer implementations. We
2253 * specifically don't want that set on batches the
2254 * command parser has accepted.
2255 */
2889caa9 2256 eb.batch_flags |= I915_DISPATCH_SECURE;
650bc635
CW
2257 eb.batch_start_offset = 0;
2258 eb.batch = vma;
c7c7372e 2259 }
351e3db2
BV
2260 }
2261
650bc635
CW
2262 if (eb.batch_len == 0)
2263 eb.batch_len = eb.batch->size - eb.batch_start_offset;
78a42377 2264
2889caa9
CW
2265 /*
2266 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2267 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2268 * hsw should have this fixed, but bdw mucks it up again. */
2889caa9 2269 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2270 struct i915_vma *vma;
59bfa124 2271
da51a1e7
DV
2272 /*
2273 * So on first glance it looks freaky that we pin the batch here
2274 * outside of the reservation loop. But:
2275 * - The batch is already pinned into the relevant ppgtt, so we
2276 * already have the backing storage fully allocated.
2277 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2278 * so we don't really have issues with multiple objects not
da51a1e7
DV
2279 * fitting due to fragmentation.
2280 * So this is actually safe.
2281 */
2889caa9 2282 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
058d88c4 2283 if (IS_ERR(vma)) {
2889caa9
CW
2284 err = PTR_ERR(vma);
2285 goto err_vma;
058d88c4 2286 }
d7d4eedd 2287
650bc635 2288 eb.batch = vma;
59bfa124 2289 }
d7d4eedd 2290
7dd4f672
CW
2291 /* All GPU relocation batches must be submitted prior to the user rq */
2292 GEM_BUG_ON(eb.reloc_cache.rq);
2293
0c8dac88 2294 /* Allocate a request for this batch buffer nice and early. */
650bc635
CW
2295 eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
2296 if (IS_ERR(eb.request)) {
2889caa9 2297 err = PTR_ERR(eb.request);
0c8dac88 2298 goto err_batch_unpin;
26827088 2299 }
0c8dac88 2300
fec0445c 2301 if (in_fence) {
2889caa9
CW
2302 err = i915_gem_request_await_dma_fence(eb.request, in_fence);
2303 if (err < 0)
fec0445c
CW
2304 goto err_request;
2305 }
2306
2307 if (out_fence_fd != -1) {
650bc635 2308 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2309 if (!out_fence) {
2889caa9 2310 err = -ENOMEM;
fec0445c
CW
2311 goto err_request;
2312 }
2313 }
2314
2889caa9
CW
2315 /*
2316 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2317 * active_list, and so will hold the active reference. Only when this
2318 * request is retired will the the batch_obj be moved onto the
2319 * inactive_list and lose its active reference. Hence we do not need
2320 * to explicitly hold another reference here.
2321 */
650bc635 2322 eb.request->batch = eb.batch;
5f19e2bf 2323
2889caa9
CW
2324 trace_i915_gem_request_queue(eb.request, eb.batch_flags);
2325 err = eb_submit(&eb);
aa9b7810 2326err_request:
2889caa9 2327 __i915_add_request(eb.request, err == 0);
650bc635 2328 add_to_client(eb.request, file);
c8659efa 2329
fec0445c 2330 if (out_fence) {
2889caa9 2331 if (err == 0) {
fec0445c
CW
2332 fd_install(out_fence_fd, out_fence->file);
2333 args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
2334 args->rsvd2 |= (u64)out_fence_fd << 32;
2335 out_fence_fd = -1;
2336 } else {
2337 fput(out_fence->file);
2338 }
2339 }
54cf91dc 2340
0c8dac88 2341err_batch_unpin:
2889caa9 2342 if (eb.batch_flags & I915_DISPATCH_SECURE)
650bc635 2343 i915_vma_unpin(eb.batch);
2889caa9
CW
2344err_vma:
2345 if (eb.exec)
2346 eb_release_vmas(&eb);
54cf91dc 2347 mutex_unlock(&dev->struct_mutex);
2889caa9 2348err_rpm:
650bc635 2349 intel_runtime_pm_put(eb.i915);
1acfc104
CW
2350 i915_gem_context_put(eb.ctx);
2351err_destroy:
2889caa9 2352 eb_destroy(&eb);
4d470f73 2353err_out_fence:
fec0445c
CW
2354 if (out_fence_fd != -1)
2355 put_unused_fd(out_fence_fd);
4a04e371 2356err_in_fence:
fec0445c 2357 dma_fence_put(in_fence);
2889caa9 2358 return err;
54cf91dc
CW
2359}
2360
2361/*
2362 * Legacy execbuffer just creates an exec2 list from the original exec object
2363 * list array and passes it to the real function.
2364 */
2365int
2366i915_gem_execbuffer(struct drm_device *dev, void *data,
2367 struct drm_file *file)
2368{
2889caa9 2369 const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
54cf91dc
CW
2370 struct drm_i915_gem_execbuffer *args = data;
2371 struct drm_i915_gem_execbuffer2 exec2;
2372 struct drm_i915_gem_exec_object *exec_list = NULL;
2373 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2889caa9
CW
2374 unsigned int i;
2375 int err;
54cf91dc 2376
2889caa9
CW
2377 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2378 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
54cf91dc
CW
2379 return -EINVAL;
2380 }
2381
2889caa9
CW
2382 exec2.buffers_ptr = args->buffers_ptr;
2383 exec2.buffer_count = args->buffer_count;
2384 exec2.batch_start_offset = args->batch_start_offset;
2385 exec2.batch_len = args->batch_len;
2386 exec2.DR1 = args->DR1;
2387 exec2.DR4 = args->DR4;
2388 exec2.num_cliprects = args->num_cliprects;
2389 exec2.cliprects_ptr = args->cliprects_ptr;
2390 exec2.flags = I915_EXEC_RENDER;
2391 i915_execbuffer2_set_context_id(exec2, 0);
2392
2393 if (!i915_gem_check_execbuffer(&exec2))
2394 return -EINVAL;
2395
54cf91dc 2396 /* Copy in the exec list from userland */
2889caa9
CW
2397 exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
2398 __GFP_NOWARN | GFP_TEMPORARY);
2399 exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2400 __GFP_NOWARN | GFP_TEMPORARY);
54cf91dc 2401 if (exec_list == NULL || exec2_list == NULL) {
ff240199 2402 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc 2403 args->buffer_count);
2098105e
MH
2404 kvfree(exec_list);
2405 kvfree(exec2_list);
54cf91dc
CW
2406 return -ENOMEM;
2407 }
2889caa9 2408 err = copy_from_user(exec_list,
3ed605bc 2409 u64_to_user_ptr(args->buffers_ptr),
54cf91dc 2410 sizeof(*exec_list) * args->buffer_count);
2889caa9 2411 if (err) {
ff240199 2412 DRM_DEBUG("copy %d exec entries failed %d\n",
2889caa9 2413 args->buffer_count, err);
2098105e
MH
2414 kvfree(exec_list);
2415 kvfree(exec2_list);
54cf91dc
CW
2416 return -EFAULT;
2417 }
2418
2419 for (i = 0; i < args->buffer_count; i++) {
2420 exec2_list[i].handle = exec_list[i].handle;
2421 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2422 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2423 exec2_list[i].alignment = exec_list[i].alignment;
2424 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2425 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2426 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2427 else
2428 exec2_list[i].flags = 0;
2429 }
2430
2889caa9
CW
2431 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
2432 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2433 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2434 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2435
54cf91dc 2436 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2437 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2438 if (!(exec2_list[i].offset & UPDATE))
2439 continue;
2440
934acce3 2441 exec2_list[i].offset =
2889caa9
CW
2442 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2443 exec2_list[i].offset &= PIN_OFFSET_MASK;
2444 if (__copy_to_user(&user_exec_list[i].offset,
2445 &exec2_list[i].offset,
2446 sizeof(user_exec_list[i].offset)))
9aab8bff 2447 break;
54cf91dc
CW
2448 }
2449 }
2450
2098105e
MH
2451 kvfree(exec_list);
2452 kvfree(exec2_list);
2889caa9 2453 return err;
54cf91dc
CW
2454}
2455
2456int
2457i915_gem_execbuffer2(struct drm_device *dev, void *data,
2458 struct drm_file *file)
2459{
2889caa9 2460 const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
54cf91dc 2461 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9
CW
2462 struct drm_i915_gem_exec_object2 *exec2_list;
2463 int err;
54cf91dc 2464
2889caa9 2465 if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
ff240199 2466 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
54cf91dc
CW
2467 return -EINVAL;
2468 }
2469
2889caa9
CW
2470 if (!i915_gem_check_execbuffer(args))
2471 return -EINVAL;
2472
2473 /* Allocate an extra slot for use by the command parser */
2474 exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2475 __GFP_NOWARN | GFP_TEMPORARY);
54cf91dc 2476 if (exec2_list == NULL) {
ff240199 2477 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc
CW
2478 args->buffer_count);
2479 return -ENOMEM;
2480 }
2889caa9
CW
2481 if (copy_from_user(exec2_list,
2482 u64_to_user_ptr(args->buffers_ptr),
2483 sizeof(*exec2_list) * args->buffer_count)) {
2484 DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
2098105e 2485 kvfree(exec2_list);
54cf91dc
CW
2486 return -EFAULT;
2487 }
2488
2889caa9
CW
2489 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2490
2491 /*
2492 * Now that we have begun execution of the batchbuffer, we ignore
2493 * any new error after this point. Also given that we have already
2494 * updated the associated relocations, we try to write out the current
2495 * object locations irrespective of any error.
2496 */
2497 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2498 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2499 u64_to_user_ptr(args->buffers_ptr);
2500 unsigned int i;
9aab8bff 2501
2889caa9
CW
2502 /* Copy the new buffer offsets back to the user's exec list. */
2503 user_access_begin();
9aab8bff 2504 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2505 if (!(exec2_list[i].offset & UPDATE))
2506 continue;
2507
934acce3 2508 exec2_list[i].offset =
2889caa9
CW
2509 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2510 unsafe_put_user(exec2_list[i].offset,
2511 &user_exec_list[i].offset,
2512 end_user);
54cf91dc 2513 }
2889caa9
CW
2514end_user:
2515 user_access_end();
54cf91dc
CW
2516 }
2517
2889caa9 2518 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 2519 kvfree(exec2_list);
2889caa9 2520 return err;
54cf91dc 2521}