drm/i915/selftests: Apply a subtest filter
[linux-block.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
CommitLineData
54cf91dc
CW
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
daedaa33 29#include <linux/intel-iommu.h>
ad778f89 30#include <linux/reservation.h>
fec0445c 31#include <linux/sync_file.h>
ad778f89
CW
32#include <linux/uaccess.h>
33
cf6e7bac 34#include <drm/drm_syncobj.h>
760285e7 35#include <drm/i915_drm.h>
ad778f89 36
54cf91dc 37#include "i915_drv.h"
57822dc6 38#include "i915_gem_clflush.h"
54cf91dc
CW
39#include "i915_trace.h"
40#include "intel_drv.h"
5d723d7a 41#include "intel_frontbuffer.h"
54cf91dc 42
7dd4f672
CW
43enum {
44 FORCE_CPU_RELOC = 1,
45 FORCE_GTT_RELOC,
46 FORCE_GPU_RELOC,
47#define DBG_FORCE_RELOC 0 /* choose one of the above! */
48};
d50415cc 49
dade2a61
CW
50#define __EXEC_OBJECT_HAS_REF BIT(31)
51#define __EXEC_OBJECT_HAS_PIN BIT(30)
52#define __EXEC_OBJECT_HAS_FENCE BIT(29)
53#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
54#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
55#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
2889caa9
CW
56#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57
58#define __EXEC_HAS_RELOC BIT(31)
59#define __EXEC_VALIDATED BIT(30)
74c1c694 60#define __EXEC_INTERNAL_FLAGS (~0u << 30)
2889caa9 61#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
62
63#define BATCH_OFFSET_BIAS (256*1024)
a415d355 64
650bc635 65#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
66 (__I915_EXEC_UNKNOWN_FLAGS | \
67 I915_EXEC_CONSTANTS_MASK | \
68 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 69
d20ac620
CW
70/* Catch emission of unexpected errors for CI! */
71#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
72#undef EINVAL
73#define EINVAL ({ \
74 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
75 22; \
76})
77#endif
78
2889caa9
CW
79/**
80 * DOC: User command execution
81 *
82 * Userspace submits commands to be executed on the GPU as an instruction
83 * stream within a GEM object we call a batchbuffer. This instructions may
84 * refer to other GEM objects containing auxiliary state such as kernels,
85 * samplers, render targets and even secondary batchbuffers. Userspace does
86 * not know where in the GPU memory these objects reside and so before the
87 * batchbuffer is passed to the GPU for execution, those addresses in the
88 * batchbuffer and auxiliary objects are updated. This is known as relocation,
89 * or patching. To try and avoid having to relocate each object on the next
90 * execution, userspace is told the location of those objects in this pass,
91 * but this remains just a hint as the kernel may choose a new location for
92 * any object in the future.
93 *
99d7e4ee
KR
94 * At the level of talking to the hardware, submitting a batchbuffer for the
95 * GPU to execute is to add content to a buffer from which the HW
96 * command streamer is reading.
97 *
98 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
99 * Execlists, this command is not placed on the same buffer as the
100 * remaining items.
101 *
102 * 2. Add a command to invalidate caches to the buffer.
103 *
104 * 3. Add a batchbuffer start command to the buffer; the start command is
105 * essentially a token together with the GPU address of the batchbuffer
106 * to be executed.
107 *
108 * 4. Add a pipeline flush to the buffer.
109 *
110 * 5. Add a memory write command to the buffer to record when the GPU
111 * is done executing the batchbuffer. The memory write writes the
112 * global sequence number of the request, ``i915_request::global_seqno``;
113 * the i915 driver uses the current value in the register to determine
114 * if the GPU has completed the batchbuffer.
115 *
116 * 6. Add a user interrupt command to the buffer. This command instructs
117 * the GPU to issue an interrupt when the command, pipeline flush and
118 * memory write are completed.
119 *
120 * 7. Inform the hardware of the additional commands added to the buffer
121 * (by updating the tail pointer).
122 *
2889caa9
CW
123 * Processing an execbuf ioctl is conceptually split up into a few phases.
124 *
125 * 1. Validation - Ensure all the pointers, handles and flags are valid.
126 * 2. Reservation - Assign GPU address space for every object
127 * 3. Relocation - Update any addresses to point to the final locations
128 * 4. Serialisation - Order the request with respect to its dependencies
129 * 5. Construction - Construct a request to execute the batchbuffer
130 * 6. Submission (at some point in the future execution)
131 *
132 * Reserving resources for the execbuf is the most complicated phase. We
133 * neither want to have to migrate the object in the address space, nor do
134 * we want to have to update any relocations pointing to this object. Ideally,
135 * we want to leave the object where it is and for all the existing relocations
136 * to match. If the object is given a new address, or if userspace thinks the
137 * object is elsewhere, we have to parse all the relocation entries and update
138 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
139 * all the target addresses in all of its objects match the value in the
140 * relocation entries and that they all match the presumed offsets given by the
141 * list of execbuffer objects. Using this knowledge, we know that if we haven't
142 * moved any buffers, all the relocation entries are valid and we can skip
143 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
144 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145 *
146 * The addresses written in the objects must match the corresponding
147 * reloc.presumed_offset which in turn must match the corresponding
148 * execobject.offset.
149 *
150 * Any render targets written to in the batch must be flagged with
151 * EXEC_OBJECT_WRITE.
152 *
153 * To avoid stalling, execobject.offset should match the current
154 * address of that object within the active context.
155 *
156 * The reservation is done is multiple phases. First we try and keep any
157 * object already bound in its current location - so as long as meets the
158 * constraints imposed by the new execbuffer. Any object left unbound after the
159 * first pass is then fitted into any available idle space. If an object does
160 * not fit, all objects are removed from the reservation and the process rerun
161 * after sorting the objects into a priority order (more difficult to fit
162 * objects are tried first). Failing that, the entire VM is cleared and we try
163 * to fit the execbuf once last time before concluding that it simply will not
164 * fit.
165 *
166 * A small complication to all of this is that we allow userspace not only to
167 * specify an alignment and a size for the object in the address space, but
168 * we also allow userspace to specify the exact offset. This objects are
169 * simpler to place (the location is known a priori) all we have to do is make
170 * sure the space is available.
171 *
172 * Once all the objects are in place, patching up the buried pointers to point
173 * to the final locations is a fairly simple job of walking over the relocation
174 * entry arrays, looking up the right address and rewriting the value into
175 * the object. Simple! ... The relocation entries are stored in user memory
176 * and so to access them we have to copy them into a local buffer. That copy
177 * has to avoid taking any pagefaults as they may lead back to a GEM object
178 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
179 * the relocation into multiple passes. First we try to do everything within an
180 * atomic context (avoid the pagefaults) which requires that we never wait. If
181 * we detect that we may wait, or if we need to fault, then we have to fallback
182 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
183 * bells yet?) Dropping the mutex means that we lose all the state we have
184 * built up so far for the execbuf and we must reset any global data. However,
185 * we do leave the objects pinned in their final locations - which is a
186 * potential issue for concurrent execbufs. Once we have left the mutex, we can
187 * allocate and copy all the relocation entries into a large array at our
188 * leisure, reacquire the mutex, reclaim all the objects and other state and
189 * then proceed to update any incorrect addresses with the objects.
190 *
191 * As we process the relocation entries, we maintain a record of whether the
192 * object is being written to. Using NORELOC, we expect userspace to provide
193 * this information instead. We also check whether we can skip the relocation
194 * by comparing the expected value inside the relocation entry with the target's
195 * final address. If they differ, we have to map the current object and rewrite
196 * the 4 or 8 byte pointer within.
197 *
198 * Serialising an execbuf is quite simple according to the rules of the GEM
199 * ABI. Execution within each context is ordered by the order of submission.
200 * Writes to any GEM object are in order of submission and are exclusive. Reads
201 * from a GEM object are unordered with respect to other reads, but ordered by
202 * writes. A write submitted after a read cannot occur before the read, and
203 * similarly any read submitted after a write cannot occur before the write.
204 * Writes are ordered between engines such that only one write occurs at any
205 * time (completing any reads beforehand) - using semaphores where available
206 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
207 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
208 * reads before starting, and any read (either using set-domain or pread) must
209 * flush all GPU writes before starting. (Note we only employ a barrier before,
210 * we currently rely on userspace not concurrently starting a new execution
211 * whilst reading or writing to an object. This may be an advantage or not
212 * depending on how much you trust userspace not to shoot themselves in the
213 * foot.) Serialisation may just result in the request being inserted into
214 * a DAG awaiting its turn, but most simple is to wait on the CPU until
215 * all dependencies are resolved.
216 *
217 * After all of that, is just a matter of closing the request and handing it to
218 * the hardware (well, leaving it in a queue to be executed). However, we also
219 * offer the ability for batchbuffers to be run with elevated privileges so
220 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
221 * Before any batch is given extra privileges we first must check that it
222 * contains no nefarious instructions, we check that each instruction is from
223 * our whitelist and all registers are also from an allowed list. We first
224 * copy the user's batchbuffer to a shadow (so that the user doesn't have
225 * access to it, either by the CPU or GPU as we scan it) and then parse each
226 * instruction. If everything is ok, we set a flag telling the hardware to run
227 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
228 */
229
650bc635 230struct i915_execbuffer {
2889caa9
CW
231 struct drm_i915_private *i915; /** i915 backpointer */
232 struct drm_file *file; /** per-file lookup tables and limits */
233 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
234 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
c7c6e46f
CW
235 struct i915_vma **vma;
236 unsigned int *flags;
2889caa9
CW
237
238 struct intel_engine_cs *engine; /** engine to queue the request to */
239 struct i915_gem_context *ctx; /** context for building the request */
240 struct i915_address_space *vm; /** GTT and vma for the request */
241
e61e0f51 242 struct i915_request *request; /** our request to build */
2889caa9
CW
243 struct i915_vma *batch; /** identity of the batch obj/vma */
244
245 /** actual size of execobj[] as we may extend it for the cmdparser */
246 unsigned int buffer_count;
247
248 /** list of vma not yet bound during reservation phase */
249 struct list_head unbound;
250
251 /** list of vma that have execobj.relocation_count */
252 struct list_head relocs;
253
254 /**
255 * Track the most recently used object for relocations, as we
256 * frequently have to perform multiple relocations within the same
257 * obj/page
258 */
650bc635 259 struct reloc_cache {
2889caa9
CW
260 struct drm_mm_node node; /** temporary GTT binding */
261 unsigned long vaddr; /** Current kmap address */
262 unsigned long page; /** Currently mapped page index */
7dd4f672 263 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 264 bool use_64bit_reloc : 1;
2889caa9
CW
265 bool has_llc : 1;
266 bool has_fence : 1;
267 bool needs_unfenced : 1;
7dd4f672 268
e61e0f51 269 struct i915_request *rq;
7dd4f672
CW
270 u32 *rq_cmd;
271 unsigned int rq_size;
650bc635 272 } reloc_cache;
2889caa9
CW
273
274 u64 invalid_flags; /** Set of execobj.flags that are invalid */
275 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
276
277 u32 batch_start_offset; /** Location within object of batch */
278 u32 batch_len; /** Length of batch within object */
279 u32 batch_flags; /** Flags composed for emit_bb_start() */
280
281 /**
282 * Indicate either the size of the hastable used to resolve
283 * relocation handles, or if negative that we are using a direct
284 * index into the execobj[].
285 */
286 int lut_size;
287 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
288};
289
c7c6e46f 290#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
4ff4b44c 291
2889caa9
CW
292/*
293 * Used to convert any address to canonical form.
294 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
295 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
296 * addresses to be in a canonical form:
297 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
298 * canonical form [63:48] == [47]."
299 */
300#define GEN8_HIGH_ADDRESS_BIT 47
301static inline u64 gen8_canonical_addr(u64 address)
302{
303 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
304}
305
306static inline u64 gen8_noncanonical_addr(u64 address)
307{
308 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
309}
310
3dbf26ed
CW
311static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
312{
439e2ee4 313 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
3dbf26ed
CW
314}
315
650bc635 316static int eb_create(struct i915_execbuffer *eb)
67731b87 317{
2889caa9
CW
318 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
319 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 320
2889caa9
CW
321 /*
322 * Without a 1:1 association between relocation handles and
323 * the execobject[] index, we instead create a hashtable.
324 * We size it dynamically based on available memory, starting
325 * first with 1:1 assocative hash and scaling back until
326 * the allocation succeeds.
327 *
328 * Later on we use a positive lut_size to indicate we are
329 * using this hashtable, and a negative value to indicate a
330 * direct lookup.
331 */
4ff4b44c 332 do {
0d95c883 333 gfp_t flags;
4d470f73
CW
334
335 /* While we can still reduce the allocation size, don't
336 * raise a warning and allow the allocation to fail.
337 * On the last pass though, we want to try as hard
338 * as possible to perform the allocation and warn
339 * if it fails.
340 */
0ee931c4 341 flags = GFP_KERNEL;
4d470f73
CW
342 if (size > 1)
343 flags |= __GFP_NORETRY | __GFP_NOWARN;
344
4ff4b44c 345 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 346 flags);
4ff4b44c
CW
347 if (eb->buckets)
348 break;
349 } while (--size);
350
4d470f73
CW
351 if (unlikely(!size))
352 return -ENOMEM;
eef90ccb 353
2889caa9 354 eb->lut_size = size;
650bc635 355 } else {
2889caa9 356 eb->lut_size = -eb->buffer_count;
650bc635 357 }
eef90ccb 358
650bc635 359 return 0;
67731b87
CW
360}
361
2889caa9
CW
362static bool
363eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
364 const struct i915_vma *vma,
365 unsigned int flags)
2889caa9 366{
2889caa9
CW
367 if (vma->node.size < entry->pad_to_size)
368 return true;
369
370 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
371 return true;
372
c7c6e46f 373 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
374 vma->node.start != entry->offset)
375 return true;
376
c7c6e46f 377 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
378 vma->node.start < BATCH_OFFSET_BIAS)
379 return true;
380
c7c6e46f 381 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
382 (vma->node.start + vma->node.size - 1) >> 32)
383 return true;
384
1d033beb
CW
385 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
386 !i915_vma_is_map_and_fenceable(vma))
387 return true;
388
2889caa9
CW
389 return false;
390}
391
c7c6e46f 392static inline bool
2889caa9 393eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 394 const struct drm_i915_gem_exec_object2 *entry,
2889caa9
CW
395 struct i915_vma *vma)
396{
c7c6e46f
CW
397 unsigned int exec_flags = *vma->exec_flags;
398 u64 pin_flags;
2889caa9 399
616d9cee 400 if (vma->node.size)
c7c6e46f 401 pin_flags = vma->node.start;
616d9cee 402 else
c7c6e46f 403 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 404
c7c6e46f
CW
405 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
406 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
407 pin_flags |= PIN_GLOBAL;
616d9cee 408
c7c6e46f
CW
409 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
410 return false;
2889caa9 411
c7c6e46f 412 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 413 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 414 i915_vma_unpin(vma);
c7c6e46f 415 return false;
2889caa9
CW
416 }
417
3bd40735 418 if (vma->fence)
c7c6e46f 419 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
420 }
421
c7c6e46f
CW
422 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
423 return !eb_vma_misplaced(entry, vma, exec_flags);
2889caa9
CW
424}
425
c7c6e46f 426static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
d55495b4 427{
c7c6e46f 428 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
2889caa9 429
c7c6e46f 430 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
3bd40735 431 __i915_vma_unpin_fence(vma);
d55495b4 432
2889caa9 433 __i915_vma_unpin(vma);
d55495b4
CW
434}
435
2889caa9 436static inline void
c7c6e46f 437eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
d55495b4 438{
c7c6e46f 439 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
2889caa9 440 return;
d55495b4 441
c7c6e46f
CW
442 __eb_unreserve_vma(vma, *flags);
443 *flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
444}
445
2889caa9
CW
446static int
447eb_validate_vma(struct i915_execbuffer *eb,
448 struct drm_i915_gem_exec_object2 *entry,
449 struct i915_vma *vma)
67731b87 450{
2889caa9
CW
451 if (unlikely(entry->flags & eb->invalid_flags))
452 return -EINVAL;
d55495b4 453
2889caa9
CW
454 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
455 return -EINVAL;
456
457 /*
458 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
459 * any non-page-aligned or non-canonical addresses.
460 */
461 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 462 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
463 return -EINVAL;
464
465 /* pad_to_size was once a reserved field, so sanitize it */
466 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
467 if (unlikely(offset_in_page(entry->pad_to_size)))
468 return -EINVAL;
469 } else {
470 entry->pad_to_size = 0;
d55495b4
CW
471 }
472
c7c6e46f 473 if (unlikely(vma->exec_flags)) {
2889caa9
CW
474 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
475 entry->handle, (int)(entry - eb->exec));
476 return -EINVAL;
477 }
478
479 /*
480 * From drm_mm perspective address space is continuous,
481 * so from this point we're always using non-canonical
482 * form internally.
483 */
484 entry->offset = gen8_noncanonical_addr(entry->offset);
485
c7c6e46f
CW
486 if (!eb->reloc_cache.has_fence) {
487 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
488 } else {
489 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
490 eb->reloc_cache.needs_unfenced) &&
491 i915_gem_object_is_tiled(vma->obj))
492 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
493 }
494
495 if (!(entry->flags & EXEC_OBJECT_PINNED))
496 entry->flags |= eb->context_flags;
497
2889caa9 498 return 0;
67731b87
CW
499}
500
2889caa9 501static int
746c8f14
CW
502eb_add_vma(struct i915_execbuffer *eb,
503 unsigned int i, unsigned batch_idx,
504 struct i915_vma *vma)
59bfa124 505{
c7c6e46f 506 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
2889caa9
CW
507 int err;
508
509 GEM_BUG_ON(i915_vma_is_closed(vma));
510
511 if (!(eb->args->flags & __EXEC_VALIDATED)) {
512 err = eb_validate_vma(eb, entry, vma);
513 if (unlikely(err))
514 return err;
4ff4b44c 515 }
4ff4b44c 516
4d470f73 517 if (eb->lut_size > 0) {
2889caa9 518 vma->exec_handle = entry->handle;
4ff4b44c 519 hlist_add_head(&vma->exec_node,
2889caa9
CW
520 &eb->buckets[hash_32(entry->handle,
521 eb->lut_size)]);
4ff4b44c 522 }
59bfa124 523
2889caa9
CW
524 if (entry->relocation_count)
525 list_add_tail(&vma->reloc_link, &eb->relocs);
526
2889caa9
CW
527 /*
528 * Stash a pointer from the vma to execobj, so we can query its flags,
529 * size, alignment etc as provided by the user. Also we stash a pointer
530 * to the vma inside the execobj so that we can use a direct lookup
531 * to find the right target VMA when doing relocations.
532 */
c7c6e46f 533 eb->vma[i] = vma;
d1b48c1e 534 eb->flags[i] = entry->flags;
c7c6e46f 535 vma->exec_flags = &eb->flags[i];
2889caa9 536
746c8f14
CW
537 /*
538 * SNA is doing fancy tricks with compressing batch buffers, which leads
539 * to negative relocation deltas. Usually that works out ok since the
540 * relocate address is still positive, except when the batch is placed
541 * very low in the GTT. Ensure this doesn't happen.
542 *
543 * Note that actual hangs have only been observed on gen7, but for
544 * paranoia do it everywhere.
545 */
546 if (i == batch_idx) {
827db9d8
CW
547 if (entry->relocation_count &&
548 !(eb->flags[i] & EXEC_OBJECT_PINNED))
746c8f14
CW
549 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
550 if (eb->reloc_cache.has_fence)
551 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
552
553 eb->batch = vma;
554 }
555
2889caa9 556 err = 0;
c7c6e46f 557 if (eb_pin_vma(eb, entry, vma)) {
2889caa9
CW
558 if (entry->offset != vma->node.start) {
559 entry->offset = vma->node.start | UPDATE;
560 eb->args->flags |= __EXEC_HAS_RELOC;
561 }
c7c6e46f
CW
562 } else {
563 eb_unreserve_vma(vma, vma->exec_flags);
564
565 list_add_tail(&vma->exec_link, &eb->unbound);
566 if (drm_mm_node_allocated(&vma->node))
567 err = i915_vma_unbind(vma);
ed2f3532
CW
568 if (unlikely(err))
569 vma->exec_flags = NULL;
2889caa9
CW
570 }
571 return err;
572}
573
574static inline int use_cpu_reloc(const struct reloc_cache *cache,
575 const struct drm_i915_gem_object *obj)
576{
577 if (!i915_gem_object_has_struct_page(obj))
578 return false;
579
7dd4f672
CW
580 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
581 return true;
582
583 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
584 return false;
2889caa9
CW
585
586 return (cache->has_llc ||
587 obj->cache_dirty ||
588 obj->cache_level != I915_CACHE_NONE);
589}
590
591static int eb_reserve_vma(const struct i915_execbuffer *eb,
592 struct i915_vma *vma)
593{
c7c6e46f
CW
594 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
595 unsigned int exec_flags = *vma->exec_flags;
596 u64 pin_flags;
2889caa9
CW
597 int err;
598
c7c6e46f
CW
599 pin_flags = PIN_USER | PIN_NONBLOCK;
600 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
601 pin_flags |= PIN_GLOBAL;
2889caa9
CW
602
603 /*
604 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
605 * limit address to the first 4GBs for unflagged objects.
606 */
c7c6e46f
CW
607 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
608 pin_flags |= PIN_ZONE_4G;
2889caa9 609
c7c6e46f
CW
610 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
611 pin_flags |= PIN_MAPPABLE;
2889caa9 612
c7c6e46f
CW
613 if (exec_flags & EXEC_OBJECT_PINNED) {
614 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
615 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
616 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
617 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
2889caa9
CW
618 }
619
c7c6e46f
CW
620 err = i915_vma_pin(vma,
621 entry->pad_to_size, entry->alignment,
622 pin_flags);
2889caa9
CW
623 if (err)
624 return err;
625
626 if (entry->offset != vma->node.start) {
627 entry->offset = vma->node.start | UPDATE;
628 eb->args->flags |= __EXEC_HAS_RELOC;
629 }
630
c7c6e46f 631 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 632 err = i915_vma_pin_fence(vma);
2889caa9
CW
633 if (unlikely(err)) {
634 i915_vma_unpin(vma);
635 return err;
636 }
637
3bd40735 638 if (vma->fence)
c7c6e46f 639 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
640 }
641
c7c6e46f
CW
642 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
643 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
1da7b54c 644
2889caa9
CW
645 return 0;
646}
647
648static int eb_reserve(struct i915_execbuffer *eb)
649{
650 const unsigned int count = eb->buffer_count;
651 struct list_head last;
652 struct i915_vma *vma;
653 unsigned int i, pass;
654 int err;
655
656 /*
657 * Attempt to pin all of the buffers into the GTT.
658 * This is done in 3 phases:
659 *
660 * 1a. Unbind all objects that do not match the GTT constraints for
661 * the execbuffer (fenceable, mappable, alignment etc).
662 * 1b. Increment pin count for already bound objects.
663 * 2. Bind new objects.
664 * 3. Decrement pin count.
665 *
666 * This avoid unnecessary unbinding of later objects in order to make
667 * room for the earlier objects *unless* we need to defragment.
668 */
669
670 pass = 0;
671 err = 0;
672 do {
673 list_for_each_entry(vma, &eb->unbound, exec_link) {
674 err = eb_reserve_vma(eb, vma);
675 if (err)
676 break;
677 }
678 if (err != -ENOSPC)
679 return err;
680
681 /* Resort *all* the objects into priority order */
682 INIT_LIST_HEAD(&eb->unbound);
683 INIT_LIST_HEAD(&last);
684 for (i = 0; i < count; i++) {
c7c6e46f
CW
685 unsigned int flags = eb->flags[i];
686 struct i915_vma *vma = eb->vma[i];
2889caa9 687
c7c6e46f
CW
688 if (flags & EXEC_OBJECT_PINNED &&
689 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
690 continue;
691
c7c6e46f 692 eb_unreserve_vma(vma, &eb->flags[i]);
2889caa9 693
c7c6e46f 694 if (flags & EXEC_OBJECT_PINNED)
35e882a4 695 /* Pinned must have their slot */
2889caa9 696 list_add(&vma->exec_link, &eb->unbound);
c7c6e46f 697 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 698 /* Map require the lowest 256MiB (aperture) */
2889caa9 699 list_add_tail(&vma->exec_link, &eb->unbound);
35e882a4
CW
700 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
701 /* Prioritise 4GiB region for restricted bo */
702 list_add(&vma->exec_link, &last);
2889caa9
CW
703 else
704 list_add_tail(&vma->exec_link, &last);
705 }
706 list_splice_tail(&last, &eb->unbound);
707
708 switch (pass++) {
709 case 0:
710 break;
711
712 case 1:
713 /* Too fragmented, unbind everything and retry */
714 err = i915_gem_evict_vm(eb->vm);
715 if (err)
716 return err;
717 break;
718
719 default:
720 return -ENOSPC;
721 }
722 } while (1);
4ff4b44c 723}
59bfa124 724
2889caa9
CW
725static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
726{
1a71cf2f
CW
727 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
728 return 0;
729 else
730 return eb->buffer_count - 1;
2889caa9
CW
731}
732
733static int eb_select_context(struct i915_execbuffer *eb)
734{
735 struct i915_gem_context *ctx;
736
737 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
738 if (unlikely(!ctx))
739 return -ENOENT;
2889caa9 740
1acfc104 741 eb->ctx = ctx;
4f2c7337
CW
742 if (ctx->ppgtt) {
743 eb->vm = &ctx->ppgtt->vm;
744 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
745 } else {
746 eb->vm = &eb->i915->ggtt.vm;
747 }
2889caa9
CW
748
749 eb->context_flags = 0;
d3f3e5e4 750 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
2889caa9
CW
751 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
752
753 return 0;
754}
755
756static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 757{
d1b48c1e 758 struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
ac70ebe8 759 struct drm_i915_gem_object *obj;
746c8f14 760 unsigned int i, batch;
2889caa9 761 int err;
3b96eff4 762
8bcbfb12
CW
763 if (unlikely(i915_gem_context_is_closed(eb->ctx)))
764 return -ENOENT;
765
766 if (unlikely(i915_gem_context_is_banned(eb->ctx)))
767 return -EIO;
768
2889caa9
CW
769 INIT_LIST_HEAD(&eb->relocs);
770 INIT_LIST_HEAD(&eb->unbound);
d55495b4 771
746c8f14
CW
772 batch = eb_batch_index(eb);
773
170fa29b
CW
774 for (i = 0; i < eb->buffer_count; i++) {
775 u32 handle = eb->exec[i].handle;
d1b48c1e 776 struct i915_lut_handle *lut;
170fa29b 777 struct i915_vma *vma;
4ff4b44c 778
d1b48c1e
CW
779 vma = radix_tree_lookup(handles_vma, handle);
780 if (likely(vma))
170fa29b 781 goto add_vma;
4ff4b44c 782
170fa29b 783 obj = i915_gem_object_lookup(eb->file, handle);
4ff4b44c 784 if (unlikely(!obj)) {
2889caa9 785 err = -ENOENT;
170fa29b 786 goto err_vma;
3b96eff4
CW
787 }
788
650bc635 789 vma = i915_vma_instance(obj, eb->vm, NULL);
058d88c4 790 if (unlikely(IS_ERR(vma))) {
2889caa9 791 err = PTR_ERR(vma);
170fa29b 792 goto err_obj;
27173f1f
BW
793 }
794
d1b48c1e
CW
795 lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
796 if (unlikely(!lut)) {
797 err = -ENOMEM;
798 goto err_obj;
799 }
800
801 err = radix_tree_insert(handles_vma, handle, vma);
802 if (unlikely(err)) {
6be1187d 803 kmem_cache_free(eb->i915->luts, lut);
d1b48c1e 804 goto err_obj;
eef90ccb 805 }
4ff4b44c 806
ac70ebe8 807 /* transfer ref to ctx */
3365e226
CW
808 if (!vma->open_count++)
809 i915_vma_reopen(vma);
d1b48c1e
CW
810 list_add(&lut->obj_link, &obj->lut_list);
811 list_add(&lut->ctx_link, &eb->ctx->handles_list);
812 lut->ctx = eb->ctx;
813 lut->handle = handle;
814
170fa29b 815add_vma:
746c8f14 816 err = eb_add_vma(eb, i, batch, vma);
2889caa9 817 if (unlikely(err))
ac70ebe8 818 goto err_vma;
dade2a61 819
c7c6e46f
CW
820 GEM_BUG_ON(vma != eb->vma[i]);
821 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
746c8f14
CW
822 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
823 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
4ff4b44c
CW
824 }
825
2889caa9
CW
826 eb->args->flags |= __EXEC_VALIDATED;
827 return eb_reserve(eb);
828
170fa29b 829err_obj:
ac70ebe8 830 i915_gem_object_put(obj);
170fa29b
CW
831err_vma:
832 eb->vma[i] = NULL;
2889caa9 833 return err;
3b96eff4
CW
834}
835
4ff4b44c 836static struct i915_vma *
2889caa9 837eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 838{
2889caa9
CW
839 if (eb->lut_size < 0) {
840 if (handle >= -eb->lut_size)
eef90ccb 841 return NULL;
c7c6e46f 842 return eb->vma[handle];
eef90ccb
CW
843 } else {
844 struct hlist_head *head;
aa45950b 845 struct i915_vma *vma;
67731b87 846
2889caa9 847 head = &eb->buckets[hash_32(handle, eb->lut_size)];
aa45950b 848 hlist_for_each_entry(vma, head, exec_node) {
27173f1f
BW
849 if (vma->exec_handle == handle)
850 return vma;
eef90ccb
CW
851 }
852 return NULL;
853 }
67731b87
CW
854}
855
2889caa9 856static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 857{
2889caa9
CW
858 const unsigned int count = eb->buffer_count;
859 unsigned int i;
860
861 for (i = 0; i < count; i++) {
c7c6e46f
CW
862 struct i915_vma *vma = eb->vma[i];
863 unsigned int flags = eb->flags[i];
650bc635 864
2889caa9 865 if (!vma)
170fa29b 866 break;
bcffc3fa 867
c7c6e46f
CW
868 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
869 vma->exec_flags = NULL;
870 eb->vma[i] = NULL;
9e53d9be 871
c7c6e46f
CW
872 if (flags & __EXEC_OBJECT_HAS_PIN)
873 __eb_unreserve_vma(vma, flags);
dade2a61 874
c7c6e46f 875 if (flags & __EXEC_OBJECT_HAS_REF)
dade2a61 876 i915_vma_put(vma);
2889caa9 877 }
dabdfe02
CW
878}
879
2889caa9 880static void eb_reset_vmas(const struct i915_execbuffer *eb)
934acce3 881{
2889caa9 882 eb_release_vmas(eb);
4d470f73 883 if (eb->lut_size > 0)
2889caa9
CW
884 memset(eb->buckets, 0,
885 sizeof(struct hlist_head) << eb->lut_size);
934acce3
MW
886}
887
2889caa9 888static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 889{
7dd4f672
CW
890 GEM_BUG_ON(eb->reloc_cache.rq);
891
4d470f73 892 if (eb->lut_size > 0)
2889caa9 893 kfree(eb->buckets);
934acce3
MW
894}
895
2889caa9 896static inline u64
d50415cc 897relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 898 const struct i915_vma *target)
934acce3 899{
2889caa9 900 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
901}
902
d50415cc
CW
903static void reloc_cache_init(struct reloc_cache *cache,
904 struct drm_i915_private *i915)
5032d871 905{
31a39207 906 cache->page = -1;
d50415cc 907 cache->vaddr = 0;
dfc5148f 908 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 909 cache->gen = INTEL_GEN(i915);
2889caa9 910 cache->has_llc = HAS_LLC(i915);
dfc5148f 911 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
912 cache->has_fence = cache->gen < 4;
913 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
e8cb909a 914 cache->node.allocated = false;
7dd4f672
CW
915 cache->rq = NULL;
916 cache->rq_size = 0;
d50415cc 917}
5032d871 918
d50415cc
CW
919static inline void *unmask_page(unsigned long p)
920{
921 return (void *)(uintptr_t)(p & PAGE_MASK);
922}
923
924static inline unsigned int unmask_flags(unsigned long p)
925{
926 return p & ~PAGE_MASK;
31a39207
CW
927}
928
d50415cc
CW
929#define KMAP 0x4 /* after CLFLUSH_FLAGS */
930
650bc635
CW
931static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
932{
933 struct drm_i915_private *i915 =
934 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
935 return &i915->ggtt;
936}
937
7dd4f672
CW
938static void reloc_gpu_flush(struct reloc_cache *cache)
939{
940 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
941 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
942 i915_gem_object_unpin_map(cache->rq->batch->obj);
943 i915_gem_chipset_flush(cache->rq->i915);
944
697b9a87 945 i915_request_add(cache->rq);
7dd4f672
CW
946 cache->rq = NULL;
947}
948
650bc635 949static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 950{
d50415cc 951 void *vaddr;
5032d871 952
7dd4f672
CW
953 if (cache->rq)
954 reloc_gpu_flush(cache);
955
31a39207
CW
956 if (!cache->vaddr)
957 return;
3c94ceee 958
d50415cc
CW
959 vaddr = unmask_page(cache->vaddr);
960 if (cache->vaddr & KMAP) {
961 if (cache->vaddr & CLFLUSH_AFTER)
962 mb();
3c94ceee 963
d50415cc
CW
964 kunmap_atomic(vaddr);
965 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
966 } else {
e8cb909a 967 wmb();
d50415cc 968 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 969 if (cache->node.allocated) {
650bc635 970 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 971
82ad6443
CW
972 ggtt->vm.clear_range(&ggtt->vm,
973 cache->node.start,
974 cache->node.size);
e8cb909a
CW
975 drm_mm_remove_node(&cache->node);
976 } else {
977 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 978 }
31a39207 979 }
650bc635
CW
980
981 cache->vaddr = 0;
982 cache->page = -1;
31a39207
CW
983}
984
985static void *reloc_kmap(struct drm_i915_gem_object *obj,
986 struct reloc_cache *cache,
2889caa9 987 unsigned long page)
31a39207 988{
d50415cc
CW
989 void *vaddr;
990
991 if (cache->vaddr) {
992 kunmap_atomic(unmask_page(cache->vaddr));
993 } else {
994 unsigned int flushes;
2889caa9 995 int err;
31a39207 996
2889caa9
CW
997 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
998 if (err)
999 return ERR_PTR(err);
d50415cc
CW
1000
1001 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1002 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 1003
d50415cc
CW
1004 cache->vaddr = flushes | KMAP;
1005 cache->node.mm = (void *)obj;
1006 if (flushes)
1007 mb();
3c94ceee
BW
1008 }
1009
d50415cc
CW
1010 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1011 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 1012 cache->page = page;
5032d871 1013
d50415cc 1014 return vaddr;
5032d871
RB
1015}
1016
d50415cc
CW
1017static void *reloc_iomap(struct drm_i915_gem_object *obj,
1018 struct reloc_cache *cache,
2889caa9 1019 unsigned long page)
5032d871 1020{
650bc635 1021 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1022 unsigned long offset;
d50415cc 1023 void *vaddr;
5032d871 1024
d50415cc 1025 if (cache->vaddr) {
615e5000 1026 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
1027 } else {
1028 struct i915_vma *vma;
2889caa9 1029 int err;
5032d871 1030
2889caa9 1031 if (use_cpu_reloc(cache, obj))
d50415cc 1032 return NULL;
3c94ceee 1033
2889caa9
CW
1034 err = i915_gem_object_set_to_gtt_domain(obj, true);
1035 if (err)
1036 return ERR_PTR(err);
3c94ceee 1037
d50415cc 1038 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
3c755c5b
CW
1039 PIN_MAPPABLE |
1040 PIN_NONBLOCK |
1041 PIN_NONFAULT);
e8cb909a
CW
1042 if (IS_ERR(vma)) {
1043 memset(&cache->node, 0, sizeof(cache->node));
2889caa9 1044 err = drm_mm_insert_node_in_range
82ad6443 1045 (&ggtt->vm.mm, &cache->node,
f51455d4 1046 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1047 0, ggtt->mappable_end,
4e64e553 1048 DRM_MM_INSERT_LOW);
2889caa9 1049 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1050 return NULL;
e8cb909a 1051 } else {
2889caa9
CW
1052 err = i915_vma_put_fence(vma);
1053 if (err) {
e8cb909a 1054 i915_vma_unpin(vma);
2889caa9 1055 return ERR_PTR(err);
e8cb909a 1056 }
5032d871 1057
e8cb909a
CW
1058 cache->node.start = vma->node.start;
1059 cache->node.mm = (void *)vma;
3c94ceee 1060 }
e8cb909a 1061 }
3c94ceee 1062
e8cb909a
CW
1063 offset = cache->node.start;
1064 if (cache->node.allocated) {
fc099090 1065 wmb();
82ad6443
CW
1066 ggtt->vm.insert_page(&ggtt->vm,
1067 i915_gem_object_get_dma_address(obj, page),
1068 offset, I915_CACHE_NONE, 0);
e8cb909a
CW
1069 } else {
1070 offset += page << PAGE_SHIFT;
3c94ceee
BW
1071 }
1072
73ebd503 1073 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
650bc635 1074 offset);
d50415cc
CW
1075 cache->page = page;
1076 cache->vaddr = (unsigned long)vaddr;
5032d871 1077
d50415cc 1078 return vaddr;
5032d871
RB
1079}
1080
d50415cc
CW
1081static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1082 struct reloc_cache *cache,
2889caa9 1083 unsigned long page)
edf4427b 1084{
d50415cc 1085 void *vaddr;
5032d871 1086
d50415cc
CW
1087 if (cache->page == page) {
1088 vaddr = unmask_page(cache->vaddr);
1089 } else {
1090 vaddr = NULL;
1091 if ((cache->vaddr & KMAP) == 0)
1092 vaddr = reloc_iomap(obj, cache, page);
1093 if (!vaddr)
1094 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1095 }
1096
d50415cc 1097 return vaddr;
edf4427b
CW
1098}
1099
d50415cc 1100static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1101{
d50415cc
CW
1102 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1103 if (flushes & CLFLUSH_BEFORE) {
1104 clflushopt(addr);
1105 mb();
1106 }
edf4427b 1107
d50415cc 1108 *addr = value;
edf4427b 1109
2889caa9
CW
1110 /*
1111 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1112 * (including clflush). On the write path, we only require
1113 * that it hits memory in an orderly fashion and place
1114 * mb barriers at the start and end of the relocation phase
1115 * to ensure ordering of clflush wrt to the system.
1116 */
1117 if (flushes & CLFLUSH_AFTER)
1118 clflushopt(addr);
1119 } else
1120 *addr = value;
edf4427b 1121}
edf4427b 1122
7dd4f672
CW
1123static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1124 struct i915_vma *vma,
1125 unsigned int len)
1126{
1127 struct reloc_cache *cache = &eb->reloc_cache;
1128 struct drm_i915_gem_object *obj;
e61e0f51 1129 struct i915_request *rq;
7dd4f672
CW
1130 struct i915_vma *batch;
1131 u32 *cmd;
1132 int err;
1133
46223993
CW
1134 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) {
1135 obj = vma->obj;
1136 if (obj->cache_dirty & ~obj->cache_coherent)
1137 i915_gem_clflush_object(obj, 0);
1138 obj->write_domain = 0;
1139 }
1140
c0a51fd0 1141 GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
7dd4f672
CW
1142
1143 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1144 if (IS_ERR(obj))
1145 return PTR_ERR(obj);
1146
1147 cmd = i915_gem_object_pin_map(obj,
a575c676
CW
1148 cache->has_llc ?
1149 I915_MAP_FORCE_WB :
1150 I915_MAP_FORCE_WC);
7dd4f672
CW
1151 i915_gem_object_unpin_pages(obj);
1152 if (IS_ERR(cmd))
1153 return PTR_ERR(cmd);
1154
1155 err = i915_gem_object_set_to_wc_domain(obj, false);
1156 if (err)
1157 goto err_unmap;
1158
1159 batch = i915_vma_instance(obj, vma->vm, NULL);
1160 if (IS_ERR(batch)) {
1161 err = PTR_ERR(batch);
1162 goto err_unmap;
1163 }
1164
1165 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1166 if (err)
1167 goto err_unmap;
1168
e61e0f51 1169 rq = i915_request_alloc(eb->engine, eb->ctx);
7dd4f672
CW
1170 if (IS_ERR(rq)) {
1171 err = PTR_ERR(rq);
1172 goto err_unpin;
1173 }
1174
e61e0f51 1175 err = i915_request_await_object(rq, vma->obj, true);
7dd4f672
CW
1176 if (err)
1177 goto err_request;
1178
7dd4f672
CW
1179 err = eb->engine->emit_bb_start(rq,
1180 batch->node.start, PAGE_SIZE,
1181 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1182 if (err)
1183 goto err_request;
1184
95ff7c7d 1185 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
a5236978
CW
1186 err = i915_vma_move_to_active(batch, rq, 0);
1187 if (err)
1188 goto skip_request;
7dd4f672 1189
a5236978
CW
1190 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1191 if (err)
1192 goto skip_request;
7dd4f672
CW
1193
1194 rq->batch = batch;
a5236978 1195 i915_vma_unpin(batch);
7dd4f672
CW
1196
1197 cache->rq = rq;
1198 cache->rq_cmd = cmd;
1199 cache->rq_size = 0;
1200
1201 /* Return with batch mapping (cmd) still pinned */
1202 return 0;
1203
a5236978
CW
1204skip_request:
1205 i915_request_skip(rq, err);
7dd4f672 1206err_request:
e61e0f51 1207 i915_request_add(rq);
7dd4f672
CW
1208err_unpin:
1209 i915_vma_unpin(batch);
1210err_unmap:
1211 i915_gem_object_unpin_map(obj);
1212 return err;
1213}
1214
1215static u32 *reloc_gpu(struct i915_execbuffer *eb,
1216 struct i915_vma *vma,
1217 unsigned int len)
1218{
1219 struct reloc_cache *cache = &eb->reloc_cache;
1220 u32 *cmd;
1221
1222 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1223 reloc_gpu_flush(cache);
1224
1225 if (unlikely(!cache->rq)) {
1226 int err;
1227
3dbf26ed
CW
1228 /* If we need to copy for the cmdparser, we will stall anyway */
1229 if (eb_use_cmdparser(eb))
1230 return ERR_PTR(-EWOULDBLOCK);
1231
90cad095
CW
1232 if (!intel_engine_can_store_dword(eb->engine))
1233 return ERR_PTR(-ENODEV);
1234
7dd4f672
CW
1235 err = __reloc_gpu_alloc(eb, vma, len);
1236 if (unlikely(err))
1237 return ERR_PTR(err);
1238 }
1239
1240 cmd = cache->rq_cmd + cache->rq_size;
1241 cache->rq_size += len;
1242
1243 return cmd;
1244}
1245
2889caa9
CW
1246static u64
1247relocate_entry(struct i915_vma *vma,
d50415cc 1248 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1249 struct i915_execbuffer *eb,
1250 const struct i915_vma *target)
edf4427b 1251{
d50415cc 1252 u64 offset = reloc->offset;
2889caa9
CW
1253 u64 target_offset = relocation_target(reloc, target);
1254 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1255 void *vaddr;
edf4427b 1256
7dd4f672
CW
1257 if (!eb->reloc_cache.vaddr &&
1258 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
90cad095 1259 !reservation_object_test_signaled_rcu(vma->resv, true))) {
7dd4f672
CW
1260 const unsigned int gen = eb->reloc_cache.gen;
1261 unsigned int len;
1262 u32 *batch;
1263 u64 addr;
1264
1265 if (wide)
1266 len = offset & 7 ? 8 : 5;
1267 else if (gen >= 4)
1268 len = 4;
f2f5c061 1269 else
a889580c 1270 len = 3;
7dd4f672
CW
1271
1272 batch = reloc_gpu(eb, vma, len);
1273 if (IS_ERR(batch))
1274 goto repeat;
1275
1276 addr = gen8_canonical_addr(vma->node.start + offset);
1277 if (wide) {
1278 if (offset & 7) {
1279 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1280 *batch++ = lower_32_bits(addr);
1281 *batch++ = upper_32_bits(addr);
1282 *batch++ = lower_32_bits(target_offset);
1283
1284 addr = gen8_canonical_addr(addr + 4);
1285
1286 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1287 *batch++ = lower_32_bits(addr);
1288 *batch++ = upper_32_bits(addr);
1289 *batch++ = upper_32_bits(target_offset);
1290 } else {
1291 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1292 *batch++ = lower_32_bits(addr);
1293 *batch++ = upper_32_bits(addr);
1294 *batch++ = lower_32_bits(target_offset);
1295 *batch++ = upper_32_bits(target_offset);
1296 }
1297 } else if (gen >= 6) {
1298 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1299 *batch++ = 0;
1300 *batch++ = addr;
1301 *batch++ = target_offset;
1302 } else if (gen >= 4) {
1303 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1304 *batch++ = 0;
1305 *batch++ = addr;
1306 *batch++ = target_offset;
1307 } else {
1308 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1309 *batch++ = addr;
1310 *batch++ = target_offset;
1311 }
1312
1313 goto out;
1314 }
1315
d50415cc 1316repeat:
95ff7c7d 1317 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1318 if (IS_ERR(vaddr))
1319 return PTR_ERR(vaddr);
1320
1321 clflush_write32(vaddr + offset_in_page(offset),
1322 lower_32_bits(target_offset),
2889caa9 1323 eb->reloc_cache.vaddr);
d50415cc
CW
1324
1325 if (wide) {
1326 offset += sizeof(u32);
1327 target_offset >>= 32;
1328 wide = false;
1329 goto repeat;
edf4427b 1330 }
edf4427b 1331
7dd4f672 1332out:
2889caa9 1333 return target->node.start | UPDATE;
edf4427b 1334}
edf4427b 1335
2889caa9
CW
1336static u64
1337eb_relocate_entry(struct i915_execbuffer *eb,
1338 struct i915_vma *vma,
1339 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1340{
507d977f 1341 struct i915_vma *target;
2889caa9 1342 int err;
54cf91dc 1343
67731b87 1344 /* we've already hold a reference to all valid objects */
507d977f
CW
1345 target = eb_get_vma(eb, reloc->target_handle);
1346 if (unlikely(!target))
54cf91dc 1347 return -ENOENT;
e844b990 1348
54cf91dc 1349 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1350 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 1351 DRM_DEBUG("reloc with multiple write domains: "
507d977f 1352 "target %d offset %d "
54cf91dc 1353 "read %08x write %08x",
507d977f 1354 reloc->target_handle,
54cf91dc
CW
1355 (int) reloc->offset,
1356 reloc->read_domains,
1357 reloc->write_domain);
8b78f0e5 1358 return -EINVAL;
54cf91dc 1359 }
4ca4a250
DV
1360 if (unlikely((reloc->write_domain | reloc->read_domains)
1361 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 1362 DRM_DEBUG("reloc with read/write non-GPU domains: "
507d977f 1363 "target %d offset %d "
54cf91dc 1364 "read %08x write %08x",
507d977f 1365 reloc->target_handle,
54cf91dc
CW
1366 (int) reloc->offset,
1367 reloc->read_domains,
1368 reloc->write_domain);
8b78f0e5 1369 return -EINVAL;
54cf91dc 1370 }
54cf91dc 1371
2889caa9 1372 if (reloc->write_domain) {
c7c6e46f 1373 *target->exec_flags |= EXEC_OBJECT_WRITE;
507d977f 1374
2889caa9
CW
1375 /*
1376 * Sandybridge PPGTT errata: We need a global gtt mapping
1377 * for MI and pipe_control writes because the gpu doesn't
1378 * properly redirect them through the ppgtt for non_secure
1379 * batchbuffers.
1380 */
1381 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
cf819eff 1382 IS_GEN(eb->i915, 6)) {
2889caa9
CW
1383 err = i915_vma_bind(target, target->obj->cache_level,
1384 PIN_GLOBAL);
1385 if (WARN_ONCE(err,
1386 "Unexpected failure to bind target VMA!"))
1387 return err;
1388 }
507d977f 1389 }
54cf91dc 1390
2889caa9
CW
1391 /*
1392 * If the relocation already has the right value in it, no
54cf91dc
CW
1393 * more work needs to be done.
1394 */
7dd4f672
CW
1395 if (!DBG_FORCE_RELOC &&
1396 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
67731b87 1397 return 0;
54cf91dc
CW
1398
1399 /* Check that the relocation address is valid... */
3c94ceee 1400 if (unlikely(reloc->offset >
507d977f 1401 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
ff240199 1402 DRM_DEBUG("Relocation beyond object bounds: "
507d977f
CW
1403 "target %d offset %d size %d.\n",
1404 reloc->target_handle,
1405 (int)reloc->offset,
1406 (int)vma->size);
8b78f0e5 1407 return -EINVAL;
54cf91dc 1408 }
b8f7ab17 1409 if (unlikely(reloc->offset & 3)) {
ff240199 1410 DRM_DEBUG("Relocation not 4-byte aligned: "
507d977f
CW
1411 "target %d offset %d.\n",
1412 reloc->target_handle,
1413 (int)reloc->offset);
8b78f0e5 1414 return -EINVAL;
54cf91dc
CW
1415 }
1416
071750e5
CW
1417 /*
1418 * If we write into the object, we need to force the synchronisation
1419 * barrier, either with an asynchronous clflush or if we executed the
1420 * patching using the GPU (though that should be serialised by the
1421 * timeline). To be completely sure, and since we are required to
1422 * do relocations we are already stalling, disable the user's opt
0519bcb1 1423 * out of our synchronisation.
071750e5 1424 */
c7c6e46f 1425 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1426
54cf91dc 1427 /* and update the user's relocation entry */
2889caa9 1428 return relocate_entry(vma, reloc, eb, target);
54cf91dc
CW
1429}
1430
2889caa9 1431static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1432{
1d83f442 1433#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1434 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1435 struct drm_i915_gem_relocation_entry __user *urelocs;
c7c6e46f 1436 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9 1437 unsigned int remain;
54cf91dc 1438
2889caa9 1439 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1440 remain = entry->relocation_count;
2889caa9
CW
1441 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1442 return -EINVAL;
ebc0808f 1443
2889caa9
CW
1444 /*
1445 * We must check that the entire relocation array is safe
1446 * to read. However, if the array is not writable the user loses
1447 * the updated relocation values.
1448 */
96d4f267 1449 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
2889caa9
CW
1450 return -EFAULT;
1451
1452 do {
1453 struct drm_i915_gem_relocation_entry *r = stack;
1454 unsigned int count =
1455 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1456 unsigned int copied;
1d83f442 1457
2889caa9
CW
1458 /*
1459 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1460 * whilst holding the struct mutex lest the user pass in the
1461 * relocations contained within a mmaped bo. For in such a case
1462 * we, the page fault handler would call i915_gem_fault() and
1463 * we would try to acquire the struct mutex again. Obviously
1464 * this is bad and so lockdep complains vehemently.
1465 */
1466 pagefault_disable();
2889caa9 1467 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
ebc0808f 1468 pagefault_enable();
2889caa9
CW
1469 if (unlikely(copied)) {
1470 remain = -EFAULT;
31a39207
CW
1471 goto out;
1472 }
54cf91dc 1473
2889caa9 1474 remain -= count;
1d83f442 1475 do {
2889caa9 1476 u64 offset = eb_relocate_entry(eb, vma, r);
54cf91dc 1477
2889caa9
CW
1478 if (likely(offset == 0)) {
1479 } else if ((s64)offset < 0) {
1480 remain = (int)offset;
31a39207 1481 goto out;
2889caa9
CW
1482 } else {
1483 /*
1484 * Note that reporting an error now
1485 * leaves everything in an inconsistent
1486 * state as we have *already* changed
1487 * the relocation value inside the
1488 * object. As we have not changed the
1489 * reloc.presumed_offset or will not
1490 * change the execobject.offset, on the
1491 * call we may not rewrite the value
1492 * inside the object, leaving it
1493 * dangling and causing a GPU hang. Unless
1494 * userspace dynamically rebuilds the
1495 * relocations on each execbuf rather than
1496 * presume a static tree.
1497 *
1498 * We did previously check if the relocations
1499 * were writable (access_ok), an error now
1500 * would be a strange race with mprotect,
1501 * having already demonstrated that we
1502 * can read from this userspace address.
1503 */
1504 offset = gen8_canonical_addr(offset & ~UPDATE);
fddcd00a
CW
1505 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1506 remain = -EFAULT;
1507 goto out;
1508 }
1d83f442 1509 }
2889caa9
CW
1510 } while (r++, --count);
1511 urelocs += ARRAY_SIZE(stack);
1512 } while (remain);
31a39207 1513out:
650bc635 1514 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1515 return remain;
54cf91dc
CW
1516}
1517
1518static int
2889caa9 1519eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1520{
c7c6e46f 1521 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9
CW
1522 struct drm_i915_gem_relocation_entry *relocs =
1523 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1524 unsigned int i;
1525 int err;
54cf91dc
CW
1526
1527 for (i = 0; i < entry->relocation_count; i++) {
2889caa9 1528 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
d4aeee77 1529
2889caa9
CW
1530 if ((s64)offset < 0) {
1531 err = (int)offset;
1532 goto err;
1533 }
54cf91dc 1534 }
2889caa9
CW
1535 err = 0;
1536err:
1537 reloc_cache_reset(&eb->reloc_cache);
1538 return err;
edf4427b
CW
1539}
1540
2889caa9 1541static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1690e1eb 1542{
2889caa9
CW
1543 const char __user *addr, *end;
1544 unsigned long size;
1545 char __maybe_unused c;
1690e1eb 1546
2889caa9
CW
1547 size = entry->relocation_count;
1548 if (size == 0)
1549 return 0;
7788a765 1550
2889caa9
CW
1551 if (size > N_RELOC(ULONG_MAX))
1552 return -EINVAL;
9a5a53b3 1553
2889caa9
CW
1554 addr = u64_to_user_ptr(entry->relocs_ptr);
1555 size *= sizeof(struct drm_i915_gem_relocation_entry);
96d4f267 1556 if (!access_ok(addr, size))
2889caa9 1557 return -EFAULT;
1690e1eb 1558
2889caa9
CW
1559 end = addr + size;
1560 for (; addr < end; addr += PAGE_SIZE) {
1561 int err = __get_user(c, addr);
1562 if (err)
1563 return err;
ed5982e6 1564 }
2889caa9 1565 return __get_user(c, end - 1);
7788a765 1566}
1690e1eb 1567
2889caa9 1568static int eb_copy_relocations(const struct i915_execbuffer *eb)
d23db88c 1569{
2889caa9
CW
1570 const unsigned int count = eb->buffer_count;
1571 unsigned int i;
1572 int err;
e6a84468 1573
2889caa9
CW
1574 for (i = 0; i < count; i++) {
1575 const unsigned int nreloc = eb->exec[i].relocation_count;
1576 struct drm_i915_gem_relocation_entry __user *urelocs;
1577 struct drm_i915_gem_relocation_entry *relocs;
1578 unsigned long size;
1579 unsigned long copied;
e6a84468 1580
2889caa9
CW
1581 if (nreloc == 0)
1582 continue;
e6a84468 1583
2889caa9
CW
1584 err = check_relocations(&eb->exec[i]);
1585 if (err)
1586 goto err;
d23db88c 1587
2889caa9
CW
1588 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1589 size = nreloc * sizeof(*relocs);
d23db88c 1590
0ee931c4 1591 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
2889caa9 1592 if (!relocs) {
2889caa9
CW
1593 err = -ENOMEM;
1594 goto err;
1595 }
d23db88c 1596
2889caa9
CW
1597 /* copy_from_user is limited to < 4GiB */
1598 copied = 0;
1599 do {
1600 unsigned int len =
1601 min_t(u64, BIT_ULL(31), size - copied);
1602
1603 if (__copy_from_user((char *)relocs + copied,
908a6105 1604 (char __user *)urelocs + copied,
2889caa9 1605 len)) {
fddcd00a 1606end_user:
0b2c8f8b 1607 user_access_end();
2889caa9
CW
1608 kvfree(relocs);
1609 err = -EFAULT;
1610 goto err;
1611 }
91b2db6f 1612
2889caa9
CW
1613 copied += len;
1614 } while (copied < size);
506a8e87 1615
2889caa9
CW
1616 /*
1617 * As we do not update the known relocation offsets after
1618 * relocating (due to the complexities in lock handling),
1619 * we need to mark them as invalid now so that we force the
1620 * relocation processing next time. Just in case the target
1621 * object is evicted and then rebound into its old
1622 * presumed_offset before the next execbuffer - if that
1623 * happened we would make the mistake of assuming that the
1624 * relocations were valid.
1625 */
594cc251
LT
1626 if (!user_access_begin(urelocs, size))
1627 goto end_user;
1628
2889caa9
CW
1629 for (copied = 0; copied < nreloc; copied++)
1630 unsafe_put_user(-1,
1631 &urelocs[copied].presumed_offset,
1632 end_user);
2889caa9 1633 user_access_end();
d23db88c 1634
2889caa9
CW
1635 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1636 }
edf4427b 1637
2889caa9 1638 return 0;
101b506a 1639
2889caa9
CW
1640err:
1641 while (i--) {
1642 struct drm_i915_gem_relocation_entry *relocs =
1643 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1644 if (eb->exec[i].relocation_count)
1645 kvfree(relocs);
1646 }
1647 return err;
d23db88c
CW
1648}
1649
2889caa9 1650static int eb_prefault_relocations(const struct i915_execbuffer *eb)
54cf91dc 1651{
2889caa9
CW
1652 const unsigned int count = eb->buffer_count;
1653 unsigned int i;
54cf91dc 1654
4f044a88 1655 if (unlikely(i915_modparams.prefault_disable))
2889caa9 1656 return 0;
54cf91dc 1657
2889caa9
CW
1658 for (i = 0; i < count; i++) {
1659 int err;
54cf91dc 1660
2889caa9
CW
1661 err = check_relocations(&eb->exec[i]);
1662 if (err)
1663 return err;
1664 }
a415d355 1665
2889caa9 1666 return 0;
54cf91dc
CW
1667}
1668
2889caa9 1669static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
54cf91dc 1670{
650bc635 1671 struct drm_device *dev = &eb->i915->drm;
2889caa9 1672 bool have_copy = false;
27173f1f 1673 struct i915_vma *vma;
2889caa9
CW
1674 int err = 0;
1675
1676repeat:
1677 if (signal_pending(current)) {
1678 err = -ERESTARTSYS;
1679 goto out;
1680 }
27173f1f 1681
67731b87 1682 /* We may process another execbuffer during the unlock... */
2889caa9 1683 eb_reset_vmas(eb);
54cf91dc
CW
1684 mutex_unlock(&dev->struct_mutex);
1685
2889caa9
CW
1686 /*
1687 * We take 3 passes through the slowpatch.
1688 *
1689 * 1 - we try to just prefault all the user relocation entries and
1690 * then attempt to reuse the atomic pagefault disabled fast path again.
1691 *
1692 * 2 - we copy the user entries to a local buffer here outside of the
1693 * local and allow ourselves to wait upon any rendering before
1694 * relocations
1695 *
1696 * 3 - we already have a local copy of the relocation entries, but
1697 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1698 */
1699 if (!err) {
1700 err = eb_prefault_relocations(eb);
1701 } else if (!have_copy) {
1702 err = eb_copy_relocations(eb);
1703 have_copy = err == 0;
1704 } else {
1705 cond_resched();
1706 err = 0;
54cf91dc 1707 }
2889caa9
CW
1708 if (err) {
1709 mutex_lock(&dev->struct_mutex);
1710 goto out;
54cf91dc
CW
1711 }
1712
8a2421bd
CW
1713 /* A frequent cause for EAGAIN are currently unavailable client pages */
1714 flush_workqueue(eb->i915->mm.userptr_wq);
1715
2889caa9
CW
1716 err = i915_mutex_lock_interruptible(dev);
1717 if (err) {
54cf91dc 1718 mutex_lock(&dev->struct_mutex);
2889caa9 1719 goto out;
54cf91dc
CW
1720 }
1721
67731b87 1722 /* reacquire the objects */
2889caa9
CW
1723 err = eb_lookup_vmas(eb);
1724 if (err)
3b96eff4 1725 goto err;
67731b87 1726
c7c6e46f
CW
1727 GEM_BUG_ON(!eb->batch);
1728
2889caa9
CW
1729 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1730 if (!have_copy) {
1731 pagefault_disable();
1732 err = eb_relocate_vma(eb, vma);
1733 pagefault_enable();
1734 if (err)
1735 goto repeat;
1736 } else {
1737 err = eb_relocate_vma_slow(eb, vma);
1738 if (err)
1739 goto err;
1740 }
54cf91dc
CW
1741 }
1742
2889caa9
CW
1743 /*
1744 * Leave the user relocations as are, this is the painfully slow path,
54cf91dc
CW
1745 * and we want to avoid the complication of dropping the lock whilst
1746 * having buffers reserved in the aperture and so causing spurious
1747 * ENOSPC for random operations.
1748 */
1749
1750err:
2889caa9
CW
1751 if (err == -EAGAIN)
1752 goto repeat;
1753
1754out:
1755 if (have_copy) {
1756 const unsigned int count = eb->buffer_count;
1757 unsigned int i;
1758
1759 for (i = 0; i < count; i++) {
1760 const struct drm_i915_gem_exec_object2 *entry =
1761 &eb->exec[i];
1762 struct drm_i915_gem_relocation_entry *relocs;
1763
1764 if (!entry->relocation_count)
1765 continue;
1766
1767 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1768 kvfree(relocs);
1769 }
1770 }
1771
1f727d9e 1772 return err;
54cf91dc
CW
1773}
1774
2889caa9 1775static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1776{
2889caa9
CW
1777 if (eb_lookup_vmas(eb))
1778 goto slow;
1779
1780 /* The objects are in their final locations, apply the relocations. */
1781 if (eb->args->flags & __EXEC_HAS_RELOC) {
1782 struct i915_vma *vma;
1783
1784 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1785 if (eb_relocate_vma(eb, vma))
1786 goto slow;
1787 }
1788 }
1789
1790 return 0;
1791
1792slow:
1793 return eb_relocate_slow(eb);
1794}
1795
2889caa9
CW
1796static int eb_move_to_gpu(struct i915_execbuffer *eb)
1797{
1798 const unsigned int count = eb->buffer_count;
1799 unsigned int i;
1800 int err;
54cf91dc 1801
2889caa9 1802 for (i = 0; i < count; i++) {
c7c6e46f
CW
1803 unsigned int flags = eb->flags[i];
1804 struct i915_vma *vma = eb->vma[i];
27173f1f 1805 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1806
c7c6e46f 1807 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 1808 struct i915_capture_list *capture;
b0fd47ad
CW
1809
1810 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1811 if (unlikely(!capture))
1812 return -ENOMEM;
1813
650bc635 1814 capture->next = eb->request->capture_list;
c7c6e46f 1815 capture->vma = eb->vma[i];
650bc635 1816 eb->request->capture_list = capture;
b0fd47ad
CW
1817 }
1818
b8f55be6
CW
1819 /*
1820 * If the GPU is not _reading_ through the CPU cache, we need
1821 * to make sure that any writes (both previous GPU writes from
1822 * before a change in snooping levels and normal CPU writes)
1823 * caught in that cache are flushed to main memory.
1824 *
1825 * We want to say
1826 * obj->cache_dirty &&
1827 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1828 * but gcc's optimiser doesn't handle that as well and emits
1829 * two jumps instead of one. Maybe one day...
1830 */
1831 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1832 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1833 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1834 }
1835
c7c6e46f
CW
1836 if (flags & EXEC_OBJECT_ASYNC)
1837 continue;
77ae9957 1838
e61e0f51 1839 err = i915_request_await_object
c7c6e46f 1840 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2889caa9
CW
1841 if (err)
1842 return err;
2889caa9
CW
1843 }
1844
1845 for (i = 0; i < count; i++) {
c7c6e46f
CW
1846 unsigned int flags = eb->flags[i];
1847 struct i915_vma *vma = eb->vma[i];
1848
a5236978
CW
1849 err = i915_vma_move_to_active(vma, eb->request, flags);
1850 if (unlikely(err)) {
1851 i915_request_skip(eb->request, err);
1852 return err;
1853 }
2889caa9 1854
c7c6e46f
CW
1855 __eb_unreserve_vma(vma, flags);
1856 vma->exec_flags = NULL;
1857
1858 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
dade2a61 1859 i915_vma_put(vma);
c59a333f 1860 }
2889caa9 1861 eb->exec = NULL;
c59a333f 1862
dcd79934 1863 /* Unconditionally flush any chipset caches (for streaming writes). */
650bc635 1864 i915_gem_chipset_flush(eb->i915);
6ac42f41 1865
2113184c 1866 return 0;
54cf91dc
CW
1867}
1868
2889caa9 1869static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1870{
650bc635 1871 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
ed5982e6
DV
1872 return false;
1873
2f5945bc 1874 /* Kernel clipping was a DRI1 misfeature */
cf6e7bac
JE
1875 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1876 if (exec->num_cliprects || exec->cliprects_ptr)
1877 return false;
1878 }
2f5945bc
CW
1879
1880 if (exec->DR4 == 0xffffffff) {
1881 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1882 exec->DR4 = 0;
1883 }
1884 if (exec->DR1 || exec->DR4)
1885 return false;
1886
1887 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1888 return false;
1889
1890 return true;
54cf91dc
CW
1891}
1892
e61e0f51 1893static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 1894{
73dec95e
TU
1895 u32 *cs;
1896 int i;
ae662d31 1897
cf819eff 1898 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS) {
9d662da8
DV
1899 DRM_DEBUG("sol reset is gen7/rcs only\n");
1900 return -EINVAL;
1901 }
ae662d31 1902
e61e0f51 1903 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
1904 if (IS_ERR(cs))
1905 return PTR_ERR(cs);
ae662d31 1906
2889caa9 1907 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 1908 for (i = 0; i < 4; i++) {
73dec95e
TU
1909 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1910 *cs++ = 0;
ae662d31 1911 }
2889caa9 1912 *cs++ = MI_NOOP;
e61e0f51 1913 intel_ring_advance(rq, cs);
ae662d31
EA
1914
1915 return 0;
1916}
1917
650bc635 1918static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
71745376 1919{
71745376 1920 struct drm_i915_gem_object *shadow_batch_obj;
17cabf57 1921 struct i915_vma *vma;
2889caa9 1922 int err;
71745376 1923
650bc635
CW
1924 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1925 PAGE_ALIGN(eb->batch_len));
71745376 1926 if (IS_ERR(shadow_batch_obj))
59bfa124 1927 return ERR_CAST(shadow_batch_obj);
71745376 1928
2889caa9 1929 err = intel_engine_cmd_parser(eb->engine,
650bc635 1930 eb->batch->obj,
33a051a5 1931 shadow_batch_obj,
650bc635
CW
1932 eb->batch_start_offset,
1933 eb->batch_len,
33a051a5 1934 is_master);
2889caa9
CW
1935 if (err) {
1936 if (err == -EACCES) /* unhandled chained batch */
058d88c4
CW
1937 vma = NULL;
1938 else
2889caa9 1939 vma = ERR_PTR(err);
058d88c4
CW
1940 goto out;
1941 }
71745376 1942
058d88c4
CW
1943 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1944 if (IS_ERR(vma))
1945 goto out;
de4e783a 1946
c7c6e46f
CW
1947 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1948 eb->flags[eb->buffer_count] =
1949 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1950 vma->exec_flags = &eb->flags[eb->buffer_count];
1951 eb->buffer_count++;
71745376 1952
058d88c4 1953out:
de4e783a 1954 i915_gem_object_unpin_pages(shadow_batch_obj);
058d88c4 1955 return vma;
71745376 1956}
5c6c6003 1957
c8659efa 1958static void
e61e0f51 1959add_to_client(struct i915_request *rq, struct drm_file *file)
c8659efa 1960{
e61e0f51
CW
1961 rq->file_priv = file->driver_priv;
1962 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
c8659efa
CW
1963}
1964
2889caa9 1965static int eb_submit(struct i915_execbuffer *eb)
78382593 1966{
2889caa9 1967 int err;
78382593 1968
2889caa9
CW
1969 err = eb_move_to_gpu(eb);
1970 if (err)
1971 return err;
78382593 1972
650bc635 1973 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
1974 err = i915_reset_gen7_sol_offsets(eb->request);
1975 if (err)
1976 return err;
78382593
OM
1977 }
1978
2889caa9 1979 err = eb->engine->emit_bb_start(eb->request,
650bc635
CW
1980 eb->batch->node.start +
1981 eb->batch_start_offset,
1982 eb->batch_len,
2889caa9
CW
1983 eb->batch_flags);
1984 if (err)
1985 return err;
78382593 1986
2f5945bc 1987 return 0;
78382593
OM
1988}
1989
204bcfef 1990/*
a8ebba75 1991 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 1992 * The engine index is returned.
a8ebba75 1993 */
de1add36 1994static unsigned int
c80ff16e
CW
1995gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1996 struct drm_file *file)
a8ebba75 1997{
a8ebba75
ZY
1998 struct drm_i915_file_private *file_priv = file->driver_priv;
1999
de1add36 2000 /* Check whether the file_priv has already selected one ring. */
6f633402
JL
2001 if ((int)file_priv->bsd_engine < 0)
2002 file_priv->bsd_engine = atomic_fetch_xor(1,
2003 &dev_priv->mm.bsd_engine_dispatch_index);
d23db88c 2004
c80ff16e 2005 return file_priv->bsd_engine;
d23db88c
CW
2006}
2007
de1add36
TU
2008#define I915_USER_RINGS (4)
2009
117897f4 2010static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
de1add36
TU
2011 [I915_EXEC_DEFAULT] = RCS,
2012 [I915_EXEC_RENDER] = RCS,
2013 [I915_EXEC_BLT] = BCS,
2014 [I915_EXEC_BSD] = VCS,
2015 [I915_EXEC_VEBOX] = VECS
2016};
2017
f8ca0c07
DG
2018static struct intel_engine_cs *
2019eb_select_engine(struct drm_i915_private *dev_priv,
2020 struct drm_file *file,
2021 struct drm_i915_gem_execbuffer2 *args)
de1add36
TU
2022{
2023 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
f8ca0c07 2024 struct intel_engine_cs *engine;
de1add36
TU
2025
2026 if (user_ring_id > I915_USER_RINGS) {
2027 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
f8ca0c07 2028 return NULL;
de1add36
TU
2029 }
2030
2031 if ((user_ring_id != I915_EXEC_BSD) &&
2032 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2033 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2034 "bsd dispatch flags: %d\n", (int)(args->flags));
f8ca0c07 2035 return NULL;
de1add36
TU
2036 }
2037
2038 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2039 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2040
2041 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
c80ff16e 2042 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
de1add36
TU
2043 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2044 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2045 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2046 bsd_idx--;
2047 } else {
2048 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2049 bsd_idx);
f8ca0c07 2050 return NULL;
de1add36
TU
2051 }
2052
3b3f1650 2053 engine = dev_priv->engine[_VCS(bsd_idx)];
de1add36 2054 } else {
3b3f1650 2055 engine = dev_priv->engine[user_ring_map[user_ring_id]];
de1add36
TU
2056 }
2057
3b3f1650 2058 if (!engine) {
de1add36 2059 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
f8ca0c07 2060 return NULL;
de1add36
TU
2061 }
2062
f8ca0c07 2063 return engine;
de1add36
TU
2064}
2065
cf6e7bac
JE
2066static void
2067__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2068{
2069 while (n--)
2070 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2071 kvfree(fences);
2072}
2073
2074static struct drm_syncobj **
2075get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2076 struct drm_file *file)
2077{
d710fc16 2078 const unsigned long nfences = args->num_cliprects;
cf6e7bac
JE
2079 struct drm_i915_gem_exec_fence __user *user;
2080 struct drm_syncobj **fences;
d710fc16 2081 unsigned long n;
cf6e7bac
JE
2082 int err;
2083
2084 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2085 return NULL;
2086
d710fc16
CW
2087 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2088 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2089 if (nfences > min_t(unsigned long,
2090 ULONG_MAX / sizeof(*user),
2091 SIZE_MAX / sizeof(*fences)))
cf6e7bac
JE
2092 return ERR_PTR(-EINVAL);
2093
2094 user = u64_to_user_ptr(args->cliprects_ptr);
96d4f267 2095 if (!access_ok(user, nfences * sizeof(*user)))
cf6e7bac
JE
2096 return ERR_PTR(-EFAULT);
2097
d710fc16 2098 fences = kvmalloc_array(nfences, sizeof(*fences),
0ee931c4 2099 __GFP_NOWARN | GFP_KERNEL);
cf6e7bac
JE
2100 if (!fences)
2101 return ERR_PTR(-ENOMEM);
2102
2103 for (n = 0; n < nfences; n++) {
2104 struct drm_i915_gem_exec_fence fence;
2105 struct drm_syncobj *syncobj;
2106
2107 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2108 err = -EFAULT;
2109 goto err;
2110 }
2111
ebcaa1ff
TU
2112 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2113 err = -EINVAL;
2114 goto err;
2115 }
2116
cf6e7bac
JE
2117 syncobj = drm_syncobj_find(file, fence.handle);
2118 if (!syncobj) {
2119 DRM_DEBUG("Invalid syncobj handle provided\n");
2120 err = -ENOENT;
2121 goto err;
2122 }
2123
ebcaa1ff
TU
2124 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2125 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2126
cf6e7bac
JE
2127 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2128 }
2129
2130 return fences;
2131
2132err:
2133 __free_fence_array(fences, n);
2134 return ERR_PTR(err);
2135}
2136
2137static void
2138put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2139 struct drm_syncobj **fences)
2140{
2141 if (fences)
2142 __free_fence_array(fences, args->num_cliprects);
2143}
2144
2145static int
2146await_fence_array(struct i915_execbuffer *eb,
2147 struct drm_syncobj **fences)
2148{
2149 const unsigned int nfences = eb->args->num_cliprects;
2150 unsigned int n;
2151 int err;
2152
2153 for (n = 0; n < nfences; n++) {
2154 struct drm_syncobj *syncobj;
2155 struct dma_fence *fence;
2156 unsigned int flags;
2157
2158 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2159 if (!(flags & I915_EXEC_FENCE_WAIT))
2160 continue;
2161
afca4216 2162 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac
JE
2163 if (!fence)
2164 return -EINVAL;
2165
e61e0f51 2166 err = i915_request_await_dma_fence(eb->request, fence);
cf6e7bac
JE
2167 dma_fence_put(fence);
2168 if (err < 0)
2169 return err;
2170 }
2171
2172 return 0;
2173}
2174
2175static void
2176signal_fence_array(struct i915_execbuffer *eb,
2177 struct drm_syncobj **fences)
2178{
2179 const unsigned int nfences = eb->args->num_cliprects;
2180 struct dma_fence * const fence = &eb->request->fence;
2181 unsigned int n;
2182
2183 for (n = 0; n < nfences; n++) {
2184 struct drm_syncobj *syncobj;
2185 unsigned int flags;
2186
2187 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2188 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2189 continue;
2190
0b258ed1 2191 drm_syncobj_replace_fence(syncobj, fence);
cf6e7bac
JE
2192 }
2193}
2194
54cf91dc 2195static int
650bc635 2196i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2197 struct drm_file *file,
2198 struct drm_i915_gem_execbuffer2 *args,
cf6e7bac
JE
2199 struct drm_i915_gem_exec_object2 *exec,
2200 struct drm_syncobj **fences)
54cf91dc 2201{
650bc635 2202 struct i915_execbuffer eb;
fec0445c
CW
2203 struct dma_fence *in_fence = NULL;
2204 struct sync_file *out_fence = NULL;
538ef96b 2205 intel_wakeref_t wakeref;
fec0445c 2206 int out_fence_fd = -1;
2889caa9 2207 int err;
432e58ed 2208
74c1c694 2209 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
2210 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2211 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2212
650bc635
CW
2213 eb.i915 = to_i915(dev);
2214 eb.file = file;
2215 eb.args = args;
7dd4f672 2216 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2217 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 2218
650bc635 2219 eb.exec = exec;
170fa29b
CW
2220 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2221 eb.vma[0] = NULL;
c7c6e46f
CW
2222 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2223
2889caa9 2224 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
2225 reloc_cache_init(&eb.reloc_cache, eb.i915);
2226
2889caa9 2227 eb.buffer_count = args->buffer_count;
650bc635
CW
2228 eb.batch_start_offset = args->batch_start_offset;
2229 eb.batch_len = args->batch_len;
2230
2889caa9 2231 eb.batch_flags = 0;
d7d4eedd 2232 if (args->flags & I915_EXEC_SECURE) {
b3ac9f25 2233 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
d7d4eedd
CW
2234 return -EPERM;
2235
2889caa9 2236 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2237 }
b45305fc 2238 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2239 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2240
650bc635
CW
2241 eb.engine = eb_select_engine(eb.i915, file, args);
2242 if (!eb.engine)
54cf91dc 2243 return -EINVAL;
54cf91dc 2244
fec0445c
CW
2245 if (args->flags & I915_EXEC_FENCE_IN) {
2246 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2247 if (!in_fence)
2248 return -EINVAL;
fec0445c
CW
2249 }
2250
2251 if (args->flags & I915_EXEC_FENCE_OUT) {
2252 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2253 if (out_fence_fd < 0) {
2889caa9 2254 err = out_fence_fd;
4a04e371 2255 goto err_in_fence;
fec0445c
CW
2256 }
2257 }
2258
4d470f73
CW
2259 err = eb_create(&eb);
2260 if (err)
2261 goto err_out_fence;
2262
2263 GEM_BUG_ON(!eb.lut_size);
2889caa9 2264
1acfc104
CW
2265 err = eb_select_context(&eb);
2266 if (unlikely(err))
2267 goto err_destroy;
2268
2889caa9
CW
2269 /*
2270 * Take a local wakeref for preparing to dispatch the execbuf as
67d97da3
CW
2271 * we expect to access the hardware fairly frequently in the
2272 * process. Upon first dispatch, we acquire another prolonged
2273 * wakeref that we hold until the GPU has been idle for at least
2274 * 100ms.
2275 */
538ef96b 2276 wakeref = intel_runtime_pm_get(eb.i915);
1acfc104 2277
2889caa9
CW
2278 err = i915_mutex_lock_interruptible(dev);
2279 if (err)
2280 goto err_rpm;
f65c9168 2281
2889caa9 2282 err = eb_relocate(&eb);
1f727d9e 2283 if (err) {
2889caa9
CW
2284 /*
2285 * If the user expects the execobject.offset and
2286 * reloc.presumed_offset to be an exact match,
2287 * as for using NO_RELOC, then we cannot update
2288 * the execobject.offset until we have completed
2289 * relocation.
2290 */
2291 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2292 goto err_vma;
1f727d9e 2293 }
54cf91dc 2294
c7c6e46f 2295 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
ff240199 2296 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2297 err = -EINVAL;
2298 goto err_vma;
54cf91dc 2299 }
650bc635
CW
2300 if (eb.batch_start_offset > eb.batch->size ||
2301 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
0b537272 2302 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2889caa9
CW
2303 err = -EINVAL;
2304 goto err_vma;
0b537272 2305 }
54cf91dc 2306
3dbf26ed 2307 if (eb_use_cmdparser(&eb)) {
59bfa124
CW
2308 struct i915_vma *vma;
2309
650bc635 2310 vma = eb_parse(&eb, drm_is_current_master(file));
59bfa124 2311 if (IS_ERR(vma)) {
2889caa9
CW
2312 err = PTR_ERR(vma);
2313 goto err_vma;
78a42377 2314 }
17cabf57 2315
59bfa124 2316 if (vma) {
c7c7372e
RP
2317 /*
2318 * Batch parsed and accepted:
2319 *
2320 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2321 * bit from MI_BATCH_BUFFER_START commands issued in
2322 * the dispatch_execbuffer implementations. We
2323 * specifically don't want that set on batches the
2324 * command parser has accepted.
2325 */
2889caa9 2326 eb.batch_flags |= I915_DISPATCH_SECURE;
650bc635
CW
2327 eb.batch_start_offset = 0;
2328 eb.batch = vma;
c7c7372e 2329 }
351e3db2
BV
2330 }
2331
650bc635
CW
2332 if (eb.batch_len == 0)
2333 eb.batch_len = eb.batch->size - eb.batch_start_offset;
78a42377 2334
2889caa9
CW
2335 /*
2336 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2337 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2338 * hsw should have this fixed, but bdw mucks it up again. */
2889caa9 2339 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2340 struct i915_vma *vma;
59bfa124 2341
da51a1e7
DV
2342 /*
2343 * So on first glance it looks freaky that we pin the batch here
2344 * outside of the reservation loop. But:
2345 * - The batch is already pinned into the relevant ppgtt, so we
2346 * already have the backing storage fully allocated.
2347 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2348 * so we don't really have issues with multiple objects not
da51a1e7
DV
2349 * fitting due to fragmentation.
2350 * So this is actually safe.
2351 */
2889caa9 2352 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
058d88c4 2353 if (IS_ERR(vma)) {
2889caa9
CW
2354 err = PTR_ERR(vma);
2355 goto err_vma;
058d88c4 2356 }
d7d4eedd 2357
650bc635 2358 eb.batch = vma;
59bfa124 2359 }
d7d4eedd 2360
7dd4f672
CW
2361 /* All GPU relocation batches must be submitted prior to the user rq */
2362 GEM_BUG_ON(eb.reloc_cache.rq);
2363
0c8dac88 2364 /* Allocate a request for this batch buffer nice and early. */
e61e0f51 2365 eb.request = i915_request_alloc(eb.engine, eb.ctx);
650bc635 2366 if (IS_ERR(eb.request)) {
2889caa9 2367 err = PTR_ERR(eb.request);
0c8dac88 2368 goto err_batch_unpin;
26827088 2369 }
0c8dac88 2370
fec0445c 2371 if (in_fence) {
e61e0f51 2372 err = i915_request_await_dma_fence(eb.request, in_fence);
2889caa9 2373 if (err < 0)
fec0445c
CW
2374 goto err_request;
2375 }
2376
cf6e7bac
JE
2377 if (fences) {
2378 err = await_fence_array(&eb, fences);
2379 if (err)
2380 goto err_request;
2381 }
2382
fec0445c 2383 if (out_fence_fd != -1) {
650bc635 2384 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2385 if (!out_fence) {
2889caa9 2386 err = -ENOMEM;
fec0445c
CW
2387 goto err_request;
2388 }
2389 }
2390
2889caa9
CW
2391 /*
2392 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2393 * active_list, and so will hold the active reference. Only when this
2394 * request is retired will the the batch_obj be moved onto the
2395 * inactive_list and lose its active reference. Hence we do not need
2396 * to explicitly hold another reference here.
2397 */
650bc635 2398 eb.request->batch = eb.batch;
5f19e2bf 2399
e61e0f51 2400 trace_i915_request_queue(eb.request, eb.batch_flags);
2889caa9 2401 err = eb_submit(&eb);
aa9b7810 2402err_request:
697b9a87 2403 i915_request_add(eb.request);
650bc635 2404 add_to_client(eb.request, file);
c8659efa 2405
cf6e7bac
JE
2406 if (fences)
2407 signal_fence_array(&eb, fences);
2408
fec0445c 2409 if (out_fence) {
2889caa9 2410 if (err == 0) {
fec0445c 2411 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 2412 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
2413 args->rsvd2 |= (u64)out_fence_fd << 32;
2414 out_fence_fd = -1;
2415 } else {
2416 fput(out_fence->file);
2417 }
2418 }
54cf91dc 2419
0c8dac88 2420err_batch_unpin:
2889caa9 2421 if (eb.batch_flags & I915_DISPATCH_SECURE)
650bc635 2422 i915_vma_unpin(eb.batch);
2889caa9
CW
2423err_vma:
2424 if (eb.exec)
2425 eb_release_vmas(&eb);
54cf91dc 2426 mutex_unlock(&dev->struct_mutex);
2889caa9 2427err_rpm:
538ef96b 2428 intel_runtime_pm_put(eb.i915, wakeref);
1acfc104
CW
2429 i915_gem_context_put(eb.ctx);
2430err_destroy:
2889caa9 2431 eb_destroy(&eb);
4d470f73 2432err_out_fence:
fec0445c
CW
2433 if (out_fence_fd != -1)
2434 put_unused_fd(out_fence_fd);
4a04e371 2435err_in_fence:
fec0445c 2436 dma_fence_put(in_fence);
2889caa9 2437 return err;
54cf91dc
CW
2438}
2439
d710fc16
CW
2440static size_t eb_element_size(void)
2441{
2442 return (sizeof(struct drm_i915_gem_exec_object2) +
2443 sizeof(struct i915_vma *) +
2444 sizeof(unsigned int));
2445}
2446
2447static bool check_buffer_count(size_t count)
2448{
2449 const size_t sz = eb_element_size();
2450
2451 /*
2452 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2453 * array size (see eb_create()). Otherwise, we can accept an array as
2454 * large as can be addressed (though use large arrays at your peril)!
2455 */
2456
2457 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2458}
2459
54cf91dc
CW
2460/*
2461 * Legacy execbuffer just creates an exec2 list from the original exec object
2462 * list array and passes it to the real function.
2463 */
2464int
6a20fe7b
VS
2465i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2466 struct drm_file *file)
54cf91dc
CW
2467{
2468 struct drm_i915_gem_execbuffer *args = data;
2469 struct drm_i915_gem_execbuffer2 exec2;
2470 struct drm_i915_gem_exec_object *exec_list = NULL;
2471 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
d710fc16 2472 const size_t count = args->buffer_count;
2889caa9
CW
2473 unsigned int i;
2474 int err;
54cf91dc 2475
d710fc16
CW
2476 if (!check_buffer_count(count)) {
2477 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2478 return -EINVAL;
2479 }
2480
2889caa9
CW
2481 exec2.buffers_ptr = args->buffers_ptr;
2482 exec2.buffer_count = args->buffer_count;
2483 exec2.batch_start_offset = args->batch_start_offset;
2484 exec2.batch_len = args->batch_len;
2485 exec2.DR1 = args->DR1;
2486 exec2.DR4 = args->DR4;
2487 exec2.num_cliprects = args->num_cliprects;
2488 exec2.cliprects_ptr = args->cliprects_ptr;
2489 exec2.flags = I915_EXEC_RENDER;
2490 i915_execbuffer2_set_context_id(exec2, 0);
2491
2492 if (!i915_gem_check_execbuffer(&exec2))
2493 return -EINVAL;
2494
54cf91dc 2495 /* Copy in the exec list from userland */
d710fc16 2496 exec_list = kvmalloc_array(count, sizeof(*exec_list),
0ee931c4 2497 __GFP_NOWARN | GFP_KERNEL);
d710fc16 2498 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2499 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2500 if (exec_list == NULL || exec2_list == NULL) {
ff240199 2501 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc 2502 args->buffer_count);
2098105e
MH
2503 kvfree(exec_list);
2504 kvfree(exec2_list);
54cf91dc
CW
2505 return -ENOMEM;
2506 }
2889caa9 2507 err = copy_from_user(exec_list,
3ed605bc 2508 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2509 sizeof(*exec_list) * count);
2889caa9 2510 if (err) {
ff240199 2511 DRM_DEBUG("copy %d exec entries failed %d\n",
2889caa9 2512 args->buffer_count, err);
2098105e
MH
2513 kvfree(exec_list);
2514 kvfree(exec2_list);
54cf91dc
CW
2515 return -EFAULT;
2516 }
2517
2518 for (i = 0; i < args->buffer_count; i++) {
2519 exec2_list[i].handle = exec_list[i].handle;
2520 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2521 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2522 exec2_list[i].alignment = exec_list[i].alignment;
2523 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2524 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2525 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2526 else
2527 exec2_list[i].flags = 0;
2528 }
2529
cf6e7bac 2530 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2889caa9 2531 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2532 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2533 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2534
54cf91dc 2535 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2536 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2537 if (!(exec2_list[i].offset & UPDATE))
2538 continue;
2539
934acce3 2540 exec2_list[i].offset =
2889caa9
CW
2541 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2542 exec2_list[i].offset &= PIN_OFFSET_MASK;
2543 if (__copy_to_user(&user_exec_list[i].offset,
2544 &exec2_list[i].offset,
2545 sizeof(user_exec_list[i].offset)))
9aab8bff 2546 break;
54cf91dc
CW
2547 }
2548 }
2549
2098105e
MH
2550 kvfree(exec_list);
2551 kvfree(exec2_list);
2889caa9 2552 return err;
54cf91dc
CW
2553}
2554
2555int
6a20fe7b
VS
2556i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2557 struct drm_file *file)
54cf91dc
CW
2558{
2559 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 2560 struct drm_i915_gem_exec_object2 *exec2_list;
cf6e7bac 2561 struct drm_syncobj **fences = NULL;
d710fc16 2562 const size_t count = args->buffer_count;
2889caa9 2563 int err;
54cf91dc 2564
d710fc16
CW
2565 if (!check_buffer_count(count)) {
2566 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2567 return -EINVAL;
2568 }
2569
2889caa9
CW
2570 if (!i915_gem_check_execbuffer(args))
2571 return -EINVAL;
2572
2573 /* Allocate an extra slot for use by the command parser */
d710fc16 2574 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2575 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2576 if (exec2_list == NULL) {
d710fc16
CW
2577 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2578 count);
54cf91dc
CW
2579 return -ENOMEM;
2580 }
2889caa9
CW
2581 if (copy_from_user(exec2_list,
2582 u64_to_user_ptr(args->buffers_ptr),
d710fc16
CW
2583 sizeof(*exec2_list) * count)) {
2584 DRM_DEBUG("copy %zd exec entries failed\n", count);
2098105e 2585 kvfree(exec2_list);
54cf91dc
CW
2586 return -EFAULT;
2587 }
2588
cf6e7bac
JE
2589 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2590 fences = get_fence_array(args, file);
2591 if (IS_ERR(fences)) {
2592 kvfree(exec2_list);
2593 return PTR_ERR(fences);
2594 }
2595 }
2596
2597 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2889caa9
CW
2598
2599 /*
2600 * Now that we have begun execution of the batchbuffer, we ignore
2601 * any new error after this point. Also given that we have already
2602 * updated the associated relocations, we try to write out the current
2603 * object locations irrespective of any error.
2604 */
2605 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2606 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2607 u64_to_user_ptr(args->buffers_ptr);
2608 unsigned int i;
9aab8bff 2609
2889caa9 2610 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
2611 /*
2612 * Note: count * sizeof(*user_exec_list) does not overflow,
2613 * because we checked 'count' in check_buffer_count().
2614 *
2615 * And this range already got effectively checked earlier
2616 * when we did the "copy_from_user()" above.
2617 */
2618 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2619 goto end_user;
2620
9aab8bff 2621 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2622 if (!(exec2_list[i].offset & UPDATE))
2623 continue;
2624
934acce3 2625 exec2_list[i].offset =
2889caa9
CW
2626 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2627 unsafe_put_user(exec2_list[i].offset,
2628 &user_exec_list[i].offset,
2629 end_user);
54cf91dc 2630 }
2889caa9
CW
2631end_user:
2632 user_access_end();
54cf91dc
CW
2633 }
2634
2889caa9 2635 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
cf6e7bac 2636 put_fence_array(args, fences);
2098105e 2637 kvfree(exec2_list);
2889caa9 2638 return err;
54cf91dc 2639}