drm/i915: Simplify flushing activity on the ring
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
ff72145b
DA
195static int
196i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
673a394b 200{
05394f39 201 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
202 int ret;
203 u32 handle;
673a394b 204
ff72145b 205 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
206 if (size == 0)
207 return -EINVAL;
673a394b
EA
208
209 /* Allocate the new object */
ff72145b 210 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
211 if (obj == NULL)
212 return -ENOMEM;
213
05394f39 214 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 215 if (ret) {
05394f39
CW
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 218 kfree(obj);
673a394b 219 return ret;
1dfd9754 220 }
673a394b 221
202f2fef 222 /* drop reference from allocate - handle holds it now */
05394f39 223 drm_gem_object_unreference(&obj->base);
202f2fef
CW
224 trace_i915_gem_object_create(obj);
225
ff72145b 226 *handle_p = handle;
673a394b
EA
227 return 0;
228}
229
ff72145b
DA
230int
231i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234{
235 /* have to work out size/pitch and return them */
ed0291fd 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240}
241
242int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245{
246 return drm_gem_handle_delete(file, handle);
247}
248
249/**
250 * Creates a new mm object and returns a handle to it.
251 */
252int
253i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255{
256 struct drm_i915_gem_create *args = data;
63ed2cb2 257
ff72145b
DA
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260}
261
05394f39 262static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 263{
05394f39 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 267 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
268}
269
8461d226
DV
270static inline int
271__copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274{
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294}
295
8c59967c 296static inline int
4f0c7cfb
BW
297__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
8c59967c
DV
299 int length)
300{
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320}
321
d174bd64
DV
322/* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
eb01459f 325static int
d174bd64
DV
326shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329{
330 char *vaddr;
331 int ret;
332
e7e58eb5 333 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
f60d7f0c 345 return ret ? -EFAULT : 0;
d174bd64
DV
346}
347
23c18c71
DV
348static void
349shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351{
e7e58eb5 352 if (unlikely(swizzled)) {
23c18c71
DV
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368}
369
d174bd64
DV
370/* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372static int
373shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376{
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
23c18c71
DV
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
d174bd64
DV
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
f60d7f0c 396 return ret ? - EFAULT : 0;
d174bd64
DV
397}
398
eb01459f 399static int
dbf7bff0
DV
400i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
eb01459f 404{
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 410 int hit_slowpath = 0;
96d79b52 411 int prefaulted = 0;
8489731c 412 int needs_clflush = 0;
9da3da66
CW
413 struct scatterlist *sg;
414 int i;
eb01459f 415
8461d226 416 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
417 remain = args->size;
418
8461d226 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
8489731c
DV
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
6c085a72
CW
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
8489731c 433 }
eb01459f 434
f60d7f0c
CW
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
8461d226 441 offset = args->offset;
eb01459f 442
9da3da66 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
444 struct page *page;
445
9da3da66
CW
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
eb01459f
EA
452 /* Operation in this page
453 *
eb01459f 454 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
455 * page_length = bytes to copy for this page
456 */
c8cbbb8b 457 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 461
9da3da66 462 page = sg_page(sg);
8461d226
DV
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
d174bd64
DV
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
dbf7bff0
DV
471
472 hit_slowpath = 1;
dbf7bff0
DV
473 mutex_unlock(&dev->struct_mutex);
474
96d79b52 475 if (!prefaulted) {
f56f821f 476 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
eb01459f 484
d174bd64
DV
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
eb01459f 488
dbf7bff0 489 mutex_lock(&dev->struct_mutex);
f60d7f0c 490
dbf7bff0 491next_page:
e5281ccd 492 mark_page_accessed(page);
e5281ccd 493
f60d7f0c 494 if (ret)
8461d226 495 goto out;
8461d226 496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
f60d7f0c
CW
503 i915_gem_object_unpin_pages(obj);
504
dbf7bff0
DV
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
eb01459f
EA
510
511 return ret;
512}
513
673a394b
EA
514/**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519int
520i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 521 struct drm_file *file)
673a394b
EA
522{
523 struct drm_i915_gem_pread *args = data;
05394f39 524 struct drm_i915_gem_object *obj;
35b62a89 525 int ret = 0;
673a394b 526
51311d0a
CW
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
4f27b75d 535 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 536 if (ret)
4f27b75d 537 return ret;
673a394b 538
05394f39 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 540 if (&obj->base == NULL) {
1d7cfea1
CW
541 ret = -ENOENT;
542 goto unlock;
4f27b75d 543 }
673a394b 544
7dcd2499 545 /* Bounds check source. */
05394f39
CW
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
ce9d419d 548 ret = -EINVAL;
35b62a89 549 goto out;
ce9d419d
CW
550 }
551
1286ff73
DV
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
db53a302
CW
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
dbf7bff0 562 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
4f0c7cfb
BW
581 void __iomem *vaddr_atomic;
582 void *vaddr;
0839ccb8 583 unsigned long unwritten;
9b7530cc 584
3e4d3af5 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 589 user_data, length);
3e4d3af5 590 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 591 return unwritten;
0839ccb8
KP
592}
593
3de09aa3
EA
594/**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
673a394b 598static int
05394f39
CW
599i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
3de09aa3 601 struct drm_i915_gem_pwrite *args,
05394f39 602 struct drm_file *file)
673a394b 603{
0839ccb8 604 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 605 ssize_t remain;
0839ccb8 606 loff_t offset, page_base;
673a394b 607 char __user *user_data;
935aaa69
DV
608 int page_offset, page_length, ret;
609
86a1ee26 610 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
673a394b
EA
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
673a394b 624
05394f39 625 offset = obj->gtt_offset + args->offset;
673a394b
EA
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
0839ccb8
KP
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
673a394b 633 */
c8cbbb8b
CW
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
0839ccb8
KP
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
0839ccb8 640 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
0839ccb8 643 */
fbd5a26d 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
673a394b 649
0839ccb8
KP
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
673a394b 653 }
673a394b 654
935aaa69
DV
655out_unpin:
656 i915_gem_object_unpin(obj);
657out:
3de09aa3 658 return ret;
673a394b
EA
659}
660
d174bd64
DV
661/* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
3043c60c 665static int
d174bd64
DV
666shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
673a394b 671{
d174bd64 672 char *vaddr;
673a394b 673 int ret;
3de09aa3 674
e7e58eb5 675 if (unlikely(page_do_bit17_swizzling))
d174bd64 676 return -EINVAL;
3de09aa3 677
d174bd64
DV
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
3de09aa3 689
755d2218 690 return ret ? -EFAULT : 0;
3de09aa3
EA
691}
692
d174bd64
DV
693/* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
3043c60c 695static int
d174bd64
DV
696shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
673a394b 701{
d174bd64
DV
702 char *vaddr;
703 int ret;
e5281ccd 704
d174bd64 705 vaddr = kmap(page);
e7e58eb5 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
d174bd64
DV
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
712 user_data,
713 page_length);
d174bd64
DV
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
23c18c71
DV
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
d174bd64 722 kunmap(page);
40123c1f 723
755d2218 724 return ret ? -EFAULT : 0;
40123c1f
EA
725}
726
40123c1f 727static int
e244a443
DV
728i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
40123c1f 732{
40123c1f 733 ssize_t remain;
8c59967c
DV
734 loff_t offset;
735 char __user *user_data;
eb2c0c81 736 int shmem_page_offset, page_length, ret = 0;
8c59967c 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 738 int hit_slowpath = 0;
58642885
DV
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
9da3da66
CW
741 int i;
742 struct scatterlist *sg;
40123c1f 743
8c59967c 744 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
745 remain = args->size;
746
8c59967c 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 748
58642885
DV
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
6c085a72
CW
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
58642885
DV
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
755d2218
CW
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
673a394b 774 offset = args->offset;
05394f39 775 obj->dirty = 1;
673a394b 776
9da3da66 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 778 struct page *page;
58642885 779 int partial_cacheline_write;
e5281ccd 780
9da3da66
CW
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
40123c1f
EA
787 /* Operation in this page
788 *
40123c1f 789 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
790 * page_length = bytes to copy for this page
791 */
c8cbbb8b 792 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 797
58642885
DV
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
9da3da66 805 page = sg_page(sg);
8c59967c
DV
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
d174bd64
DV
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
e244a443
DV
815
816 hit_slowpath = 1;
e244a443 817 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
40123c1f 822
e244a443 823 mutex_lock(&dev->struct_mutex);
755d2218 824
e244a443 825next_page:
e5281ccd
CW
826 set_page_dirty(page);
827 mark_page_accessed(page);
e5281ccd 828
755d2218 829 if (ret)
8c59967c 830 goto out;
8c59967c 831
40123c1f 832 remain -= page_length;
8c59967c 833 user_data += page_length;
40123c1f 834 offset += page_length;
673a394b
EA
835 }
836
fbd5a26d 837out:
755d2218
CW
838 i915_gem_object_unpin_pages(obj);
839
e244a443
DV
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
e76e9aeb 848 i915_gem_chipset_flush(dev);
e244a443 849 }
8c59967c 850 }
673a394b 851
58642885 852 if (needs_clflush_after)
e76e9aeb 853 i915_gem_chipset_flush(dev);
58642885 854
40123c1f 855 return ret;
673a394b
EA
856}
857
858/**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863int
864i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 865 struct drm_file *file)
673a394b
EA
866{
867 struct drm_i915_gem_pwrite *args = data;
05394f39 868 struct drm_i915_gem_object *obj;
51311d0a
CW
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
f56f821f
DV
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
51311d0a
CW
881 if (ret)
882 return -EFAULT;
673a394b 883
fbd5a26d 884 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 885 if (ret)
fbd5a26d 886 return ret;
1d7cfea1 887
05394f39 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 889 if (&obj->base == NULL) {
1d7cfea1
CW
890 ret = -ENOENT;
891 goto unlock;
fbd5a26d 892 }
673a394b 893
7dcd2499 894 /* Bounds check destination. */
05394f39
CW
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
ce9d419d 897 ret = -EINVAL;
35b62a89 898 goto out;
ce9d419d
CW
899 }
900
1286ff73
DV
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
db53a302
CW
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
935aaa69 911 ret = -EFAULT;
673a394b
EA
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
5c0480f2 918 if (obj->phys_obj) {
fbd5a26d 919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
920 goto out;
921 }
922
86a1ee26 923 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
fbd5a26d 930 }
673a394b 931
86a1ee26 932 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 934
35b62a89 935out:
05394f39 936 drm_gem_object_unreference(&obj->base);
1d7cfea1 937unlock:
fbd5a26d 938 mutex_unlock(&dev->struct_mutex);
673a394b
EA
939 return ret;
940}
941
b361237b
CW
942int
943i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945{
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969}
970
971/*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975static int
976i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977{
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987}
988
989/**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001{
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027#define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048#undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068}
1069
1070/**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074int
1075i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076{
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094}
1095
1096/**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100static __must_check int
1101i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103{
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128}
1129
3236f57a
CW
1130/* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133static __must_check int
1134i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136{
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174}
1175
673a394b 1176/**
2ef7eeaa
EA
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1179 */
1180int
1181i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1182 struct drm_file *file)
673a394b
EA
1183{
1184 struct drm_i915_gem_set_domain *args = data;
05394f39 1185 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
673a394b
EA
1188 int ret;
1189
2ef7eeaa 1190 /* Only handle setting domains to types used by the CPU. */
21d509e3 1191 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
21d509e3 1194 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
76c1dec1 1203 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1204 if (ret)
76c1dec1 1205 return ret;
1d7cfea1 1206
05394f39 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1208 if (&obj->base == NULL) {
1d7cfea1
CW
1209 ret = -ENOENT;
1210 goto unlock;
76c1dec1 1211 }
673a394b 1212
3236f57a
CW
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
2ef7eeaa
EA
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
2ef7eeaa 1230 } else {
e47c68e9 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1232 }
1233
3236f57a 1234unref:
05394f39 1235 drm_gem_object_unreference(&obj->base);
1d7cfea1 1236unlock:
673a394b
EA
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239}
1240
1241/**
1242 * Called when user space has done writes to this buffer
1243 */
1244int
1245i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1246 struct drm_file *file)
673a394b
EA
1247{
1248 struct drm_i915_gem_sw_finish *args = data;
05394f39 1249 struct drm_i915_gem_object *obj;
673a394b
EA
1250 int ret = 0;
1251
76c1dec1 1252 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1253 if (ret)
76c1dec1 1254 return ret;
1d7cfea1 1255
05394f39 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1257 if (&obj->base == NULL) {
1d7cfea1
CW
1258 ret = -ENOENT;
1259 goto unlock;
673a394b
EA
1260 }
1261
673a394b 1262 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1263 if (obj->pin_count)
e47c68e9
EA
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
05394f39 1266 drm_gem_object_unreference(&obj->base);
1d7cfea1 1267unlock:
673a394b
EA
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270}
1271
1272/**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279int
1280i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1281 struct drm_file *file)
673a394b
EA
1282{
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
673a394b
EA
1285 unsigned long addr;
1286
05394f39 1287 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1288 if (obj == NULL)
bf79cb91 1289 return -ENOENT;
673a394b 1290
1286ff73
DV
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
6be5ceb0 1299 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
bc9025bd 1302 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309}
1310
de151cf6
JB
1311/**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328{
05394f39
CW
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
7d1c4804 1331 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
0f973f27 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
d9bc7e9f
CW
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
a00b10c3 1344
db53a302
CW
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
d9bc7e9f 1347 /* Now bind it into the GTT if needed */
c9839303
CW
1348 ret = i915_gem_object_pin(obj, 0, true, false);
1349 if (ret)
1350 goto unlock;
4a684a41 1351
c9839303
CW
1352 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1353 if (ret)
1354 goto unpin;
74898d7e 1355
06d98131 1356 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1357 if (ret)
c9839303 1358 goto unpin;
7d1c4804 1359
6299f992
CW
1360 obj->fault_mappable = true;
1361
dd2757f8 1362 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1363 page_offset;
1364
1365 /* Finally, remap it using the new GTT offset */
1366 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1367unpin:
1368 i915_gem_object_unpin(obj);
c715089f 1369unlock:
de151cf6 1370 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1371out:
de151cf6 1372 switch (ret) {
d9bc7e9f 1373 case -EIO:
a9340cca
DV
1374 /* If this -EIO is due to a gpu hang, give the reset code a
1375 * chance to clean up the mess. Otherwise return the proper
1376 * SIGBUS. */
1377 if (!atomic_read(&dev_priv->mm.wedged))
1378 return VM_FAULT_SIGBUS;
045e769a 1379 case -EAGAIN:
d9bc7e9f
CW
1380 /* Give the error handler a chance to run and move the
1381 * objects off the GPU active list. Next time we service the
1382 * fault, we should be able to transition the page into the
1383 * GTT without touching the GPU (and so avoid further
1384 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1385 * with coherency, just lost writes.
1386 */
045e769a 1387 set_need_resched();
c715089f
CW
1388 case 0:
1389 case -ERESTARTSYS:
bed636ab 1390 case -EINTR:
e79e0fe3
DR
1391 case -EBUSY:
1392 /*
1393 * EBUSY is ok: this just means that another thread
1394 * already did the job.
1395 */
c715089f 1396 return VM_FAULT_NOPAGE;
de151cf6 1397 case -ENOMEM:
de151cf6 1398 return VM_FAULT_OOM;
a7c2e1aa
DV
1399 case -ENOSPC:
1400 return VM_FAULT_SIGBUS;
de151cf6 1401 default:
a7c2e1aa 1402 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1403 return VM_FAULT_SIGBUS;
de151cf6
JB
1404 }
1405}
1406
901782b2
CW
1407/**
1408 * i915_gem_release_mmap - remove physical page mappings
1409 * @obj: obj in question
1410 *
af901ca1 1411 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1412 * relinquish ownership of the pages back to the system.
1413 *
1414 * It is vital that we remove the page mapping if we have mapped a tiled
1415 * object through the GTT and then lose the fence register due to
1416 * resource pressure. Similarly if the object has been moved out of the
1417 * aperture, than pages mapped into userspace must be revoked. Removing the
1418 * mapping will then trigger a page fault on the next user access, allowing
1419 * fixup by i915_gem_fault().
1420 */
d05ca301 1421void
05394f39 1422i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1423{
6299f992
CW
1424 if (!obj->fault_mappable)
1425 return;
901782b2 1426
f6e47884
CW
1427 if (obj->base.dev->dev_mapping)
1428 unmap_mapping_range(obj->base.dev->dev_mapping,
1429 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1430 obj->base.size, 1);
fb7d516a 1431
6299f992 1432 obj->fault_mappable = false;
901782b2
CW
1433}
1434
92b88aeb 1435static uint32_t
e28f8711 1436i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1437{
e28f8711 1438 uint32_t gtt_size;
92b88aeb
CW
1439
1440 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1441 tiling_mode == I915_TILING_NONE)
1442 return size;
92b88aeb
CW
1443
1444 /* Previous chips need a power-of-two fence region when tiling */
1445 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1446 gtt_size = 1024*1024;
92b88aeb 1447 else
e28f8711 1448 gtt_size = 512*1024;
92b88aeb 1449
e28f8711
CW
1450 while (gtt_size < size)
1451 gtt_size <<= 1;
92b88aeb 1452
e28f8711 1453 return gtt_size;
92b88aeb
CW
1454}
1455
de151cf6
JB
1456/**
1457 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1458 * @obj: object to check
1459 *
1460 * Return the required GTT alignment for an object, taking into account
5e783301 1461 * potential fence register mapping.
de151cf6
JB
1462 */
1463static uint32_t
e28f8711
CW
1464i915_gem_get_gtt_alignment(struct drm_device *dev,
1465 uint32_t size,
1466 int tiling_mode)
de151cf6 1467{
de151cf6
JB
1468 /*
1469 * Minimum alignment is 4k (GTT page size), but might be greater
1470 * if a fence register is needed for the object.
1471 */
a00b10c3 1472 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1473 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1474 return 4096;
1475
a00b10c3
CW
1476 /*
1477 * Previous chips need to be aligned to the size of the smallest
1478 * fence register that can contain the object.
1479 */
e28f8711 1480 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1481}
1482
5e783301
DV
1483/**
1484 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1485 * unfenced object
e28f8711
CW
1486 * @dev: the device
1487 * @size: size of the object
1488 * @tiling_mode: tiling mode of the object
5e783301
DV
1489 *
1490 * Return the required GTT alignment for an object, only taking into account
1491 * unfenced tiled surface requirements.
1492 */
467cffba 1493uint32_t
e28f8711
CW
1494i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1495 uint32_t size,
1496 int tiling_mode)
5e783301 1497{
5e783301
DV
1498 /*
1499 * Minimum alignment is 4k (GTT page size) for sane hw.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1502 tiling_mode == I915_TILING_NONE)
5e783301
DV
1503 return 4096;
1504
e28f8711
CW
1505 /* Previous hardware however needs to be aligned to a power-of-two
1506 * tile height. The simplest method for determining this is to reuse
1507 * the power-of-tile object size.
5e783301 1508 */
e28f8711 1509 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1510}
1511
d8cb5086
CW
1512static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1513{
1514 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1515 int ret;
1516
1517 if (obj->base.map_list.map)
1518 return 0;
1519
1520 ret = drm_gem_create_mmap_offset(&obj->base);
1521 if (ret != -ENOSPC)
1522 return ret;
1523
1524 /* Badly fragmented mmap space? The only way we can recover
1525 * space is by destroying unwanted objects. We can't randomly release
1526 * mmap_offsets as userspace expects them to be persistent for the
1527 * lifetime of the objects. The closest we can is to release the
1528 * offsets on purgeable objects by truncating it and marking it purged,
1529 * which prevents userspace from ever using that object again.
1530 */
1531 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1532 ret = drm_gem_create_mmap_offset(&obj->base);
1533 if (ret != -ENOSPC)
1534 return ret;
1535
1536 i915_gem_shrink_all(dev_priv);
1537 return drm_gem_create_mmap_offset(&obj->base);
1538}
1539
1540static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1541{
1542 if (!obj->base.map_list.map)
1543 return;
1544
1545 drm_gem_free_mmap_offset(&obj->base);
1546}
1547
de151cf6 1548int
ff72145b
DA
1549i915_gem_mmap_gtt(struct drm_file *file,
1550 struct drm_device *dev,
1551 uint32_t handle,
1552 uint64_t *offset)
de151cf6 1553{
da761a6e 1554 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1555 struct drm_i915_gem_object *obj;
de151cf6
JB
1556 int ret;
1557
76c1dec1 1558 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1559 if (ret)
76c1dec1 1560 return ret;
de151cf6 1561
ff72145b 1562 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1563 if (&obj->base == NULL) {
1d7cfea1
CW
1564 ret = -ENOENT;
1565 goto unlock;
1566 }
de151cf6 1567
05394f39 1568 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1569 ret = -E2BIG;
ff56b0bc 1570 goto out;
da761a6e
CW
1571 }
1572
05394f39 1573 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1574 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1575 ret = -EINVAL;
1576 goto out;
ab18282d
CW
1577 }
1578
d8cb5086
CW
1579 ret = i915_gem_object_create_mmap_offset(obj);
1580 if (ret)
1581 goto out;
de151cf6 1582
ff72145b 1583 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1584
1d7cfea1 1585out:
05394f39 1586 drm_gem_object_unreference(&obj->base);
1d7cfea1 1587unlock:
de151cf6 1588 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1589 return ret;
de151cf6
JB
1590}
1591
ff72145b
DA
1592/**
1593 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1594 * @dev: DRM device
1595 * @data: GTT mapping ioctl data
1596 * @file: GEM object info
1597 *
1598 * Simply returns the fake offset to userspace so it can mmap it.
1599 * The mmap call will end up in drm_gem_mmap(), which will set things
1600 * up so we can get faults in the handler above.
1601 *
1602 * The fault handler will take care of binding the object into the GTT
1603 * (since it may have been evicted to make room for something), allocating
1604 * a fence register, and mapping the appropriate aperture address into
1605 * userspace.
1606 */
1607int
1608i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1609 struct drm_file *file)
1610{
1611 struct drm_i915_gem_mmap_gtt *args = data;
1612
ff72145b
DA
1613 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1614}
1615
225067ee
DV
1616/* Immediately discard the backing storage */
1617static void
1618i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1619{
e5281ccd 1620 struct inode *inode;
e5281ccd 1621
4d6294bf 1622 i915_gem_object_free_mmap_offset(obj);
1286ff73 1623
4d6294bf
CW
1624 if (obj->base.filp == NULL)
1625 return;
e5281ccd 1626
225067ee
DV
1627 /* Our goal here is to return as much of the memory as
1628 * is possible back to the system as we are called from OOM.
1629 * To do this we must instruct the shmfs to drop all of its
1630 * backing pages, *now*.
1631 */
05394f39 1632 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1633 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1634
225067ee
DV
1635 obj->madv = __I915_MADV_PURGED;
1636}
e5281ccd 1637
225067ee
DV
1638static inline int
1639i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1640{
1641 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1642}
1643
5cdf5881 1644static void
05394f39 1645i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1646{
05394f39 1647 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1648 struct scatterlist *sg;
6c085a72 1649 int ret, i;
1286ff73 1650
05394f39 1651 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1652
6c085a72
CW
1653 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1654 if (ret) {
1655 /* In the event of a disaster, abandon all caches and
1656 * hope for the best.
1657 */
1658 WARN_ON(ret != -EIO);
1659 i915_gem_clflush_object(obj);
1660 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1661 }
1662
6dacfd2f 1663 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1664 i915_gem_object_save_bit_17_swizzle(obj);
1665
05394f39
CW
1666 if (obj->madv == I915_MADV_DONTNEED)
1667 obj->dirty = 0;
3ef94daa 1668
9da3da66
CW
1669 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1670 struct page *page = sg_page(sg);
1671
05394f39 1672 if (obj->dirty)
9da3da66 1673 set_page_dirty(page);
3ef94daa 1674
05394f39 1675 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1676 mark_page_accessed(page);
3ef94daa 1677
9da3da66 1678 page_cache_release(page);
3ef94daa 1679 }
05394f39 1680 obj->dirty = 0;
673a394b 1681
9da3da66
CW
1682 sg_free_table(obj->pages);
1683 kfree(obj->pages);
37e680a1 1684}
6c085a72 1685
37e680a1
CW
1686static int
1687i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1688{
1689 const struct drm_i915_gem_object_ops *ops = obj->ops;
1690
2f745ad3 1691 if (obj->pages == NULL)
37e680a1
CW
1692 return 0;
1693
1694 BUG_ON(obj->gtt_space);
6c085a72 1695
a5570178
CW
1696 if (obj->pages_pin_count)
1697 return -EBUSY;
1698
37e680a1 1699 ops->put_pages(obj);
05394f39 1700 obj->pages = NULL;
37e680a1
CW
1701
1702 list_del(&obj->gtt_list);
6c085a72
CW
1703 if (i915_gem_object_is_purgeable(obj))
1704 i915_gem_object_truncate(obj);
1705
1706 return 0;
1707}
1708
1709static long
1710i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1711{
1712 struct drm_i915_gem_object *obj, *next;
1713 long count = 0;
1714
1715 list_for_each_entry_safe(obj, next,
1716 &dev_priv->mm.unbound_list,
1717 gtt_list) {
1718 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1719 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1720 count += obj->base.size >> PAGE_SHIFT;
1721 if (count >= target)
1722 return count;
1723 }
1724 }
1725
1726 list_for_each_entry_safe(obj, next,
1727 &dev_priv->mm.inactive_list,
1728 mm_list) {
1729 if (i915_gem_object_is_purgeable(obj) &&
1730 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1731 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1732 count += obj->base.size >> PAGE_SHIFT;
1733 if (count >= target)
1734 return count;
1735 }
1736 }
1737
1738 return count;
1739}
1740
1741static void
1742i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1743{
1744 struct drm_i915_gem_object *obj, *next;
1745
1746 i915_gem_evict_everything(dev_priv->dev);
1747
1748 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1749 i915_gem_object_put_pages(obj);
225067ee
DV
1750}
1751
37e680a1 1752static int
6c085a72 1753i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1754{
6c085a72 1755 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1756 int page_count, i;
1757 struct address_space *mapping;
9da3da66
CW
1758 struct sg_table *st;
1759 struct scatterlist *sg;
e5281ccd 1760 struct page *page;
6c085a72 1761 gfp_t gfp;
e5281ccd 1762
6c085a72
CW
1763 /* Assert that the object is not currently in any GPU domain. As it
1764 * wasn't in the GTT, there shouldn't be any way it could have been in
1765 * a GPU cache
1766 */
1767 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1768 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1769
9da3da66
CW
1770 st = kmalloc(sizeof(*st), GFP_KERNEL);
1771 if (st == NULL)
1772 return -ENOMEM;
1773
05394f39 1774 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1775 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1776 sg_free_table(st);
1777 kfree(st);
e5281ccd 1778 return -ENOMEM;
9da3da66 1779 }
e5281ccd 1780
9da3da66
CW
1781 /* Get the list of pages out of our struct file. They'll be pinned
1782 * at this point until we release them.
1783 *
1784 * Fail silently without starting the shrinker
1785 */
6c085a72
CW
1786 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1787 gfp = mapping_gfp_mask(mapping);
d7c3b937 1788 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1789 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1790 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1791 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792 if (IS_ERR(page)) {
1793 i915_gem_purge(dev_priv, page_count);
1794 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795 }
1796 if (IS_ERR(page)) {
1797 /* We've tried hard to allocate the memory by reaping
1798 * our own buffer, now let the real VM do its job and
1799 * go down in flames if truly OOM.
1800 */
d7c3b937 1801 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1802 gfp |= __GFP_IO | __GFP_WAIT;
1803
1804 i915_gem_shrink_all(dev_priv);
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 if (IS_ERR(page))
1807 goto err_pages;
1808
d7c3b937 1809 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1810 gfp &= ~(__GFP_IO | __GFP_WAIT);
1811 }
e5281ccd 1812
9da3da66 1813 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1814 }
1815
74ce6b6c
CW
1816 obj->pages = st;
1817
6dacfd2f 1818 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1819 i915_gem_object_do_bit_17_swizzle(obj);
1820
1821 return 0;
1822
1823err_pages:
9da3da66
CW
1824 for_each_sg(st->sgl, sg, i, page_count)
1825 page_cache_release(sg_page(sg));
1826 sg_free_table(st);
1827 kfree(st);
e5281ccd 1828 return PTR_ERR(page);
673a394b
EA
1829}
1830
37e680a1
CW
1831/* Ensure that the associated pages are gathered from the backing storage
1832 * and pinned into our object. i915_gem_object_get_pages() may be called
1833 * multiple times before they are released by a single call to
1834 * i915_gem_object_put_pages() - once the pages are no longer referenced
1835 * either as a result of memory pressure (reaping pages under the shrinker)
1836 * or as the object is itself released.
1837 */
1838int
1839i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1840{
1841 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1842 const struct drm_i915_gem_object_ops *ops = obj->ops;
1843 int ret;
1844
2f745ad3 1845 if (obj->pages)
37e680a1
CW
1846 return 0;
1847
a5570178
CW
1848 BUG_ON(obj->pages_pin_count);
1849
37e680a1
CW
1850 ret = ops->get_pages(obj);
1851 if (ret)
1852 return ret;
1853
1854 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1855 return 0;
673a394b
EA
1856}
1857
54cf91dc 1858void
05394f39 1859i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1860 struct intel_ring_buffer *ring)
673a394b 1861{
05394f39 1862 struct drm_device *dev = obj->base.dev;
69dc4987 1863 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1864 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1865
852835f3 1866 BUG_ON(ring == NULL);
05394f39 1867 obj->ring = ring;
673a394b
EA
1868
1869 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1870 if (!obj->active) {
1871 drm_gem_object_reference(&obj->base);
1872 obj->active = 1;
673a394b 1873 }
e35a41de 1874
673a394b 1875 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1876 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1877 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1878
0201f1ec 1879 obj->last_read_seqno = seqno;
caea7476 1880
7dd49065 1881 if (obj->fenced_gpu_access) {
caea7476 1882 obj->last_fenced_seqno = seqno;
caea7476 1883
7dd49065
CW
1884 /* Bump MRU to take account of the delayed flush */
1885 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1886 struct drm_i915_fence_reg *reg;
1887
1888 reg = &dev_priv->fence_regs[obj->fence_reg];
1889 list_move_tail(&reg->lru_list,
1890 &dev_priv->mm.fence_list);
1891 }
caea7476
CW
1892 }
1893}
1894
1895static void
caea7476 1896i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1897{
05394f39 1898 struct drm_device *dev = obj->base.dev;
caea7476 1899 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1900
65ce3027 1901 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1902 BUG_ON(!obj->active);
caea7476 1903
f047e395
CW
1904 if (obj->pin_count) /* are we a framebuffer? */
1905 intel_mark_fb_idle(obj);
caea7476 1906
1b50247a 1907 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1908
65ce3027 1909 list_del_init(&obj->ring_list);
caea7476
CW
1910 obj->ring = NULL;
1911
65ce3027
CW
1912 obj->last_read_seqno = 0;
1913 obj->last_write_seqno = 0;
1914 obj->base.write_domain = 0;
1915
1916 obj->last_fenced_seqno = 0;
caea7476 1917 obj->fenced_gpu_access = false;
caea7476
CW
1918
1919 obj->active = 0;
1920 drm_gem_object_unreference(&obj->base);
1921
1922 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1923}
673a394b 1924
9d773091
CW
1925static int
1926i915_gem_handle_seqno_wrap(struct drm_device *dev)
53d227f2 1927{
9d773091
CW
1928 struct drm_i915_private *dev_priv = dev->dev_private;
1929 struct intel_ring_buffer *ring;
1930 int ret, i, j;
53d227f2 1931
9d773091
CW
1932 /* The hardware uses various monotonic 32-bit counters, if we
1933 * detect that they will wraparound we need to idle the GPU
1934 * and reset those counters.
1935 */
1936 ret = 0;
1937 for_each_ring(ring, dev_priv, i) {
1938 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1939 ret |= ring->sync_seqno[j] != 0;
1940 }
1941 if (ret == 0)
1942 return ret;
1943
1944 ret = i915_gpu_idle(dev);
1945 if (ret)
1946 return ret;
1947
1948 i915_gem_retire_requests(dev);
1949 for_each_ring(ring, dev_priv, i) {
1950 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1951 ring->sync_seqno[j] = 0;
1952 }
53d227f2 1953
9d773091 1954 return 0;
53d227f2
DV
1955}
1956
9d773091
CW
1957int
1958i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1959{
9d773091
CW
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961
1962 /* reserve 0 for non-seqno */
1963 if (dev_priv->next_seqno == 0) {
1964 int ret = i915_gem_handle_seqno_wrap(dev);
1965 if (ret)
1966 return ret;
1967
1968 dev_priv->next_seqno = 1;
1969 }
53d227f2 1970
9d773091
CW
1971 *seqno = dev_priv->next_seqno++;
1972 return 0;
53d227f2
DV
1973}
1974
3cce469c 1975int
db53a302 1976i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1977 struct drm_file *file,
acb868d3 1978 u32 *out_seqno)
673a394b 1979{
db53a302 1980 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1981 struct drm_i915_gem_request *request;
a71d8d94 1982 u32 request_ring_position;
673a394b 1983 int was_empty;
3cce469c
CW
1984 int ret;
1985
cc889e0f
DV
1986 /*
1987 * Emit any outstanding flushes - execbuf can fail to emit the flush
1988 * after having emitted the batchbuffer command. Hence we need to fix
1989 * things up similar to emitting the lazy request. The difference here
1990 * is that the flush _must_ happen before the next request, no matter
1991 * what.
1992 */
a7b9761d
CW
1993 ret = intel_ring_flush_all_caches(ring);
1994 if (ret)
1995 return ret;
cc889e0f 1996
acb868d3
CW
1997 request = kmalloc(sizeof(*request), GFP_KERNEL);
1998 if (request == NULL)
1999 return -ENOMEM;
cc889e0f 2000
673a394b 2001
a71d8d94
CW
2002 /* Record the position of the start of the request so that
2003 * should we detect the updated seqno part-way through the
2004 * GPU processing the request, we never over-estimate the
2005 * position of the head.
2006 */
2007 request_ring_position = intel_ring_get_tail(ring);
2008
9d773091 2009 ret = ring->add_request(ring);
3bb73aba
CW
2010 if (ret) {
2011 kfree(request);
2012 return ret;
2013 }
673a394b 2014
9d773091 2015 request->seqno = intel_ring_get_seqno(ring);
852835f3 2016 request->ring = ring;
a71d8d94 2017 request->tail = request_ring_position;
673a394b 2018 request->emitted_jiffies = jiffies;
852835f3
ZN
2019 was_empty = list_empty(&ring->request_list);
2020 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2021 request->file_priv = NULL;
852835f3 2022
db53a302
CW
2023 if (file) {
2024 struct drm_i915_file_private *file_priv = file->driver_priv;
2025
1c25595f 2026 spin_lock(&file_priv->mm.lock);
f787a5f5 2027 request->file_priv = file_priv;
b962442e 2028 list_add_tail(&request->client_list,
f787a5f5 2029 &file_priv->mm.request_list);
1c25595f 2030 spin_unlock(&file_priv->mm.lock);
b962442e 2031 }
673a394b 2032
9d773091 2033 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2034 ring->outstanding_lazy_request = 0;
db53a302 2035
f65d9421 2036 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2037 if (i915_enable_hangcheck) {
2038 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2039 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2040 }
f047e395 2041 if (was_empty) {
b3b079db 2042 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2043 &dev_priv->mm.retire_work,
2044 round_jiffies_up_relative(HZ));
f047e395
CW
2045 intel_mark_busy(dev_priv->dev);
2046 }
f65d9421 2047 }
cc889e0f 2048
acb868d3 2049 if (out_seqno)
9d773091 2050 *out_seqno = request->seqno;
3cce469c 2051 return 0;
673a394b
EA
2052}
2053
f787a5f5
CW
2054static inline void
2055i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2056{
1c25595f 2057 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2058
1c25595f
CW
2059 if (!file_priv)
2060 return;
1c5d22f7 2061
1c25595f 2062 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2063 if (request->file_priv) {
2064 list_del(&request->client_list);
2065 request->file_priv = NULL;
2066 }
1c25595f 2067 spin_unlock(&file_priv->mm.lock);
673a394b 2068}
673a394b 2069
dfaae392
CW
2070static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2071 struct intel_ring_buffer *ring)
9375e446 2072{
dfaae392
CW
2073 while (!list_empty(&ring->request_list)) {
2074 struct drm_i915_gem_request *request;
673a394b 2075
dfaae392
CW
2076 request = list_first_entry(&ring->request_list,
2077 struct drm_i915_gem_request,
2078 list);
de151cf6 2079
dfaae392 2080 list_del(&request->list);
f787a5f5 2081 i915_gem_request_remove_from_client(request);
dfaae392
CW
2082 kfree(request);
2083 }
673a394b 2084
dfaae392 2085 while (!list_empty(&ring->active_list)) {
05394f39 2086 struct drm_i915_gem_object *obj;
9375e446 2087
05394f39
CW
2088 obj = list_first_entry(&ring->active_list,
2089 struct drm_i915_gem_object,
2090 ring_list);
9375e446 2091
05394f39 2092 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2093 }
2094}
2095
312817a3
CW
2096static void i915_gem_reset_fences(struct drm_device *dev)
2097{
2098 struct drm_i915_private *dev_priv = dev->dev_private;
2099 int i;
2100
4b9de737 2101 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2102 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2103
ada726c7 2104 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2105
ada726c7
CW
2106 if (reg->obj)
2107 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2108
ada726c7
CW
2109 reg->pin_count = 0;
2110 reg->obj = NULL;
2111 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2112 }
ada726c7
CW
2113
2114 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2115}
2116
069efc1d 2117void i915_gem_reset(struct drm_device *dev)
673a394b 2118{
77f01230 2119 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2120 struct drm_i915_gem_object *obj;
b4519513 2121 struct intel_ring_buffer *ring;
1ec14ad3 2122 int i;
673a394b 2123
b4519513
CW
2124 for_each_ring(ring, dev_priv, i)
2125 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2126
dfaae392
CW
2127 /* Move everything out of the GPU domains to ensure we do any
2128 * necessary invalidation upon reuse.
2129 */
05394f39 2130 list_for_each_entry(obj,
77f01230 2131 &dev_priv->mm.inactive_list,
69dc4987 2132 mm_list)
77f01230 2133 {
05394f39 2134 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2135 }
069efc1d
CW
2136
2137 /* The fence registers are invalidated so clear them out */
312817a3 2138 i915_gem_reset_fences(dev);
673a394b
EA
2139}
2140
2141/**
2142 * This function clears the request list as sequence numbers are passed.
2143 */
a71d8d94 2144void
db53a302 2145i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2146{
673a394b
EA
2147 uint32_t seqno;
2148
db53a302 2149 if (list_empty(&ring->request_list))
6c0594a3
KW
2150 return;
2151
db53a302 2152 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2153
b2eadbc8 2154 seqno = ring->get_seqno(ring, true);
1ec14ad3 2155
852835f3 2156 while (!list_empty(&ring->request_list)) {
673a394b 2157 struct drm_i915_gem_request *request;
673a394b 2158
852835f3 2159 request = list_first_entry(&ring->request_list,
673a394b
EA
2160 struct drm_i915_gem_request,
2161 list);
673a394b 2162
dfaae392 2163 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2164 break;
2165
db53a302 2166 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2167 /* We know the GPU must have read the request to have
2168 * sent us the seqno + interrupt, so use the position
2169 * of tail of the request to update the last known position
2170 * of the GPU head.
2171 */
2172 ring->last_retired_head = request->tail;
b84d5f0c
CW
2173
2174 list_del(&request->list);
f787a5f5 2175 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2176 kfree(request);
2177 }
673a394b 2178
b84d5f0c
CW
2179 /* Move any buffers on the active list that are no longer referenced
2180 * by the ringbuffer to the flushing/inactive lists as appropriate.
2181 */
2182 while (!list_empty(&ring->active_list)) {
05394f39 2183 struct drm_i915_gem_object *obj;
b84d5f0c 2184
0206e353 2185 obj = list_first_entry(&ring->active_list,
05394f39
CW
2186 struct drm_i915_gem_object,
2187 ring_list);
673a394b 2188
0201f1ec 2189 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2190 break;
b84d5f0c 2191
65ce3027 2192 i915_gem_object_move_to_inactive(obj);
673a394b 2193 }
9d34e5db 2194
db53a302
CW
2195 if (unlikely(ring->trace_irq_seqno &&
2196 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2197 ring->irq_put(ring);
db53a302 2198 ring->trace_irq_seqno = 0;
9d34e5db 2199 }
23bc5982 2200
db53a302 2201 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2202}
2203
b09a1fec
CW
2204void
2205i915_gem_retire_requests(struct drm_device *dev)
2206{
2207 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2208 struct intel_ring_buffer *ring;
1ec14ad3 2209 int i;
b09a1fec 2210
b4519513
CW
2211 for_each_ring(ring, dev_priv, i)
2212 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2213}
2214
75ef9da2 2215static void
673a394b
EA
2216i915_gem_retire_work_handler(struct work_struct *work)
2217{
2218 drm_i915_private_t *dev_priv;
2219 struct drm_device *dev;
b4519513 2220 struct intel_ring_buffer *ring;
0a58705b
CW
2221 bool idle;
2222 int i;
673a394b
EA
2223
2224 dev_priv = container_of(work, drm_i915_private_t,
2225 mm.retire_work.work);
2226 dev = dev_priv->dev;
2227
891b48cf
CW
2228 /* Come back later if the device is busy... */
2229 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2230 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2231 round_jiffies_up_relative(HZ));
891b48cf
CW
2232 return;
2233 }
673a394b 2234
b09a1fec 2235 i915_gem_retire_requests(dev);
673a394b 2236
0a58705b
CW
2237 /* Send a periodic flush down the ring so we don't hold onto GEM
2238 * objects indefinitely.
673a394b 2239 */
0a58705b 2240 idle = true;
b4519513 2241 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2242 if (ring->gpu_caches_dirty)
2243 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2244
2245 idle &= list_empty(&ring->request_list);
673a394b
EA
2246 }
2247
0a58705b 2248 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2249 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2250 round_jiffies_up_relative(HZ));
f047e395
CW
2251 if (idle)
2252 intel_mark_idle(dev);
0a58705b 2253
673a394b 2254 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2255}
2256
30dfebf3
DV
2257/**
2258 * Ensures that an object will eventually get non-busy by flushing any required
2259 * write domains, emitting any outstanding lazy request and retiring and
2260 * completed requests.
2261 */
2262static int
2263i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2264{
2265 int ret;
2266
2267 if (obj->active) {
0201f1ec 2268 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2269 if (ret)
2270 return ret;
2271
30dfebf3
DV
2272 i915_gem_retire_requests_ring(obj->ring);
2273 }
2274
2275 return 0;
2276}
2277
23ba4fd0
BW
2278/**
2279 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2280 * @DRM_IOCTL_ARGS: standard ioctl arguments
2281 *
2282 * Returns 0 if successful, else an error is returned with the remaining time in
2283 * the timeout parameter.
2284 * -ETIME: object is still busy after timeout
2285 * -ERESTARTSYS: signal interrupted the wait
2286 * -ENONENT: object doesn't exist
2287 * Also possible, but rare:
2288 * -EAGAIN: GPU wedged
2289 * -ENOMEM: damn
2290 * -ENODEV: Internal IRQ fail
2291 * -E?: The add request failed
2292 *
2293 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2294 * non-zero timeout parameter the wait ioctl will wait for the given number of
2295 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2296 * without holding struct_mutex the object may become re-busied before this
2297 * function completes. A similar but shorter * race condition exists in the busy
2298 * ioctl
2299 */
2300int
2301i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2302{
2303 struct drm_i915_gem_wait *args = data;
2304 struct drm_i915_gem_object *obj;
2305 struct intel_ring_buffer *ring = NULL;
eac1f14f 2306 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2307 u32 seqno = 0;
2308 int ret = 0;
2309
eac1f14f
BW
2310 if (args->timeout_ns >= 0) {
2311 timeout_stack = ns_to_timespec(args->timeout_ns);
2312 timeout = &timeout_stack;
2313 }
23ba4fd0
BW
2314
2315 ret = i915_mutex_lock_interruptible(dev);
2316 if (ret)
2317 return ret;
2318
2319 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2320 if (&obj->base == NULL) {
2321 mutex_unlock(&dev->struct_mutex);
2322 return -ENOENT;
2323 }
2324
30dfebf3
DV
2325 /* Need to make sure the object gets inactive eventually. */
2326 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2327 if (ret)
2328 goto out;
2329
2330 if (obj->active) {
0201f1ec 2331 seqno = obj->last_read_seqno;
23ba4fd0
BW
2332 ring = obj->ring;
2333 }
2334
2335 if (seqno == 0)
2336 goto out;
2337
23ba4fd0
BW
2338 /* Do this after OLR check to make sure we make forward progress polling
2339 * on this IOCTL with a 0 timeout (like busy ioctl)
2340 */
2341 if (!args->timeout_ns) {
2342 ret = -ETIME;
2343 goto out;
2344 }
2345
2346 drm_gem_object_unreference(&obj->base);
2347 mutex_unlock(&dev->struct_mutex);
2348
eac1f14f
BW
2349 ret = __wait_seqno(ring, seqno, true, timeout);
2350 if (timeout) {
2351 WARN_ON(!timespec_valid(timeout));
2352 args->timeout_ns = timespec_to_ns(timeout);
2353 }
23ba4fd0
BW
2354 return ret;
2355
2356out:
2357 drm_gem_object_unreference(&obj->base);
2358 mutex_unlock(&dev->struct_mutex);
2359 return ret;
2360}
2361
5816d648
BW
2362/**
2363 * i915_gem_object_sync - sync an object to a ring.
2364 *
2365 * @obj: object which may be in use on another ring.
2366 * @to: ring we wish to use the object on. May be NULL.
2367 *
2368 * This code is meant to abstract object synchronization with the GPU.
2369 * Calling with NULL implies synchronizing the object with the CPU
2370 * rather than a particular GPU ring.
2371 *
2372 * Returns 0 if successful, else propagates up the lower layer error.
2373 */
2911a35b
BW
2374int
2375i915_gem_object_sync(struct drm_i915_gem_object *obj,
2376 struct intel_ring_buffer *to)
2377{
2378 struct intel_ring_buffer *from = obj->ring;
2379 u32 seqno;
2380 int ret, idx;
2381
2382 if (from == NULL || to == from)
2383 return 0;
2384
5816d648 2385 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2386 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2387
2388 idx = intel_ring_sync_index(from, to);
2389
0201f1ec 2390 seqno = obj->last_read_seqno;
2911a35b
BW
2391 if (seqno <= from->sync_seqno[idx])
2392 return 0;
2393
b4aca010
BW
2394 ret = i915_gem_check_olr(obj->ring, seqno);
2395 if (ret)
2396 return ret;
2911a35b 2397
1500f7ea 2398 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2399 if (!ret)
2400 from->sync_seqno[idx] = seqno;
2911a35b 2401
e3a5a225 2402 return ret;
2911a35b
BW
2403}
2404
b5ffc9bc
CW
2405static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2406{
2407 u32 old_write_domain, old_read_domains;
2408
b5ffc9bc
CW
2409 /* Act a barrier for all accesses through the GTT */
2410 mb();
2411
2412 /* Force a pagefault for domain tracking on next user access */
2413 i915_gem_release_mmap(obj);
2414
b97c3d9c
KP
2415 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2416 return;
2417
b5ffc9bc
CW
2418 old_read_domains = obj->base.read_domains;
2419 old_write_domain = obj->base.write_domain;
2420
2421 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2422 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2423
2424 trace_i915_gem_object_change_domain(obj,
2425 old_read_domains,
2426 old_write_domain);
2427}
2428
673a394b
EA
2429/**
2430 * Unbinds an object from the GTT aperture.
2431 */
0f973f27 2432int
05394f39 2433i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2434{
7bddb01f 2435 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2436 int ret = 0;
2437
05394f39 2438 if (obj->gtt_space == NULL)
673a394b
EA
2439 return 0;
2440
31d8d651
CW
2441 if (obj->pin_count)
2442 return -EBUSY;
673a394b 2443
c4670ad0
CW
2444 BUG_ON(obj->pages == NULL);
2445
a8198eea 2446 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2447 if (ret)
a8198eea
CW
2448 return ret;
2449 /* Continue on if we fail due to EIO, the GPU is hung so we
2450 * should be safe and we need to cleanup or else we might
2451 * cause memory corruption through use-after-free.
2452 */
2453
b5ffc9bc 2454 i915_gem_object_finish_gtt(obj);
5323fd04 2455
96b47b65 2456 /* release the fence reg _after_ flushing */
d9e86c0e 2457 ret = i915_gem_object_put_fence(obj);
1488fc08 2458 if (ret)
d9e86c0e 2459 return ret;
96b47b65 2460
db53a302
CW
2461 trace_i915_gem_object_unbind(obj);
2462
74898d7e
DV
2463 if (obj->has_global_gtt_mapping)
2464 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2465 if (obj->has_aliasing_ppgtt_mapping) {
2466 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2467 obj->has_aliasing_ppgtt_mapping = 0;
2468 }
74163907 2469 i915_gem_gtt_finish_object(obj);
7bddb01f 2470
6c085a72
CW
2471 list_del(&obj->mm_list);
2472 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2473 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2474 obj->map_and_fenceable = true;
673a394b 2475
05394f39
CW
2476 drm_mm_put_block(obj->gtt_space);
2477 obj->gtt_space = NULL;
2478 obj->gtt_offset = 0;
673a394b 2479
88241785 2480 return 0;
54cf91dc
CW
2481}
2482
b2da9fe5 2483static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2484{
b5d17794
CW
2485 u32 seqno;
2486 int ret;
2487
b662a066
CW
2488 /* We need to add any requests required to flush the objects and ring */
2489 if (ring->outstanding_lazy_request) {
2490 ret = i915_add_request(ring, NULL, NULL);
b5d17794
CW
2491 if (ret)
2492 return ret;
2493 }
2494
2495 /* Wait upon the last request to be completed */
2496 if (list_empty(&ring->request_list))
64193406
CW
2497 return 0;
2498
b5d17794
CW
2499 seqno = list_entry(ring->request_list.prev,
2500 struct drm_i915_gem_request,
2501 list)->seqno;
2502
2503 return i915_wait_seqno(ring, seqno);
a56ba56c
CW
2504}
2505
b2da9fe5 2506int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2507{
2508 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2509 struct intel_ring_buffer *ring;
1ec14ad3 2510 int ret, i;
4df2faf4 2511
4df2faf4 2512 /* Flush everything onto the inactive list. */
b4519513 2513 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2514 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2515 if (ret)
2516 return ret;
2517
b4519513 2518 ret = i915_ring_idle(ring);
1ec14ad3
CW
2519 if (ret)
2520 return ret;
2521 }
4df2faf4 2522
8a1a49f9 2523 return 0;
4df2faf4
DV
2524}
2525
9ce079e4
CW
2526static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2527 struct drm_i915_gem_object *obj)
4e901fdc 2528{
4e901fdc 2529 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2530 uint64_t val;
2531
9ce079e4
CW
2532 if (obj) {
2533 u32 size = obj->gtt_space->size;
4e901fdc 2534
9ce079e4
CW
2535 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2536 0xfffff000) << 32;
2537 val |= obj->gtt_offset & 0xfffff000;
2538 val |= (uint64_t)((obj->stride / 128) - 1) <<
2539 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2540
9ce079e4
CW
2541 if (obj->tiling_mode == I915_TILING_Y)
2542 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2543 val |= I965_FENCE_REG_VALID;
2544 } else
2545 val = 0;
c6642782 2546
9ce079e4
CW
2547 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2548 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2549}
2550
9ce079e4
CW
2551static void i965_write_fence_reg(struct drm_device *dev, int reg,
2552 struct drm_i915_gem_object *obj)
de151cf6 2553{
de151cf6 2554 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2555 uint64_t val;
2556
9ce079e4
CW
2557 if (obj) {
2558 u32 size = obj->gtt_space->size;
de151cf6 2559
9ce079e4
CW
2560 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2561 0xfffff000) << 32;
2562 val |= obj->gtt_offset & 0xfffff000;
2563 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2564 if (obj->tiling_mode == I915_TILING_Y)
2565 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2566 val |= I965_FENCE_REG_VALID;
2567 } else
2568 val = 0;
c6642782 2569
9ce079e4
CW
2570 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2571 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2572}
2573
9ce079e4
CW
2574static void i915_write_fence_reg(struct drm_device *dev, int reg,
2575 struct drm_i915_gem_object *obj)
de151cf6 2576{
de151cf6 2577 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2578 u32 val;
de151cf6 2579
9ce079e4
CW
2580 if (obj) {
2581 u32 size = obj->gtt_space->size;
2582 int pitch_val;
2583 int tile_width;
c6642782 2584
9ce079e4
CW
2585 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2586 (size & -size) != size ||
2587 (obj->gtt_offset & (size - 1)),
2588 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2589 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2590
9ce079e4
CW
2591 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2592 tile_width = 128;
2593 else
2594 tile_width = 512;
2595
2596 /* Note: pitch better be a power of two tile widths */
2597 pitch_val = obj->stride / tile_width;
2598 pitch_val = ffs(pitch_val) - 1;
2599
2600 val = obj->gtt_offset;
2601 if (obj->tiling_mode == I915_TILING_Y)
2602 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2603 val |= I915_FENCE_SIZE_BITS(size);
2604 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2605 val |= I830_FENCE_REG_VALID;
2606 } else
2607 val = 0;
2608
2609 if (reg < 8)
2610 reg = FENCE_REG_830_0 + reg * 4;
2611 else
2612 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2613
2614 I915_WRITE(reg, val);
2615 POSTING_READ(reg);
de151cf6
JB
2616}
2617
9ce079e4
CW
2618static void i830_write_fence_reg(struct drm_device *dev, int reg,
2619 struct drm_i915_gem_object *obj)
de151cf6 2620{
de151cf6 2621 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2622 uint32_t val;
de151cf6 2623
9ce079e4
CW
2624 if (obj) {
2625 u32 size = obj->gtt_space->size;
2626 uint32_t pitch_val;
de151cf6 2627
9ce079e4
CW
2628 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2629 (size & -size) != size ||
2630 (obj->gtt_offset & (size - 1)),
2631 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2632 obj->gtt_offset, size);
e76a16de 2633
9ce079e4
CW
2634 pitch_val = obj->stride / 128;
2635 pitch_val = ffs(pitch_val) - 1;
de151cf6 2636
9ce079e4
CW
2637 val = obj->gtt_offset;
2638 if (obj->tiling_mode == I915_TILING_Y)
2639 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2640 val |= I830_FENCE_SIZE_BITS(size);
2641 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2642 val |= I830_FENCE_REG_VALID;
2643 } else
2644 val = 0;
c6642782 2645
9ce079e4
CW
2646 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2647 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2648}
2649
2650static void i915_gem_write_fence(struct drm_device *dev, int reg,
2651 struct drm_i915_gem_object *obj)
2652{
2653 switch (INTEL_INFO(dev)->gen) {
2654 case 7:
2655 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2656 case 5:
2657 case 4: i965_write_fence_reg(dev, reg, obj); break;
2658 case 3: i915_write_fence_reg(dev, reg, obj); break;
2659 case 2: i830_write_fence_reg(dev, reg, obj); break;
2660 default: break;
2661 }
de151cf6
JB
2662}
2663
61050808
CW
2664static inline int fence_number(struct drm_i915_private *dev_priv,
2665 struct drm_i915_fence_reg *fence)
2666{
2667 return fence - dev_priv->fence_regs;
2668}
2669
2670static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2671 struct drm_i915_fence_reg *fence,
2672 bool enable)
2673{
2674 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2675 int reg = fence_number(dev_priv, fence);
2676
2677 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2678
2679 if (enable) {
2680 obj->fence_reg = reg;
2681 fence->obj = obj;
2682 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2683 } else {
2684 obj->fence_reg = I915_FENCE_REG_NONE;
2685 fence->obj = NULL;
2686 list_del_init(&fence->lru_list);
2687 }
2688}
2689
d9e86c0e 2690static int
a360bb1a 2691i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2692{
1c293ea3 2693 if (obj->last_fenced_seqno) {
86d5bc37 2694 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2695 if (ret)
2696 return ret;
d9e86c0e
CW
2697
2698 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2699 }
2700
63256ec5
CW
2701 /* Ensure that all CPU reads are completed before installing a fence
2702 * and all writes before removing the fence.
2703 */
2704 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2705 mb();
2706
86d5bc37 2707 obj->fenced_gpu_access = false;
d9e86c0e
CW
2708 return 0;
2709}
2710
2711int
2712i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2713{
61050808 2714 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2715 int ret;
2716
a360bb1a 2717 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2718 if (ret)
2719 return ret;
2720
61050808
CW
2721 if (obj->fence_reg == I915_FENCE_REG_NONE)
2722 return 0;
d9e86c0e 2723
61050808
CW
2724 i915_gem_object_update_fence(obj,
2725 &dev_priv->fence_regs[obj->fence_reg],
2726 false);
2727 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2728
2729 return 0;
2730}
2731
2732static struct drm_i915_fence_reg *
a360bb1a 2733i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2734{
ae3db24a 2735 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2736 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2737 int i;
ae3db24a
DV
2738
2739 /* First try to find a free reg */
d9e86c0e 2740 avail = NULL;
ae3db24a
DV
2741 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2742 reg = &dev_priv->fence_regs[i];
2743 if (!reg->obj)
d9e86c0e 2744 return reg;
ae3db24a 2745
1690e1eb 2746 if (!reg->pin_count)
d9e86c0e 2747 avail = reg;
ae3db24a
DV
2748 }
2749
d9e86c0e
CW
2750 if (avail == NULL)
2751 return NULL;
ae3db24a
DV
2752
2753 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2754 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2755 if (reg->pin_count)
ae3db24a
DV
2756 continue;
2757
8fe301ad 2758 return reg;
ae3db24a
DV
2759 }
2760
8fe301ad 2761 return NULL;
ae3db24a
DV
2762}
2763
de151cf6 2764/**
9a5a53b3 2765 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2766 * @obj: object to map through a fence reg
2767 *
2768 * When mapping objects through the GTT, userspace wants to be able to write
2769 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2770 * This function walks the fence regs looking for a free one for @obj,
2771 * stealing one if it can't find any.
2772 *
2773 * It then sets up the reg based on the object's properties: address, pitch
2774 * and tiling format.
9a5a53b3
CW
2775 *
2776 * For an untiled surface, this removes any existing fence.
de151cf6 2777 */
8c4b8c3f 2778int
06d98131 2779i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2780{
05394f39 2781 struct drm_device *dev = obj->base.dev;
79e53945 2782 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2783 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2784 struct drm_i915_fence_reg *reg;
ae3db24a 2785 int ret;
de151cf6 2786
14415745
CW
2787 /* Have we updated the tiling parameters upon the object and so
2788 * will need to serialise the write to the associated fence register?
2789 */
5d82e3e6 2790 if (obj->fence_dirty) {
14415745
CW
2791 ret = i915_gem_object_flush_fence(obj);
2792 if (ret)
2793 return ret;
2794 }
9a5a53b3 2795
d9e86c0e 2796 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2797 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2798 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2799 if (!obj->fence_dirty) {
14415745
CW
2800 list_move_tail(&reg->lru_list,
2801 &dev_priv->mm.fence_list);
2802 return 0;
2803 }
2804 } else if (enable) {
2805 reg = i915_find_fence_reg(dev);
2806 if (reg == NULL)
2807 return -EDEADLK;
d9e86c0e 2808
14415745
CW
2809 if (reg->obj) {
2810 struct drm_i915_gem_object *old = reg->obj;
2811
2812 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2813 if (ret)
2814 return ret;
2815
14415745 2816 i915_gem_object_fence_lost(old);
29c5a587 2817 }
14415745 2818 } else
a09ba7fa 2819 return 0;
a09ba7fa 2820
14415745 2821 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2822 obj->fence_dirty = false;
14415745 2823
9ce079e4 2824 return 0;
de151cf6
JB
2825}
2826
42d6ab48
CW
2827static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2828 struct drm_mm_node *gtt_space,
2829 unsigned long cache_level)
2830{
2831 struct drm_mm_node *other;
2832
2833 /* On non-LLC machines we have to be careful when putting differing
2834 * types of snoopable memory together to avoid the prefetcher
2835 * crossing memory domains and dieing.
2836 */
2837 if (HAS_LLC(dev))
2838 return true;
2839
2840 if (gtt_space == NULL)
2841 return true;
2842
2843 if (list_empty(&gtt_space->node_list))
2844 return true;
2845
2846 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2847 if (other->allocated && !other->hole_follows && other->color != cache_level)
2848 return false;
2849
2850 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2851 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2852 return false;
2853
2854 return true;
2855}
2856
2857static void i915_gem_verify_gtt(struct drm_device *dev)
2858{
2859#if WATCH_GTT
2860 struct drm_i915_private *dev_priv = dev->dev_private;
2861 struct drm_i915_gem_object *obj;
2862 int err = 0;
2863
2864 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2865 if (obj->gtt_space == NULL) {
2866 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2867 err++;
2868 continue;
2869 }
2870
2871 if (obj->cache_level != obj->gtt_space->color) {
2872 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2873 obj->gtt_space->start,
2874 obj->gtt_space->start + obj->gtt_space->size,
2875 obj->cache_level,
2876 obj->gtt_space->color);
2877 err++;
2878 continue;
2879 }
2880
2881 if (!i915_gem_valid_gtt_space(dev,
2882 obj->gtt_space,
2883 obj->cache_level)) {
2884 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2885 obj->gtt_space->start,
2886 obj->gtt_space->start + obj->gtt_space->size,
2887 obj->cache_level);
2888 err++;
2889 continue;
2890 }
2891 }
2892
2893 WARN_ON(err);
2894#endif
2895}
2896
673a394b
EA
2897/**
2898 * Finds free space in the GTT aperture and binds the object there.
2899 */
2900static int
05394f39 2901i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2902 unsigned alignment,
86a1ee26
CW
2903 bool map_and_fenceable,
2904 bool nonblocking)
673a394b 2905{
05394f39 2906 struct drm_device *dev = obj->base.dev;
673a394b 2907 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2908 struct drm_mm_node *free_space;
5e783301 2909 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2910 bool mappable, fenceable;
07f73f69 2911 int ret;
673a394b 2912
05394f39 2913 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2914 DRM_ERROR("Attempting to bind a purgeable object\n");
2915 return -EINVAL;
2916 }
2917
e28f8711
CW
2918 fence_size = i915_gem_get_gtt_size(dev,
2919 obj->base.size,
2920 obj->tiling_mode);
2921 fence_alignment = i915_gem_get_gtt_alignment(dev,
2922 obj->base.size,
2923 obj->tiling_mode);
2924 unfenced_alignment =
2925 i915_gem_get_unfenced_gtt_alignment(dev,
2926 obj->base.size,
2927 obj->tiling_mode);
a00b10c3 2928
673a394b 2929 if (alignment == 0)
5e783301
DV
2930 alignment = map_and_fenceable ? fence_alignment :
2931 unfenced_alignment;
75e9e915 2932 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2933 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2934 return -EINVAL;
2935 }
2936
05394f39 2937 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2938
654fc607
CW
2939 /* If the object is bigger than the entire aperture, reject it early
2940 * before evicting everything in a vain attempt to find space.
2941 */
05394f39 2942 if (obj->base.size >
75e9e915 2943 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2944 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2945 return -E2BIG;
2946 }
2947
37e680a1 2948 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2949 if (ret)
2950 return ret;
2951
fbdda6fb
CW
2952 i915_gem_object_pin_pages(obj);
2953
673a394b 2954 search_free:
75e9e915 2955 if (map_and_fenceable)
8742267a
CW
2956 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2957 size, alignment, obj->cache_level,
2958 0, dev_priv->mm.gtt_mappable_end,
2959 false);
920afa77 2960 else
42d6ab48
CW
2961 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2962 size, alignment, obj->cache_level,
2963 false);
920afa77
DV
2964
2965 if (free_space != NULL) {
75e9e915 2966 if (map_and_fenceable)
8742267a 2967 free_space =
920afa77 2968 drm_mm_get_block_range_generic(free_space,
42d6ab48 2969 size, alignment, obj->cache_level,
6b9d89b4 2970 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2971 false);
920afa77 2972 else
8742267a 2973 free_space =
42d6ab48
CW
2974 drm_mm_get_block_generic(free_space,
2975 size, alignment, obj->cache_level,
2976 false);
920afa77 2977 }
8742267a 2978 if (free_space == NULL) {
75e9e915 2979 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2980 obj->cache_level,
86a1ee26
CW
2981 map_and_fenceable,
2982 nonblocking);
fbdda6fb
CW
2983 if (ret) {
2984 i915_gem_object_unpin_pages(obj);
673a394b 2985 return ret;
fbdda6fb 2986 }
9731129c 2987
673a394b
EA
2988 goto search_free;
2989 }
42d6ab48 2990 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
8742267a 2991 free_space,
42d6ab48 2992 obj->cache_level))) {
fbdda6fb 2993 i915_gem_object_unpin_pages(obj);
8742267a 2994 drm_mm_put_block(free_space);
42d6ab48 2995 return -EINVAL;
673a394b
EA
2996 }
2997
74163907 2998 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2999 if (ret) {
fbdda6fb 3000 i915_gem_object_unpin_pages(obj);
8742267a 3001 drm_mm_put_block(free_space);
6c085a72 3002 return ret;
673a394b 3003 }
673a394b 3004
6c085a72 3005 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 3006 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 3007
8742267a
CW
3008 obj->gtt_space = free_space;
3009 obj->gtt_offset = free_space->start;
1c5d22f7 3010
75e9e915 3011 fenceable =
8742267a
CW
3012 free_space->size == fence_size &&
3013 (free_space->start & (fence_alignment - 1)) == 0;
a00b10c3 3014
75e9e915 3015 mappable =
05394f39 3016 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 3017
05394f39 3018 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3019
fbdda6fb 3020 i915_gem_object_unpin_pages(obj);
db53a302 3021 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3022 i915_gem_verify_gtt(dev);
673a394b
EA
3023 return 0;
3024}
3025
3026void
05394f39 3027i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3028{
673a394b
EA
3029 /* If we don't have a page list set up, then we're not pinned
3030 * to GPU, and we can ignore the cache flush because it'll happen
3031 * again at bind time.
3032 */
05394f39 3033 if (obj->pages == NULL)
673a394b
EA
3034 return;
3035
9c23f7fc
CW
3036 /* If the GPU is snooping the contents of the CPU cache,
3037 * we do not need to manually clear the CPU cache lines. However,
3038 * the caches are only snooped when the render cache is
3039 * flushed/invalidated. As we always have to emit invalidations
3040 * and flushes when moving into and out of the RENDER domain, correct
3041 * snooping behaviour occurs naturally as the result of our domain
3042 * tracking.
3043 */
3044 if (obj->cache_level != I915_CACHE_NONE)
3045 return;
3046
1c5d22f7 3047 trace_i915_gem_object_clflush(obj);
cfa16a0d 3048
9da3da66 3049 drm_clflush_sg(obj->pages);
e47c68e9
EA
3050}
3051
3052/** Flushes the GTT write domain for the object if it's dirty. */
3053static void
05394f39 3054i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3055{
1c5d22f7
CW
3056 uint32_t old_write_domain;
3057
05394f39 3058 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3059 return;
3060
63256ec5 3061 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3062 * to it immediately go to main memory as far as we know, so there's
3063 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3064 *
3065 * However, we do have to enforce the order so that all writes through
3066 * the GTT land before any writes to the device, such as updates to
3067 * the GATT itself.
e47c68e9 3068 */
63256ec5
CW
3069 wmb();
3070
05394f39
CW
3071 old_write_domain = obj->base.write_domain;
3072 obj->base.write_domain = 0;
1c5d22f7
CW
3073
3074 trace_i915_gem_object_change_domain(obj,
05394f39 3075 obj->base.read_domains,
1c5d22f7 3076 old_write_domain);
e47c68e9
EA
3077}
3078
3079/** Flushes the CPU write domain for the object if it's dirty. */
3080static void
05394f39 3081i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3082{
1c5d22f7 3083 uint32_t old_write_domain;
e47c68e9 3084
05394f39 3085 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3086 return;
3087
3088 i915_gem_clflush_object(obj);
e76e9aeb 3089 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3090 old_write_domain = obj->base.write_domain;
3091 obj->base.write_domain = 0;
1c5d22f7
CW
3092
3093 trace_i915_gem_object_change_domain(obj,
05394f39 3094 obj->base.read_domains,
1c5d22f7 3095 old_write_domain);
e47c68e9
EA
3096}
3097
2ef7eeaa
EA
3098/**
3099 * Moves a single object to the GTT read, and possibly write domain.
3100 *
3101 * This function returns when the move is complete, including waiting on
3102 * flushes to occur.
3103 */
79e53945 3104int
2021746e 3105i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3106{
8325a09d 3107 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3108 uint32_t old_write_domain, old_read_domains;
e47c68e9 3109 int ret;
2ef7eeaa 3110
02354392 3111 /* Not valid to be called on unbound objects. */
05394f39 3112 if (obj->gtt_space == NULL)
02354392
EA
3113 return -EINVAL;
3114
8d7e3de1
CW
3115 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3116 return 0;
3117
0201f1ec 3118 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3119 if (ret)
3120 return ret;
3121
7213342d 3122 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3123
05394f39
CW
3124 old_write_domain = obj->base.write_domain;
3125 old_read_domains = obj->base.read_domains;
1c5d22f7 3126
e47c68e9
EA
3127 /* It should now be out of any other write domains, and we can update
3128 * the domain values for our changes.
3129 */
05394f39
CW
3130 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3131 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3132 if (write) {
05394f39
CW
3133 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3134 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3135 obj->dirty = 1;
2ef7eeaa
EA
3136 }
3137
1c5d22f7
CW
3138 trace_i915_gem_object_change_domain(obj,
3139 old_read_domains,
3140 old_write_domain);
3141
8325a09d
CW
3142 /* And bump the LRU for this access */
3143 if (i915_gem_object_is_inactive(obj))
3144 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3145
e47c68e9
EA
3146 return 0;
3147}
3148
e4ffd173
CW
3149int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3150 enum i915_cache_level cache_level)
3151{
7bddb01f
DV
3152 struct drm_device *dev = obj->base.dev;
3153 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3154 int ret;
3155
3156 if (obj->cache_level == cache_level)
3157 return 0;
3158
3159 if (obj->pin_count) {
3160 DRM_DEBUG("can not change the cache level of pinned objects\n");
3161 return -EBUSY;
3162 }
3163
42d6ab48
CW
3164 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3165 ret = i915_gem_object_unbind(obj);
3166 if (ret)
3167 return ret;
3168 }
3169
e4ffd173
CW
3170 if (obj->gtt_space) {
3171 ret = i915_gem_object_finish_gpu(obj);
3172 if (ret)
3173 return ret;
3174
3175 i915_gem_object_finish_gtt(obj);
3176
3177 /* Before SandyBridge, you could not use tiling or fence
3178 * registers with snooped memory, so relinquish any fences
3179 * currently pointing to our region in the aperture.
3180 */
42d6ab48 3181 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3182 ret = i915_gem_object_put_fence(obj);
3183 if (ret)
3184 return ret;
3185 }
3186
74898d7e
DV
3187 if (obj->has_global_gtt_mapping)
3188 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3189 if (obj->has_aliasing_ppgtt_mapping)
3190 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3191 obj, cache_level);
42d6ab48
CW
3192
3193 obj->gtt_space->color = cache_level;
e4ffd173
CW
3194 }
3195
3196 if (cache_level == I915_CACHE_NONE) {
3197 u32 old_read_domains, old_write_domain;
3198
3199 /* If we're coming from LLC cached, then we haven't
3200 * actually been tracking whether the data is in the
3201 * CPU cache or not, since we only allow one bit set
3202 * in obj->write_domain and have been skipping the clflushes.
3203 * Just set it to the CPU cache for now.
3204 */
3205 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3206 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3207
3208 old_read_domains = obj->base.read_domains;
3209 old_write_domain = obj->base.write_domain;
3210
3211 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3212 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3213
3214 trace_i915_gem_object_change_domain(obj,
3215 old_read_domains,
3216 old_write_domain);
3217 }
3218
3219 obj->cache_level = cache_level;
42d6ab48 3220 i915_gem_verify_gtt(dev);
e4ffd173
CW
3221 return 0;
3222}
3223
199adf40
BW
3224int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3225 struct drm_file *file)
e6994aee 3226{
199adf40 3227 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3228 struct drm_i915_gem_object *obj;
3229 int ret;
3230
3231 ret = i915_mutex_lock_interruptible(dev);
3232 if (ret)
3233 return ret;
3234
3235 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3236 if (&obj->base == NULL) {
3237 ret = -ENOENT;
3238 goto unlock;
3239 }
3240
199adf40 3241 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3242
3243 drm_gem_object_unreference(&obj->base);
3244unlock:
3245 mutex_unlock(&dev->struct_mutex);
3246 return ret;
3247}
3248
199adf40
BW
3249int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3250 struct drm_file *file)
e6994aee 3251{
199adf40 3252 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3253 struct drm_i915_gem_object *obj;
3254 enum i915_cache_level level;
3255 int ret;
3256
199adf40
BW
3257 switch (args->caching) {
3258 case I915_CACHING_NONE:
e6994aee
CW
3259 level = I915_CACHE_NONE;
3260 break;
199adf40 3261 case I915_CACHING_CACHED:
e6994aee
CW
3262 level = I915_CACHE_LLC;
3263 break;
3264 default:
3265 return -EINVAL;
3266 }
3267
3bc2913e
BW
3268 ret = i915_mutex_lock_interruptible(dev);
3269 if (ret)
3270 return ret;
3271
e6994aee
CW
3272 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3273 if (&obj->base == NULL) {
3274 ret = -ENOENT;
3275 goto unlock;
3276 }
3277
3278 ret = i915_gem_object_set_cache_level(obj, level);
3279
3280 drm_gem_object_unreference(&obj->base);
3281unlock:
3282 mutex_unlock(&dev->struct_mutex);
3283 return ret;
3284}
3285
b9241ea3 3286/*
2da3b9b9
CW
3287 * Prepare buffer for display plane (scanout, cursors, etc).
3288 * Can be called from an uninterruptible phase (modesetting) and allows
3289 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3290 */
3291int
2da3b9b9
CW
3292i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3293 u32 alignment,
919926ae 3294 struct intel_ring_buffer *pipelined)
b9241ea3 3295{
2da3b9b9 3296 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3297 int ret;
3298
0be73284 3299 if (pipelined != obj->ring) {
2911a35b
BW
3300 ret = i915_gem_object_sync(obj, pipelined);
3301 if (ret)
b9241ea3
ZW
3302 return ret;
3303 }
3304
a7ef0640
EA
3305 /* The display engine is not coherent with the LLC cache on gen6. As
3306 * a result, we make sure that the pinning that is about to occur is
3307 * done with uncached PTEs. This is lowest common denominator for all
3308 * chipsets.
3309 *
3310 * However for gen6+, we could do better by using the GFDT bit instead
3311 * of uncaching, which would allow us to flush all the LLC-cached data
3312 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3313 */
3314 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3315 if (ret)
3316 return ret;
3317
2da3b9b9
CW
3318 /* As the user may map the buffer once pinned in the display plane
3319 * (e.g. libkms for the bootup splash), we have to ensure that we
3320 * always use map_and_fenceable for all scanout buffers.
3321 */
86a1ee26 3322 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3323 if (ret)
3324 return ret;
3325
b118c1e3
CW
3326 i915_gem_object_flush_cpu_write_domain(obj);
3327
2da3b9b9 3328 old_write_domain = obj->base.write_domain;
05394f39 3329 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3330
3331 /* It should now be out of any other write domains, and we can update
3332 * the domain values for our changes.
3333 */
e5f1d962 3334 obj->base.write_domain = 0;
05394f39 3335 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3336
3337 trace_i915_gem_object_change_domain(obj,
3338 old_read_domains,
2da3b9b9 3339 old_write_domain);
b9241ea3
ZW
3340
3341 return 0;
3342}
3343
85345517 3344int
a8198eea 3345i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3346{
88241785
CW
3347 int ret;
3348
a8198eea 3349 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3350 return 0;
3351
0201f1ec 3352 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3353 if (ret)
3354 return ret;
3355
a8198eea
CW
3356 /* Ensure that we invalidate the GPU's caches and TLBs. */
3357 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3358 return 0;
85345517
CW
3359}
3360
e47c68e9
EA
3361/**
3362 * Moves a single object to the CPU read, and possibly write domain.
3363 *
3364 * This function returns when the move is complete, including waiting on
3365 * flushes to occur.
3366 */
dabdfe02 3367int
919926ae 3368i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3369{
1c5d22f7 3370 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3371 int ret;
3372
8d7e3de1
CW
3373 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3374 return 0;
3375
0201f1ec 3376 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3377 if (ret)
3378 return ret;
3379
e47c68e9 3380 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3381
05394f39
CW
3382 old_write_domain = obj->base.write_domain;
3383 old_read_domains = obj->base.read_domains;
1c5d22f7 3384
e47c68e9 3385 /* Flush the CPU cache if it's still invalid. */
05394f39 3386 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3387 i915_gem_clflush_object(obj);
2ef7eeaa 3388
05394f39 3389 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3390 }
3391
3392 /* It should now be out of any other write domains, and we can update
3393 * the domain values for our changes.
3394 */
05394f39 3395 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3396
3397 /* If we're writing through the CPU, then the GPU read domains will
3398 * need to be invalidated at next use.
3399 */
3400 if (write) {
05394f39
CW
3401 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3402 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3403 }
2ef7eeaa 3404
1c5d22f7
CW
3405 trace_i915_gem_object_change_domain(obj,
3406 old_read_domains,
3407 old_write_domain);
3408
2ef7eeaa
EA
3409 return 0;
3410}
3411
673a394b
EA
3412/* Throttle our rendering by waiting until the ring has completed our requests
3413 * emitted over 20 msec ago.
3414 *
b962442e
EA
3415 * Note that if we were to use the current jiffies each time around the loop,
3416 * we wouldn't escape the function with any frames outstanding if the time to
3417 * render a frame was over 20ms.
3418 *
673a394b
EA
3419 * This should get us reasonable parallelism between CPU and GPU but also
3420 * relatively low latency when blocking on a particular request to finish.
3421 */
40a5f0de 3422static int
f787a5f5 3423i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3424{
f787a5f5
CW
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3427 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3428 struct drm_i915_gem_request *request;
3429 struct intel_ring_buffer *ring = NULL;
3430 u32 seqno = 0;
3431 int ret;
93533c29 3432
e110e8d6
CW
3433 if (atomic_read(&dev_priv->mm.wedged))
3434 return -EIO;
3435
1c25595f 3436 spin_lock(&file_priv->mm.lock);
f787a5f5 3437 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3438 if (time_after_eq(request->emitted_jiffies, recent_enough))
3439 break;
40a5f0de 3440
f787a5f5
CW
3441 ring = request->ring;
3442 seqno = request->seqno;
b962442e 3443 }
1c25595f 3444 spin_unlock(&file_priv->mm.lock);
40a5f0de 3445
f787a5f5
CW
3446 if (seqno == 0)
3447 return 0;
2bc43b5c 3448
5c81fe85 3449 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3450 if (ret == 0)
3451 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3452
3453 return ret;
3454}
3455
673a394b 3456int
05394f39
CW
3457i915_gem_object_pin(struct drm_i915_gem_object *obj,
3458 uint32_t alignment,
86a1ee26
CW
3459 bool map_and_fenceable,
3460 bool nonblocking)
673a394b 3461{
673a394b
EA
3462 int ret;
3463
7e81a42e
CW
3464 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3465 return -EBUSY;
ac0c6b5a 3466
05394f39
CW
3467 if (obj->gtt_space != NULL) {
3468 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3469 (map_and_fenceable && !obj->map_and_fenceable)) {
3470 WARN(obj->pin_count,
ae7d49d8 3471 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3472 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3473 " obj->map_and_fenceable=%d\n",
05394f39 3474 obj->gtt_offset, alignment,
75e9e915 3475 map_and_fenceable,
05394f39 3476 obj->map_and_fenceable);
ac0c6b5a
CW
3477 ret = i915_gem_object_unbind(obj);
3478 if (ret)
3479 return ret;
3480 }
3481 }
3482
05394f39 3483 if (obj->gtt_space == NULL) {
8742267a
CW
3484 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3485
a00b10c3 3486 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3487 map_and_fenceable,
3488 nonblocking);
9731129c 3489 if (ret)
673a394b 3490 return ret;
8742267a
CW
3491
3492 if (!dev_priv->mm.aliasing_ppgtt)
3493 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3494 }
76446cac 3495
74898d7e
DV
3496 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3497 i915_gem_gtt_bind_object(obj, obj->cache_level);
3498
1b50247a 3499 obj->pin_count++;
6299f992 3500 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3501
3502 return 0;
3503}
3504
3505void
05394f39 3506i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3507{
05394f39
CW
3508 BUG_ON(obj->pin_count == 0);
3509 BUG_ON(obj->gtt_space == NULL);
673a394b 3510
1b50247a 3511 if (--obj->pin_count == 0)
6299f992 3512 obj->pin_mappable = false;
673a394b
EA
3513}
3514
3515int
3516i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3517 struct drm_file *file)
673a394b
EA
3518{
3519 struct drm_i915_gem_pin *args = data;
05394f39 3520 struct drm_i915_gem_object *obj;
673a394b
EA
3521 int ret;
3522
1d7cfea1
CW
3523 ret = i915_mutex_lock_interruptible(dev);
3524 if (ret)
3525 return ret;
673a394b 3526
05394f39 3527 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3528 if (&obj->base == NULL) {
1d7cfea1
CW
3529 ret = -ENOENT;
3530 goto unlock;
673a394b 3531 }
673a394b 3532
05394f39 3533 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3534 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3535 ret = -EINVAL;
3536 goto out;
3ef94daa
CW
3537 }
3538
05394f39 3539 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3540 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3541 args->handle);
1d7cfea1
CW
3542 ret = -EINVAL;
3543 goto out;
79e53945
JB
3544 }
3545
05394f39
CW
3546 obj->user_pin_count++;
3547 obj->pin_filp = file;
3548 if (obj->user_pin_count == 1) {
86a1ee26 3549 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3550 if (ret)
3551 goto out;
673a394b
EA
3552 }
3553
3554 /* XXX - flush the CPU caches for pinned objects
3555 * as the X server doesn't manage domains yet
3556 */
e47c68e9 3557 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3558 args->offset = obj->gtt_offset;
1d7cfea1 3559out:
05394f39 3560 drm_gem_object_unreference(&obj->base);
1d7cfea1 3561unlock:
673a394b 3562 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3563 return ret;
673a394b
EA
3564}
3565
3566int
3567i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3568 struct drm_file *file)
673a394b
EA
3569{
3570 struct drm_i915_gem_pin *args = data;
05394f39 3571 struct drm_i915_gem_object *obj;
76c1dec1 3572 int ret;
673a394b 3573
1d7cfea1
CW
3574 ret = i915_mutex_lock_interruptible(dev);
3575 if (ret)
3576 return ret;
673a394b 3577
05394f39 3578 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3579 if (&obj->base == NULL) {
1d7cfea1
CW
3580 ret = -ENOENT;
3581 goto unlock;
673a394b 3582 }
76c1dec1 3583
05394f39 3584 if (obj->pin_filp != file) {
79e53945
JB
3585 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3586 args->handle);
1d7cfea1
CW
3587 ret = -EINVAL;
3588 goto out;
79e53945 3589 }
05394f39
CW
3590 obj->user_pin_count--;
3591 if (obj->user_pin_count == 0) {
3592 obj->pin_filp = NULL;
79e53945
JB
3593 i915_gem_object_unpin(obj);
3594 }
673a394b 3595
1d7cfea1 3596out:
05394f39 3597 drm_gem_object_unreference(&obj->base);
1d7cfea1 3598unlock:
673a394b 3599 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3600 return ret;
673a394b
EA
3601}
3602
3603int
3604i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3605 struct drm_file *file)
673a394b
EA
3606{
3607 struct drm_i915_gem_busy *args = data;
05394f39 3608 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3609 int ret;
3610
76c1dec1 3611 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3612 if (ret)
76c1dec1 3613 return ret;
673a394b 3614
05394f39 3615 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3616 if (&obj->base == NULL) {
1d7cfea1
CW
3617 ret = -ENOENT;
3618 goto unlock;
673a394b 3619 }
d1b851fc 3620
0be555b6
CW
3621 /* Count all active objects as busy, even if they are currently not used
3622 * by the gpu. Users of this interface expect objects to eventually
3623 * become non-busy without any further actions, therefore emit any
3624 * necessary flushes here.
c4de0a5d 3625 */
30dfebf3 3626 ret = i915_gem_object_flush_active(obj);
0be555b6 3627
30dfebf3 3628 args->busy = obj->active;
e9808edd
CW
3629 if (obj->ring) {
3630 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3631 args->busy |= intel_ring_flag(obj->ring) << 16;
3632 }
673a394b 3633
05394f39 3634 drm_gem_object_unreference(&obj->base);
1d7cfea1 3635unlock:
673a394b 3636 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3637 return ret;
673a394b
EA
3638}
3639
3640int
3641i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3642 struct drm_file *file_priv)
3643{
0206e353 3644 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3645}
3646
3ef94daa
CW
3647int
3648i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3649 struct drm_file *file_priv)
3650{
3651 struct drm_i915_gem_madvise *args = data;
05394f39 3652 struct drm_i915_gem_object *obj;
76c1dec1 3653 int ret;
3ef94daa
CW
3654
3655 switch (args->madv) {
3656 case I915_MADV_DONTNEED:
3657 case I915_MADV_WILLNEED:
3658 break;
3659 default:
3660 return -EINVAL;
3661 }
3662
1d7cfea1
CW
3663 ret = i915_mutex_lock_interruptible(dev);
3664 if (ret)
3665 return ret;
3666
05394f39 3667 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3668 if (&obj->base == NULL) {
1d7cfea1
CW
3669 ret = -ENOENT;
3670 goto unlock;
3ef94daa 3671 }
3ef94daa 3672
05394f39 3673 if (obj->pin_count) {
1d7cfea1
CW
3674 ret = -EINVAL;
3675 goto out;
3ef94daa
CW
3676 }
3677
05394f39
CW
3678 if (obj->madv != __I915_MADV_PURGED)
3679 obj->madv = args->madv;
3ef94daa 3680
6c085a72
CW
3681 /* if the object is no longer attached, discard its backing storage */
3682 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3683 i915_gem_object_truncate(obj);
3684
05394f39 3685 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3686
1d7cfea1 3687out:
05394f39 3688 drm_gem_object_unreference(&obj->base);
1d7cfea1 3689unlock:
3ef94daa 3690 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3691 return ret;
3ef94daa
CW
3692}
3693
37e680a1
CW
3694void i915_gem_object_init(struct drm_i915_gem_object *obj,
3695 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3696{
0327d6ba
CW
3697 INIT_LIST_HEAD(&obj->mm_list);
3698 INIT_LIST_HEAD(&obj->gtt_list);
3699 INIT_LIST_HEAD(&obj->ring_list);
3700 INIT_LIST_HEAD(&obj->exec_list);
3701
37e680a1
CW
3702 obj->ops = ops;
3703
0327d6ba
CW
3704 obj->fence_reg = I915_FENCE_REG_NONE;
3705 obj->madv = I915_MADV_WILLNEED;
3706 /* Avoid an unnecessary call to unbind on the first bind. */
3707 obj->map_and_fenceable = true;
3708
3709 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3710}
3711
37e680a1
CW
3712static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3713 .get_pages = i915_gem_object_get_pages_gtt,
3714 .put_pages = i915_gem_object_put_pages_gtt,
3715};
3716
05394f39
CW
3717struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3718 size_t size)
ac52bc56 3719{
c397b908 3720 struct drm_i915_gem_object *obj;
5949eac4 3721 struct address_space *mapping;
bed1ea95 3722 u32 mask;
ac52bc56 3723
c397b908
DV
3724 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3725 if (obj == NULL)
3726 return NULL;
673a394b 3727
c397b908
DV
3728 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3729 kfree(obj);
3730 return NULL;
3731 }
673a394b 3732
bed1ea95
CW
3733 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3734 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3735 /* 965gm cannot relocate objects above 4GiB. */
3736 mask &= ~__GFP_HIGHMEM;
3737 mask |= __GFP_DMA32;
3738 }
3739
5949eac4 3740 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3741 mapping_set_gfp_mask(mapping, mask);
5949eac4 3742
37e680a1 3743 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3744
c397b908
DV
3745 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3746 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3747
3d29b842
ED
3748 if (HAS_LLC(dev)) {
3749 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3750 * cache) for about a 10% performance improvement
3751 * compared to uncached. Graphics requests other than
3752 * display scanout are coherent with the CPU in
3753 * accessing this cache. This means in this mode we
3754 * don't need to clflush on the CPU side, and on the
3755 * GPU side we only need to flush internal caches to
3756 * get data visible to the CPU.
3757 *
3758 * However, we maintain the display planes as UC, and so
3759 * need to rebind when first used as such.
3760 */
3761 obj->cache_level = I915_CACHE_LLC;
3762 } else
3763 obj->cache_level = I915_CACHE_NONE;
3764
05394f39 3765 return obj;
c397b908
DV
3766}
3767
3768int i915_gem_init_object(struct drm_gem_object *obj)
3769{
3770 BUG();
de151cf6 3771
673a394b
EA
3772 return 0;
3773}
3774
1488fc08 3775void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3776{
1488fc08 3777 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3778 struct drm_device *dev = obj->base.dev;
be72615b 3779 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3780
26e12f89
CW
3781 trace_i915_gem_object_destroy(obj);
3782
1488fc08
CW
3783 if (obj->phys_obj)
3784 i915_gem_detach_phys_object(dev, obj);
3785
3786 obj->pin_count = 0;
3787 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3788 bool was_interruptible;
3789
3790 was_interruptible = dev_priv->mm.interruptible;
3791 dev_priv->mm.interruptible = false;
3792
3793 WARN_ON(i915_gem_object_unbind(obj));
3794
3795 dev_priv->mm.interruptible = was_interruptible;
3796 }
3797
a5570178 3798 obj->pages_pin_count = 0;
37e680a1 3799 i915_gem_object_put_pages(obj);
d8cb5086 3800 i915_gem_object_free_mmap_offset(obj);
de151cf6 3801
9da3da66
CW
3802 BUG_ON(obj->pages);
3803
2f745ad3
CW
3804 if (obj->base.import_attach)
3805 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3806
05394f39
CW
3807 drm_gem_object_release(&obj->base);
3808 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3809
05394f39
CW
3810 kfree(obj->bit_17);
3811 kfree(obj);
673a394b
EA
3812}
3813
29105ccc
CW
3814int
3815i915_gem_idle(struct drm_device *dev)
3816{
3817 drm_i915_private_t *dev_priv = dev->dev_private;
3818 int ret;
28dfe52a 3819
29105ccc 3820 mutex_lock(&dev->struct_mutex);
1c5d22f7 3821
87acb0a5 3822 if (dev_priv->mm.suspended) {
29105ccc
CW
3823 mutex_unlock(&dev->struct_mutex);
3824 return 0;
28dfe52a
EA
3825 }
3826
b2da9fe5 3827 ret = i915_gpu_idle(dev);
6dbe2772
KP
3828 if (ret) {
3829 mutex_unlock(&dev->struct_mutex);
673a394b 3830 return ret;
6dbe2772 3831 }
b2da9fe5 3832 i915_gem_retire_requests(dev);
673a394b 3833
29105ccc 3834 /* Under UMS, be paranoid and evict. */
a39d7efc 3835 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3836 i915_gem_evict_everything(dev);
29105ccc 3837
312817a3
CW
3838 i915_gem_reset_fences(dev);
3839
29105ccc
CW
3840 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3841 * We need to replace this with a semaphore, or something.
3842 * And not confound mm.suspended!
3843 */
3844 dev_priv->mm.suspended = 1;
bc0c7f14 3845 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3846
3847 i915_kernel_lost_context(dev);
6dbe2772 3848 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3849
6dbe2772
KP
3850 mutex_unlock(&dev->struct_mutex);
3851
29105ccc
CW
3852 /* Cancel the retire work handler, which should be idle now. */
3853 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3854
673a394b
EA
3855 return 0;
3856}
3857
b9524a1e
BW
3858void i915_gem_l3_remap(struct drm_device *dev)
3859{
3860 drm_i915_private_t *dev_priv = dev->dev_private;
3861 u32 misccpctl;
3862 int i;
3863
3864 if (!IS_IVYBRIDGE(dev))
3865 return;
3866
a4da4fa4 3867 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3868 return;
3869
3870 misccpctl = I915_READ(GEN7_MISCCPCTL);
3871 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3872 POSTING_READ(GEN7_MISCCPCTL);
3873
3874 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3875 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3876 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3877 DRM_DEBUG("0x%x was already programmed to %x\n",
3878 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3879 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3880 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3881 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3882 }
3883
3884 /* Make sure all the writes land before disabling dop clock gating */
3885 POSTING_READ(GEN7_L3LOG_BASE);
3886
3887 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3888}
3889
f691e2f4
DV
3890void i915_gem_init_swizzling(struct drm_device *dev)
3891{
3892 drm_i915_private_t *dev_priv = dev->dev_private;
3893
11782b02 3894 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3895 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3896 return;
3897
3898 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3899 DISP_TILE_SURFACE_SWIZZLING);
3900
11782b02
DV
3901 if (IS_GEN5(dev))
3902 return;
3903
f691e2f4
DV
3904 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3905 if (IS_GEN6(dev))
6b26c86d 3906 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3907 else
6b26c86d 3908 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3909}
e21af88d 3910
67b1b571
CW
3911static bool
3912intel_enable_blt(struct drm_device *dev)
3913{
3914 if (!HAS_BLT(dev))
3915 return false;
3916
3917 /* The blitter was dysfunctional on early prototypes */
3918 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3919 DRM_INFO("BLT not supported on this pre-production hardware;"
3920 " graphics performance will be degraded.\n");
3921 return false;
3922 }
3923
3924 return true;
3925}
3926
8187a2b7 3927int
f691e2f4 3928i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3929{
3930 drm_i915_private_t *dev_priv = dev->dev_private;
3931 int ret;
68f95ba9 3932
e76e9aeb 3933 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3934 return -EIO;
3935
eda2d7f5
RV
3936 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3937 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3938
b9524a1e
BW
3939 i915_gem_l3_remap(dev);
3940
f691e2f4
DV
3941 i915_gem_init_swizzling(dev);
3942
5c1143bb 3943 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3944 if (ret)
b6913e4b 3945 return ret;
68f95ba9
CW
3946
3947 if (HAS_BSD(dev)) {
5c1143bb 3948 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3949 if (ret)
3950 goto cleanup_render_ring;
d1b851fc 3951 }
68f95ba9 3952
67b1b571 3953 if (intel_enable_blt(dev)) {
549f7365
CW
3954 ret = intel_init_blt_ring_buffer(dev);
3955 if (ret)
3956 goto cleanup_bsd_ring;
3957 }
3958
6f392d54
CW
3959 dev_priv->next_seqno = 1;
3960
254f965c
BW
3961 /*
3962 * XXX: There was some w/a described somewhere suggesting loading
3963 * contexts before PPGTT.
3964 */
3965 i915_gem_context_init(dev);
e21af88d
DV
3966 i915_gem_init_ppgtt(dev);
3967
68f95ba9
CW
3968 return 0;
3969
549f7365 3970cleanup_bsd_ring:
1ec14ad3 3971 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3972cleanup_render_ring:
1ec14ad3 3973 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3974 return ret;
3975}
3976
1070a42b
CW
3977static bool
3978intel_enable_ppgtt(struct drm_device *dev)
3979{
3980 if (i915_enable_ppgtt >= 0)
3981 return i915_enable_ppgtt;
3982
3983#ifdef CONFIG_INTEL_IOMMU
3984 /* Disable ppgtt on SNB if VT-d is on. */
3985 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3986 return false;
3987#endif
3988
3989 return true;
3990}
3991
3992int i915_gem_init(struct drm_device *dev)
3993{
3994 struct drm_i915_private *dev_priv = dev->dev_private;
3995 unsigned long gtt_size, mappable_size;
3996 int ret;
3997
3998 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3999 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4000
4001 mutex_lock(&dev->struct_mutex);
4002 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4003 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4004 * aperture accordingly when using aliasing ppgtt. */
4005 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4006
4007 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4008
4009 ret = i915_gem_init_aliasing_ppgtt(dev);
4010 if (ret) {
4011 mutex_unlock(&dev->struct_mutex);
4012 return ret;
4013 }
4014 } else {
4015 /* Let GEM Manage all of the aperture.
4016 *
4017 * However, leave one page at the end still bound to the scratch
4018 * page. There are a number of places where the hardware
4019 * apparently prefetches past the end of the object, and we've
4020 * seen multiple hangs with the GPU head pointer stuck in a
4021 * batchbuffer bound at the last page of the aperture. One page
4022 * should be enough to keep any prefetching inside of the
4023 * aperture.
4024 */
4025 i915_gem_init_global_gtt(dev, 0, mappable_size,
4026 gtt_size);
4027 }
4028
4029 ret = i915_gem_init_hw(dev);
4030 mutex_unlock(&dev->struct_mutex);
4031 if (ret) {
4032 i915_gem_cleanup_aliasing_ppgtt(dev);
4033 return ret;
4034 }
4035
53ca26ca
DV
4036 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4037 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4038 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4039 return 0;
4040}
4041
8187a2b7
ZN
4042void
4043i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4044{
4045 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4046 struct intel_ring_buffer *ring;
1ec14ad3 4047 int i;
8187a2b7 4048
b4519513
CW
4049 for_each_ring(ring, dev_priv, i)
4050 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4051}
4052
673a394b
EA
4053int
4054i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4055 struct drm_file *file_priv)
4056{
4057 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4058 int ret;
673a394b 4059
79e53945
JB
4060 if (drm_core_check_feature(dev, DRIVER_MODESET))
4061 return 0;
4062
ba1234d1 4063 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4064 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4065 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4066 }
4067
673a394b 4068 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4069 dev_priv->mm.suspended = 0;
4070
f691e2f4 4071 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4072 if (ret != 0) {
4073 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4074 return ret;
d816f6ac 4075 }
9bb2d6f9 4076
69dc4987 4077 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4078 mutex_unlock(&dev->struct_mutex);
dbb19d30 4079
5f35308b
CW
4080 ret = drm_irq_install(dev);
4081 if (ret)
4082 goto cleanup_ringbuffer;
dbb19d30 4083
673a394b 4084 return 0;
5f35308b
CW
4085
4086cleanup_ringbuffer:
4087 mutex_lock(&dev->struct_mutex);
4088 i915_gem_cleanup_ringbuffer(dev);
4089 dev_priv->mm.suspended = 1;
4090 mutex_unlock(&dev->struct_mutex);
4091
4092 return ret;
673a394b
EA
4093}
4094
4095int
4096i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file_priv)
4098{
79e53945
JB
4099 if (drm_core_check_feature(dev, DRIVER_MODESET))
4100 return 0;
4101
dbb19d30 4102 drm_irq_uninstall(dev);
e6890f6f 4103 return i915_gem_idle(dev);
673a394b
EA
4104}
4105
4106void
4107i915_gem_lastclose(struct drm_device *dev)
4108{
4109 int ret;
673a394b 4110
e806b495
EA
4111 if (drm_core_check_feature(dev, DRIVER_MODESET))
4112 return;
4113
6dbe2772
KP
4114 ret = i915_gem_idle(dev);
4115 if (ret)
4116 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4117}
4118
64193406
CW
4119static void
4120init_ring_lists(struct intel_ring_buffer *ring)
4121{
4122 INIT_LIST_HEAD(&ring->active_list);
4123 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4124}
4125
673a394b
EA
4126void
4127i915_gem_load(struct drm_device *dev)
4128{
b5aa8a0f 4129 int i;
673a394b
EA
4130 drm_i915_private_t *dev_priv = dev->dev_private;
4131
69dc4987 4132 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4133 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4134 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4135 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4136 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4137 for (i = 0; i < I915_NUM_RINGS; i++)
4138 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4139 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4140 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4141 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4142 i915_gem_retire_work_handler);
30dbf0c0 4143 init_completion(&dev_priv->error_completion);
31169714 4144
94400120
DA
4145 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4146 if (IS_GEN3(dev)) {
50743298
DV
4147 I915_WRITE(MI_ARB_STATE,
4148 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4149 }
4150
72bfa19c
CW
4151 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4152
de151cf6 4153 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4154 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4155 dev_priv->fence_reg_start = 3;
de151cf6 4156
a6c45cf0 4157 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4158 dev_priv->num_fence_regs = 16;
4159 else
4160 dev_priv->num_fence_regs = 8;
4161
b5aa8a0f 4162 /* Initialize fence registers to zero */
ada726c7 4163 i915_gem_reset_fences(dev);
10ed13e4 4164
673a394b 4165 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4166 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4167
ce453d81
CW
4168 dev_priv->mm.interruptible = true;
4169
17250b71
CW
4170 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4171 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4172 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4173}
71acb5eb
DA
4174
4175/*
4176 * Create a physically contiguous memory object for this object
4177 * e.g. for cursor + overlay regs
4178 */
995b6762
CW
4179static int i915_gem_init_phys_object(struct drm_device *dev,
4180 int id, int size, int align)
71acb5eb
DA
4181{
4182 drm_i915_private_t *dev_priv = dev->dev_private;
4183 struct drm_i915_gem_phys_object *phys_obj;
4184 int ret;
4185
4186 if (dev_priv->mm.phys_objs[id - 1] || !size)
4187 return 0;
4188
9a298b2a 4189 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4190 if (!phys_obj)
4191 return -ENOMEM;
4192
4193 phys_obj->id = id;
4194
6eeefaf3 4195 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4196 if (!phys_obj->handle) {
4197 ret = -ENOMEM;
4198 goto kfree_obj;
4199 }
4200#ifdef CONFIG_X86
4201 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4202#endif
4203
4204 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4205
4206 return 0;
4207kfree_obj:
9a298b2a 4208 kfree(phys_obj);
71acb5eb
DA
4209 return ret;
4210}
4211
995b6762 4212static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4213{
4214 drm_i915_private_t *dev_priv = dev->dev_private;
4215 struct drm_i915_gem_phys_object *phys_obj;
4216
4217 if (!dev_priv->mm.phys_objs[id - 1])
4218 return;
4219
4220 phys_obj = dev_priv->mm.phys_objs[id - 1];
4221 if (phys_obj->cur_obj) {
4222 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4223 }
4224
4225#ifdef CONFIG_X86
4226 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4227#endif
4228 drm_pci_free(dev, phys_obj->handle);
4229 kfree(phys_obj);
4230 dev_priv->mm.phys_objs[id - 1] = NULL;
4231}
4232
4233void i915_gem_free_all_phys_object(struct drm_device *dev)
4234{
4235 int i;
4236
260883c8 4237 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4238 i915_gem_free_phys_object(dev, i);
4239}
4240
4241void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4242 struct drm_i915_gem_object *obj)
71acb5eb 4243{
05394f39 4244 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4245 char *vaddr;
71acb5eb 4246 int i;
71acb5eb
DA
4247 int page_count;
4248
05394f39 4249 if (!obj->phys_obj)
71acb5eb 4250 return;
05394f39 4251 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4252
05394f39 4253 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4254 for (i = 0; i < page_count; i++) {
5949eac4 4255 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4256 if (!IS_ERR(page)) {
4257 char *dst = kmap_atomic(page);
4258 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4259 kunmap_atomic(dst);
4260
4261 drm_clflush_pages(&page, 1);
4262
4263 set_page_dirty(page);
4264 mark_page_accessed(page);
4265 page_cache_release(page);
4266 }
71acb5eb 4267 }
e76e9aeb 4268 i915_gem_chipset_flush(dev);
d78b47b9 4269
05394f39
CW
4270 obj->phys_obj->cur_obj = NULL;
4271 obj->phys_obj = NULL;
71acb5eb
DA
4272}
4273
4274int
4275i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4276 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4277 int id,
4278 int align)
71acb5eb 4279{
05394f39 4280 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4281 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4282 int ret = 0;
4283 int page_count;
4284 int i;
4285
4286 if (id > I915_MAX_PHYS_OBJECT)
4287 return -EINVAL;
4288
05394f39
CW
4289 if (obj->phys_obj) {
4290 if (obj->phys_obj->id == id)
71acb5eb
DA
4291 return 0;
4292 i915_gem_detach_phys_object(dev, obj);
4293 }
4294
71acb5eb
DA
4295 /* create a new object */
4296 if (!dev_priv->mm.phys_objs[id - 1]) {
4297 ret = i915_gem_init_phys_object(dev, id,
05394f39 4298 obj->base.size, align);
71acb5eb 4299 if (ret) {
05394f39
CW
4300 DRM_ERROR("failed to init phys object %d size: %zu\n",
4301 id, obj->base.size);
e5281ccd 4302 return ret;
71acb5eb
DA
4303 }
4304 }
4305
4306 /* bind to the object */
05394f39
CW
4307 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4308 obj->phys_obj->cur_obj = obj;
71acb5eb 4309
05394f39 4310 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4311
4312 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4313 struct page *page;
4314 char *dst, *src;
4315
5949eac4 4316 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4317 if (IS_ERR(page))
4318 return PTR_ERR(page);
71acb5eb 4319
ff75b9bc 4320 src = kmap_atomic(page);
05394f39 4321 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4322 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4323 kunmap_atomic(src);
71acb5eb 4324
e5281ccd
CW
4325 mark_page_accessed(page);
4326 page_cache_release(page);
4327 }
d78b47b9 4328
71acb5eb 4329 return 0;
71acb5eb
DA
4330}
4331
4332static int
05394f39
CW
4333i915_gem_phys_pwrite(struct drm_device *dev,
4334 struct drm_i915_gem_object *obj,
71acb5eb
DA
4335 struct drm_i915_gem_pwrite *args,
4336 struct drm_file *file_priv)
4337{
05394f39 4338 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4339 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4340
b47b30cc
CW
4341 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4342 unsigned long unwritten;
4343
4344 /* The physical object once assigned is fixed for the lifetime
4345 * of the obj, so we can safely drop the lock and continue
4346 * to access vaddr.
4347 */
4348 mutex_unlock(&dev->struct_mutex);
4349 unwritten = copy_from_user(vaddr, user_data, args->size);
4350 mutex_lock(&dev->struct_mutex);
4351 if (unwritten)
4352 return -EFAULT;
4353 }
71acb5eb 4354
e76e9aeb 4355 i915_gem_chipset_flush(dev);
71acb5eb
DA
4356 return 0;
4357}
b962442e 4358
f787a5f5 4359void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4360{
f787a5f5 4361 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4362
4363 /* Clean up our request list when the client is going away, so that
4364 * later retire_requests won't dereference our soon-to-be-gone
4365 * file_priv.
4366 */
1c25595f 4367 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4368 while (!list_empty(&file_priv->mm.request_list)) {
4369 struct drm_i915_gem_request *request;
4370
4371 request = list_first_entry(&file_priv->mm.request_list,
4372 struct drm_i915_gem_request,
4373 client_list);
4374 list_del(&request->client_list);
4375 request->file_priv = NULL;
4376 }
1c25595f 4377 spin_unlock(&file_priv->mm.lock);
b962442e 4378}
31169714 4379
5774506f
CW
4380static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4381{
4382 if (!mutex_is_locked(mutex))
4383 return false;
4384
4385#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4386 return mutex->owner == task;
4387#else
4388 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4389 return false;
4390#endif
4391}
4392
31169714 4393static int
1495f230 4394i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4395{
17250b71
CW
4396 struct drm_i915_private *dev_priv =
4397 container_of(shrinker,
4398 struct drm_i915_private,
4399 mm.inactive_shrinker);
4400 struct drm_device *dev = dev_priv->dev;
6c085a72 4401 struct drm_i915_gem_object *obj;
1495f230 4402 int nr_to_scan = sc->nr_to_scan;
5774506f 4403 bool unlock = true;
17250b71
CW
4404 int cnt;
4405
5774506f
CW
4406 if (!mutex_trylock(&dev->struct_mutex)) {
4407 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4408 return 0;
4409
4410 unlock = false;
4411 }
31169714 4412
6c085a72
CW
4413 if (nr_to_scan) {
4414 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4415 if (nr_to_scan > 0)
4416 i915_gem_shrink_all(dev_priv);
31169714
CW
4417 }
4418
17250b71 4419 cnt = 0;
6c085a72 4420 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4421 if (obj->pages_pin_count == 0)
4422 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4423 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4424 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4425 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4426
5774506f
CW
4427 if (unlock)
4428 mutex_unlock(&dev->struct_mutex);
6c085a72 4429 return cnt;
31169714 4430}