VM: add "vm_mmap()" helper function
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
05394f39 47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
d9e86c0e
CW
51static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
05394f39
CW
53static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
71acb5eb 55 struct drm_i915_gem_pwrite *args,
05394f39
CW
56 struct drm_file *file);
57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992 182 args->aper_size = dev_priv->mm.gtt_total;
0206e353 183 args->aper_available_size = args->aper_size - pinned;
6299f992 184
5a125c3c
EA
185 return 0;
186}
187
ff72145b
DA
188static int
189i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
673a394b 193{
05394f39 194 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
195 int ret;
196 u32 handle;
673a394b 197
ff72145b 198 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
199 if (size == 0)
200 return -EINVAL;
673a394b
EA
201
202 /* Allocate the new object */
ff72145b 203 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
204 if (obj == NULL)
205 return -ENOMEM;
206
05394f39 207 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 208 if (ret) {
05394f39
CW
209 drm_gem_object_release(&obj->base);
210 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 211 kfree(obj);
673a394b 212 return ret;
1dfd9754 213 }
673a394b 214
202f2fef 215 /* drop reference from allocate - handle holds it now */
05394f39 216 drm_gem_object_unreference(&obj->base);
202f2fef
CW
217 trace_i915_gem_object_create(obj);
218
ff72145b 219 *handle_p = handle;
673a394b
EA
220 return 0;
221}
222
ff72145b
DA
223int
224i915_gem_dumb_create(struct drm_file *file,
225 struct drm_device *dev,
226 struct drm_mode_create_dumb *args)
227{
228 /* have to work out size/pitch and return them */
ed0291fd 229 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
230 args->size = args->pitch * args->height;
231 return i915_gem_create(file, dev,
232 args->size, &args->handle);
233}
234
235int i915_gem_dumb_destroy(struct drm_file *file,
236 struct drm_device *dev,
237 uint32_t handle)
238{
239 return drm_gem_handle_delete(file, handle);
240}
241
242/**
243 * Creates a new mm object and returns a handle to it.
244 */
245int
246i915_gem_create_ioctl(struct drm_device *dev, void *data,
247 struct drm_file *file)
248{
249 struct drm_i915_gem_create *args = data;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252}
253
05394f39 254static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 255{
05394f39 256 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
257
258 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 259 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
260}
261
eb01459f
EA
262/**
263 * This is the fast shmem pread path, which attempts to copy_from_user directly
264 * from the backing pages of the object to the user's address space. On a
265 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
266 */
267static int
05394f39
CW
268i915_gem_shmem_pread_fast(struct drm_device *dev,
269 struct drm_i915_gem_object *obj,
eb01459f 270 struct drm_i915_gem_pread *args,
05394f39 271 struct drm_file *file)
eb01459f 272{
05394f39 273 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 274 ssize_t remain;
e5281ccd 275 loff_t offset;
eb01459f
EA
276 char __user *user_data;
277 int page_offset, page_length;
eb01459f
EA
278
279 user_data = (char __user *) (uintptr_t) args->data_ptr;
280 remain = args->size;
281
eb01459f
EA
282 offset = args->offset;
283
284 while (remain > 0) {
e5281ccd
CW
285 struct page *page;
286 char *vaddr;
287 int ret;
288
eb01459f
EA
289 /* Operation in this page
290 *
eb01459f
EA
291 * page_offset = offset within page
292 * page_length = bytes to copy for this page
293 */
c8cbbb8b 294 page_offset = offset_in_page(offset);
eb01459f
EA
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
5949eac4 299 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
300 if (IS_ERR(page))
301 return PTR_ERR(page);
302
303 vaddr = kmap_atomic(page);
304 ret = __copy_to_user_inatomic(user_data,
305 vaddr + page_offset,
306 page_length);
307 kunmap_atomic(vaddr);
308
309 mark_page_accessed(page);
310 page_cache_release(page);
311 if (ret)
4f27b75d 312 return -EFAULT;
eb01459f
EA
313
314 remain -= page_length;
315 user_data += page_length;
316 offset += page_length;
317 }
318
4f27b75d 319 return 0;
eb01459f
EA
320}
321
8461d226
DV
322static inline int
323__copy_to_user_swizzled(char __user *cpu_vaddr,
324 const char *gpu_vaddr, int gpu_offset,
325 int length)
326{
327 int ret, cpu_offset = 0;
328
329 while (length > 0) {
330 int cacheline_end = ALIGN(gpu_offset + 1, 64);
331 int this_length = min(cacheline_end - gpu_offset, length);
332 int swizzled_gpu_offset = gpu_offset ^ 64;
333
334 ret = __copy_to_user(cpu_vaddr + cpu_offset,
335 gpu_vaddr + swizzled_gpu_offset,
336 this_length);
337 if (ret)
338 return ret + length;
339
340 cpu_offset += this_length;
341 gpu_offset += this_length;
342 length -= this_length;
343 }
344
345 return 0;
346}
347
8c59967c
DV
348static inline int
349__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
350 const char *cpu_vaddr,
351 int length)
352{
353 int ret, cpu_offset = 0;
354
355 while (length > 0) {
356 int cacheline_end = ALIGN(gpu_offset + 1, 64);
357 int this_length = min(cacheline_end - gpu_offset, length);
358 int swizzled_gpu_offset = gpu_offset ^ 64;
359
360 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
361 cpu_vaddr + cpu_offset,
362 this_length);
363 if (ret)
364 return ret + length;
365
366 cpu_offset += this_length;
367 gpu_offset += this_length;
368 length -= this_length;
369 }
370
371 return 0;
372}
373
eb01459f
EA
374/**
375 * This is the fallback shmem pread path, which allocates temporary storage
376 * in kernel space to copy_to_user into outside of the struct_mutex, so we
377 * can copy out of the object's backing pages while holding the struct mutex
378 * and not take page faults.
379 */
380static int
05394f39
CW
381i915_gem_shmem_pread_slow(struct drm_device *dev,
382 struct drm_i915_gem_object *obj,
eb01459f 383 struct drm_i915_gem_pread *args,
05394f39 384 struct drm_file *file)
eb01459f 385{
05394f39 386 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 387 char __user *user_data;
eb01459f 388 ssize_t remain;
8461d226
DV
389 loff_t offset;
390 int shmem_page_offset, page_length, ret;
391 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
eb01459f 392
8461d226 393 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
394 remain = args->size;
395
8461d226 396 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 397
8461d226 398 offset = args->offset;
eb01459f 399
4f27b75d 400 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
401
402 while (remain > 0) {
e5281ccd 403 struct page *page;
8461d226 404 char *vaddr;
e5281ccd 405
eb01459f
EA
406 /* Operation in this page
407 *
eb01459f 408 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
409 * page_length = bytes to copy for this page
410 */
c8cbbb8b 411 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
412 page_length = remain;
413 if ((shmem_page_offset + page_length) > PAGE_SIZE)
414 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 415
5949eac4 416 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
b65552f0
JJ
417 if (IS_ERR(page)) {
418 ret = PTR_ERR(page);
419 goto out;
420 }
e5281ccd 421
8461d226
DV
422 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
423 (page_to_phys(page) & (1 << 17)) != 0;
424
425 vaddr = kmap(page);
426 if (page_do_bit17_swizzling)
427 ret = __copy_to_user_swizzled(user_data,
428 vaddr, shmem_page_offset,
429 page_length);
430 else
431 ret = __copy_to_user(user_data,
432 vaddr + shmem_page_offset,
433 page_length);
434 kunmap(page);
eb01459f 435
e5281ccd
CW
436 mark_page_accessed(page);
437 page_cache_release(page);
438
8461d226
DV
439 if (ret) {
440 ret = -EFAULT;
441 goto out;
442 }
443
eb01459f 444 remain -= page_length;
8461d226 445 user_data += page_length;
eb01459f
EA
446 offset += page_length;
447 }
448
4f27b75d 449out:
8461d226
DV
450 mutex_lock(&dev->struct_mutex);
451 /* Fixup: Kill any reinstated backing storage pages */
452 if (obj->madv == __I915_MADV_PURGED)
453 i915_gem_object_truncate(obj);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 465 struct drm_file *file)
673a394b
EA
466{
467 struct drm_i915_gem_pread *args = data;
05394f39 468 struct drm_i915_gem_object *obj;
35b62a89 469 int ret = 0;
673a394b 470
51311d0a
CW
471 if (args->size == 0)
472 return 0;
473
474 if (!access_ok(VERIFY_WRITE,
475 (char __user *)(uintptr_t)args->data_ptr,
476 args->size))
477 return -EFAULT;
478
479 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
480 args->size);
481 if (ret)
482 return -EFAULT;
483
4f27b75d 484 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 485 if (ret)
4f27b75d 486 return ret;
673a394b 487
05394f39 488 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 489 if (&obj->base == NULL) {
1d7cfea1
CW
490 ret = -ENOENT;
491 goto unlock;
4f27b75d 492 }
673a394b 493
7dcd2499 494 /* Bounds check source. */
05394f39
CW
495 if (args->offset > obj->base.size ||
496 args->size > obj->base.size - args->offset) {
ce9d419d 497 ret = -EINVAL;
35b62a89 498 goto out;
ce9d419d
CW
499 }
500
db53a302
CW
501 trace_i915_gem_object_pread(obj, args->offset, args->size);
502
4f27b75d
CW
503 ret = i915_gem_object_set_cpu_read_domain_range(obj,
504 args->offset,
505 args->size);
506 if (ret)
e5281ccd 507 goto out;
4f27b75d
CW
508
509 ret = -EFAULT;
510 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 511 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 512 if (ret == -EFAULT)
05394f39 513 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 514
35b62a89 515out:
05394f39 516 drm_gem_object_unreference(&obj->base);
1d7cfea1 517unlock:
4f27b75d 518 mutex_unlock(&dev->struct_mutex);
eb01459f 519 return ret;
673a394b
EA
520}
521
0839ccb8
KP
522/* This is the fast write path which cannot handle
523 * page faults in the source data
9b7530cc 524 */
0839ccb8
KP
525
526static inline int
527fast_user_write(struct io_mapping *mapping,
528 loff_t page_base, int page_offset,
529 char __user *user_data,
530 int length)
9b7530cc 531{
9b7530cc 532 char *vaddr_atomic;
0839ccb8 533 unsigned long unwritten;
9b7530cc 534
3e4d3af5 535 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
536 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
537 user_data, length);
3e4d3af5 538 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 539 return unwritten;
0839ccb8
KP
540}
541
542/* Here's the write path which can sleep for
543 * page faults
544 */
545
ab34c226 546static inline void
3de09aa3
EA
547slow_kernel_write(struct io_mapping *mapping,
548 loff_t gtt_base, int gtt_offset,
549 struct page *user_page, int user_offset,
550 int length)
0839ccb8 551{
ab34c226
CW
552 char __iomem *dst_vaddr;
553 char *src_vaddr;
0839ccb8 554
ab34c226
CW
555 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
556 src_vaddr = kmap(user_page);
557
558 memcpy_toio(dst_vaddr + gtt_offset,
559 src_vaddr + user_offset,
560 length);
561
562 kunmap(user_page);
563 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
564}
565
3de09aa3
EA
566/**
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
569 */
673a394b 570static int
05394f39
CW
571i915_gem_gtt_pwrite_fast(struct drm_device *dev,
572 struct drm_i915_gem_object *obj,
3de09aa3 573 struct drm_i915_gem_pwrite *args,
05394f39 574 struct drm_file *file)
673a394b 575{
0839ccb8 576 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 577 ssize_t remain;
0839ccb8 578 loff_t offset, page_base;
673a394b 579 char __user *user_data;
0839ccb8 580 int page_offset, page_length;
673a394b
EA
581
582 user_data = (char __user *) (uintptr_t) args->data_ptr;
583 remain = args->size;
673a394b 584
05394f39 585 offset = obj->gtt_offset + args->offset;
673a394b
EA
586
587 while (remain > 0) {
588 /* Operation in this page
589 *
0839ccb8
KP
590 * page_base = page offset within aperture
591 * page_offset = offset within page
592 * page_length = bytes to copy for this page
673a394b 593 */
c8cbbb8b
CW
594 page_base = offset & PAGE_MASK;
595 page_offset = offset_in_page(offset);
0839ccb8
KP
596 page_length = remain;
597 if ((page_offset + remain) > PAGE_SIZE)
598 page_length = PAGE_SIZE - page_offset;
599
0839ccb8 600 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
601 * source page isn't available. Return the error and we'll
602 * retry in the slow path.
0839ccb8 603 */
fbd5a26d
CW
604 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
605 page_offset, user_data, page_length))
fbd5a26d 606 return -EFAULT;
673a394b 607
0839ccb8
KP
608 remain -= page_length;
609 user_data += page_length;
610 offset += page_length;
673a394b 611 }
673a394b 612
fbd5a26d 613 return 0;
673a394b
EA
614}
615
3de09aa3
EA
616/**
617 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
618 * the memory and maps it using kmap_atomic for copying.
619 *
620 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
621 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
622 */
3043c60c 623static int
05394f39
CW
624i915_gem_gtt_pwrite_slow(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
3de09aa3 626 struct drm_i915_gem_pwrite *args,
05394f39 627 struct drm_file *file)
673a394b 628{
3de09aa3
EA
629 drm_i915_private_t *dev_priv = dev->dev_private;
630 ssize_t remain;
631 loff_t gtt_page_base, offset;
632 loff_t first_data_page, last_data_page, num_pages;
633 loff_t pinned_pages, i;
634 struct page **user_pages;
635 struct mm_struct *mm = current->mm;
636 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 637 int ret;
3de09aa3
EA
638 uint64_t data_ptr = args->data_ptr;
639
640 remain = args->size;
641
642 /* Pin the user pages containing the data. We can't fault while
643 * holding the struct mutex, and all of the pwrite implementations
644 * want to hold it while dereferencing the user data.
645 */
646 first_data_page = data_ptr / PAGE_SIZE;
647 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
648 num_pages = last_data_page - first_data_page + 1;
649
fbd5a26d 650 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
651 if (user_pages == NULL)
652 return -ENOMEM;
653
fbd5a26d 654 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
fbd5a26d 659 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
673a394b 664
d9e86c0e
CW
665 ret = i915_gem_object_set_to_gtt_domain(obj, true);
666 if (ret)
667 goto out_unpin_pages;
668
669 ret = i915_gem_object_put_fence(obj);
3de09aa3 670 if (ret)
fbd5a26d 671 goto out_unpin_pages;
3de09aa3 672
05394f39 673 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
674
675 while (remain > 0) {
676 /* Operation in this page
677 *
678 * gtt_page_base = page offset within aperture
679 * gtt_page_offset = offset within page in aperture
680 * data_page_index = page number in get_user_pages return
681 * data_page_offset = offset with data_page_index page.
682 * page_length = bytes to copy for this page
683 */
684 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 685 gtt_page_offset = offset_in_page(offset);
3de09aa3 686 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 687 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
688
689 page_length = remain;
690 if ((gtt_page_offset + page_length) > PAGE_SIZE)
691 page_length = PAGE_SIZE - gtt_page_offset;
692 if ((data_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - data_page_offset;
694
ab34c226
CW
695 slow_kernel_write(dev_priv->mm.gtt_mapping,
696 gtt_page_base, gtt_page_offset,
697 user_pages[data_page_index],
698 data_page_offset,
699 page_length);
3de09aa3
EA
700
701 remain -= page_length;
702 offset += page_length;
703 data_ptr += page_length;
704 }
705
3de09aa3
EA
706out_unpin_pages:
707 for (i = 0; i < pinned_pages; i++)
708 page_cache_release(user_pages[i]);
8e7d2b2c 709 drm_free_large(user_pages);
3de09aa3
EA
710
711 return ret;
712}
713
40123c1f
EA
714/**
715 * This is the fast shmem pwrite path, which attempts to directly
716 * copy_from_user into the kmapped pages backing the object.
717 */
3043c60c 718static int
05394f39
CW
719i915_gem_shmem_pwrite_fast(struct drm_device *dev,
720 struct drm_i915_gem_object *obj,
40123c1f 721 struct drm_i915_gem_pwrite *args,
05394f39 722 struct drm_file *file)
673a394b 723{
05394f39 724 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 725 ssize_t remain;
e5281ccd 726 loff_t offset;
40123c1f
EA
727 char __user *user_data;
728 int page_offset, page_length;
40123c1f
EA
729
730 user_data = (char __user *) (uintptr_t) args->data_ptr;
731 remain = args->size;
673a394b 732
40123c1f 733 offset = args->offset;
05394f39 734 obj->dirty = 1;
40123c1f
EA
735
736 while (remain > 0) {
e5281ccd
CW
737 struct page *page;
738 char *vaddr;
739 int ret;
740
40123c1f
EA
741 /* Operation in this page
742 *
40123c1f
EA
743 * page_offset = offset within page
744 * page_length = bytes to copy for this page
745 */
c8cbbb8b 746 page_offset = offset_in_page(offset);
40123c1f
EA
747 page_length = remain;
748 if ((page_offset + remain) > PAGE_SIZE)
749 page_length = PAGE_SIZE - page_offset;
750
5949eac4 751 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
752 if (IS_ERR(page))
753 return PTR_ERR(page);
754
130c2561 755 vaddr = kmap_atomic(page);
e5281ccd
CW
756 ret = __copy_from_user_inatomic(vaddr + page_offset,
757 user_data,
758 page_length);
130c2561 759 kunmap_atomic(vaddr);
e5281ccd
CW
760
761 set_page_dirty(page);
762 mark_page_accessed(page);
763 page_cache_release(page);
764
765 /* If we get a fault while copying data, then (presumably) our
766 * source page isn't available. Return the error and we'll
767 * retry in the slow path.
768 */
769 if (ret)
fbd5a26d 770 return -EFAULT;
40123c1f
EA
771
772 remain -= page_length;
773 user_data += page_length;
774 offset += page_length;
775 }
776
fbd5a26d 777 return 0;
40123c1f
EA
778}
779
780/**
781 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
782 * the memory and maps it using kmap_atomic for copying.
783 *
784 * This avoids taking mmap_sem for faulting on the user's address while the
785 * struct_mutex is held.
786 */
787static int
05394f39
CW
788i915_gem_shmem_pwrite_slow(struct drm_device *dev,
789 struct drm_i915_gem_object *obj,
40123c1f 790 struct drm_i915_gem_pwrite *args,
05394f39 791 struct drm_file *file)
40123c1f 792{
05394f39 793 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 794 ssize_t remain;
8c59967c
DV
795 loff_t offset;
796 char __user *user_data;
797 int shmem_page_offset, page_length, ret;
798 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
40123c1f 799
8c59967c 800 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
801 remain = args->size;
802
8c59967c 803 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 804
673a394b 805 offset = args->offset;
05394f39 806 obj->dirty = 1;
673a394b 807
8c59967c
DV
808 mutex_unlock(&dev->struct_mutex);
809
40123c1f 810 while (remain > 0) {
e5281ccd 811 struct page *page;
8c59967c 812 char *vaddr;
e5281ccd 813
40123c1f
EA
814 /* Operation in this page
815 *
40123c1f 816 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
817 * page_length = bytes to copy for this page
818 */
c8cbbb8b 819 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
820
821 page_length = remain;
822 if ((shmem_page_offset + page_length) > PAGE_SIZE)
823 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 824
5949eac4 825 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
826 if (IS_ERR(page)) {
827 ret = PTR_ERR(page);
828 goto out;
829 }
830
8c59967c
DV
831 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
832 (page_to_phys(page) & (1 << 17)) != 0;
833
834 vaddr = kmap(page);
835 if (page_do_bit17_swizzling)
836 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
837 user_data,
838 page_length);
839 else
840 ret = __copy_from_user(vaddr + shmem_page_offset,
841 user_data,
842 page_length);
843 kunmap(page);
40123c1f 844
e5281ccd
CW
845 set_page_dirty(page);
846 mark_page_accessed(page);
847 page_cache_release(page);
848
8c59967c
DV
849 if (ret) {
850 ret = -EFAULT;
851 goto out;
852 }
853
40123c1f 854 remain -= page_length;
8c59967c 855 user_data += page_length;
40123c1f 856 offset += page_length;
673a394b
EA
857 }
858
fbd5a26d 859out:
8c59967c
DV
860 mutex_lock(&dev->struct_mutex);
861 /* Fixup: Kill any reinstated backing storage pages */
862 if (obj->madv == __I915_MADV_PURGED)
863 i915_gem_object_truncate(obj);
864 /* and flush dirty cachelines in case the object isn't in the cpu write
865 * domain anymore. */
866 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
867 i915_gem_clflush_object(obj);
868 intel_gtt_chipset_flush();
869 }
673a394b 870
40123c1f 871 return ret;
673a394b
EA
872}
873
874/**
875 * Writes data to the object referenced by handle.
876 *
877 * On error, the contents of the buffer that were to be modified are undefined.
878 */
879int
880i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 881 struct drm_file *file)
673a394b
EA
882{
883 struct drm_i915_gem_pwrite *args = data;
05394f39 884 struct drm_i915_gem_object *obj;
51311d0a
CW
885 int ret;
886
887 if (args->size == 0)
888 return 0;
889
890 if (!access_ok(VERIFY_READ,
891 (char __user *)(uintptr_t)args->data_ptr,
892 args->size))
893 return -EFAULT;
894
895 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
896 args->size);
897 if (ret)
898 return -EFAULT;
673a394b 899
fbd5a26d 900 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 901 if (ret)
fbd5a26d 902 return ret;
1d7cfea1 903
05394f39 904 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 905 if (&obj->base == NULL) {
1d7cfea1
CW
906 ret = -ENOENT;
907 goto unlock;
fbd5a26d 908 }
673a394b 909
7dcd2499 910 /* Bounds check destination. */
05394f39
CW
911 if (args->offset > obj->base.size ||
912 args->size > obj->base.size - args->offset) {
ce9d419d 913 ret = -EINVAL;
35b62a89 914 goto out;
ce9d419d
CW
915 }
916
db53a302
CW
917 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
918
673a394b
EA
919 /* We can only do the GTT pwrite on untiled buffers, as otherwise
920 * it would end up going through the fenced access, and we'll get
921 * different detiling behavior between reading and writing.
922 * pread/pwrite currently are reading and writing from the CPU
923 * perspective, requiring manual detiling by the client.
924 */
5c0480f2 925 if (obj->phys_obj) {
fbd5a26d 926 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
927 goto out;
928 }
929
930 if (obj->gtt_space &&
931 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 932 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
933 if (ret)
934 goto out;
935
d9e86c0e
CW
936 ret = i915_gem_object_set_to_gtt_domain(obj, true);
937 if (ret)
938 goto out_unpin;
939
940 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
941 if (ret)
942 goto out_unpin;
943
944 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
945 if (ret == -EFAULT)
946 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
947
948out_unpin:
949 i915_gem_object_unpin(obj);
673a394b 950
5c0480f2
DV
951 if (ret != -EFAULT)
952 goto out;
953 /* Fall through to the shmfs paths because the gtt paths might
954 * fail with non-page-backed user pointers (e.g. gtt mappings
955 * when moving data between textures). */
fbd5a26d 956 }
673a394b 957
5c0480f2
DV
958 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
959 if (ret)
960 goto out;
961
962 ret = -EFAULT;
963 if (!i915_gem_object_needs_bit17_swizzle(obj))
964 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
965 if (ret == -EFAULT)
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
967
35b62a89 968out:
05394f39 969 drm_gem_object_unreference(&obj->base);
1d7cfea1 970unlock:
fbd5a26d 971 mutex_unlock(&dev->struct_mutex);
673a394b
EA
972 return ret;
973}
974
975/**
2ef7eeaa
EA
976 * Called when user space prepares to use an object with the CPU, either
977 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
978 */
979int
980i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 981 struct drm_file *file)
673a394b
EA
982{
983 struct drm_i915_gem_set_domain *args = data;
05394f39 984 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
985 uint32_t read_domains = args->read_domains;
986 uint32_t write_domain = args->write_domain;
673a394b
EA
987 int ret;
988
989 if (!(dev->driver->driver_features & DRIVER_GEM))
990 return -ENODEV;
991
2ef7eeaa 992 /* Only handle setting domains to types used by the CPU. */
21d509e3 993 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
994 return -EINVAL;
995
21d509e3 996 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
997 return -EINVAL;
998
999 /* Having something in the write domain implies it's in the read
1000 * domain, and only that read domain. Enforce that in the request.
1001 */
1002 if (write_domain != 0 && read_domains != write_domain)
1003 return -EINVAL;
1004
76c1dec1 1005 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1006 if (ret)
76c1dec1 1007 return ret;
1d7cfea1 1008
05394f39 1009 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1010 if (&obj->base == NULL) {
1d7cfea1
CW
1011 ret = -ENOENT;
1012 goto unlock;
76c1dec1 1013 }
673a394b 1014
2ef7eeaa
EA
1015 if (read_domains & I915_GEM_DOMAIN_GTT) {
1016 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1017
1018 /* Silently promote "you're not bound, there was nothing to do"
1019 * to success, since the client was just asking us to
1020 * make sure everything was done.
1021 */
1022 if (ret == -EINVAL)
1023 ret = 0;
2ef7eeaa 1024 } else {
e47c68e9 1025 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1026 }
1027
05394f39 1028 drm_gem_object_unreference(&obj->base);
1d7cfea1 1029unlock:
673a394b
EA
1030 mutex_unlock(&dev->struct_mutex);
1031 return ret;
1032}
1033
1034/**
1035 * Called when user space has done writes to this buffer
1036 */
1037int
1038i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1039 struct drm_file *file)
673a394b
EA
1040{
1041 struct drm_i915_gem_sw_finish *args = data;
05394f39 1042 struct drm_i915_gem_object *obj;
673a394b
EA
1043 int ret = 0;
1044
1045 if (!(dev->driver->driver_features & DRIVER_GEM))
1046 return -ENODEV;
1047
76c1dec1 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
76c1dec1 1050 return ret;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
673a394b
EA
1056 }
1057
673a394b 1058 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1059 if (obj->pin_count)
e47c68e9
EA
1060 i915_gem_object_flush_cpu_write_domain(obj);
1061
05394f39 1062 drm_gem_object_unreference(&obj->base);
1d7cfea1 1063unlock:
673a394b
EA
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066}
1067
1068/**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075int
1076i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1077 struct drm_file *file)
673a394b
EA
1078{
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
673a394b
EA
1081 unsigned long addr;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
05394f39 1086 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1087 if (obj == NULL)
bf79cb91 1088 return -ENOENT;
673a394b 1089
6be5ceb0 1090 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1091 PROT_READ | PROT_WRITE, MAP_SHARED,
1092 args->offset);
bc9025bd 1093 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1094 if (IS_ERR((void *)addr))
1095 return addr;
1096
1097 args->addr_ptr = (uint64_t) addr;
1098
1099 return 0;
1100}
1101
de151cf6
JB
1102/**
1103 * i915_gem_fault - fault a page into the GTT
1104 * vma: VMA in question
1105 * vmf: fault info
1106 *
1107 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1108 * from userspace. The fault handler takes care of binding the object to
1109 * the GTT (if needed), allocating and programming a fence register (again,
1110 * only if needed based on whether the old reg is still valid or the object
1111 * is tiled) and inserting a new PTE into the faulting process.
1112 *
1113 * Note that the faulting process may involve evicting existing objects
1114 * from the GTT and/or fence registers to make room. So performance may
1115 * suffer if the GTT working set is large or there are few fence registers
1116 * left.
1117 */
1118int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1119{
05394f39
CW
1120 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1121 struct drm_device *dev = obj->base.dev;
7d1c4804 1122 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1123 pgoff_t page_offset;
1124 unsigned long pfn;
1125 int ret = 0;
0f973f27 1126 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1127
1128 /* We don't use vmf->pgoff since that has the fake offset */
1129 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1130 PAGE_SHIFT;
1131
d9bc7e9f
CW
1132 ret = i915_mutex_lock_interruptible(dev);
1133 if (ret)
1134 goto out;
a00b10c3 1135
db53a302
CW
1136 trace_i915_gem_object_fault(obj, page_offset, true, write);
1137
d9bc7e9f 1138 /* Now bind it into the GTT if needed */
919926ae
CW
1139 if (!obj->map_and_fenceable) {
1140 ret = i915_gem_object_unbind(obj);
1141 if (ret)
1142 goto unlock;
a00b10c3 1143 }
05394f39 1144 if (!obj->gtt_space) {
75e9e915 1145 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1146 if (ret)
1147 goto unlock;
de151cf6 1148
e92d03bf
EA
1149 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150 if (ret)
1151 goto unlock;
1152 }
4a684a41 1153
d9e86c0e
CW
1154 if (obj->tiling_mode == I915_TILING_NONE)
1155 ret = i915_gem_object_put_fence(obj);
1156 else
ce453d81 1157 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1158 if (ret)
1159 goto unlock;
de151cf6 1160
05394f39
CW
1161 if (i915_gem_object_is_inactive(obj))
1162 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1163
6299f992
CW
1164 obj->fault_mappable = true;
1165
05394f39 1166 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1167 page_offset;
1168
1169 /* Finally, remap it using the new GTT offset */
1170 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1171unlock:
de151cf6 1172 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1173out:
de151cf6 1174 switch (ret) {
d9bc7e9f 1175 case -EIO:
045e769a 1176 case -EAGAIN:
d9bc7e9f
CW
1177 /* Give the error handler a chance to run and move the
1178 * objects off the GPU active list. Next time we service the
1179 * fault, we should be able to transition the page into the
1180 * GTT without touching the GPU (and so avoid further
1181 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1182 * with coherency, just lost writes.
1183 */
045e769a 1184 set_need_resched();
c715089f
CW
1185 case 0:
1186 case -ERESTARTSYS:
bed636ab 1187 case -EINTR:
c715089f 1188 return VM_FAULT_NOPAGE;
de151cf6 1189 case -ENOMEM:
de151cf6 1190 return VM_FAULT_OOM;
de151cf6 1191 default:
c715089f 1192 return VM_FAULT_SIGBUS;
de151cf6
JB
1193 }
1194}
1195
901782b2
CW
1196/**
1197 * i915_gem_release_mmap - remove physical page mappings
1198 * @obj: obj in question
1199 *
af901ca1 1200 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1201 * relinquish ownership of the pages back to the system.
1202 *
1203 * It is vital that we remove the page mapping if we have mapped a tiled
1204 * object through the GTT and then lose the fence register due to
1205 * resource pressure. Similarly if the object has been moved out of the
1206 * aperture, than pages mapped into userspace must be revoked. Removing the
1207 * mapping will then trigger a page fault on the next user access, allowing
1208 * fixup by i915_gem_fault().
1209 */
d05ca301 1210void
05394f39 1211i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1212{
6299f992
CW
1213 if (!obj->fault_mappable)
1214 return;
901782b2 1215
f6e47884
CW
1216 if (obj->base.dev->dev_mapping)
1217 unmap_mapping_range(obj->base.dev->dev_mapping,
1218 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1219 obj->base.size, 1);
fb7d516a 1220
6299f992 1221 obj->fault_mappable = false;
901782b2
CW
1222}
1223
92b88aeb 1224static uint32_t
e28f8711 1225i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1226{
e28f8711 1227 uint32_t gtt_size;
92b88aeb
CW
1228
1229 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1230 tiling_mode == I915_TILING_NONE)
1231 return size;
92b88aeb
CW
1232
1233 /* Previous chips need a power-of-two fence region when tiling */
1234 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1235 gtt_size = 1024*1024;
92b88aeb 1236 else
e28f8711 1237 gtt_size = 512*1024;
92b88aeb 1238
e28f8711
CW
1239 while (gtt_size < size)
1240 gtt_size <<= 1;
92b88aeb 1241
e28f8711 1242 return gtt_size;
92b88aeb
CW
1243}
1244
de151cf6
JB
1245/**
1246 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1247 * @obj: object to check
1248 *
1249 * Return the required GTT alignment for an object, taking into account
5e783301 1250 * potential fence register mapping.
de151cf6
JB
1251 */
1252static uint32_t
e28f8711
CW
1253i915_gem_get_gtt_alignment(struct drm_device *dev,
1254 uint32_t size,
1255 int tiling_mode)
de151cf6 1256{
de151cf6
JB
1257 /*
1258 * Minimum alignment is 4k (GTT page size), but might be greater
1259 * if a fence register is needed for the object.
1260 */
a00b10c3 1261 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1262 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1263 return 4096;
1264
a00b10c3
CW
1265 /*
1266 * Previous chips need to be aligned to the size of the smallest
1267 * fence register that can contain the object.
1268 */
e28f8711 1269 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1270}
1271
5e783301
DV
1272/**
1273 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1274 * unfenced object
e28f8711
CW
1275 * @dev: the device
1276 * @size: size of the object
1277 * @tiling_mode: tiling mode of the object
5e783301
DV
1278 *
1279 * Return the required GTT alignment for an object, only taking into account
1280 * unfenced tiled surface requirements.
1281 */
467cffba 1282uint32_t
e28f8711
CW
1283i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1284 uint32_t size,
1285 int tiling_mode)
5e783301 1286{
5e783301
DV
1287 /*
1288 * Minimum alignment is 4k (GTT page size) for sane hw.
1289 */
1290 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1291 tiling_mode == I915_TILING_NONE)
5e783301
DV
1292 return 4096;
1293
e28f8711
CW
1294 /* Previous hardware however needs to be aligned to a power-of-two
1295 * tile height. The simplest method for determining this is to reuse
1296 * the power-of-tile object size.
5e783301 1297 */
e28f8711 1298 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1299}
1300
de151cf6 1301int
ff72145b
DA
1302i915_gem_mmap_gtt(struct drm_file *file,
1303 struct drm_device *dev,
1304 uint32_t handle,
1305 uint64_t *offset)
de151cf6 1306{
da761a6e 1307 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1308 struct drm_i915_gem_object *obj;
de151cf6
JB
1309 int ret;
1310
1311 if (!(dev->driver->driver_features & DRIVER_GEM))
1312 return -ENODEV;
1313
76c1dec1 1314 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1315 if (ret)
76c1dec1 1316 return ret;
de151cf6 1317
ff72145b 1318 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1319 if (&obj->base == NULL) {
1d7cfea1
CW
1320 ret = -ENOENT;
1321 goto unlock;
1322 }
de151cf6 1323
05394f39 1324 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1325 ret = -E2BIG;
ff56b0bc 1326 goto out;
da761a6e
CW
1327 }
1328
05394f39 1329 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1330 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1331 ret = -EINVAL;
1332 goto out;
ab18282d
CW
1333 }
1334
05394f39 1335 if (!obj->base.map_list.map) {
b464e9a2 1336 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1337 if (ret)
1338 goto out;
de151cf6
JB
1339 }
1340
ff72145b 1341 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1342
1d7cfea1 1343out:
05394f39 1344 drm_gem_object_unreference(&obj->base);
1d7cfea1 1345unlock:
de151cf6 1346 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1347 return ret;
de151cf6
JB
1348}
1349
ff72145b
DA
1350/**
1351 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1352 * @dev: DRM device
1353 * @data: GTT mapping ioctl data
1354 * @file: GEM object info
1355 *
1356 * Simply returns the fake offset to userspace so it can mmap it.
1357 * The mmap call will end up in drm_gem_mmap(), which will set things
1358 * up so we can get faults in the handler above.
1359 *
1360 * The fault handler will take care of binding the object into the GTT
1361 * (since it may have been evicted to make room for something), allocating
1362 * a fence register, and mapping the appropriate aperture address into
1363 * userspace.
1364 */
1365int
1366i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1367 struct drm_file *file)
1368{
1369 struct drm_i915_gem_mmap_gtt *args = data;
1370
1371 if (!(dev->driver->driver_features & DRIVER_GEM))
1372 return -ENODEV;
1373
1374 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1375}
1376
1377
e5281ccd 1378static int
05394f39 1379i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1380 gfp_t gfpmask)
1381{
e5281ccd
CW
1382 int page_count, i;
1383 struct address_space *mapping;
1384 struct inode *inode;
1385 struct page *page;
1386
1387 /* Get the list of pages out of our struct file. They'll be pinned
1388 * at this point until we release them.
1389 */
05394f39
CW
1390 page_count = obj->base.size / PAGE_SIZE;
1391 BUG_ON(obj->pages != NULL);
1392 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1393 if (obj->pages == NULL)
e5281ccd
CW
1394 return -ENOMEM;
1395
05394f39 1396 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1397 mapping = inode->i_mapping;
5949eac4
HD
1398 gfpmask |= mapping_gfp_mask(mapping);
1399
e5281ccd 1400 for (i = 0; i < page_count; i++) {
5949eac4 1401 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1402 if (IS_ERR(page))
1403 goto err_pages;
1404
05394f39 1405 obj->pages[i] = page;
e5281ccd
CW
1406 }
1407
6dacfd2f 1408 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1409 i915_gem_object_do_bit_17_swizzle(obj);
1410
1411 return 0;
1412
1413err_pages:
1414 while (i--)
05394f39 1415 page_cache_release(obj->pages[i]);
e5281ccd 1416
05394f39
CW
1417 drm_free_large(obj->pages);
1418 obj->pages = NULL;
e5281ccd
CW
1419 return PTR_ERR(page);
1420}
1421
5cdf5881 1422static void
05394f39 1423i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1424{
05394f39 1425 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1426 int i;
1427
05394f39 1428 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1429
6dacfd2f 1430 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1431 i915_gem_object_save_bit_17_swizzle(obj);
1432
05394f39
CW
1433 if (obj->madv == I915_MADV_DONTNEED)
1434 obj->dirty = 0;
3ef94daa
CW
1435
1436 for (i = 0; i < page_count; i++) {
05394f39
CW
1437 if (obj->dirty)
1438 set_page_dirty(obj->pages[i]);
3ef94daa 1439
05394f39
CW
1440 if (obj->madv == I915_MADV_WILLNEED)
1441 mark_page_accessed(obj->pages[i]);
3ef94daa 1442
05394f39 1443 page_cache_release(obj->pages[i]);
3ef94daa 1444 }
05394f39 1445 obj->dirty = 0;
673a394b 1446
05394f39
CW
1447 drm_free_large(obj->pages);
1448 obj->pages = NULL;
673a394b
EA
1449}
1450
54cf91dc 1451void
05394f39 1452i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1453 struct intel_ring_buffer *ring,
1454 u32 seqno)
673a394b 1455{
05394f39 1456 struct drm_device *dev = obj->base.dev;
69dc4987 1457 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1458
852835f3 1459 BUG_ON(ring == NULL);
05394f39 1460 obj->ring = ring;
673a394b
EA
1461
1462 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1463 if (!obj->active) {
1464 drm_gem_object_reference(&obj->base);
1465 obj->active = 1;
673a394b 1466 }
e35a41de 1467
673a394b 1468 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1469 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1470 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1471
05394f39 1472 obj->last_rendering_seqno = seqno;
caea7476 1473
7dd49065 1474 if (obj->fenced_gpu_access) {
caea7476
CW
1475 obj->last_fenced_seqno = seqno;
1476 obj->last_fenced_ring = ring;
1477
7dd49065
CW
1478 /* Bump MRU to take account of the delayed flush */
1479 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1480 struct drm_i915_fence_reg *reg;
1481
1482 reg = &dev_priv->fence_regs[obj->fence_reg];
1483 list_move_tail(&reg->lru_list,
1484 &dev_priv->mm.fence_list);
1485 }
caea7476
CW
1486 }
1487}
1488
1489static void
1490i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1491{
1492 list_del_init(&obj->ring_list);
1493 obj->last_rendering_seqno = 0;
15a13bbd 1494 obj->last_fenced_seqno = 0;
673a394b
EA
1495}
1496
ce44b0ea 1497static void
05394f39 1498i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1499{
05394f39 1500 struct drm_device *dev = obj->base.dev;
ce44b0ea 1501 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1502
05394f39
CW
1503 BUG_ON(!obj->active);
1504 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1505
1506 i915_gem_object_move_off_active(obj);
1507}
1508
1509static void
1510i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1511{
1512 struct drm_device *dev = obj->base.dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514
1515 if (obj->pin_count != 0)
1516 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1517 else
1518 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1519
1520 BUG_ON(!list_empty(&obj->gpu_write_list));
1521 BUG_ON(!obj->active);
1522 obj->ring = NULL;
15a13bbd 1523 obj->last_fenced_ring = NULL;
caea7476
CW
1524
1525 i915_gem_object_move_off_active(obj);
1526 obj->fenced_gpu_access = false;
caea7476
CW
1527
1528 obj->active = 0;
87ca9c8a 1529 obj->pending_gpu_write = false;
caea7476
CW
1530 drm_gem_object_unreference(&obj->base);
1531
1532 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1533}
673a394b 1534
963b4836
CW
1535/* Immediately discard the backing storage */
1536static void
05394f39 1537i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1538{
bb6baf76 1539 struct inode *inode;
963b4836 1540
ae9fed6b
CW
1541 /* Our goal here is to return as much of the memory as
1542 * is possible back to the system as we are called from OOM.
1543 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1544 * backing pages, *now*.
ae9fed6b 1545 */
05394f39 1546 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1547 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1548
05394f39 1549 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1550}
1551
1552static inline int
05394f39 1553i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1554{
05394f39 1555 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1556}
1557
63560396 1558static void
db53a302
CW
1559i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1560 uint32_t flush_domains)
63560396 1561{
05394f39 1562 struct drm_i915_gem_object *obj, *next;
63560396 1563
05394f39 1564 list_for_each_entry_safe(obj, next,
64193406 1565 &ring->gpu_write_list,
63560396 1566 gpu_write_list) {
05394f39
CW
1567 if (obj->base.write_domain & flush_domains) {
1568 uint32_t old_write_domain = obj->base.write_domain;
63560396 1569
05394f39
CW
1570 obj->base.write_domain = 0;
1571 list_del_init(&obj->gpu_write_list);
1ec14ad3 1572 i915_gem_object_move_to_active(obj, ring,
db53a302 1573 i915_gem_next_request_seqno(ring));
63560396 1574
63560396 1575 trace_i915_gem_object_change_domain(obj,
05394f39 1576 obj->base.read_domains,
63560396
DV
1577 old_write_domain);
1578 }
1579 }
1580}
8187a2b7 1581
53d227f2
DV
1582static u32
1583i915_gem_get_seqno(struct drm_device *dev)
1584{
1585 drm_i915_private_t *dev_priv = dev->dev_private;
1586 u32 seqno = dev_priv->next_seqno;
1587
1588 /* reserve 0 for non-seqno */
1589 if (++dev_priv->next_seqno == 0)
1590 dev_priv->next_seqno = 1;
1591
1592 return seqno;
1593}
1594
1595u32
1596i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1597{
1598 if (ring->outstanding_lazy_request == 0)
1599 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1600
1601 return ring->outstanding_lazy_request;
1602}
1603
3cce469c 1604int
db53a302 1605i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1606 struct drm_file *file,
db53a302 1607 struct drm_i915_gem_request *request)
673a394b 1608{
db53a302 1609 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1610 uint32_t seqno;
a71d8d94 1611 u32 request_ring_position;
673a394b 1612 int was_empty;
3cce469c
CW
1613 int ret;
1614
1615 BUG_ON(request == NULL);
53d227f2 1616 seqno = i915_gem_next_request_seqno(ring);
673a394b 1617
a71d8d94
CW
1618 /* Record the position of the start of the request so that
1619 * should we detect the updated seqno part-way through the
1620 * GPU processing the request, we never over-estimate the
1621 * position of the head.
1622 */
1623 request_ring_position = intel_ring_get_tail(ring);
1624
3cce469c
CW
1625 ret = ring->add_request(ring, &seqno);
1626 if (ret)
1627 return ret;
673a394b 1628
db53a302 1629 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1630
1631 request->seqno = seqno;
852835f3 1632 request->ring = ring;
a71d8d94 1633 request->tail = request_ring_position;
673a394b 1634 request->emitted_jiffies = jiffies;
852835f3
ZN
1635 was_empty = list_empty(&ring->request_list);
1636 list_add_tail(&request->list, &ring->request_list);
1637
db53a302
CW
1638 if (file) {
1639 struct drm_i915_file_private *file_priv = file->driver_priv;
1640
1c25595f 1641 spin_lock(&file_priv->mm.lock);
f787a5f5 1642 request->file_priv = file_priv;
b962442e 1643 list_add_tail(&request->client_list,
f787a5f5 1644 &file_priv->mm.request_list);
1c25595f 1645 spin_unlock(&file_priv->mm.lock);
b962442e 1646 }
673a394b 1647
5391d0cf 1648 ring->outstanding_lazy_request = 0;
db53a302 1649
f65d9421 1650 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1651 if (i915_enable_hangcheck) {
1652 mod_timer(&dev_priv->hangcheck_timer,
1653 jiffies +
1654 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1655 }
f65d9421 1656 if (was_empty)
b3b079db
CW
1657 queue_delayed_work(dev_priv->wq,
1658 &dev_priv->mm.retire_work, HZ);
f65d9421 1659 }
3cce469c 1660 return 0;
673a394b
EA
1661}
1662
f787a5f5
CW
1663static inline void
1664i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1665{
1c25595f 1666 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1667
1c25595f
CW
1668 if (!file_priv)
1669 return;
1c5d22f7 1670
1c25595f 1671 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1672 if (request->file_priv) {
1673 list_del(&request->client_list);
1674 request->file_priv = NULL;
1675 }
1c25595f 1676 spin_unlock(&file_priv->mm.lock);
673a394b 1677}
673a394b 1678
dfaae392
CW
1679static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1680 struct intel_ring_buffer *ring)
9375e446 1681{
dfaae392
CW
1682 while (!list_empty(&ring->request_list)) {
1683 struct drm_i915_gem_request *request;
673a394b 1684
dfaae392
CW
1685 request = list_first_entry(&ring->request_list,
1686 struct drm_i915_gem_request,
1687 list);
de151cf6 1688
dfaae392 1689 list_del(&request->list);
f787a5f5 1690 i915_gem_request_remove_from_client(request);
dfaae392
CW
1691 kfree(request);
1692 }
673a394b 1693
dfaae392 1694 while (!list_empty(&ring->active_list)) {
05394f39 1695 struct drm_i915_gem_object *obj;
9375e446 1696
05394f39
CW
1697 obj = list_first_entry(&ring->active_list,
1698 struct drm_i915_gem_object,
1699 ring_list);
9375e446 1700
05394f39
CW
1701 obj->base.write_domain = 0;
1702 list_del_init(&obj->gpu_write_list);
1703 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1704 }
1705}
1706
312817a3
CW
1707static void i915_gem_reset_fences(struct drm_device *dev)
1708{
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 int i;
1711
4b9de737 1712 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1713 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1714 struct drm_i915_gem_object *obj = reg->obj;
1715
1716 if (!obj)
1717 continue;
1718
1719 if (obj->tiling_mode)
1720 i915_gem_release_mmap(obj);
1721
d9e86c0e
CW
1722 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1723 reg->obj->fenced_gpu_access = false;
1724 reg->obj->last_fenced_seqno = 0;
1725 reg->obj->last_fenced_ring = NULL;
1726 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1727 }
1728}
1729
069efc1d 1730void i915_gem_reset(struct drm_device *dev)
673a394b 1731{
77f01230 1732 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1733 struct drm_i915_gem_object *obj;
1ec14ad3 1734 int i;
673a394b 1735
1ec14ad3
CW
1736 for (i = 0; i < I915_NUM_RINGS; i++)
1737 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1738
1739 /* Remove anything from the flushing lists. The GPU cache is likely
1740 * to be lost on reset along with the data, so simply move the
1741 * lost bo to the inactive list.
1742 */
1743 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1744 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1745 struct drm_i915_gem_object,
1746 mm_list);
dfaae392 1747
05394f39
CW
1748 obj->base.write_domain = 0;
1749 list_del_init(&obj->gpu_write_list);
1750 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1751 }
1752
1753 /* Move everything out of the GPU domains to ensure we do any
1754 * necessary invalidation upon reuse.
1755 */
05394f39 1756 list_for_each_entry(obj,
77f01230 1757 &dev_priv->mm.inactive_list,
69dc4987 1758 mm_list)
77f01230 1759 {
05394f39 1760 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1761 }
069efc1d
CW
1762
1763 /* The fence registers are invalidated so clear them out */
312817a3 1764 i915_gem_reset_fences(dev);
673a394b
EA
1765}
1766
1767/**
1768 * This function clears the request list as sequence numbers are passed.
1769 */
a71d8d94 1770void
db53a302 1771i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1772{
673a394b 1773 uint32_t seqno;
1ec14ad3 1774 int i;
673a394b 1775
db53a302 1776 if (list_empty(&ring->request_list))
6c0594a3
KW
1777 return;
1778
db53a302 1779 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1780
78501eac 1781 seqno = ring->get_seqno(ring);
1ec14ad3 1782
076e2c0e 1783 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1784 if (seqno >= ring->sync_seqno[i])
1785 ring->sync_seqno[i] = 0;
1786
852835f3 1787 while (!list_empty(&ring->request_list)) {
673a394b 1788 struct drm_i915_gem_request *request;
673a394b 1789
852835f3 1790 request = list_first_entry(&ring->request_list,
673a394b
EA
1791 struct drm_i915_gem_request,
1792 list);
673a394b 1793
dfaae392 1794 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1795 break;
1796
db53a302 1797 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1798 /* We know the GPU must have read the request to have
1799 * sent us the seqno + interrupt, so use the position
1800 * of tail of the request to update the last known position
1801 * of the GPU head.
1802 */
1803 ring->last_retired_head = request->tail;
b84d5f0c
CW
1804
1805 list_del(&request->list);
f787a5f5 1806 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1807 kfree(request);
1808 }
673a394b 1809
b84d5f0c
CW
1810 /* Move any buffers on the active list that are no longer referenced
1811 * by the ringbuffer to the flushing/inactive lists as appropriate.
1812 */
1813 while (!list_empty(&ring->active_list)) {
05394f39 1814 struct drm_i915_gem_object *obj;
b84d5f0c 1815
0206e353 1816 obj = list_first_entry(&ring->active_list,
05394f39
CW
1817 struct drm_i915_gem_object,
1818 ring_list);
673a394b 1819
05394f39 1820 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1821 break;
b84d5f0c 1822
05394f39 1823 if (obj->base.write_domain != 0)
b84d5f0c
CW
1824 i915_gem_object_move_to_flushing(obj);
1825 else
1826 i915_gem_object_move_to_inactive(obj);
673a394b 1827 }
9d34e5db 1828
db53a302
CW
1829 if (unlikely(ring->trace_irq_seqno &&
1830 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1831 ring->irq_put(ring);
db53a302 1832 ring->trace_irq_seqno = 0;
9d34e5db 1833 }
23bc5982 1834
db53a302 1835 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1836}
1837
b09a1fec
CW
1838void
1839i915_gem_retire_requests(struct drm_device *dev)
1840{
1841 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1842 int i;
b09a1fec 1843
be72615b 1844 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1845 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1846
1847 /* We must be careful that during unbind() we do not
1848 * accidentally infinitely recurse into retire requests.
1849 * Currently:
1850 * retire -> free -> unbind -> wait -> retire_ring
1851 */
05394f39 1852 list_for_each_entry_safe(obj, next,
be72615b 1853 &dev_priv->mm.deferred_free_list,
69dc4987 1854 mm_list)
05394f39 1855 i915_gem_free_object_tail(obj);
be72615b
CW
1856 }
1857
1ec14ad3 1858 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1859 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1860}
1861
75ef9da2 1862static void
673a394b
EA
1863i915_gem_retire_work_handler(struct work_struct *work)
1864{
1865 drm_i915_private_t *dev_priv;
1866 struct drm_device *dev;
0a58705b
CW
1867 bool idle;
1868 int i;
673a394b
EA
1869
1870 dev_priv = container_of(work, drm_i915_private_t,
1871 mm.retire_work.work);
1872 dev = dev_priv->dev;
1873
891b48cf
CW
1874 /* Come back later if the device is busy... */
1875 if (!mutex_trylock(&dev->struct_mutex)) {
1876 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1877 return;
1878 }
1879
b09a1fec 1880 i915_gem_retire_requests(dev);
d1b851fc 1881
0a58705b
CW
1882 /* Send a periodic flush down the ring so we don't hold onto GEM
1883 * objects indefinitely.
1884 */
1885 idle = true;
1886 for (i = 0; i < I915_NUM_RINGS; i++) {
1887 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1888
1889 if (!list_empty(&ring->gpu_write_list)) {
1890 struct drm_i915_gem_request *request;
1891 int ret;
1892
db53a302
CW
1893 ret = i915_gem_flush_ring(ring,
1894 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1895 request = kzalloc(sizeof(*request), GFP_KERNEL);
1896 if (ret || request == NULL ||
db53a302 1897 i915_add_request(ring, NULL, request))
0a58705b
CW
1898 kfree(request);
1899 }
1900
1901 idle &= list_empty(&ring->request_list);
1902 }
1903
1904 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1905 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1906
673a394b
EA
1907 mutex_unlock(&dev->struct_mutex);
1908}
1909
db53a302
CW
1910/**
1911 * Waits for a sequence number to be signaled, and cleans up the
1912 * request and object lists appropriately for that event.
1913 */
5a5a0c64 1914int
db53a302 1915i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1916 uint32_t seqno,
1917 bool do_retire)
673a394b 1918{
db53a302 1919 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1920 u32 ier;
673a394b
EA
1921 int ret = 0;
1922
1923 BUG_ON(seqno == 0);
1924
d9bc7e9f
CW
1925 if (atomic_read(&dev_priv->mm.wedged)) {
1926 struct completion *x = &dev_priv->error_completion;
1927 bool recovery_complete;
1928 unsigned long flags;
1929
1930 /* Give the error handler a chance to run. */
1931 spin_lock_irqsave(&x->wait.lock, flags);
1932 recovery_complete = x->done > 0;
1933 spin_unlock_irqrestore(&x->wait.lock, flags);
1934
1935 return recovery_complete ? -EIO : -EAGAIN;
1936 }
30dbf0c0 1937
5d97eb69 1938 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1939 struct drm_i915_gem_request *request;
1940
1941 request = kzalloc(sizeof(*request), GFP_KERNEL);
1942 if (request == NULL)
e35a41de 1943 return -ENOMEM;
3cce469c 1944
db53a302 1945 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1946 if (ret) {
1947 kfree(request);
1948 return ret;
1949 }
1950
1951 seqno = request->seqno;
e35a41de 1952 }
ffed1d09 1953
78501eac 1954 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1955 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1956 ier = I915_READ(DEIER) | I915_READ(GTIER);
1957 else
1958 ier = I915_READ(IER);
802c7eb6
JB
1959 if (!ier) {
1960 DRM_ERROR("something (likely vbetool) disabled "
1961 "interrupts, re-enabling\n");
f01c22fd
CW
1962 ring->dev->driver->irq_preinstall(ring->dev);
1963 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1964 }
1965
db53a302 1966 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1967
b2223497 1968 ring->waiting_seqno = seqno;
b13c2b96 1969 if (ring->irq_get(ring)) {
ce453d81 1970 if (dev_priv->mm.interruptible)
b13c2b96
CW
1971 ret = wait_event_interruptible(ring->irq_queue,
1972 i915_seqno_passed(ring->get_seqno(ring), seqno)
1973 || atomic_read(&dev_priv->mm.wedged));
1974 else
1975 wait_event(ring->irq_queue,
1976 i915_seqno_passed(ring->get_seqno(ring), seqno)
1977 || atomic_read(&dev_priv->mm.wedged));
1978
1979 ring->irq_put(ring);
e959b5db
EA
1980 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1981 seqno) ||
1982 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1983 ret = -EBUSY;
b2223497 1984 ring->waiting_seqno = 0;
1c5d22f7 1985
db53a302 1986 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1987 }
ba1234d1 1988 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1989 ret = -EAGAIN;
673a394b 1990
673a394b
EA
1991 /* Directly dispatch request retiring. While we have the work queue
1992 * to handle this, the waiter on a request often wants an associated
1993 * buffer to have made it to the inactive list, and we would need
1994 * a separate wait queue to handle that.
1995 */
b93f9cf1 1996 if (ret == 0 && do_retire)
db53a302 1997 i915_gem_retire_requests_ring(ring);
673a394b
EA
1998
1999 return ret;
2000}
2001
673a394b
EA
2002/**
2003 * Ensures that all rendering to the object has completed and the object is
2004 * safe to unbind from the GTT or access from the CPU.
2005 */
54cf91dc 2006int
ce453d81 2007i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2008{
673a394b
EA
2009 int ret;
2010
e47c68e9
EA
2011 /* This function only exists to support waiting for existing rendering,
2012 * not for emitting required flushes.
673a394b 2013 */
05394f39 2014 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2015
2016 /* If there is rendering queued on the buffer being evicted, wait for
2017 * it.
2018 */
05394f39 2019 if (obj->active) {
b93f9cf1
BW
2020 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
2021 true);
2cf34d7b 2022 if (ret)
673a394b
EA
2023 return ret;
2024 }
2025
2026 return 0;
2027}
2028
b5ffc9bc
CW
2029static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2030{
2031 u32 old_write_domain, old_read_domains;
2032
b5ffc9bc
CW
2033 /* Act a barrier for all accesses through the GTT */
2034 mb();
2035
2036 /* Force a pagefault for domain tracking on next user access */
2037 i915_gem_release_mmap(obj);
2038
b97c3d9c
KP
2039 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2040 return;
2041
b5ffc9bc
CW
2042 old_read_domains = obj->base.read_domains;
2043 old_write_domain = obj->base.write_domain;
2044
2045 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2046 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2047
2048 trace_i915_gem_object_change_domain(obj,
2049 old_read_domains,
2050 old_write_domain);
2051}
2052
673a394b
EA
2053/**
2054 * Unbinds an object from the GTT aperture.
2055 */
0f973f27 2056int
05394f39 2057i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2058{
7bddb01f 2059 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2060 int ret = 0;
2061
05394f39 2062 if (obj->gtt_space == NULL)
673a394b
EA
2063 return 0;
2064
05394f39 2065 if (obj->pin_count != 0) {
673a394b
EA
2066 DRM_ERROR("Attempting to unbind pinned buffer\n");
2067 return -EINVAL;
2068 }
2069
a8198eea
CW
2070 ret = i915_gem_object_finish_gpu(obj);
2071 if (ret == -ERESTARTSYS)
2072 return ret;
2073 /* Continue on if we fail due to EIO, the GPU is hung so we
2074 * should be safe and we need to cleanup or else we might
2075 * cause memory corruption through use-after-free.
2076 */
2077
b5ffc9bc 2078 i915_gem_object_finish_gtt(obj);
5323fd04 2079
673a394b
EA
2080 /* Move the object to the CPU domain to ensure that
2081 * any possible CPU writes while it's not in the GTT
a8198eea 2082 * are flushed when we go to remap it.
673a394b 2083 */
a8198eea
CW
2084 if (ret == 0)
2085 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2086 if (ret == -ERESTARTSYS)
673a394b 2087 return ret;
812ed492 2088 if (ret) {
a8198eea
CW
2089 /* In the event of a disaster, abandon all caches and
2090 * hope for the best.
2091 */
812ed492 2092 i915_gem_clflush_object(obj);
05394f39 2093 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2094 }
673a394b 2095
96b47b65 2096 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2097 ret = i915_gem_object_put_fence(obj);
2098 if (ret == -ERESTARTSYS)
2099 return ret;
96b47b65 2100
db53a302
CW
2101 trace_i915_gem_object_unbind(obj);
2102
7c2e6fdf 2103 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2104 if (obj->has_aliasing_ppgtt_mapping) {
2105 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2106 obj->has_aliasing_ppgtt_mapping = 0;
2107 }
2108
e5281ccd 2109 i915_gem_object_put_pages_gtt(obj);
673a394b 2110
6299f992 2111 list_del_init(&obj->gtt_list);
05394f39 2112 list_del_init(&obj->mm_list);
75e9e915 2113 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2114 obj->map_and_fenceable = true;
673a394b 2115
05394f39
CW
2116 drm_mm_put_block(obj->gtt_space);
2117 obj->gtt_space = NULL;
2118 obj->gtt_offset = 0;
673a394b 2119
05394f39 2120 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2121 i915_gem_object_truncate(obj);
2122
8dc1775d 2123 return ret;
673a394b
EA
2124}
2125
88241785 2126int
db53a302 2127i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2128 uint32_t invalidate_domains,
2129 uint32_t flush_domains)
2130{
88241785
CW
2131 int ret;
2132
36d527de
CW
2133 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2134 return 0;
2135
db53a302
CW
2136 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2137
88241785
CW
2138 ret = ring->flush(ring, invalidate_domains, flush_domains);
2139 if (ret)
2140 return ret;
2141
36d527de
CW
2142 if (flush_domains & I915_GEM_GPU_DOMAINS)
2143 i915_gem_process_flushing_list(ring, flush_domains);
2144
88241785 2145 return 0;
54cf91dc
CW
2146}
2147
b93f9cf1 2148static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2149{
88241785
CW
2150 int ret;
2151
395b70be 2152 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2153 return 0;
2154
88241785 2155 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2156 ret = i915_gem_flush_ring(ring,
0ac74c6b 2157 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2158 if (ret)
2159 return ret;
2160 }
2161
b93f9cf1
BW
2162 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2163 do_retire);
a56ba56c
CW
2164}
2165
b93f9cf1 2166int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2167{
2168 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2169 int ret, i;
4df2faf4 2170
4df2faf4 2171 /* Flush everything onto the inactive list. */
1ec14ad3 2172 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2173 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2174 if (ret)
2175 return ret;
2176 }
4df2faf4 2177
8a1a49f9 2178 return 0;
4df2faf4
DV
2179}
2180
c6642782
DV
2181static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2182 struct intel_ring_buffer *pipelined)
4e901fdc 2183{
05394f39 2184 struct drm_device *dev = obj->base.dev;
4e901fdc 2185 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2186 u32 size = obj->gtt_space->size;
2187 int regnum = obj->fence_reg;
4e901fdc
EA
2188 uint64_t val;
2189
05394f39 2190 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2191 0xfffff000) << 32;
05394f39
CW
2192 val |= obj->gtt_offset & 0xfffff000;
2193 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2194 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2195
05394f39 2196 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2197 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2198 val |= I965_FENCE_REG_VALID;
2199
c6642782
DV
2200 if (pipelined) {
2201 int ret = intel_ring_begin(pipelined, 6);
2202 if (ret)
2203 return ret;
2204
2205 intel_ring_emit(pipelined, MI_NOOP);
2206 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2207 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2208 intel_ring_emit(pipelined, (u32)val);
2209 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2210 intel_ring_emit(pipelined, (u32)(val >> 32));
2211 intel_ring_advance(pipelined);
2212 } else
2213 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2214
2215 return 0;
4e901fdc
EA
2216}
2217
c6642782
DV
2218static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2219 struct intel_ring_buffer *pipelined)
de151cf6 2220{
05394f39 2221 struct drm_device *dev = obj->base.dev;
de151cf6 2222 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2223 u32 size = obj->gtt_space->size;
2224 int regnum = obj->fence_reg;
de151cf6
JB
2225 uint64_t val;
2226
05394f39 2227 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2228 0xfffff000) << 32;
05394f39
CW
2229 val |= obj->gtt_offset & 0xfffff000;
2230 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2231 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2232 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2233 val |= I965_FENCE_REG_VALID;
2234
c6642782
DV
2235 if (pipelined) {
2236 int ret = intel_ring_begin(pipelined, 6);
2237 if (ret)
2238 return ret;
2239
2240 intel_ring_emit(pipelined, MI_NOOP);
2241 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2242 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2243 intel_ring_emit(pipelined, (u32)val);
2244 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2245 intel_ring_emit(pipelined, (u32)(val >> 32));
2246 intel_ring_advance(pipelined);
2247 } else
2248 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2249
2250 return 0;
de151cf6
JB
2251}
2252
c6642782
DV
2253static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2254 struct intel_ring_buffer *pipelined)
de151cf6 2255{
05394f39 2256 struct drm_device *dev = obj->base.dev;
de151cf6 2257 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2258 u32 size = obj->gtt_space->size;
c6642782 2259 u32 fence_reg, val, pitch_val;
0f973f27 2260 int tile_width;
de151cf6 2261
c6642782
DV
2262 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2263 (size & -size) != size ||
2264 (obj->gtt_offset & (size - 1)),
2265 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2266 obj->gtt_offset, obj->map_and_fenceable, size))
2267 return -EINVAL;
de151cf6 2268
c6642782 2269 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2270 tile_width = 128;
de151cf6 2271 else
0f973f27
JB
2272 tile_width = 512;
2273
2274 /* Note: pitch better be a power of two tile widths */
05394f39 2275 pitch_val = obj->stride / tile_width;
0f973f27 2276 pitch_val = ffs(pitch_val) - 1;
de151cf6 2277
05394f39
CW
2278 val = obj->gtt_offset;
2279 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2280 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2281 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2282 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2283 val |= I830_FENCE_REG_VALID;
2284
05394f39 2285 fence_reg = obj->fence_reg;
a00b10c3
CW
2286 if (fence_reg < 8)
2287 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2288 else
a00b10c3 2289 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2290
2291 if (pipelined) {
2292 int ret = intel_ring_begin(pipelined, 4);
2293 if (ret)
2294 return ret;
2295
2296 intel_ring_emit(pipelined, MI_NOOP);
2297 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2298 intel_ring_emit(pipelined, fence_reg);
2299 intel_ring_emit(pipelined, val);
2300 intel_ring_advance(pipelined);
2301 } else
2302 I915_WRITE(fence_reg, val);
2303
2304 return 0;
de151cf6
JB
2305}
2306
c6642782
DV
2307static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2308 struct intel_ring_buffer *pipelined)
de151cf6 2309{
05394f39 2310 struct drm_device *dev = obj->base.dev;
de151cf6 2311 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2312 u32 size = obj->gtt_space->size;
2313 int regnum = obj->fence_reg;
de151cf6
JB
2314 uint32_t val;
2315 uint32_t pitch_val;
2316
c6642782
DV
2317 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2318 (size & -size) != size ||
2319 (obj->gtt_offset & (size - 1)),
2320 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2321 obj->gtt_offset, size))
2322 return -EINVAL;
de151cf6 2323
05394f39 2324 pitch_val = obj->stride / 128;
e76a16de 2325 pitch_val = ffs(pitch_val) - 1;
e76a16de 2326
05394f39
CW
2327 val = obj->gtt_offset;
2328 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2329 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2330 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2331 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2332 val |= I830_FENCE_REG_VALID;
2333
c6642782
DV
2334 if (pipelined) {
2335 int ret = intel_ring_begin(pipelined, 4);
2336 if (ret)
2337 return ret;
2338
2339 intel_ring_emit(pipelined, MI_NOOP);
2340 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2341 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2342 intel_ring_emit(pipelined, val);
2343 intel_ring_advance(pipelined);
2344 } else
2345 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2346
2347 return 0;
de151cf6
JB
2348}
2349
d9e86c0e
CW
2350static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2351{
2352 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2353}
2354
2355static int
2356i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2357 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2358{
2359 int ret;
2360
2361 if (obj->fenced_gpu_access) {
88241785 2362 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2363 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2364 0, obj->base.write_domain);
2365 if (ret)
2366 return ret;
2367 }
d9e86c0e
CW
2368
2369 obj->fenced_gpu_access = false;
2370 }
2371
2372 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2373 if (!ring_passed_seqno(obj->last_fenced_ring,
2374 obj->last_fenced_seqno)) {
db53a302 2375 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2376 obj->last_fenced_seqno,
2377 true);
d9e86c0e
CW
2378 if (ret)
2379 return ret;
2380 }
2381
2382 obj->last_fenced_seqno = 0;
2383 obj->last_fenced_ring = NULL;
2384 }
2385
63256ec5
CW
2386 /* Ensure that all CPU reads are completed before installing a fence
2387 * and all writes before removing the fence.
2388 */
2389 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2390 mb();
2391
d9e86c0e
CW
2392 return 0;
2393}
2394
2395int
2396i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2397{
2398 int ret;
2399
2400 if (obj->tiling_mode)
2401 i915_gem_release_mmap(obj);
2402
ce453d81 2403 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2404 if (ret)
2405 return ret;
2406
2407 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2408 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2409
2410 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2411 i915_gem_clear_fence_reg(obj->base.dev,
2412 &dev_priv->fence_regs[obj->fence_reg]);
2413
2414 obj->fence_reg = I915_FENCE_REG_NONE;
2415 }
2416
2417 return 0;
2418}
2419
2420static struct drm_i915_fence_reg *
2421i915_find_fence_reg(struct drm_device *dev,
2422 struct intel_ring_buffer *pipelined)
ae3db24a 2423{
ae3db24a 2424 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2425 struct drm_i915_fence_reg *reg, *first, *avail;
2426 int i;
ae3db24a
DV
2427
2428 /* First try to find a free reg */
d9e86c0e 2429 avail = NULL;
ae3db24a
DV
2430 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2431 reg = &dev_priv->fence_regs[i];
2432 if (!reg->obj)
d9e86c0e 2433 return reg;
ae3db24a 2434
1690e1eb 2435 if (!reg->pin_count)
d9e86c0e 2436 avail = reg;
ae3db24a
DV
2437 }
2438
d9e86c0e
CW
2439 if (avail == NULL)
2440 return NULL;
ae3db24a
DV
2441
2442 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2443 avail = first = NULL;
2444 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2445 if (reg->pin_count)
ae3db24a
DV
2446 continue;
2447
d9e86c0e
CW
2448 if (first == NULL)
2449 first = reg;
2450
2451 if (!pipelined ||
2452 !reg->obj->last_fenced_ring ||
2453 reg->obj->last_fenced_ring == pipelined) {
2454 avail = reg;
2455 break;
2456 }
ae3db24a
DV
2457 }
2458
d9e86c0e
CW
2459 if (avail == NULL)
2460 avail = first;
ae3db24a 2461
a00b10c3 2462 return avail;
ae3db24a
DV
2463}
2464
de151cf6 2465/**
d9e86c0e 2466 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2467 * @obj: object to map through a fence reg
d9e86c0e
CW
2468 * @pipelined: ring on which to queue the change, or NULL for CPU access
2469 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2470 *
2471 * When mapping objects through the GTT, userspace wants to be able to write
2472 * to them without having to worry about swizzling if the object is tiled.
2473 *
2474 * This function walks the fence regs looking for a free one for @obj,
2475 * stealing one if it can't find any.
2476 *
2477 * It then sets up the reg based on the object's properties: address, pitch
2478 * and tiling format.
2479 */
8c4b8c3f 2480int
d9e86c0e 2481i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2482 struct intel_ring_buffer *pipelined)
de151cf6 2483{
05394f39 2484 struct drm_device *dev = obj->base.dev;
79e53945 2485 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2486 struct drm_i915_fence_reg *reg;
ae3db24a 2487 int ret;
de151cf6 2488
6bda10d1
CW
2489 /* XXX disable pipelining. There are bugs. Shocking. */
2490 pipelined = NULL;
2491
d9e86c0e 2492 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2493 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2494 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2495 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2496
29c5a587
CW
2497 if (obj->tiling_changed) {
2498 ret = i915_gem_object_flush_fence(obj, pipelined);
2499 if (ret)
2500 return ret;
2501
2502 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2503 pipelined = NULL;
2504
2505 if (pipelined) {
2506 reg->setup_seqno =
2507 i915_gem_next_request_seqno(pipelined);
2508 obj->last_fenced_seqno = reg->setup_seqno;
2509 obj->last_fenced_ring = pipelined;
2510 }
2511
2512 goto update;
2513 }
d9e86c0e
CW
2514
2515 if (!pipelined) {
2516 if (reg->setup_seqno) {
2517 if (!ring_passed_seqno(obj->last_fenced_ring,
2518 reg->setup_seqno)) {
db53a302 2519 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2520 reg->setup_seqno,
2521 true);
d9e86c0e
CW
2522 if (ret)
2523 return ret;
2524 }
2525
2526 reg->setup_seqno = 0;
2527 }
2528 } else if (obj->last_fenced_ring &&
2529 obj->last_fenced_ring != pipelined) {
ce453d81 2530 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2531 if (ret)
2532 return ret;
d9e86c0e
CW
2533 }
2534
a09ba7fa
EA
2535 return 0;
2536 }
2537
d9e86c0e
CW
2538 reg = i915_find_fence_reg(dev, pipelined);
2539 if (reg == NULL)
39965b37 2540 return -EDEADLK;
de151cf6 2541
ce453d81 2542 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2543 if (ret)
ae3db24a 2544 return ret;
de151cf6 2545
d9e86c0e
CW
2546 if (reg->obj) {
2547 struct drm_i915_gem_object *old = reg->obj;
2548
2549 drm_gem_object_reference(&old->base);
2550
2551 if (old->tiling_mode)
2552 i915_gem_release_mmap(old);
2553
ce453d81 2554 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2555 if (ret) {
2556 drm_gem_object_unreference(&old->base);
2557 return ret;
2558 }
2559
2560 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2561 pipelined = NULL;
2562
2563 old->fence_reg = I915_FENCE_REG_NONE;
2564 old->last_fenced_ring = pipelined;
2565 old->last_fenced_seqno =
db53a302 2566 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2567
2568 drm_gem_object_unreference(&old->base);
2569 } else if (obj->last_fenced_seqno == 0)
2570 pipelined = NULL;
a09ba7fa 2571
de151cf6 2572 reg->obj = obj;
d9e86c0e
CW
2573 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2574 obj->fence_reg = reg - dev_priv->fence_regs;
2575 obj->last_fenced_ring = pipelined;
de151cf6 2576
d9e86c0e 2577 reg->setup_seqno =
db53a302 2578 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2579 obj->last_fenced_seqno = reg->setup_seqno;
2580
2581update:
2582 obj->tiling_changed = false;
e259befd 2583 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2584 case 7:
e259befd 2585 case 6:
c6642782 2586 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2587 break;
2588 case 5:
2589 case 4:
c6642782 2590 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2591 break;
2592 case 3:
c6642782 2593 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2594 break;
2595 case 2:
c6642782 2596 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2597 break;
2598 }
d9ddcb96 2599
c6642782 2600 return ret;
de151cf6
JB
2601}
2602
2603/**
2604 * i915_gem_clear_fence_reg - clear out fence register info
2605 * @obj: object to clear
2606 *
2607 * Zeroes out the fence register itself and clears out the associated
05394f39 2608 * data structures in dev_priv and obj.
de151cf6
JB
2609 */
2610static void
d9e86c0e
CW
2611i915_gem_clear_fence_reg(struct drm_device *dev,
2612 struct drm_i915_fence_reg *reg)
de151cf6 2613{
79e53945 2614 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2615 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2616
e259befd 2617 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2618 case 7:
e259befd 2619 case 6:
d9e86c0e 2620 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2621 break;
2622 case 5:
2623 case 4:
d9e86c0e 2624 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2625 break;
2626 case 3:
d9e86c0e
CW
2627 if (fence_reg >= 8)
2628 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2629 else
e259befd 2630 case 2:
d9e86c0e 2631 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2632
2633 I915_WRITE(fence_reg, 0);
e259befd 2634 break;
dc529a4f 2635 }
de151cf6 2636
007cc8ac 2637 list_del_init(&reg->lru_list);
d9e86c0e
CW
2638 reg->obj = NULL;
2639 reg->setup_seqno = 0;
1690e1eb 2640 reg->pin_count = 0;
52dc7d32
CW
2641}
2642
673a394b
EA
2643/**
2644 * Finds free space in the GTT aperture and binds the object there.
2645 */
2646static int
05394f39 2647i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2648 unsigned alignment,
75e9e915 2649 bool map_and_fenceable)
673a394b 2650{
05394f39 2651 struct drm_device *dev = obj->base.dev;
673a394b 2652 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2653 struct drm_mm_node *free_space;
a00b10c3 2654 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2655 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2656 bool mappable, fenceable;
07f73f69 2657 int ret;
673a394b 2658
05394f39 2659 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2660 DRM_ERROR("Attempting to bind a purgeable object\n");
2661 return -EINVAL;
2662 }
2663
e28f8711
CW
2664 fence_size = i915_gem_get_gtt_size(dev,
2665 obj->base.size,
2666 obj->tiling_mode);
2667 fence_alignment = i915_gem_get_gtt_alignment(dev,
2668 obj->base.size,
2669 obj->tiling_mode);
2670 unfenced_alignment =
2671 i915_gem_get_unfenced_gtt_alignment(dev,
2672 obj->base.size,
2673 obj->tiling_mode);
a00b10c3 2674
673a394b 2675 if (alignment == 0)
5e783301
DV
2676 alignment = map_and_fenceable ? fence_alignment :
2677 unfenced_alignment;
75e9e915 2678 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2679 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2680 return -EINVAL;
2681 }
2682
05394f39 2683 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2684
654fc607
CW
2685 /* If the object is bigger than the entire aperture, reject it early
2686 * before evicting everything in a vain attempt to find space.
2687 */
05394f39 2688 if (obj->base.size >
75e9e915 2689 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2690 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2691 return -E2BIG;
2692 }
2693
673a394b 2694 search_free:
75e9e915 2695 if (map_and_fenceable)
920afa77
DV
2696 free_space =
2697 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2698 size, alignment, 0,
920afa77
DV
2699 dev_priv->mm.gtt_mappable_end,
2700 0);
2701 else
2702 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2703 size, alignment, 0);
920afa77
DV
2704
2705 if (free_space != NULL) {
75e9e915 2706 if (map_and_fenceable)
05394f39 2707 obj->gtt_space =
920afa77 2708 drm_mm_get_block_range_generic(free_space,
a00b10c3 2709 size, alignment, 0,
920afa77
DV
2710 dev_priv->mm.gtt_mappable_end,
2711 0);
2712 else
05394f39 2713 obj->gtt_space =
a00b10c3 2714 drm_mm_get_block(free_space, size, alignment);
920afa77 2715 }
05394f39 2716 if (obj->gtt_space == NULL) {
673a394b
EA
2717 /* If the gtt is empty and we're still having trouble
2718 * fitting our object in, we're out of memory.
2719 */
75e9e915
DV
2720 ret = i915_gem_evict_something(dev, size, alignment,
2721 map_and_fenceable);
9731129c 2722 if (ret)
673a394b 2723 return ret;
9731129c 2724
673a394b
EA
2725 goto search_free;
2726 }
2727
e5281ccd 2728 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2729 if (ret) {
05394f39
CW
2730 drm_mm_put_block(obj->gtt_space);
2731 obj->gtt_space = NULL;
07f73f69
CW
2732
2733 if (ret == -ENOMEM) {
809b6334
CW
2734 /* first try to reclaim some memory by clearing the GTT */
2735 ret = i915_gem_evict_everything(dev, false);
07f73f69 2736 if (ret) {
07f73f69 2737 /* now try to shrink everyone else */
4bdadb97
CW
2738 if (gfpmask) {
2739 gfpmask = 0;
2740 goto search_free;
07f73f69
CW
2741 }
2742
809b6334 2743 return -ENOMEM;
07f73f69
CW
2744 }
2745
2746 goto search_free;
2747 }
2748
673a394b
EA
2749 return ret;
2750 }
2751
7c2e6fdf
DV
2752 ret = i915_gem_gtt_bind_object(obj);
2753 if (ret) {
e5281ccd 2754 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2755 drm_mm_put_block(obj->gtt_space);
2756 obj->gtt_space = NULL;
07f73f69 2757
809b6334 2758 if (i915_gem_evict_everything(dev, false))
07f73f69 2759 return ret;
07f73f69
CW
2760
2761 goto search_free;
673a394b 2762 }
673a394b 2763
6299f992 2764 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2765 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2766
673a394b
EA
2767 /* Assert that the object is not currently in any GPU domain. As it
2768 * wasn't in the GTT, there shouldn't be any way it could have been in
2769 * a GPU cache
2770 */
05394f39
CW
2771 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2772 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2773
6299f992 2774 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2775
75e9e915 2776 fenceable =
05394f39 2777 obj->gtt_space->size == fence_size &&
0206e353 2778 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2779
75e9e915 2780 mappable =
05394f39 2781 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2782
05394f39 2783 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2784
db53a302 2785 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2786 return 0;
2787}
2788
2789void
05394f39 2790i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2791{
673a394b
EA
2792 /* If we don't have a page list set up, then we're not pinned
2793 * to GPU, and we can ignore the cache flush because it'll happen
2794 * again at bind time.
2795 */
05394f39 2796 if (obj->pages == NULL)
673a394b
EA
2797 return;
2798
9c23f7fc
CW
2799 /* If the GPU is snooping the contents of the CPU cache,
2800 * we do not need to manually clear the CPU cache lines. However,
2801 * the caches are only snooped when the render cache is
2802 * flushed/invalidated. As we always have to emit invalidations
2803 * and flushes when moving into and out of the RENDER domain, correct
2804 * snooping behaviour occurs naturally as the result of our domain
2805 * tracking.
2806 */
2807 if (obj->cache_level != I915_CACHE_NONE)
2808 return;
2809
1c5d22f7 2810 trace_i915_gem_object_clflush(obj);
cfa16a0d 2811
05394f39 2812 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2813}
2814
e47c68e9 2815/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2816static int
3619df03 2817i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2818{
05394f39 2819 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2820 return 0;
e47c68e9
EA
2821
2822 /* Queue the GPU write cache flushing we need. */
db53a302 2823 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2824}
2825
2826/** Flushes the GTT write domain for the object if it's dirty. */
2827static void
05394f39 2828i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2829{
1c5d22f7
CW
2830 uint32_t old_write_domain;
2831
05394f39 2832 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2833 return;
2834
63256ec5 2835 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2836 * to it immediately go to main memory as far as we know, so there's
2837 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2838 *
2839 * However, we do have to enforce the order so that all writes through
2840 * the GTT land before any writes to the device, such as updates to
2841 * the GATT itself.
e47c68e9 2842 */
63256ec5
CW
2843 wmb();
2844
05394f39
CW
2845 old_write_domain = obj->base.write_domain;
2846 obj->base.write_domain = 0;
1c5d22f7
CW
2847
2848 trace_i915_gem_object_change_domain(obj,
05394f39 2849 obj->base.read_domains,
1c5d22f7 2850 old_write_domain);
e47c68e9
EA
2851}
2852
2853/** Flushes the CPU write domain for the object if it's dirty. */
2854static void
05394f39 2855i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2856{
1c5d22f7 2857 uint32_t old_write_domain;
e47c68e9 2858
05394f39 2859 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2860 return;
2861
2862 i915_gem_clflush_object(obj);
40ce6575 2863 intel_gtt_chipset_flush();
05394f39
CW
2864 old_write_domain = obj->base.write_domain;
2865 obj->base.write_domain = 0;
1c5d22f7
CW
2866
2867 trace_i915_gem_object_change_domain(obj,
05394f39 2868 obj->base.read_domains,
1c5d22f7 2869 old_write_domain);
e47c68e9
EA
2870}
2871
2ef7eeaa
EA
2872/**
2873 * Moves a single object to the GTT read, and possibly write domain.
2874 *
2875 * This function returns when the move is complete, including waiting on
2876 * flushes to occur.
2877 */
79e53945 2878int
2021746e 2879i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2880{
1c5d22f7 2881 uint32_t old_write_domain, old_read_domains;
e47c68e9 2882 int ret;
2ef7eeaa 2883
02354392 2884 /* Not valid to be called on unbound objects. */
05394f39 2885 if (obj->gtt_space == NULL)
02354392
EA
2886 return -EINVAL;
2887
8d7e3de1
CW
2888 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2889 return 0;
2890
88241785
CW
2891 ret = i915_gem_object_flush_gpu_write_domain(obj);
2892 if (ret)
2893 return ret;
2894
87ca9c8a 2895 if (obj->pending_gpu_write || write) {
ce453d81 2896 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2897 if (ret)
2898 return ret;
2899 }
2dafb1e0 2900
7213342d 2901 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2902
05394f39
CW
2903 old_write_domain = obj->base.write_domain;
2904 old_read_domains = obj->base.read_domains;
1c5d22f7 2905
e47c68e9
EA
2906 /* It should now be out of any other write domains, and we can update
2907 * the domain values for our changes.
2908 */
05394f39
CW
2909 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2910 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2911 if (write) {
05394f39
CW
2912 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2913 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2914 obj->dirty = 1;
2ef7eeaa
EA
2915 }
2916
1c5d22f7
CW
2917 trace_i915_gem_object_change_domain(obj,
2918 old_read_domains,
2919 old_write_domain);
2920
e47c68e9
EA
2921 return 0;
2922}
2923
e4ffd173
CW
2924int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2925 enum i915_cache_level cache_level)
2926{
7bddb01f
DV
2927 struct drm_device *dev = obj->base.dev;
2928 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2929 int ret;
2930
2931 if (obj->cache_level == cache_level)
2932 return 0;
2933
2934 if (obj->pin_count) {
2935 DRM_DEBUG("can not change the cache level of pinned objects\n");
2936 return -EBUSY;
2937 }
2938
2939 if (obj->gtt_space) {
2940 ret = i915_gem_object_finish_gpu(obj);
2941 if (ret)
2942 return ret;
2943
2944 i915_gem_object_finish_gtt(obj);
2945
2946 /* Before SandyBridge, you could not use tiling or fence
2947 * registers with snooped memory, so relinquish any fences
2948 * currently pointing to our region in the aperture.
2949 */
2950 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2951 ret = i915_gem_object_put_fence(obj);
2952 if (ret)
2953 return ret;
2954 }
2955
2956 i915_gem_gtt_rebind_object(obj, cache_level);
7bddb01f
DV
2957 if (obj->has_aliasing_ppgtt_mapping)
2958 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2959 obj, cache_level);
e4ffd173
CW
2960 }
2961
2962 if (cache_level == I915_CACHE_NONE) {
2963 u32 old_read_domains, old_write_domain;
2964
2965 /* If we're coming from LLC cached, then we haven't
2966 * actually been tracking whether the data is in the
2967 * CPU cache or not, since we only allow one bit set
2968 * in obj->write_domain and have been skipping the clflushes.
2969 * Just set it to the CPU cache for now.
2970 */
2971 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2972 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2973
2974 old_read_domains = obj->base.read_domains;
2975 old_write_domain = obj->base.write_domain;
2976
2977 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2978 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2979
2980 trace_i915_gem_object_change_domain(obj,
2981 old_read_domains,
2982 old_write_domain);
2983 }
2984
2985 obj->cache_level = cache_level;
2986 return 0;
2987}
2988
b9241ea3 2989/*
2da3b9b9
CW
2990 * Prepare buffer for display plane (scanout, cursors, etc).
2991 * Can be called from an uninterruptible phase (modesetting) and allows
2992 * any flushes to be pipelined (for pageflips).
2993 *
2994 * For the display plane, we want to be in the GTT but out of any write
2995 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
2996 * ability to pipeline the waits, pinning and any additional subtleties
2997 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
2998 */
2999int
2da3b9b9
CW
3000i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3001 u32 alignment,
919926ae 3002 struct intel_ring_buffer *pipelined)
b9241ea3 3003{
2da3b9b9 3004 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3005 int ret;
3006
88241785
CW
3007 ret = i915_gem_object_flush_gpu_write_domain(obj);
3008 if (ret)
3009 return ret;
3010
0be73284 3011 if (pipelined != obj->ring) {
ce453d81 3012 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 3013 if (ret == -ERESTARTSYS)
b9241ea3
ZW
3014 return ret;
3015 }
3016
a7ef0640
EA
3017 /* The display engine is not coherent with the LLC cache on gen6. As
3018 * a result, we make sure that the pinning that is about to occur is
3019 * done with uncached PTEs. This is lowest common denominator for all
3020 * chipsets.
3021 *
3022 * However for gen6+, we could do better by using the GFDT bit instead
3023 * of uncaching, which would allow us to flush all the LLC-cached data
3024 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3025 */
3026 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3027 if (ret)
3028 return ret;
3029
2da3b9b9
CW
3030 /* As the user may map the buffer once pinned in the display plane
3031 * (e.g. libkms for the bootup splash), we have to ensure that we
3032 * always use map_and_fenceable for all scanout buffers.
3033 */
3034 ret = i915_gem_object_pin(obj, alignment, true);
3035 if (ret)
3036 return ret;
3037
b118c1e3
CW
3038 i915_gem_object_flush_cpu_write_domain(obj);
3039
2da3b9b9 3040 old_write_domain = obj->base.write_domain;
05394f39 3041 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3042
3043 /* It should now be out of any other write domains, and we can update
3044 * the domain values for our changes.
3045 */
3046 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3047 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3048
3049 trace_i915_gem_object_change_domain(obj,
3050 old_read_domains,
2da3b9b9 3051 old_write_domain);
b9241ea3
ZW
3052
3053 return 0;
3054}
3055
85345517 3056int
a8198eea 3057i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3058{
88241785
CW
3059 int ret;
3060
a8198eea 3061 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3062 return 0;
3063
88241785 3064 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3065 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3066 if (ret)
3067 return ret;
3068 }
85345517 3069
c501ae7f
CW
3070 ret = i915_gem_object_wait_rendering(obj);
3071 if (ret)
3072 return ret;
3073
a8198eea
CW
3074 /* Ensure that we invalidate the GPU's caches and TLBs. */
3075 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3076 return 0;
85345517
CW
3077}
3078
e47c68e9
EA
3079/**
3080 * Moves a single object to the CPU read, and possibly write domain.
3081 *
3082 * This function returns when the move is complete, including waiting on
3083 * flushes to occur.
3084 */
3085static int
919926ae 3086i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3087{
1c5d22f7 3088 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3089 int ret;
3090
8d7e3de1
CW
3091 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3092 return 0;
3093
88241785
CW
3094 ret = i915_gem_object_flush_gpu_write_domain(obj);
3095 if (ret)
3096 return ret;
3097
ce453d81 3098 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3099 if (ret)
e47c68e9 3100 return ret;
2ef7eeaa 3101
e47c68e9 3102 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3103
e47c68e9
EA
3104 /* If we have a partially-valid cache of the object in the CPU,
3105 * finish invalidating it and free the per-page flags.
2ef7eeaa 3106 */
e47c68e9 3107 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3108
05394f39
CW
3109 old_write_domain = obj->base.write_domain;
3110 old_read_domains = obj->base.read_domains;
1c5d22f7 3111
e47c68e9 3112 /* Flush the CPU cache if it's still invalid. */
05394f39 3113 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3114 i915_gem_clflush_object(obj);
2ef7eeaa 3115
05394f39 3116 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3117 }
3118
3119 /* It should now be out of any other write domains, and we can update
3120 * the domain values for our changes.
3121 */
05394f39 3122 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3123
3124 /* If we're writing through the CPU, then the GPU read domains will
3125 * need to be invalidated at next use.
3126 */
3127 if (write) {
05394f39
CW
3128 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3129 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3130 }
2ef7eeaa 3131
1c5d22f7
CW
3132 trace_i915_gem_object_change_domain(obj,
3133 old_read_domains,
3134 old_write_domain);
3135
2ef7eeaa
EA
3136 return 0;
3137}
3138
673a394b 3139/**
e47c68e9 3140 * Moves the object from a partially CPU read to a full one.
673a394b 3141 *
e47c68e9
EA
3142 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3143 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3144 */
e47c68e9 3145static void
05394f39 3146i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3147{
05394f39 3148 if (!obj->page_cpu_valid)
e47c68e9
EA
3149 return;
3150
3151 /* If we're partially in the CPU read domain, finish moving it in.
3152 */
05394f39 3153 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3154 int i;
3155
05394f39
CW
3156 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3157 if (obj->page_cpu_valid[i])
e47c68e9 3158 continue;
05394f39 3159 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3160 }
e47c68e9
EA
3161 }
3162
3163 /* Free the page_cpu_valid mappings which are now stale, whether
3164 * or not we've got I915_GEM_DOMAIN_CPU.
3165 */
05394f39
CW
3166 kfree(obj->page_cpu_valid);
3167 obj->page_cpu_valid = NULL;
e47c68e9
EA
3168}
3169
3170/**
3171 * Set the CPU read domain on a range of the object.
3172 *
3173 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3174 * not entirely valid. The page_cpu_valid member of the object flags which
3175 * pages have been flushed, and will be respected by
3176 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3177 * of the whole object.
3178 *
3179 * This function returns when the move is complete, including waiting on
3180 * flushes to occur.
3181 */
3182static int
05394f39 3183i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3184 uint64_t offset, uint64_t size)
3185{
1c5d22f7 3186 uint32_t old_read_domains;
e47c68e9 3187 int i, ret;
673a394b 3188
05394f39 3189 if (offset == 0 && size == obj->base.size)
e47c68e9 3190 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3191
88241785
CW
3192 ret = i915_gem_object_flush_gpu_write_domain(obj);
3193 if (ret)
3194 return ret;
3195
ce453d81 3196 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3197 if (ret)
6a47baa6 3198 return ret;
de18a29e 3199
e47c68e9
EA
3200 i915_gem_object_flush_gtt_write_domain(obj);
3201
3202 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3203 if (obj->page_cpu_valid == NULL &&
3204 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3205 return 0;
673a394b 3206
e47c68e9
EA
3207 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3208 * newly adding I915_GEM_DOMAIN_CPU
3209 */
05394f39
CW
3210 if (obj->page_cpu_valid == NULL) {
3211 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3212 GFP_KERNEL);
3213 if (obj->page_cpu_valid == NULL)
e47c68e9 3214 return -ENOMEM;
05394f39
CW
3215 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3216 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3217
3218 /* Flush the cache on any pages that are still invalid from the CPU's
3219 * perspective.
3220 */
e47c68e9
EA
3221 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3222 i++) {
05394f39 3223 if (obj->page_cpu_valid[i])
673a394b
EA
3224 continue;
3225
05394f39 3226 drm_clflush_pages(obj->pages + i, 1);
673a394b 3227
05394f39 3228 obj->page_cpu_valid[i] = 1;
673a394b
EA
3229 }
3230
e47c68e9
EA
3231 /* It should now be out of any other write domains, and we can update
3232 * the domain values for our changes.
3233 */
05394f39 3234 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3235
05394f39
CW
3236 old_read_domains = obj->base.read_domains;
3237 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3238
1c5d22f7
CW
3239 trace_i915_gem_object_change_domain(obj,
3240 old_read_domains,
05394f39 3241 obj->base.write_domain);
1c5d22f7 3242
673a394b
EA
3243 return 0;
3244}
3245
673a394b
EA
3246/* Throttle our rendering by waiting until the ring has completed our requests
3247 * emitted over 20 msec ago.
3248 *
b962442e
EA
3249 * Note that if we were to use the current jiffies each time around the loop,
3250 * we wouldn't escape the function with any frames outstanding if the time to
3251 * render a frame was over 20ms.
3252 *
673a394b
EA
3253 * This should get us reasonable parallelism between CPU and GPU but also
3254 * relatively low latency when blocking on a particular request to finish.
3255 */
40a5f0de 3256static int
f787a5f5 3257i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3258{
f787a5f5
CW
3259 struct drm_i915_private *dev_priv = dev->dev_private;
3260 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3261 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3262 struct drm_i915_gem_request *request;
3263 struct intel_ring_buffer *ring = NULL;
3264 u32 seqno = 0;
3265 int ret;
93533c29 3266
e110e8d6
CW
3267 if (atomic_read(&dev_priv->mm.wedged))
3268 return -EIO;
3269
1c25595f 3270 spin_lock(&file_priv->mm.lock);
f787a5f5 3271 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3272 if (time_after_eq(request->emitted_jiffies, recent_enough))
3273 break;
40a5f0de 3274
f787a5f5
CW
3275 ring = request->ring;
3276 seqno = request->seqno;
b962442e 3277 }
1c25595f 3278 spin_unlock(&file_priv->mm.lock);
40a5f0de 3279
f787a5f5
CW
3280 if (seqno == 0)
3281 return 0;
2bc43b5c 3282
f787a5f5 3283 ret = 0;
78501eac 3284 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3285 /* And wait for the seqno passing without holding any locks and
3286 * causing extra latency for others. This is safe as the irq
3287 * generation is designed to be run atomically and so is
3288 * lockless.
3289 */
b13c2b96
CW
3290 if (ring->irq_get(ring)) {
3291 ret = wait_event_interruptible(ring->irq_queue,
3292 i915_seqno_passed(ring->get_seqno(ring), seqno)
3293 || atomic_read(&dev_priv->mm.wedged));
3294 ring->irq_put(ring);
40a5f0de 3295
b13c2b96
CW
3296 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3297 ret = -EIO;
e959b5db
EA
3298 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3299 seqno) ||
7ea29b13
EA
3300 atomic_read(&dev_priv->mm.wedged), 3000)) {
3301 ret = -EBUSY;
b13c2b96 3302 }
40a5f0de
EA
3303 }
3304
f787a5f5
CW
3305 if (ret == 0)
3306 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3307
3308 return ret;
3309}
3310
673a394b 3311int
05394f39
CW
3312i915_gem_object_pin(struct drm_i915_gem_object *obj,
3313 uint32_t alignment,
75e9e915 3314 bool map_and_fenceable)
673a394b 3315{
05394f39 3316 struct drm_device *dev = obj->base.dev;
f13d3f73 3317 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3318 int ret;
3319
05394f39 3320 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3321 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3322
05394f39
CW
3323 if (obj->gtt_space != NULL) {
3324 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3325 (map_and_fenceable && !obj->map_and_fenceable)) {
3326 WARN(obj->pin_count,
ae7d49d8 3327 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3328 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3329 " obj->map_and_fenceable=%d\n",
05394f39 3330 obj->gtt_offset, alignment,
75e9e915 3331 map_and_fenceable,
05394f39 3332 obj->map_and_fenceable);
ac0c6b5a
CW
3333 ret = i915_gem_object_unbind(obj);
3334 if (ret)
3335 return ret;
3336 }
3337 }
3338
05394f39 3339 if (obj->gtt_space == NULL) {
a00b10c3 3340 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3341 map_and_fenceable);
9731129c 3342 if (ret)
673a394b 3343 return ret;
22c344e9 3344 }
76446cac 3345
05394f39 3346 if (obj->pin_count++ == 0) {
05394f39
CW
3347 if (!obj->active)
3348 list_move_tail(&obj->mm_list,
f13d3f73 3349 &dev_priv->mm.pinned_list);
673a394b 3350 }
6299f992 3351 obj->pin_mappable |= map_and_fenceable;
673a394b 3352
23bc5982 3353 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3354 return 0;
3355}
3356
3357void
05394f39 3358i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3359{
05394f39 3360 struct drm_device *dev = obj->base.dev;
673a394b 3361 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3362
23bc5982 3363 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3364 BUG_ON(obj->pin_count == 0);
3365 BUG_ON(obj->gtt_space == NULL);
673a394b 3366
05394f39
CW
3367 if (--obj->pin_count == 0) {
3368 if (!obj->active)
3369 list_move_tail(&obj->mm_list,
673a394b 3370 &dev_priv->mm.inactive_list);
6299f992 3371 obj->pin_mappable = false;
673a394b 3372 }
23bc5982 3373 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3374}
3375
3376int
3377i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3378 struct drm_file *file)
673a394b
EA
3379{
3380 struct drm_i915_gem_pin *args = data;
05394f39 3381 struct drm_i915_gem_object *obj;
673a394b
EA
3382 int ret;
3383
1d7cfea1
CW
3384 ret = i915_mutex_lock_interruptible(dev);
3385 if (ret)
3386 return ret;
673a394b 3387
05394f39 3388 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3389 if (&obj->base == NULL) {
1d7cfea1
CW
3390 ret = -ENOENT;
3391 goto unlock;
673a394b 3392 }
673a394b 3393
05394f39 3394 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3395 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3396 ret = -EINVAL;
3397 goto out;
3ef94daa
CW
3398 }
3399
05394f39 3400 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3401 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3402 args->handle);
1d7cfea1
CW
3403 ret = -EINVAL;
3404 goto out;
79e53945
JB
3405 }
3406
05394f39
CW
3407 obj->user_pin_count++;
3408 obj->pin_filp = file;
3409 if (obj->user_pin_count == 1) {
75e9e915 3410 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3411 if (ret)
3412 goto out;
673a394b
EA
3413 }
3414
3415 /* XXX - flush the CPU caches for pinned objects
3416 * as the X server doesn't manage domains yet
3417 */
e47c68e9 3418 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3419 args->offset = obj->gtt_offset;
1d7cfea1 3420out:
05394f39 3421 drm_gem_object_unreference(&obj->base);
1d7cfea1 3422unlock:
673a394b 3423 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3424 return ret;
673a394b
EA
3425}
3426
3427int
3428i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3429 struct drm_file *file)
673a394b
EA
3430{
3431 struct drm_i915_gem_pin *args = data;
05394f39 3432 struct drm_i915_gem_object *obj;
76c1dec1 3433 int ret;
673a394b 3434
1d7cfea1
CW
3435 ret = i915_mutex_lock_interruptible(dev);
3436 if (ret)
3437 return ret;
673a394b 3438
05394f39 3439 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3440 if (&obj->base == NULL) {
1d7cfea1
CW
3441 ret = -ENOENT;
3442 goto unlock;
673a394b 3443 }
76c1dec1 3444
05394f39 3445 if (obj->pin_filp != file) {
79e53945
JB
3446 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3447 args->handle);
1d7cfea1
CW
3448 ret = -EINVAL;
3449 goto out;
79e53945 3450 }
05394f39
CW
3451 obj->user_pin_count--;
3452 if (obj->user_pin_count == 0) {
3453 obj->pin_filp = NULL;
79e53945
JB
3454 i915_gem_object_unpin(obj);
3455 }
673a394b 3456
1d7cfea1 3457out:
05394f39 3458 drm_gem_object_unreference(&obj->base);
1d7cfea1 3459unlock:
673a394b 3460 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3461 return ret;
673a394b
EA
3462}
3463
3464int
3465i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3466 struct drm_file *file)
673a394b
EA
3467{
3468 struct drm_i915_gem_busy *args = data;
05394f39 3469 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3470 int ret;
3471
76c1dec1 3472 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3473 if (ret)
76c1dec1 3474 return ret;
673a394b 3475
05394f39 3476 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3477 if (&obj->base == NULL) {
1d7cfea1
CW
3478 ret = -ENOENT;
3479 goto unlock;
673a394b 3480 }
d1b851fc 3481
0be555b6
CW
3482 /* Count all active objects as busy, even if they are currently not used
3483 * by the gpu. Users of this interface expect objects to eventually
3484 * become non-busy without any further actions, therefore emit any
3485 * necessary flushes here.
c4de0a5d 3486 */
05394f39 3487 args->busy = obj->active;
0be555b6
CW
3488 if (args->busy) {
3489 /* Unconditionally flush objects, even when the gpu still uses this
3490 * object. Userspace calling this function indicates that it wants to
3491 * use this buffer rather sooner than later, so issuing the required
3492 * flush earlier is beneficial.
3493 */
1a1c6976 3494 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3495 ret = i915_gem_flush_ring(obj->ring,
88241785 3496 0, obj->base.write_domain);
1a1c6976
CW
3497 } else if (obj->ring->outstanding_lazy_request ==
3498 obj->last_rendering_seqno) {
3499 struct drm_i915_gem_request *request;
3500
7a194876
CW
3501 /* This ring is not being cleared by active usage,
3502 * so emit a request to do so.
3503 */
1a1c6976 3504 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3505 if (request) {
0206e353 3506 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3507 if (ret)
3508 kfree(request);
3509 } else
7a194876
CW
3510 ret = -ENOMEM;
3511 }
0be555b6
CW
3512
3513 /* Update the active list for the hardware's current position.
3514 * Otherwise this only updates on a delayed timer or when irqs
3515 * are actually unmasked, and our working set ends up being
3516 * larger than required.
3517 */
db53a302 3518 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3519
05394f39 3520 args->busy = obj->active;
0be555b6 3521 }
673a394b 3522
05394f39 3523 drm_gem_object_unreference(&obj->base);
1d7cfea1 3524unlock:
673a394b 3525 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3526 return ret;
673a394b
EA
3527}
3528
3529int
3530i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3531 struct drm_file *file_priv)
3532{
0206e353 3533 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3534}
3535
3ef94daa
CW
3536int
3537i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3538 struct drm_file *file_priv)
3539{
3540 struct drm_i915_gem_madvise *args = data;
05394f39 3541 struct drm_i915_gem_object *obj;
76c1dec1 3542 int ret;
3ef94daa
CW
3543
3544 switch (args->madv) {
3545 case I915_MADV_DONTNEED:
3546 case I915_MADV_WILLNEED:
3547 break;
3548 default:
3549 return -EINVAL;
3550 }
3551
1d7cfea1
CW
3552 ret = i915_mutex_lock_interruptible(dev);
3553 if (ret)
3554 return ret;
3555
05394f39 3556 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3557 if (&obj->base == NULL) {
1d7cfea1
CW
3558 ret = -ENOENT;
3559 goto unlock;
3ef94daa 3560 }
3ef94daa 3561
05394f39 3562 if (obj->pin_count) {
1d7cfea1
CW
3563 ret = -EINVAL;
3564 goto out;
3ef94daa
CW
3565 }
3566
05394f39
CW
3567 if (obj->madv != __I915_MADV_PURGED)
3568 obj->madv = args->madv;
3ef94daa 3569
2d7ef395 3570 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3571 if (i915_gem_object_is_purgeable(obj) &&
3572 obj->gtt_space == NULL)
2d7ef395
CW
3573 i915_gem_object_truncate(obj);
3574
05394f39 3575 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3576
1d7cfea1 3577out:
05394f39 3578 drm_gem_object_unreference(&obj->base);
1d7cfea1 3579unlock:
3ef94daa 3580 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3581 return ret;
3ef94daa
CW
3582}
3583
05394f39
CW
3584struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3585 size_t size)
ac52bc56 3586{
73aa808f 3587 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3588 struct drm_i915_gem_object *obj;
5949eac4 3589 struct address_space *mapping;
ac52bc56 3590
c397b908
DV
3591 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3592 if (obj == NULL)
3593 return NULL;
673a394b 3594
c397b908
DV
3595 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3596 kfree(obj);
3597 return NULL;
3598 }
673a394b 3599
5949eac4
HD
3600 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3601 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3602
73aa808f
CW
3603 i915_gem_info_add_obj(dev_priv, size);
3604
c397b908
DV
3605 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3606 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3607
3d29b842
ED
3608 if (HAS_LLC(dev)) {
3609 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3610 * cache) for about a 10% performance improvement
3611 * compared to uncached. Graphics requests other than
3612 * display scanout are coherent with the CPU in
3613 * accessing this cache. This means in this mode we
3614 * don't need to clflush on the CPU side, and on the
3615 * GPU side we only need to flush internal caches to
3616 * get data visible to the CPU.
3617 *
3618 * However, we maintain the display planes as UC, and so
3619 * need to rebind when first used as such.
3620 */
3621 obj->cache_level = I915_CACHE_LLC;
3622 } else
3623 obj->cache_level = I915_CACHE_NONE;
3624
62b8b215 3625 obj->base.driver_private = NULL;
c397b908 3626 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3627 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3628 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3629 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3630 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3631 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3632 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3633 /* Avoid an unnecessary call to unbind on the first bind. */
3634 obj->map_and_fenceable = true;
de151cf6 3635
05394f39 3636 return obj;
c397b908
DV
3637}
3638
3639int i915_gem_init_object(struct drm_gem_object *obj)
3640{
3641 BUG();
de151cf6 3642
673a394b
EA
3643 return 0;
3644}
3645
05394f39 3646static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3647{
05394f39 3648 struct drm_device *dev = obj->base.dev;
be72615b 3649 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3650 int ret;
673a394b 3651
be72615b
CW
3652 ret = i915_gem_object_unbind(obj);
3653 if (ret == -ERESTARTSYS) {
05394f39 3654 list_move(&obj->mm_list,
be72615b
CW
3655 &dev_priv->mm.deferred_free_list);
3656 return;
3657 }
673a394b 3658
26e12f89
CW
3659 trace_i915_gem_object_destroy(obj);
3660
05394f39 3661 if (obj->base.map_list.map)
b464e9a2 3662 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3663
05394f39
CW
3664 drm_gem_object_release(&obj->base);
3665 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3666
05394f39
CW
3667 kfree(obj->page_cpu_valid);
3668 kfree(obj->bit_17);
3669 kfree(obj);
673a394b
EA
3670}
3671
05394f39 3672void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3673{
05394f39
CW
3674 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3675 struct drm_device *dev = obj->base.dev;
be72615b 3676
05394f39 3677 while (obj->pin_count > 0)
be72615b
CW
3678 i915_gem_object_unpin(obj);
3679
05394f39 3680 if (obj->phys_obj)
be72615b
CW
3681 i915_gem_detach_phys_object(dev, obj);
3682
3683 i915_gem_free_object_tail(obj);
3684}
3685
29105ccc
CW
3686int
3687i915_gem_idle(struct drm_device *dev)
3688{
3689 drm_i915_private_t *dev_priv = dev->dev_private;
3690 int ret;
28dfe52a 3691
29105ccc 3692 mutex_lock(&dev->struct_mutex);
1c5d22f7 3693
87acb0a5 3694 if (dev_priv->mm.suspended) {
29105ccc
CW
3695 mutex_unlock(&dev->struct_mutex);
3696 return 0;
28dfe52a
EA
3697 }
3698
b93f9cf1 3699 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3700 if (ret) {
3701 mutex_unlock(&dev->struct_mutex);
673a394b 3702 return ret;
6dbe2772 3703 }
673a394b 3704
29105ccc
CW
3705 /* Under UMS, be paranoid and evict. */
3706 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3707 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3708 if (ret) {
3709 mutex_unlock(&dev->struct_mutex);
3710 return ret;
3711 }
3712 }
3713
312817a3
CW
3714 i915_gem_reset_fences(dev);
3715
29105ccc
CW
3716 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3717 * We need to replace this with a semaphore, or something.
3718 * And not confound mm.suspended!
3719 */
3720 dev_priv->mm.suspended = 1;
bc0c7f14 3721 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3722
3723 i915_kernel_lost_context(dev);
6dbe2772 3724 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3725
6dbe2772
KP
3726 mutex_unlock(&dev->struct_mutex);
3727
29105ccc
CW
3728 /* Cancel the retire work handler, which should be idle now. */
3729 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3730
673a394b
EA
3731 return 0;
3732}
3733
f691e2f4
DV
3734void i915_gem_init_swizzling(struct drm_device *dev)
3735{
3736 drm_i915_private_t *dev_priv = dev->dev_private;
3737
11782b02 3738 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3739 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3740 return;
3741
3742 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3743 DISP_TILE_SURFACE_SWIZZLING);
3744
11782b02
DV
3745 if (IS_GEN5(dev))
3746 return;
3747
f691e2f4
DV
3748 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3749 if (IS_GEN6(dev))
3750 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3751 else
3752 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3753}
e21af88d
DV
3754
3755void i915_gem_init_ppgtt(struct drm_device *dev)
3756{
3757 drm_i915_private_t *dev_priv = dev->dev_private;
3758 uint32_t pd_offset;
3759 struct intel_ring_buffer *ring;
55a254ac
DV
3760 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3761 uint32_t __iomem *pd_addr;
3762 uint32_t pd_entry;
e21af88d
DV
3763 int i;
3764
3765 if (!dev_priv->mm.aliasing_ppgtt)
3766 return;
3767
55a254ac
DV
3768
3769 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3770 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3771 dma_addr_t pt_addr;
3772
3773 if (dev_priv->mm.gtt->needs_dmar)
3774 pt_addr = ppgtt->pt_dma_addr[i];
3775 else
3776 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3777
3778 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3779 pd_entry |= GEN6_PDE_VALID;
3780
3781 writel(pd_entry, pd_addr + i);
3782 }
3783 readl(pd_addr);
3784
3785 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3786 pd_offset /= 64; /* in cachelines, */
3787 pd_offset <<= 16;
3788
3789 if (INTEL_INFO(dev)->gen == 6) {
3790 uint32_t ecochk = I915_READ(GAM_ECOCHK);
3791 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3792 ECOCHK_PPGTT_CACHE64B);
3793 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3794 } else if (INTEL_INFO(dev)->gen >= 7) {
3795 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3796 /* GFX_MODE is per-ring on gen7+ */
3797 }
3798
3799 for (i = 0; i < I915_NUM_RINGS; i++) {
3800 ring = &dev_priv->ring[i];
3801
3802 if (INTEL_INFO(dev)->gen >= 7)
3803 I915_WRITE(RING_MODE_GEN7(ring),
3804 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3805
3806 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3807 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3808 }
3809}
3810
8187a2b7 3811int
f691e2f4 3812i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3813{
3814 drm_i915_private_t *dev_priv = dev->dev_private;
3815 int ret;
68f95ba9 3816
f691e2f4
DV
3817 i915_gem_init_swizzling(dev);
3818
5c1143bb 3819 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3820 if (ret)
b6913e4b 3821 return ret;
68f95ba9
CW
3822
3823 if (HAS_BSD(dev)) {
5c1143bb 3824 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3825 if (ret)
3826 goto cleanup_render_ring;
d1b851fc 3827 }
68f95ba9 3828
549f7365
CW
3829 if (HAS_BLT(dev)) {
3830 ret = intel_init_blt_ring_buffer(dev);
3831 if (ret)
3832 goto cleanup_bsd_ring;
3833 }
3834
6f392d54
CW
3835 dev_priv->next_seqno = 1;
3836
e21af88d
DV
3837 i915_gem_init_ppgtt(dev);
3838
68f95ba9
CW
3839 return 0;
3840
549f7365 3841cleanup_bsd_ring:
1ec14ad3 3842 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3843cleanup_render_ring:
1ec14ad3 3844 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3845 return ret;
3846}
3847
3848void
3849i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3850{
3851 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3852 int i;
8187a2b7 3853
1ec14ad3
CW
3854 for (i = 0; i < I915_NUM_RINGS; i++)
3855 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3856}
3857
673a394b
EA
3858int
3859i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3860 struct drm_file *file_priv)
3861{
3862 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3863 int ret, i;
673a394b 3864
79e53945
JB
3865 if (drm_core_check_feature(dev, DRIVER_MODESET))
3866 return 0;
3867
ba1234d1 3868 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3869 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3870 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3871 }
3872
673a394b 3873 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3874 dev_priv->mm.suspended = 0;
3875
f691e2f4 3876 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3877 if (ret != 0) {
3878 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3879 return ret;
d816f6ac 3880 }
9bb2d6f9 3881
69dc4987 3882 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3883 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3884 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3885 for (i = 0; i < I915_NUM_RINGS; i++) {
3886 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3887 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3888 }
673a394b 3889 mutex_unlock(&dev->struct_mutex);
dbb19d30 3890
5f35308b
CW
3891 ret = drm_irq_install(dev);
3892 if (ret)
3893 goto cleanup_ringbuffer;
dbb19d30 3894
673a394b 3895 return 0;
5f35308b
CW
3896
3897cleanup_ringbuffer:
3898 mutex_lock(&dev->struct_mutex);
3899 i915_gem_cleanup_ringbuffer(dev);
3900 dev_priv->mm.suspended = 1;
3901 mutex_unlock(&dev->struct_mutex);
3902
3903 return ret;
673a394b
EA
3904}
3905
3906int
3907i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3908 struct drm_file *file_priv)
3909{
79e53945
JB
3910 if (drm_core_check_feature(dev, DRIVER_MODESET))
3911 return 0;
3912
dbb19d30 3913 drm_irq_uninstall(dev);
e6890f6f 3914 return i915_gem_idle(dev);
673a394b
EA
3915}
3916
3917void
3918i915_gem_lastclose(struct drm_device *dev)
3919{
3920 int ret;
673a394b 3921
e806b495
EA
3922 if (drm_core_check_feature(dev, DRIVER_MODESET))
3923 return;
3924
6dbe2772
KP
3925 ret = i915_gem_idle(dev);
3926 if (ret)
3927 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3928}
3929
64193406
CW
3930static void
3931init_ring_lists(struct intel_ring_buffer *ring)
3932{
3933 INIT_LIST_HEAD(&ring->active_list);
3934 INIT_LIST_HEAD(&ring->request_list);
3935 INIT_LIST_HEAD(&ring->gpu_write_list);
3936}
3937
673a394b
EA
3938void
3939i915_gem_load(struct drm_device *dev)
3940{
b5aa8a0f 3941 int i;
673a394b
EA
3942 drm_i915_private_t *dev_priv = dev->dev_private;
3943
69dc4987 3944 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3945 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3946 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3947 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3948 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3949 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3950 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3951 for (i = 0; i < I915_NUM_RINGS; i++)
3952 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3953 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3954 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3955 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3956 i915_gem_retire_work_handler);
30dbf0c0 3957 init_completion(&dev_priv->error_completion);
31169714 3958
94400120
DA
3959 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3960 if (IS_GEN3(dev)) {
3961 u32 tmp = I915_READ(MI_ARB_STATE);
3962 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3963 /* arb state is a masked write, so set bit + bit in mask */
3964 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3965 I915_WRITE(MI_ARB_STATE, tmp);
3966 }
3967 }
3968
72bfa19c
CW
3969 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3970
de151cf6 3971 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3972 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3973 dev_priv->fence_reg_start = 3;
de151cf6 3974
a6c45cf0 3975 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3976 dev_priv->num_fence_regs = 16;
3977 else
3978 dev_priv->num_fence_regs = 8;
3979
b5aa8a0f 3980 /* Initialize fence registers to zero */
10ed13e4
EA
3981 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3982 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3983 }
10ed13e4 3984
673a394b 3985 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3986 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3987
ce453d81
CW
3988 dev_priv->mm.interruptible = true;
3989
17250b71
CW
3990 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3991 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3992 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3993}
71acb5eb
DA
3994
3995/*
3996 * Create a physically contiguous memory object for this object
3997 * e.g. for cursor + overlay regs
3998 */
995b6762
CW
3999static int i915_gem_init_phys_object(struct drm_device *dev,
4000 int id, int size, int align)
71acb5eb
DA
4001{
4002 drm_i915_private_t *dev_priv = dev->dev_private;
4003 struct drm_i915_gem_phys_object *phys_obj;
4004 int ret;
4005
4006 if (dev_priv->mm.phys_objs[id - 1] || !size)
4007 return 0;
4008
9a298b2a 4009 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4010 if (!phys_obj)
4011 return -ENOMEM;
4012
4013 phys_obj->id = id;
4014
6eeefaf3 4015 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4016 if (!phys_obj->handle) {
4017 ret = -ENOMEM;
4018 goto kfree_obj;
4019 }
4020#ifdef CONFIG_X86
4021 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4022#endif
4023
4024 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4025
4026 return 0;
4027kfree_obj:
9a298b2a 4028 kfree(phys_obj);
71acb5eb
DA
4029 return ret;
4030}
4031
995b6762 4032static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4033{
4034 drm_i915_private_t *dev_priv = dev->dev_private;
4035 struct drm_i915_gem_phys_object *phys_obj;
4036
4037 if (!dev_priv->mm.phys_objs[id - 1])
4038 return;
4039
4040 phys_obj = dev_priv->mm.phys_objs[id - 1];
4041 if (phys_obj->cur_obj) {
4042 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4043 }
4044
4045#ifdef CONFIG_X86
4046 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4047#endif
4048 drm_pci_free(dev, phys_obj->handle);
4049 kfree(phys_obj);
4050 dev_priv->mm.phys_objs[id - 1] = NULL;
4051}
4052
4053void i915_gem_free_all_phys_object(struct drm_device *dev)
4054{
4055 int i;
4056
260883c8 4057 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4058 i915_gem_free_phys_object(dev, i);
4059}
4060
4061void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4062 struct drm_i915_gem_object *obj)
71acb5eb 4063{
05394f39 4064 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4065 char *vaddr;
71acb5eb 4066 int i;
71acb5eb
DA
4067 int page_count;
4068
05394f39 4069 if (!obj->phys_obj)
71acb5eb 4070 return;
05394f39 4071 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4072
05394f39 4073 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4074 for (i = 0; i < page_count; i++) {
5949eac4 4075 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4076 if (!IS_ERR(page)) {
4077 char *dst = kmap_atomic(page);
4078 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4079 kunmap_atomic(dst);
4080
4081 drm_clflush_pages(&page, 1);
4082
4083 set_page_dirty(page);
4084 mark_page_accessed(page);
4085 page_cache_release(page);
4086 }
71acb5eb 4087 }
40ce6575 4088 intel_gtt_chipset_flush();
d78b47b9 4089
05394f39
CW
4090 obj->phys_obj->cur_obj = NULL;
4091 obj->phys_obj = NULL;
71acb5eb
DA
4092}
4093
4094int
4095i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4096 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4097 int id,
4098 int align)
71acb5eb 4099{
05394f39 4100 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4101 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4102 int ret = 0;
4103 int page_count;
4104 int i;
4105
4106 if (id > I915_MAX_PHYS_OBJECT)
4107 return -EINVAL;
4108
05394f39
CW
4109 if (obj->phys_obj) {
4110 if (obj->phys_obj->id == id)
71acb5eb
DA
4111 return 0;
4112 i915_gem_detach_phys_object(dev, obj);
4113 }
4114
71acb5eb
DA
4115 /* create a new object */
4116 if (!dev_priv->mm.phys_objs[id - 1]) {
4117 ret = i915_gem_init_phys_object(dev, id,
05394f39 4118 obj->base.size, align);
71acb5eb 4119 if (ret) {
05394f39
CW
4120 DRM_ERROR("failed to init phys object %d size: %zu\n",
4121 id, obj->base.size);
e5281ccd 4122 return ret;
71acb5eb
DA
4123 }
4124 }
4125
4126 /* bind to the object */
05394f39
CW
4127 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4128 obj->phys_obj->cur_obj = obj;
71acb5eb 4129
05394f39 4130 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4131
4132 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4133 struct page *page;
4134 char *dst, *src;
4135
5949eac4 4136 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4137 if (IS_ERR(page))
4138 return PTR_ERR(page);
71acb5eb 4139
ff75b9bc 4140 src = kmap_atomic(page);
05394f39 4141 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4142 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4143 kunmap_atomic(src);
71acb5eb 4144
e5281ccd
CW
4145 mark_page_accessed(page);
4146 page_cache_release(page);
4147 }
d78b47b9 4148
71acb5eb 4149 return 0;
71acb5eb
DA
4150}
4151
4152static int
05394f39
CW
4153i915_gem_phys_pwrite(struct drm_device *dev,
4154 struct drm_i915_gem_object *obj,
71acb5eb
DA
4155 struct drm_i915_gem_pwrite *args,
4156 struct drm_file *file_priv)
4157{
05394f39 4158 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4159 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4160
b47b30cc
CW
4161 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4162 unsigned long unwritten;
4163
4164 /* The physical object once assigned is fixed for the lifetime
4165 * of the obj, so we can safely drop the lock and continue
4166 * to access vaddr.
4167 */
4168 mutex_unlock(&dev->struct_mutex);
4169 unwritten = copy_from_user(vaddr, user_data, args->size);
4170 mutex_lock(&dev->struct_mutex);
4171 if (unwritten)
4172 return -EFAULT;
4173 }
71acb5eb 4174
40ce6575 4175 intel_gtt_chipset_flush();
71acb5eb
DA
4176 return 0;
4177}
b962442e 4178
f787a5f5 4179void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4180{
f787a5f5 4181 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4182
4183 /* Clean up our request list when the client is going away, so that
4184 * later retire_requests won't dereference our soon-to-be-gone
4185 * file_priv.
4186 */
1c25595f 4187 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4188 while (!list_empty(&file_priv->mm.request_list)) {
4189 struct drm_i915_gem_request *request;
4190
4191 request = list_first_entry(&file_priv->mm.request_list,
4192 struct drm_i915_gem_request,
4193 client_list);
4194 list_del(&request->client_list);
4195 request->file_priv = NULL;
4196 }
1c25595f 4197 spin_unlock(&file_priv->mm.lock);
b962442e 4198}
31169714 4199
1637ef41
CW
4200static int
4201i915_gpu_is_active(struct drm_device *dev)
4202{
4203 drm_i915_private_t *dev_priv = dev->dev_private;
4204 int lists_empty;
4205
1637ef41 4206 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4207 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4208
4209 return !lists_empty;
4210}
4211
31169714 4212static int
1495f230 4213i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4214{
17250b71
CW
4215 struct drm_i915_private *dev_priv =
4216 container_of(shrinker,
4217 struct drm_i915_private,
4218 mm.inactive_shrinker);
4219 struct drm_device *dev = dev_priv->dev;
4220 struct drm_i915_gem_object *obj, *next;
1495f230 4221 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4222 int cnt;
4223
4224 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4225 return 0;
31169714
CW
4226
4227 /* "fast-path" to count number of available objects */
4228 if (nr_to_scan == 0) {
17250b71
CW
4229 cnt = 0;
4230 list_for_each_entry(obj,
4231 &dev_priv->mm.inactive_list,
4232 mm_list)
4233 cnt++;
4234 mutex_unlock(&dev->struct_mutex);
4235 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4236 }
4237
1637ef41 4238rescan:
31169714 4239 /* first scan for clean buffers */
17250b71 4240 i915_gem_retire_requests(dev);
31169714 4241
17250b71
CW
4242 list_for_each_entry_safe(obj, next,
4243 &dev_priv->mm.inactive_list,
4244 mm_list) {
4245 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4246 if (i915_gem_object_unbind(obj) == 0 &&
4247 --nr_to_scan == 0)
17250b71 4248 break;
31169714 4249 }
31169714
CW
4250 }
4251
4252 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4253 cnt = 0;
4254 list_for_each_entry_safe(obj, next,
4255 &dev_priv->mm.inactive_list,
4256 mm_list) {
2021746e
CW
4257 if (nr_to_scan &&
4258 i915_gem_object_unbind(obj) == 0)
17250b71 4259 nr_to_scan--;
2021746e 4260 else
17250b71
CW
4261 cnt++;
4262 }
4263
4264 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4265 /*
4266 * We are desperate for pages, so as a last resort, wait
4267 * for the GPU to finish and discard whatever we can.
4268 * This has a dramatic impact to reduce the number of
4269 * OOM-killer events whilst running the GPU aggressively.
4270 */
b93f9cf1 4271 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4272 goto rescan;
4273 }
17250b71
CW
4274 mutex_unlock(&dev->struct_mutex);
4275 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4276}