drm/i915: Fix check with IS_GEN6
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
673a394b 34#include <linux/swap.h>
79e53945 35#include <linux/pci.h>
673a394b 36
28dfe52a
EA
37#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
e47c68e9
EA
39static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
42static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
de151cf6 51static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
07f73f69 52static int i915_gem_evict_something(struct drm_device *dev, int min_size);
ab5ee576 53static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
71acb5eb
DA
54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
673a394b 57
31169714
CW
58static LIST_HEAD(shrink_list);
59static DEFINE_SPINLOCK(shrink_list_lock);
60
79e53945
JB
61int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
673a394b
EA
63{
64 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 65
79e53945
JB
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
69 return -EINVAL;
70 }
71
79e53945
JB
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
673a394b 74
79e53945
JB
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78}
673a394b 79
79e53945
JB
80int
81i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83{
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
89 mutex_unlock(&dev->struct_mutex);
90
79e53945 91 return ret;
673a394b
EA
92}
93
5a125c3c
EA
94int
95i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97{
5a125c3c 98 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
2678d9d6
KP
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
5a125c3c
EA
106
107 return 0;
108}
109
673a394b
EA
110
111/**
112 * Creates a new mm object and returns a handle to it.
113 */
114int
115i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117{
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
a1a2d1d3
PP
120 int ret;
121 u32 handle;
673a394b
EA
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
bc9025bd 131 drm_gem_object_handle_unreference_unlocked(obj);
673a394b
EA
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139}
140
eb01459f
EA
141static inline int
142fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146{
147 char __iomem *vaddr;
2bc43b5c 148 int unwritten;
eb01459f
EA
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
2bc43b5c 153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
154 kunmap_atomic(vaddr, KM_USER0);
155
2bc43b5c
FM
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
eb01459f
EA
160}
161
280b713b
EA
162static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163{
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169}
170
40123c1f
EA
171static inline int
172slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177{
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196}
197
280b713b
EA
198static inline int
199slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205{
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254}
255
eb01459f
EA
256/**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261static int
262i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265{
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
4bdadb97 278 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314fail_put_pages:
315 i915_gem_object_put_pages(obj);
316fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320}
321
07f73f69
CW
322static int
323i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324{
325 int ret;
326
4bdadb97 327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
07f73f69
CW
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
4bdadb97 339 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
340 }
341
342 return ret;
343}
344
eb01459f
EA
345/**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351static int
352i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355{
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
280b713b 367 int do_bit17_swizzling;
eb01459f
EA
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
8e7d2b2c 379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 385 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
280b713b
EA
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
eb01459f
EA
394 mutex_lock(&dev->struct_mutex);
395
07f73f69
CW
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
eb01459f
EA
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
280b713b
EA
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
eb01459f
EA
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450fail_put_pages:
451 i915_gem_object_put_pages(obj);
452fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
8e7d2b2c 459 drm_free_large(user_pages);
eb01459f
EA
460
461 return ret;
462}
463
673a394b
EA
464/**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469int
470i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472{
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
673a394b
EA
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
bc9025bd 489 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
490 return -EINVAL;
491 }
492
280b713b 493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
673a394b 501
bc9025bd 502 drm_gem_object_unreference_unlocked(obj);
673a394b 503
eb01459f 504 return ret;
673a394b
EA
505}
506
0839ccb8
KP
507/* This is the fast write path which cannot handle
508 * page faults in the source data
9b7530cc 509 */
0839ccb8
KP
510
511static inline int
512fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
9b7530cc 516{
9b7530cc 517 char *vaddr_atomic;
0839ccb8 518 unsigned long unwritten;
9b7530cc 519
0839ccb8
KP
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527}
528
529/* Here's the write path which can sleep for
530 * page faults
531 */
532
533static inline int
3de09aa3
EA
534slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
0839ccb8 538{
3de09aa3 539 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
540 unsigned long unwritten;
541
3de09aa3
EA
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
549 if (unwritten)
550 return -EFAULT;
9b7530cc 551 return 0;
9b7530cc
LT
552}
553
40123c1f
EA
554static inline int
555fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559{
560 char __iomem *vaddr;
d0088775 561 unsigned long unwritten;
40123c1f
EA
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
d0088775 566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
567 kunmap_atomic(vaddr, KM_USER0);
568
d0088775
DA
569 if (unwritten)
570 return -EFAULT;
40123c1f
EA
571 return 0;
572}
573
3de09aa3
EA
574/**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
673a394b 578static int
3de09aa3
EA
579i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
673a394b
EA
582{
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 584 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 585 ssize_t remain;
0839ccb8 586 loff_t offset, page_base;
673a394b 587 char __user *user_data;
0839ccb8
KP
588 int page_offset, page_length;
589 int ret;
673a394b
EA
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
2ef7eeaa 603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
0839ccb8
KP
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
673a394b 616 */
0839ccb8
KP
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
0839ccb8 629 */
3de09aa3
EA
630 if (ret)
631 goto fail;
673a394b 632
0839ccb8
KP
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
673a394b 636 }
673a394b
EA
637
638fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643}
644
3de09aa3
EA
645/**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
3043c60c 652static int
3de09aa3
EA
653i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
673a394b 656{
3de09aa3
EA
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 666 int ret;
3de09aa3
EA
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
8e7d2b2c 679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
673a394b
EA
691
692 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742out_unpin_object:
743 i915_gem_object_unpin(obj);
744out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
8e7d2b2c 749 drm_free_large(user_pages);
3de09aa3
EA
750
751 return ret;
752}
753
40123c1f
EA
754/**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
3043c60c 758static int
40123c1f
EA
759i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
673a394b 762{
40123c1f
EA
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
673a394b 768 int ret;
40123c1f
EA
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
673a394b
EA
772
773 mutex_lock(&dev->struct_mutex);
774
4bdadb97 775 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
776 if (ret != 0)
777 goto fail_unlock;
673a394b 778
e47c68e9 779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811fail_put_pages:
812 i915_gem_object_put_pages(obj);
813fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817}
818
819/**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826static int
827i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830{
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
280b713b 842 int do_bit17_swizzling;
40123c1f
EA
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
8e7d2b2c 854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
673a394b
EA
865 }
866
280b713b
EA
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
40123c1f
EA
869 mutex_lock(&dev->struct_mutex);
870
07f73f69
CW
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
40123c1f
EA
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
673a394b 880 offset = args->offset;
40123c1f 881 obj_priv->dirty = 1;
673a394b 882
40123c1f
EA
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
280b713b
EA
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
40123c1f
EA
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
673a394b
EA
923 }
924
40123c1f
EA
925fail_put_pages:
926 i915_gem_object_put_pages(obj);
927fail_unlock:
673a394b 928 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
929fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
8e7d2b2c 932 drm_free_large(user_pages);
673a394b 933
40123c1f 934 return ret;
673a394b
EA
935}
936
937/**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942int
943i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945{
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
bc9025bd 962 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
71acb5eb
DA
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
280b713b
EA
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
673a394b
EA
990
991#if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994#endif
995
bc9025bd 996 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
997
998 return ret;
999}
1000
1001/**
2ef7eeaa
EA
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1004 */
1005int
1006i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008{
a09ba7fa 1009 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
652c393a 1012 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
673a394b
EA
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
2ef7eeaa 1020 /* Only handle setting domains to types used by the CPU. */
21d509e3 1021 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1022 return -EINVAL;
1023
21d509e3 1024 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
673a394b
EA
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
652c393a 1036 obj_priv = obj->driver_private;
673a394b
EA
1037
1038 mutex_lock(&dev->struct_mutex);
652c393a
JB
1039
1040 intel_mark_busy(dev, obj);
1041
673a394b 1042#if WATCH_BUF
cfd43c02 1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1044 obj, obj->size, read_domains, write_domain);
673a394b 1045#endif
2ef7eeaa
EA
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1048
a09ba7fa
EA
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
02354392
EA
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
2ef7eeaa 1063 } else {
e47c68e9 1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1065 }
1066
673a394b
EA
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070}
1071
1072/**
1073 * Called when user space has done writes to this buffer
1074 */
1075int
1076i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078{
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094#if WATCH_BUF
cfd43c02 1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1096 __func__, args->handle, obj, obj->size);
1097#endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
673a394b
EA
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107}
1108
1109/**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116int
1117i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119{
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
bc9025bd 1139 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146}
1147
de151cf6
JB
1148/**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165{
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
0f973f27 1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
e67b8ce1 1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1183 if (ret)
1184 goto unlock;
07f4f3e8 1185
14b60391 1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
07f4f3e8
KH
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1189 if (ret)
1190 goto unlock;
de151cf6
JB
1191 }
1192
1193 /* Need a new fence register? */
a09ba7fa 1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1195 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1196 if (ret)
1197 goto unlock;
d9ddcb96 1198 }
de151cf6
JB
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1205unlock:
de151cf6
JB
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
c715089f
CW
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
de151cf6
JB
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
de151cf6 1215 default:
c715089f 1216 return VM_FAULT_SIGBUS;
de151cf6
JB
1217 }
1218}
1219
1220/**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231static int
1232i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233{
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
f77d390c 1238 struct drm_local_map *map;
de151cf6
JB
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
9a298b2a 1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1271 ret = -ENOMEM;
de151cf6
JB
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283out_free_list:
9a298b2a 1284 kfree(list->map);
de151cf6
JB
1285
1286 return ret;
1287}
1288
901782b2
CW
1289/**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
af901ca1 1293 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
d05ca301 1303void
901782b2
CW
1304i915_gem_release_mmap(struct drm_gem_object *obj)
1305{
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312}
1313
ab00b3e5
JB
1314static void
1315i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316{
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
9a298b2a 1331 kfree(list->map);
ab00b3e5
JB
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336}
1337
de151cf6
JB
1338/**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345static uint32_t
1346i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347{
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372}
1373
1374/**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389int
1390i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392{
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
ab18282d
CW
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
de151cf6
JB
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
de151cf6 1423 return ret;
13af1062 1424 }
de151cf6
JB
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
de151cf6
JB
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
e67b8ce1 1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
14b60391 1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447}
1448
6911a9b8 1449void
856fa198 1450i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1451{
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
856fa198 1456 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1458
856fa198
EA
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
673a394b 1461
280b713b
EA
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
3ef94daa 1465 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1466 obj_priv->dirty = 0;
3ef94daa
CW
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->pages[i] == NULL)
1470 break;
1471
1472 if (obj_priv->dirty)
1473 set_page_dirty(obj_priv->pages[i]);
1474
1475 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1476 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1477
1478 page_cache_release(obj_priv->pages[i]);
1479 }
673a394b
EA
1480 obj_priv->dirty = 0;
1481
8e7d2b2c 1482 drm_free_large(obj_priv->pages);
856fa198 1483 obj_priv->pages = NULL;
673a394b
EA
1484}
1485
1486static void
ce44b0ea 1487i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1488{
1489 struct drm_device *dev = obj->dev;
1490 drm_i915_private_t *dev_priv = dev->dev_private;
1491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493 /* Add a reference if we're newly entering the active list. */
1494 if (!obj_priv->active) {
1495 drm_gem_object_reference(obj);
1496 obj_priv->active = 1;
1497 }
1498 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1499 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1500 list_move_tail(&obj_priv->list,
1501 &dev_priv->mm.active_list);
5e118f41 1502 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1503 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1504}
1505
ce44b0ea
EA
1506static void
1507i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508{
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516}
673a394b 1517
963b4836
CW
1518/* Immediately discard the backing storage */
1519static void
1520i915_gem_object_truncate(struct drm_gem_object *obj)
1521{
bb6baf76
CW
1522 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523 struct inode *inode;
963b4836 1524
bb6baf76
CW
1525 inode = obj->filp->f_path.dentry->d_inode;
1526 if (inode->i_op->truncate)
1527 inode->i_op->truncate (inode);
1528
1529 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1530}
1531
1532static inline int
1533i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534{
1535 return obj_priv->madv == I915_MADV_DONTNEED;
1536}
1537
673a394b
EA
1538static void
1539i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540{
1541 struct drm_device *dev = obj->dev;
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545 i915_verify_inactive(dev, __FILE__, __LINE__);
1546 if (obj_priv->pin_count != 0)
1547 list_del_init(&obj_priv->list);
1548 else
1549 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
99fcb766
DV
1551 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
ce44b0ea 1553 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1554 if (obj_priv->active) {
1555 obj_priv->active = 0;
1556 drm_gem_object_unreference(obj);
1557 }
1558 i915_verify_inactive(dev, __FILE__, __LINE__);
1559}
1560
63560396
DV
1561static void
1562i915_gem_process_flushing_list(struct drm_device *dev,
1563 uint32_t flush_domains, uint32_t seqno)
1564{
1565 drm_i915_private_t *dev_priv = dev->dev_private;
1566 struct drm_i915_gem_object *obj_priv, *next;
1567
1568 list_for_each_entry_safe(obj_priv, next,
1569 &dev_priv->mm.gpu_write_list,
1570 gpu_write_list) {
1571 struct drm_gem_object *obj = obj_priv->obj;
1572
1573 if ((obj->write_domain & flush_domains) ==
1574 obj->write_domain) {
1575 uint32_t old_write_domain = obj->write_domain;
1576
1577 obj->write_domain = 0;
1578 list_del_init(&obj_priv->gpu_write_list);
1579 i915_gem_object_move_to_active(obj, seqno);
1580
1581 /* update the fence lru list */
1582 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1583 list_move_tail(&obj_priv->fence_list,
1584 &dev_priv->mm.fence_list);
1585
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1589 }
1590 }
1591}
1592
673a394b
EA
1593/**
1594 * Creates a new sequence number, emitting a write of it to the status page
1595 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1596 *
1597 * Must be called with struct_lock held.
1598 *
1599 * Returned sequence numbers are nonzero on success.
1600 */
5a5a0c64 1601uint32_t
b962442e
EA
1602i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1603 uint32_t flush_domains)
673a394b
EA
1604{
1605 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1606 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1607 struct drm_i915_gem_request *request;
1608 uint32_t seqno;
1609 int was_empty;
1610 RING_LOCALS;
1611
b962442e
EA
1612 if (file_priv != NULL)
1613 i915_file_priv = file_priv->driver_priv;
1614
9a298b2a 1615 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1616 if (request == NULL)
1617 return 0;
1618
1619 /* Grab the seqno we're going to make this request be, and bump the
1620 * next (skipping 0 so it can be the reserved no-seqno value).
1621 */
1622 seqno = dev_priv->mm.next_gem_seqno;
1623 dev_priv->mm.next_gem_seqno++;
1624 if (dev_priv->mm.next_gem_seqno == 0)
1625 dev_priv->mm.next_gem_seqno++;
1626
1627 BEGIN_LP_RING(4);
1628 OUT_RING(MI_STORE_DWORD_INDEX);
1629 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1630 OUT_RING(seqno);
1631
1632 OUT_RING(MI_USER_INTERRUPT);
1633 ADVANCE_LP_RING();
1634
44d98a61 1635 DRM_DEBUG_DRIVER("%d\n", seqno);
673a394b
EA
1636
1637 request->seqno = seqno;
1638 request->emitted_jiffies = jiffies;
673a394b
EA
1639 was_empty = list_empty(&dev_priv->mm.request_list);
1640 list_add_tail(&request->list, &dev_priv->mm.request_list);
b962442e
EA
1641 if (i915_file_priv) {
1642 list_add_tail(&request->client_list,
1643 &i915_file_priv->mm.request_list);
1644 } else {
1645 INIT_LIST_HEAD(&request->client_list);
1646 }
673a394b 1647
ce44b0ea
EA
1648 /* Associate any objects on the flushing list matching the write
1649 * domain we're flushing with our flush.
1650 */
63560396
DV
1651 if (flush_domains != 0)
1652 i915_gem_process_flushing_list(dev, flush_domains, seqno);
ce44b0ea 1653
f65d9421
BG
1654 if (!dev_priv->mm.suspended) {
1655 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1656 if (was_empty)
1657 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1658 }
673a394b
EA
1659 return seqno;
1660}
1661
1662/**
1663 * Command execution barrier
1664 *
1665 * Ensures that all commands in the ring are finished
1666 * before signalling the CPU
1667 */
3043c60c 1668static uint32_t
673a394b
EA
1669i915_retire_commands(struct drm_device *dev)
1670{
1671 drm_i915_private_t *dev_priv = dev->dev_private;
1672 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1673 uint32_t flush_domains = 0;
1674 RING_LOCALS;
1675
1676 /* The sampler always gets flushed on i965 (sigh) */
1677 if (IS_I965G(dev))
1678 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1679 BEGIN_LP_RING(2);
1680 OUT_RING(cmd);
1681 OUT_RING(0); /* noop */
1682 ADVANCE_LP_RING();
1683 return flush_domains;
1684}
1685
1686/**
1687 * Moves buffers associated only with the given active seqno from the active
1688 * to inactive list, potentially freeing them.
1689 */
1690static void
1691i915_gem_retire_request(struct drm_device *dev,
1692 struct drm_i915_gem_request *request)
1693{
1694 drm_i915_private_t *dev_priv = dev->dev_private;
1695
1c5d22f7
CW
1696 trace_i915_gem_request_retire(dev, request->seqno);
1697
673a394b
EA
1698 /* Move any buffers on the active list that are no longer referenced
1699 * by the ringbuffer to the flushing/inactive lists as appropriate.
1700 */
5e118f41 1701 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1702 while (!list_empty(&dev_priv->mm.active_list)) {
1703 struct drm_gem_object *obj;
1704 struct drm_i915_gem_object *obj_priv;
1705
1706 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1707 struct drm_i915_gem_object,
1708 list);
1709 obj = obj_priv->obj;
1710
1711 /* If the seqno being retired doesn't match the oldest in the
1712 * list, then the oldest in the list must still be newer than
1713 * this seqno.
1714 */
1715 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1716 goto out;
de151cf6 1717
673a394b
EA
1718#if WATCH_LRU
1719 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1720 __func__, request->seqno, obj);
1721#endif
1722
ce44b0ea
EA
1723 if (obj->write_domain != 0)
1724 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1725 else {
1726 /* Take a reference on the object so it won't be
1727 * freed while the spinlock is held. The list
1728 * protection for this spinlock is safe when breaking
1729 * the lock like this since the next thing we do
1730 * is just get the head of the list again.
1731 */
1732 drm_gem_object_reference(obj);
673a394b 1733 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1734 spin_unlock(&dev_priv->mm.active_list_lock);
1735 drm_gem_object_unreference(obj);
1736 spin_lock(&dev_priv->mm.active_list_lock);
1737 }
673a394b 1738 }
5e118f41
CW
1739out:
1740 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1741}
1742
1743/**
1744 * Returns true if seq1 is later than seq2.
1745 */
22be1724 1746bool
673a394b
EA
1747i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1748{
1749 return (int32_t)(seq1 - seq2) >= 0;
1750}
1751
1752uint32_t
1753i915_get_gem_seqno(struct drm_device *dev)
1754{
1755 drm_i915_private_t *dev_priv = dev->dev_private;
1756
1757 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1758}
1759
1760/**
1761 * This function clears the request list as sequence numbers are passed.
1762 */
1763void
1764i915_gem_retire_requests(struct drm_device *dev)
1765{
1766 drm_i915_private_t *dev_priv = dev->dev_private;
1767 uint32_t seqno;
1768
9d34e5db 1769 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
6c0594a3
KW
1770 return;
1771
673a394b
EA
1772 seqno = i915_get_gem_seqno(dev);
1773
1774 while (!list_empty(&dev_priv->mm.request_list)) {
1775 struct drm_i915_gem_request *request;
1776 uint32_t retiring_seqno;
1777
1778 request = list_first_entry(&dev_priv->mm.request_list,
1779 struct drm_i915_gem_request,
1780 list);
1781 retiring_seqno = request->seqno;
1782
1783 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1784 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1785 i915_gem_retire_request(dev, request);
1786
1787 list_del(&request->list);
b962442e 1788 list_del(&request->client_list);
9a298b2a 1789 kfree(request);
673a394b
EA
1790 } else
1791 break;
1792 }
9d34e5db
CW
1793
1794 if (unlikely (dev_priv->trace_irq_seqno &&
1795 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1796 i915_user_irq_put(dev);
1797 dev_priv->trace_irq_seqno = 0;
1798 }
673a394b
EA
1799}
1800
1801void
1802i915_gem_retire_work_handler(struct work_struct *work)
1803{
1804 drm_i915_private_t *dev_priv;
1805 struct drm_device *dev;
1806
1807 dev_priv = container_of(work, drm_i915_private_t,
1808 mm.retire_work.work);
1809 dev = dev_priv->dev;
1810
1811 mutex_lock(&dev->struct_mutex);
1812 i915_gem_retire_requests(dev);
6dbe2772
KP
1813 if (!dev_priv->mm.suspended &&
1814 !list_empty(&dev_priv->mm.request_list))
9c9fe1f8 1815 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1816 mutex_unlock(&dev->struct_mutex);
1817}
1818
5a5a0c64 1819int
48764bf4 1820i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
673a394b
EA
1821{
1822 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1823 u32 ier;
673a394b
EA
1824 int ret = 0;
1825
1826 BUG_ON(seqno == 0);
1827
ba1234d1 1828 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1829 return -EIO;
1830
673a394b 1831 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
bad720ff 1832 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1833 ier = I915_READ(DEIER) | I915_READ(GTIER);
1834 else
1835 ier = I915_READ(IER);
802c7eb6
JB
1836 if (!ier) {
1837 DRM_ERROR("something (likely vbetool) disabled "
1838 "interrupts, re-enabling\n");
1839 i915_driver_irq_preinstall(dev);
1840 i915_driver_irq_postinstall(dev);
1841 }
1842
1c5d22f7
CW
1843 trace_i915_gem_request_wait_begin(dev, seqno);
1844
673a394b
EA
1845 dev_priv->mm.waiting_gem_seqno = seqno;
1846 i915_user_irq_get(dev);
48764bf4
DV
1847 if (interruptible)
1848 ret = wait_event_interruptible(dev_priv->irq_queue,
1849 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1850 atomic_read(&dev_priv->mm.wedged));
1851 else
1852 wait_event(dev_priv->irq_queue,
1853 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1854 atomic_read(&dev_priv->mm.wedged));
1855
673a394b
EA
1856 i915_user_irq_put(dev);
1857 dev_priv->mm.waiting_gem_seqno = 0;
1c5d22f7
CW
1858
1859 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1860 }
ba1234d1 1861 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1862 ret = -EIO;
1863
1864 if (ret && ret != -ERESTARTSYS)
1865 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1866 __func__, ret, seqno, i915_get_gem_seqno(dev));
1867
1868 /* Directly dispatch request retiring. While we have the work queue
1869 * to handle this, the waiter on a request often wants an associated
1870 * buffer to have made it to the inactive list, and we would need
1871 * a separate wait queue to handle that.
1872 */
1873 if (ret == 0)
1874 i915_gem_retire_requests(dev);
1875
1876 return ret;
1877}
1878
48764bf4
DV
1879/**
1880 * Waits for a sequence number to be signaled, and cleans up the
1881 * request and object lists appropriately for that event.
1882 */
1883static int
1884i915_wait_request(struct drm_device *dev, uint32_t seqno)
1885{
1886 return i915_do_wait_request(dev, seqno, 1);
1887}
1888
673a394b
EA
1889static void
1890i915_gem_flush(struct drm_device *dev,
1891 uint32_t invalidate_domains,
1892 uint32_t flush_domains)
1893{
1894 drm_i915_private_t *dev_priv = dev->dev_private;
1895 uint32_t cmd;
1896 RING_LOCALS;
1897
1898#if WATCH_EXEC
1899 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1900 invalidate_domains, flush_domains);
1901#endif
1c5d22f7
CW
1902 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1903 invalidate_domains, flush_domains);
673a394b
EA
1904
1905 if (flush_domains & I915_GEM_DOMAIN_CPU)
1906 drm_agp_chipset_flush(dev);
1907
21d509e3 1908 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
673a394b
EA
1909 /*
1910 * read/write caches:
1911 *
1912 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1913 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1914 * also flushed at 2d versus 3d pipeline switches.
1915 *
1916 * read-only caches:
1917 *
1918 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1919 * MI_READ_FLUSH is set, and is always flushed on 965.
1920 *
1921 * I915_GEM_DOMAIN_COMMAND may not exist?
1922 *
1923 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1924 * invalidated when MI_EXE_FLUSH is set.
1925 *
1926 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1927 * invalidated with every MI_FLUSH.
1928 *
1929 * TLBs:
1930 *
1931 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1932 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1933 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1934 * are flushed at any MI_FLUSH.
1935 */
1936
1937 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1938 if ((invalidate_domains|flush_domains) &
1939 I915_GEM_DOMAIN_RENDER)
1940 cmd &= ~MI_NO_WRITE_FLUSH;
1941 if (!IS_I965G(dev)) {
1942 /*
1943 * On the 965, the sampler cache always gets flushed
1944 * and this bit is reserved.
1945 */
1946 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1947 cmd |= MI_READ_FLUSH;
1948 }
1949 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1950 cmd |= MI_EXE_FLUSH;
1951
1952#if WATCH_EXEC
1953 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1954#endif
1955 BEGIN_LP_RING(2);
1956 OUT_RING(cmd);
48764bf4 1957 OUT_RING(MI_NOOP);
673a394b
EA
1958 ADVANCE_LP_RING();
1959 }
1960}
1961
1962/**
1963 * Ensures that all rendering to the object has completed and the object is
1964 * safe to unbind from the GTT or access from the CPU.
1965 */
1966static int
1967i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1968{
1969 struct drm_device *dev = obj->dev;
1970 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1971 int ret;
1972
e47c68e9
EA
1973 /* This function only exists to support waiting for existing rendering,
1974 * not for emitting required flushes.
673a394b 1975 */
e47c68e9 1976 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1977
1978 /* If there is rendering queued on the buffer being evicted, wait for
1979 * it.
1980 */
1981 if (obj_priv->active) {
1982#if WATCH_BUF
1983 DRM_INFO("%s: object %p wait for seqno %08x\n",
1984 __func__, obj, obj_priv->last_rendering_seqno);
1985#endif
1986 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1987 if (ret != 0)
1988 return ret;
1989 }
1990
1991 return 0;
1992}
1993
1994/**
1995 * Unbinds an object from the GTT aperture.
1996 */
0f973f27 1997int
673a394b
EA
1998i915_gem_object_unbind(struct drm_gem_object *obj)
1999{
2000 struct drm_device *dev = obj->dev;
4a87b8ca 2001 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2002 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2003 int ret = 0;
2004
2005#if WATCH_BUF
2006 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2007 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2008#endif
2009 if (obj_priv->gtt_space == NULL)
2010 return 0;
2011
2012 if (obj_priv->pin_count != 0) {
2013 DRM_ERROR("Attempting to unbind pinned buffer\n");
2014 return -EINVAL;
2015 }
2016
5323fd04
EA
2017 /* blow away mappings if mapped through GTT */
2018 i915_gem_release_mmap(obj);
2019
673a394b
EA
2020 /* Move the object to the CPU domain to ensure that
2021 * any possible CPU writes while it's not in the GTT
2022 * are flushed when we go to remap it. This will
2023 * also ensure that all pending GPU writes are finished
2024 * before we unbind.
2025 */
e47c68e9 2026 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 2027 if (ret) {
e47c68e9
EA
2028 if (ret != -ERESTARTSYS)
2029 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
2030 return ret;
2031 }
2032
5323fd04
EA
2033 BUG_ON(obj_priv->active);
2034
96b47b65
DV
2035 /* release the fence reg _after_ flushing */
2036 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2037 i915_gem_clear_fence_reg(obj);
2038
673a394b
EA
2039 if (obj_priv->agp_mem != NULL) {
2040 drm_unbind_agp(obj_priv->agp_mem);
2041 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2042 obj_priv->agp_mem = NULL;
2043 }
2044
856fa198 2045 i915_gem_object_put_pages(obj);
a32808c0 2046 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2047
2048 if (obj_priv->gtt_space) {
2049 atomic_dec(&dev->gtt_count);
2050 atomic_sub(obj->size, &dev->gtt_memory);
2051
2052 drm_mm_put_block(obj_priv->gtt_space);
2053 obj_priv->gtt_space = NULL;
2054 }
2055
2056 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2057 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2058 if (!list_empty(&obj_priv->list))
2059 list_del_init(&obj_priv->list);
4a87b8ca 2060 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2061
963b4836
CW
2062 if (i915_gem_object_is_purgeable(obj_priv))
2063 i915_gem_object_truncate(obj);
2064
1c5d22f7
CW
2065 trace_i915_gem_object_unbind(obj);
2066
673a394b
EA
2067 return 0;
2068}
2069
07f73f69
CW
2070static struct drm_gem_object *
2071i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2072{
2073 drm_i915_private_t *dev_priv = dev->dev_private;
2074 struct drm_i915_gem_object *obj_priv;
2075 struct drm_gem_object *best = NULL;
2076 struct drm_gem_object *first = NULL;
2077
2078 /* Try to find the smallest clean object */
2079 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2080 struct drm_gem_object *obj = obj_priv->obj;
2081 if (obj->size >= min_size) {
963b4836
CW
2082 if ((!obj_priv->dirty ||
2083 i915_gem_object_is_purgeable(obj_priv)) &&
07f73f69
CW
2084 (!best || obj->size < best->size)) {
2085 best = obj;
2086 if (best->size == min_size)
2087 return best;
2088 }
2089 if (!first)
2090 first = obj;
2091 }
2092 }
2093
2094 return best ? best : first;
2095}
2096
4df2faf4
DV
2097static int
2098i915_gpu_idle(struct drm_device *dev)
2099{
2100 drm_i915_private_t *dev_priv = dev->dev_private;
2101 bool lists_empty;
2102 uint32_t seqno;
2103
2104 spin_lock(&dev_priv->mm.active_list_lock);
2105 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2106 list_empty(&dev_priv->mm.active_list);
2107 spin_unlock(&dev_priv->mm.active_list_lock);
2108
2109 if (lists_empty)
2110 return 0;
2111
2112 /* Flush everything onto the inactive list. */
2113 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2114 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2115 if (seqno == 0)
2116 return -ENOMEM;
2117
2118 return i915_wait_request(dev, seqno);
2119}
2120
673a394b 2121static int
07f73f69
CW
2122i915_gem_evict_everything(struct drm_device *dev)
2123{
2124 drm_i915_private_t *dev_priv = dev->dev_private;
07f73f69
CW
2125 int ret;
2126 bool lists_empty;
2127
07f73f69
CW
2128 spin_lock(&dev_priv->mm.active_list_lock);
2129 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2130 list_empty(&dev_priv->mm.flushing_list) &&
2131 list_empty(&dev_priv->mm.active_list));
2132 spin_unlock(&dev_priv->mm.active_list_lock);
2133
9731129c 2134 if (lists_empty)
07f73f69 2135 return -ENOSPC;
07f73f69
CW
2136
2137 /* Flush everything (on to the inactive lists) and evict */
4df2faf4 2138 ret = i915_gpu_idle(dev);
07f73f69
CW
2139 if (ret)
2140 return ret;
2141
99fcb766
DV
2142 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2143
ab5ee576 2144 ret = i915_gem_evict_from_inactive_list(dev);
07f73f69
CW
2145 if (ret)
2146 return ret;
2147
2148 spin_lock(&dev_priv->mm.active_list_lock);
2149 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2150 list_empty(&dev_priv->mm.flushing_list) &&
2151 list_empty(&dev_priv->mm.active_list));
2152 spin_unlock(&dev_priv->mm.active_list_lock);
2153 BUG_ON(!lists_empty);
2154
2155 return 0;
2156}
2157
673a394b 2158static int
07f73f69 2159i915_gem_evict_something(struct drm_device *dev, int min_size)
673a394b
EA
2160{
2161 drm_i915_private_t *dev_priv = dev->dev_private;
2162 struct drm_gem_object *obj;
07f73f69 2163 int ret;
673a394b
EA
2164
2165 for (;;) {
07f73f69
CW
2166 i915_gem_retire_requests(dev);
2167
673a394b
EA
2168 /* If there's an inactive buffer available now, grab it
2169 * and be done.
2170 */
07f73f69
CW
2171 obj = i915_gem_find_inactive_object(dev, min_size);
2172 if (obj) {
2173 struct drm_i915_gem_object *obj_priv;
2174
673a394b
EA
2175#if WATCH_LRU
2176 DRM_INFO("%s: evicting %p\n", __func__, obj);
2177#endif
07f73f69
CW
2178 obj_priv = obj->driver_private;
2179 BUG_ON(obj_priv->pin_count != 0);
673a394b
EA
2180 BUG_ON(obj_priv->active);
2181
2182 /* Wait on the rendering and unbind the buffer. */
07f73f69 2183 return i915_gem_object_unbind(obj);
673a394b
EA
2184 }
2185
2186 /* If we didn't get anything, but the ring is still processing
07f73f69
CW
2187 * things, wait for the next to finish and hopefully leave us
2188 * a buffer to evict.
673a394b
EA
2189 */
2190 if (!list_empty(&dev_priv->mm.request_list)) {
2191 struct drm_i915_gem_request *request;
2192
2193 request = list_first_entry(&dev_priv->mm.request_list,
2194 struct drm_i915_gem_request,
2195 list);
2196
2197 ret = i915_wait_request(dev, request->seqno);
2198 if (ret)
07f73f69 2199 return ret;
673a394b 2200
07f73f69 2201 continue;
673a394b
EA
2202 }
2203
2204 /* If we didn't have anything on the request list but there
2205 * are buffers awaiting a flush, emit one and try again.
2206 * When we wait on it, those buffers waiting for that flush
2207 * will get moved to inactive.
2208 */
2209 if (!list_empty(&dev_priv->mm.flushing_list)) {
07f73f69 2210 struct drm_i915_gem_object *obj_priv;
673a394b 2211
9a1e2582
CW
2212 /* Find an object that we can immediately reuse */
2213 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2214 obj = obj_priv->obj;
2215 if (obj->size >= min_size)
2216 break;
673a394b 2217
9a1e2582
CW
2218 obj = NULL;
2219 }
673a394b 2220
9a1e2582
CW
2221 if (obj != NULL) {
2222 uint32_t seqno;
673a394b 2223
9a1e2582
CW
2224 i915_gem_flush(dev,
2225 obj->write_domain,
2226 obj->write_domain);
2227 seqno = i915_add_request(dev, NULL, obj->write_domain);
2228 if (seqno == 0)
2229 return -ENOMEM;
9a1e2582
CW
2230 continue;
2231 }
673a394b
EA
2232 }
2233
07f73f69
CW
2234 /* If we didn't do any of the above, there's no single buffer
2235 * large enough to swap out for the new one, so just evict
2236 * everything and start again. (This should be rare.)
673a394b 2237 */
9731129c 2238 if (!list_empty (&dev_priv->mm.inactive_list))
ab5ee576 2239 return i915_gem_evict_from_inactive_list(dev);
9731129c 2240 else
07f73f69 2241 return i915_gem_evict_everything(dev);
ac94a962 2242 }
ac94a962
KP
2243}
2244
6911a9b8 2245int
4bdadb97
CW
2246i915_gem_object_get_pages(struct drm_gem_object *obj,
2247 gfp_t gfpmask)
673a394b
EA
2248{
2249 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2250 int page_count, i;
2251 struct address_space *mapping;
2252 struct inode *inode;
2253 struct page *page;
2254 int ret;
2255
856fa198 2256 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2257 return 0;
2258
2259 /* Get the list of pages out of our struct file. They'll be pinned
2260 * at this point until we release them.
2261 */
2262 page_count = obj->size / PAGE_SIZE;
856fa198 2263 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2264 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2265 if (obj_priv->pages == NULL) {
856fa198 2266 obj_priv->pages_refcount--;
673a394b
EA
2267 return -ENOMEM;
2268 }
2269
2270 inode = obj->filp->f_path.dentry->d_inode;
2271 mapping = inode->i_mapping;
2272 for (i = 0; i < page_count; i++) {
4bdadb97
CW
2273 page = read_cache_page_gfp(mapping, i,
2274 mapping_gfp_mask (mapping) |
2275 __GFP_COLD |
2276 gfpmask);
673a394b
EA
2277 if (IS_ERR(page)) {
2278 ret = PTR_ERR(page);
856fa198 2279 i915_gem_object_put_pages(obj);
673a394b
EA
2280 return ret;
2281 }
856fa198 2282 obj_priv->pages[i] = page;
673a394b 2283 }
280b713b
EA
2284
2285 if (obj_priv->tiling_mode != I915_TILING_NONE)
2286 i915_gem_object_do_bit_17_swizzle(obj);
2287
673a394b
EA
2288 return 0;
2289}
2290
4e901fdc
EA
2291static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2292{
2293 struct drm_gem_object *obj = reg->obj;
2294 struct drm_device *dev = obj->dev;
2295 drm_i915_private_t *dev_priv = dev->dev_private;
2296 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2297 int regnum = obj_priv->fence_reg;
2298 uint64_t val;
2299
2300 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2301 0xfffff000) << 32;
2302 val |= obj_priv->gtt_offset & 0xfffff000;
2303 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2304 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2305
2306 if (obj_priv->tiling_mode == I915_TILING_Y)
2307 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2308 val |= I965_FENCE_REG_VALID;
2309
2310 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2311}
2312
de151cf6
JB
2313static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2314{
2315 struct drm_gem_object *obj = reg->obj;
2316 struct drm_device *dev = obj->dev;
2317 drm_i915_private_t *dev_priv = dev->dev_private;
2318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2319 int regnum = obj_priv->fence_reg;
2320 uint64_t val;
2321
2322 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2323 0xfffff000) << 32;
2324 val |= obj_priv->gtt_offset & 0xfffff000;
2325 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2326 if (obj_priv->tiling_mode == I915_TILING_Y)
2327 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2328 val |= I965_FENCE_REG_VALID;
2329
2330 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2331}
2332
2333static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2334{
2335 struct drm_gem_object *obj = reg->obj;
2336 struct drm_device *dev = obj->dev;
2337 drm_i915_private_t *dev_priv = dev->dev_private;
2338 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2339 int regnum = obj_priv->fence_reg;
0f973f27 2340 int tile_width;
dc529a4f 2341 uint32_t fence_reg, val;
de151cf6
JB
2342 uint32_t pitch_val;
2343
2344 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2345 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2346 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2347 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2348 return;
2349 }
2350
0f973f27
JB
2351 if (obj_priv->tiling_mode == I915_TILING_Y &&
2352 HAS_128_BYTE_Y_TILING(dev))
2353 tile_width = 128;
de151cf6 2354 else
0f973f27
JB
2355 tile_width = 512;
2356
2357 /* Note: pitch better be a power of two tile widths */
2358 pitch_val = obj_priv->stride / tile_width;
2359 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2360
2361 val = obj_priv->gtt_offset;
2362 if (obj_priv->tiling_mode == I915_TILING_Y)
2363 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2364 val |= I915_FENCE_SIZE_BITS(obj->size);
2365 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2366 val |= I830_FENCE_REG_VALID;
2367
dc529a4f
EA
2368 if (regnum < 8)
2369 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2370 else
2371 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2372 I915_WRITE(fence_reg, val);
de151cf6
JB
2373}
2374
2375static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2376{
2377 struct drm_gem_object *obj = reg->obj;
2378 struct drm_device *dev = obj->dev;
2379 drm_i915_private_t *dev_priv = dev->dev_private;
2380 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2381 int regnum = obj_priv->fence_reg;
2382 uint32_t val;
2383 uint32_t pitch_val;
8d7773a3 2384 uint32_t fence_size_bits;
de151cf6 2385
8d7773a3 2386 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2387 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2388 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2389 __func__, obj_priv->gtt_offset);
de151cf6
JB
2390 return;
2391 }
2392
e76a16de
EA
2393 pitch_val = obj_priv->stride / 128;
2394 pitch_val = ffs(pitch_val) - 1;
2395 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2396
de151cf6
JB
2397 val = obj_priv->gtt_offset;
2398 if (obj_priv->tiling_mode == I915_TILING_Y)
2399 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2400 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2401 WARN_ON(fence_size_bits & ~0x00000f00);
2402 val |= fence_size_bits;
de151cf6
JB
2403 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2404 val |= I830_FENCE_REG_VALID;
2405
2406 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2407}
2408
ae3db24a
DV
2409static int i915_find_fence_reg(struct drm_device *dev)
2410{
2411 struct drm_i915_fence_reg *reg = NULL;
2412 struct drm_i915_gem_object *obj_priv = NULL;
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 struct drm_gem_object *obj = NULL;
2415 int i, avail, ret;
2416
2417 /* First try to find a free reg */
2418 avail = 0;
2419 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2420 reg = &dev_priv->fence_regs[i];
2421 if (!reg->obj)
2422 return i;
2423
2424 obj_priv = reg->obj->driver_private;
2425 if (!obj_priv->pin_count)
2426 avail++;
2427 }
2428
2429 if (avail == 0)
2430 return -ENOSPC;
2431
2432 /* None available, try to steal one or wait for a user to finish */
2433 i = I915_FENCE_REG_NONE;
2434 list_for_each_entry(obj_priv, &dev_priv->mm.fence_list,
2435 fence_list) {
2436 obj = obj_priv->obj;
2437
2438 if (obj_priv->pin_count)
2439 continue;
2440
2441 /* found one! */
2442 i = obj_priv->fence_reg;
2443 break;
2444 }
2445
2446 BUG_ON(i == I915_FENCE_REG_NONE);
2447
2448 /* We only have a reference on obj from the active list. put_fence_reg
2449 * might drop that one, causing a use-after-free in it. So hold a
2450 * private reference to obj like the other callers of put_fence_reg
2451 * (set_tiling ioctl) do. */
2452 drm_gem_object_reference(obj);
2453 ret = i915_gem_object_put_fence_reg(obj);
2454 drm_gem_object_unreference(obj);
2455 if (ret != 0)
2456 return ret;
2457
2458 return i;
2459}
2460
de151cf6
JB
2461/**
2462 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2463 * @obj: object to map through a fence reg
2464 *
2465 * When mapping objects through the GTT, userspace wants to be able to write
2466 * to them without having to worry about swizzling if the object is tiled.
2467 *
2468 * This function walks the fence regs looking for a free one for @obj,
2469 * stealing one if it can't find any.
2470 *
2471 * It then sets up the reg based on the object's properties: address, pitch
2472 * and tiling format.
2473 */
8c4b8c3f
CW
2474int
2475i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2476{
2477 struct drm_device *dev = obj->dev;
79e53945 2478 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2479 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2480 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2481 int ret;
de151cf6 2482
a09ba7fa
EA
2483 /* Just update our place in the LRU if our fence is getting used. */
2484 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2485 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2486 return 0;
2487 }
2488
de151cf6
JB
2489 switch (obj_priv->tiling_mode) {
2490 case I915_TILING_NONE:
2491 WARN(1, "allocating a fence for non-tiled object?\n");
2492 break;
2493 case I915_TILING_X:
0f973f27
JB
2494 if (!obj_priv->stride)
2495 return -EINVAL;
2496 WARN((obj_priv->stride & (512 - 1)),
2497 "object 0x%08x is X tiled but has non-512B pitch\n",
2498 obj_priv->gtt_offset);
de151cf6
JB
2499 break;
2500 case I915_TILING_Y:
0f973f27
JB
2501 if (!obj_priv->stride)
2502 return -EINVAL;
2503 WARN((obj_priv->stride & (128 - 1)),
2504 "object 0x%08x is Y tiled but has non-128B pitch\n",
2505 obj_priv->gtt_offset);
de151cf6
JB
2506 break;
2507 }
2508
ae3db24a
DV
2509 ret = i915_find_fence_reg(dev);
2510 if (ret < 0)
2511 return ret;
de151cf6 2512
ae3db24a
DV
2513 obj_priv->fence_reg = ret;
2514 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
a09ba7fa
EA
2515 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2516
de151cf6
JB
2517 reg->obj = obj;
2518
4e901fdc
EA
2519 if (IS_GEN6(dev))
2520 sandybridge_write_fence_reg(reg);
2521 else if (IS_I965G(dev))
de151cf6
JB
2522 i965_write_fence_reg(reg);
2523 else if (IS_I9XX(dev))
2524 i915_write_fence_reg(reg);
2525 else
2526 i830_write_fence_reg(reg);
d9ddcb96 2527
ae3db24a
DV
2528 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2529 obj_priv->tiling_mode);
1c5d22f7 2530
d9ddcb96 2531 return 0;
de151cf6
JB
2532}
2533
2534/**
2535 * i915_gem_clear_fence_reg - clear out fence register info
2536 * @obj: object to clear
2537 *
2538 * Zeroes out the fence register itself and clears out the associated
2539 * data structures in dev_priv and obj_priv.
2540 */
2541static void
2542i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2543{
2544 struct drm_device *dev = obj->dev;
79e53945 2545 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2546 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2547
4e901fdc
EA
2548 if (IS_GEN6(dev)) {
2549 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2550 (obj_priv->fence_reg * 8), 0);
2551 } else if (IS_I965G(dev)) {
de151cf6 2552 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2553 } else {
dc529a4f
EA
2554 uint32_t fence_reg;
2555
2556 if (obj_priv->fence_reg < 8)
2557 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2558 else
2559 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2560 8) * 4;
2561
2562 I915_WRITE(fence_reg, 0);
2563 }
de151cf6
JB
2564
2565 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2566 obj_priv->fence_reg = I915_FENCE_REG_NONE;
a09ba7fa 2567 list_del_init(&obj_priv->fence_list);
de151cf6
JB
2568}
2569
52dc7d32
CW
2570/**
2571 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2572 * to the buffer to finish, and then resets the fence register.
2573 * @obj: tiled object holding a fence register.
2574 *
2575 * Zeroes out the fence register itself and clears out the associated
2576 * data structures in dev_priv and obj_priv.
2577 */
2578int
2579i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2580{
2581 struct drm_device *dev = obj->dev;
2582 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2583
2584 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2585 return 0;
2586
10ae9bd2
DV
2587 /* If we've changed tiling, GTT-mappings of the object
2588 * need to re-fault to ensure that the correct fence register
2589 * setup is in place.
2590 */
2591 i915_gem_release_mmap(obj);
2592
52dc7d32
CW
2593 /* On the i915, GPU access to tiled buffers is via a fence,
2594 * therefore we must wait for any outstanding access to complete
2595 * before clearing the fence.
2596 */
2597 if (!IS_I965G(dev)) {
2598 int ret;
2599
2600 i915_gem_object_flush_gpu_write_domain(obj);
52dc7d32
CW
2601 ret = i915_gem_object_wait_rendering(obj);
2602 if (ret != 0)
2603 return ret;
2604 }
2605
4a726612 2606 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2607 i915_gem_clear_fence_reg (obj);
2608
2609 return 0;
2610}
2611
673a394b
EA
2612/**
2613 * Finds free space in the GTT aperture and binds the object there.
2614 */
2615static int
2616i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2617{
2618 struct drm_device *dev = obj->dev;
2619 drm_i915_private_t *dev_priv = dev->dev_private;
2620 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2621 struct drm_mm_node *free_space;
4bdadb97 2622 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2623 int ret;
673a394b 2624
bb6baf76 2625 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2626 DRM_ERROR("Attempting to bind a purgeable object\n");
2627 return -EINVAL;
2628 }
2629
673a394b 2630 if (alignment == 0)
0f973f27 2631 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2632 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2633 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2634 return -EINVAL;
2635 }
2636
2637 search_free:
2638 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2639 obj->size, alignment, 0);
2640 if (free_space != NULL) {
2641 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2642 alignment);
2643 if (obj_priv->gtt_space != NULL) {
2644 obj_priv->gtt_space->private = obj;
2645 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2646 }
2647 }
2648 if (obj_priv->gtt_space == NULL) {
2649 /* If the gtt is empty and we're still having trouble
2650 * fitting our object in, we're out of memory.
2651 */
2652#if WATCH_LRU
2653 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2654#endif
07f73f69 2655 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2656 if (ret)
673a394b 2657 return ret;
9731129c 2658
673a394b
EA
2659 goto search_free;
2660 }
2661
2662#if WATCH_BUF
cfd43c02 2663 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2664 obj->size, obj_priv->gtt_offset);
2665#endif
4bdadb97 2666 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2667 if (ret) {
2668 drm_mm_put_block(obj_priv->gtt_space);
2669 obj_priv->gtt_space = NULL;
07f73f69
CW
2670
2671 if (ret == -ENOMEM) {
2672 /* first try to clear up some space from the GTT */
2673 ret = i915_gem_evict_something(dev, obj->size);
2674 if (ret) {
07f73f69 2675 /* now try to shrink everyone else */
4bdadb97
CW
2676 if (gfpmask) {
2677 gfpmask = 0;
2678 goto search_free;
07f73f69
CW
2679 }
2680
2681 return ret;
2682 }
2683
2684 goto search_free;
2685 }
2686
673a394b
EA
2687 return ret;
2688 }
2689
673a394b
EA
2690 /* Create an AGP memory structure pointing at our pages, and bind it
2691 * into the GTT.
2692 */
2693 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2694 obj_priv->pages,
07f73f69 2695 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2696 obj_priv->gtt_offset,
2697 obj_priv->agp_type);
673a394b 2698 if (obj_priv->agp_mem == NULL) {
856fa198 2699 i915_gem_object_put_pages(obj);
673a394b
EA
2700 drm_mm_put_block(obj_priv->gtt_space);
2701 obj_priv->gtt_space = NULL;
07f73f69
CW
2702
2703 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2704 if (ret)
07f73f69 2705 return ret;
07f73f69
CW
2706
2707 goto search_free;
673a394b
EA
2708 }
2709 atomic_inc(&dev->gtt_count);
2710 atomic_add(obj->size, &dev->gtt_memory);
2711
2712 /* Assert that the object is not currently in any GPU domain. As it
2713 * wasn't in the GTT, there shouldn't be any way it could have been in
2714 * a GPU cache
2715 */
21d509e3
CW
2716 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2717 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2718
1c5d22f7
CW
2719 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2720
673a394b
EA
2721 return 0;
2722}
2723
2724void
2725i915_gem_clflush_object(struct drm_gem_object *obj)
2726{
2727 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2728
2729 /* If we don't have a page list set up, then we're not pinned
2730 * to GPU, and we can ignore the cache flush because it'll happen
2731 * again at bind time.
2732 */
856fa198 2733 if (obj_priv->pages == NULL)
673a394b
EA
2734 return;
2735
1c5d22f7 2736 trace_i915_gem_object_clflush(obj);
cfa16a0d 2737
856fa198 2738 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2739}
2740
e47c68e9
EA
2741/** Flushes any GPU write domain for the object if it's dirty. */
2742static void
2743i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2744{
2745 struct drm_device *dev = obj->dev;
1c5d22f7 2746 uint32_t old_write_domain;
e47c68e9
EA
2747
2748 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2749 return;
2750
2751 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2752 old_write_domain = obj->write_domain;
e47c68e9 2753 i915_gem_flush(dev, 0, obj->write_domain);
922a2efc 2754 (void) i915_add_request(dev, NULL, obj->write_domain);
99fcb766 2755 BUG_ON(obj->write_domain);
1c5d22f7
CW
2756
2757 trace_i915_gem_object_change_domain(obj,
2758 obj->read_domains,
2759 old_write_domain);
e47c68e9
EA
2760}
2761
2762/** Flushes the GTT write domain for the object if it's dirty. */
2763static void
2764i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2765{
1c5d22f7
CW
2766 uint32_t old_write_domain;
2767
e47c68e9
EA
2768 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2769 return;
2770
2771 /* No actual flushing is required for the GTT write domain. Writes
2772 * to it immediately go to main memory as far as we know, so there's
2773 * no chipset flush. It also doesn't land in render cache.
2774 */
1c5d22f7 2775 old_write_domain = obj->write_domain;
e47c68e9 2776 obj->write_domain = 0;
1c5d22f7
CW
2777
2778 trace_i915_gem_object_change_domain(obj,
2779 obj->read_domains,
2780 old_write_domain);
e47c68e9
EA
2781}
2782
2783/** Flushes the CPU write domain for the object if it's dirty. */
2784static void
2785i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2786{
2787 struct drm_device *dev = obj->dev;
1c5d22f7 2788 uint32_t old_write_domain;
e47c68e9
EA
2789
2790 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2791 return;
2792
2793 i915_gem_clflush_object(obj);
2794 drm_agp_chipset_flush(dev);
1c5d22f7 2795 old_write_domain = obj->write_domain;
e47c68e9 2796 obj->write_domain = 0;
1c5d22f7
CW
2797
2798 trace_i915_gem_object_change_domain(obj,
2799 obj->read_domains,
2800 old_write_domain);
e47c68e9
EA
2801}
2802
6b95a207
KH
2803void
2804i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2805{
2806 switch (obj->write_domain) {
2807 case I915_GEM_DOMAIN_GTT:
2808 i915_gem_object_flush_gtt_write_domain(obj);
2809 break;
2810 case I915_GEM_DOMAIN_CPU:
2811 i915_gem_object_flush_cpu_write_domain(obj);
2812 break;
2813 default:
2814 i915_gem_object_flush_gpu_write_domain(obj);
2815 break;
2816 }
2817}
2818
2ef7eeaa
EA
2819/**
2820 * Moves a single object to the GTT read, and possibly write domain.
2821 *
2822 * This function returns when the move is complete, including waiting on
2823 * flushes to occur.
2824 */
79e53945 2825int
2ef7eeaa
EA
2826i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2827{
2ef7eeaa 2828 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 2829 uint32_t old_write_domain, old_read_domains;
e47c68e9 2830 int ret;
2ef7eeaa 2831
02354392
EA
2832 /* Not valid to be called on unbound objects. */
2833 if (obj_priv->gtt_space == NULL)
2834 return -EINVAL;
2835
e47c68e9
EA
2836 i915_gem_object_flush_gpu_write_domain(obj);
2837 /* Wait on any GPU rendering and flushing to occur. */
2838 ret = i915_gem_object_wait_rendering(obj);
2839 if (ret != 0)
2840 return ret;
2841
1c5d22f7
CW
2842 old_write_domain = obj->write_domain;
2843 old_read_domains = obj->read_domains;
2844
e47c68e9
EA
2845 /* If we're writing through the GTT domain, then CPU and GPU caches
2846 * will need to be invalidated at next use.
2ef7eeaa 2847 */
e47c68e9
EA
2848 if (write)
2849 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2850
e47c68e9 2851 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2852
e47c68e9
EA
2853 /* It should now be out of any other write domains, and we can update
2854 * the domain values for our changes.
2855 */
2856 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2857 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2858 if (write) {
2859 obj->write_domain = I915_GEM_DOMAIN_GTT;
2860 obj_priv->dirty = 1;
2ef7eeaa
EA
2861 }
2862
1c5d22f7
CW
2863 trace_i915_gem_object_change_domain(obj,
2864 old_read_domains,
2865 old_write_domain);
2866
e47c68e9
EA
2867 return 0;
2868}
2869
b9241ea3
ZW
2870/*
2871 * Prepare buffer for display plane. Use uninterruptible for possible flush
2872 * wait, as in modesetting process we're not supposed to be interrupted.
2873 */
2874int
2875i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2876{
2877 struct drm_device *dev = obj->dev;
2878 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2879 uint32_t old_write_domain, old_read_domains;
2880 int ret;
2881
2882 /* Not valid to be called on unbound objects. */
2883 if (obj_priv->gtt_space == NULL)
2884 return -EINVAL;
2885
2886 i915_gem_object_flush_gpu_write_domain(obj);
2887
2888 /* Wait on any GPU rendering and flushing to occur. */
2889 if (obj_priv->active) {
2890#if WATCH_BUF
2891 DRM_INFO("%s: object %p wait for seqno %08x\n",
2892 __func__, obj, obj_priv->last_rendering_seqno);
2893#endif
2894 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2895 if (ret != 0)
2896 return ret;
2897 }
2898
2899 old_write_domain = obj->write_domain;
2900 old_read_domains = obj->read_domains;
2901
2902 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2903
2904 i915_gem_object_flush_cpu_write_domain(obj);
2905
2906 /* It should now be out of any other write domains, and we can update
2907 * the domain values for our changes.
2908 */
2909 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2910 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2911 obj->write_domain = I915_GEM_DOMAIN_GTT;
2912 obj_priv->dirty = 1;
2913
2914 trace_i915_gem_object_change_domain(obj,
2915 old_read_domains,
2916 old_write_domain);
2917
2918 return 0;
2919}
2920
e47c68e9
EA
2921/**
2922 * Moves a single object to the CPU read, and possibly write domain.
2923 *
2924 * This function returns when the move is complete, including waiting on
2925 * flushes to occur.
2926 */
2927static int
2928i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2929{
1c5d22f7 2930 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2931 int ret;
2932
2933 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2934 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2935 ret = i915_gem_object_wait_rendering(obj);
2936 if (ret != 0)
2937 return ret;
2ef7eeaa 2938
e47c68e9 2939 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2940
e47c68e9
EA
2941 /* If we have a partially-valid cache of the object in the CPU,
2942 * finish invalidating it and free the per-page flags.
2ef7eeaa 2943 */
e47c68e9 2944 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2945
1c5d22f7
CW
2946 old_write_domain = obj->write_domain;
2947 old_read_domains = obj->read_domains;
2948
e47c68e9
EA
2949 /* Flush the CPU cache if it's still invalid. */
2950 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2951 i915_gem_clflush_object(obj);
2ef7eeaa 2952
e47c68e9 2953 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2954 }
2955
2956 /* It should now be out of any other write domains, and we can update
2957 * the domain values for our changes.
2958 */
e47c68e9
EA
2959 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2960
2961 /* If we're writing through the CPU, then the GPU read domains will
2962 * need to be invalidated at next use.
2963 */
2964 if (write) {
2965 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2966 obj->write_domain = I915_GEM_DOMAIN_CPU;
2967 }
2ef7eeaa 2968
1c5d22f7
CW
2969 trace_i915_gem_object_change_domain(obj,
2970 old_read_domains,
2971 old_write_domain);
2972
2ef7eeaa
EA
2973 return 0;
2974}
2975
673a394b
EA
2976/*
2977 * Set the next domain for the specified object. This
2978 * may not actually perform the necessary flushing/invaliding though,
2979 * as that may want to be batched with other set_domain operations
2980 *
2981 * This is (we hope) the only really tricky part of gem. The goal
2982 * is fairly simple -- track which caches hold bits of the object
2983 * and make sure they remain coherent. A few concrete examples may
2984 * help to explain how it works. For shorthand, we use the notation
2985 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2986 * a pair of read and write domain masks.
2987 *
2988 * Case 1: the batch buffer
2989 *
2990 * 1. Allocated
2991 * 2. Written by CPU
2992 * 3. Mapped to GTT
2993 * 4. Read by GPU
2994 * 5. Unmapped from GTT
2995 * 6. Freed
2996 *
2997 * Let's take these a step at a time
2998 *
2999 * 1. Allocated
3000 * Pages allocated from the kernel may still have
3001 * cache contents, so we set them to (CPU, CPU) always.
3002 * 2. Written by CPU (using pwrite)
3003 * The pwrite function calls set_domain (CPU, CPU) and
3004 * this function does nothing (as nothing changes)
3005 * 3. Mapped by GTT
3006 * This function asserts that the object is not
3007 * currently in any GPU-based read or write domains
3008 * 4. Read by GPU
3009 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3010 * As write_domain is zero, this function adds in the
3011 * current read domains (CPU+COMMAND, 0).
3012 * flush_domains is set to CPU.
3013 * invalidate_domains is set to COMMAND
3014 * clflush is run to get data out of the CPU caches
3015 * then i915_dev_set_domain calls i915_gem_flush to
3016 * emit an MI_FLUSH and drm_agp_chipset_flush
3017 * 5. Unmapped from GTT
3018 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3019 * flush_domains and invalidate_domains end up both zero
3020 * so no flushing/invalidating happens
3021 * 6. Freed
3022 * yay, done
3023 *
3024 * Case 2: The shared render buffer
3025 *
3026 * 1. Allocated
3027 * 2. Mapped to GTT
3028 * 3. Read/written by GPU
3029 * 4. set_domain to (CPU,CPU)
3030 * 5. Read/written by CPU
3031 * 6. Read/written by GPU
3032 *
3033 * 1. Allocated
3034 * Same as last example, (CPU, CPU)
3035 * 2. Mapped to GTT
3036 * Nothing changes (assertions find that it is not in the GPU)
3037 * 3. Read/written by GPU
3038 * execbuffer calls set_domain (RENDER, RENDER)
3039 * flush_domains gets CPU
3040 * invalidate_domains gets GPU
3041 * clflush (obj)
3042 * MI_FLUSH and drm_agp_chipset_flush
3043 * 4. set_domain (CPU, CPU)
3044 * flush_domains gets GPU
3045 * invalidate_domains gets CPU
3046 * wait_rendering (obj) to make sure all drawing is complete.
3047 * This will include an MI_FLUSH to get the data from GPU
3048 * to memory
3049 * clflush (obj) to invalidate the CPU cache
3050 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3051 * 5. Read/written by CPU
3052 * cache lines are loaded and dirtied
3053 * 6. Read written by GPU
3054 * Same as last GPU access
3055 *
3056 * Case 3: The constant buffer
3057 *
3058 * 1. Allocated
3059 * 2. Written by CPU
3060 * 3. Read by GPU
3061 * 4. Updated (written) by CPU again
3062 * 5. Read by GPU
3063 *
3064 * 1. Allocated
3065 * (CPU, CPU)
3066 * 2. Written by CPU
3067 * (CPU, CPU)
3068 * 3. Read by GPU
3069 * (CPU+RENDER, 0)
3070 * flush_domains = CPU
3071 * invalidate_domains = RENDER
3072 * clflush (obj)
3073 * MI_FLUSH
3074 * drm_agp_chipset_flush
3075 * 4. Updated (written) by CPU again
3076 * (CPU, CPU)
3077 * flush_domains = 0 (no previous write domain)
3078 * invalidate_domains = 0 (no new read domains)
3079 * 5. Read by GPU
3080 * (CPU+RENDER, 0)
3081 * flush_domains = CPU
3082 * invalidate_domains = RENDER
3083 * clflush (obj)
3084 * MI_FLUSH
3085 * drm_agp_chipset_flush
3086 */
c0d90829 3087static void
8b0e378a 3088i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3089{
3090 struct drm_device *dev = obj->dev;
3091 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3092 uint32_t invalidate_domains = 0;
3093 uint32_t flush_domains = 0;
1c5d22f7 3094 uint32_t old_read_domains;
e47c68e9 3095
8b0e378a
EA
3096 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3097 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3098
652c393a
JB
3099 intel_mark_busy(dev, obj);
3100
673a394b
EA
3101#if WATCH_BUF
3102 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3103 __func__, obj,
8b0e378a
EA
3104 obj->read_domains, obj->pending_read_domains,
3105 obj->write_domain, obj->pending_write_domain);
673a394b
EA
3106#endif
3107 /*
3108 * If the object isn't moving to a new write domain,
3109 * let the object stay in multiple read domains
3110 */
8b0e378a
EA
3111 if (obj->pending_write_domain == 0)
3112 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3113 else
3114 obj_priv->dirty = 1;
3115
3116 /*
3117 * Flush the current write domain if
3118 * the new read domains don't match. Invalidate
3119 * any read domains which differ from the old
3120 * write domain
3121 */
8b0e378a
EA
3122 if (obj->write_domain &&
3123 obj->write_domain != obj->pending_read_domains) {
673a394b 3124 flush_domains |= obj->write_domain;
8b0e378a
EA
3125 invalidate_domains |=
3126 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3127 }
3128 /*
3129 * Invalidate any read caches which may have
3130 * stale data. That is, any new read domains.
3131 */
8b0e378a 3132 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3133 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3134#if WATCH_BUF
3135 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3136 __func__, flush_domains, invalidate_domains);
3137#endif
673a394b
EA
3138 i915_gem_clflush_object(obj);
3139 }
3140
1c5d22f7
CW
3141 old_read_domains = obj->read_domains;
3142
efbeed96
EA
3143 /* The actual obj->write_domain will be updated with
3144 * pending_write_domain after we emit the accumulated flush for all
3145 * of our domain changes in execbuffers (which clears objects'
3146 * write_domains). So if we have a current write domain that we
3147 * aren't changing, set pending_write_domain to that.
3148 */
3149 if (flush_domains == 0 && obj->pending_write_domain == 0)
3150 obj->pending_write_domain = obj->write_domain;
8b0e378a 3151 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3152
3153 dev->invalidate_domains |= invalidate_domains;
3154 dev->flush_domains |= flush_domains;
3155#if WATCH_BUF
3156 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3157 __func__,
3158 obj->read_domains, obj->write_domain,
3159 dev->invalidate_domains, dev->flush_domains);
3160#endif
1c5d22f7
CW
3161
3162 trace_i915_gem_object_change_domain(obj,
3163 old_read_domains,
3164 obj->write_domain);
673a394b
EA
3165}
3166
3167/**
e47c68e9 3168 * Moves the object from a partially CPU read to a full one.
673a394b 3169 *
e47c68e9
EA
3170 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3171 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3172 */
e47c68e9
EA
3173static void
3174i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
3175{
3176 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 3177
e47c68e9
EA
3178 if (!obj_priv->page_cpu_valid)
3179 return;
3180
3181 /* If we're partially in the CPU read domain, finish moving it in.
3182 */
3183 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3184 int i;
3185
3186 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3187 if (obj_priv->page_cpu_valid[i])
3188 continue;
856fa198 3189 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3190 }
e47c68e9
EA
3191 }
3192
3193 /* Free the page_cpu_valid mappings which are now stale, whether
3194 * or not we've got I915_GEM_DOMAIN_CPU.
3195 */
9a298b2a 3196 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3197 obj_priv->page_cpu_valid = NULL;
3198}
3199
3200/**
3201 * Set the CPU read domain on a range of the object.
3202 *
3203 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3204 * not entirely valid. The page_cpu_valid member of the object flags which
3205 * pages have been flushed, and will be respected by
3206 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3207 * of the whole object.
3208 *
3209 * This function returns when the move is complete, including waiting on
3210 * flushes to occur.
3211 */
3212static int
3213i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3214 uint64_t offset, uint64_t size)
3215{
3216 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 3217 uint32_t old_read_domains;
e47c68e9 3218 int i, ret;
673a394b 3219
e47c68e9
EA
3220 if (offset == 0 && size == obj->size)
3221 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3222
e47c68e9
EA
3223 i915_gem_object_flush_gpu_write_domain(obj);
3224 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3225 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3226 if (ret != 0)
6a47baa6 3227 return ret;
e47c68e9
EA
3228 i915_gem_object_flush_gtt_write_domain(obj);
3229
3230 /* If we're already fully in the CPU read domain, we're done. */
3231 if (obj_priv->page_cpu_valid == NULL &&
3232 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3233 return 0;
673a394b 3234
e47c68e9
EA
3235 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3236 * newly adding I915_GEM_DOMAIN_CPU
3237 */
673a394b 3238 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3239 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3240 GFP_KERNEL);
e47c68e9
EA
3241 if (obj_priv->page_cpu_valid == NULL)
3242 return -ENOMEM;
3243 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3244 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3245
3246 /* Flush the cache on any pages that are still invalid from the CPU's
3247 * perspective.
3248 */
e47c68e9
EA
3249 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3250 i++) {
673a394b
EA
3251 if (obj_priv->page_cpu_valid[i])
3252 continue;
3253
856fa198 3254 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3255
3256 obj_priv->page_cpu_valid[i] = 1;
3257 }
3258
e47c68e9
EA
3259 /* It should now be out of any other write domains, and we can update
3260 * the domain values for our changes.
3261 */
3262 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3263
1c5d22f7 3264 old_read_domains = obj->read_domains;
e47c68e9
EA
3265 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3266
1c5d22f7
CW
3267 trace_i915_gem_object_change_domain(obj,
3268 old_read_domains,
3269 obj->write_domain);
3270
673a394b
EA
3271 return 0;
3272}
3273
673a394b
EA
3274/**
3275 * Pin an object to the GTT and evaluate the relocations landing in it.
3276 */
3277static int
3278i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3279 struct drm_file *file_priv,
76446cac 3280 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3281 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3282{
3283 struct drm_device *dev = obj->dev;
0839ccb8 3284 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3285 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3286 int i, ret;
0839ccb8 3287 void __iomem *reloc_page;
76446cac
JB
3288 bool need_fence;
3289
3290 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3291 obj_priv->tiling_mode != I915_TILING_NONE;
3292
3293 /* Check fence reg constraints and rebind if necessary */
f590d279
OA
3294 if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3295 obj_priv->tiling_mode))
76446cac 3296 i915_gem_object_unbind(obj);
673a394b
EA
3297
3298 /* Choose the GTT offset for our buffer and put it there. */
3299 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3300 if (ret)
3301 return ret;
3302
76446cac
JB
3303 /*
3304 * Pre-965 chips need a fence register set up in order to
3305 * properly handle blits to/from tiled surfaces.
3306 */
3307 if (need_fence) {
3308 ret = i915_gem_object_get_fence_reg(obj);
3309 if (ret != 0) {
3310 if (ret != -EBUSY && ret != -ERESTARTSYS)
3311 DRM_ERROR("Failure to install fence: %d\n",
3312 ret);
3313 i915_gem_object_unpin(obj);
3314 return ret;
3315 }
3316 }
3317
673a394b
EA
3318 entry->offset = obj_priv->gtt_offset;
3319
673a394b
EA
3320 /* Apply the relocations, using the GTT aperture to avoid cache
3321 * flushing requirements.
3322 */
3323 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3324 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3325 struct drm_gem_object *target_obj;
3326 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3327 uint32_t reloc_val, reloc_offset;
3328 uint32_t __iomem *reloc_entry;
673a394b 3329
673a394b 3330 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3331 reloc->target_handle);
673a394b
EA
3332 if (target_obj == NULL) {
3333 i915_gem_object_unpin(obj);
3334 return -EBADF;
3335 }
3336 target_obj_priv = target_obj->driver_private;
3337
8542a0bb
CW
3338#if WATCH_RELOC
3339 DRM_INFO("%s: obj %p offset %08x target %d "
3340 "read %08x write %08x gtt %08x "
3341 "presumed %08x delta %08x\n",
3342 __func__,
3343 obj,
3344 (int) reloc->offset,
3345 (int) reloc->target_handle,
3346 (int) reloc->read_domains,
3347 (int) reloc->write_domain,
3348 (int) target_obj_priv->gtt_offset,
3349 (int) reloc->presumed_offset,
3350 reloc->delta);
3351#endif
3352
673a394b
EA
3353 /* The target buffer should have appeared before us in the
3354 * exec_object list, so it should have a GTT space bound by now.
3355 */
3356 if (target_obj_priv->gtt_space == NULL) {
3357 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3358 reloc->target_handle);
673a394b
EA
3359 drm_gem_object_unreference(target_obj);
3360 i915_gem_object_unpin(obj);
3361 return -EINVAL;
3362 }
3363
8542a0bb 3364 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3365 if (reloc->write_domain & (reloc->write_domain - 1)) {
3366 DRM_ERROR("reloc with multiple write domains: "
3367 "obj %p target %d offset %d "
3368 "read %08x write %08x",
3369 obj, reloc->target_handle,
3370 (int) reloc->offset,
3371 reloc->read_domains,
3372 reloc->write_domain);
3373 return -EINVAL;
3374 }
40a5f0de
EA
3375 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3376 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3377 DRM_ERROR("reloc with read/write CPU domains: "
3378 "obj %p target %d offset %d "
3379 "read %08x write %08x",
40a5f0de
EA
3380 obj, reloc->target_handle,
3381 (int) reloc->offset,
3382 reloc->read_domains,
3383 reloc->write_domain);
491152b8
CW
3384 drm_gem_object_unreference(target_obj);
3385 i915_gem_object_unpin(obj);
e47c68e9
EA
3386 return -EINVAL;
3387 }
40a5f0de
EA
3388 if (reloc->write_domain && target_obj->pending_write_domain &&
3389 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3390 DRM_ERROR("Write domain conflict: "
3391 "obj %p target %d offset %d "
3392 "new %08x old %08x\n",
40a5f0de
EA
3393 obj, reloc->target_handle,
3394 (int) reloc->offset,
3395 reloc->write_domain,
673a394b
EA
3396 target_obj->pending_write_domain);
3397 drm_gem_object_unreference(target_obj);
3398 i915_gem_object_unpin(obj);
3399 return -EINVAL;
3400 }
3401
40a5f0de
EA
3402 target_obj->pending_read_domains |= reloc->read_domains;
3403 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3404
3405 /* If the relocation already has the right value in it, no
3406 * more work needs to be done.
3407 */
40a5f0de 3408 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3409 drm_gem_object_unreference(target_obj);
3410 continue;
3411 }
3412
8542a0bb
CW
3413 /* Check that the relocation address is valid... */
3414 if (reloc->offset > obj->size - 4) {
3415 DRM_ERROR("Relocation beyond object bounds: "
3416 "obj %p target %d offset %d size %d.\n",
3417 obj, reloc->target_handle,
3418 (int) reloc->offset, (int) obj->size);
3419 drm_gem_object_unreference(target_obj);
3420 i915_gem_object_unpin(obj);
3421 return -EINVAL;
3422 }
3423 if (reloc->offset & 3) {
3424 DRM_ERROR("Relocation not 4-byte aligned: "
3425 "obj %p target %d offset %d.\n",
3426 obj, reloc->target_handle,
3427 (int) reloc->offset);
3428 drm_gem_object_unreference(target_obj);
3429 i915_gem_object_unpin(obj);
3430 return -EINVAL;
3431 }
3432
3433 /* and points to somewhere within the target object. */
3434 if (reloc->delta >= target_obj->size) {
3435 DRM_ERROR("Relocation beyond target object bounds: "
3436 "obj %p target %d delta %d size %d.\n",
3437 obj, reloc->target_handle,
3438 (int) reloc->delta, (int) target_obj->size);
3439 drm_gem_object_unreference(target_obj);
3440 i915_gem_object_unpin(obj);
3441 return -EINVAL;
3442 }
3443
2ef7eeaa
EA
3444 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3445 if (ret != 0) {
3446 drm_gem_object_unreference(target_obj);
3447 i915_gem_object_unpin(obj);
3448 return -EINVAL;
673a394b
EA
3449 }
3450
3451 /* Map the page containing the relocation we're going to
3452 * perform.
3453 */
40a5f0de 3454 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3455 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3456 (reloc_offset &
3457 ~(PAGE_SIZE - 1)));
3043c60c 3458 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3459 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3460 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3461
3462#if WATCH_BUF
3463 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3464 obj, (unsigned int) reloc->offset,
673a394b
EA
3465 readl(reloc_entry), reloc_val);
3466#endif
3467 writel(reloc_val, reloc_entry);
0839ccb8 3468 io_mapping_unmap_atomic(reloc_page);
673a394b 3469
40a5f0de
EA
3470 /* The updated presumed offset for this entry will be
3471 * copied back out to the user.
673a394b 3472 */
40a5f0de 3473 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3474
3475 drm_gem_object_unreference(target_obj);
3476 }
3477
673a394b
EA
3478#if WATCH_BUF
3479 if (0)
3480 i915_gem_dump_object(obj, 128, __func__, ~0);
3481#endif
3482 return 0;
3483}
3484
3485/** Dispatch a batchbuffer to the ring
3486 */
3487static int
3488i915_dispatch_gem_execbuffer(struct drm_device *dev,
76446cac 3489 struct drm_i915_gem_execbuffer2 *exec,
201361a5 3490 struct drm_clip_rect *cliprects,
673a394b
EA
3491 uint64_t exec_offset)
3492{
3493 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3494 int nbox = exec->num_cliprects;
3495 int i = 0, count;
83d60795 3496 uint32_t exec_start, exec_len;
673a394b
EA
3497 RING_LOCALS;
3498
3499 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3500 exec_len = (uint32_t) exec->batch_len;
3501
8f0dc5bf 3502 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
1c5d22f7 3503
673a394b
EA
3504 count = nbox ? nbox : 1;
3505
3506 for (i = 0; i < count; i++) {
3507 if (i < nbox) {
201361a5 3508 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3509 exec->DR1, exec->DR4);
3510 if (ret)
3511 return ret;
3512 }
3513
3514 if (IS_I830(dev) || IS_845G(dev)) {
3515 BEGIN_LP_RING(4);
3516 OUT_RING(MI_BATCH_BUFFER);
3517 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3518 OUT_RING(exec_start + exec_len - 4);
3519 OUT_RING(0);
3520 ADVANCE_LP_RING();
3521 } else {
3522 BEGIN_LP_RING(2);
3523 if (IS_I965G(dev)) {
3524 OUT_RING(MI_BATCH_BUFFER_START |
3525 (2 << 6) |
3526 MI_BATCH_NON_SECURE_I965);
3527 OUT_RING(exec_start);
3528 } else {
3529 OUT_RING(MI_BATCH_BUFFER_START |
3530 (2 << 6));
3531 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3532 }
3533 ADVANCE_LP_RING();
3534 }
3535 }
3536
3537 /* XXX breadcrumb */
3538 return 0;
3539}
3540
3541/* Throttle our rendering by waiting until the ring has completed our requests
3542 * emitted over 20 msec ago.
3543 *
b962442e
EA
3544 * Note that if we were to use the current jiffies each time around the loop,
3545 * we wouldn't escape the function with any frames outstanding if the time to
3546 * render a frame was over 20ms.
3547 *
673a394b
EA
3548 * This should get us reasonable parallelism between CPU and GPU but also
3549 * relatively low latency when blocking on a particular request to finish.
3550 */
3551static int
3552i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3553{
3554 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3555 int ret = 0;
b962442e 3556 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3557
3558 mutex_lock(&dev->struct_mutex);
b962442e
EA
3559 while (!list_empty(&i915_file_priv->mm.request_list)) {
3560 struct drm_i915_gem_request *request;
3561
3562 request = list_first_entry(&i915_file_priv->mm.request_list,
3563 struct drm_i915_gem_request,
3564 client_list);
3565
3566 if (time_after_eq(request->emitted_jiffies, recent_enough))
3567 break;
3568
3569 ret = i915_wait_request(dev, request->seqno);
3570 if (ret != 0)
3571 break;
3572 }
673a394b 3573 mutex_unlock(&dev->struct_mutex);
b962442e 3574
673a394b
EA
3575 return ret;
3576}
3577
40a5f0de 3578static int
76446cac 3579i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3580 uint32_t buffer_count,
3581 struct drm_i915_gem_relocation_entry **relocs)
3582{
3583 uint32_t reloc_count = 0, reloc_index = 0, i;
3584 int ret;
3585
3586 *relocs = NULL;
3587 for (i = 0; i < buffer_count; i++) {
3588 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3589 return -EINVAL;
3590 reloc_count += exec_list[i].relocation_count;
3591 }
3592
8e7d2b2c 3593 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3594 if (*relocs == NULL) {
3595 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3596 return -ENOMEM;
76446cac 3597 }
40a5f0de
EA
3598
3599 for (i = 0; i < buffer_count; i++) {
3600 struct drm_i915_gem_relocation_entry __user *user_relocs;
3601
3602 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3603
3604 ret = copy_from_user(&(*relocs)[reloc_index],
3605 user_relocs,
3606 exec_list[i].relocation_count *
3607 sizeof(**relocs));
3608 if (ret != 0) {
8e7d2b2c 3609 drm_free_large(*relocs);
40a5f0de 3610 *relocs = NULL;
2bc43b5c 3611 return -EFAULT;
40a5f0de
EA
3612 }
3613
3614 reloc_index += exec_list[i].relocation_count;
3615 }
3616
2bc43b5c 3617 return 0;
40a5f0de
EA
3618}
3619
3620static int
76446cac 3621i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3622 uint32_t buffer_count,
3623 struct drm_i915_gem_relocation_entry *relocs)
3624{
3625 uint32_t reloc_count = 0, i;
2bc43b5c 3626 int ret = 0;
40a5f0de 3627
93533c29
CW
3628 if (relocs == NULL)
3629 return 0;
3630
40a5f0de
EA
3631 for (i = 0; i < buffer_count; i++) {
3632 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3633 int unwritten;
40a5f0de
EA
3634
3635 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3636
2bc43b5c
FM
3637 unwritten = copy_to_user(user_relocs,
3638 &relocs[reloc_count],
3639 exec_list[i].relocation_count *
3640 sizeof(*relocs));
3641
3642 if (unwritten) {
3643 ret = -EFAULT;
3644 goto err;
40a5f0de
EA
3645 }
3646
3647 reloc_count += exec_list[i].relocation_count;
3648 }
3649
2bc43b5c 3650err:
8e7d2b2c 3651 drm_free_large(relocs);
40a5f0de
EA
3652
3653 return ret;
3654}
3655
83d60795 3656static int
76446cac 3657i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3658 uint64_t exec_offset)
3659{
3660 uint32_t exec_start, exec_len;
3661
3662 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3663 exec_len = (uint32_t) exec->batch_len;
3664
3665 if ((exec_start | exec_len) & 0x7)
3666 return -EINVAL;
3667
3668 if (!exec_start)
3669 return -EINVAL;
3670
3671 return 0;
3672}
3673
6b95a207
KH
3674static int
3675i915_gem_wait_for_pending_flip(struct drm_device *dev,
3676 struct drm_gem_object **object_list,
3677 int count)
3678{
3679 drm_i915_private_t *dev_priv = dev->dev_private;
3680 struct drm_i915_gem_object *obj_priv;
3681 DEFINE_WAIT(wait);
3682 int i, ret = 0;
3683
3684 for (;;) {
3685 prepare_to_wait(&dev_priv->pending_flip_queue,
3686 &wait, TASK_INTERRUPTIBLE);
3687 for (i = 0; i < count; i++) {
3688 obj_priv = object_list[i]->driver_private;
3689 if (atomic_read(&obj_priv->pending_flip) > 0)
3690 break;
3691 }
3692 if (i == count)
3693 break;
3694
3695 if (!signal_pending(current)) {
3696 mutex_unlock(&dev->struct_mutex);
3697 schedule();
3698 mutex_lock(&dev->struct_mutex);
3699 continue;
3700 }
3701 ret = -ERESTARTSYS;
3702 break;
3703 }
3704 finish_wait(&dev_priv->pending_flip_queue, &wait);
3705
3706 return ret;
3707}
3708
673a394b 3709int
76446cac
JB
3710i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3711 struct drm_file *file_priv,
3712 struct drm_i915_gem_execbuffer2 *args,
3713 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3714{
3715 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3716 struct drm_gem_object **object_list = NULL;
3717 struct drm_gem_object *batch_obj;
b70d11da 3718 struct drm_i915_gem_object *obj_priv;
201361a5 3719 struct drm_clip_rect *cliprects = NULL;
93533c29 3720 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3721 int ret = 0, ret2, i, pinned = 0;
673a394b 3722 uint64_t exec_offset;
40a5f0de 3723 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3724 int pin_tries, flips;
673a394b
EA
3725
3726#if WATCH_EXEC
3727 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3728 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3729#endif
3730
4f481ed2
EA
3731 if (args->buffer_count < 1) {
3732 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3733 return -EINVAL;
3734 }
c8e0f93a 3735 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3736 if (object_list == NULL) {
3737 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3738 args->buffer_count);
3739 ret = -ENOMEM;
3740 goto pre_mutex_err;
3741 }
673a394b 3742
201361a5 3743 if (args->num_cliprects != 0) {
9a298b2a
EA
3744 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3745 GFP_KERNEL);
a40e8d31
OA
3746 if (cliprects == NULL) {
3747 ret = -ENOMEM;
201361a5 3748 goto pre_mutex_err;
a40e8d31 3749 }
201361a5
EA
3750
3751 ret = copy_from_user(cliprects,
3752 (struct drm_clip_rect __user *)
3753 (uintptr_t) args->cliprects_ptr,
3754 sizeof(*cliprects) * args->num_cliprects);
3755 if (ret != 0) {
3756 DRM_ERROR("copy %d cliprects failed: %d\n",
3757 args->num_cliprects, ret);
3758 goto pre_mutex_err;
3759 }
3760 }
3761
40a5f0de
EA
3762 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3763 &relocs);
3764 if (ret != 0)
3765 goto pre_mutex_err;
3766
673a394b
EA
3767 mutex_lock(&dev->struct_mutex);
3768
3769 i915_verify_inactive(dev, __FILE__, __LINE__);
3770
ba1234d1 3771 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3772 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3773 ret = -EIO;
3774 goto pre_mutex_err;
673a394b
EA
3775 }
3776
3777 if (dev_priv->mm.suspended) {
673a394b 3778 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3779 ret = -EBUSY;
3780 goto pre_mutex_err;
673a394b
EA
3781 }
3782
ac94a962 3783 /* Look up object handles */
6b95a207 3784 flips = 0;
673a394b
EA
3785 for (i = 0; i < args->buffer_count; i++) {
3786 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3787 exec_list[i].handle);
3788 if (object_list[i] == NULL) {
3789 DRM_ERROR("Invalid object handle %d at index %d\n",
3790 exec_list[i].handle, i);
0ce907f8
CW
3791 /* prevent error path from reading uninitialized data */
3792 args->buffer_count = i + 1;
673a394b
EA
3793 ret = -EBADF;
3794 goto err;
3795 }
b70d11da
KH
3796
3797 obj_priv = object_list[i]->driver_private;
3798 if (obj_priv->in_execbuffer) {
3799 DRM_ERROR("Object %p appears more than once in object list\n",
3800 object_list[i]);
0ce907f8
CW
3801 /* prevent error path from reading uninitialized data */
3802 args->buffer_count = i + 1;
b70d11da
KH
3803 ret = -EBADF;
3804 goto err;
3805 }
3806 obj_priv->in_execbuffer = true;
6b95a207
KH
3807 flips += atomic_read(&obj_priv->pending_flip);
3808 }
3809
3810 if (flips > 0) {
3811 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3812 args->buffer_count);
3813 if (ret)
3814 goto err;
ac94a962 3815 }
673a394b 3816
ac94a962
KP
3817 /* Pin and relocate */
3818 for (pin_tries = 0; ; pin_tries++) {
3819 ret = 0;
40a5f0de
EA
3820 reloc_index = 0;
3821
ac94a962
KP
3822 for (i = 0; i < args->buffer_count; i++) {
3823 object_list[i]->pending_read_domains = 0;
3824 object_list[i]->pending_write_domain = 0;
3825 ret = i915_gem_object_pin_and_relocate(object_list[i],
3826 file_priv,
40a5f0de
EA
3827 &exec_list[i],
3828 &relocs[reloc_index]);
ac94a962
KP
3829 if (ret)
3830 break;
3831 pinned = i + 1;
40a5f0de 3832 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3833 }
3834 /* success */
3835 if (ret == 0)
3836 break;
3837
3838 /* error other than GTT full, or we've already tried again */
2939e1f5 3839 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3840 if (ret != -ERESTARTSYS) {
3841 unsigned long long total_size = 0;
3842 for (i = 0; i < args->buffer_count; i++)
3843 total_size += object_list[i]->size;
3844 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3845 pinned+1, args->buffer_count,
3846 total_size, ret);
3847 DRM_ERROR("%d objects [%d pinned], "
3848 "%d object bytes [%d pinned], "
3849 "%d/%d gtt bytes\n",
3850 atomic_read(&dev->object_count),
3851 atomic_read(&dev->pin_count),
3852 atomic_read(&dev->object_memory),
3853 atomic_read(&dev->pin_memory),
3854 atomic_read(&dev->gtt_memory),
3855 dev->gtt_total);
3856 }
673a394b
EA
3857 goto err;
3858 }
ac94a962
KP
3859
3860 /* unpin all of our buffers */
3861 for (i = 0; i < pinned; i++)
3862 i915_gem_object_unpin(object_list[i]);
b1177636 3863 pinned = 0;
ac94a962
KP
3864
3865 /* evict everyone we can from the aperture */
3866 ret = i915_gem_evict_everything(dev);
07f73f69 3867 if (ret && ret != -ENOSPC)
ac94a962 3868 goto err;
673a394b
EA
3869 }
3870
3871 /* Set the pending read domains for the batch buffer to COMMAND */
3872 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3873 if (batch_obj->pending_write_domain) {
3874 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3875 ret = -EINVAL;
3876 goto err;
3877 }
3878 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3879
83d60795
CW
3880 /* Sanity check the batch buffer, prior to moving objects */
3881 exec_offset = exec_list[args->buffer_count - 1].offset;
3882 ret = i915_gem_check_execbuffer (args, exec_offset);
3883 if (ret != 0) {
3884 DRM_ERROR("execbuf with invalid offset/length\n");
3885 goto err;
3886 }
3887
673a394b
EA
3888 i915_verify_inactive(dev, __FILE__, __LINE__);
3889
646f0f6e
KP
3890 /* Zero the global flush/invalidate flags. These
3891 * will be modified as new domains are computed
3892 * for each object
3893 */
3894 dev->invalidate_domains = 0;
3895 dev->flush_domains = 0;
3896
673a394b
EA
3897 for (i = 0; i < args->buffer_count; i++) {
3898 struct drm_gem_object *obj = object_list[i];
673a394b 3899
646f0f6e 3900 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3901 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3902 }
3903
3904 i915_verify_inactive(dev, __FILE__, __LINE__);
3905
646f0f6e
KP
3906 if (dev->invalidate_domains | dev->flush_domains) {
3907#if WATCH_EXEC
3908 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3909 __func__,
3910 dev->invalidate_domains,
3911 dev->flush_domains);
3912#endif
3913 i915_gem_flush(dev,
3914 dev->invalidate_domains,
3915 dev->flush_domains);
99fcb766 3916 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
b962442e
EA
3917 (void)i915_add_request(dev, file_priv,
3918 dev->flush_domains);
646f0f6e 3919 }
673a394b 3920
efbeed96
EA
3921 for (i = 0; i < args->buffer_count; i++) {
3922 struct drm_gem_object *obj = object_list[i];
99fcb766 3923 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 3924 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3925
3926 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3927 if (obj->write_domain)
3928 list_move_tail(&obj_priv->gpu_write_list,
3929 &dev_priv->mm.gpu_write_list);
3930 else
3931 list_del_init(&obj_priv->gpu_write_list);
3932
1c5d22f7
CW
3933 trace_i915_gem_object_change_domain(obj,
3934 obj->read_domains,
3935 old_write_domain);
efbeed96
EA
3936 }
3937
673a394b
EA
3938 i915_verify_inactive(dev, __FILE__, __LINE__);
3939
3940#if WATCH_COHERENCY
3941 for (i = 0; i < args->buffer_count; i++) {
3942 i915_gem_object_check_coherency(object_list[i],
3943 exec_list[i].handle);
3944 }
3945#endif
3946
673a394b 3947#if WATCH_EXEC
6911a9b8 3948 i915_gem_dump_object(batch_obj,
673a394b
EA
3949 args->batch_len,
3950 __func__,
3951 ~0);
3952#endif
3953
673a394b 3954 /* Exec the batchbuffer */
201361a5 3955 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3956 if (ret) {
3957 DRM_ERROR("dispatch failed %d\n", ret);
3958 goto err;
3959 }
3960
3961 /*
3962 * Ensure that the commands in the batch buffer are
3963 * finished before the interrupt fires
3964 */
3965 flush_domains = i915_retire_commands(dev);
3966
3967 i915_verify_inactive(dev, __FILE__, __LINE__);
3968
3969 /*
3970 * Get a seqno representing the execution of the current buffer,
3971 * which we can wait on. We would like to mitigate these interrupts,
3972 * likely by only creating seqnos occasionally (so that we have
3973 * *some* interrupts representing completion of buffers that we can
3974 * wait on when trying to clear up gtt space).
3975 */
b962442e 3976 seqno = i915_add_request(dev, file_priv, flush_domains);
673a394b 3977 BUG_ON(seqno == 0);
673a394b
EA
3978 for (i = 0; i < args->buffer_count; i++) {
3979 struct drm_gem_object *obj = object_list[i];
673a394b 3980
ce44b0ea 3981 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3982#if WATCH_LRU
3983 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3984#endif
3985 }
3986#if WATCH_LRU
3987 i915_dump_lru(dev, __func__);
3988#endif
3989
3990 i915_verify_inactive(dev, __FILE__, __LINE__);
3991
673a394b 3992err:
aad87dff
JL
3993 for (i = 0; i < pinned; i++)
3994 i915_gem_object_unpin(object_list[i]);
3995
b70d11da
KH
3996 for (i = 0; i < args->buffer_count; i++) {
3997 if (object_list[i]) {
3998 obj_priv = object_list[i]->driver_private;
3999 obj_priv->in_execbuffer = false;
4000 }
aad87dff 4001 drm_gem_object_unreference(object_list[i]);
b70d11da 4002 }
673a394b 4003
673a394b
EA
4004 mutex_unlock(&dev->struct_mutex);
4005
93533c29 4006pre_mutex_err:
40a5f0de
EA
4007 /* Copy the updated relocations out regardless of current error
4008 * state. Failure to update the relocs would mean that the next
4009 * time userland calls execbuf, it would do so with presumed offset
4010 * state that didn't match the actual object state.
4011 */
4012 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4013 relocs);
4014 if (ret2 != 0) {
4015 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4016
4017 if (ret == 0)
4018 ret = ret2;
4019 }
4020
8e7d2b2c 4021 drm_free_large(object_list);
9a298b2a 4022 kfree(cliprects);
673a394b
EA
4023
4024 return ret;
4025}
4026
76446cac
JB
4027/*
4028 * Legacy execbuffer just creates an exec2 list from the original exec object
4029 * list array and passes it to the real function.
4030 */
4031int
4032i915_gem_execbuffer(struct drm_device *dev, void *data,
4033 struct drm_file *file_priv)
4034{
4035 struct drm_i915_gem_execbuffer *args = data;
4036 struct drm_i915_gem_execbuffer2 exec2;
4037 struct drm_i915_gem_exec_object *exec_list = NULL;
4038 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4039 int ret, i;
4040
4041#if WATCH_EXEC
4042 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4043 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4044#endif
4045
4046 if (args->buffer_count < 1) {
4047 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4048 return -EINVAL;
4049 }
4050
4051 /* Copy in the exec list from userland */
4052 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4053 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4054 if (exec_list == NULL || exec2_list == NULL) {
4055 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4056 args->buffer_count);
4057 drm_free_large(exec_list);
4058 drm_free_large(exec2_list);
4059 return -ENOMEM;
4060 }
4061 ret = copy_from_user(exec_list,
4062 (struct drm_i915_relocation_entry __user *)
4063 (uintptr_t) args->buffers_ptr,
4064 sizeof(*exec_list) * args->buffer_count);
4065 if (ret != 0) {
4066 DRM_ERROR("copy %d exec entries failed %d\n",
4067 args->buffer_count, ret);
4068 drm_free_large(exec_list);
4069 drm_free_large(exec2_list);
4070 return -EFAULT;
4071 }
4072
4073 for (i = 0; i < args->buffer_count; i++) {
4074 exec2_list[i].handle = exec_list[i].handle;
4075 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4076 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4077 exec2_list[i].alignment = exec_list[i].alignment;
4078 exec2_list[i].offset = exec_list[i].offset;
4079 if (!IS_I965G(dev))
4080 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4081 else
4082 exec2_list[i].flags = 0;
4083 }
4084
4085 exec2.buffers_ptr = args->buffers_ptr;
4086 exec2.buffer_count = args->buffer_count;
4087 exec2.batch_start_offset = args->batch_start_offset;
4088 exec2.batch_len = args->batch_len;
4089 exec2.DR1 = args->DR1;
4090 exec2.DR4 = args->DR4;
4091 exec2.num_cliprects = args->num_cliprects;
4092 exec2.cliprects_ptr = args->cliprects_ptr;
4093 exec2.flags = 0;
4094
4095 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4096 if (!ret) {
4097 /* Copy the new buffer offsets back to the user's exec list. */
4098 for (i = 0; i < args->buffer_count; i++)
4099 exec_list[i].offset = exec2_list[i].offset;
4100 /* ... and back out to userspace */
4101 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4102 (uintptr_t) args->buffers_ptr,
4103 exec_list,
4104 sizeof(*exec_list) * args->buffer_count);
4105 if (ret) {
4106 ret = -EFAULT;
4107 DRM_ERROR("failed to copy %d exec entries "
4108 "back to user (%d)\n",
4109 args->buffer_count, ret);
4110 }
76446cac
JB
4111 }
4112
4113 drm_free_large(exec_list);
4114 drm_free_large(exec2_list);
4115 return ret;
4116}
4117
4118int
4119i915_gem_execbuffer2(struct drm_device *dev, void *data,
4120 struct drm_file *file_priv)
4121{
4122 struct drm_i915_gem_execbuffer2 *args = data;
4123 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4124 int ret;
4125
4126#if WATCH_EXEC
4127 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4128 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4129#endif
4130
4131 if (args->buffer_count < 1) {
4132 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4133 return -EINVAL;
4134 }
4135
4136 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4137 if (exec2_list == NULL) {
4138 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4139 args->buffer_count);
4140 return -ENOMEM;
4141 }
4142 ret = copy_from_user(exec2_list,
4143 (struct drm_i915_relocation_entry __user *)
4144 (uintptr_t) args->buffers_ptr,
4145 sizeof(*exec2_list) * args->buffer_count);
4146 if (ret != 0) {
4147 DRM_ERROR("copy %d exec entries failed %d\n",
4148 args->buffer_count, ret);
4149 drm_free_large(exec2_list);
4150 return -EFAULT;
4151 }
4152
4153 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4154 if (!ret) {
4155 /* Copy the new buffer offsets back to the user's exec list. */
4156 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4157 (uintptr_t) args->buffers_ptr,
4158 exec2_list,
4159 sizeof(*exec2_list) * args->buffer_count);
4160 if (ret) {
4161 ret = -EFAULT;
4162 DRM_ERROR("failed to copy %d exec entries "
4163 "back to user (%d)\n",
4164 args->buffer_count, ret);
4165 }
4166 }
4167
4168 drm_free_large(exec2_list);
4169 return ret;
4170}
4171
673a394b
EA
4172int
4173i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4174{
4175 struct drm_device *dev = obj->dev;
4176 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4177 int ret;
4178
4179 i915_verify_inactive(dev, __FILE__, __LINE__);
4180 if (obj_priv->gtt_space == NULL) {
4181 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4182 if (ret)
673a394b 4183 return ret;
22c344e9 4184 }
76446cac 4185
673a394b
EA
4186 obj_priv->pin_count++;
4187
4188 /* If the object is not active and not pending a flush,
4189 * remove it from the inactive list
4190 */
4191 if (obj_priv->pin_count == 1) {
4192 atomic_inc(&dev->pin_count);
4193 atomic_add(obj->size, &dev->pin_memory);
4194 if (!obj_priv->active &&
21d509e3 4195 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
4196 !list_empty(&obj_priv->list))
4197 list_del_init(&obj_priv->list);
4198 }
4199 i915_verify_inactive(dev, __FILE__, __LINE__);
4200
4201 return 0;
4202}
4203
4204void
4205i915_gem_object_unpin(struct drm_gem_object *obj)
4206{
4207 struct drm_device *dev = obj->dev;
4208 drm_i915_private_t *dev_priv = dev->dev_private;
4209 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4210
4211 i915_verify_inactive(dev, __FILE__, __LINE__);
4212 obj_priv->pin_count--;
4213 BUG_ON(obj_priv->pin_count < 0);
4214 BUG_ON(obj_priv->gtt_space == NULL);
4215
4216 /* If the object is no longer pinned, and is
4217 * neither active nor being flushed, then stick it on
4218 * the inactive list
4219 */
4220 if (obj_priv->pin_count == 0) {
4221 if (!obj_priv->active &&
21d509e3 4222 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4223 list_move_tail(&obj_priv->list,
4224 &dev_priv->mm.inactive_list);
4225 atomic_dec(&dev->pin_count);
4226 atomic_sub(obj->size, &dev->pin_memory);
4227 }
4228 i915_verify_inactive(dev, __FILE__, __LINE__);
4229}
4230
4231int
4232i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4233 struct drm_file *file_priv)
4234{
4235 struct drm_i915_gem_pin *args = data;
4236 struct drm_gem_object *obj;
4237 struct drm_i915_gem_object *obj_priv;
4238 int ret;
4239
4240 mutex_lock(&dev->struct_mutex);
4241
4242 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4243 if (obj == NULL) {
4244 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4245 args->handle);
4246 mutex_unlock(&dev->struct_mutex);
4247 return -EBADF;
4248 }
4249 obj_priv = obj->driver_private;
4250
bb6baf76
CW
4251 if (obj_priv->madv != I915_MADV_WILLNEED) {
4252 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4253 drm_gem_object_unreference(obj);
4254 mutex_unlock(&dev->struct_mutex);
4255 return -EINVAL;
4256 }
4257
79e53945
JB
4258 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4259 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4260 args->handle);
96dec61d 4261 drm_gem_object_unreference(obj);
673a394b 4262 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4263 return -EINVAL;
4264 }
4265
4266 obj_priv->user_pin_count++;
4267 obj_priv->pin_filp = file_priv;
4268 if (obj_priv->user_pin_count == 1) {
4269 ret = i915_gem_object_pin(obj, args->alignment);
4270 if (ret != 0) {
4271 drm_gem_object_unreference(obj);
4272 mutex_unlock(&dev->struct_mutex);
4273 return ret;
4274 }
673a394b
EA
4275 }
4276
4277 /* XXX - flush the CPU caches for pinned objects
4278 * as the X server doesn't manage domains yet
4279 */
e47c68e9 4280 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4281 args->offset = obj_priv->gtt_offset;
4282 drm_gem_object_unreference(obj);
4283 mutex_unlock(&dev->struct_mutex);
4284
4285 return 0;
4286}
4287
4288int
4289i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4290 struct drm_file *file_priv)
4291{
4292 struct drm_i915_gem_pin *args = data;
4293 struct drm_gem_object *obj;
79e53945 4294 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4295
4296 mutex_lock(&dev->struct_mutex);
4297
4298 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4299 if (obj == NULL) {
4300 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4301 args->handle);
4302 mutex_unlock(&dev->struct_mutex);
4303 return -EBADF;
4304 }
4305
79e53945
JB
4306 obj_priv = obj->driver_private;
4307 if (obj_priv->pin_filp != file_priv) {
4308 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4309 args->handle);
4310 drm_gem_object_unreference(obj);
4311 mutex_unlock(&dev->struct_mutex);
4312 return -EINVAL;
4313 }
4314 obj_priv->user_pin_count--;
4315 if (obj_priv->user_pin_count == 0) {
4316 obj_priv->pin_filp = NULL;
4317 i915_gem_object_unpin(obj);
4318 }
673a394b
EA
4319
4320 drm_gem_object_unreference(obj);
4321 mutex_unlock(&dev->struct_mutex);
4322 return 0;
4323}
4324
4325int
4326i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4327 struct drm_file *file_priv)
4328{
4329 struct drm_i915_gem_busy *args = data;
4330 struct drm_gem_object *obj;
4331 struct drm_i915_gem_object *obj_priv;
4332
673a394b
EA
4333 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4334 if (obj == NULL) {
4335 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4336 args->handle);
673a394b
EA
4337 return -EBADF;
4338 }
4339
b1ce786c 4340 mutex_lock(&dev->struct_mutex);
f21289b3
EA
4341 /* Update the active list for the hardware's current position.
4342 * Otherwise this only updates on a delayed timer or when irqs are
4343 * actually unmasked, and our working set ends up being larger than
4344 * required.
4345 */
4346 i915_gem_retire_requests(dev);
4347
673a394b 4348 obj_priv = obj->driver_private;
c4de0a5d
EA
4349 /* Don't count being on the flushing list against the object being
4350 * done. Otherwise, a buffer left on the flushing list but not getting
4351 * flushed (because nobody's flushing that domain) won't ever return
4352 * unbusy and get reused by libdrm's bo cache. The other expected
4353 * consumer of this interface, OpenGL's occlusion queries, also specs
4354 * that the objects get unbusy "eventually" without any interference.
4355 */
4356 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
4357
4358 drm_gem_object_unreference(obj);
4359 mutex_unlock(&dev->struct_mutex);
4360 return 0;
4361}
4362
4363int
4364i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4365 struct drm_file *file_priv)
4366{
4367 return i915_gem_ring_throttle(dev, file_priv);
4368}
4369
3ef94daa
CW
4370int
4371i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4372 struct drm_file *file_priv)
4373{
4374 struct drm_i915_gem_madvise *args = data;
4375 struct drm_gem_object *obj;
4376 struct drm_i915_gem_object *obj_priv;
4377
4378 switch (args->madv) {
4379 case I915_MADV_DONTNEED:
4380 case I915_MADV_WILLNEED:
4381 break;
4382 default:
4383 return -EINVAL;
4384 }
4385
4386 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4387 if (obj == NULL) {
4388 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4389 args->handle);
4390 return -EBADF;
4391 }
4392
4393 mutex_lock(&dev->struct_mutex);
4394 obj_priv = obj->driver_private;
4395
4396 if (obj_priv->pin_count) {
4397 drm_gem_object_unreference(obj);
4398 mutex_unlock(&dev->struct_mutex);
4399
4400 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4401 return -EINVAL;
4402 }
4403
bb6baf76
CW
4404 if (obj_priv->madv != __I915_MADV_PURGED)
4405 obj_priv->madv = args->madv;
3ef94daa 4406
2d7ef395
CW
4407 /* if the object is no longer bound, discard its backing storage */
4408 if (i915_gem_object_is_purgeable(obj_priv) &&
4409 obj_priv->gtt_space == NULL)
4410 i915_gem_object_truncate(obj);
4411
bb6baf76
CW
4412 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4413
3ef94daa
CW
4414 drm_gem_object_unreference(obj);
4415 mutex_unlock(&dev->struct_mutex);
4416
4417 return 0;
4418}
4419
673a394b
EA
4420int i915_gem_init_object(struct drm_gem_object *obj)
4421{
4422 struct drm_i915_gem_object *obj_priv;
4423
9a298b2a 4424 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
673a394b
EA
4425 if (obj_priv == NULL)
4426 return -ENOMEM;
4427
4428 /*
4429 * We've just allocated pages from the kernel,
4430 * so they've just been written by the CPU with
4431 * zeros. They'll need to be clflushed before we
4432 * use them with the GPU.
4433 */
4434 obj->write_domain = I915_GEM_DOMAIN_CPU;
4435 obj->read_domains = I915_GEM_DOMAIN_CPU;
4436
ba1eb1d8
KP
4437 obj_priv->agp_type = AGP_USER_MEMORY;
4438
673a394b
EA
4439 obj->driver_private = obj_priv;
4440 obj_priv->obj = obj;
de151cf6 4441 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 4442 INIT_LIST_HEAD(&obj_priv->list);
99fcb766 4443 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
a09ba7fa 4444 INIT_LIST_HEAD(&obj_priv->fence_list);
3ef94daa 4445 obj_priv->madv = I915_MADV_WILLNEED;
de151cf6 4446
1c5d22f7 4447 trace_i915_gem_object_create(obj);
de151cf6 4448
673a394b
EA
4449 return 0;
4450}
4451
4452void i915_gem_free_object(struct drm_gem_object *obj)
4453{
de151cf6 4454 struct drm_device *dev = obj->dev;
673a394b
EA
4455 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4456
1c5d22f7
CW
4457 trace_i915_gem_object_destroy(obj);
4458
673a394b
EA
4459 while (obj_priv->pin_count > 0)
4460 i915_gem_object_unpin(obj);
4461
71acb5eb
DA
4462 if (obj_priv->phys_obj)
4463 i915_gem_detach_phys_object(dev, obj);
4464
673a394b
EA
4465 i915_gem_object_unbind(obj);
4466
7e616158
CW
4467 if (obj_priv->mmap_offset)
4468 i915_gem_free_mmap_offset(obj);
de151cf6 4469
9a298b2a 4470 kfree(obj_priv->page_cpu_valid);
280b713b 4471 kfree(obj_priv->bit_17);
9a298b2a 4472 kfree(obj->driver_private);
673a394b
EA
4473}
4474
ab5ee576 4475/** Unbinds all inactive objects. */
673a394b 4476static int
ab5ee576 4477i915_gem_evict_from_inactive_list(struct drm_device *dev)
673a394b 4478{
ab5ee576 4479 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4480
ab5ee576
CW
4481 while (!list_empty(&dev_priv->mm.inactive_list)) {
4482 struct drm_gem_object *obj;
4483 int ret;
673a394b 4484
ab5ee576
CW
4485 obj = list_first_entry(&dev_priv->mm.inactive_list,
4486 struct drm_i915_gem_object,
4487 list)->obj;
673a394b
EA
4488
4489 ret = i915_gem_object_unbind(obj);
4490 if (ret != 0) {
ab5ee576 4491 DRM_ERROR("Error unbinding object: %d\n", ret);
673a394b
EA
4492 return ret;
4493 }
4494 }
4495
673a394b
EA
4496 return 0;
4497}
4498
29105ccc
CW
4499int
4500i915_gem_idle(struct drm_device *dev)
4501{
4502 drm_i915_private_t *dev_priv = dev->dev_private;
4503 int ret;
28dfe52a 4504
29105ccc 4505 mutex_lock(&dev->struct_mutex);
1c5d22f7 4506
29105ccc
CW
4507 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4508 mutex_unlock(&dev->struct_mutex);
4509 return 0;
28dfe52a
EA
4510 }
4511
29105ccc 4512 ret = i915_gpu_idle(dev);
6dbe2772
KP
4513 if (ret) {
4514 mutex_unlock(&dev->struct_mutex);
673a394b 4515 return ret;
6dbe2772 4516 }
673a394b 4517
29105ccc
CW
4518 /* Under UMS, be paranoid and evict. */
4519 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4520 ret = i915_gem_evict_from_inactive_list(dev);
4521 if (ret) {
4522 mutex_unlock(&dev->struct_mutex);
4523 return ret;
4524 }
4525 }
4526
4527 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4528 * We need to replace this with a semaphore, or something.
4529 * And not confound mm.suspended!
4530 */
4531 dev_priv->mm.suspended = 1;
4532 del_timer(&dev_priv->hangcheck_timer);
4533
4534 i915_kernel_lost_context(dev);
6dbe2772 4535 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4536
6dbe2772
KP
4537 mutex_unlock(&dev->struct_mutex);
4538
29105ccc
CW
4539 /* Cancel the retire work handler, which should be idle now. */
4540 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4541
673a394b
EA
4542 return 0;
4543}
4544
4545static int
4546i915_gem_init_hws(struct drm_device *dev)
4547{
4548 drm_i915_private_t *dev_priv = dev->dev_private;
4549 struct drm_gem_object *obj;
4550 struct drm_i915_gem_object *obj_priv;
4551 int ret;
4552
4553 /* If we need a physical address for the status page, it's already
4554 * initialized at driver load time.
4555 */
4556 if (!I915_NEED_GFX_HWS(dev))
4557 return 0;
4558
4559 obj = drm_gem_object_alloc(dev, 4096);
4560 if (obj == NULL) {
4561 DRM_ERROR("Failed to allocate status page\n");
4562 return -ENOMEM;
4563 }
4564 obj_priv = obj->driver_private;
ba1eb1d8 4565 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
4566
4567 ret = i915_gem_object_pin(obj, 4096);
4568 if (ret != 0) {
4569 drm_gem_object_unreference(obj);
4570 return ret;
4571 }
4572
4573 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 4574
856fa198 4575 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 4576 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
4577 DRM_ERROR("Failed to map status page.\n");
4578 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 4579 i915_gem_object_unpin(obj);
673a394b
EA
4580 drm_gem_object_unreference(obj);
4581 return -EINVAL;
4582 }
4583 dev_priv->hws_obj = obj;
673a394b 4584 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
f6e450a6
EA
4585 if (IS_GEN6(dev)) {
4586 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4587 I915_READ(HWS_PGA_GEN6); /* posting read */
4588 } else {
4589 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4590 I915_READ(HWS_PGA); /* posting read */
4591 }
44d98a61 4592 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
673a394b
EA
4593
4594 return 0;
4595}
4596
85a7bb98
CW
4597static void
4598i915_gem_cleanup_hws(struct drm_device *dev)
4599{
4600 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
4601 struct drm_gem_object *obj;
4602 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
4603
4604 if (dev_priv->hws_obj == NULL)
4605 return;
4606
bab2d1f6
CW
4607 obj = dev_priv->hws_obj;
4608 obj_priv = obj->driver_private;
4609
856fa198 4610 kunmap(obj_priv->pages[0]);
85a7bb98
CW
4611 i915_gem_object_unpin(obj);
4612 drm_gem_object_unreference(obj);
4613 dev_priv->hws_obj = NULL;
bab2d1f6 4614
85a7bb98
CW
4615 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4616 dev_priv->hw_status_page = NULL;
4617
4618 /* Write high address into HWS_PGA when disabling. */
4619 I915_WRITE(HWS_PGA, 0x1ffff000);
4620}
4621
79e53945 4622int
673a394b
EA
4623i915_gem_init_ringbuffer(struct drm_device *dev)
4624{
4625 drm_i915_private_t *dev_priv = dev->dev_private;
4626 struct drm_gem_object *obj;
4627 struct drm_i915_gem_object *obj_priv;
79e53945 4628 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 4629 int ret;
50aa253d 4630 u32 head;
673a394b
EA
4631
4632 ret = i915_gem_init_hws(dev);
4633 if (ret != 0)
4634 return ret;
4635
4636 obj = drm_gem_object_alloc(dev, 128 * 1024);
4637 if (obj == NULL) {
4638 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 4639 i915_gem_cleanup_hws(dev);
673a394b
EA
4640 return -ENOMEM;
4641 }
4642 obj_priv = obj->driver_private;
4643
4644 ret = i915_gem_object_pin(obj, 4096);
4645 if (ret != 0) {
4646 drm_gem_object_unreference(obj);
85a7bb98 4647 i915_gem_cleanup_hws(dev);
673a394b
EA
4648 return ret;
4649 }
4650
4651 /* Set up the kernel mapping for the ring. */
79e53945 4652 ring->Size = obj->size;
673a394b 4653
79e53945
JB
4654 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4655 ring->map.size = obj->size;
4656 ring->map.type = 0;
4657 ring->map.flags = 0;
4658 ring->map.mtrr = 0;
673a394b 4659
79e53945
JB
4660 drm_core_ioremap_wc(&ring->map, dev);
4661 if (ring->map.handle == NULL) {
673a394b
EA
4662 DRM_ERROR("Failed to map ringbuffer.\n");
4663 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 4664 i915_gem_object_unpin(obj);
673a394b 4665 drm_gem_object_unreference(obj);
85a7bb98 4666 i915_gem_cleanup_hws(dev);
673a394b
EA
4667 return -EINVAL;
4668 }
79e53945
JB
4669 ring->ring_obj = obj;
4670 ring->virtual_start = ring->map.handle;
673a394b
EA
4671
4672 /* Stop the ring if it's running. */
4673 I915_WRITE(PRB0_CTL, 0);
673a394b 4674 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4675 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4676
4677 /* Initialize the ring. */
4678 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4679 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4680
4681 /* G45 ring initialization fails to reset head to zero */
4682 if (head != 0) {
4683 DRM_ERROR("Ring head not reset to zero "
4684 "ctl %08x head %08x tail %08x start %08x\n",
4685 I915_READ(PRB0_CTL),
4686 I915_READ(PRB0_HEAD),
4687 I915_READ(PRB0_TAIL),
4688 I915_READ(PRB0_START));
4689 I915_WRITE(PRB0_HEAD, 0);
4690
4691 DRM_ERROR("Ring head forced to zero "
4692 "ctl %08x head %08x tail %08x start %08x\n",
4693 I915_READ(PRB0_CTL),
4694 I915_READ(PRB0_HEAD),
4695 I915_READ(PRB0_TAIL),
4696 I915_READ(PRB0_START));
4697 }
4698
673a394b
EA
4699 I915_WRITE(PRB0_CTL,
4700 ((obj->size - 4096) & RING_NR_PAGES) |
4701 RING_NO_REPORT |
4702 RING_VALID);
4703
50aa253d
KP
4704 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4705
4706 /* If the head is still not zero, the ring is dead */
4707 if (head != 0) {
4708 DRM_ERROR("Ring initialization failed "
4709 "ctl %08x head %08x tail %08x start %08x\n",
4710 I915_READ(PRB0_CTL),
4711 I915_READ(PRB0_HEAD),
4712 I915_READ(PRB0_TAIL),
4713 I915_READ(PRB0_START));
4714 return -EIO;
4715 }
4716
673a394b 4717 /* Update our cache of the ring state */
79e53945
JB
4718 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4719 i915_kernel_lost_context(dev);
4720 else {
4721 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4722 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4723 ring->space = ring->head - (ring->tail + 8);
4724 if (ring->space < 0)
4725 ring->space += ring->Size;
4726 }
673a394b 4727
71cf39b1
EA
4728 if (IS_I9XX(dev) && !IS_GEN3(dev)) {
4729 I915_WRITE(MI_MODE,
4730 (VS_TIMER_DISPATCH) << 16 | VS_TIMER_DISPATCH);
4731 }
4732
673a394b
EA
4733 return 0;
4734}
4735
79e53945 4736void
673a394b
EA
4737i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4738{
4739 drm_i915_private_t *dev_priv = dev->dev_private;
4740
4741 if (dev_priv->ring.ring_obj == NULL)
4742 return;
4743
4744 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4745
4746 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4747 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4748 dev_priv->ring.ring_obj = NULL;
4749 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4750
85a7bb98 4751 i915_gem_cleanup_hws(dev);
673a394b
EA
4752}
4753
4754int
4755i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4756 struct drm_file *file_priv)
4757{
4758 drm_i915_private_t *dev_priv = dev->dev_private;
4759 int ret;
4760
79e53945
JB
4761 if (drm_core_check_feature(dev, DRIVER_MODESET))
4762 return 0;
4763
ba1234d1 4764 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4765 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4766 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4767 }
4768
673a394b 4769 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4770 dev_priv->mm.suspended = 0;
4771
4772 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4773 if (ret != 0) {
4774 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4775 return ret;
d816f6ac 4776 }
9bb2d6f9 4777
5e118f41 4778 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4779 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4780 spin_unlock(&dev_priv->mm.active_list_lock);
4781
673a394b
EA
4782 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4783 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4784 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4785 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4786
4787 drm_irq_install(dev);
4788
673a394b
EA
4789 return 0;
4790}
4791
4792int
4793i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4794 struct drm_file *file_priv)
4795{
79e53945
JB
4796 if (drm_core_check_feature(dev, DRIVER_MODESET))
4797 return 0;
4798
dbb19d30 4799 drm_irq_uninstall(dev);
e6890f6f 4800 return i915_gem_idle(dev);
673a394b
EA
4801}
4802
4803void
4804i915_gem_lastclose(struct drm_device *dev)
4805{
4806 int ret;
673a394b 4807
e806b495
EA
4808 if (drm_core_check_feature(dev, DRIVER_MODESET))
4809 return;
4810
6dbe2772
KP
4811 ret = i915_gem_idle(dev);
4812 if (ret)
4813 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4814}
4815
4816void
4817i915_gem_load(struct drm_device *dev)
4818{
b5aa8a0f 4819 int i;
673a394b
EA
4820 drm_i915_private_t *dev_priv = dev->dev_private;
4821
5e118f41 4822 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4823 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4824 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4825 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b
EA
4826 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4827 INIT_LIST_HEAD(&dev_priv->mm.request_list);
a09ba7fa 4828 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
673a394b
EA
4829 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4830 i915_gem_retire_work_handler);
4831 dev_priv->mm.next_gem_seqno = 1;
4832
31169714
CW
4833 spin_lock(&shrink_list_lock);
4834 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4835 spin_unlock(&shrink_list_lock);
4836
de151cf6 4837 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4838 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4839 dev_priv->fence_reg_start = 3;
de151cf6 4840
0f973f27 4841 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4842 dev_priv->num_fence_regs = 16;
4843 else
4844 dev_priv->num_fence_regs = 8;
4845
b5aa8a0f
GH
4846 /* Initialize fence registers to zero */
4847 if (IS_I965G(dev)) {
4848 for (i = 0; i < 16; i++)
4849 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4850 } else {
4851 for (i = 0; i < 8; i++)
4852 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4853 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4854 for (i = 0; i < 8; i++)
4855 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4856 }
673a394b 4857 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4858 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4859}
71acb5eb
DA
4860
4861/*
4862 * Create a physically contiguous memory object for this object
4863 * e.g. for cursor + overlay regs
4864 */
4865int i915_gem_init_phys_object(struct drm_device *dev,
4866 int id, int size)
4867{
4868 drm_i915_private_t *dev_priv = dev->dev_private;
4869 struct drm_i915_gem_phys_object *phys_obj;
4870 int ret;
4871
4872 if (dev_priv->mm.phys_objs[id - 1] || !size)
4873 return 0;
4874
9a298b2a 4875 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4876 if (!phys_obj)
4877 return -ENOMEM;
4878
4879 phys_obj->id = id;
4880
e6be8d9d 4881 phys_obj->handle = drm_pci_alloc(dev, size, 0);
71acb5eb
DA
4882 if (!phys_obj->handle) {
4883 ret = -ENOMEM;
4884 goto kfree_obj;
4885 }
4886#ifdef CONFIG_X86
4887 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4888#endif
4889
4890 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4891
4892 return 0;
4893kfree_obj:
9a298b2a 4894 kfree(phys_obj);
71acb5eb
DA
4895 return ret;
4896}
4897
4898void i915_gem_free_phys_object(struct drm_device *dev, int id)
4899{
4900 drm_i915_private_t *dev_priv = dev->dev_private;
4901 struct drm_i915_gem_phys_object *phys_obj;
4902
4903 if (!dev_priv->mm.phys_objs[id - 1])
4904 return;
4905
4906 phys_obj = dev_priv->mm.phys_objs[id - 1];
4907 if (phys_obj->cur_obj) {
4908 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4909 }
4910
4911#ifdef CONFIG_X86
4912 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4913#endif
4914 drm_pci_free(dev, phys_obj->handle);
4915 kfree(phys_obj);
4916 dev_priv->mm.phys_objs[id - 1] = NULL;
4917}
4918
4919void i915_gem_free_all_phys_object(struct drm_device *dev)
4920{
4921 int i;
4922
260883c8 4923 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4924 i915_gem_free_phys_object(dev, i);
4925}
4926
4927void i915_gem_detach_phys_object(struct drm_device *dev,
4928 struct drm_gem_object *obj)
4929{
4930 struct drm_i915_gem_object *obj_priv;
4931 int i;
4932 int ret;
4933 int page_count;
4934
4935 obj_priv = obj->driver_private;
4936 if (!obj_priv->phys_obj)
4937 return;
4938
4bdadb97 4939 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4940 if (ret)
4941 goto out;
4942
4943 page_count = obj->size / PAGE_SIZE;
4944
4945 for (i = 0; i < page_count; i++) {
856fa198 4946 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4947 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4948
4949 memcpy(dst, src, PAGE_SIZE);
4950 kunmap_atomic(dst, KM_USER0);
4951 }
856fa198 4952 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4953 drm_agp_chipset_flush(dev);
d78b47b9
CW
4954
4955 i915_gem_object_put_pages(obj);
71acb5eb
DA
4956out:
4957 obj_priv->phys_obj->cur_obj = NULL;
4958 obj_priv->phys_obj = NULL;
4959}
4960
4961int
4962i915_gem_attach_phys_object(struct drm_device *dev,
4963 struct drm_gem_object *obj, int id)
4964{
4965 drm_i915_private_t *dev_priv = dev->dev_private;
4966 struct drm_i915_gem_object *obj_priv;
4967 int ret = 0;
4968 int page_count;
4969 int i;
4970
4971 if (id > I915_MAX_PHYS_OBJECT)
4972 return -EINVAL;
4973
4974 obj_priv = obj->driver_private;
4975
4976 if (obj_priv->phys_obj) {
4977 if (obj_priv->phys_obj->id == id)
4978 return 0;
4979 i915_gem_detach_phys_object(dev, obj);
4980 }
4981
4982
4983 /* create a new object */
4984 if (!dev_priv->mm.phys_objs[id - 1]) {
4985 ret = i915_gem_init_phys_object(dev, id,
4986 obj->size);
4987 if (ret) {
aeb565df 4988 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4989 goto out;
4990 }
4991 }
4992
4993 /* bind to the object */
4994 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4995 obj_priv->phys_obj->cur_obj = obj;
4996
4bdadb97 4997 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4998 if (ret) {
4999 DRM_ERROR("failed to get page list\n");
5000 goto out;
5001 }
5002
5003 page_count = obj->size / PAGE_SIZE;
5004
5005 for (i = 0; i < page_count; i++) {
856fa198 5006 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
5007 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5008
5009 memcpy(dst, src, PAGE_SIZE);
5010 kunmap_atomic(src, KM_USER0);
5011 }
5012
d78b47b9
CW
5013 i915_gem_object_put_pages(obj);
5014
71acb5eb
DA
5015 return 0;
5016out:
5017 return ret;
5018}
5019
5020static int
5021i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5022 struct drm_i915_gem_pwrite *args,
5023 struct drm_file *file_priv)
5024{
5025 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5026 void *obj_addr;
5027 int ret;
5028 char __user *user_data;
5029
5030 user_data = (char __user *) (uintptr_t) args->data_ptr;
5031 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5032
44d98a61 5033 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
5034 ret = copy_from_user(obj_addr, user_data, args->size);
5035 if (ret)
5036 return -EFAULT;
5037
5038 drm_agp_chipset_flush(dev);
5039 return 0;
5040}
b962442e
EA
5041
5042void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5043{
5044 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5045
5046 /* Clean up our request list when the client is going away, so that
5047 * later retire_requests won't dereference our soon-to-be-gone
5048 * file_priv.
5049 */
5050 mutex_lock(&dev->struct_mutex);
5051 while (!list_empty(&i915_file_priv->mm.request_list))
5052 list_del_init(i915_file_priv->mm.request_list.next);
5053 mutex_unlock(&dev->struct_mutex);
5054}
31169714 5055
31169714
CW
5056static int
5057i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5058{
5059 drm_i915_private_t *dev_priv, *next_dev;
5060 struct drm_i915_gem_object *obj_priv, *next_obj;
5061 int cnt = 0;
5062 int would_deadlock = 1;
5063
5064 /* "fast-path" to count number of available objects */
5065 if (nr_to_scan == 0) {
5066 spin_lock(&shrink_list_lock);
5067 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5068 struct drm_device *dev = dev_priv->dev;
5069
5070 if (mutex_trylock(&dev->struct_mutex)) {
5071 list_for_each_entry(obj_priv,
5072 &dev_priv->mm.inactive_list,
5073 list)
5074 cnt++;
5075 mutex_unlock(&dev->struct_mutex);
5076 }
5077 }
5078 spin_unlock(&shrink_list_lock);
5079
5080 return (cnt / 100) * sysctl_vfs_cache_pressure;
5081 }
5082
5083 spin_lock(&shrink_list_lock);
5084
5085 /* first scan for clean buffers */
5086 list_for_each_entry_safe(dev_priv, next_dev,
5087 &shrink_list, mm.shrink_list) {
5088 struct drm_device *dev = dev_priv->dev;
5089
5090 if (! mutex_trylock(&dev->struct_mutex))
5091 continue;
5092
5093 spin_unlock(&shrink_list_lock);
5094
5095 i915_gem_retire_requests(dev);
5096
5097 list_for_each_entry_safe(obj_priv, next_obj,
5098 &dev_priv->mm.inactive_list,
5099 list) {
5100 if (i915_gem_object_is_purgeable(obj_priv)) {
963b4836 5101 i915_gem_object_unbind(obj_priv->obj);
31169714
CW
5102 if (--nr_to_scan <= 0)
5103 break;
5104 }
5105 }
5106
5107 spin_lock(&shrink_list_lock);
5108 mutex_unlock(&dev->struct_mutex);
5109
963b4836
CW
5110 would_deadlock = 0;
5111
31169714
CW
5112 if (nr_to_scan <= 0)
5113 break;
5114 }
5115
5116 /* second pass, evict/count anything still on the inactive list */
5117 list_for_each_entry_safe(dev_priv, next_dev,
5118 &shrink_list, mm.shrink_list) {
5119 struct drm_device *dev = dev_priv->dev;
5120
5121 if (! mutex_trylock(&dev->struct_mutex))
5122 continue;
5123
5124 spin_unlock(&shrink_list_lock);
5125
5126 list_for_each_entry_safe(obj_priv, next_obj,
5127 &dev_priv->mm.inactive_list,
5128 list) {
5129 if (nr_to_scan > 0) {
963b4836 5130 i915_gem_object_unbind(obj_priv->obj);
31169714
CW
5131 nr_to_scan--;
5132 } else
5133 cnt++;
5134 }
5135
5136 spin_lock(&shrink_list_lock);
5137 mutex_unlock(&dev->struct_mutex);
5138
5139 would_deadlock = 0;
5140 }
5141
5142 spin_unlock(&shrink_list_lock);
5143
5144 if (would_deadlock)
5145 return -1;
5146 else if (cnt > 0)
5147 return (cnt / 100) * sysctl_vfs_cache_pressure;
5148 else
5149 return 0;
5150}
5151
5152static struct shrinker shrinker = {
5153 .shrink = i915_gem_shrink,
5154 .seeks = DEFAULT_SEEKS,
5155};
5156
5157__init void
5158i915_gem_shrinker_init(void)
5159{
5160 register_shrinker(&shrinker);
5161}
5162
5163__exit void
5164i915_gem_shrinker_exit(void)
5165{
5166 unregister_shrinker(&shrinker);
5167}