drm/i915: Start passing around i915_vma from execbuffer
[linux-block.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
0ccdacf6 36#include "intel_mocs.h"
c13d87ea 37#include <linux/reservation.h>
5949eac4 38#include <linux/shmem_fs.h>
5a0e3ad6 39#include <linux/slab.h>
673a394b 40#include <linux/swap.h>
79e53945 41#include <linux/pci.h>
1286ff73 42#include <linux/dma-buf.h>
673a394b 43
05394f39 44static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 45static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 46
c76ce038
CW
47static bool cpu_cache_is_coherent(struct drm_device *dev,
48 enum i915_cache_level level)
49{
50 return HAS_LLC(dev) || level != I915_CACHE_NONE;
51}
52
2c22569b
CW
53static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
54{
b50a5371
AS
55 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
56 return false;
57
2c22569b
CW
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
4f1959ee
AS
64static int
65insert_mappable_node(struct drm_i915_private *i915,
66 struct drm_mm_node *node, u32 size)
67{
68 memset(node, 0, sizeof(*node));
69 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
70 size, 0, 0, 0,
71 i915->ggtt.mappable_end,
72 DRM_MM_SEARCH_DEFAULT,
73 DRM_MM_CREATE_DEFAULT);
74}
75
76static void
77remove_mappable_node(struct drm_mm_node *node)
78{
79 drm_mm_remove_node(node);
80}
81
73aa808f
CW
82/* some bookkeeping */
83static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
c20e8355 86 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
87 dev_priv->mm.object_count++;
88 dev_priv->mm.object_memory += size;
c20e8355 89 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
90}
91
92static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count--;
97 dev_priv->mm.object_memory -= size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
21dd3734 101static int
33196ded 102i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 103{
30dbf0c0
CW
104 int ret;
105
d98c52cf 106 if (!i915_reset_in_progress(error))
30dbf0c0
CW
107 return 0;
108
0a6759c6
DV
109 /*
110 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
111 * userspace. If it takes that long something really bad is going on and
112 * we should simply try to bail out and fail as gracefully as possible.
113 */
1f83fee0 114 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 115 !i915_reset_in_progress(error),
1f83fee0 116 10*HZ);
0a6759c6
DV
117 if (ret == 0) {
118 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
119 return -EIO;
120 } else if (ret < 0) {
30dbf0c0 121 return ret;
d98c52cf
CW
122 } else {
123 return 0;
0a6759c6 124 }
30dbf0c0
CW
125}
126
54cf91dc 127int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 128{
fac5e23e 129 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
130 int ret;
131
33196ded 132 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
133 if (ret)
134 return ret;
135
136 ret = mutex_lock_interruptible(&dev->struct_mutex);
137 if (ret)
138 return ret;
139
76c1dec1
CW
140 return 0;
141}
30dbf0c0 142
5a125c3c
EA
143int
144i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 145 struct drm_file *file)
5a125c3c 146{
72e96d64 147 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 148 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 149 struct drm_i915_gem_get_aperture *args = data;
ca1543be 150 struct i915_vma *vma;
6299f992 151 size_t pinned;
5a125c3c 152
6299f992 153 pinned = 0;
73aa808f 154 mutex_lock(&dev->struct_mutex);
1c7f4bca 155 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 156 if (i915_vma_is_pinned(vma))
ca1543be 157 pinned += vma->node.size;
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 159 if (i915_vma_is_pinned(vma))
ca1543be 160 pinned += vma->node.size;
73aa808f 161 mutex_unlock(&dev->struct_mutex);
5a125c3c 162
72e96d64 163 args->aper_size = ggtt->base.total;
0206e353 164 args->aper_available_size = args->aper_size - pinned;
6299f992 165
5a125c3c
EA
166 return 0;
167}
168
6a2c4232
CW
169static int
170i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 171{
6a2c4232
CW
172 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
173 char *vaddr = obj->phys_handle->vaddr;
174 struct sg_table *st;
175 struct scatterlist *sg;
176 int i;
00731155 177
6a2c4232
CW
178 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
179 return -EINVAL;
180
181 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
182 struct page *page;
183 char *src;
184
185 page = shmem_read_mapping_page(mapping, i);
186 if (IS_ERR(page))
187 return PTR_ERR(page);
188
189 src = kmap_atomic(page);
190 memcpy(vaddr, src, PAGE_SIZE);
191 drm_clflush_virt_range(vaddr, PAGE_SIZE);
192 kunmap_atomic(src);
193
09cbfeaf 194 put_page(page);
6a2c4232
CW
195 vaddr += PAGE_SIZE;
196 }
197
c033666a 198 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
199
200 st = kmalloc(sizeof(*st), GFP_KERNEL);
201 if (st == NULL)
202 return -ENOMEM;
203
204 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
205 kfree(st);
206 return -ENOMEM;
207 }
208
209 sg = st->sgl;
210 sg->offset = 0;
211 sg->length = obj->base.size;
00731155 212
6a2c4232
CW
213 sg_dma_address(sg) = obj->phys_handle->busaddr;
214 sg_dma_len(sg) = obj->base.size;
215
216 obj->pages = st;
6a2c4232
CW
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232 227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 228 if (WARN_ON(ret)) {
6a2c4232
CW
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
6a2c4232
CW
232 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
233 }
234
235 if (obj->madv == I915_MADV_DONTNEED)
236 obj->dirty = 0;
237
238 if (obj->dirty) {
00731155 239 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 240 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
241 int i;
242
243 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
244 struct page *page;
245 char *dst;
246
247 page = shmem_read_mapping_page(mapping, i);
248 if (IS_ERR(page))
249 continue;
250
251 dst = kmap_atomic(page);
252 drm_clflush_virt_range(vaddr, PAGE_SIZE);
253 memcpy(dst, vaddr, PAGE_SIZE);
254 kunmap_atomic(dst);
255
256 set_page_dirty(page);
257 if (obj->madv == I915_MADV_WILLNEED)
00731155 258 mark_page_accessed(page);
09cbfeaf 259 put_page(page);
00731155
CW
260 vaddr += PAGE_SIZE;
261 }
6a2c4232 262 obj->dirty = 0;
00731155
CW
263 }
264
6a2c4232
CW
265 sg_free_table(obj->pages);
266 kfree(obj->pages);
6a2c4232
CW
267}
268
269static void
270i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
271{
272 drm_pci_free(obj->base.dev, obj->phys_handle);
273}
274
275static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
276 .get_pages = i915_gem_object_get_pages_phys,
277 .put_pages = i915_gem_object_put_pages_phys,
278 .release = i915_gem_object_release_phys,
279};
280
aa653a68
CW
281int
282i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
286 int ret;
287
288 /* The vma will only be freed if it is marked as closed, and if we wait
289 * upon rendering to the vma, we may unbind anything in the list.
290 */
291 while ((vma = list_first_entry_or_null(&obj->vma_list,
292 struct i915_vma,
293 obj_link))) {
294 list_move_tail(&vma->obj_link, &still_in_list);
295 ret = i915_vma_unbind(vma);
296 if (ret)
297 break;
298 }
299 list_splice(&still_in_list, &obj->vma_list);
300
301 return ret;
302}
303
00731155
CW
304int
305i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
306 int align)
307{
308 drm_dma_handle_t *phys;
6a2c4232 309 int ret;
00731155
CW
310
311 if (obj->phys_handle) {
312 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
313 return -EBUSY;
314
315 return 0;
316 }
317
318 if (obj->madv != I915_MADV_WILLNEED)
319 return -EFAULT;
320
321 if (obj->base.filp == NULL)
322 return -EINVAL;
323
4717ca9e
CW
324 ret = i915_gem_object_unbind(obj);
325 if (ret)
326 return ret;
327
328 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
329 if (ret)
330 return ret;
331
00731155
CW
332 /* create a new object */
333 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
334 if (!phys)
335 return -ENOMEM;
336
00731155 337 obj->phys_handle = phys;
6a2c4232
CW
338 obj->ops = &i915_gem_phys_ops;
339
340 return i915_gem_object_get_pages(obj);
00731155
CW
341}
342
343static int
344i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
345 struct drm_i915_gem_pwrite *args,
346 struct drm_file *file_priv)
347{
348 struct drm_device *dev = obj->base.dev;
349 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 350 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 351 int ret = 0;
6a2c4232
CW
352
353 /* We manually control the domain here and pretend that it
354 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
355 */
356 ret = i915_gem_object_wait_rendering(obj, false);
357 if (ret)
358 return ret;
00731155 359
77a0d1ca 360 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
361 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
362 unsigned long unwritten;
363
364 /* The physical object once assigned is fixed for the lifetime
365 * of the obj, so we can safely drop the lock and continue
366 * to access vaddr.
367 */
368 mutex_unlock(&dev->struct_mutex);
369 unwritten = copy_from_user(vaddr, user_data, args->size);
370 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
371 if (unwritten) {
372 ret = -EFAULT;
373 goto out;
374 }
00731155
CW
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
c033666a 378 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
379
380out:
de152b62 381 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 382 return ret;
00731155
CW
383}
384
42dcedd4
CW
385void *i915_gem_object_alloc(struct drm_device *dev)
386{
fac5e23e 387 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 388 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
389}
390
391void i915_gem_object_free(struct drm_i915_gem_object *obj)
392{
fac5e23e 393 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 394 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
395}
396
ff72145b
DA
397static int
398i915_gem_create(struct drm_file *file,
399 struct drm_device *dev,
400 uint64_t size,
401 uint32_t *handle_p)
673a394b 402{
05394f39 403 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
404 int ret;
405 u32 handle;
673a394b 406
ff72145b 407 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
408 if (size == 0)
409 return -EINVAL;
673a394b
EA
410
411 /* Allocate the new object */
d37cd8a8 412 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
413 if (IS_ERR(obj))
414 return PTR_ERR(obj);
673a394b 415
05394f39 416 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 417 /* drop reference from allocate - handle holds it now */
34911fd3 418 i915_gem_object_put_unlocked(obj);
d861e338
DV
419 if (ret)
420 return ret;
202f2fef 421
ff72145b 422 *handle_p = handle;
673a394b
EA
423 return 0;
424}
425
ff72145b
DA
426int
427i915_gem_dumb_create(struct drm_file *file,
428 struct drm_device *dev,
429 struct drm_mode_create_dumb *args)
430{
431 /* have to work out size/pitch and return them */
de45eaf7 432 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
433 args->size = args->pitch * args->height;
434 return i915_gem_create(file, dev,
da6b51d0 435 args->size, &args->handle);
ff72145b
DA
436}
437
ff72145b
DA
438/**
439 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
440 * @dev: drm device pointer
441 * @data: ioctl data blob
442 * @file: drm file pointer
ff72145b
DA
443 */
444int
445i915_gem_create_ioctl(struct drm_device *dev, void *data,
446 struct drm_file *file)
447{
448 struct drm_i915_gem_create *args = data;
63ed2cb2 449
ff72145b 450 return i915_gem_create(file, dev,
da6b51d0 451 args->size, &args->handle);
ff72145b
DA
452}
453
8461d226
DV
454static inline int
455__copy_to_user_swizzled(char __user *cpu_vaddr,
456 const char *gpu_vaddr, int gpu_offset,
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467 gpu_vaddr + swizzled_gpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
8c59967c 480static inline int
4f0c7cfb
BW
481__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482 const char __user *cpu_vaddr,
8c59967c
DV
483 int length)
484{
485 int ret, cpu_offset = 0;
486
487 while (length > 0) {
488 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489 int this_length = min(cacheline_end - gpu_offset, length);
490 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493 cpu_vaddr + cpu_offset,
494 this_length);
495 if (ret)
496 return ret + length;
497
498 cpu_offset += this_length;
499 gpu_offset += this_length;
500 length -= this_length;
501 }
502
503 return 0;
504}
505
4c914c0c
BV
506/*
507 * Pins the specified object's pages and synchronizes the object with
508 * GPU accesses. Sets needs_clflush to non-zero if the caller should
509 * flush the object from the CPU cache.
510 */
511int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512 int *needs_clflush)
513{
514 int ret;
515
516 *needs_clflush = 0;
517
b9bcd14a 518 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
519 return -EINVAL;
520
c13d87ea
CW
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524
4c914c0c
BV
525 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
526 /* If we're not in the cpu read domain, set ourself into the gtt
527 * read domain and manually flush cachelines (if required). This
528 * optimizes for the case when the gpu will dirty the data
529 * anyway again before the next pread happens. */
530 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
531 obj->cache_level);
4c914c0c
BV
532 }
533
534 ret = i915_gem_object_get_pages(obj);
535 if (ret)
536 return ret;
537
538 i915_gem_object_pin_pages(obj);
539
540 return ret;
541}
542
d174bd64
DV
543/* Per-page copy function for the shmem pread fastpath.
544 * Flushes invalid cachelines before reading the target if
545 * needs_clflush is set. */
eb01459f 546static int
d174bd64
DV
547shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
548 char __user *user_data,
549 bool page_do_bit17_swizzling, bool needs_clflush)
550{
551 char *vaddr;
552 int ret;
553
e7e58eb5 554 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
555 return -EINVAL;
556
557 vaddr = kmap_atomic(page);
558 if (needs_clflush)
559 drm_clflush_virt_range(vaddr + shmem_page_offset,
560 page_length);
561 ret = __copy_to_user_inatomic(user_data,
562 vaddr + shmem_page_offset,
563 page_length);
564 kunmap_atomic(vaddr);
565
f60d7f0c 566 return ret ? -EFAULT : 0;
d174bd64
DV
567}
568
23c18c71
DV
569static void
570shmem_clflush_swizzled_range(char *addr, unsigned long length,
571 bool swizzled)
572{
e7e58eb5 573 if (unlikely(swizzled)) {
23c18c71
DV
574 unsigned long start = (unsigned long) addr;
575 unsigned long end = (unsigned long) addr + length;
576
577 /* For swizzling simply ensure that we always flush both
578 * channels. Lame, but simple and it works. Swizzled
579 * pwrite/pread is far from a hotpath - current userspace
580 * doesn't use it at all. */
581 start = round_down(start, 128);
582 end = round_up(end, 128);
583
584 drm_clflush_virt_range((void *)start, end - start);
585 } else {
586 drm_clflush_virt_range(addr, length);
587 }
588
589}
590
d174bd64
DV
591/* Only difference to the fast-path function is that this can handle bit17
592 * and uses non-atomic copy and kmap functions. */
593static int
594shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
595 char __user *user_data,
596 bool page_do_bit17_swizzling, bool needs_clflush)
597{
598 char *vaddr;
599 int ret;
600
601 vaddr = kmap(page);
602 if (needs_clflush)
23c18c71
DV
603 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
604 page_length,
605 page_do_bit17_swizzling);
d174bd64
DV
606
607 if (page_do_bit17_swizzling)
608 ret = __copy_to_user_swizzled(user_data,
609 vaddr, shmem_page_offset,
610 page_length);
611 else
612 ret = __copy_to_user(user_data,
613 vaddr + shmem_page_offset,
614 page_length);
615 kunmap(page);
616
f60d7f0c 617 return ret ? - EFAULT : 0;
d174bd64
DV
618}
619
b50a5371
AS
620static inline unsigned long
621slow_user_access(struct io_mapping *mapping,
622 uint64_t page_base, int page_offset,
623 char __user *user_data,
624 unsigned long length, bool pwrite)
625{
626 void __iomem *ioaddr;
627 void *vaddr;
628 uint64_t unwritten;
629
630 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
631 /* We can use the cpu mem copy function because this is X86. */
632 vaddr = (void __force *)ioaddr + page_offset;
633 if (pwrite)
634 unwritten = __copy_from_user(vaddr, user_data, length);
635 else
636 unwritten = __copy_to_user(user_data, vaddr, length);
637
638 io_mapping_unmap(ioaddr);
639 return unwritten;
640}
641
642static int
643i915_gem_gtt_pread(struct drm_device *dev,
644 struct drm_i915_gem_object *obj, uint64_t size,
645 uint64_t data_offset, uint64_t data_ptr)
646{
fac5e23e 647 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371
AS
648 struct i915_ggtt *ggtt = &dev_priv->ggtt;
649 struct drm_mm_node node;
650 char __user *user_data;
651 uint64_t remain;
652 uint64_t offset;
653 int ret;
654
655 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
656 if (ret) {
657 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
658 if (ret)
659 goto out;
660
661 ret = i915_gem_object_get_pages(obj);
662 if (ret) {
663 remove_mappable_node(&node);
664 goto out;
665 }
666
667 i915_gem_object_pin_pages(obj);
668 } else {
669 node.start = i915_gem_obj_ggtt_offset(obj);
670 node.allocated = false;
671 ret = i915_gem_object_put_fence(obj);
672 if (ret)
673 goto out_unpin;
674 }
675
676 ret = i915_gem_object_set_to_gtt_domain(obj, false);
677 if (ret)
678 goto out_unpin;
679
680 user_data = u64_to_user_ptr(data_ptr);
681 remain = size;
682 offset = data_offset;
683
684 mutex_unlock(&dev->struct_mutex);
685 if (likely(!i915.prefault_disable)) {
686 ret = fault_in_multipages_writeable(user_data, remain);
687 if (ret) {
688 mutex_lock(&dev->struct_mutex);
689 goto out_unpin;
690 }
691 }
692
693 while (remain > 0) {
694 /* Operation in this page
695 *
696 * page_base = page offset within aperture
697 * page_offset = offset within page
698 * page_length = bytes to copy for this page
699 */
700 u32 page_base = node.start;
701 unsigned page_offset = offset_in_page(offset);
702 unsigned page_length = PAGE_SIZE - page_offset;
703 page_length = remain < page_length ? remain : page_length;
704 if (node.allocated) {
705 wmb();
706 ggtt->base.insert_page(&ggtt->base,
707 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
708 node.start,
709 I915_CACHE_NONE, 0);
710 wmb();
711 } else {
712 page_base += offset & PAGE_MASK;
713 }
714 /* This is a slow read/write as it tries to read from
715 * and write to user memory which may result into page
716 * faults, and so we cannot perform this under struct_mutex.
717 */
718 if (slow_user_access(ggtt->mappable, page_base,
719 page_offset, user_data,
720 page_length, false)) {
721 ret = -EFAULT;
722 break;
723 }
724
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
728 }
729
730 mutex_lock(&dev->struct_mutex);
731 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
732 /* The user has modified the object whilst we tried
733 * reading from it, and we now have no idea what domain
734 * the pages should be in. As we have just been touching
735 * them directly, flush everything back to the GTT
736 * domain.
737 */
738 ret = i915_gem_object_set_to_gtt_domain(obj, false);
739 }
740
741out_unpin:
742 if (node.allocated) {
743 wmb();
744 ggtt->base.clear_range(&ggtt->base,
745 node.start, node.size,
746 true);
747 i915_gem_object_unpin_pages(obj);
748 remove_mappable_node(&node);
749 } else {
750 i915_gem_object_ggtt_unpin(obj);
751 }
752out:
753 return ret;
754}
755
eb01459f 756static int
dbf7bff0
DV
757i915_gem_shmem_pread(struct drm_device *dev,
758 struct drm_i915_gem_object *obj,
759 struct drm_i915_gem_pread *args,
760 struct drm_file *file)
eb01459f 761{
8461d226 762 char __user *user_data;
eb01459f 763 ssize_t remain;
8461d226 764 loff_t offset;
eb2c0c81 765 int shmem_page_offset, page_length, ret = 0;
8461d226 766 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 767 int prefaulted = 0;
8489731c 768 int needs_clflush = 0;
67d5a50c 769 struct sg_page_iter sg_iter;
eb01459f 770
6eae0059 771 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
772 return -ENODEV;
773
3ed605bc 774 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
775 remain = args->size;
776
8461d226 777 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 778
4c914c0c 779 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
780 if (ret)
781 return ret;
782
8461d226 783 offset = args->offset;
eb01459f 784
67d5a50c
ID
785 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
786 offset >> PAGE_SHIFT) {
2db76d7c 787 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
788
789 if (remain <= 0)
790 break;
791
eb01459f
EA
792 /* Operation in this page
793 *
eb01459f 794 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
795 * page_length = bytes to copy for this page
796 */
c8cbbb8b 797 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
798 page_length = remain;
799 if ((shmem_page_offset + page_length) > PAGE_SIZE)
800 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 801
8461d226
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 needs_clflush);
808 if (ret == 0)
809 goto next_page;
dbf7bff0 810
dbf7bff0
DV
811 mutex_unlock(&dev->struct_mutex);
812
d330a953 813 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 814 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
815 /* Userspace is tricking us, but we've already clobbered
816 * its pages with the prefault and promised to write the
817 * data up to the first fault. Hence ignore any errors
818 * and just continue. */
819 (void)ret;
820 prefaulted = 1;
821 }
eb01459f 822
d174bd64
DV
823 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
824 user_data, page_do_bit17_swizzling,
825 needs_clflush);
eb01459f 826
dbf7bff0 827 mutex_lock(&dev->struct_mutex);
f60d7f0c 828
f60d7f0c 829 if (ret)
8461d226 830 goto out;
8461d226 831
17793c9a 832next_page:
eb01459f 833 remain -= page_length;
8461d226 834 user_data += page_length;
eb01459f
EA
835 offset += page_length;
836 }
837
4f27b75d 838out:
f60d7f0c
CW
839 i915_gem_object_unpin_pages(obj);
840
eb01459f
EA
841 return ret;
842}
843
673a394b
EA
844/**
845 * Reads data from the object referenced by handle.
14bb2c11
TU
846 * @dev: drm device pointer
847 * @data: ioctl data blob
848 * @file: drm file pointer
673a394b
EA
849 *
850 * On error, the contents of *data are undefined.
851 */
852int
853i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 854 struct drm_file *file)
673a394b
EA
855{
856 struct drm_i915_gem_pread *args = data;
05394f39 857 struct drm_i915_gem_object *obj;
35b62a89 858 int ret = 0;
673a394b 859
51311d0a
CW
860 if (args->size == 0)
861 return 0;
862
863 if (!access_ok(VERIFY_WRITE,
3ed605bc 864 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
865 args->size))
866 return -EFAULT;
867
4f27b75d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
4f27b75d 870 return ret;
673a394b 871
03ac0642
CW
872 obj = i915_gem_object_lookup(file, args->handle);
873 if (!obj) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
4f27b75d 876 }
673a394b 877
7dcd2499 878 /* Bounds check source. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
db53a302
CW
885 trace_i915_gem_object_pread(obj, args->offset, args->size);
886
dbf7bff0 887 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 888
b50a5371 889 /* pread for non shmem backed objects */
1dd5b6f2
CW
890 if (ret == -EFAULT || ret == -ENODEV) {
891 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
892 ret = i915_gem_gtt_pread(dev, obj, args->size,
893 args->offset, args->data_ptr);
1dd5b6f2
CW
894 intel_runtime_pm_put(to_i915(dev));
895 }
b50a5371 896
35b62a89 897out:
f8c417cd 898 i915_gem_object_put(obj);
1d7cfea1 899unlock:
4f27b75d 900 mutex_unlock(&dev->struct_mutex);
eb01459f 901 return ret;
673a394b
EA
902}
903
0839ccb8
KP
904/* This is the fast write path which cannot handle
905 * page faults in the source data
9b7530cc 906 */
0839ccb8
KP
907
908static inline int
909fast_user_write(struct io_mapping *mapping,
910 loff_t page_base, int page_offset,
911 char __user *user_data,
912 int length)
9b7530cc 913{
4f0c7cfb
BW
914 void __iomem *vaddr_atomic;
915 void *vaddr;
0839ccb8 916 unsigned long unwritten;
9b7530cc 917
3e4d3af5 918 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
919 /* We can use the cpu mem copy function because this is X86. */
920 vaddr = (void __force*)vaddr_atomic + page_offset;
921 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 922 user_data, length);
3e4d3af5 923 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 924 return unwritten;
0839ccb8
KP
925}
926
3de09aa3
EA
927/**
928 * This is the fast pwrite path, where we copy the data directly from the
929 * user into the GTT, uncached.
62f90b38 930 * @i915: i915 device private data
14bb2c11
TU
931 * @obj: i915 gem object
932 * @args: pwrite arguments structure
933 * @file: drm file pointer
3de09aa3 934 */
673a394b 935static int
4f1959ee 936i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 937 struct drm_i915_gem_object *obj,
3de09aa3 938 struct drm_i915_gem_pwrite *args,
05394f39 939 struct drm_file *file)
673a394b 940{
4f1959ee 941 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 942 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
943 struct drm_mm_node node;
944 uint64_t remain, offset;
673a394b 945 char __user *user_data;
4f1959ee 946 int ret;
b50a5371
AS
947 bool hit_slow_path = false;
948
949 if (obj->tiling_mode != I915_TILING_NONE)
950 return -EFAULT;
935aaa69 951
1ec9e26d 952 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
953 if (ret) {
954 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
955 if (ret)
956 goto out;
957
958 ret = i915_gem_object_get_pages(obj);
959 if (ret) {
960 remove_mappable_node(&node);
961 goto out;
962 }
963
964 i915_gem_object_pin_pages(obj);
965 } else {
966 node.start = i915_gem_obj_ggtt_offset(obj);
967 node.allocated = false;
b50a5371
AS
968 ret = i915_gem_object_put_fence(obj);
969 if (ret)
970 goto out_unpin;
4f1959ee 971 }
935aaa69
DV
972
973 ret = i915_gem_object_set_to_gtt_domain(obj, true);
974 if (ret)
975 goto out_unpin;
976
77a0d1ca 977 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 978 obj->dirty = true;
063e4e6b 979
4f1959ee
AS
980 user_data = u64_to_user_ptr(args->data_ptr);
981 offset = args->offset;
982 remain = args->size;
983 while (remain) {
673a394b
EA
984 /* Operation in this page
985 *
0839ccb8
KP
986 * page_base = page offset within aperture
987 * page_offset = offset within page
988 * page_length = bytes to copy for this page
673a394b 989 */
4f1959ee
AS
990 u32 page_base = node.start;
991 unsigned page_offset = offset_in_page(offset);
992 unsigned page_length = PAGE_SIZE - page_offset;
993 page_length = remain < page_length ? remain : page_length;
994 if (node.allocated) {
995 wmb(); /* flush the write before we modify the GGTT */
996 ggtt->base.insert_page(&ggtt->base,
997 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
998 node.start, I915_CACHE_NONE, 0);
999 wmb(); /* flush modifications to the GGTT (insert_page) */
1000 } else {
1001 page_base += offset & PAGE_MASK;
1002 }
0839ccb8 1003 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1004 * source page isn't available. Return the error and we'll
1005 * retry in the slow path.
b50a5371
AS
1006 * If the object is non-shmem backed, we retry again with the
1007 * path that handles page fault.
0839ccb8 1008 */
72e96d64 1009 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1010 page_offset, user_data, page_length)) {
b50a5371
AS
1011 hit_slow_path = true;
1012 mutex_unlock(&dev->struct_mutex);
1013 if (slow_user_access(ggtt->mappable,
1014 page_base,
1015 page_offset, user_data,
1016 page_length, true)) {
1017 ret = -EFAULT;
1018 mutex_lock(&dev->struct_mutex);
1019 goto out_flush;
1020 }
1021
1022 mutex_lock(&dev->struct_mutex);
935aaa69 1023 }
673a394b 1024
0839ccb8
KP
1025 remain -= page_length;
1026 user_data += page_length;
1027 offset += page_length;
673a394b 1028 }
673a394b 1029
063e4e6b 1030out_flush:
b50a5371
AS
1031 if (hit_slow_path) {
1032 if (ret == 0 &&
1033 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1034 /* The user has modified the object whilst we tried
1035 * reading from it, and we now have no idea what domain
1036 * the pages should be in. As we have just been touching
1037 * them directly, flush everything back to the GTT
1038 * domain.
1039 */
1040 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1041 }
1042 }
1043
de152b62 1044 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1045out_unpin:
4f1959ee
AS
1046 if (node.allocated) {
1047 wmb();
1048 ggtt->base.clear_range(&ggtt->base,
1049 node.start, node.size,
1050 true);
1051 i915_gem_object_unpin_pages(obj);
1052 remove_mappable_node(&node);
1053 } else {
1054 i915_gem_object_ggtt_unpin(obj);
1055 }
935aaa69 1056out:
3de09aa3 1057 return ret;
673a394b
EA
1058}
1059
d174bd64
DV
1060/* Per-page copy function for the shmem pwrite fastpath.
1061 * Flushes invalid cachelines before writing to the target if
1062 * needs_clflush_before is set and flushes out any written cachelines after
1063 * writing if needs_clflush is set. */
3043c60c 1064static int
d174bd64
DV
1065shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1066 char __user *user_data,
1067 bool page_do_bit17_swizzling,
1068 bool needs_clflush_before,
1069 bool needs_clflush_after)
673a394b 1070{
d174bd64 1071 char *vaddr;
673a394b 1072 int ret;
3de09aa3 1073
e7e58eb5 1074 if (unlikely(page_do_bit17_swizzling))
d174bd64 1075 return -EINVAL;
3de09aa3 1076
d174bd64
DV
1077 vaddr = kmap_atomic(page);
1078 if (needs_clflush_before)
1079 drm_clflush_virt_range(vaddr + shmem_page_offset,
1080 page_length);
c2831a94
CW
1081 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1082 user_data, page_length);
d174bd64
DV
1083 if (needs_clflush_after)
1084 drm_clflush_virt_range(vaddr + shmem_page_offset,
1085 page_length);
1086 kunmap_atomic(vaddr);
3de09aa3 1087
755d2218 1088 return ret ? -EFAULT : 0;
3de09aa3
EA
1089}
1090
d174bd64
DV
1091/* Only difference to the fast-path function is that this can handle bit17
1092 * and uses non-atomic copy and kmap functions. */
3043c60c 1093static int
d174bd64
DV
1094shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1095 char __user *user_data,
1096 bool page_do_bit17_swizzling,
1097 bool needs_clflush_before,
1098 bool needs_clflush_after)
673a394b 1099{
d174bd64
DV
1100 char *vaddr;
1101 int ret;
e5281ccd 1102
d174bd64 1103 vaddr = kmap(page);
e7e58eb5 1104 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1105 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1106 page_length,
1107 page_do_bit17_swizzling);
d174bd64
DV
1108 if (page_do_bit17_swizzling)
1109 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1110 user_data,
1111 page_length);
d174bd64
DV
1112 else
1113 ret = __copy_from_user(vaddr + shmem_page_offset,
1114 user_data,
1115 page_length);
1116 if (needs_clflush_after)
23c18c71
DV
1117 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1118 page_length,
1119 page_do_bit17_swizzling);
d174bd64 1120 kunmap(page);
40123c1f 1121
755d2218 1122 return ret ? -EFAULT : 0;
40123c1f
EA
1123}
1124
40123c1f 1125static int
e244a443
DV
1126i915_gem_shmem_pwrite(struct drm_device *dev,
1127 struct drm_i915_gem_object *obj,
1128 struct drm_i915_gem_pwrite *args,
1129 struct drm_file *file)
40123c1f 1130{
40123c1f 1131 ssize_t remain;
8c59967c
DV
1132 loff_t offset;
1133 char __user *user_data;
eb2c0c81 1134 int shmem_page_offset, page_length, ret = 0;
8c59967c 1135 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1136 int hit_slowpath = 0;
58642885
DV
1137 int needs_clflush_after = 0;
1138 int needs_clflush_before = 0;
67d5a50c 1139 struct sg_page_iter sg_iter;
40123c1f 1140
3ed605bc 1141 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1142 remain = args->size;
1143
8c59967c 1144 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1145
c13d87ea
CW
1146 ret = i915_gem_object_wait_rendering(obj, false);
1147 if (ret)
1148 return ret;
1149
58642885
DV
1150 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1151 /* If we're not in the cpu write domain, set ourself into the gtt
1152 * write domain and manually flush cachelines (if required). This
1153 * optimizes for the case when the gpu will use the data
1154 * right away and we therefore have to clflush anyway. */
2c22569b 1155 needs_clflush_after = cpu_write_needs_clflush(obj);
58642885 1156 }
c76ce038
CW
1157 /* Same trick applies to invalidate partially written cachelines read
1158 * before writing. */
1159 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1160 needs_clflush_before =
1161 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1162
755d2218
CW
1163 ret = i915_gem_object_get_pages(obj);
1164 if (ret)
1165 return ret;
1166
77a0d1ca 1167 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1168
755d2218
CW
1169 i915_gem_object_pin_pages(obj);
1170
673a394b 1171 offset = args->offset;
05394f39 1172 obj->dirty = 1;
673a394b 1173
67d5a50c
ID
1174 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1175 offset >> PAGE_SHIFT) {
2db76d7c 1176 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1177 int partial_cacheline_write;
e5281ccd 1178
9da3da66
CW
1179 if (remain <= 0)
1180 break;
1181
40123c1f
EA
1182 /* Operation in this page
1183 *
40123c1f 1184 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1185 * page_length = bytes to copy for this page
1186 */
c8cbbb8b 1187 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1188
1189 page_length = remain;
1190 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1191 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1192
58642885
DV
1193 /* If we don't overwrite a cacheline completely we need to be
1194 * careful to have up-to-date data by first clflushing. Don't
1195 * overcomplicate things and flush the entire patch. */
1196 partial_cacheline_write = needs_clflush_before &&
1197 ((shmem_page_offset | page_length)
1198 & (boot_cpu_data.x86_clflush_size - 1));
1199
8c59967c
DV
1200 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1201 (page_to_phys(page) & (1 << 17)) != 0;
1202
d174bd64
DV
1203 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1204 user_data, page_do_bit17_swizzling,
1205 partial_cacheline_write,
1206 needs_clflush_after);
1207 if (ret == 0)
1208 goto next_page;
e244a443
DV
1209
1210 hit_slowpath = 1;
e244a443 1211 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1212 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1213 user_data, page_do_bit17_swizzling,
1214 partial_cacheline_write,
1215 needs_clflush_after);
40123c1f 1216
e244a443 1217 mutex_lock(&dev->struct_mutex);
755d2218 1218
755d2218 1219 if (ret)
8c59967c 1220 goto out;
8c59967c 1221
17793c9a 1222next_page:
40123c1f 1223 remain -= page_length;
8c59967c 1224 user_data += page_length;
40123c1f 1225 offset += page_length;
673a394b
EA
1226 }
1227
fbd5a26d 1228out:
755d2218
CW
1229 i915_gem_object_unpin_pages(obj);
1230
e244a443 1231 if (hit_slowpath) {
8dcf015e
DV
1232 /*
1233 * Fixup: Flush cpu caches in case we didn't flush the dirty
1234 * cachelines in-line while writing and the object moved
1235 * out of the cpu write domain while we've dropped the lock.
1236 */
1237 if (!needs_clflush_after &&
1238 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1239 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1240 needs_clflush_after = true;
e244a443 1241 }
8c59967c 1242 }
673a394b 1243
58642885 1244 if (needs_clflush_after)
c033666a 1245 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1246 else
1247 obj->cache_dirty = true;
58642885 1248
de152b62 1249 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1250 return ret;
673a394b
EA
1251}
1252
1253/**
1254 * Writes data to the object referenced by handle.
14bb2c11
TU
1255 * @dev: drm device
1256 * @data: ioctl data blob
1257 * @file: drm file
673a394b
EA
1258 *
1259 * On error, the contents of the buffer that were to be modified are undefined.
1260 */
1261int
1262i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1263 struct drm_file *file)
673a394b 1264{
fac5e23e 1265 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1266 struct drm_i915_gem_pwrite *args = data;
05394f39 1267 struct drm_i915_gem_object *obj;
51311d0a
CW
1268 int ret;
1269
1270 if (args->size == 0)
1271 return 0;
1272
1273 if (!access_ok(VERIFY_READ,
3ed605bc 1274 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1275 args->size))
1276 return -EFAULT;
1277
d330a953 1278 if (likely(!i915.prefault_disable)) {
3ed605bc 1279 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1280 args->size);
1281 if (ret)
1282 return -EFAULT;
1283 }
673a394b 1284
5d77d9c5
ID
1285 intel_runtime_pm_get(dev_priv);
1286
fbd5a26d 1287 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1288 if (ret)
5d77d9c5 1289 goto put_rpm;
1d7cfea1 1290
03ac0642
CW
1291 obj = i915_gem_object_lookup(file, args->handle);
1292 if (!obj) {
1d7cfea1
CW
1293 ret = -ENOENT;
1294 goto unlock;
fbd5a26d 1295 }
673a394b 1296
7dcd2499 1297 /* Bounds check destination. */
05394f39
CW
1298 if (args->offset > obj->base.size ||
1299 args->size > obj->base.size - args->offset) {
ce9d419d 1300 ret = -EINVAL;
35b62a89 1301 goto out;
ce9d419d
CW
1302 }
1303
db53a302
CW
1304 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1305
935aaa69 1306 ret = -EFAULT;
673a394b
EA
1307 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1308 * it would end up going through the fenced access, and we'll get
1309 * different detiling behavior between reading and writing.
1310 * pread/pwrite currently are reading and writing from the CPU
1311 * perspective, requiring manual detiling by the client.
1312 */
6eae0059
CW
1313 if (!i915_gem_object_has_struct_page(obj) ||
1314 cpu_write_needs_clflush(obj)) {
4f1959ee 1315 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1316 /* Note that the gtt paths might fail with non-page-backed user
1317 * pointers (e.g. gtt mappings when moving data between
1318 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1319 }
673a394b 1320
d1054ee4 1321 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1322 if (obj->phys_handle)
1323 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1324 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1325 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1326 else
1327 ret = -ENODEV;
6a2c4232 1328 }
5c0480f2 1329
35b62a89 1330out:
f8c417cd 1331 i915_gem_object_put(obj);
1d7cfea1 1332unlock:
fbd5a26d 1333 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1334put_rpm:
1335 intel_runtime_pm_put(dev_priv);
1336
673a394b
EA
1337 return ret;
1338}
1339
b361237b
CW
1340/**
1341 * Ensures that all rendering to the object has completed and the object is
1342 * safe to unbind from the GTT or access from the CPU.
14bb2c11
TU
1343 * @obj: i915 gem object
1344 * @readonly: waiting for read access or write
b361237b 1345 */
2e2f351d 1346int
b361237b
CW
1347i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1348 bool readonly)
1349{
c13d87ea 1350 struct reservation_object *resv;
8cac6f6c
CW
1351 struct i915_gem_active *active;
1352 unsigned long active_mask;
1353 int idx, ret;
b361237b 1354
8cac6f6c
CW
1355 lockdep_assert_held(&obj->base.dev->struct_mutex);
1356
1357 if (!readonly) {
1358 active = obj->last_read;
1359 active_mask = obj->active;
b4716185 1360 } else {
8cac6f6c
CW
1361 active_mask = 1;
1362 active = &obj->last_write;
1363 }
b4716185 1364
8cac6f6c 1365 for_each_active(active_mask, idx) {
fa545cbf
CW
1366 ret = i915_gem_active_wait(&active[idx],
1367 &obj->base.dev->struct_mutex);
8cac6f6c
CW
1368 if (ret)
1369 return ret;
b4716185
CW
1370 }
1371
c13d87ea
CW
1372 resv = i915_gem_object_get_dmabuf_resv(obj);
1373 if (resv) {
1374 long err;
1375
1376 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
1377 MAX_SCHEDULE_TIMEOUT);
1378 if (err < 0)
1379 return err;
1380 }
1381
b4716185
CW
1382 return 0;
1383}
1384
3236f57a
CW
1385/* A nonblocking variant of the above wait. This is a highly dangerous routine
1386 * as the object state may change during this call.
1387 */
1388static __must_check int
1389i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1390 struct intel_rps_client *rps,
3236f57a
CW
1391 bool readonly)
1392{
1393 struct drm_device *dev = obj->base.dev;
fac5e23e 1394 struct drm_i915_private *dev_priv = to_i915(dev);
666796da 1395 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
8cac6f6c
CW
1396 struct i915_gem_active *active;
1397 unsigned long active_mask;
b4716185 1398 int ret, i, n = 0;
3236f57a
CW
1399
1400 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1401 BUG_ON(!dev_priv->mm.interruptible);
1402
8cac6f6c
CW
1403 active_mask = obj->active;
1404 if (!active_mask)
3236f57a
CW
1405 return 0;
1406
8cac6f6c
CW
1407 if (!readonly) {
1408 active = obj->last_read;
b4716185 1409 } else {
8cac6f6c
CW
1410 active_mask = 1;
1411 active = &obj->last_write;
1412 }
b4716185 1413
8cac6f6c
CW
1414 for_each_active(active_mask, i) {
1415 struct drm_i915_gem_request *req;
b4716185 1416
8cac6f6c
CW
1417 req = i915_gem_active_get(&active[i],
1418 &obj->base.dev->struct_mutex);
1419 if (req)
27c01aae 1420 requests[n++] = req;
b4716185
CW
1421 }
1422
3236f57a 1423 mutex_unlock(&dev->struct_mutex);
299259a3 1424 ret = 0;
b4716185 1425 for (i = 0; ret == 0 && i < n; i++)
776f3236 1426 ret = i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1427 mutex_lock(&dev->struct_mutex);
1428
fa545cbf 1429 for (i = 0; i < n; i++)
e8a261ea 1430 i915_gem_request_put(requests[i]);
b4716185
CW
1431
1432 return ret;
3236f57a
CW
1433}
1434
2e1b8730
CW
1435static struct intel_rps_client *to_rps_client(struct drm_file *file)
1436{
1437 struct drm_i915_file_private *fpriv = file->driver_priv;
1438 return &fpriv->rps;
1439}
1440
aeecc969
CW
1441static enum fb_op_origin
1442write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1443{
1444 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1445 ORIGIN_GTT : ORIGIN_CPU;
1446}
1447
673a394b 1448/**
2ef7eeaa
EA
1449 * Called when user space prepares to use an object with the CPU, either
1450 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1451 * @dev: drm device
1452 * @data: ioctl data blob
1453 * @file: drm file
673a394b
EA
1454 */
1455int
1456i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1457 struct drm_file *file)
673a394b
EA
1458{
1459 struct drm_i915_gem_set_domain *args = data;
05394f39 1460 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1461 uint32_t read_domains = args->read_domains;
1462 uint32_t write_domain = args->write_domain;
673a394b
EA
1463 int ret;
1464
2ef7eeaa 1465 /* Only handle setting domains to types used by the CPU. */
21d509e3 1466 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1467 return -EINVAL;
1468
21d509e3 1469 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1470 return -EINVAL;
1471
1472 /* Having something in the write domain implies it's in the read
1473 * domain, and only that read domain. Enforce that in the request.
1474 */
1475 if (write_domain != 0 && read_domains != write_domain)
1476 return -EINVAL;
1477
76c1dec1 1478 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1479 if (ret)
76c1dec1 1480 return ret;
1d7cfea1 1481
03ac0642
CW
1482 obj = i915_gem_object_lookup(file, args->handle);
1483 if (!obj) {
1d7cfea1
CW
1484 ret = -ENOENT;
1485 goto unlock;
76c1dec1 1486 }
673a394b 1487
3236f57a
CW
1488 /* Try to flush the object off the GPU without holding the lock.
1489 * We will repeat the flush holding the lock in the normal manner
1490 * to catch cases where we are gazumped.
1491 */
6e4930f6 1492 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1493 to_rps_client(file),
6e4930f6 1494 !write_domain);
3236f57a
CW
1495 if (ret)
1496 goto unref;
1497
43566ded 1498 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1499 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1500 else
e47c68e9 1501 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1502
031b698a 1503 if (write_domain != 0)
aeecc969 1504 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1505
3236f57a 1506unref:
f8c417cd 1507 i915_gem_object_put(obj);
1d7cfea1 1508unlock:
673a394b
EA
1509 mutex_unlock(&dev->struct_mutex);
1510 return ret;
1511}
1512
1513/**
1514 * Called when user space has done writes to this buffer
14bb2c11
TU
1515 * @dev: drm device
1516 * @data: ioctl data blob
1517 * @file: drm file
673a394b
EA
1518 */
1519int
1520i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1521 struct drm_file *file)
673a394b
EA
1522{
1523 struct drm_i915_gem_sw_finish *args = data;
05394f39 1524 struct drm_i915_gem_object *obj;
673a394b
EA
1525 int ret = 0;
1526
76c1dec1 1527 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1528 if (ret)
76c1dec1 1529 return ret;
1d7cfea1 1530
03ac0642
CW
1531 obj = i915_gem_object_lookup(file, args->handle);
1532 if (!obj) {
1d7cfea1
CW
1533 ret = -ENOENT;
1534 goto unlock;
673a394b
EA
1535 }
1536
673a394b 1537 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1538 if (obj->pin_display)
e62b59e4 1539 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1540
f8c417cd 1541 i915_gem_object_put(obj);
1d7cfea1 1542unlock:
673a394b
EA
1543 mutex_unlock(&dev->struct_mutex);
1544 return ret;
1545}
1546
1547/**
14bb2c11
TU
1548 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1549 * it is mapped to.
1550 * @dev: drm device
1551 * @data: ioctl data blob
1552 * @file: drm file
673a394b
EA
1553 *
1554 * While the mapping holds a reference on the contents of the object, it doesn't
1555 * imply a ref on the object itself.
34367381
DV
1556 *
1557 * IMPORTANT:
1558 *
1559 * DRM driver writers who look a this function as an example for how to do GEM
1560 * mmap support, please don't implement mmap support like here. The modern way
1561 * to implement DRM mmap support is with an mmap offset ioctl (like
1562 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1563 * That way debug tooling like valgrind will understand what's going on, hiding
1564 * the mmap call in a driver private ioctl will break that. The i915 driver only
1565 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1566 */
1567int
1568i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1569 struct drm_file *file)
673a394b
EA
1570{
1571 struct drm_i915_gem_mmap *args = data;
03ac0642 1572 struct drm_i915_gem_object *obj;
673a394b
EA
1573 unsigned long addr;
1574
1816f923
AG
1575 if (args->flags & ~(I915_MMAP_WC))
1576 return -EINVAL;
1577
568a58e5 1578 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1579 return -ENODEV;
1580
03ac0642
CW
1581 obj = i915_gem_object_lookup(file, args->handle);
1582 if (!obj)
bf79cb91 1583 return -ENOENT;
673a394b 1584
1286ff73
DV
1585 /* prime objects have no backing filp to GEM mmap
1586 * pages from.
1587 */
03ac0642 1588 if (!obj->base.filp) {
34911fd3 1589 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1590 return -EINVAL;
1591 }
1592
03ac0642 1593 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1594 PROT_READ | PROT_WRITE, MAP_SHARED,
1595 args->offset);
1816f923
AG
1596 if (args->flags & I915_MMAP_WC) {
1597 struct mm_struct *mm = current->mm;
1598 struct vm_area_struct *vma;
1599
80a89a5e 1600 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1601 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1602 return -EINTR;
1603 }
1816f923
AG
1604 vma = find_vma(mm, addr);
1605 if (vma)
1606 vma->vm_page_prot =
1607 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1608 else
1609 addr = -ENOMEM;
1610 up_write(&mm->mmap_sem);
aeecc969
CW
1611
1612 /* This may race, but that's ok, it only gets set */
03ac0642 1613 WRITE_ONCE(obj->has_wc_mmap, true);
1816f923 1614 }
34911fd3 1615 i915_gem_object_put_unlocked(obj);
673a394b
EA
1616 if (IS_ERR((void *)addr))
1617 return addr;
1618
1619 args->addr_ptr = (uint64_t) addr;
1620
1621 return 0;
1622}
1623
de151cf6
JB
1624/**
1625 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1626 * @vma: VMA in question
1627 * @vmf: fault info
de151cf6
JB
1628 *
1629 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1630 * from userspace. The fault handler takes care of binding the object to
1631 * the GTT (if needed), allocating and programming a fence register (again,
1632 * only if needed based on whether the old reg is still valid or the object
1633 * is tiled) and inserting a new PTE into the faulting process.
1634 *
1635 * Note that the faulting process may involve evicting existing objects
1636 * from the GTT and/or fence registers to make room. So performance may
1637 * suffer if the GTT working set is large or there are few fence registers
1638 * left.
1639 */
1640int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1641{
05394f39
CW
1642 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1643 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1644 struct drm_i915_private *dev_priv = to_i915(dev);
1645 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1646 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1647 pgoff_t page_offset;
1648 unsigned long pfn;
1649 int ret = 0;
0f973f27 1650 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1651
f65c9168
PZ
1652 intel_runtime_pm_get(dev_priv);
1653
de151cf6
JB
1654 /* We don't use vmf->pgoff since that has the fake offset */
1655 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1656 PAGE_SHIFT;
1657
d9bc7e9f
CW
1658 ret = i915_mutex_lock_interruptible(dev);
1659 if (ret)
1660 goto out;
a00b10c3 1661
db53a302
CW
1662 trace_i915_gem_object_fault(obj, page_offset, true, write);
1663
6e4930f6
CW
1664 /* Try to flush the object off the GPU first without holding the lock.
1665 * Upon reacquiring the lock, we will perform our sanity checks and then
1666 * repeat the flush holding the lock in the normal manner to catch cases
1667 * where we are gazumped.
1668 */
1669 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1670 if (ret)
1671 goto unlock;
1672
eb119bd6
CW
1673 /* Access to snoopable pages through the GTT is incoherent. */
1674 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1675 ret = -EFAULT;
eb119bd6
CW
1676 goto unlock;
1677 }
1678
c5ad54cf 1679 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1680 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1681 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1682 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1683
c5ad54cf
JL
1684 memset(&view, 0, sizeof(view));
1685 view.type = I915_GGTT_VIEW_PARTIAL;
1686 view.params.partial.offset = rounddown(page_offset, chunk_size);
1687 view.params.partial.size =
1688 min_t(unsigned int,
1689 chunk_size,
1690 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1691 view.params.partial.offset);
1692 }
1693
1694 /* Now pin it into the GTT if needed */
91b2db6f 1695 ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
c9839303
CW
1696 if (ret)
1697 goto unlock;
4a684a41 1698
c9839303
CW
1699 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1700 if (ret)
1701 goto unpin;
74898d7e 1702
06d98131 1703 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1704 if (ret)
c9839303 1705 goto unpin;
7d1c4804 1706
b90b91d8 1707 /* Finally, remap it using the new GTT offset */
72e96d64 1708 pfn = ggtt->mappable_base +
c5ad54cf 1709 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1710 pfn >>= PAGE_SHIFT;
de151cf6 1711
c5ad54cf
JL
1712 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1713 /* Overriding existing pages in partial view does not cause
1714 * us any trouble as TLBs are still valid because the fault
1715 * is due to userspace losing part of the mapping or never
1716 * having accessed it before (at this partials' range).
1717 */
1718 unsigned long base = vma->vm_start +
1719 (view.params.partial.offset << PAGE_SHIFT);
1720 unsigned int i;
b90b91d8 1721
c5ad54cf
JL
1722 for (i = 0; i < view.params.partial.size; i++) {
1723 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1724 if (ret)
1725 break;
1726 }
1727
1728 obj->fault_mappable = true;
c5ad54cf
JL
1729 } else {
1730 if (!obj->fault_mappable) {
1731 unsigned long size = min_t(unsigned long,
1732 vma->vm_end - vma->vm_start,
1733 obj->base.size);
1734 int i;
1735
1736 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1737 ret = vm_insert_pfn(vma,
1738 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1739 pfn + i);
1740 if (ret)
1741 break;
1742 }
1743
1744 obj->fault_mappable = true;
1745 } else
1746 ret = vm_insert_pfn(vma,
1747 (unsigned long)vmf->virtual_address,
1748 pfn + page_offset);
1749 }
c9839303 1750unpin:
c5ad54cf 1751 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1752unlock:
de151cf6 1753 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1754out:
de151cf6 1755 switch (ret) {
d9bc7e9f 1756 case -EIO:
2232f031
DV
1757 /*
1758 * We eat errors when the gpu is terminally wedged to avoid
1759 * userspace unduly crashing (gl has no provisions for mmaps to
1760 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1761 * and so needs to be reported.
1762 */
1763 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1764 ret = VM_FAULT_SIGBUS;
1765 break;
1766 }
045e769a 1767 case -EAGAIN:
571c608d
DV
1768 /*
1769 * EAGAIN means the gpu is hung and we'll wait for the error
1770 * handler to reset everything when re-faulting in
1771 * i915_mutex_lock_interruptible.
d9bc7e9f 1772 */
c715089f
CW
1773 case 0:
1774 case -ERESTARTSYS:
bed636ab 1775 case -EINTR:
e79e0fe3
DR
1776 case -EBUSY:
1777 /*
1778 * EBUSY is ok: this just means that another thread
1779 * already did the job.
1780 */
f65c9168
PZ
1781 ret = VM_FAULT_NOPAGE;
1782 break;
de151cf6 1783 case -ENOMEM:
f65c9168
PZ
1784 ret = VM_FAULT_OOM;
1785 break;
a7c2e1aa 1786 case -ENOSPC:
45d67817 1787 case -EFAULT:
f65c9168
PZ
1788 ret = VM_FAULT_SIGBUS;
1789 break;
de151cf6 1790 default:
a7c2e1aa 1791 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1792 ret = VM_FAULT_SIGBUS;
1793 break;
de151cf6 1794 }
f65c9168
PZ
1795
1796 intel_runtime_pm_put(dev_priv);
1797 return ret;
de151cf6
JB
1798}
1799
901782b2
CW
1800/**
1801 * i915_gem_release_mmap - remove physical page mappings
1802 * @obj: obj in question
1803 *
af901ca1 1804 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1805 * relinquish ownership of the pages back to the system.
1806 *
1807 * It is vital that we remove the page mapping if we have mapped a tiled
1808 * object through the GTT and then lose the fence register due to
1809 * resource pressure. Similarly if the object has been moved out of the
1810 * aperture, than pages mapped into userspace must be revoked. Removing the
1811 * mapping will then trigger a page fault on the next user access, allowing
1812 * fixup by i915_gem_fault().
1813 */
d05ca301 1814void
05394f39 1815i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1816{
349f2ccf
CW
1817 /* Serialisation between user GTT access and our code depends upon
1818 * revoking the CPU's PTE whilst the mutex is held. The next user
1819 * pagefault then has to wait until we release the mutex.
1820 */
1821 lockdep_assert_held(&obj->base.dev->struct_mutex);
1822
6299f992
CW
1823 if (!obj->fault_mappable)
1824 return;
901782b2 1825
6796cb16
DH
1826 drm_vma_node_unmap(&obj->base.vma_node,
1827 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1828
1829 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1830 * memory transactions from userspace before we return. The TLB
1831 * flushing implied above by changing the PTE above *should* be
1832 * sufficient, an extra barrier here just provides us with a bit
1833 * of paranoid documentation about our requirement to serialise
1834 * memory writes before touching registers / GSM.
1835 */
1836 wmb();
1837
6299f992 1838 obj->fault_mappable = false;
901782b2
CW
1839}
1840
eedd10f4
CW
1841void
1842i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1843{
1844 struct drm_i915_gem_object *obj;
1845
1846 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1847 i915_gem_release_mmap(obj);
1848}
1849
ad1a7d20
CW
1850/**
1851 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1852 * @dev_priv: i915 device
ad1a7d20
CW
1853 * @size: object size
1854 * @tiling_mode: tiling mode
1855 *
1856 * Return the required global GTT size for an object, taking into account
1857 * potential fence register mapping.
1858 */
a9f1481f
CW
1859u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1860 u64 size, int tiling_mode)
92b88aeb 1861{
ad1a7d20 1862 u64 ggtt_size;
92b88aeb 1863
ad1a7d20
CW
1864 GEM_BUG_ON(size == 0);
1865
a9f1481f 1866 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1867 tiling_mode == I915_TILING_NONE)
1868 return size;
92b88aeb
CW
1869
1870 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1871 if (IS_GEN3(dev_priv))
ad1a7d20 1872 ggtt_size = 1024*1024;
92b88aeb 1873 else
ad1a7d20 1874 ggtt_size = 512*1024;
92b88aeb 1875
ad1a7d20
CW
1876 while (ggtt_size < size)
1877 ggtt_size <<= 1;
92b88aeb 1878
ad1a7d20 1879 return ggtt_size;
92b88aeb
CW
1880}
1881
de151cf6 1882/**
ad1a7d20 1883 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1884 * @dev_priv: i915 device
14bb2c11
TU
1885 * @size: object size
1886 * @tiling_mode: tiling mode
ad1a7d20 1887 * @fenced: is fenced alignment required or not
de151cf6 1888 *
ad1a7d20 1889 * Return the required global GTT alignment for an object, taking into account
5e783301 1890 * potential fence register mapping.
de151cf6 1891 */
a9f1481f 1892u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1893 int tiling_mode, bool fenced)
de151cf6 1894{
ad1a7d20
CW
1895 GEM_BUG_ON(size == 0);
1896
de151cf6
JB
1897 /*
1898 * Minimum alignment is 4k (GTT page size), but might be greater
1899 * if a fence register is needed for the object.
1900 */
a9f1481f 1901 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 1902 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1903 return 4096;
1904
a00b10c3
CW
1905 /*
1906 * Previous chips need to be aligned to the size of the smallest
1907 * fence register that can contain the object.
1908 */
a9f1481f 1909 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
1910}
1911
d8cb5086
CW
1912static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1913{
fac5e23e 1914 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d8cb5086
CW
1915 int ret;
1916
da494d7c
DV
1917 dev_priv->mm.shrinker_no_lock_stealing = true;
1918
d8cb5086
CW
1919 ret = drm_gem_create_mmap_offset(&obj->base);
1920 if (ret != -ENOSPC)
da494d7c 1921 goto out;
d8cb5086
CW
1922
1923 /* Badly fragmented mmap space? The only way we can recover
1924 * space is by destroying unwanted objects. We can't randomly release
1925 * mmap_offsets as userspace expects them to be persistent for the
1926 * lifetime of the objects. The closest we can is to release the
1927 * offsets on purgeable objects by truncating it and marking it purged,
1928 * which prevents userspace from ever using that object again.
1929 */
21ab4e74
CW
1930 i915_gem_shrink(dev_priv,
1931 obj->base.size >> PAGE_SHIFT,
1932 I915_SHRINK_BOUND |
1933 I915_SHRINK_UNBOUND |
1934 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1935 ret = drm_gem_create_mmap_offset(&obj->base);
1936 if (ret != -ENOSPC)
da494d7c 1937 goto out;
d8cb5086
CW
1938
1939 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1940 ret = drm_gem_create_mmap_offset(&obj->base);
1941out:
1942 dev_priv->mm.shrinker_no_lock_stealing = false;
1943
1944 return ret;
d8cb5086
CW
1945}
1946
1947static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1948{
d8cb5086
CW
1949 drm_gem_free_mmap_offset(&obj->base);
1950}
1951
da6b51d0 1952int
ff72145b
DA
1953i915_gem_mmap_gtt(struct drm_file *file,
1954 struct drm_device *dev,
da6b51d0 1955 uint32_t handle,
ff72145b 1956 uint64_t *offset)
de151cf6 1957{
05394f39 1958 struct drm_i915_gem_object *obj;
de151cf6
JB
1959 int ret;
1960
76c1dec1 1961 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1962 if (ret)
76c1dec1 1963 return ret;
de151cf6 1964
03ac0642
CW
1965 obj = i915_gem_object_lookup(file, handle);
1966 if (!obj) {
1d7cfea1
CW
1967 ret = -ENOENT;
1968 goto unlock;
1969 }
de151cf6 1970
05394f39 1971 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1972 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1973 ret = -EFAULT;
1d7cfea1 1974 goto out;
ab18282d
CW
1975 }
1976
d8cb5086
CW
1977 ret = i915_gem_object_create_mmap_offset(obj);
1978 if (ret)
1979 goto out;
de151cf6 1980
0de23977 1981 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1982
1d7cfea1 1983out:
f8c417cd 1984 i915_gem_object_put(obj);
1d7cfea1 1985unlock:
de151cf6 1986 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1987 return ret;
de151cf6
JB
1988}
1989
ff72145b
DA
1990/**
1991 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1992 * @dev: DRM device
1993 * @data: GTT mapping ioctl data
1994 * @file: GEM object info
1995 *
1996 * Simply returns the fake offset to userspace so it can mmap it.
1997 * The mmap call will end up in drm_gem_mmap(), which will set things
1998 * up so we can get faults in the handler above.
1999 *
2000 * The fault handler will take care of binding the object into the GTT
2001 * (since it may have been evicted to make room for something), allocating
2002 * a fence register, and mapping the appropriate aperture address into
2003 * userspace.
2004 */
2005int
2006i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2007 struct drm_file *file)
2008{
2009 struct drm_i915_gem_mmap_gtt *args = data;
2010
da6b51d0 2011 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2012}
2013
225067ee
DV
2014/* Immediately discard the backing storage */
2015static void
2016i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2017{
4d6294bf 2018 i915_gem_object_free_mmap_offset(obj);
1286ff73 2019
4d6294bf
CW
2020 if (obj->base.filp == NULL)
2021 return;
e5281ccd 2022
225067ee
DV
2023 /* Our goal here is to return as much of the memory as
2024 * is possible back to the system as we are called from OOM.
2025 * To do this we must instruct the shmfs to drop all of its
2026 * backing pages, *now*.
2027 */
5537252b 2028 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2029 obj->madv = __I915_MADV_PURGED;
2030}
e5281ccd 2031
5537252b
CW
2032/* Try to discard unwanted pages */
2033static void
2034i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2035{
5537252b
CW
2036 struct address_space *mapping;
2037
2038 switch (obj->madv) {
2039 case I915_MADV_DONTNEED:
2040 i915_gem_object_truncate(obj);
2041 case __I915_MADV_PURGED:
2042 return;
2043 }
2044
2045 if (obj->base.filp == NULL)
2046 return;
2047
2048 mapping = file_inode(obj->base.filp)->i_mapping,
2049 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2050}
2051
5cdf5881 2052static void
05394f39 2053i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2054{
85d1225e
DG
2055 struct sgt_iter sgt_iter;
2056 struct page *page;
90797e6d 2057 int ret;
1286ff73 2058
05394f39 2059 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2060
6c085a72 2061 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2062 if (WARN_ON(ret)) {
6c085a72
CW
2063 /* In the event of a disaster, abandon all caches and
2064 * hope for the best.
2065 */
2c22569b 2066 i915_gem_clflush_object(obj, true);
6c085a72
CW
2067 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2068 }
2069
e2273302
ID
2070 i915_gem_gtt_finish_object(obj);
2071
6dacfd2f 2072 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2073 i915_gem_object_save_bit_17_swizzle(obj);
2074
05394f39
CW
2075 if (obj->madv == I915_MADV_DONTNEED)
2076 obj->dirty = 0;
3ef94daa 2077
85d1225e 2078 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2079 if (obj->dirty)
9da3da66 2080 set_page_dirty(page);
3ef94daa 2081
05394f39 2082 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2083 mark_page_accessed(page);
3ef94daa 2084
09cbfeaf 2085 put_page(page);
3ef94daa 2086 }
05394f39 2087 obj->dirty = 0;
673a394b 2088
9da3da66
CW
2089 sg_free_table(obj->pages);
2090 kfree(obj->pages);
37e680a1 2091}
6c085a72 2092
dd624afd 2093int
37e680a1
CW
2094i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2095{
2096 const struct drm_i915_gem_object_ops *ops = obj->ops;
2097
2f745ad3 2098 if (obj->pages == NULL)
37e680a1
CW
2099 return 0;
2100
a5570178
CW
2101 if (obj->pages_pin_count)
2102 return -EBUSY;
2103
15717de2 2104 GEM_BUG_ON(obj->bind_count);
3e123027 2105
a2165e31
CW
2106 /* ->put_pages might need to allocate memory for the bit17 swizzle
2107 * array, hence protect them from being reaped by removing them from gtt
2108 * lists early. */
35c20a60 2109 list_del(&obj->global_list);
a2165e31 2110
0a798eb9 2111 if (obj->mapping) {
fb8621d3
CW
2112 if (is_vmalloc_addr(obj->mapping))
2113 vunmap(obj->mapping);
2114 else
2115 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2116 obj->mapping = NULL;
2117 }
2118
37e680a1 2119 ops->put_pages(obj);
05394f39 2120 obj->pages = NULL;
37e680a1 2121
5537252b 2122 i915_gem_object_invalidate(obj);
6c085a72
CW
2123
2124 return 0;
2125}
2126
37e680a1 2127static int
6c085a72 2128i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2129{
fac5e23e 2130 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2131 int page_count, i;
2132 struct address_space *mapping;
9da3da66
CW
2133 struct sg_table *st;
2134 struct scatterlist *sg;
85d1225e 2135 struct sgt_iter sgt_iter;
e5281ccd 2136 struct page *page;
90797e6d 2137 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2138 int ret;
6c085a72 2139 gfp_t gfp;
e5281ccd 2140
6c085a72
CW
2141 /* Assert that the object is not currently in any GPU domain. As it
2142 * wasn't in the GTT, there shouldn't be any way it could have been in
2143 * a GPU cache
2144 */
2145 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2146 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2147
9da3da66
CW
2148 st = kmalloc(sizeof(*st), GFP_KERNEL);
2149 if (st == NULL)
2150 return -ENOMEM;
2151
05394f39 2152 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2153 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2154 kfree(st);
e5281ccd 2155 return -ENOMEM;
9da3da66 2156 }
e5281ccd 2157
9da3da66
CW
2158 /* Get the list of pages out of our struct file. They'll be pinned
2159 * at this point until we release them.
2160 *
2161 * Fail silently without starting the shrinker
2162 */
496ad9aa 2163 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2164 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2165 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2166 sg = st->sgl;
2167 st->nents = 0;
2168 for (i = 0; i < page_count; i++) {
6c085a72
CW
2169 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2170 if (IS_ERR(page)) {
21ab4e74
CW
2171 i915_gem_shrink(dev_priv,
2172 page_count,
2173 I915_SHRINK_BOUND |
2174 I915_SHRINK_UNBOUND |
2175 I915_SHRINK_PURGEABLE);
6c085a72
CW
2176 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2177 }
2178 if (IS_ERR(page)) {
2179 /* We've tried hard to allocate the memory by reaping
2180 * our own buffer, now let the real VM do its job and
2181 * go down in flames if truly OOM.
2182 */
6c085a72 2183 i915_gem_shrink_all(dev_priv);
f461d1be 2184 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2185 if (IS_ERR(page)) {
2186 ret = PTR_ERR(page);
6c085a72 2187 goto err_pages;
e2273302 2188 }
6c085a72 2189 }
426729dc
KRW
2190#ifdef CONFIG_SWIOTLB
2191 if (swiotlb_nr_tbl()) {
2192 st->nents++;
2193 sg_set_page(sg, page, PAGE_SIZE, 0);
2194 sg = sg_next(sg);
2195 continue;
2196 }
2197#endif
90797e6d
ID
2198 if (!i || page_to_pfn(page) != last_pfn + 1) {
2199 if (i)
2200 sg = sg_next(sg);
2201 st->nents++;
2202 sg_set_page(sg, page, PAGE_SIZE, 0);
2203 } else {
2204 sg->length += PAGE_SIZE;
2205 }
2206 last_pfn = page_to_pfn(page);
3bbbe706
DV
2207
2208 /* Check that the i965g/gm workaround works. */
2209 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2210 }
426729dc
KRW
2211#ifdef CONFIG_SWIOTLB
2212 if (!swiotlb_nr_tbl())
2213#endif
2214 sg_mark_end(sg);
74ce6b6c
CW
2215 obj->pages = st;
2216
e2273302
ID
2217 ret = i915_gem_gtt_prepare_object(obj);
2218 if (ret)
2219 goto err_pages;
2220
6dacfd2f 2221 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2222 i915_gem_object_do_bit_17_swizzle(obj);
2223
656bfa3a
DV
2224 if (obj->tiling_mode != I915_TILING_NONE &&
2225 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2226 i915_gem_object_pin_pages(obj);
2227
e5281ccd
CW
2228 return 0;
2229
2230err_pages:
90797e6d 2231 sg_mark_end(sg);
85d1225e
DG
2232 for_each_sgt_page(page, sgt_iter, st)
2233 put_page(page);
9da3da66
CW
2234 sg_free_table(st);
2235 kfree(st);
0820baf3
CW
2236
2237 /* shmemfs first checks if there is enough memory to allocate the page
2238 * and reports ENOSPC should there be insufficient, along with the usual
2239 * ENOMEM for a genuine allocation failure.
2240 *
2241 * We use ENOSPC in our driver to mean that we have run out of aperture
2242 * space and so want to translate the error from shmemfs back to our
2243 * usual understanding of ENOMEM.
2244 */
e2273302
ID
2245 if (ret == -ENOSPC)
2246 ret = -ENOMEM;
2247
2248 return ret;
673a394b
EA
2249}
2250
37e680a1
CW
2251/* Ensure that the associated pages are gathered from the backing storage
2252 * and pinned into our object. i915_gem_object_get_pages() may be called
2253 * multiple times before they are released by a single call to
2254 * i915_gem_object_put_pages() - once the pages are no longer referenced
2255 * either as a result of memory pressure (reaping pages under the shrinker)
2256 * or as the object is itself released.
2257 */
2258int
2259i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2260{
fac5e23e 2261 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2262 const struct drm_i915_gem_object_ops *ops = obj->ops;
2263 int ret;
2264
2f745ad3 2265 if (obj->pages)
37e680a1
CW
2266 return 0;
2267
43e28f09 2268 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2269 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2270 return -EFAULT;
43e28f09
CW
2271 }
2272
a5570178
CW
2273 BUG_ON(obj->pages_pin_count);
2274
37e680a1
CW
2275 ret = ops->get_pages(obj);
2276 if (ret)
2277 return ret;
2278
35c20a60 2279 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2280
2281 obj->get_page.sg = obj->pages->sgl;
2282 obj->get_page.last = 0;
2283
37e680a1 2284 return 0;
673a394b
EA
2285}
2286
dd6034c6
DG
2287/* The 'mapping' part of i915_gem_object_pin_map() below */
2288static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2289{
2290 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2291 struct sg_table *sgt = obj->pages;
85d1225e
DG
2292 struct sgt_iter sgt_iter;
2293 struct page *page;
b338fa47
DG
2294 struct page *stack_pages[32];
2295 struct page **pages = stack_pages;
dd6034c6
DG
2296 unsigned long i = 0;
2297 void *addr;
2298
2299 /* A single page can always be kmapped */
2300 if (n_pages == 1)
2301 return kmap(sg_page(sgt->sgl));
2302
b338fa47
DG
2303 if (n_pages > ARRAY_SIZE(stack_pages)) {
2304 /* Too big for stack -- allocate temporary array instead */
2305 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2306 if (!pages)
2307 return NULL;
2308 }
dd6034c6 2309
85d1225e
DG
2310 for_each_sgt_page(page, sgt_iter, sgt)
2311 pages[i++] = page;
dd6034c6
DG
2312
2313 /* Check that we have the expected number of pages */
2314 GEM_BUG_ON(i != n_pages);
2315
2316 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2317
b338fa47
DG
2318 if (pages != stack_pages)
2319 drm_free_large(pages);
dd6034c6
DG
2320
2321 return addr;
2322}
2323
2324/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2325void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2326{
2327 int ret;
2328
2329 lockdep_assert_held(&obj->base.dev->struct_mutex);
2330
2331 ret = i915_gem_object_get_pages(obj);
2332 if (ret)
2333 return ERR_PTR(ret);
2334
2335 i915_gem_object_pin_pages(obj);
2336
dd6034c6
DG
2337 if (!obj->mapping) {
2338 obj->mapping = i915_gem_object_map(obj);
2339 if (!obj->mapping) {
0a798eb9
CW
2340 i915_gem_object_unpin_pages(obj);
2341 return ERR_PTR(-ENOMEM);
2342 }
2343 }
2344
2345 return obj->mapping;
2346}
2347
b4716185 2348static void
fa545cbf
CW
2349i915_gem_object_retire__write(struct i915_gem_active *active,
2350 struct drm_i915_gem_request *request)
e2d05a8b 2351{
fa545cbf
CW
2352 struct drm_i915_gem_object *obj =
2353 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2354
de152b62 2355 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2356}
2357
caea7476 2358static void
fa545cbf
CW
2359i915_gem_object_retire__read(struct i915_gem_active *active,
2360 struct drm_i915_gem_request *request)
ce44b0ea 2361{
fa545cbf
CW
2362 int idx = request->engine->id;
2363 struct drm_i915_gem_object *obj =
2364 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2365
fa545cbf 2366 GEM_BUG_ON((obj->active & (1 << idx)) == 0);
b4716185 2367
7e21d648 2368 obj->active &= ~(1 << idx);
b4716185
CW
2369 if (obj->active)
2370 return;
caea7476 2371
6c246959
CW
2372 /* Bump our place on the bound list to keep it roughly in LRU order
2373 * so that we don't steal from recently used but inactive objects
2374 * (unless we are forced to ofc!)
2375 */
b0decaf7
CW
2376 if (obj->bind_count)
2377 list_move_tail(&obj->global_list,
2378 &request->i915->mm.bound_list);
caea7476 2379
f8c417cd 2380 i915_gem_object_put(obj);
c8725f3d
CW
2381}
2382
7b4d3a16 2383static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2384{
44e2c070 2385 unsigned long elapsed;
be62acb4 2386
44e2c070 2387 if (ctx->hang_stats.banned)
be62acb4
MK
2388 return true;
2389
7b4d3a16 2390 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2391 if (ctx->hang_stats.ban_period_seconds &&
2392 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2393 DRM_DEBUG("context hanging too fast, banning!\n");
2394 return true;
be62acb4
MK
2395 }
2396
2397 return false;
2398}
2399
7b4d3a16 2400static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2401 const bool guilty)
aa60c664 2402{
7b4d3a16 2403 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2404
2405 if (guilty) {
7b4d3a16 2406 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2407 hs->batch_active++;
2408 hs->guilty_ts = get_seconds();
2409 } else {
2410 hs->batch_pending++;
aa60c664
MK
2411 }
2412}
2413
8d9fc7fd 2414struct drm_i915_gem_request *
0bc40be8 2415i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2416{
4db080f9
CW
2417 struct drm_i915_gem_request *request;
2418
f69a02c9
CW
2419 /* We are called by the error capture and reset at a random
2420 * point in time. In particular, note that neither is crucially
2421 * ordered with an interrupt. After a hang, the GPU is dead and we
2422 * assume that no more writes can happen (we waited long enough for
2423 * all writes that were in transaction to be flushed) - adding an
2424 * extra delay for a recent interrupt is pointless. Hence, we do
2425 * not need an engine->irq_seqno_barrier() before the seqno reads.
2426 */
efdf7c06 2427 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2428 if (i915_gem_request_completed(request))
4db080f9 2429 continue;
aa60c664 2430
b6b0fac0 2431 return request;
4db080f9 2432 }
b6b0fac0
MK
2433
2434 return NULL;
2435}
2436
7b4d3a16 2437static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2438{
2439 struct drm_i915_gem_request *request;
2440 bool ring_hung;
2441
0bc40be8 2442 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2443 if (request == NULL)
2444 return;
2445
0bc40be8 2446 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2447
7b4d3a16 2448 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2449 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2450 i915_set_reset_status(request->ctx, false);
4db080f9 2451}
aa60c664 2452
7b4d3a16 2453static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2454{
7e37f889 2455 struct intel_ring *ring;
608c1a52 2456
c4b0930b
CW
2457 /* Mark all pending requests as complete so that any concurrent
2458 * (lockless) lookup doesn't try and wait upon the request as we
2459 * reset it.
2460 */
7e37f889 2461 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2462
dcb4c12a
OM
2463 /*
2464 * Clear the execlists queue up before freeing the requests, as those
2465 * are the ones that keep the context and ringbuffer backing objects
2466 * pinned in place.
2467 */
dcb4c12a 2468
7de1691a 2469 if (i915.enable_execlists) {
27af5eea
TU
2470 /* Ensure irq handler finishes or is cancelled. */
2471 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2472
e39d42fa 2473 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2474 }
2475
1d62beea
BW
2476 /*
2477 * We must free the requests after all the corresponding objects have
2478 * been moved off active lists. Which is the same order as the normal
2479 * retire_requests function does. This is important if object hold
2480 * implicit references on things like e.g. ppgtt address spaces through
2481 * the request.
2482 */
05235c53 2483 if (!list_empty(&engine->request_list)) {
1d62beea
BW
2484 struct drm_i915_gem_request *request;
2485
05235c53
CW
2486 request = list_last_entry(&engine->request_list,
2487 struct drm_i915_gem_request,
efdf7c06 2488 link);
1d62beea 2489
05235c53 2490 i915_gem_request_retire_upto(request);
1d62beea 2491 }
608c1a52
CW
2492
2493 /* Having flushed all requests from all queues, we know that all
2494 * ringbuffers must now be empty. However, since we do not reclaim
2495 * all space when retiring the request (to prevent HEADs colliding
2496 * with rapid ringbuffer wraparound) the amount of available space
2497 * upon reset is less than when we start. Do one more pass over
2498 * all the ringbuffers to reset last_retired_head.
2499 */
7e37f889
CW
2500 list_for_each_entry(ring, &engine->buffers, link) {
2501 ring->last_retired_head = ring->tail;
2502 intel_ring_update_space(ring);
608c1a52 2503 }
2ed53a94 2504
b913b33c 2505 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2506}
2507
069efc1d 2508void i915_gem_reset(struct drm_device *dev)
673a394b 2509{
fac5e23e 2510 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2511 struct intel_engine_cs *engine;
673a394b 2512
4db080f9
CW
2513 /*
2514 * Before we free the objects from the requests, we need to inspect
2515 * them for finding the guilty party. As the requests only borrow
2516 * their reference to the objects, the inspection must be done first.
2517 */
b4ac5afc 2518 for_each_engine(engine, dev_priv)
7b4d3a16 2519 i915_gem_reset_engine_status(engine);
4db080f9 2520
b4ac5afc 2521 for_each_engine(engine, dev_priv)
7b4d3a16 2522 i915_gem_reset_engine_cleanup(engine);
b913b33c 2523 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2524
acce9ffa
BW
2525 i915_gem_context_reset(dev);
2526
19b2dbde 2527 i915_gem_restore_fences(dev);
673a394b
EA
2528}
2529
75ef9da2 2530static void
673a394b
EA
2531i915_gem_retire_work_handler(struct work_struct *work)
2532{
b29c19b6 2533 struct drm_i915_private *dev_priv =
67d97da3 2534 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2535 struct drm_device *dev = &dev_priv->drm;
673a394b 2536
891b48cf 2537 /* Come back later if the device is busy... */
b29c19b6 2538 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2539 i915_gem_retire_requests(dev_priv);
b29c19b6 2540 mutex_unlock(&dev->struct_mutex);
673a394b 2541 }
67d97da3
CW
2542
2543 /* Keep the retire handler running until we are finally idle.
2544 * We do not need to do this test under locking as in the worst-case
2545 * we queue the retire worker once too often.
2546 */
c9615613
CW
2547 if (READ_ONCE(dev_priv->gt.awake)) {
2548 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2549 queue_delayed_work(dev_priv->wq,
2550 &dev_priv->gt.retire_work,
bcb45086 2551 round_jiffies_up_relative(HZ));
c9615613 2552 }
b29c19b6 2553}
0a58705b 2554
b29c19b6
CW
2555static void
2556i915_gem_idle_work_handler(struct work_struct *work)
2557{
2558 struct drm_i915_private *dev_priv =
67d97da3 2559 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2560 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2561 struct intel_engine_cs *engine;
67d97da3
CW
2562 unsigned int stuck_engines;
2563 bool rearm_hangcheck;
2564
2565 if (!READ_ONCE(dev_priv->gt.awake))
2566 return;
2567
2568 if (READ_ONCE(dev_priv->gt.active_engines))
2569 return;
2570
2571 rearm_hangcheck =
2572 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2573
2574 if (!mutex_trylock(&dev->struct_mutex)) {
2575 /* Currently busy, come back later */
2576 mod_delayed_work(dev_priv->wq,
2577 &dev_priv->gt.idle_work,
2578 msecs_to_jiffies(50));
2579 goto out_rearm;
2580 }
2581
2582 if (dev_priv->gt.active_engines)
2583 goto out_unlock;
b29c19b6 2584
b4ac5afc 2585 for_each_engine(engine, dev_priv)
67d97da3 2586 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2587
67d97da3
CW
2588 GEM_BUG_ON(!dev_priv->gt.awake);
2589 dev_priv->gt.awake = false;
2590 rearm_hangcheck = false;
30ecad77 2591
2529d570
CW
2592 /* As we have disabled hangcheck, we need to unstick any waiters still
2593 * hanging around. However, as we may be racing against the interrupt
2594 * handler or the waiters themselves, we skip enabling the fake-irq.
2595 */
67d97da3 2596 stuck_engines = intel_kick_waiters(dev_priv);
2529d570
CW
2597 if (unlikely(stuck_engines))
2598 DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
2599 stuck_engines);
35c94185 2600
67d97da3
CW
2601 if (INTEL_GEN(dev_priv) >= 6)
2602 gen6_rps_idle(dev_priv);
2603 intel_runtime_pm_put(dev_priv);
2604out_unlock:
2605 mutex_unlock(&dev->struct_mutex);
b29c19b6 2606
67d97da3
CW
2607out_rearm:
2608 if (rearm_hangcheck) {
2609 GEM_BUG_ON(!dev_priv->gt.awake);
2610 i915_queue_hangcheck(dev_priv);
35c94185 2611 }
673a394b
EA
2612}
2613
b1f788c6
CW
2614void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2615{
2616 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2617 struct drm_i915_file_private *fpriv = file->driver_priv;
2618 struct i915_vma *vma, *vn;
2619
2620 mutex_lock(&obj->base.dev->struct_mutex);
2621 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2622 if (vma->vm->file == fpriv)
2623 i915_vma_close(vma);
2624 mutex_unlock(&obj->base.dev->struct_mutex);
2625}
2626
23ba4fd0
BW
2627/**
2628 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2629 * @dev: drm device pointer
2630 * @data: ioctl data blob
2631 * @file: drm file pointer
23ba4fd0
BW
2632 *
2633 * Returns 0 if successful, else an error is returned with the remaining time in
2634 * the timeout parameter.
2635 * -ETIME: object is still busy after timeout
2636 * -ERESTARTSYS: signal interrupted the wait
2637 * -ENONENT: object doesn't exist
2638 * Also possible, but rare:
2639 * -EAGAIN: GPU wedged
2640 * -ENOMEM: damn
2641 * -ENODEV: Internal IRQ fail
2642 * -E?: The add request failed
2643 *
2644 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2645 * non-zero timeout parameter the wait ioctl will wait for the given number of
2646 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2647 * without holding struct_mutex the object may become re-busied before this
2648 * function completes. A similar but shorter * race condition exists in the busy
2649 * ioctl
2650 */
2651int
2652i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2653{
2654 struct drm_i915_gem_wait *args = data;
2655 struct drm_i915_gem_object *obj;
27c01aae 2656 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185
CW
2657 int i, n = 0;
2658 int ret;
23ba4fd0 2659
11b5d511
DV
2660 if (args->flags != 0)
2661 return -EINVAL;
2662
23ba4fd0
BW
2663 ret = i915_mutex_lock_interruptible(dev);
2664 if (ret)
2665 return ret;
2666
03ac0642
CW
2667 obj = i915_gem_object_lookup(file, args->bo_handle);
2668 if (!obj) {
23ba4fd0
BW
2669 mutex_unlock(&dev->struct_mutex);
2670 return -ENOENT;
2671 }
2672
b4716185 2673 if (!obj->active)
97b2a6a1 2674 goto out;
23ba4fd0 2675
666796da 2676 for (i = 0; i < I915_NUM_ENGINES; i++) {
27c01aae 2677 struct drm_i915_gem_request *req;
b4716185 2678
d72d908b
CW
2679 req = i915_gem_active_get(&obj->last_read[i],
2680 &obj->base.dev->struct_mutex);
27c01aae
CW
2681 if (req)
2682 requests[n++] = req;
b4716185
CW
2683 }
2684
21c310f2
CW
2685out:
2686 i915_gem_object_put(obj);
23ba4fd0
BW
2687 mutex_unlock(&dev->struct_mutex);
2688
b4716185
CW
2689 for (i = 0; i < n; i++) {
2690 if (ret == 0)
776f3236
CW
2691 ret = i915_wait_request(requests[i], true,
2692 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2693 to_rps_client(file));
27c01aae 2694 i915_gem_request_put(requests[i]);
b4716185 2695 }
ff865885 2696 return ret;
23ba4fd0
BW
2697}
2698
b4716185 2699static int
fa545cbf 2700__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2701 struct drm_i915_gem_request *from)
b4716185 2702{
b4716185
CW
2703 int ret;
2704
8e637178 2705 if (to->engine == from->engine)
b4716185
CW
2706 return 0;
2707
39df9190 2708 if (!i915.semaphores) {
776f3236
CW
2709 ret = i915_wait_request(from,
2710 from->i915->mm.interruptible,
2711 NULL,
2712 NO_WAITBOOST);
b4716185
CW
2713 if (ret)
2714 return ret;
b4716185 2715 } else {
8e637178 2716 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2717 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2718 return 0;
2719
8e637178 2720 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2721 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2722 if (ret)
2723 return ret;
2724
ddf07be7 2725 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2726 }
2727
2728 return 0;
2729}
2730
5816d648
BW
2731/**
2732 * i915_gem_object_sync - sync an object to a ring.
2733 *
2734 * @obj: object which may be in use on another ring.
8e637178 2735 * @to: request we are wishing to use
5816d648
BW
2736 *
2737 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2738 * Conceptually we serialise writes between engines inside the GPU.
2739 * We only allow one engine to write into a buffer at any time, but
2740 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2741 *
2742 * - If there is an outstanding write request to the object, the new
2743 * request must wait for it to complete (either CPU or in hw, requests
2744 * on the same ring will be naturally ordered).
2745 *
2746 * - If we are a write request (pending_write_domain is set), the new
2747 * request must wait for outstanding read requests to complete.
5816d648
BW
2748 *
2749 * Returns 0 if successful, else propagates up the lower layer error.
2750 */
2911a35b
BW
2751int
2752i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2753 struct drm_i915_gem_request *to)
2911a35b 2754{
8cac6f6c
CW
2755 struct i915_gem_active *active;
2756 unsigned long active_mask;
2757 int idx;
41c52415 2758
8cac6f6c 2759 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2760
8cac6f6c
CW
2761 active_mask = obj->active;
2762 if (!active_mask)
2763 return 0;
27c01aae 2764
8cac6f6c
CW
2765 if (obj->base.pending_write_domain) {
2766 active = obj->last_read;
b4716185 2767 } else {
8cac6f6c
CW
2768 active_mask = 1;
2769 active = &obj->last_write;
b4716185 2770 }
8cac6f6c
CW
2771
2772 for_each_active(active_mask, idx) {
2773 struct drm_i915_gem_request *request;
2774 int ret;
2775
2776 request = i915_gem_active_peek(&active[idx],
2777 &obj->base.dev->struct_mutex);
2778 if (!request)
2779 continue;
2780
fa545cbf 2781 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2782 if (ret)
2783 return ret;
2784 }
2911a35b 2785
b4716185 2786 return 0;
2911a35b
BW
2787}
2788
b5ffc9bc
CW
2789static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2790{
2791 u32 old_write_domain, old_read_domains;
2792
b5ffc9bc
CW
2793 /* Force a pagefault for domain tracking on next user access */
2794 i915_gem_release_mmap(obj);
2795
b97c3d9c
KP
2796 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2797 return;
2798
b5ffc9bc
CW
2799 old_read_domains = obj->base.read_domains;
2800 old_write_domain = obj->base.write_domain;
2801
2802 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2803 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2804
2805 trace_i915_gem_object_change_domain(obj,
2806 old_read_domains,
2807 old_write_domain);
2808}
2809
8ef8561f
CW
2810static void __i915_vma_iounmap(struct i915_vma *vma)
2811{
20dfbde4 2812 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2813
2814 if (vma->iomap == NULL)
2815 return;
2816
2817 io_mapping_unmap(vma->iomap);
2818 vma->iomap = NULL;
2819}
2820
df0e9a28 2821int i915_vma_unbind(struct i915_vma *vma)
673a394b 2822{
07fe0b12 2823 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2824 unsigned long active;
43e28f09 2825 int ret;
673a394b 2826
b0decaf7
CW
2827 /* First wait upon any activity as retiring the request may
2828 * have side-effects such as unpinning or even unbinding this vma.
2829 */
2830 active = i915_vma_get_active(vma);
df0e9a28 2831 if (active) {
b0decaf7
CW
2832 int idx;
2833
b1f788c6
CW
2834 /* When a closed VMA is retired, it is unbound - eek.
2835 * In order to prevent it from being recursively closed,
2836 * take a pin on the vma so that the second unbind is
2837 * aborted.
2838 */
20dfbde4 2839 __i915_vma_pin(vma);
b1f788c6 2840
b0decaf7
CW
2841 for_each_active(active, idx) {
2842 ret = i915_gem_active_retire(&vma->last_read[idx],
2843 &vma->vm->dev->struct_mutex);
2844 if (ret)
b1f788c6 2845 break;
b0decaf7
CW
2846 }
2847
20dfbde4 2848 __i915_vma_unpin(vma);
b1f788c6
CW
2849 if (ret)
2850 return ret;
2851
b0decaf7
CW
2852 GEM_BUG_ON(i915_vma_is_active(vma));
2853 }
2854
20dfbde4 2855 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2856 return -EBUSY;
2857
b1f788c6
CW
2858 if (!drm_mm_node_allocated(&vma->node))
2859 goto destroy;
433544bd 2860
15717de2
CW
2861 GEM_BUG_ON(obj->bind_count == 0);
2862 GEM_BUG_ON(!obj->pages);
c4670ad0 2863
596c5923 2864 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 2865 i915_gem_object_finish_gtt(obj);
5323fd04 2866
8b1bc9b4
DV
2867 /* release the fence reg _after_ flushing */
2868 ret = i915_gem_object_put_fence(obj);
2869 if (ret)
2870 return ret;
8ef8561f
CW
2871
2872 __i915_vma_iounmap(vma);
8b1bc9b4 2873 }
96b47b65 2874
50e046b6
CW
2875 if (likely(!vma->vm->closed)) {
2876 trace_i915_vma_unbind(vma);
2877 vma->vm->unbind_vma(vma);
2878 }
5e562f1d 2879 vma->bound = 0;
6f65e29a 2880
50e046b6
CW
2881 drm_mm_remove_node(&vma->node);
2882 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2883
596c5923 2884 if (vma->is_ggtt) {
fe14d5f4
TU
2885 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2886 obj->map_and_fenceable = false;
2887 } else if (vma->ggtt_view.pages) {
2888 sg_free_table(vma->ggtt_view.pages);
2889 kfree(vma->ggtt_view.pages);
fe14d5f4 2890 }
016a65a3 2891 vma->ggtt_view.pages = NULL;
fe14d5f4 2892 }
673a394b 2893
2f633156 2894 /* Since the unbound list is global, only move to that list if
b93dab6e 2895 * no more VMAs exist. */
15717de2
CW
2896 if (--obj->bind_count == 0)
2897 list_move_tail(&obj->global_list,
2898 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2899
70903c3b
CW
2900 /* And finally now the object is completely decoupled from this vma,
2901 * we can drop its hold on the backing storage and allow it to be
2902 * reaped by the shrinker.
2903 */
2904 i915_gem_object_unpin_pages(obj);
2905
b1f788c6
CW
2906destroy:
2907 if (unlikely(vma->closed))
2908 i915_vma_destroy(vma);
2909
88241785 2910 return 0;
54cf91dc
CW
2911}
2912
6e5a5beb 2913int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
4df2faf4 2914{
e2f80391 2915 struct intel_engine_cs *engine;
b4ac5afc 2916 int ret;
4df2faf4 2917
91c8a326 2918 lockdep_assert_held(&dev_priv->drm.struct_mutex);
6e5a5beb 2919
b4ac5afc 2920 for_each_engine(engine, dev_priv) {
62e63007
CW
2921 if (engine->last_context == NULL)
2922 continue;
2923
666796da 2924 ret = intel_engine_idle(engine);
1ec14ad3
CW
2925 if (ret)
2926 return ret;
2927 }
4df2faf4 2928
8a1a49f9 2929 return 0;
4df2faf4
DV
2930}
2931
4144f9b5 2932static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2933 unsigned long cache_level)
2934{
4144f9b5 2935 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
2936 struct drm_mm_node *other;
2937
4144f9b5
CW
2938 /*
2939 * On some machines we have to be careful when putting differing types
2940 * of snoopable memory together to avoid the prefetcher crossing memory
2941 * domains and dying. During vm initialisation, we decide whether or not
2942 * these constraints apply and set the drm_mm.color_adjust
2943 * appropriately.
42d6ab48 2944 */
4144f9b5 2945 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
2946 return true;
2947
c6cfb325 2948 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2949 return true;
2950
2951 if (list_empty(&gtt_space->node_list))
2952 return true;
2953
2954 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2955 if (other->allocated && !other->hole_follows && other->color != cache_level)
2956 return false;
2957
2958 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2959 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2960 return false;
2961
2962 return true;
2963}
2964
673a394b 2965/**
59bfa124
CW
2966 * i915_vma_insert - finds a slot for the vma in its address space
2967 * @vma: the vma
91b2db6f 2968 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 2969 * @alignment: required alignment
14bb2c11 2970 * @flags: mask of PIN_* flags to use
59bfa124
CW
2971 *
2972 * First we try to allocate some free space that meets the requirements for
2973 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2974 * preferrably the oldest idle entry to make room for the new VMA.
2975 *
2976 * Returns:
2977 * 0 on success, negative error code otherwise.
673a394b 2978 */
59bfa124
CW
2979static int
2980i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 2981{
59bfa124
CW
2982 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2983 struct drm_i915_gem_object *obj = vma->obj;
de180033
CW
2984 u64 start, end;
2985 u64 min_alignment;
07f73f69 2986 int ret;
673a394b 2987
59bfa124
CW
2988 GEM_BUG_ON(vma->bound);
2989 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
2990
2991 size = max(size, vma->size);
2992 if (flags & PIN_MAPPABLE)
2993 size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);
2994
2995 min_alignment =
2996 i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
2997 flags & PIN_MAPPABLE);
2998 if (alignment == 0)
2999 alignment = min_alignment;
3000 if (alignment & (min_alignment - 1)) {
3001 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
3002 alignment, min_alignment);
59bfa124 3003 return -EINVAL;
91e6711e 3004 }
a00b10c3 3005
101b506a 3006 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3007
3008 end = vma->vm->total;
101b506a 3009 if (flags & PIN_MAPPABLE)
91b2db6f 3010 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3011 if (flags & PIN_ZONE_4G)
48ea1e32 3012 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3013
91e6711e
JL
3014 /* If binding the object/GGTT view requires more space than the entire
3015 * aperture has, reject it early before evicting everything in a vain
3016 * attempt to find space.
654fc607 3017 */
91e6711e 3018 if (size > end) {
de180033 3019 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3020 size, obj->base.size,
1ec9e26d 3021 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3022 end);
59bfa124 3023 return -E2BIG;
654fc607
CW
3024 }
3025
37e680a1 3026 ret = i915_gem_object_get_pages(obj);
6c085a72 3027 if (ret)
59bfa124 3028 return ret;
6c085a72 3029
fbdda6fb
CW
3030 i915_gem_object_pin_pages(obj);
3031
506a8e87 3032 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3033 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3034 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3035 ret = -EINVAL;
de180033 3036 goto err_unpin;
506a8e87 3037 }
de180033 3038
506a8e87
CW
3039 vma->node.start = offset;
3040 vma->node.size = size;
3041 vma->node.color = obj->cache_level;
de180033 3042 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3043 if (ret) {
3044 ret = i915_gem_evict_for_vma(vma);
3045 if (ret == 0)
de180033
CW
3046 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3047 if (ret)
3048 goto err_unpin;
506a8e87 3049 }
101b506a 3050 } else {
de180033
CW
3051 u32 search_flag, alloc_flag;
3052
506a8e87
CW
3053 if (flags & PIN_HIGH) {
3054 search_flag = DRM_MM_SEARCH_BELOW;
3055 alloc_flag = DRM_MM_CREATE_TOP;
3056 } else {
3057 search_flag = DRM_MM_SEARCH_DEFAULT;
3058 alloc_flag = DRM_MM_CREATE_DEFAULT;
3059 }
101b506a 3060
954c4691
CW
3061 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3062 * so we know that we always have a minimum alignment of 4096.
3063 * The drm_mm range manager is optimised to return results
3064 * with zero alignment, so where possible use the optimal
3065 * path.
3066 */
3067 if (alignment <= 4096)
3068 alignment = 0;
3069
0a9ae0d7 3070search_free:
de180033
CW
3071 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3072 &vma->node,
506a8e87
CW
3073 size, alignment,
3074 obj->cache_level,
3075 start, end,
3076 search_flag,
3077 alloc_flag);
3078 if (ret) {
de180033 3079 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3080 obj->cache_level,
3081 start, end,
3082 flags);
3083 if (ret == 0)
3084 goto search_free;
9731129c 3085
de180033 3086 goto err_unpin;
506a8e87 3087 }
673a394b 3088 }
37508589 3089 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3090
35c20a60 3091 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3092 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3093 obj->bind_count++;
bf1a1092 3094
59bfa124 3095 return 0;
2f633156 3096
bc6bc15b 3097err_unpin:
2f633156 3098 i915_gem_object_unpin_pages(obj);
59bfa124 3099 return ret;
673a394b
EA
3100}
3101
000433b6 3102bool
2c22569b
CW
3103i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3104 bool force)
673a394b 3105{
673a394b
EA
3106 /* If we don't have a page list set up, then we're not pinned
3107 * to GPU, and we can ignore the cache flush because it'll happen
3108 * again at bind time.
3109 */
05394f39 3110 if (obj->pages == NULL)
000433b6 3111 return false;
673a394b 3112
769ce464
ID
3113 /*
3114 * Stolen memory is always coherent with the GPU as it is explicitly
3115 * marked as wc by the system, or the system is cache-coherent.
3116 */
6a2c4232 3117 if (obj->stolen || obj->phys_handle)
000433b6 3118 return false;
769ce464 3119
9c23f7fc
CW
3120 /* If the GPU is snooping the contents of the CPU cache,
3121 * we do not need to manually clear the CPU cache lines. However,
3122 * the caches are only snooped when the render cache is
3123 * flushed/invalidated. As we always have to emit invalidations
3124 * and flushes when moving into and out of the RENDER domain, correct
3125 * snooping behaviour occurs naturally as the result of our domain
3126 * tracking.
3127 */
0f71979a
CW
3128 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3129 obj->cache_dirty = true;
000433b6 3130 return false;
0f71979a 3131 }
9c23f7fc 3132
1c5d22f7 3133 trace_i915_gem_object_clflush(obj);
9da3da66 3134 drm_clflush_sg(obj->pages);
0f71979a 3135 obj->cache_dirty = false;
000433b6
CW
3136
3137 return true;
e47c68e9
EA
3138}
3139
3140/** Flushes the GTT write domain for the object if it's dirty. */
3141static void
05394f39 3142i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3143{
1c5d22f7
CW
3144 uint32_t old_write_domain;
3145
05394f39 3146 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3147 return;
3148
63256ec5 3149 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3150 * to it immediately go to main memory as far as we know, so there's
3151 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3152 *
3153 * However, we do have to enforce the order so that all writes through
3154 * the GTT land before any writes to the device, such as updates to
3155 * the GATT itself.
e47c68e9 3156 */
63256ec5
CW
3157 wmb();
3158
05394f39
CW
3159 old_write_domain = obj->base.write_domain;
3160 obj->base.write_domain = 0;
1c5d22f7 3161
de152b62 3162 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3163
1c5d22f7 3164 trace_i915_gem_object_change_domain(obj,
05394f39 3165 obj->base.read_domains,
1c5d22f7 3166 old_write_domain);
e47c68e9
EA
3167}
3168
3169/** Flushes the CPU write domain for the object if it's dirty. */
3170static void
e62b59e4 3171i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3172{
1c5d22f7 3173 uint32_t old_write_domain;
e47c68e9 3174
05394f39 3175 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3176 return;
3177
e62b59e4 3178 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3179 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3180
05394f39
CW
3181 old_write_domain = obj->base.write_domain;
3182 obj->base.write_domain = 0;
1c5d22f7 3183
de152b62 3184 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3185
1c5d22f7 3186 trace_i915_gem_object_change_domain(obj,
05394f39 3187 obj->base.read_domains,
1c5d22f7 3188 old_write_domain);
e47c68e9
EA
3189}
3190
2ef7eeaa
EA
3191/**
3192 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3193 * @obj: object to act on
3194 * @write: ask for write access or read only
2ef7eeaa
EA
3195 *
3196 * This function returns when the move is complete, including waiting on
3197 * flushes to occur.
3198 */
79e53945 3199int
2021746e 3200i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3201{
1c5d22f7 3202 uint32_t old_write_domain, old_read_domains;
43566ded 3203 struct i915_vma *vma;
e47c68e9 3204 int ret;
2ef7eeaa 3205
0201f1ec 3206 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3207 if (ret)
3208 return ret;
3209
c13d87ea
CW
3210 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3211 return 0;
3212
43566ded
CW
3213 /* Flush and acquire obj->pages so that we are coherent through
3214 * direct access in memory with previous cached writes through
3215 * shmemfs and that our cache domain tracking remains valid.
3216 * For example, if the obj->filp was moved to swap without us
3217 * being notified and releasing the pages, we would mistakenly
3218 * continue to assume that the obj remained out of the CPU cached
3219 * domain.
3220 */
3221 ret = i915_gem_object_get_pages(obj);
3222 if (ret)
3223 return ret;
3224
e62b59e4 3225 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3226
d0a57789
CW
3227 /* Serialise direct access to this object with the barriers for
3228 * coherent writes from the GPU, by effectively invalidating the
3229 * GTT domain upon first access.
3230 */
3231 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3232 mb();
3233
05394f39
CW
3234 old_write_domain = obj->base.write_domain;
3235 old_read_domains = obj->base.read_domains;
1c5d22f7 3236
e47c68e9
EA
3237 /* It should now be out of any other write domains, and we can update
3238 * the domain values for our changes.
3239 */
05394f39
CW
3240 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3241 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3242 if (write) {
05394f39
CW
3243 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3244 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3245 obj->dirty = 1;
2ef7eeaa
EA
3246 }
3247
1c5d22f7
CW
3248 trace_i915_gem_object_change_domain(obj,
3249 old_read_domains,
3250 old_write_domain);
3251
8325a09d 3252 /* And bump the LRU for this access */
43566ded 3253 vma = i915_gem_obj_to_ggtt(obj);
b0decaf7
CW
3254 if (vma &&
3255 drm_mm_node_allocated(&vma->node) &&
3256 !i915_vma_is_active(vma))
3257 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
8325a09d 3258
e47c68e9
EA
3259 return 0;
3260}
3261
ef55f92a
CW
3262/**
3263 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3264 * @obj: object to act on
3265 * @cache_level: new cache level to set for the object
ef55f92a
CW
3266 *
3267 * After this function returns, the object will be in the new cache-level
3268 * across all GTT and the contents of the backing storage will be coherent,
3269 * with respect to the new cache-level. In order to keep the backing storage
3270 * coherent for all users, we only allow a single cache level to be set
3271 * globally on the object and prevent it from being changed whilst the
3272 * hardware is reading from the object. That is if the object is currently
3273 * on the scanout it will be set to uncached (or equivalent display
3274 * cache coherency) and all non-MOCS GPU access will also be uncached so
3275 * that all direct access to the scanout remains coherent.
3276 */
e4ffd173
CW
3277int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3278 enum i915_cache_level cache_level)
3279{
aa653a68 3280 struct i915_vma *vma;
ed75a55b 3281 int ret = 0;
e4ffd173
CW
3282
3283 if (obj->cache_level == cache_level)
ed75a55b 3284 goto out;
e4ffd173 3285
ef55f92a
CW
3286 /* Inspect the list of currently bound VMA and unbind any that would
3287 * be invalid given the new cache-level. This is principally to
3288 * catch the issue of the CS prefetch crossing page boundaries and
3289 * reading an invalid PTE on older architectures.
3290 */
aa653a68
CW
3291restart:
3292 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3293 if (!drm_mm_node_allocated(&vma->node))
3294 continue;
3295
20dfbde4 3296 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3297 DRM_DEBUG("can not change the cache level of pinned objects\n");
3298 return -EBUSY;
3299 }
3300
aa653a68
CW
3301 if (i915_gem_valid_gtt_space(vma, cache_level))
3302 continue;
3303
3304 ret = i915_vma_unbind(vma);
3305 if (ret)
3306 return ret;
3307
3308 /* As unbinding may affect other elements in the
3309 * obj->vma_list (due to side-effects from retiring
3310 * an active vma), play safe and restart the iterator.
3311 */
3312 goto restart;
42d6ab48
CW
3313 }
3314
ef55f92a
CW
3315 /* We can reuse the existing drm_mm nodes but need to change the
3316 * cache-level on the PTE. We could simply unbind them all and
3317 * rebind with the correct cache-level on next use. However since
3318 * we already have a valid slot, dma mapping, pages etc, we may as
3319 * rewrite the PTE in the belief that doing so tramples upon less
3320 * state and so involves less work.
3321 */
15717de2 3322 if (obj->bind_count) {
ef55f92a
CW
3323 /* Before we change the PTE, the GPU must not be accessing it.
3324 * If we wait upon the object, we know that all the bound
3325 * VMA are no longer active.
3326 */
2e2f351d 3327 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3328 if (ret)
3329 return ret;
3330
aa653a68 3331 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3332 /* Access to snoopable pages through the GTT is
3333 * incoherent and on some machines causes a hard
3334 * lockup. Relinquish the CPU mmaping to force
3335 * userspace to refault in the pages and we can
3336 * then double check if the GTT mapping is still
3337 * valid for that pointer access.
3338 */
3339 i915_gem_release_mmap(obj);
3340
3341 /* As we no longer need a fence for GTT access,
3342 * we can relinquish it now (and so prevent having
3343 * to steal a fence from someone else on the next
3344 * fence request). Note GPU activity would have
3345 * dropped the fence as all snoopable access is
3346 * supposed to be linear.
3347 */
e4ffd173
CW
3348 ret = i915_gem_object_put_fence(obj);
3349 if (ret)
3350 return ret;
ef55f92a
CW
3351 } else {
3352 /* We either have incoherent backing store and
3353 * so no GTT access or the architecture is fully
3354 * coherent. In such cases, existing GTT mmaps
3355 * ignore the cache bit in the PTE and we can
3356 * rewrite it without confusing the GPU or having
3357 * to force userspace to fault back in its mmaps.
3358 */
e4ffd173
CW
3359 }
3360
1c7f4bca 3361 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3362 if (!drm_mm_node_allocated(&vma->node))
3363 continue;
3364
3365 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3366 if (ret)
3367 return ret;
3368 }
e4ffd173
CW
3369 }
3370
1c7f4bca 3371 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3372 vma->node.color = cache_level;
3373 obj->cache_level = cache_level;
3374
ed75a55b 3375out:
ef55f92a
CW
3376 /* Flush the dirty CPU caches to the backing storage so that the
3377 * object is now coherent at its new cache level (with respect
3378 * to the access domain).
3379 */
b50a5371 3380 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3381 if (i915_gem_clflush_object(obj, true))
c033666a 3382 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3383 }
3384
e4ffd173
CW
3385 return 0;
3386}
3387
199adf40
BW
3388int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3389 struct drm_file *file)
e6994aee 3390{
199adf40 3391 struct drm_i915_gem_caching *args = data;
e6994aee 3392 struct drm_i915_gem_object *obj;
e6994aee 3393
03ac0642
CW
3394 obj = i915_gem_object_lookup(file, args->handle);
3395 if (!obj)
432be69d 3396 return -ENOENT;
e6994aee 3397
651d794f
CW
3398 switch (obj->cache_level) {
3399 case I915_CACHE_LLC:
3400 case I915_CACHE_L3_LLC:
3401 args->caching = I915_CACHING_CACHED;
3402 break;
3403
4257d3ba
CW
3404 case I915_CACHE_WT:
3405 args->caching = I915_CACHING_DISPLAY;
3406 break;
3407
651d794f
CW
3408 default:
3409 args->caching = I915_CACHING_NONE;
3410 break;
3411 }
e6994aee 3412
34911fd3 3413 i915_gem_object_put_unlocked(obj);
432be69d 3414 return 0;
e6994aee
CW
3415}
3416
199adf40
BW
3417int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3418 struct drm_file *file)
e6994aee 3419{
fac5e23e 3420 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3421 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3422 struct drm_i915_gem_object *obj;
3423 enum i915_cache_level level;
3424 int ret;
3425
199adf40
BW
3426 switch (args->caching) {
3427 case I915_CACHING_NONE:
e6994aee
CW
3428 level = I915_CACHE_NONE;
3429 break;
199adf40 3430 case I915_CACHING_CACHED:
e5756c10
ID
3431 /*
3432 * Due to a HW issue on BXT A stepping, GPU stores via a
3433 * snooped mapping may leave stale data in a corresponding CPU
3434 * cacheline, whereas normally such cachelines would get
3435 * invalidated.
3436 */
ca377809 3437 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3438 return -ENODEV;
3439
e6994aee
CW
3440 level = I915_CACHE_LLC;
3441 break;
4257d3ba
CW
3442 case I915_CACHING_DISPLAY:
3443 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3444 break;
e6994aee
CW
3445 default:
3446 return -EINVAL;
3447 }
3448
fd0fe6ac
ID
3449 intel_runtime_pm_get(dev_priv);
3450
3bc2913e
BW
3451 ret = i915_mutex_lock_interruptible(dev);
3452 if (ret)
fd0fe6ac 3453 goto rpm_put;
3bc2913e 3454
03ac0642
CW
3455 obj = i915_gem_object_lookup(file, args->handle);
3456 if (!obj) {
e6994aee
CW
3457 ret = -ENOENT;
3458 goto unlock;
3459 }
3460
3461 ret = i915_gem_object_set_cache_level(obj, level);
3462
f8c417cd 3463 i915_gem_object_put(obj);
e6994aee
CW
3464unlock:
3465 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3466rpm_put:
3467 intel_runtime_pm_put(dev_priv);
3468
e6994aee
CW
3469 return ret;
3470}
3471
b9241ea3 3472/*
2da3b9b9
CW
3473 * Prepare buffer for display plane (scanout, cursors, etc).
3474 * Can be called from an uninterruptible phase (modesetting) and allows
3475 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3476 */
3477int
2da3b9b9
CW
3478i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3479 u32 alignment,
e6617330 3480 const struct i915_ggtt_view *view)
b9241ea3 3481{
2da3b9b9 3482 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3483 int ret;
3484
cc98b413
CW
3485 /* Mark the pin_display early so that we account for the
3486 * display coherency whilst setting up the cache domains.
3487 */
8a0c39b1 3488 obj->pin_display++;
cc98b413 3489
a7ef0640
EA
3490 /* The display engine is not coherent with the LLC cache on gen6. As
3491 * a result, we make sure that the pinning that is about to occur is
3492 * done with uncached PTEs. This is lowest common denominator for all
3493 * chipsets.
3494 *
3495 * However for gen6+, we could do better by using the GFDT bit instead
3496 * of uncaching, which would allow us to flush all the LLC-cached data
3497 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3498 */
651d794f
CW
3499 ret = i915_gem_object_set_cache_level(obj,
3500 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3501 if (ret)
cc98b413 3502 goto err_unpin_display;
a7ef0640 3503
2da3b9b9
CW
3504 /* As the user may map the buffer once pinned in the display plane
3505 * (e.g. libkms for the bootup splash), we have to ensure that we
3506 * always use map_and_fenceable for all scanout buffers.
3507 */
91b2db6f 3508 ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
50470bb0
TU
3509 view->type == I915_GGTT_VIEW_NORMAL ?
3510 PIN_MAPPABLE : 0);
2da3b9b9 3511 if (ret)
cc98b413 3512 goto err_unpin_display;
2da3b9b9 3513
e62b59e4 3514 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3515
2da3b9b9 3516 old_write_domain = obj->base.write_domain;
05394f39 3517 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3518
3519 /* It should now be out of any other write domains, and we can update
3520 * the domain values for our changes.
3521 */
e5f1d962 3522 obj->base.write_domain = 0;
05394f39 3523 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3524
3525 trace_i915_gem_object_change_domain(obj,
3526 old_read_domains,
2da3b9b9 3527 old_write_domain);
b9241ea3
ZW
3528
3529 return 0;
cc98b413
CW
3530
3531err_unpin_display:
8a0c39b1 3532 obj->pin_display--;
cc98b413
CW
3533 return ret;
3534}
3535
3536void
e6617330
TU
3537i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3538 const struct i915_ggtt_view *view)
cc98b413 3539{
8a0c39b1
TU
3540 if (WARN_ON(obj->pin_display == 0))
3541 return;
3542
e6617330
TU
3543 i915_gem_object_ggtt_unpin_view(obj, view);
3544
8a0c39b1 3545 obj->pin_display--;
b9241ea3
ZW
3546}
3547
e47c68e9
EA
3548/**
3549 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3550 * @obj: object to act on
3551 * @write: requesting write or read-only access
e47c68e9
EA
3552 *
3553 * This function returns when the move is complete, including waiting on
3554 * flushes to occur.
3555 */
dabdfe02 3556int
919926ae 3557i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3558{
1c5d22f7 3559 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3560 int ret;
3561
0201f1ec 3562 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3563 if (ret)
3564 return ret;
3565
c13d87ea
CW
3566 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3567 return 0;
3568
e47c68e9 3569 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3570
05394f39
CW
3571 old_write_domain = obj->base.write_domain;
3572 old_read_domains = obj->base.read_domains;
1c5d22f7 3573
e47c68e9 3574 /* Flush the CPU cache if it's still invalid. */
05394f39 3575 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3576 i915_gem_clflush_object(obj, false);
2ef7eeaa 3577
05394f39 3578 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3579 }
3580
3581 /* It should now be out of any other write domains, and we can update
3582 * the domain values for our changes.
3583 */
05394f39 3584 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3585
3586 /* If we're writing through the CPU, then the GPU read domains will
3587 * need to be invalidated at next use.
3588 */
3589 if (write) {
05394f39
CW
3590 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3591 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3592 }
2ef7eeaa 3593
1c5d22f7
CW
3594 trace_i915_gem_object_change_domain(obj,
3595 old_read_domains,
3596 old_write_domain);
3597
2ef7eeaa
EA
3598 return 0;
3599}
3600
673a394b
EA
3601/* Throttle our rendering by waiting until the ring has completed our requests
3602 * emitted over 20 msec ago.
3603 *
b962442e
EA
3604 * Note that if we were to use the current jiffies each time around the loop,
3605 * we wouldn't escape the function with any frames outstanding if the time to
3606 * render a frame was over 20ms.
3607 *
673a394b
EA
3608 * This should get us reasonable parallelism between CPU and GPU but also
3609 * relatively low latency when blocking on a particular request to finish.
3610 */
40a5f0de 3611static int
f787a5f5 3612i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3613{
fac5e23e 3614 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3615 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3616 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3617 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3618 int ret;
93533c29 3619
308887aa
DV
3620 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3621 if (ret)
3622 return ret;
3623
f4457ae7
CW
3624 /* ABI: return -EIO if already wedged */
3625 if (i915_terminally_wedged(&dev_priv->gpu_error))
3626 return -EIO;
e110e8d6 3627
1c25595f 3628 spin_lock(&file_priv->mm.lock);
f787a5f5 3629 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3630 if (time_after_eq(request->emitted_jiffies, recent_enough))
3631 break;
40a5f0de 3632
fcfa423c
JH
3633 /*
3634 * Note that the request might not have been submitted yet.
3635 * In which case emitted_jiffies will be zero.
3636 */
3637 if (!request->emitted_jiffies)
3638 continue;
3639
54fb2411 3640 target = request;
b962442e 3641 }
ff865885 3642 if (target)
e8a261ea 3643 i915_gem_request_get(target);
1c25595f 3644 spin_unlock(&file_priv->mm.lock);
40a5f0de 3645
54fb2411 3646 if (target == NULL)
f787a5f5 3647 return 0;
2bc43b5c 3648
776f3236 3649 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3650 i915_gem_request_put(target);
ff865885 3651
40a5f0de
EA
3652 return ret;
3653}
3654
d23db88c 3655static bool
91b2db6f 3656i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c
CW
3657{
3658 struct drm_i915_gem_object *obj = vma->obj;
3659
59bfa124
CW
3660 if (!drm_mm_node_allocated(&vma->node))
3661 return false;
3662
91b2db6f
CW
3663 if (vma->node.size < size)
3664 return true;
3665
3666 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3667 return true;
3668
3669 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3670 return true;
3671
3672 if (flags & PIN_OFFSET_BIAS &&
3673 vma->node.start < (flags & PIN_OFFSET_MASK))
3674 return true;
3675
506a8e87
CW
3676 if (flags & PIN_OFFSET_FIXED &&
3677 vma->node.start != (flags & PIN_OFFSET_MASK))
3678 return true;
3679
d23db88c
CW
3680 return false;
3681}
3682
d0710abb
CW
3683void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3684{
3685 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3686 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3687 bool mappable, fenceable;
3688 u32 fence_size, fence_alignment;
3689
a9f1481f 3690 fence_size = i915_gem_get_ggtt_size(dev_priv,
ad1a7d20
CW
3691 obj->base.size,
3692 obj->tiling_mode);
a9f1481f 3693 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
ad1a7d20
CW
3694 obj->base.size,
3695 obj->tiling_mode,
3696 true);
d0710abb
CW
3697
3698 fenceable = (vma->node.size == fence_size &&
3699 (vma->node.start & (fence_alignment - 1)) == 0);
3700
3701 mappable = (vma->node.start + fence_size <=
a9f1481f 3702 dev_priv->ggtt.mappable_end);
d0710abb
CW
3703
3704 obj->map_and_fenceable = mappable && fenceable;
3705}
3706
59bfa124
CW
3707int
3708i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3709{
59bfa124 3710 unsigned int bound = vma->bound;
673a394b
EA
3711 int ret;
3712
59bfa124
CW
3713 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3714 GEM_BUG_ON((flags & PIN_GLOBAL) && !vma->is_ggtt);
d7f46fc4 3715
59bfa124
CW
3716 if (WARN_ON(i915_vma_pin_count(vma) == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3717 return -EBUSY;
8ea99c92 3718
59bfa124
CW
3719 /* Pin early to prevent the shrinker/eviction logic from destroying
3720 * our vma as we insert and bind.
3721 */
3722 __i915_vma_pin(vma);
ac0c6b5a 3723
59bfa124
CW
3724 if (!bound) {
3725 ret = i915_vma_insert(vma, size, alignment, flags);
3726 if (ret)
3727 goto err;
fe14d5f4 3728 }
74898d7e 3729
59bfa124 3730 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3731 if (ret)
59bfa124 3732 goto err;
3b16525c 3733
59bfa124 3734 if ((bound ^ vma->bound) & GLOBAL_BIND)
d0710abb 3735 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3736
3b16525c 3737 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3738 return 0;
673a394b 3739
59bfa124
CW
3740err:
3741 __i915_vma_unpin(vma);
3742 return ret;
ec7adb6e
JL
3743}
3744
3745int
3746i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3747 const struct i915_ggtt_view *view,
91b2db6f 3748 u64 size,
2ffffd0f
CW
3749 u64 alignment,
3750 u64 flags)
ec7adb6e 3751{
59bfa124
CW
3752 struct i915_vma *vma;
3753 int ret;
72e96d64 3754
ade7daa1 3755 BUG_ON(!view);
ec7adb6e 3756
59bfa124
CW
3757 vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
3758 if (IS_ERR(vma))
3759 return PTR_ERR(vma);
3760
3761 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3762 if (flags & PIN_NONBLOCK &&
3763 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3764 return -ENOSPC;
3765
3766 WARN(i915_vma_is_pinned(vma),
3767 "bo is already pinned in ggtt with incorrect alignment:"
3768 " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3769 " obj->map_and_fenceable=%d\n",
3770 upper_32_bits(vma->node.start),
3771 lower_32_bits(vma->node.start),
3772 alignment,
3773 !!(flags & PIN_MAPPABLE),
3774 obj->map_and_fenceable);
3775 ret = i915_vma_unbind(vma);
3776 if (ret)
3777 return ret;
3778 }
3779
3780 return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
3781}
3782
673a394b 3783void
e6617330
TU
3784i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3785 const struct i915_ggtt_view *view)
673a394b 3786{
e6617330 3787 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 3788
20dfbde4 3789 WARN_ON(!i915_vma_is_pinned(vma));
9abc4648 3790 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 3791
20dfbde4 3792 __i915_vma_unpin(vma);
673a394b
EA
3793}
3794
673a394b
EA
3795int
3796i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3797 struct drm_file *file)
673a394b
EA
3798{
3799 struct drm_i915_gem_busy *args = data;
05394f39 3800 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3801 int ret;
3802
76c1dec1 3803 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3804 if (ret)
76c1dec1 3805 return ret;
673a394b 3806
03ac0642
CW
3807 obj = i915_gem_object_lookup(file, args->handle);
3808 if (!obj) {
1d7cfea1
CW
3809 ret = -ENOENT;
3810 goto unlock;
673a394b 3811 }
d1b851fc 3812
0be555b6
CW
3813 /* Count all active objects as busy, even if they are currently not used
3814 * by the gpu. Users of this interface expect objects to eventually
21c310f2 3815 * become non-busy without any further actions.
c4de0a5d 3816 */
426960be
CW
3817 args->busy = 0;
3818 if (obj->active) {
27c01aae 3819 struct drm_i915_gem_request *req;
426960be
CW
3820 int i;
3821
666796da 3822 for (i = 0; i < I915_NUM_ENGINES; i++) {
d72d908b
CW
3823 req = i915_gem_active_peek(&obj->last_read[i],
3824 &obj->base.dev->struct_mutex);
426960be 3825 if (req)
4a570db5 3826 args->busy |= 1 << (16 + req->engine->exec_id);
426960be 3827 }
d72d908b
CW
3828 req = i915_gem_active_peek(&obj->last_write,
3829 &obj->base.dev->struct_mutex);
27c01aae
CW
3830 if (req)
3831 args->busy |= req->engine->exec_id;
426960be 3832 }
673a394b 3833
f8c417cd 3834 i915_gem_object_put(obj);
1d7cfea1 3835unlock:
673a394b 3836 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3837 return ret;
673a394b
EA
3838}
3839
3840int
3841i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3842 struct drm_file *file_priv)
3843{
0206e353 3844 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3845}
3846
3ef94daa
CW
3847int
3848i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3849 struct drm_file *file_priv)
3850{
fac5e23e 3851 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3852 struct drm_i915_gem_madvise *args = data;
05394f39 3853 struct drm_i915_gem_object *obj;
76c1dec1 3854 int ret;
3ef94daa
CW
3855
3856 switch (args->madv) {
3857 case I915_MADV_DONTNEED:
3858 case I915_MADV_WILLNEED:
3859 break;
3860 default:
3861 return -EINVAL;
3862 }
3863
1d7cfea1
CW
3864 ret = i915_mutex_lock_interruptible(dev);
3865 if (ret)
3866 return ret;
3867
03ac0642
CW
3868 obj = i915_gem_object_lookup(file_priv, args->handle);
3869 if (!obj) {
1d7cfea1
CW
3870 ret = -ENOENT;
3871 goto unlock;
3ef94daa 3872 }
3ef94daa 3873
d7f46fc4 3874 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
3875 ret = -EINVAL;
3876 goto out;
3ef94daa
CW
3877 }
3878
656bfa3a
DV
3879 if (obj->pages &&
3880 obj->tiling_mode != I915_TILING_NONE &&
3881 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3882 if (obj->madv == I915_MADV_WILLNEED)
3883 i915_gem_object_unpin_pages(obj);
3884 if (args->madv == I915_MADV_WILLNEED)
3885 i915_gem_object_pin_pages(obj);
3886 }
3887
05394f39
CW
3888 if (obj->madv != __I915_MADV_PURGED)
3889 obj->madv = args->madv;
3ef94daa 3890
6c085a72 3891 /* if the object is no longer attached, discard its backing storage */
be6a0376 3892 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
3893 i915_gem_object_truncate(obj);
3894
05394f39 3895 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3896
1d7cfea1 3897out:
f8c417cd 3898 i915_gem_object_put(obj);
1d7cfea1 3899unlock:
3ef94daa 3900 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3901 return ret;
3ef94daa
CW
3902}
3903
37e680a1
CW
3904void i915_gem_object_init(struct drm_i915_gem_object *obj,
3905 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3906{
b4716185
CW
3907 int i;
3908
35c20a60 3909 INIT_LIST_HEAD(&obj->global_list);
666796da 3910 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
3911 init_request_active(&obj->last_read[i],
3912 i915_gem_object_retire__read);
3913 init_request_active(&obj->last_write,
3914 i915_gem_object_retire__write);
3915 init_request_active(&obj->last_fence, NULL);
b25cb2f8 3916 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3917 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3918 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3919
37e680a1
CW
3920 obj->ops = ops;
3921
0327d6ba
CW
3922 obj->fence_reg = I915_FENCE_REG_NONE;
3923 obj->madv = I915_MADV_WILLNEED;
0327d6ba 3924
f19ec8cb 3925 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3926}
3927
37e680a1 3928static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 3929 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
3930 .get_pages = i915_gem_object_get_pages_gtt,
3931 .put_pages = i915_gem_object_put_pages_gtt,
3932};
3933
d37cd8a8 3934struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 3935 size_t size)
ac52bc56 3936{
c397b908 3937 struct drm_i915_gem_object *obj;
5949eac4 3938 struct address_space *mapping;
1a240d4d 3939 gfp_t mask;
fe3db79b 3940 int ret;
ac52bc56 3941
42dcedd4 3942 obj = i915_gem_object_alloc(dev);
c397b908 3943 if (obj == NULL)
fe3db79b 3944 return ERR_PTR(-ENOMEM);
673a394b 3945
fe3db79b
CW
3946 ret = drm_gem_object_init(dev, &obj->base, size);
3947 if (ret)
3948 goto fail;
673a394b 3949
bed1ea95
CW
3950 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3951 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3952 /* 965gm cannot relocate objects above 4GiB. */
3953 mask &= ~__GFP_HIGHMEM;
3954 mask |= __GFP_DMA32;
3955 }
3956
496ad9aa 3957 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3958 mapping_set_gfp_mask(mapping, mask);
5949eac4 3959
37e680a1 3960 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3961
c397b908
DV
3962 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3963 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3964
3d29b842
ED
3965 if (HAS_LLC(dev)) {
3966 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3967 * cache) for about a 10% performance improvement
3968 * compared to uncached. Graphics requests other than
3969 * display scanout are coherent with the CPU in
3970 * accessing this cache. This means in this mode we
3971 * don't need to clflush on the CPU side, and on the
3972 * GPU side we only need to flush internal caches to
3973 * get data visible to the CPU.
3974 *
3975 * However, we maintain the display planes as UC, and so
3976 * need to rebind when first used as such.
3977 */
3978 obj->cache_level = I915_CACHE_LLC;
3979 } else
3980 obj->cache_level = I915_CACHE_NONE;
3981
d861e338
DV
3982 trace_i915_gem_object_create(obj);
3983
05394f39 3984 return obj;
fe3db79b
CW
3985
3986fail:
3987 i915_gem_object_free(obj);
3988
3989 return ERR_PTR(ret);
c397b908
DV
3990}
3991
340fbd8c
CW
3992static bool discard_backing_storage(struct drm_i915_gem_object *obj)
3993{
3994 /* If we are the last user of the backing storage (be it shmemfs
3995 * pages or stolen etc), we know that the pages are going to be
3996 * immediately released. In this case, we can then skip copying
3997 * back the contents from the GPU.
3998 */
3999
4000 if (obj->madv != I915_MADV_WILLNEED)
4001 return false;
4002
4003 if (obj->base.filp == NULL)
4004 return true;
4005
4006 /* At first glance, this looks racy, but then again so would be
4007 * userspace racing mmap against close. However, the first external
4008 * reference to the filp can only be obtained through the
4009 * i915_gem_mmap_ioctl() which safeguards us against the user
4010 * acquiring such a reference whilst we are in the middle of
4011 * freeing the object.
4012 */
4013 return atomic_long_read(&obj->base.filp->f_count) == 1;
4014}
4015
1488fc08 4016void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4017{
1488fc08 4018 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4019 struct drm_device *dev = obj->base.dev;
fac5e23e 4020 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4021 struct i915_vma *vma, *next;
673a394b 4022
f65c9168
PZ
4023 intel_runtime_pm_get(dev_priv);
4024
26e12f89
CW
4025 trace_i915_gem_object_destroy(obj);
4026
b1f788c6
CW
4027 /* All file-owned VMA should have been released by this point through
4028 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4029 * However, the object may also be bound into the global GTT (e.g.
4030 * older GPUs without per-process support, or for direct access through
4031 * the GTT either for the user or for scanout). Those VMA still need to
4032 * unbound now.
4033 */
1c7f4bca 4034 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
b1f788c6
CW
4035 GEM_BUG_ON(!vma->is_ggtt);
4036 GEM_BUG_ON(i915_vma_is_active(vma));
d7f46fc4 4037 vma->pin_count = 0;
b1f788c6 4038 i915_vma_close(vma);
1488fc08 4039 }
15717de2 4040 GEM_BUG_ON(obj->bind_count);
1488fc08 4041
1d64ae71
BW
4042 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4043 * before progressing. */
4044 if (obj->stolen)
4045 i915_gem_object_unpin_pages(obj);
4046
a071fa00
DV
4047 WARN_ON(obj->frontbuffer_bits);
4048
656bfa3a
DV
4049 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4050 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4051 obj->tiling_mode != I915_TILING_NONE)
4052 i915_gem_object_unpin_pages(obj);
4053
401c29f6
BW
4054 if (WARN_ON(obj->pages_pin_count))
4055 obj->pages_pin_count = 0;
340fbd8c 4056 if (discard_backing_storage(obj))
5537252b 4057 obj->madv = I915_MADV_DONTNEED;
37e680a1 4058 i915_gem_object_put_pages(obj);
de151cf6 4059
9da3da66
CW
4060 BUG_ON(obj->pages);
4061
2f745ad3
CW
4062 if (obj->base.import_attach)
4063 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4064
5cc9ed4b
CW
4065 if (obj->ops->release)
4066 obj->ops->release(obj);
4067
05394f39
CW
4068 drm_gem_object_release(&obj->base);
4069 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4070
05394f39 4071 kfree(obj->bit_17);
42dcedd4 4072 i915_gem_object_free(obj);
f65c9168
PZ
4073
4074 intel_runtime_pm_put(dev_priv);
673a394b
EA
4075}
4076
ec7adb6e
JL
4077struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4078 struct i915_address_space *vm)
e656a6cb
DV
4079{
4080 struct i915_vma *vma;
1c7f4bca 4081 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4082 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4083 vma->vm == vm)
e656a6cb 4084 return vma;
ec7adb6e
JL
4085 }
4086 return NULL;
4087}
4088
4089struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4090 const struct i915_ggtt_view *view)
4091{
ec7adb6e 4092 struct i915_vma *vma;
e656a6cb 4093
598b9ec8 4094 GEM_BUG_ON(!view);
ec7adb6e 4095
1c7f4bca 4096 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4097 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4098 return vma;
e656a6cb
DV
4099 return NULL;
4100}
4101
e3efda49 4102static void
117897f4 4103i915_gem_stop_engines(struct drm_device *dev)
e3efda49 4104{
fac5e23e 4105 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4106 struct intel_engine_cs *engine;
e3efda49 4107
b4ac5afc 4108 for_each_engine(engine, dev_priv)
117897f4 4109 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4110}
4111
29105ccc 4112int
45c5f202 4113i915_gem_suspend(struct drm_device *dev)
29105ccc 4114{
fac5e23e 4115 struct drm_i915_private *dev_priv = to_i915(dev);
45c5f202 4116 int ret = 0;
28dfe52a 4117
54b4f68f
CW
4118 intel_suspend_gt_powersave(dev_priv);
4119
45c5f202 4120 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4121
4122 /* We have to flush all the executing contexts to main memory so
4123 * that they can saved in the hibernation image. To ensure the last
4124 * context image is coherent, we have to switch away from it. That
4125 * leaves the dev_priv->kernel_context still active when
4126 * we actually suspend, and its image in memory may not match the GPU
4127 * state. Fortunately, the kernel_context is disposable and we do
4128 * not rely on its state.
4129 */
4130 ret = i915_gem_switch_to_kernel_context(dev_priv);
4131 if (ret)
4132 goto err;
4133
6e5a5beb 4134 ret = i915_gem_wait_for_idle(dev_priv);
f7403347 4135 if (ret)
45c5f202 4136 goto err;
f7403347 4137
c033666a 4138 i915_gem_retire_requests(dev_priv);
673a394b 4139
5ab57c70
CW
4140 /* Note that rather than stopping the engines, all we have to do
4141 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
4142 * and similar for all logical context images (to ensure they are
4143 * all ready for hibernation).
4144 */
117897f4 4145 i915_gem_stop_engines(dev);
b2e862d0 4146 i915_gem_context_lost(dev_priv);
45c5f202
CW
4147 mutex_unlock(&dev->struct_mutex);
4148
737b1506 4149 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4150 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4151 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4152
bdcf120b
CW
4153 /* Assert that we sucessfully flushed all the work and
4154 * reset the GPU back to its idle, low power state.
4155 */
67d97da3 4156 WARN_ON(dev_priv->gt.awake);
bdcf120b 4157
673a394b 4158 return 0;
45c5f202
CW
4159
4160err:
4161 mutex_unlock(&dev->struct_mutex);
4162 return ret;
673a394b
EA
4163}
4164
5ab57c70
CW
4165void i915_gem_resume(struct drm_device *dev)
4166{
4167 struct drm_i915_private *dev_priv = to_i915(dev);
4168
4169 mutex_lock(&dev->struct_mutex);
4170 i915_gem_restore_gtt_mappings(dev);
4171
4172 /* As we didn't flush the kernel context before suspend, we cannot
4173 * guarantee that the context image is complete. So let's just reset
4174 * it and start again.
4175 */
4176 if (i915.enable_execlists)
4177 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4178
4179 mutex_unlock(&dev->struct_mutex);
4180}
4181
f691e2f4
DV
4182void i915_gem_init_swizzling(struct drm_device *dev)
4183{
fac5e23e 4184 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4185
11782b02 4186 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4187 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4188 return;
4189
4190 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4191 DISP_TILE_SURFACE_SWIZZLING);
4192
11782b02
DV
4193 if (IS_GEN5(dev))
4194 return;
4195
f691e2f4
DV
4196 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4197 if (IS_GEN6(dev))
6b26c86d 4198 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4199 else if (IS_GEN7(dev))
6b26c86d 4200 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4201 else if (IS_GEN8(dev))
4202 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4203 else
4204 BUG();
f691e2f4 4205}
e21af88d 4206
81e7f200
VS
4207static void init_unused_ring(struct drm_device *dev, u32 base)
4208{
fac5e23e 4209 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4210
4211 I915_WRITE(RING_CTL(base), 0);
4212 I915_WRITE(RING_HEAD(base), 0);
4213 I915_WRITE(RING_TAIL(base), 0);
4214 I915_WRITE(RING_START(base), 0);
4215}
4216
4217static void init_unused_rings(struct drm_device *dev)
4218{
4219 if (IS_I830(dev)) {
4220 init_unused_ring(dev, PRB1_BASE);
4221 init_unused_ring(dev, SRB0_BASE);
4222 init_unused_ring(dev, SRB1_BASE);
4223 init_unused_ring(dev, SRB2_BASE);
4224 init_unused_ring(dev, SRB3_BASE);
4225 } else if (IS_GEN2(dev)) {
4226 init_unused_ring(dev, SRB0_BASE);
4227 init_unused_ring(dev, SRB1_BASE);
4228 } else if (IS_GEN3(dev)) {
4229 init_unused_ring(dev, PRB1_BASE);
4230 init_unused_ring(dev, PRB2_BASE);
4231 }
4232}
4233
4fc7c971
BW
4234int
4235i915_gem_init_hw(struct drm_device *dev)
4236{
fac5e23e 4237 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4238 struct intel_engine_cs *engine;
d200cda6 4239 int ret;
4fc7c971 4240
5e4f5189
CW
4241 /* Double layer security blanket, see i915_gem_init() */
4242 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4243
3accaf7e 4244 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4245 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4246
0bf21347
VS
4247 if (IS_HASWELL(dev))
4248 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4249 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4250
88a2b2a3 4251 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4252 if (IS_IVYBRIDGE(dev)) {
4253 u32 temp = I915_READ(GEN7_MSG_CTL);
4254 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4255 I915_WRITE(GEN7_MSG_CTL, temp);
4256 } else if (INTEL_INFO(dev)->gen >= 7) {
4257 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4258 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4259 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4260 }
88a2b2a3
BW
4261 }
4262
4fc7c971
BW
4263 i915_gem_init_swizzling(dev);
4264
d5abdfda
DV
4265 /*
4266 * At least 830 can leave some of the unused rings
4267 * "active" (ie. head != tail) after resume which
4268 * will prevent c3 entry. Makes sure all unused rings
4269 * are totally idle.
4270 */
4271 init_unused_rings(dev);
4272
ed54c1a1 4273 BUG_ON(!dev_priv->kernel_context);
90638cc1 4274
4ad2fd88
JH
4275 ret = i915_ppgtt_init_hw(dev);
4276 if (ret) {
4277 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4278 goto out;
4279 }
4280
4281 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4282 for_each_engine(engine, dev_priv) {
e2f80391 4283 ret = engine->init_hw(engine);
35a57ffb 4284 if (ret)
5e4f5189 4285 goto out;
35a57ffb 4286 }
99433931 4287
0ccdacf6
PA
4288 intel_mocs_init_l3cc_table(dev);
4289
33a732f4 4290 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4291 ret = intel_guc_setup(dev);
4292 if (ret)
4293 goto out;
33a732f4 4294
5e4f5189
CW
4295out:
4296 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4297 return ret;
8187a2b7
ZN
4298}
4299
39df9190
CW
4300bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4301{
4302 if (INTEL_INFO(dev_priv)->gen < 6)
4303 return false;
4304
4305 /* TODO: make semaphores and Execlists play nicely together */
4306 if (i915.enable_execlists)
4307 return false;
4308
4309 if (value >= 0)
4310 return value;
4311
4312#ifdef CONFIG_INTEL_IOMMU
4313 /* Enable semaphores on SNB when IO remapping is off */
4314 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4315 return false;
4316#endif
4317
4318 return true;
4319}
4320
1070a42b
CW
4321int i915_gem_init(struct drm_device *dev)
4322{
fac5e23e 4323 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4324 int ret;
4325
1070a42b 4326 mutex_lock(&dev->struct_mutex);
d62b4892 4327
a83014d3 4328 if (!i915.enable_execlists) {
7e37f889
CW
4329 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4330 dev_priv->gt.stop_engine = intel_engine_stop;
454afebd 4331 } else {
117897f4
TU
4332 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4333 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4334 }
4335
5e4f5189
CW
4336 /* This is just a security blanket to placate dragons.
4337 * On some systems, we very sporadically observe that the first TLBs
4338 * used by the CS may be stale, despite us poking the TLB reset. If
4339 * we hold the forcewake during initialisation these problems
4340 * just magically go away.
4341 */
4342 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4343
72778cb2 4344 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4345
4346 ret = i915_gem_init_ggtt(dev_priv);
4347 if (ret)
4348 goto out_unlock;
d62b4892 4349
2fa48d8d 4350 ret = i915_gem_context_init(dev);
7bcc3777
JN
4351 if (ret)
4352 goto out_unlock;
2fa48d8d 4353
8b3e2d36 4354 ret = intel_engines_init(dev);
35a57ffb 4355 if (ret)
7bcc3777 4356 goto out_unlock;
2fa48d8d 4357
1070a42b 4358 ret = i915_gem_init_hw(dev);
60990320 4359 if (ret == -EIO) {
7e21d648 4360 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4361 * wedged. But we only want to do this where the GPU is angry,
4362 * for all other failure, such as an allocation failure, bail.
4363 */
4364 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4365 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4366 ret = 0;
1070a42b 4367 }
7bcc3777
JN
4368
4369out_unlock:
5e4f5189 4370 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4371 mutex_unlock(&dev->struct_mutex);
1070a42b 4372
60990320 4373 return ret;
1070a42b
CW
4374}
4375
8187a2b7 4376void
117897f4 4377i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4378{
fac5e23e 4379 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4380 struct intel_engine_cs *engine;
8187a2b7 4381
b4ac5afc 4382 for_each_engine(engine, dev_priv)
117897f4 4383 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4384}
4385
64193406 4386static void
666796da 4387init_engine_lists(struct intel_engine_cs *engine)
64193406 4388{
0bc40be8 4389 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4390}
4391
40ae4e16
ID
4392void
4393i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4394{
91c8a326 4395 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
4396
4397 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4398 !IS_CHERRYVIEW(dev_priv))
4399 dev_priv->num_fence_regs = 32;
4400 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4401 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4402 dev_priv->num_fence_regs = 16;
4403 else
4404 dev_priv->num_fence_regs = 8;
4405
c033666a 4406 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4407 dev_priv->num_fence_regs =
4408 I915_READ(vgtif_reg(avail_rs.fence_num));
4409
4410 /* Initialize fence registers to zero */
4411 i915_gem_restore_fences(dev);
4412
4413 i915_gem_detect_bit_6_swizzle(dev);
4414}
4415
673a394b 4416void
d64aa096 4417i915_gem_load_init(struct drm_device *dev)
673a394b 4418{
fac5e23e 4419 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4420 int i;
4421
efab6d8d 4422 dev_priv->objects =
42dcedd4
CW
4423 kmem_cache_create("i915_gem_object",
4424 sizeof(struct drm_i915_gem_object), 0,
4425 SLAB_HWCACHE_ALIGN,
4426 NULL);
e20d2ab7
CW
4427 dev_priv->vmas =
4428 kmem_cache_create("i915_gem_vma",
4429 sizeof(struct i915_vma), 0,
4430 SLAB_HWCACHE_ALIGN,
4431 NULL);
efab6d8d
CW
4432 dev_priv->requests =
4433 kmem_cache_create("i915_gem_request",
4434 sizeof(struct drm_i915_gem_request), 0,
4435 SLAB_HWCACHE_ALIGN,
4436 NULL);
673a394b 4437
a33afea5 4438 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4439 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4440 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4441 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4442 for (i = 0; i < I915_NUM_ENGINES; i++)
4443 init_engine_lists(&dev_priv->engine[i]);
4b9de737 4444 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4445 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
67d97da3 4446 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4447 i915_gem_retire_work_handler);
67d97da3 4448 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4449 i915_gem_idle_work_handler);
1f15b76f 4450 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4451 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4452
72bfa19c
CW
4453 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4454
19b2dbde 4455 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 4456
6b95a207 4457 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4458
ce453d81
CW
4459 dev_priv->mm.interruptible = true;
4460
f99d7069 4461 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4462}
71acb5eb 4463
d64aa096
ID
4464void i915_gem_load_cleanup(struct drm_device *dev)
4465{
4466 struct drm_i915_private *dev_priv = to_i915(dev);
4467
4468 kmem_cache_destroy(dev_priv->requests);
4469 kmem_cache_destroy(dev_priv->vmas);
4470 kmem_cache_destroy(dev_priv->objects);
4471}
4472
461fb99c
CW
4473int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4474{
4475 struct drm_i915_gem_object *obj;
4476
4477 /* Called just before we write the hibernation image.
4478 *
4479 * We need to update the domain tracking to reflect that the CPU
4480 * will be accessing all the pages to create and restore from the
4481 * hibernation, and so upon restoration those pages will be in the
4482 * CPU domain.
4483 *
4484 * To make sure the hibernation image contains the latest state,
4485 * we update that state just before writing out the image.
4486 */
4487
4488 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4489 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4490 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4491 }
4492
4493 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4494 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4495 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4496 }
4497
4498 return 0;
4499}
4500
f787a5f5 4501void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4502{
f787a5f5 4503 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4504 struct drm_i915_gem_request *request;
b962442e
EA
4505
4506 /* Clean up our request list when the client is going away, so that
4507 * later retire_requests won't dereference our soon-to-be-gone
4508 * file_priv.
4509 */
1c25595f 4510 spin_lock(&file_priv->mm.lock);
15f7bbc7 4511 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4512 request->file_priv = NULL;
1c25595f 4513 spin_unlock(&file_priv->mm.lock);
b29c19b6 4514
2e1b8730 4515 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4516 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4517 list_del(&file_priv->rps.link);
8d3afd7d 4518 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4519 }
b29c19b6
CW
4520}
4521
4522int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4523{
4524 struct drm_i915_file_private *file_priv;
e422b888 4525 int ret;
b29c19b6
CW
4526
4527 DRM_DEBUG_DRIVER("\n");
4528
4529 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4530 if (!file_priv)
4531 return -ENOMEM;
4532
4533 file->driver_priv = file_priv;
f19ec8cb 4534 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4535 file_priv->file = file;
2e1b8730 4536 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4537
4538 spin_lock_init(&file_priv->mm.lock);
4539 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4540
c80ff16e 4541 file_priv->bsd_engine = -1;
de1add36 4542
e422b888
BW
4543 ret = i915_gem_context_open(dev, file);
4544 if (ret)
4545 kfree(file_priv);
b29c19b6 4546
e422b888 4547 return ret;
b29c19b6
CW
4548}
4549
b680c37a
DV
4550/**
4551 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4552 * @old: current GEM buffer for the frontbuffer slots
4553 * @new: new GEM buffer for the frontbuffer slots
4554 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4555 *
4556 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4557 * from @old and setting them in @new. Both @old and @new can be NULL.
4558 */
a071fa00
DV
4559void i915_gem_track_fb(struct drm_i915_gem_object *old,
4560 struct drm_i915_gem_object *new,
4561 unsigned frontbuffer_bits)
4562{
4563 if (old) {
4564 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4565 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4566 old->frontbuffer_bits &= ~frontbuffer_bits;
4567 }
4568
4569 if (new) {
4570 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4571 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4572 new->frontbuffer_bits |= frontbuffer_bits;
4573 }
4574}
4575
a70a3148 4576/* All the new VM stuff */
088e0df4
MT
4577u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4578 struct i915_address_space *vm)
a70a3148 4579{
fac5e23e 4580 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
a70a3148
BW
4581 struct i915_vma *vma;
4582
896ab1a5 4583 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 4584
1c7f4bca 4585 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4586 if (vma->is_ggtt &&
ec7adb6e
JL
4587 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4588 continue;
4589 if (vma->vm == vm)
a70a3148 4590 return vma->node.start;
a70a3148 4591 }
ec7adb6e 4592
f25748ea
DV
4593 WARN(1, "%s vma for this object not found.\n",
4594 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
4595 return -1;
4596}
4597
088e0df4
MT
4598u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4599 const struct i915_ggtt_view *view)
a70a3148
BW
4600{
4601 struct i915_vma *vma;
4602
1c7f4bca 4603 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 4604 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
4605 return vma->node.start;
4606
5678ad73 4607 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
4608 return -1;
4609}
4610
4611bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4612 struct i915_address_space *vm)
4613{
4614 struct i915_vma *vma;
4615
1c7f4bca 4616 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4617 if (vma->is_ggtt &&
ec7adb6e
JL
4618 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4619 continue;
4620 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4621 return true;
4622 }
4623
4624 return false;
4625}
4626
4627bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 4628 const struct i915_ggtt_view *view)
ec7adb6e 4629{
ec7adb6e
JL
4630 struct i915_vma *vma;
4631
1c7f4bca 4632 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 4633 if (vma->is_ggtt &&
9abc4648 4634 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 4635 drm_mm_node_allocated(&vma->node))
a70a3148
BW
4636 return true;
4637
4638 return false;
4639}
4640
8da32727 4641unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 4642{
a70a3148
BW
4643 struct i915_vma *vma;
4644
8da32727 4645 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 4646
1c7f4bca 4647 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4648 if (vma->is_ggtt &&
8da32727 4649 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 4650 return vma->node.size;
ec7adb6e 4651 }
8da32727 4652
a70a3148
BW
4653 return 0;
4654}
4655
ec7adb6e 4656bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
4657{
4658 struct i915_vma *vma;
1c7f4bca 4659 list_for_each_entry(vma, &obj->vma_list, obj_link)
20dfbde4 4660 if (i915_vma_is_pinned(vma))
ec7adb6e 4661 return true;
a6631ae1 4662
ec7adb6e 4663 return false;
5c2abbea 4664}
ea70299d 4665
033908ae
DG
4666/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4667struct page *
4668i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4669{
4670 struct page *page;
4671
4672 /* Only default objects have per-page dirty tracking */
b9bcd14a 4673 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4674 return NULL;
4675
4676 page = i915_gem_object_get_page(obj, n);
4677 set_page_dirty(page);
4678 return page;
4679}
4680
ea70299d
DG
4681/* Allocate a new GEM object and fill it with the supplied data */
4682struct drm_i915_gem_object *
4683i915_gem_object_create_from_data(struct drm_device *dev,
4684 const void *data, size_t size)
4685{
4686 struct drm_i915_gem_object *obj;
4687 struct sg_table *sg;
4688 size_t bytes;
4689 int ret;
4690
d37cd8a8 4691 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4692 if (IS_ERR(obj))
ea70299d
DG
4693 return obj;
4694
4695 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4696 if (ret)
4697 goto fail;
4698
4699 ret = i915_gem_object_get_pages(obj);
4700 if (ret)
4701 goto fail;
4702
4703 i915_gem_object_pin_pages(obj);
4704 sg = obj->pages;
4705 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4706 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4707 i915_gem_object_unpin_pages(obj);
4708
4709 if (WARN_ON(bytes != size)) {
4710 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4711 ret = -EFAULT;
4712 goto fail;
4713 }
4714
4715 return obj;
4716
4717fail:
f8c417cd 4718 i915_gem_object_put(obj);
ea70299d
DG
4719 return ERR_PTR(ret);
4720}