drm/i915: Add buffer to inactive list immediately during fault
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
652c393a 32#include "intel_drv.h"
673a394b 33#include <linux/swap.h>
79e53945 34#include <linux/pci.h>
673a394b 35
28dfe52a
EA
36#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
e47c68e9
EA
38static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
41static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 int write);
43static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 47static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
48static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 unsigned alignment);
de151cf6
JB
50static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
52static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
673a394b 55
79e53945
JB
56int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57 unsigned long end)
673a394b
EA
58{
59 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 60
79e53945
JB
61 if (start >= end ||
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
64 return -EINVAL;
65 }
66
79e53945
JB
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
68 end - start);
673a394b 69
79e53945
JB
70 dev->gtt_total = (uint32_t) (end - start);
71
72 return 0;
73}
673a394b 74
79e53945
JB
75int
76i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
78{
79 struct drm_i915_gem_init *args = data;
80 int ret;
81
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
84 mutex_unlock(&dev->struct_mutex);
85
79e53945 86 return ret;
673a394b
EA
87}
88
5a125c3c
EA
89int
90i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92{
5a125c3c 93 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
94
95 if (!(dev->driver->driver_features & DRIVER_GEM))
96 return -ENODEV;
97
98 args->aper_size = dev->gtt_total;
2678d9d6
KP
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
5a125c3c
EA
101
102 return 0;
103}
104
673a394b
EA
105
106/**
107 * Creates a new mm object and returns a handle to it.
108 */
109int
110i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
112{
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
a1a2d1d3
PP
115 int ret;
116 u32 handle;
673a394b
EA
117
118 args->size = roundup(args->size, PAGE_SIZE);
119
120 /* Allocate the new object */
121 obj = drm_gem_object_alloc(dev, args->size);
122 if (obj == NULL)
123 return -ENOMEM;
124
125 ret = drm_gem_handle_create(file_priv, obj, &handle);
126 mutex_lock(&dev->struct_mutex);
127 drm_gem_object_handle_unreference(obj);
128 mutex_unlock(&dev->struct_mutex);
129
130 if (ret)
131 return ret;
132
133 args->handle = handle;
134
135 return 0;
136}
137
eb01459f
EA
138static inline int
139fast_shmem_read(struct page **pages,
140 loff_t page_base, int page_offset,
141 char __user *data,
142 int length)
143{
144 char __iomem *vaddr;
2bc43b5c 145 int unwritten;
eb01459f
EA
146
147 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
148 if (vaddr == NULL)
149 return -ENOMEM;
2bc43b5c 150 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
151 kunmap_atomic(vaddr, KM_USER0);
152
2bc43b5c
FM
153 if (unwritten)
154 return -EFAULT;
155
156 return 0;
eb01459f
EA
157}
158
280b713b
EA
159static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
160{
161 drm_i915_private_t *dev_priv = obj->dev->dev_private;
162 struct drm_i915_gem_object *obj_priv = obj->driver_private;
163
164 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
165 obj_priv->tiling_mode != I915_TILING_NONE;
166}
167
40123c1f
EA
168static inline int
169slow_shmem_copy(struct page *dst_page,
170 int dst_offset,
171 struct page *src_page,
172 int src_offset,
173 int length)
174{
175 char *dst_vaddr, *src_vaddr;
176
177 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
178 if (dst_vaddr == NULL)
179 return -ENOMEM;
180
181 src_vaddr = kmap_atomic(src_page, KM_USER1);
182 if (src_vaddr == NULL) {
183 kunmap_atomic(dst_vaddr, KM_USER0);
184 return -ENOMEM;
185 }
186
187 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
188
189 kunmap_atomic(src_vaddr, KM_USER1);
190 kunmap_atomic(dst_vaddr, KM_USER0);
191
192 return 0;
193}
194
280b713b
EA
195static inline int
196slow_shmem_bit17_copy(struct page *gpu_page,
197 int gpu_offset,
198 struct page *cpu_page,
199 int cpu_offset,
200 int length,
201 int is_read)
202{
203 char *gpu_vaddr, *cpu_vaddr;
204
205 /* Use the unswizzled path if this page isn't affected. */
206 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207 if (is_read)
208 return slow_shmem_copy(cpu_page, cpu_offset,
209 gpu_page, gpu_offset, length);
210 else
211 return slow_shmem_copy(gpu_page, gpu_offset,
212 cpu_page, cpu_offset, length);
213 }
214
215 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
216 if (gpu_vaddr == NULL)
217 return -ENOMEM;
218
219 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
220 if (cpu_vaddr == NULL) {
221 kunmap_atomic(gpu_vaddr, KM_USER0);
222 return -ENOMEM;
223 }
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
247 kunmap_atomic(cpu_vaddr, KM_USER1);
248 kunmap_atomic(gpu_vaddr, KM_USER0);
249
250 return 0;
251}
252
eb01459f
EA
253/**
254 * This is the fast shmem pread path, which attempts to copy_from_user directly
255 * from the backing pages of the object to the user's address space. On a
256 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
257 */
258static int
259i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
260 struct drm_i915_gem_pread *args,
261 struct drm_file *file_priv)
262{
263 struct drm_i915_gem_object *obj_priv = obj->driver_private;
264 ssize_t remain;
265 loff_t offset, page_base;
266 char __user *user_data;
267 int page_offset, page_length;
268 int ret;
269
270 user_data = (char __user *) (uintptr_t) args->data_ptr;
271 remain = args->size;
272
273 mutex_lock(&dev->struct_mutex);
274
275 ret = i915_gem_object_get_pages(obj);
276 if (ret != 0)
277 goto fail_unlock;
278
279 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
280 args->size);
281 if (ret != 0)
282 goto fail_put_pages;
283
284 obj_priv = obj->driver_private;
285 offset = args->offset;
286
287 while (remain > 0) {
288 /* Operation in this page
289 *
290 * page_base = page offset within aperture
291 * page_offset = offset within page
292 * page_length = bytes to copy for this page
293 */
294 page_base = (offset & ~(PAGE_SIZE-1));
295 page_offset = offset & (PAGE_SIZE-1);
296 page_length = remain;
297 if ((page_offset + remain) > PAGE_SIZE)
298 page_length = PAGE_SIZE - page_offset;
299
300 ret = fast_shmem_read(obj_priv->pages,
301 page_base, page_offset,
302 user_data, page_length);
303 if (ret)
304 goto fail_put_pages;
305
306 remain -= page_length;
307 user_data += page_length;
308 offset += page_length;
309 }
310
311fail_put_pages:
312 i915_gem_object_put_pages(obj);
313fail_unlock:
314 mutex_unlock(&dev->struct_mutex);
315
316 return ret;
317}
318
319/**
320 * This is the fallback shmem pread path, which allocates temporary storage
321 * in kernel space to copy_to_user into outside of the struct_mutex, so we
322 * can copy out of the object's backing pages while holding the struct mutex
323 * and not take page faults.
324 */
325static int
326i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
327 struct drm_i915_gem_pread *args,
328 struct drm_file *file_priv)
329{
330 struct drm_i915_gem_object *obj_priv = obj->driver_private;
331 struct mm_struct *mm = current->mm;
332 struct page **user_pages;
333 ssize_t remain;
334 loff_t offset, pinned_pages, i;
335 loff_t first_data_page, last_data_page, num_pages;
336 int shmem_page_index, shmem_page_offset;
337 int data_page_index, data_page_offset;
338 int page_length;
339 int ret;
340 uint64_t data_ptr = args->data_ptr;
280b713b 341 int do_bit17_swizzling;
eb01459f
EA
342
343 remain = args->size;
344
345 /* Pin the user pages containing the data. We can't fault while
346 * holding the struct mutex, yet we want to hold it while
347 * dereferencing the user data.
348 */
349 first_data_page = data_ptr / PAGE_SIZE;
350 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
351 num_pages = last_data_page - first_data_page + 1;
352
8e7d2b2c 353 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
354 if (user_pages == NULL)
355 return -ENOMEM;
356
357 down_read(&mm->mmap_sem);
358 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 359 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
360 up_read(&mm->mmap_sem);
361 if (pinned_pages < num_pages) {
362 ret = -EFAULT;
363 goto fail_put_user_pages;
364 }
365
280b713b
EA
366 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
367
eb01459f
EA
368 mutex_lock(&dev->struct_mutex);
369
370 ret = i915_gem_object_get_pages(obj);
371 if (ret != 0)
372 goto fail_unlock;
373
374 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
375 args->size);
376 if (ret != 0)
377 goto fail_put_pages;
378
379 obj_priv = obj->driver_private;
380 offset = args->offset;
381
382 while (remain > 0) {
383 /* Operation in this page
384 *
385 * shmem_page_index = page number within shmem file
386 * shmem_page_offset = offset within page in shmem file
387 * data_page_index = page number in get_user_pages return
388 * data_page_offset = offset with data_page_index page.
389 * page_length = bytes to copy for this page
390 */
391 shmem_page_index = offset / PAGE_SIZE;
392 shmem_page_offset = offset & ~PAGE_MASK;
393 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
394 data_page_offset = data_ptr & ~PAGE_MASK;
395
396 page_length = remain;
397 if ((shmem_page_offset + page_length) > PAGE_SIZE)
398 page_length = PAGE_SIZE - shmem_page_offset;
399 if ((data_page_offset + page_length) > PAGE_SIZE)
400 page_length = PAGE_SIZE - data_page_offset;
401
280b713b
EA
402 if (do_bit17_swizzling) {
403 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404 shmem_page_offset,
405 user_pages[data_page_index],
406 data_page_offset,
407 page_length,
408 1);
409 } else {
410 ret = slow_shmem_copy(user_pages[data_page_index],
411 data_page_offset,
412 obj_priv->pages[shmem_page_index],
413 shmem_page_offset,
414 page_length);
415 }
eb01459f
EA
416 if (ret)
417 goto fail_put_pages;
418
419 remain -= page_length;
420 data_ptr += page_length;
421 offset += page_length;
422 }
423
424fail_put_pages:
425 i915_gem_object_put_pages(obj);
426fail_unlock:
427 mutex_unlock(&dev->struct_mutex);
428fail_put_user_pages:
429 for (i = 0; i < pinned_pages; i++) {
430 SetPageDirty(user_pages[i]);
431 page_cache_release(user_pages[i]);
432 }
8e7d2b2c 433 drm_free_large(user_pages);
eb01459f
EA
434
435 return ret;
436}
437
673a394b
EA
438/**
439 * Reads data from the object referenced by handle.
440 *
441 * On error, the contents of *data are undefined.
442 */
443int
444i915_gem_pread_ioctl(struct drm_device *dev, void *data,
445 struct drm_file *file_priv)
446{
447 struct drm_i915_gem_pread *args = data;
448 struct drm_gem_object *obj;
449 struct drm_i915_gem_object *obj_priv;
673a394b
EA
450 int ret;
451
452 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
453 if (obj == NULL)
454 return -EBADF;
455 obj_priv = obj->driver_private;
456
457 /* Bounds check source.
458 *
459 * XXX: This could use review for overflow issues...
460 */
461 if (args->offset > obj->size || args->size > obj->size ||
462 args->offset + args->size > obj->size) {
463 drm_gem_object_unreference(obj);
464 return -EINVAL;
465 }
466
280b713b 467 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 468 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
469 } else {
470 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471 if (ret != 0)
472 ret = i915_gem_shmem_pread_slow(dev, obj, args,
473 file_priv);
474 }
673a394b
EA
475
476 drm_gem_object_unreference(obj);
673a394b 477
eb01459f 478 return ret;
673a394b
EA
479}
480
0839ccb8
KP
481/* This is the fast write path which cannot handle
482 * page faults in the source data
9b7530cc 483 */
0839ccb8
KP
484
485static inline int
486fast_user_write(struct io_mapping *mapping,
487 loff_t page_base, int page_offset,
488 char __user *user_data,
489 int length)
9b7530cc 490{
9b7530cc 491 char *vaddr_atomic;
0839ccb8 492 unsigned long unwritten;
9b7530cc 493
0839ccb8
KP
494 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
495 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496 user_data, length);
497 io_mapping_unmap_atomic(vaddr_atomic);
498 if (unwritten)
499 return -EFAULT;
500 return 0;
501}
502
503/* Here's the write path which can sleep for
504 * page faults
505 */
506
507static inline int
3de09aa3
EA
508slow_kernel_write(struct io_mapping *mapping,
509 loff_t gtt_base, int gtt_offset,
510 struct page *user_page, int user_offset,
511 int length)
0839ccb8 512{
3de09aa3 513 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
514 unsigned long unwritten;
515
3de09aa3
EA
516 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
517 src_vaddr = kmap_atomic(user_page, KM_USER1);
518 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
519 src_vaddr + user_offset,
520 length);
521 kunmap_atomic(src_vaddr, KM_USER1);
522 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
523 if (unwritten)
524 return -EFAULT;
9b7530cc 525 return 0;
9b7530cc
LT
526}
527
40123c1f
EA
528static inline int
529fast_shmem_write(struct page **pages,
530 loff_t page_base, int page_offset,
531 char __user *data,
532 int length)
533{
534 char __iomem *vaddr;
d0088775 535 unsigned long unwritten;
40123c1f
EA
536
537 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
538 if (vaddr == NULL)
539 return -ENOMEM;
d0088775 540 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
541 kunmap_atomic(vaddr, KM_USER0);
542
d0088775
DA
543 if (unwritten)
544 return -EFAULT;
40123c1f
EA
545 return 0;
546}
547
3de09aa3
EA
548/**
549 * This is the fast pwrite path, where we copy the data directly from the
550 * user into the GTT, uncached.
551 */
673a394b 552static int
3de09aa3
EA
553i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
554 struct drm_i915_gem_pwrite *args,
555 struct drm_file *file_priv)
673a394b
EA
556{
557 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 558 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 559 ssize_t remain;
0839ccb8 560 loff_t offset, page_base;
673a394b 561 char __user *user_data;
0839ccb8
KP
562 int page_offset, page_length;
563 int ret;
673a394b
EA
564
565 user_data = (char __user *) (uintptr_t) args->data_ptr;
566 remain = args->size;
567 if (!access_ok(VERIFY_READ, user_data, remain))
568 return -EFAULT;
569
570
571 mutex_lock(&dev->struct_mutex);
572 ret = i915_gem_object_pin(obj, 0);
573 if (ret) {
574 mutex_unlock(&dev->struct_mutex);
575 return ret;
576 }
2ef7eeaa 577 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
578 if (ret)
579 goto fail;
580
581 obj_priv = obj->driver_private;
582 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
583
584 while (remain > 0) {
585 /* Operation in this page
586 *
0839ccb8
KP
587 * page_base = page offset within aperture
588 * page_offset = offset within page
589 * page_length = bytes to copy for this page
673a394b 590 */
0839ccb8
KP
591 page_base = (offset & ~(PAGE_SIZE-1));
592 page_offset = offset & (PAGE_SIZE-1);
593 page_length = remain;
594 if ((page_offset + remain) > PAGE_SIZE)
595 page_length = PAGE_SIZE - page_offset;
596
597 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
598 page_offset, user_data, page_length);
599
600 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
601 * source page isn't available. Return the error and we'll
602 * retry in the slow path.
0839ccb8 603 */
3de09aa3
EA
604 if (ret)
605 goto fail;
673a394b 606
0839ccb8
KP
607 remain -= page_length;
608 user_data += page_length;
609 offset += page_length;
673a394b 610 }
673a394b
EA
611
612fail:
613 i915_gem_object_unpin(obj);
614 mutex_unlock(&dev->struct_mutex);
615
616 return ret;
617}
618
3de09aa3
EA
619/**
620 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
621 * the memory and maps it using kmap_atomic for copying.
622 *
623 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
624 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
625 */
3043c60c 626static int
3de09aa3
EA
627i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
628 struct drm_i915_gem_pwrite *args,
629 struct drm_file *file_priv)
673a394b 630{
3de09aa3
EA
631 struct drm_i915_gem_object *obj_priv = obj->driver_private;
632 drm_i915_private_t *dev_priv = dev->dev_private;
633 ssize_t remain;
634 loff_t gtt_page_base, offset;
635 loff_t first_data_page, last_data_page, num_pages;
636 loff_t pinned_pages, i;
637 struct page **user_pages;
638 struct mm_struct *mm = current->mm;
639 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 640 int ret;
3de09aa3
EA
641 uint64_t data_ptr = args->data_ptr;
642
643 remain = args->size;
644
645 /* Pin the user pages containing the data. We can't fault while
646 * holding the struct mutex, and all of the pwrite implementations
647 * want to hold it while dereferencing the user data.
648 */
649 first_data_page = data_ptr / PAGE_SIZE;
650 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
651 num_pages = last_data_page - first_data_page + 1;
652
8e7d2b2c 653 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
654 if (user_pages == NULL)
655 return -ENOMEM;
656
657 down_read(&mm->mmap_sem);
658 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
659 num_pages, 0, 0, user_pages, NULL);
660 up_read(&mm->mmap_sem);
661 if (pinned_pages < num_pages) {
662 ret = -EFAULT;
663 goto out_unpin_pages;
664 }
673a394b
EA
665
666 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
667 ret = i915_gem_object_pin(obj, 0);
668 if (ret)
669 goto out_unlock;
670
671 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672 if (ret)
673 goto out_unpin_object;
674
675 obj_priv = obj->driver_private;
676 offset = obj_priv->gtt_offset + args->offset;
677
678 while (remain > 0) {
679 /* Operation in this page
680 *
681 * gtt_page_base = page offset within aperture
682 * gtt_page_offset = offset within page in aperture
683 * data_page_index = page number in get_user_pages return
684 * data_page_offset = offset with data_page_index page.
685 * page_length = bytes to copy for this page
686 */
687 gtt_page_base = offset & PAGE_MASK;
688 gtt_page_offset = offset & ~PAGE_MASK;
689 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
690 data_page_offset = data_ptr & ~PAGE_MASK;
691
692 page_length = remain;
693 if ((gtt_page_offset + page_length) > PAGE_SIZE)
694 page_length = PAGE_SIZE - gtt_page_offset;
695 if ((data_page_offset + page_length) > PAGE_SIZE)
696 page_length = PAGE_SIZE - data_page_offset;
697
698 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
699 gtt_page_base, gtt_page_offset,
700 user_pages[data_page_index],
701 data_page_offset,
702 page_length);
703
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
707 */
708 if (ret)
709 goto out_unpin_object;
710
711 remain -= page_length;
712 offset += page_length;
713 data_ptr += page_length;
714 }
715
716out_unpin_object:
717 i915_gem_object_unpin(obj);
718out_unlock:
719 mutex_unlock(&dev->struct_mutex);
720out_unpin_pages:
721 for (i = 0; i < pinned_pages; i++)
722 page_cache_release(user_pages[i]);
8e7d2b2c 723 drm_free_large(user_pages);
3de09aa3
EA
724
725 return ret;
726}
727
40123c1f
EA
728/**
729 * This is the fast shmem pwrite path, which attempts to directly
730 * copy_from_user into the kmapped pages backing the object.
731 */
3043c60c 732static int
40123c1f
EA
733i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
734 struct drm_i915_gem_pwrite *args,
735 struct drm_file *file_priv)
673a394b 736{
40123c1f
EA
737 struct drm_i915_gem_object *obj_priv = obj->driver_private;
738 ssize_t remain;
739 loff_t offset, page_base;
740 char __user *user_data;
741 int page_offset, page_length;
673a394b 742 int ret;
40123c1f
EA
743
744 user_data = (char __user *) (uintptr_t) args->data_ptr;
745 remain = args->size;
673a394b
EA
746
747 mutex_lock(&dev->struct_mutex);
748
40123c1f
EA
749 ret = i915_gem_object_get_pages(obj);
750 if (ret != 0)
751 goto fail_unlock;
673a394b 752
e47c68e9 753 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
754 if (ret != 0)
755 goto fail_put_pages;
756
757 obj_priv = obj->driver_private;
758 offset = args->offset;
759 obj_priv->dirty = 1;
760
761 while (remain > 0) {
762 /* Operation in this page
763 *
764 * page_base = page offset within aperture
765 * page_offset = offset within page
766 * page_length = bytes to copy for this page
767 */
768 page_base = (offset & ~(PAGE_SIZE-1));
769 page_offset = offset & (PAGE_SIZE-1);
770 page_length = remain;
771 if ((page_offset + remain) > PAGE_SIZE)
772 page_length = PAGE_SIZE - page_offset;
773
774 ret = fast_shmem_write(obj_priv->pages,
775 page_base, page_offset,
776 user_data, page_length);
777 if (ret)
778 goto fail_put_pages;
779
780 remain -= page_length;
781 user_data += page_length;
782 offset += page_length;
783 }
784
785fail_put_pages:
786 i915_gem_object_put_pages(obj);
787fail_unlock:
788 mutex_unlock(&dev->struct_mutex);
789
790 return ret;
791}
792
793/**
794 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
795 * the memory and maps it using kmap_atomic for copying.
796 *
797 * This avoids taking mmap_sem for faulting on the user's address while the
798 * struct_mutex is held.
799 */
800static int
801i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
802 struct drm_i915_gem_pwrite *args,
803 struct drm_file *file_priv)
804{
805 struct drm_i915_gem_object *obj_priv = obj->driver_private;
806 struct mm_struct *mm = current->mm;
807 struct page **user_pages;
808 ssize_t remain;
809 loff_t offset, pinned_pages, i;
810 loff_t first_data_page, last_data_page, num_pages;
811 int shmem_page_index, shmem_page_offset;
812 int data_page_index, data_page_offset;
813 int page_length;
814 int ret;
815 uint64_t data_ptr = args->data_ptr;
280b713b 816 int do_bit17_swizzling;
40123c1f
EA
817
818 remain = args->size;
819
820 /* Pin the user pages containing the data. We can't fault while
821 * holding the struct mutex, and all of the pwrite implementations
822 * want to hold it while dereferencing the user data.
823 */
824 first_data_page = data_ptr / PAGE_SIZE;
825 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
826 num_pages = last_data_page - first_data_page + 1;
827
8e7d2b2c 828 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
829 if (user_pages == NULL)
830 return -ENOMEM;
831
832 down_read(&mm->mmap_sem);
833 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
834 num_pages, 0, 0, user_pages, NULL);
835 up_read(&mm->mmap_sem);
836 if (pinned_pages < num_pages) {
837 ret = -EFAULT;
838 goto fail_put_user_pages;
673a394b
EA
839 }
840
280b713b
EA
841 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
842
40123c1f
EA
843 mutex_lock(&dev->struct_mutex);
844
845 ret = i915_gem_object_get_pages(obj);
846 if (ret != 0)
847 goto fail_unlock;
848
849 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
850 if (ret != 0)
851 goto fail_put_pages;
852
853 obj_priv = obj->driver_private;
673a394b 854 offset = args->offset;
40123c1f 855 obj_priv->dirty = 1;
673a394b 856
40123c1f
EA
857 while (remain > 0) {
858 /* Operation in this page
859 *
860 * shmem_page_index = page number within shmem file
861 * shmem_page_offset = offset within page in shmem file
862 * data_page_index = page number in get_user_pages return
863 * data_page_offset = offset with data_page_index page.
864 * page_length = bytes to copy for this page
865 */
866 shmem_page_index = offset / PAGE_SIZE;
867 shmem_page_offset = offset & ~PAGE_MASK;
868 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
869 data_page_offset = data_ptr & ~PAGE_MASK;
870
871 page_length = remain;
872 if ((shmem_page_offset + page_length) > PAGE_SIZE)
873 page_length = PAGE_SIZE - shmem_page_offset;
874 if ((data_page_offset + page_length) > PAGE_SIZE)
875 page_length = PAGE_SIZE - data_page_offset;
876
280b713b
EA
877 if (do_bit17_swizzling) {
878 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879 shmem_page_offset,
880 user_pages[data_page_index],
881 data_page_offset,
882 page_length,
883 0);
884 } else {
885 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886 shmem_page_offset,
887 user_pages[data_page_index],
888 data_page_offset,
889 page_length);
890 }
40123c1f
EA
891 if (ret)
892 goto fail_put_pages;
893
894 remain -= page_length;
895 data_ptr += page_length;
896 offset += page_length;
673a394b
EA
897 }
898
40123c1f
EA
899fail_put_pages:
900 i915_gem_object_put_pages(obj);
901fail_unlock:
673a394b 902 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
903fail_put_user_pages:
904 for (i = 0; i < pinned_pages; i++)
905 page_cache_release(user_pages[i]);
8e7d2b2c 906 drm_free_large(user_pages);
673a394b 907
40123c1f 908 return ret;
673a394b
EA
909}
910
911/**
912 * Writes data to the object referenced by handle.
913 *
914 * On error, the contents of the buffer that were to be modified are undefined.
915 */
916int
917i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
918 struct drm_file *file_priv)
919{
920 struct drm_i915_gem_pwrite *args = data;
921 struct drm_gem_object *obj;
922 struct drm_i915_gem_object *obj_priv;
923 int ret = 0;
924
925 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
926 if (obj == NULL)
927 return -EBADF;
928 obj_priv = obj->driver_private;
929
930 /* Bounds check destination.
931 *
932 * XXX: This could use review for overflow issues...
933 */
934 if (args->offset > obj->size || args->size > obj->size ||
935 args->offset + args->size > obj->size) {
936 drm_gem_object_unreference(obj);
937 return -EINVAL;
938 }
939
940 /* We can only do the GTT pwrite on untiled buffers, as otherwise
941 * it would end up going through the fenced access, and we'll get
942 * different detiling behavior between reading and writing.
943 * pread/pwrite currently are reading and writing from the CPU
944 * perspective, requiring manual detiling by the client.
945 */
71acb5eb
DA
946 if (obj_priv->phys_obj)
947 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
948 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
949 dev->gtt_total != 0) {
950 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
951 if (ret == -EFAULT) {
952 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
953 file_priv);
954 }
280b713b
EA
955 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
956 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
957 } else {
958 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
959 if (ret == -EFAULT) {
960 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
961 file_priv);
962 }
963 }
673a394b
EA
964
965#if WATCH_PWRITE
966 if (ret)
967 DRM_INFO("pwrite failed %d\n", ret);
968#endif
969
970 drm_gem_object_unreference(obj);
971
972 return ret;
973}
974
975/**
2ef7eeaa
EA
976 * Called when user space prepares to use an object with the CPU, either
977 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
978 */
979int
980i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981 struct drm_file *file_priv)
982{
a09ba7fa 983 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
984 struct drm_i915_gem_set_domain *args = data;
985 struct drm_gem_object *obj;
652c393a 986 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
987 uint32_t read_domains = args->read_domains;
988 uint32_t write_domain = args->write_domain;
673a394b
EA
989 int ret;
990
991 if (!(dev->driver->driver_features & DRIVER_GEM))
992 return -ENODEV;
993
2ef7eeaa 994 /* Only handle setting domains to types used by the CPU. */
21d509e3 995 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
996 return -EINVAL;
997
21d509e3 998 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
999 return -EINVAL;
1000
1001 /* Having something in the write domain implies it's in the read
1002 * domain, and only that read domain. Enforce that in the request.
1003 */
1004 if (write_domain != 0 && read_domains != write_domain)
1005 return -EINVAL;
1006
673a394b
EA
1007 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008 if (obj == NULL)
1009 return -EBADF;
652c393a 1010 obj_priv = obj->driver_private;
673a394b
EA
1011
1012 mutex_lock(&dev->struct_mutex);
652c393a
JB
1013
1014 intel_mark_busy(dev, obj);
1015
673a394b 1016#if WATCH_BUF
cfd43c02 1017 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1018 obj, obj->size, read_domains, write_domain);
673a394b 1019#endif
2ef7eeaa
EA
1020 if (read_domains & I915_GEM_DOMAIN_GTT) {
1021 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1022
a09ba7fa
EA
1023 /* Update the LRU on the fence for the CPU access that's
1024 * about to occur.
1025 */
1026 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1027 list_move_tail(&obj_priv->fence_list,
1028 &dev_priv->mm.fence_list);
1029 }
1030
02354392
EA
1031 /* Silently promote "you're not bound, there was nothing to do"
1032 * to success, since the client was just asking us to
1033 * make sure everything was done.
1034 */
1035 if (ret == -EINVAL)
1036 ret = 0;
2ef7eeaa 1037 } else {
e47c68e9 1038 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1039 }
1040
673a394b
EA
1041 drm_gem_object_unreference(obj);
1042 mutex_unlock(&dev->struct_mutex);
1043 return ret;
1044}
1045
1046/**
1047 * Called when user space has done writes to this buffer
1048 */
1049int
1050i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1051 struct drm_file *file_priv)
1052{
1053 struct drm_i915_gem_sw_finish *args = data;
1054 struct drm_gem_object *obj;
1055 struct drm_i915_gem_object *obj_priv;
1056 int ret = 0;
1057
1058 if (!(dev->driver->driver_features & DRIVER_GEM))
1059 return -ENODEV;
1060
1061 mutex_lock(&dev->struct_mutex);
1062 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1063 if (obj == NULL) {
1064 mutex_unlock(&dev->struct_mutex);
1065 return -EBADF;
1066 }
1067
1068#if WATCH_BUF
cfd43c02 1069 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1070 __func__, args->handle, obj, obj->size);
1071#endif
1072 obj_priv = obj->driver_private;
1073
1074 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1075 if (obj_priv->pin_count)
1076 i915_gem_object_flush_cpu_write_domain(obj);
1077
673a394b
EA
1078 drm_gem_object_unreference(obj);
1079 mutex_unlock(&dev->struct_mutex);
1080 return ret;
1081}
1082
1083/**
1084 * Maps the contents of an object, returning the address it is mapped
1085 * into.
1086 *
1087 * While the mapping holds a reference on the contents of the object, it doesn't
1088 * imply a ref on the object itself.
1089 */
1090int
1091i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1092 struct drm_file *file_priv)
1093{
1094 struct drm_i915_gem_mmap *args = data;
1095 struct drm_gem_object *obj;
1096 loff_t offset;
1097 unsigned long addr;
1098
1099 if (!(dev->driver->driver_features & DRIVER_GEM))
1100 return -ENODEV;
1101
1102 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1103 if (obj == NULL)
1104 return -EBADF;
1105
1106 offset = args->offset;
1107
1108 down_write(&current->mm->mmap_sem);
1109 addr = do_mmap(obj->filp, 0, args->size,
1110 PROT_READ | PROT_WRITE, MAP_SHARED,
1111 args->offset);
1112 up_write(&current->mm->mmap_sem);
1113 mutex_lock(&dev->struct_mutex);
1114 drm_gem_object_unreference(obj);
1115 mutex_unlock(&dev->struct_mutex);
1116 if (IS_ERR((void *)addr))
1117 return addr;
1118
1119 args->addr_ptr = (uint64_t) addr;
1120
1121 return 0;
1122}
1123
de151cf6
JB
1124/**
1125 * i915_gem_fault - fault a page into the GTT
1126 * vma: VMA in question
1127 * vmf: fault info
1128 *
1129 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1130 * from userspace. The fault handler takes care of binding the object to
1131 * the GTT (if needed), allocating and programming a fence register (again,
1132 * only if needed based on whether the old reg is still valid or the object
1133 * is tiled) and inserting a new PTE into the faulting process.
1134 *
1135 * Note that the faulting process may involve evicting existing objects
1136 * from the GTT and/or fence registers to make room. So performance may
1137 * suffer if the GTT working set is large or there are few fence registers
1138 * left.
1139 */
1140int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1141{
1142 struct drm_gem_object *obj = vma->vm_private_data;
1143 struct drm_device *dev = obj->dev;
1144 struct drm_i915_private *dev_priv = dev->dev_private;
1145 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1146 pgoff_t page_offset;
1147 unsigned long pfn;
1148 int ret = 0;
0f973f27 1149 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1150
1151 /* We don't use vmf->pgoff since that has the fake offset */
1152 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1153 PAGE_SHIFT;
1154
1155 /* Now bind it into the GTT if needed */
1156 mutex_lock(&dev->struct_mutex);
1157 if (!obj_priv->gtt_space) {
1158 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1159 if (ret) {
1160 mutex_unlock(&dev->struct_mutex);
1161 return VM_FAULT_SIGBUS;
1162 }
4960aaca 1163 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
07f4f3e8
KH
1164
1165 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1166 if (ret) {
1167 mutex_unlock(&dev->struct_mutex);
1168 return VM_FAULT_SIGBUS;
1169 }
de151cf6
JB
1170 }
1171
1172 /* Need a new fence register? */
a09ba7fa 1173 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1174 ret = i915_gem_object_get_fence_reg(obj);
7d8d58b2
CW
1175 if (ret) {
1176 mutex_unlock(&dev->struct_mutex);
d9ddcb96 1177 return VM_FAULT_SIGBUS;
7d8d58b2 1178 }
d9ddcb96 1179 }
de151cf6
JB
1180
1181 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1182 page_offset;
1183
1184 /* Finally, remap it using the new GTT offset */
1185 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1186
1187 mutex_unlock(&dev->struct_mutex);
1188
1189 switch (ret) {
1190 case -ENOMEM:
1191 case -EAGAIN:
1192 return VM_FAULT_OOM;
1193 case -EFAULT:
959b887c 1194 case -EINVAL:
de151cf6
JB
1195 return VM_FAULT_SIGBUS;
1196 default:
1197 return VM_FAULT_NOPAGE;
1198 }
1199}
1200
1201/**
1202 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1203 * @obj: obj in question
1204 *
1205 * GEM memory mapping works by handing back to userspace a fake mmap offset
1206 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1207 * up the object based on the offset and sets up the various memory mapping
1208 * structures.
1209 *
1210 * This routine allocates and attaches a fake offset for @obj.
1211 */
1212static int
1213i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1214{
1215 struct drm_device *dev = obj->dev;
1216 struct drm_gem_mm *mm = dev->mm_private;
1217 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1218 struct drm_map_list *list;
f77d390c 1219 struct drm_local_map *map;
de151cf6
JB
1220 int ret = 0;
1221
1222 /* Set the object up for mmap'ing */
1223 list = &obj->map_list;
9a298b2a 1224 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1225 if (!list->map)
1226 return -ENOMEM;
1227
1228 map = list->map;
1229 map->type = _DRM_GEM;
1230 map->size = obj->size;
1231 map->handle = obj;
1232
1233 /* Get a DRM GEM mmap offset allocated... */
1234 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1235 obj->size / PAGE_SIZE, 0, 0);
1236 if (!list->file_offset_node) {
1237 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1238 ret = -ENOMEM;
1239 goto out_free_list;
1240 }
1241
1242 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1243 obj->size / PAGE_SIZE, 0);
1244 if (!list->file_offset_node) {
1245 ret = -ENOMEM;
1246 goto out_free_list;
1247 }
1248
1249 list->hash.key = list->file_offset_node->start;
1250 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1251 DRM_ERROR("failed to add to map hash\n");
1252 goto out_free_mm;
1253 }
1254
1255 /* By now we should be all set, any drm_mmap request on the offset
1256 * below will get to our mmap & fault handler */
1257 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1258
1259 return 0;
1260
1261out_free_mm:
1262 drm_mm_put_block(list->file_offset_node);
1263out_free_list:
9a298b2a 1264 kfree(list->map);
de151cf6
JB
1265
1266 return ret;
1267}
1268
901782b2
CW
1269/**
1270 * i915_gem_release_mmap - remove physical page mappings
1271 * @obj: obj in question
1272 *
1273 * Preserve the reservation of the mmaping with the DRM core code, but
1274 * relinquish ownership of the pages back to the system.
1275 *
1276 * It is vital that we remove the page mapping if we have mapped a tiled
1277 * object through the GTT and then lose the fence register due to
1278 * resource pressure. Similarly if the object has been moved out of the
1279 * aperture, than pages mapped into userspace must be revoked. Removing the
1280 * mapping will then trigger a page fault on the next user access, allowing
1281 * fixup by i915_gem_fault().
1282 */
d05ca301 1283void
901782b2
CW
1284i915_gem_release_mmap(struct drm_gem_object *obj)
1285{
1286 struct drm_device *dev = obj->dev;
1287 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1288
1289 if (dev->dev_mapping)
1290 unmap_mapping_range(dev->dev_mapping,
1291 obj_priv->mmap_offset, obj->size, 1);
1292}
1293
ab00b3e5
JB
1294static void
1295i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1296{
1297 struct drm_device *dev = obj->dev;
1298 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1299 struct drm_gem_mm *mm = dev->mm_private;
1300 struct drm_map_list *list;
1301
1302 list = &obj->map_list;
1303 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1304
1305 if (list->file_offset_node) {
1306 drm_mm_put_block(list->file_offset_node);
1307 list->file_offset_node = NULL;
1308 }
1309
1310 if (list->map) {
9a298b2a 1311 kfree(list->map);
ab00b3e5
JB
1312 list->map = NULL;
1313 }
1314
1315 obj_priv->mmap_offset = 0;
1316}
1317
de151cf6
JB
1318/**
1319 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320 * @obj: object to check
1321 *
1322 * Return the required GTT alignment for an object, taking into account
1323 * potential fence register mapping if needed.
1324 */
1325static uint32_t
1326i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1327{
1328 struct drm_device *dev = obj->dev;
1329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1330 int start, i;
1331
1332 /*
1333 * Minimum alignment is 4k (GTT page size), but might be greater
1334 * if a fence register is needed for the object.
1335 */
1336 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1337 return 4096;
1338
1339 /*
1340 * Previous chips need to be aligned to the size of the smallest
1341 * fence register that can contain the object.
1342 */
1343 if (IS_I9XX(dev))
1344 start = 1024*1024;
1345 else
1346 start = 512*1024;
1347
1348 for (i = start; i < obj->size; i <<= 1)
1349 ;
1350
1351 return i;
1352}
1353
1354/**
1355 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1356 * @dev: DRM device
1357 * @data: GTT mapping ioctl data
1358 * @file_priv: GEM object info
1359 *
1360 * Simply returns the fake offset to userspace so it can mmap it.
1361 * The mmap call will end up in drm_gem_mmap(), which will set things
1362 * up so we can get faults in the handler above.
1363 *
1364 * The fault handler will take care of binding the object into the GTT
1365 * (since it may have been evicted to make room for something), allocating
1366 * a fence register, and mapping the appropriate aperture address into
1367 * userspace.
1368 */
1369int
1370i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1371 struct drm_file *file_priv)
1372{
1373 struct drm_i915_gem_mmap_gtt *args = data;
1374 struct drm_i915_private *dev_priv = dev->dev_private;
1375 struct drm_gem_object *obj;
1376 struct drm_i915_gem_object *obj_priv;
1377 int ret;
1378
1379 if (!(dev->driver->driver_features & DRIVER_GEM))
1380 return -ENODEV;
1381
1382 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1383 if (obj == NULL)
1384 return -EBADF;
1385
1386 mutex_lock(&dev->struct_mutex);
1387
1388 obj_priv = obj->driver_private;
1389
1390 if (!obj_priv->mmap_offset) {
1391 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1392 if (ret) {
1393 drm_gem_object_unreference(obj);
1394 mutex_unlock(&dev->struct_mutex);
de151cf6 1395 return ret;
13af1062 1396 }
de151cf6
JB
1397 }
1398
1399 args->offset = obj_priv->mmap_offset;
1400
1401 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1402
1403 /* Make sure the alignment is correct for fence regs etc */
1404 if (obj_priv->agp_mem &&
1405 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1406 drm_gem_object_unreference(obj);
1407 mutex_unlock(&dev->struct_mutex);
1408 return -EINVAL;
1409 }
1410
1411 /*
1412 * Pull it into the GTT so that we have a page list (makes the
1413 * initial fault faster and any subsequent flushing possible).
1414 */
1415 if (!obj_priv->agp_mem) {
1416 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1417 if (ret) {
1418 drm_gem_object_unreference(obj);
1419 mutex_unlock(&dev->struct_mutex);
1420 return ret;
1421 }
14b60391 1422 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1423 }
1424
1425 drm_gem_object_unreference(obj);
1426 mutex_unlock(&dev->struct_mutex);
1427
1428 return 0;
1429}
1430
6911a9b8 1431void
856fa198 1432i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1433{
1434 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1435 int page_count = obj->size / PAGE_SIZE;
1436 int i;
1437
856fa198 1438 BUG_ON(obj_priv->pages_refcount == 0);
673a394b 1439
856fa198
EA
1440 if (--obj_priv->pages_refcount != 0)
1441 return;
673a394b 1442
280b713b
EA
1443 if (obj_priv->tiling_mode != I915_TILING_NONE)
1444 i915_gem_object_save_bit_17_swizzle(obj);
1445
673a394b 1446 for (i = 0; i < page_count; i++)
856fa198 1447 if (obj_priv->pages[i] != NULL) {
673a394b 1448 if (obj_priv->dirty)
856fa198
EA
1449 set_page_dirty(obj_priv->pages[i]);
1450 mark_page_accessed(obj_priv->pages[i]);
1451 page_cache_release(obj_priv->pages[i]);
673a394b
EA
1452 }
1453 obj_priv->dirty = 0;
1454
8e7d2b2c 1455 drm_free_large(obj_priv->pages);
856fa198 1456 obj_priv->pages = NULL;
673a394b
EA
1457}
1458
1459static void
ce44b0ea 1460i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1461{
1462 struct drm_device *dev = obj->dev;
1463 drm_i915_private_t *dev_priv = dev->dev_private;
1464 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1465
1466 /* Add a reference if we're newly entering the active list. */
1467 if (!obj_priv->active) {
1468 drm_gem_object_reference(obj);
1469 obj_priv->active = 1;
1470 }
1471 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1472 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1473 list_move_tail(&obj_priv->list,
1474 &dev_priv->mm.active_list);
5e118f41 1475 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1476 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1477}
1478
ce44b0ea
EA
1479static void
1480i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1481{
1482 struct drm_device *dev = obj->dev;
1483 drm_i915_private_t *dev_priv = dev->dev_private;
1484 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1485
1486 BUG_ON(!obj_priv->active);
1487 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1488 obj_priv->last_rendering_seqno = 0;
1489}
673a394b
EA
1490
1491static void
1492i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1493{
1494 struct drm_device *dev = obj->dev;
1495 drm_i915_private_t *dev_priv = dev->dev_private;
1496 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1497
1498 i915_verify_inactive(dev, __FILE__, __LINE__);
1499 if (obj_priv->pin_count != 0)
1500 list_del_init(&obj_priv->list);
1501 else
1502 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1503
ce44b0ea 1504 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1505 if (obj_priv->active) {
1506 obj_priv->active = 0;
1507 drm_gem_object_unreference(obj);
1508 }
1509 i915_verify_inactive(dev, __FILE__, __LINE__);
1510}
1511
1512/**
1513 * Creates a new sequence number, emitting a write of it to the status page
1514 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1515 *
1516 * Must be called with struct_lock held.
1517 *
1518 * Returned sequence numbers are nonzero on success.
1519 */
1520static uint32_t
b962442e
EA
1521i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1522 uint32_t flush_domains)
673a394b
EA
1523{
1524 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1525 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1526 struct drm_i915_gem_request *request;
1527 uint32_t seqno;
1528 int was_empty;
1529 RING_LOCALS;
1530
b962442e
EA
1531 if (file_priv != NULL)
1532 i915_file_priv = file_priv->driver_priv;
1533
9a298b2a 1534 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1535 if (request == NULL)
1536 return 0;
1537
1538 /* Grab the seqno we're going to make this request be, and bump the
1539 * next (skipping 0 so it can be the reserved no-seqno value).
1540 */
1541 seqno = dev_priv->mm.next_gem_seqno;
1542 dev_priv->mm.next_gem_seqno++;
1543 if (dev_priv->mm.next_gem_seqno == 0)
1544 dev_priv->mm.next_gem_seqno++;
1545
1546 BEGIN_LP_RING(4);
1547 OUT_RING(MI_STORE_DWORD_INDEX);
1548 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1549 OUT_RING(seqno);
1550
1551 OUT_RING(MI_USER_INTERRUPT);
1552 ADVANCE_LP_RING();
1553
1554 DRM_DEBUG("%d\n", seqno);
1555
1556 request->seqno = seqno;
1557 request->emitted_jiffies = jiffies;
673a394b
EA
1558 was_empty = list_empty(&dev_priv->mm.request_list);
1559 list_add_tail(&request->list, &dev_priv->mm.request_list);
b962442e
EA
1560 if (i915_file_priv) {
1561 list_add_tail(&request->client_list,
1562 &i915_file_priv->mm.request_list);
1563 } else {
1564 INIT_LIST_HEAD(&request->client_list);
1565 }
673a394b 1566
ce44b0ea
EA
1567 /* Associate any objects on the flushing list matching the write
1568 * domain we're flushing with our flush.
1569 */
1570 if (flush_domains != 0) {
1571 struct drm_i915_gem_object *obj_priv, *next;
1572
1573 list_for_each_entry_safe(obj_priv, next,
1574 &dev_priv->mm.flushing_list, list) {
1575 struct drm_gem_object *obj = obj_priv->obj;
1576
1577 if ((obj->write_domain & flush_domains) ==
1578 obj->write_domain) {
1579 obj->write_domain = 0;
1580 i915_gem_object_move_to_active(obj, seqno);
1581 }
1582 }
1583
1584 }
1585
f65d9421
BG
1586 if (!dev_priv->mm.suspended) {
1587 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1588 if (was_empty)
1589 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1590 }
673a394b
EA
1591 return seqno;
1592}
1593
1594/**
1595 * Command execution barrier
1596 *
1597 * Ensures that all commands in the ring are finished
1598 * before signalling the CPU
1599 */
3043c60c 1600static uint32_t
673a394b
EA
1601i915_retire_commands(struct drm_device *dev)
1602{
1603 drm_i915_private_t *dev_priv = dev->dev_private;
1604 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1605 uint32_t flush_domains = 0;
1606 RING_LOCALS;
1607
1608 /* The sampler always gets flushed on i965 (sigh) */
1609 if (IS_I965G(dev))
1610 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1611 BEGIN_LP_RING(2);
1612 OUT_RING(cmd);
1613 OUT_RING(0); /* noop */
1614 ADVANCE_LP_RING();
1615 return flush_domains;
1616}
1617
1618/**
1619 * Moves buffers associated only with the given active seqno from the active
1620 * to inactive list, potentially freeing them.
1621 */
1622static void
1623i915_gem_retire_request(struct drm_device *dev,
1624 struct drm_i915_gem_request *request)
1625{
1626 drm_i915_private_t *dev_priv = dev->dev_private;
1627
1628 /* Move any buffers on the active list that are no longer referenced
1629 * by the ringbuffer to the flushing/inactive lists as appropriate.
1630 */
5e118f41 1631 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1632 while (!list_empty(&dev_priv->mm.active_list)) {
1633 struct drm_gem_object *obj;
1634 struct drm_i915_gem_object *obj_priv;
1635
1636 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1637 struct drm_i915_gem_object,
1638 list);
1639 obj = obj_priv->obj;
1640
1641 /* If the seqno being retired doesn't match the oldest in the
1642 * list, then the oldest in the list must still be newer than
1643 * this seqno.
1644 */
1645 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1646 goto out;
de151cf6 1647
673a394b
EA
1648#if WATCH_LRU
1649 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1650 __func__, request->seqno, obj);
1651#endif
1652
ce44b0ea
EA
1653 if (obj->write_domain != 0)
1654 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1655 else {
1656 /* Take a reference on the object so it won't be
1657 * freed while the spinlock is held. The list
1658 * protection for this spinlock is safe when breaking
1659 * the lock like this since the next thing we do
1660 * is just get the head of the list again.
1661 */
1662 drm_gem_object_reference(obj);
673a394b 1663 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1664 spin_unlock(&dev_priv->mm.active_list_lock);
1665 drm_gem_object_unreference(obj);
1666 spin_lock(&dev_priv->mm.active_list_lock);
1667 }
673a394b 1668 }
5e118f41
CW
1669out:
1670 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1671}
1672
1673/**
1674 * Returns true if seq1 is later than seq2.
1675 */
22be1724 1676bool
673a394b
EA
1677i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1678{
1679 return (int32_t)(seq1 - seq2) >= 0;
1680}
1681
1682uint32_t
1683i915_get_gem_seqno(struct drm_device *dev)
1684{
1685 drm_i915_private_t *dev_priv = dev->dev_private;
1686
1687 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1688}
1689
1690/**
1691 * This function clears the request list as sequence numbers are passed.
1692 */
1693void
1694i915_gem_retire_requests(struct drm_device *dev)
1695{
1696 drm_i915_private_t *dev_priv = dev->dev_private;
1697 uint32_t seqno;
1698
6c0594a3
KW
1699 if (!dev_priv->hw_status_page)
1700 return;
1701
673a394b
EA
1702 seqno = i915_get_gem_seqno(dev);
1703
1704 while (!list_empty(&dev_priv->mm.request_list)) {
1705 struct drm_i915_gem_request *request;
1706 uint32_t retiring_seqno;
1707
1708 request = list_first_entry(&dev_priv->mm.request_list,
1709 struct drm_i915_gem_request,
1710 list);
1711 retiring_seqno = request->seqno;
1712
1713 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1714 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1715 i915_gem_retire_request(dev, request);
1716
1717 list_del(&request->list);
b962442e 1718 list_del(&request->client_list);
9a298b2a 1719 kfree(request);
673a394b
EA
1720 } else
1721 break;
1722 }
1723}
1724
1725void
1726i915_gem_retire_work_handler(struct work_struct *work)
1727{
1728 drm_i915_private_t *dev_priv;
1729 struct drm_device *dev;
1730
1731 dev_priv = container_of(work, drm_i915_private_t,
1732 mm.retire_work.work);
1733 dev = dev_priv->dev;
1734
1735 mutex_lock(&dev->struct_mutex);
1736 i915_gem_retire_requests(dev);
6dbe2772
KP
1737 if (!dev_priv->mm.suspended &&
1738 !list_empty(&dev_priv->mm.request_list))
9c9fe1f8 1739 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1740 mutex_unlock(&dev->struct_mutex);
1741}
1742
1743/**
1744 * Waits for a sequence number to be signaled, and cleans up the
1745 * request and object lists appropriately for that event.
1746 */
3043c60c 1747static int
673a394b
EA
1748i915_wait_request(struct drm_device *dev, uint32_t seqno)
1749{
1750 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1751 u32 ier;
673a394b
EA
1752 int ret = 0;
1753
1754 BUG_ON(seqno == 0);
1755
ba1234d1 1756 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1757 return -EIO;
1758
673a394b 1759 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
036a4a7d
ZW
1760 if (IS_IGDNG(dev))
1761 ier = I915_READ(DEIER) | I915_READ(GTIER);
1762 else
1763 ier = I915_READ(IER);
802c7eb6
JB
1764 if (!ier) {
1765 DRM_ERROR("something (likely vbetool) disabled "
1766 "interrupts, re-enabling\n");
1767 i915_driver_irq_preinstall(dev);
1768 i915_driver_irq_postinstall(dev);
1769 }
1770
673a394b
EA
1771 dev_priv->mm.waiting_gem_seqno = seqno;
1772 i915_user_irq_get(dev);
1773 ret = wait_event_interruptible(dev_priv->irq_queue,
1774 i915_seqno_passed(i915_get_gem_seqno(dev),
1775 seqno) ||
ba1234d1 1776 atomic_read(&dev_priv->mm.wedged));
673a394b
EA
1777 i915_user_irq_put(dev);
1778 dev_priv->mm.waiting_gem_seqno = 0;
1779 }
ba1234d1 1780 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1781 ret = -EIO;
1782
1783 if (ret && ret != -ERESTARTSYS)
1784 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1785 __func__, ret, seqno, i915_get_gem_seqno(dev));
1786
1787 /* Directly dispatch request retiring. While we have the work queue
1788 * to handle this, the waiter on a request often wants an associated
1789 * buffer to have made it to the inactive list, and we would need
1790 * a separate wait queue to handle that.
1791 */
1792 if (ret == 0)
1793 i915_gem_retire_requests(dev);
1794
1795 return ret;
1796}
1797
1798static void
1799i915_gem_flush(struct drm_device *dev,
1800 uint32_t invalidate_domains,
1801 uint32_t flush_domains)
1802{
1803 drm_i915_private_t *dev_priv = dev->dev_private;
1804 uint32_t cmd;
1805 RING_LOCALS;
1806
1807#if WATCH_EXEC
1808 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1809 invalidate_domains, flush_domains);
1810#endif
1811
1812 if (flush_domains & I915_GEM_DOMAIN_CPU)
1813 drm_agp_chipset_flush(dev);
1814
21d509e3 1815 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
673a394b
EA
1816 /*
1817 * read/write caches:
1818 *
1819 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1820 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1821 * also flushed at 2d versus 3d pipeline switches.
1822 *
1823 * read-only caches:
1824 *
1825 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1826 * MI_READ_FLUSH is set, and is always flushed on 965.
1827 *
1828 * I915_GEM_DOMAIN_COMMAND may not exist?
1829 *
1830 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1831 * invalidated when MI_EXE_FLUSH is set.
1832 *
1833 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1834 * invalidated with every MI_FLUSH.
1835 *
1836 * TLBs:
1837 *
1838 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1839 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1840 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1841 * are flushed at any MI_FLUSH.
1842 */
1843
1844 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1845 if ((invalidate_domains|flush_domains) &
1846 I915_GEM_DOMAIN_RENDER)
1847 cmd &= ~MI_NO_WRITE_FLUSH;
1848 if (!IS_I965G(dev)) {
1849 /*
1850 * On the 965, the sampler cache always gets flushed
1851 * and this bit is reserved.
1852 */
1853 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1854 cmd |= MI_READ_FLUSH;
1855 }
1856 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1857 cmd |= MI_EXE_FLUSH;
1858
1859#if WATCH_EXEC
1860 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1861#endif
1862 BEGIN_LP_RING(2);
1863 OUT_RING(cmd);
1864 OUT_RING(0); /* noop */
1865 ADVANCE_LP_RING();
1866 }
1867}
1868
1869/**
1870 * Ensures that all rendering to the object has completed and the object is
1871 * safe to unbind from the GTT or access from the CPU.
1872 */
1873static int
1874i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1875{
1876 struct drm_device *dev = obj->dev;
1877 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1878 int ret;
1879
e47c68e9
EA
1880 /* This function only exists to support waiting for existing rendering,
1881 * not for emitting required flushes.
673a394b 1882 */
e47c68e9 1883 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1884
1885 /* If there is rendering queued on the buffer being evicted, wait for
1886 * it.
1887 */
1888 if (obj_priv->active) {
1889#if WATCH_BUF
1890 DRM_INFO("%s: object %p wait for seqno %08x\n",
1891 __func__, obj, obj_priv->last_rendering_seqno);
1892#endif
1893 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1894 if (ret != 0)
1895 return ret;
1896 }
1897
1898 return 0;
1899}
1900
1901/**
1902 * Unbinds an object from the GTT aperture.
1903 */
0f973f27 1904int
673a394b
EA
1905i915_gem_object_unbind(struct drm_gem_object *obj)
1906{
1907 struct drm_device *dev = obj->dev;
1908 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1909 int ret = 0;
1910
1911#if WATCH_BUF
1912 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1913 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1914#endif
1915 if (obj_priv->gtt_space == NULL)
1916 return 0;
1917
1918 if (obj_priv->pin_count != 0) {
1919 DRM_ERROR("Attempting to unbind pinned buffer\n");
1920 return -EINVAL;
1921 }
1922
5323fd04
EA
1923 /* blow away mappings if mapped through GTT */
1924 i915_gem_release_mmap(obj);
1925
1926 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1927 i915_gem_clear_fence_reg(obj);
1928
673a394b
EA
1929 /* Move the object to the CPU domain to ensure that
1930 * any possible CPU writes while it's not in the GTT
1931 * are flushed when we go to remap it. This will
1932 * also ensure that all pending GPU writes are finished
1933 * before we unbind.
1934 */
e47c68e9 1935 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1936 if (ret) {
e47c68e9
EA
1937 if (ret != -ERESTARTSYS)
1938 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1939 return ret;
1940 }
1941
5323fd04
EA
1942 BUG_ON(obj_priv->active);
1943
673a394b
EA
1944 if (obj_priv->agp_mem != NULL) {
1945 drm_unbind_agp(obj_priv->agp_mem);
1946 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1947 obj_priv->agp_mem = NULL;
1948 }
1949
856fa198 1950 i915_gem_object_put_pages(obj);
673a394b
EA
1951
1952 if (obj_priv->gtt_space) {
1953 atomic_dec(&dev->gtt_count);
1954 atomic_sub(obj->size, &dev->gtt_memory);
1955
1956 drm_mm_put_block(obj_priv->gtt_space);
1957 obj_priv->gtt_space = NULL;
1958 }
1959
1960 /* Remove ourselves from the LRU list if present. */
1961 if (!list_empty(&obj_priv->list))
1962 list_del_init(&obj_priv->list);
1963
1964 return 0;
1965}
1966
1967static int
1968i915_gem_evict_something(struct drm_device *dev)
1969{
1970 drm_i915_private_t *dev_priv = dev->dev_private;
1971 struct drm_gem_object *obj;
1972 struct drm_i915_gem_object *obj_priv;
1973 int ret = 0;
1974
1975 for (;;) {
1976 /* If there's an inactive buffer available now, grab it
1977 * and be done.
1978 */
1979 if (!list_empty(&dev_priv->mm.inactive_list)) {
1980 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1981 struct drm_i915_gem_object,
1982 list);
1983 obj = obj_priv->obj;
1984 BUG_ON(obj_priv->pin_count != 0);
1985#if WATCH_LRU
1986 DRM_INFO("%s: evicting %p\n", __func__, obj);
1987#endif
1988 BUG_ON(obj_priv->active);
1989
1990 /* Wait on the rendering and unbind the buffer. */
1991 ret = i915_gem_object_unbind(obj);
1992 break;
1993 }
1994
1995 /* If we didn't get anything, but the ring is still processing
1996 * things, wait for one of those things to finish and hopefully
1997 * leave us a buffer to evict.
1998 */
1999 if (!list_empty(&dev_priv->mm.request_list)) {
2000 struct drm_i915_gem_request *request;
2001
2002 request = list_first_entry(&dev_priv->mm.request_list,
2003 struct drm_i915_gem_request,
2004 list);
2005
2006 ret = i915_wait_request(dev, request->seqno);
2007 if (ret)
2008 break;
2009
2010 /* if waiting caused an object to become inactive,
2011 * then loop around and wait for it. Otherwise, we
2012 * assume that waiting freed and unbound something,
2013 * so there should now be some space in the GTT
2014 */
2015 if (!list_empty(&dev_priv->mm.inactive_list))
2016 continue;
2017 break;
2018 }
2019
2020 /* If we didn't have anything on the request list but there
2021 * are buffers awaiting a flush, emit one and try again.
2022 * When we wait on it, those buffers waiting for that flush
2023 * will get moved to inactive.
2024 */
2025 if (!list_empty(&dev_priv->mm.flushing_list)) {
2026 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2027 struct drm_i915_gem_object,
2028 list);
2029 obj = obj_priv->obj;
2030
2031 i915_gem_flush(dev,
2032 obj->write_domain,
2033 obj->write_domain);
b962442e 2034 i915_add_request(dev, NULL, obj->write_domain);
673a394b
EA
2035
2036 obj = NULL;
2037 continue;
2038 }
2039
2040 DRM_ERROR("inactive empty %d request empty %d "
2041 "flushing empty %d\n",
2042 list_empty(&dev_priv->mm.inactive_list),
2043 list_empty(&dev_priv->mm.request_list),
2044 list_empty(&dev_priv->mm.flushing_list));
2045 /* If we didn't do any of the above, there's nothing to be done
2046 * and we just can't fit it in.
2047 */
2939e1f5 2048 return -ENOSPC;
673a394b
EA
2049 }
2050 return ret;
2051}
2052
ac94a962
KP
2053static int
2054i915_gem_evict_everything(struct drm_device *dev)
2055{
2056 int ret;
2057
2058 for (;;) {
2059 ret = i915_gem_evict_something(dev);
2060 if (ret != 0)
2061 break;
2062 }
2939e1f5 2063 if (ret == -ENOSPC)
15c35334 2064 return 0;
ac94a962
KP
2065 return ret;
2066}
2067
6911a9b8 2068int
856fa198 2069i915_gem_object_get_pages(struct drm_gem_object *obj)
673a394b
EA
2070{
2071 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2072 int page_count, i;
2073 struct address_space *mapping;
2074 struct inode *inode;
2075 struct page *page;
2076 int ret;
2077
856fa198 2078 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2079 return 0;
2080
2081 /* Get the list of pages out of our struct file. They'll be pinned
2082 * at this point until we release them.
2083 */
2084 page_count = obj->size / PAGE_SIZE;
856fa198 2085 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2086 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2087 if (obj_priv->pages == NULL) {
673a394b 2088 DRM_ERROR("Faled to allocate page list\n");
856fa198 2089 obj_priv->pages_refcount--;
673a394b
EA
2090 return -ENOMEM;
2091 }
2092
2093 inode = obj->filp->f_path.dentry->d_inode;
2094 mapping = inode->i_mapping;
2095 for (i = 0; i < page_count; i++) {
2096 page = read_mapping_page(mapping, i, NULL);
2097 if (IS_ERR(page)) {
2098 ret = PTR_ERR(page);
2099 DRM_ERROR("read_mapping_page failed: %d\n", ret);
856fa198 2100 i915_gem_object_put_pages(obj);
673a394b
EA
2101 return ret;
2102 }
856fa198 2103 obj_priv->pages[i] = page;
673a394b 2104 }
280b713b
EA
2105
2106 if (obj_priv->tiling_mode != I915_TILING_NONE)
2107 i915_gem_object_do_bit_17_swizzle(obj);
2108
673a394b
EA
2109 return 0;
2110}
2111
de151cf6
JB
2112static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2113{
2114 struct drm_gem_object *obj = reg->obj;
2115 struct drm_device *dev = obj->dev;
2116 drm_i915_private_t *dev_priv = dev->dev_private;
2117 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2118 int regnum = obj_priv->fence_reg;
2119 uint64_t val;
2120
2121 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2122 0xfffff000) << 32;
2123 val |= obj_priv->gtt_offset & 0xfffff000;
2124 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2125 if (obj_priv->tiling_mode == I915_TILING_Y)
2126 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2127 val |= I965_FENCE_REG_VALID;
2128
2129 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2130}
2131
2132static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2133{
2134 struct drm_gem_object *obj = reg->obj;
2135 struct drm_device *dev = obj->dev;
2136 drm_i915_private_t *dev_priv = dev->dev_private;
2137 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2138 int regnum = obj_priv->fence_reg;
0f973f27 2139 int tile_width;
dc529a4f 2140 uint32_t fence_reg, val;
de151cf6
JB
2141 uint32_t pitch_val;
2142
2143 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2144 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2145 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2146 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2147 return;
2148 }
2149
0f973f27
JB
2150 if (obj_priv->tiling_mode == I915_TILING_Y &&
2151 HAS_128_BYTE_Y_TILING(dev))
2152 tile_width = 128;
de151cf6 2153 else
0f973f27
JB
2154 tile_width = 512;
2155
2156 /* Note: pitch better be a power of two tile widths */
2157 pitch_val = obj_priv->stride / tile_width;
2158 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2159
2160 val = obj_priv->gtt_offset;
2161 if (obj_priv->tiling_mode == I915_TILING_Y)
2162 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2163 val |= I915_FENCE_SIZE_BITS(obj->size);
2164 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2165 val |= I830_FENCE_REG_VALID;
2166
dc529a4f
EA
2167 if (regnum < 8)
2168 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2169 else
2170 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2171 I915_WRITE(fence_reg, val);
de151cf6
JB
2172}
2173
2174static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2175{
2176 struct drm_gem_object *obj = reg->obj;
2177 struct drm_device *dev = obj->dev;
2178 drm_i915_private_t *dev_priv = dev->dev_private;
2179 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2180 int regnum = obj_priv->fence_reg;
2181 uint32_t val;
2182 uint32_t pitch_val;
8d7773a3 2183 uint32_t fence_size_bits;
de151cf6 2184
8d7773a3 2185 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2186 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2187 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2188 __func__, obj_priv->gtt_offset);
de151cf6
JB
2189 return;
2190 }
2191
e76a16de
EA
2192 pitch_val = obj_priv->stride / 128;
2193 pitch_val = ffs(pitch_val) - 1;
2194 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2195
de151cf6
JB
2196 val = obj_priv->gtt_offset;
2197 if (obj_priv->tiling_mode == I915_TILING_Y)
2198 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2199 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2200 WARN_ON(fence_size_bits & ~0x00000f00);
2201 val |= fence_size_bits;
de151cf6
JB
2202 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2203 val |= I830_FENCE_REG_VALID;
2204
2205 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2206}
2207
2208/**
2209 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2210 * @obj: object to map through a fence reg
2211 *
2212 * When mapping objects through the GTT, userspace wants to be able to write
2213 * to them without having to worry about swizzling if the object is tiled.
2214 *
2215 * This function walks the fence regs looking for a free one for @obj,
2216 * stealing one if it can't find any.
2217 *
2218 * It then sets up the reg based on the object's properties: address, pitch
2219 * and tiling format.
2220 */
8c4b8c3f
CW
2221int
2222i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2223{
2224 struct drm_device *dev = obj->dev;
79e53945 2225 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2226 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2227 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2228 struct drm_i915_gem_object *old_obj_priv = NULL;
2229 int i, ret, avail;
de151cf6 2230
a09ba7fa
EA
2231 /* Just update our place in the LRU if our fence is getting used. */
2232 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2233 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2234 return 0;
2235 }
2236
de151cf6
JB
2237 switch (obj_priv->tiling_mode) {
2238 case I915_TILING_NONE:
2239 WARN(1, "allocating a fence for non-tiled object?\n");
2240 break;
2241 case I915_TILING_X:
0f973f27
JB
2242 if (!obj_priv->stride)
2243 return -EINVAL;
2244 WARN((obj_priv->stride & (512 - 1)),
2245 "object 0x%08x is X tiled but has non-512B pitch\n",
2246 obj_priv->gtt_offset);
de151cf6
JB
2247 break;
2248 case I915_TILING_Y:
0f973f27
JB
2249 if (!obj_priv->stride)
2250 return -EINVAL;
2251 WARN((obj_priv->stride & (128 - 1)),
2252 "object 0x%08x is Y tiled but has non-128B pitch\n",
2253 obj_priv->gtt_offset);
de151cf6
JB
2254 break;
2255 }
2256
2257 /* First try to find a free reg */
fc7170ba 2258 avail = 0;
de151cf6
JB
2259 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2260 reg = &dev_priv->fence_regs[i];
2261 if (!reg->obj)
2262 break;
fc7170ba
CW
2263
2264 old_obj_priv = reg->obj->driver_private;
2265 if (!old_obj_priv->pin_count)
2266 avail++;
de151cf6
JB
2267 }
2268
2269 /* None available, try to steal one or wait for a user to finish */
2270 if (i == dev_priv->num_fence_regs) {
a09ba7fa 2271 struct drm_gem_object *old_obj = NULL;
de151cf6 2272
fc7170ba 2273 if (avail == 0)
2939e1f5 2274 return -ENOSPC;
fc7170ba 2275
a09ba7fa
EA
2276 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2277 fence_list) {
2278 old_obj = old_obj_priv->obj;
d7619c4b
CW
2279
2280 if (old_obj_priv->pin_count)
2281 continue;
2282
a09ba7fa
EA
2283 /* Take a reference, as otherwise the wait_rendering
2284 * below may cause the object to get freed out from
2285 * under us.
2286 */
2287 drm_gem_object_reference(old_obj);
2288
d7619c4b
CW
2289 /* i915 uses fences for GPU access to tiled buffers */
2290 if (IS_I965G(dev) || !old_obj_priv->active)
de151cf6 2291 break;
d7619c4b 2292
a09ba7fa
EA
2293 /* This brings the object to the head of the LRU if it
2294 * had been written to. The only way this should
2295 * result in us waiting longer than the expected
2296 * optimal amount of time is if there was a
2297 * fence-using buffer later that was read-only.
2298 */
2299 i915_gem_object_flush_gpu_write_domain(old_obj);
2300 ret = i915_gem_object_wait_rendering(old_obj);
58c2fb64
CW
2301 if (ret != 0) {
2302 drm_gem_object_unreference(old_obj);
d7619c4b 2303 return ret;
de151cf6 2304 }
d7619c4b 2305
a09ba7fa 2306 break;
de151cf6
JB
2307 }
2308
2309 /*
2310 * Zap this virtual mapping so we can set up a fence again
2311 * for this object next time we need it.
2312 */
58c2fb64
CW
2313 i915_gem_release_mmap(old_obj);
2314
a09ba7fa 2315 i = old_obj_priv->fence_reg;
58c2fb64
CW
2316 reg = &dev_priv->fence_regs[i];
2317
de151cf6 2318 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
a09ba7fa 2319 list_del_init(&old_obj_priv->fence_list);
58c2fb64 2320
a09ba7fa 2321 drm_gem_object_unreference(old_obj);
de151cf6
JB
2322 }
2323
2324 obj_priv->fence_reg = i;
a09ba7fa
EA
2325 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2326
de151cf6
JB
2327 reg->obj = obj;
2328
2329 if (IS_I965G(dev))
2330 i965_write_fence_reg(reg);
2331 else if (IS_I9XX(dev))
2332 i915_write_fence_reg(reg);
2333 else
2334 i830_write_fence_reg(reg);
d9ddcb96
EA
2335
2336 return 0;
de151cf6
JB
2337}
2338
2339/**
2340 * i915_gem_clear_fence_reg - clear out fence register info
2341 * @obj: object to clear
2342 *
2343 * Zeroes out the fence register itself and clears out the associated
2344 * data structures in dev_priv and obj_priv.
2345 */
2346static void
2347i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2348{
2349 struct drm_device *dev = obj->dev;
79e53945 2350 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2351 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2352
2353 if (IS_I965G(dev))
2354 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
dc529a4f
EA
2355 else {
2356 uint32_t fence_reg;
2357
2358 if (obj_priv->fence_reg < 8)
2359 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2360 else
2361 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2362 8) * 4;
2363
2364 I915_WRITE(fence_reg, 0);
2365 }
de151cf6
JB
2366
2367 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2368 obj_priv->fence_reg = I915_FENCE_REG_NONE;
a09ba7fa 2369 list_del_init(&obj_priv->fence_list);
de151cf6
JB
2370}
2371
52dc7d32
CW
2372/**
2373 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2374 * to the buffer to finish, and then resets the fence register.
2375 * @obj: tiled object holding a fence register.
2376 *
2377 * Zeroes out the fence register itself and clears out the associated
2378 * data structures in dev_priv and obj_priv.
2379 */
2380int
2381i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2382{
2383 struct drm_device *dev = obj->dev;
2384 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2385
2386 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2387 return 0;
2388
2389 /* On the i915, GPU access to tiled buffers is via a fence,
2390 * therefore we must wait for any outstanding access to complete
2391 * before clearing the fence.
2392 */
2393 if (!IS_I965G(dev)) {
2394 int ret;
2395
2396 i915_gem_object_flush_gpu_write_domain(obj);
2397 i915_gem_object_flush_gtt_write_domain(obj);
2398 ret = i915_gem_object_wait_rendering(obj);
2399 if (ret != 0)
2400 return ret;
2401 }
2402
2403 i915_gem_clear_fence_reg (obj);
2404
2405 return 0;
2406}
2407
673a394b
EA
2408/**
2409 * Finds free space in the GTT aperture and binds the object there.
2410 */
2411static int
2412i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2413{
2414 struct drm_device *dev = obj->dev;
2415 drm_i915_private_t *dev_priv = dev->dev_private;
2416 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2417 struct drm_mm_node *free_space;
2418 int page_count, ret;
2419
9bb2d6f9
EA
2420 if (dev_priv->mm.suspended)
2421 return -EBUSY;
673a394b 2422 if (alignment == 0)
0f973f27 2423 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2424 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2425 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2426 return -EINVAL;
2427 }
2428
2429 search_free:
2430 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2431 obj->size, alignment, 0);
2432 if (free_space != NULL) {
2433 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2434 alignment);
2435 if (obj_priv->gtt_space != NULL) {
2436 obj_priv->gtt_space->private = obj;
2437 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2438 }
2439 }
2440 if (obj_priv->gtt_space == NULL) {
5e118f41
CW
2441 bool lists_empty;
2442
673a394b
EA
2443 /* If the gtt is empty and we're still having trouble
2444 * fitting our object in, we're out of memory.
2445 */
2446#if WATCH_LRU
2447 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2448#endif
5e118f41
CW
2449 spin_lock(&dev_priv->mm.active_list_lock);
2450 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2451 list_empty(&dev_priv->mm.flushing_list) &&
2452 list_empty(&dev_priv->mm.active_list));
2453 spin_unlock(&dev_priv->mm.active_list_lock);
2454 if (lists_empty) {
673a394b 2455 DRM_ERROR("GTT full, but LRU list empty\n");
2939e1f5 2456 return -ENOSPC;
673a394b
EA
2457 }
2458
2459 ret = i915_gem_evict_something(dev);
2460 if (ret != 0) {
ac94a962
KP
2461 if (ret != -ERESTARTSYS)
2462 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
2463 return ret;
2464 }
2465 goto search_free;
2466 }
2467
2468#if WATCH_BUF
cfd43c02 2469 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2470 obj->size, obj_priv->gtt_offset);
2471#endif
856fa198 2472 ret = i915_gem_object_get_pages(obj);
673a394b
EA
2473 if (ret) {
2474 drm_mm_put_block(obj_priv->gtt_space);
2475 obj_priv->gtt_space = NULL;
2476 return ret;
2477 }
2478
2479 page_count = obj->size / PAGE_SIZE;
2480 /* Create an AGP memory structure pointing at our pages, and bind it
2481 * into the GTT.
2482 */
2483 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2484 obj_priv->pages,
673a394b 2485 page_count,
ba1eb1d8
KP
2486 obj_priv->gtt_offset,
2487 obj_priv->agp_type);
673a394b 2488 if (obj_priv->agp_mem == NULL) {
856fa198 2489 i915_gem_object_put_pages(obj);
673a394b
EA
2490 drm_mm_put_block(obj_priv->gtt_space);
2491 obj_priv->gtt_space = NULL;
2492 return -ENOMEM;
2493 }
2494 atomic_inc(&dev->gtt_count);
2495 atomic_add(obj->size, &dev->gtt_memory);
2496
2497 /* Assert that the object is not currently in any GPU domain. As it
2498 * wasn't in the GTT, there shouldn't be any way it could have been in
2499 * a GPU cache
2500 */
21d509e3
CW
2501 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2502 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b
EA
2503
2504 return 0;
2505}
2506
2507void
2508i915_gem_clflush_object(struct drm_gem_object *obj)
2509{
2510 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2511
2512 /* If we don't have a page list set up, then we're not pinned
2513 * to GPU, and we can ignore the cache flush because it'll happen
2514 * again at bind time.
2515 */
856fa198 2516 if (obj_priv->pages == NULL)
673a394b
EA
2517 return;
2518
856fa198 2519 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2520}
2521
e47c68e9
EA
2522/** Flushes any GPU write domain for the object if it's dirty. */
2523static void
2524i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2525{
2526 struct drm_device *dev = obj->dev;
2527 uint32_t seqno;
2528
2529 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2530 return;
2531
2532 /* Queue the GPU write cache flushing we need. */
2533 i915_gem_flush(dev, 0, obj->write_domain);
b962442e 2534 seqno = i915_add_request(dev, NULL, obj->write_domain);
e47c68e9
EA
2535 obj->write_domain = 0;
2536 i915_gem_object_move_to_active(obj, seqno);
2537}
2538
2539/** Flushes the GTT write domain for the object if it's dirty. */
2540static void
2541i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2542{
2543 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2544 return;
2545
2546 /* No actual flushing is required for the GTT write domain. Writes
2547 * to it immediately go to main memory as far as we know, so there's
2548 * no chipset flush. It also doesn't land in render cache.
2549 */
2550 obj->write_domain = 0;
2551}
2552
2553/** Flushes the CPU write domain for the object if it's dirty. */
2554static void
2555i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2556{
2557 struct drm_device *dev = obj->dev;
2558
2559 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2560 return;
2561
2562 i915_gem_clflush_object(obj);
2563 drm_agp_chipset_flush(dev);
2564 obj->write_domain = 0;
2565}
2566
2ef7eeaa
EA
2567/**
2568 * Moves a single object to the GTT read, and possibly write domain.
2569 *
2570 * This function returns when the move is complete, including waiting on
2571 * flushes to occur.
2572 */
79e53945 2573int
2ef7eeaa
EA
2574i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2575{
2ef7eeaa 2576 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 2577 int ret;
2ef7eeaa 2578
02354392
EA
2579 /* Not valid to be called on unbound objects. */
2580 if (obj_priv->gtt_space == NULL)
2581 return -EINVAL;
2582
e47c68e9
EA
2583 i915_gem_object_flush_gpu_write_domain(obj);
2584 /* Wait on any GPU rendering and flushing to occur. */
2585 ret = i915_gem_object_wait_rendering(obj);
2586 if (ret != 0)
2587 return ret;
2588
2589 /* If we're writing through the GTT domain, then CPU and GPU caches
2590 * will need to be invalidated at next use.
2ef7eeaa 2591 */
e47c68e9
EA
2592 if (write)
2593 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2594
e47c68e9 2595 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2596
e47c68e9
EA
2597 /* It should now be out of any other write domains, and we can update
2598 * the domain values for our changes.
2599 */
2600 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2601 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2602 if (write) {
2603 obj->write_domain = I915_GEM_DOMAIN_GTT;
2604 obj_priv->dirty = 1;
2ef7eeaa
EA
2605 }
2606
e47c68e9
EA
2607 return 0;
2608}
2609
2610/**
2611 * Moves a single object to the CPU read, and possibly write domain.
2612 *
2613 * This function returns when the move is complete, including waiting on
2614 * flushes to occur.
2615 */
2616static int
2617i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2618{
e47c68e9
EA
2619 int ret;
2620
2621 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2622 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2623 ret = i915_gem_object_wait_rendering(obj);
2624 if (ret != 0)
2625 return ret;
2ef7eeaa 2626
e47c68e9 2627 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2628
e47c68e9
EA
2629 /* If we have a partially-valid cache of the object in the CPU,
2630 * finish invalidating it and free the per-page flags.
2ef7eeaa 2631 */
e47c68e9 2632 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2633
e47c68e9
EA
2634 /* Flush the CPU cache if it's still invalid. */
2635 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2636 i915_gem_clflush_object(obj);
2ef7eeaa 2637
e47c68e9 2638 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2639 }
2640
2641 /* It should now be out of any other write domains, and we can update
2642 * the domain values for our changes.
2643 */
e47c68e9
EA
2644 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2645
2646 /* If we're writing through the CPU, then the GPU read domains will
2647 * need to be invalidated at next use.
2648 */
2649 if (write) {
2650 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2651 obj->write_domain = I915_GEM_DOMAIN_CPU;
2652 }
2ef7eeaa
EA
2653
2654 return 0;
2655}
2656
673a394b
EA
2657/*
2658 * Set the next domain for the specified object. This
2659 * may not actually perform the necessary flushing/invaliding though,
2660 * as that may want to be batched with other set_domain operations
2661 *
2662 * This is (we hope) the only really tricky part of gem. The goal
2663 * is fairly simple -- track which caches hold bits of the object
2664 * and make sure they remain coherent. A few concrete examples may
2665 * help to explain how it works. For shorthand, we use the notation
2666 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2667 * a pair of read and write domain masks.
2668 *
2669 * Case 1: the batch buffer
2670 *
2671 * 1. Allocated
2672 * 2. Written by CPU
2673 * 3. Mapped to GTT
2674 * 4. Read by GPU
2675 * 5. Unmapped from GTT
2676 * 6. Freed
2677 *
2678 * Let's take these a step at a time
2679 *
2680 * 1. Allocated
2681 * Pages allocated from the kernel may still have
2682 * cache contents, so we set them to (CPU, CPU) always.
2683 * 2. Written by CPU (using pwrite)
2684 * The pwrite function calls set_domain (CPU, CPU) and
2685 * this function does nothing (as nothing changes)
2686 * 3. Mapped by GTT
2687 * This function asserts that the object is not
2688 * currently in any GPU-based read or write domains
2689 * 4. Read by GPU
2690 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2691 * As write_domain is zero, this function adds in the
2692 * current read domains (CPU+COMMAND, 0).
2693 * flush_domains is set to CPU.
2694 * invalidate_domains is set to COMMAND
2695 * clflush is run to get data out of the CPU caches
2696 * then i915_dev_set_domain calls i915_gem_flush to
2697 * emit an MI_FLUSH and drm_agp_chipset_flush
2698 * 5. Unmapped from GTT
2699 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2700 * flush_domains and invalidate_domains end up both zero
2701 * so no flushing/invalidating happens
2702 * 6. Freed
2703 * yay, done
2704 *
2705 * Case 2: The shared render buffer
2706 *
2707 * 1. Allocated
2708 * 2. Mapped to GTT
2709 * 3. Read/written by GPU
2710 * 4. set_domain to (CPU,CPU)
2711 * 5. Read/written by CPU
2712 * 6. Read/written by GPU
2713 *
2714 * 1. Allocated
2715 * Same as last example, (CPU, CPU)
2716 * 2. Mapped to GTT
2717 * Nothing changes (assertions find that it is not in the GPU)
2718 * 3. Read/written by GPU
2719 * execbuffer calls set_domain (RENDER, RENDER)
2720 * flush_domains gets CPU
2721 * invalidate_domains gets GPU
2722 * clflush (obj)
2723 * MI_FLUSH and drm_agp_chipset_flush
2724 * 4. set_domain (CPU, CPU)
2725 * flush_domains gets GPU
2726 * invalidate_domains gets CPU
2727 * wait_rendering (obj) to make sure all drawing is complete.
2728 * This will include an MI_FLUSH to get the data from GPU
2729 * to memory
2730 * clflush (obj) to invalidate the CPU cache
2731 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2732 * 5. Read/written by CPU
2733 * cache lines are loaded and dirtied
2734 * 6. Read written by GPU
2735 * Same as last GPU access
2736 *
2737 * Case 3: The constant buffer
2738 *
2739 * 1. Allocated
2740 * 2. Written by CPU
2741 * 3. Read by GPU
2742 * 4. Updated (written) by CPU again
2743 * 5. Read by GPU
2744 *
2745 * 1. Allocated
2746 * (CPU, CPU)
2747 * 2. Written by CPU
2748 * (CPU, CPU)
2749 * 3. Read by GPU
2750 * (CPU+RENDER, 0)
2751 * flush_domains = CPU
2752 * invalidate_domains = RENDER
2753 * clflush (obj)
2754 * MI_FLUSH
2755 * drm_agp_chipset_flush
2756 * 4. Updated (written) by CPU again
2757 * (CPU, CPU)
2758 * flush_domains = 0 (no previous write domain)
2759 * invalidate_domains = 0 (no new read domains)
2760 * 5. Read by GPU
2761 * (CPU+RENDER, 0)
2762 * flush_domains = CPU
2763 * invalidate_domains = RENDER
2764 * clflush (obj)
2765 * MI_FLUSH
2766 * drm_agp_chipset_flush
2767 */
c0d90829 2768static void
8b0e378a 2769i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2770{
2771 struct drm_device *dev = obj->dev;
2772 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2773 uint32_t invalidate_domains = 0;
2774 uint32_t flush_domains = 0;
e47c68e9 2775
8b0e378a
EA
2776 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2777 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2778
652c393a
JB
2779 intel_mark_busy(dev, obj);
2780
673a394b
EA
2781#if WATCH_BUF
2782 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2783 __func__, obj,
8b0e378a
EA
2784 obj->read_domains, obj->pending_read_domains,
2785 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2786#endif
2787 /*
2788 * If the object isn't moving to a new write domain,
2789 * let the object stay in multiple read domains
2790 */
8b0e378a
EA
2791 if (obj->pending_write_domain == 0)
2792 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2793 else
2794 obj_priv->dirty = 1;
2795
2796 /*
2797 * Flush the current write domain if
2798 * the new read domains don't match. Invalidate
2799 * any read domains which differ from the old
2800 * write domain
2801 */
8b0e378a
EA
2802 if (obj->write_domain &&
2803 obj->write_domain != obj->pending_read_domains) {
673a394b 2804 flush_domains |= obj->write_domain;
8b0e378a
EA
2805 invalidate_domains |=
2806 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2807 }
2808 /*
2809 * Invalidate any read caches which may have
2810 * stale data. That is, any new read domains.
2811 */
8b0e378a 2812 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2813 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2814#if WATCH_BUF
2815 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2816 __func__, flush_domains, invalidate_domains);
2817#endif
673a394b
EA
2818 i915_gem_clflush_object(obj);
2819 }
2820
efbeed96
EA
2821 /* The actual obj->write_domain will be updated with
2822 * pending_write_domain after we emit the accumulated flush for all
2823 * of our domain changes in execbuffers (which clears objects'
2824 * write_domains). So if we have a current write domain that we
2825 * aren't changing, set pending_write_domain to that.
2826 */
2827 if (flush_domains == 0 && obj->pending_write_domain == 0)
2828 obj->pending_write_domain = obj->write_domain;
8b0e378a 2829 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2830
2831 dev->invalidate_domains |= invalidate_domains;
2832 dev->flush_domains |= flush_domains;
2833#if WATCH_BUF
2834 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2835 __func__,
2836 obj->read_domains, obj->write_domain,
2837 dev->invalidate_domains, dev->flush_domains);
2838#endif
673a394b
EA
2839}
2840
2841/**
e47c68e9 2842 * Moves the object from a partially CPU read to a full one.
673a394b 2843 *
e47c68e9
EA
2844 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2845 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2846 */
e47c68e9
EA
2847static void
2848i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
2849{
2850 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2851
e47c68e9
EA
2852 if (!obj_priv->page_cpu_valid)
2853 return;
2854
2855 /* If we're partially in the CPU read domain, finish moving it in.
2856 */
2857 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2858 int i;
2859
2860 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2861 if (obj_priv->page_cpu_valid[i])
2862 continue;
856fa198 2863 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 2864 }
e47c68e9
EA
2865 }
2866
2867 /* Free the page_cpu_valid mappings which are now stale, whether
2868 * or not we've got I915_GEM_DOMAIN_CPU.
2869 */
9a298b2a 2870 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
2871 obj_priv->page_cpu_valid = NULL;
2872}
2873
2874/**
2875 * Set the CPU read domain on a range of the object.
2876 *
2877 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2878 * not entirely valid. The page_cpu_valid member of the object flags which
2879 * pages have been flushed, and will be respected by
2880 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2881 * of the whole object.
2882 *
2883 * This function returns when the move is complete, including waiting on
2884 * flushes to occur.
2885 */
2886static int
2887i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2888 uint64_t offset, uint64_t size)
2889{
2890 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2891 int i, ret;
673a394b 2892
e47c68e9
EA
2893 if (offset == 0 && size == obj->size)
2894 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2895
e47c68e9
EA
2896 i915_gem_object_flush_gpu_write_domain(obj);
2897 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2898 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2899 if (ret != 0)
6a47baa6 2900 return ret;
e47c68e9
EA
2901 i915_gem_object_flush_gtt_write_domain(obj);
2902
2903 /* If we're already fully in the CPU read domain, we're done. */
2904 if (obj_priv->page_cpu_valid == NULL &&
2905 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2906 return 0;
673a394b 2907
e47c68e9
EA
2908 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2909 * newly adding I915_GEM_DOMAIN_CPU
2910 */
673a394b 2911 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
2912 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2913 GFP_KERNEL);
e47c68e9
EA
2914 if (obj_priv->page_cpu_valid == NULL)
2915 return -ENOMEM;
2916 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2917 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2918
2919 /* Flush the cache on any pages that are still invalid from the CPU's
2920 * perspective.
2921 */
e47c68e9
EA
2922 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2923 i++) {
673a394b
EA
2924 if (obj_priv->page_cpu_valid[i])
2925 continue;
2926
856fa198 2927 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
2928
2929 obj_priv->page_cpu_valid[i] = 1;
2930 }
2931
e47c68e9
EA
2932 /* It should now be out of any other write domains, and we can update
2933 * the domain values for our changes.
2934 */
2935 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2936
2937 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2938
673a394b
EA
2939 return 0;
2940}
2941
673a394b
EA
2942/**
2943 * Pin an object to the GTT and evaluate the relocations landing in it.
2944 */
2945static int
2946i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2947 struct drm_file *file_priv,
40a5f0de
EA
2948 struct drm_i915_gem_exec_object *entry,
2949 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
2950{
2951 struct drm_device *dev = obj->dev;
0839ccb8 2952 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2953 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2954 int i, ret;
0839ccb8 2955 void __iomem *reloc_page;
673a394b
EA
2956
2957 /* Choose the GTT offset for our buffer and put it there. */
2958 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2959 if (ret)
2960 return ret;
2961
2962 entry->offset = obj_priv->gtt_offset;
2963
673a394b
EA
2964 /* Apply the relocations, using the GTT aperture to avoid cache
2965 * flushing requirements.
2966 */
2967 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 2968 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
2969 struct drm_gem_object *target_obj;
2970 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2971 uint32_t reloc_val, reloc_offset;
2972 uint32_t __iomem *reloc_entry;
673a394b 2973
673a394b 2974 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 2975 reloc->target_handle);
673a394b
EA
2976 if (target_obj == NULL) {
2977 i915_gem_object_unpin(obj);
2978 return -EBADF;
2979 }
2980 target_obj_priv = target_obj->driver_private;
2981
2982 /* The target buffer should have appeared before us in the
2983 * exec_object list, so it should have a GTT space bound by now.
2984 */
2985 if (target_obj_priv->gtt_space == NULL) {
2986 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 2987 reloc->target_handle);
673a394b
EA
2988 drm_gem_object_unreference(target_obj);
2989 i915_gem_object_unpin(obj);
2990 return -EINVAL;
2991 }
2992
40a5f0de 2993 if (reloc->offset > obj->size - 4) {
673a394b
EA
2994 DRM_ERROR("Relocation beyond object bounds: "
2995 "obj %p target %d offset %d size %d.\n",
40a5f0de
EA
2996 obj, reloc->target_handle,
2997 (int) reloc->offset, (int) obj->size);
673a394b
EA
2998 drm_gem_object_unreference(target_obj);
2999 i915_gem_object_unpin(obj);
3000 return -EINVAL;
3001 }
40a5f0de 3002 if (reloc->offset & 3) {
673a394b
EA
3003 DRM_ERROR("Relocation not 4-byte aligned: "
3004 "obj %p target %d offset %d.\n",
40a5f0de
EA
3005 obj, reloc->target_handle,
3006 (int) reloc->offset);
673a394b
EA
3007 drm_gem_object_unreference(target_obj);
3008 i915_gem_object_unpin(obj);
3009 return -EINVAL;
3010 }
3011
40a5f0de
EA
3012 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3013 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3014 DRM_ERROR("reloc with read/write CPU domains: "
3015 "obj %p target %d offset %d "
3016 "read %08x write %08x",
40a5f0de
EA
3017 obj, reloc->target_handle,
3018 (int) reloc->offset,
3019 reloc->read_domains,
3020 reloc->write_domain);
491152b8
CW
3021 drm_gem_object_unreference(target_obj);
3022 i915_gem_object_unpin(obj);
e47c68e9
EA
3023 return -EINVAL;
3024 }
3025
40a5f0de
EA
3026 if (reloc->write_domain && target_obj->pending_write_domain &&
3027 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3028 DRM_ERROR("Write domain conflict: "
3029 "obj %p target %d offset %d "
3030 "new %08x old %08x\n",
40a5f0de
EA
3031 obj, reloc->target_handle,
3032 (int) reloc->offset,
3033 reloc->write_domain,
673a394b
EA
3034 target_obj->pending_write_domain);
3035 drm_gem_object_unreference(target_obj);
3036 i915_gem_object_unpin(obj);
3037 return -EINVAL;
3038 }
3039
3040#if WATCH_RELOC
3041 DRM_INFO("%s: obj %p offset %08x target %d "
3042 "read %08x write %08x gtt %08x "
3043 "presumed %08x delta %08x\n",
3044 __func__,
3045 obj,
40a5f0de
EA
3046 (int) reloc->offset,
3047 (int) reloc->target_handle,
3048 (int) reloc->read_domains,
3049 (int) reloc->write_domain,
673a394b 3050 (int) target_obj_priv->gtt_offset,
40a5f0de
EA
3051 (int) reloc->presumed_offset,
3052 reloc->delta);
673a394b
EA
3053#endif
3054
40a5f0de
EA
3055 target_obj->pending_read_domains |= reloc->read_domains;
3056 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3057
3058 /* If the relocation already has the right value in it, no
3059 * more work needs to be done.
3060 */
40a5f0de 3061 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3062 drm_gem_object_unreference(target_obj);
3063 continue;
3064 }
3065
2ef7eeaa
EA
3066 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3067 if (ret != 0) {
3068 drm_gem_object_unreference(target_obj);
3069 i915_gem_object_unpin(obj);
3070 return -EINVAL;
673a394b
EA
3071 }
3072
3073 /* Map the page containing the relocation we're going to
3074 * perform.
3075 */
40a5f0de 3076 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3077 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3078 (reloc_offset &
3079 ~(PAGE_SIZE - 1)));
3043c60c 3080 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3081 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3082 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3083
3084#if WATCH_BUF
3085 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3086 obj, (unsigned int) reloc->offset,
673a394b
EA
3087 readl(reloc_entry), reloc_val);
3088#endif
3089 writel(reloc_val, reloc_entry);
0839ccb8 3090 io_mapping_unmap_atomic(reloc_page);
673a394b 3091
40a5f0de
EA
3092 /* The updated presumed offset for this entry will be
3093 * copied back out to the user.
673a394b 3094 */
40a5f0de 3095 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3096
3097 drm_gem_object_unreference(target_obj);
3098 }
3099
673a394b
EA
3100#if WATCH_BUF
3101 if (0)
3102 i915_gem_dump_object(obj, 128, __func__, ~0);
3103#endif
3104 return 0;
3105}
3106
3107/** Dispatch a batchbuffer to the ring
3108 */
3109static int
3110i915_dispatch_gem_execbuffer(struct drm_device *dev,
3111 struct drm_i915_gem_execbuffer *exec,
201361a5 3112 struct drm_clip_rect *cliprects,
673a394b
EA
3113 uint64_t exec_offset)
3114{
3115 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3116 int nbox = exec->num_cliprects;
3117 int i = 0, count;
83d60795 3118 uint32_t exec_start, exec_len;
673a394b
EA
3119 RING_LOCALS;
3120
3121 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3122 exec_len = (uint32_t) exec->batch_len;
3123
673a394b
EA
3124 count = nbox ? nbox : 1;
3125
3126 for (i = 0; i < count; i++) {
3127 if (i < nbox) {
201361a5 3128 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3129 exec->DR1, exec->DR4);
3130 if (ret)
3131 return ret;
3132 }
3133
3134 if (IS_I830(dev) || IS_845G(dev)) {
3135 BEGIN_LP_RING(4);
3136 OUT_RING(MI_BATCH_BUFFER);
3137 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3138 OUT_RING(exec_start + exec_len - 4);
3139 OUT_RING(0);
3140 ADVANCE_LP_RING();
3141 } else {
3142 BEGIN_LP_RING(2);
3143 if (IS_I965G(dev)) {
3144 OUT_RING(MI_BATCH_BUFFER_START |
3145 (2 << 6) |
3146 MI_BATCH_NON_SECURE_I965);
3147 OUT_RING(exec_start);
3148 } else {
3149 OUT_RING(MI_BATCH_BUFFER_START |
3150 (2 << 6));
3151 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3152 }
3153 ADVANCE_LP_RING();
3154 }
3155 }
3156
3157 /* XXX breadcrumb */
3158 return 0;
3159}
3160
3161/* Throttle our rendering by waiting until the ring has completed our requests
3162 * emitted over 20 msec ago.
3163 *
b962442e
EA
3164 * Note that if we were to use the current jiffies each time around the loop,
3165 * we wouldn't escape the function with any frames outstanding if the time to
3166 * render a frame was over 20ms.
3167 *
673a394b
EA
3168 * This should get us reasonable parallelism between CPU and GPU but also
3169 * relatively low latency when blocking on a particular request to finish.
3170 */
3171static int
3172i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3173{
3174 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3175 int ret = 0;
b962442e 3176 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3177
3178 mutex_lock(&dev->struct_mutex);
b962442e
EA
3179 while (!list_empty(&i915_file_priv->mm.request_list)) {
3180 struct drm_i915_gem_request *request;
3181
3182 request = list_first_entry(&i915_file_priv->mm.request_list,
3183 struct drm_i915_gem_request,
3184 client_list);
3185
3186 if (time_after_eq(request->emitted_jiffies, recent_enough))
3187 break;
3188
3189 ret = i915_wait_request(dev, request->seqno);
3190 if (ret != 0)
3191 break;
3192 }
673a394b 3193 mutex_unlock(&dev->struct_mutex);
b962442e 3194
673a394b
EA
3195 return ret;
3196}
3197
40a5f0de
EA
3198static int
3199i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3200 uint32_t buffer_count,
3201 struct drm_i915_gem_relocation_entry **relocs)
3202{
3203 uint32_t reloc_count = 0, reloc_index = 0, i;
3204 int ret;
3205
3206 *relocs = NULL;
3207 for (i = 0; i < buffer_count; i++) {
3208 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3209 return -EINVAL;
3210 reloc_count += exec_list[i].relocation_count;
3211 }
3212
8e7d2b2c 3213 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
40a5f0de
EA
3214 if (*relocs == NULL)
3215 return -ENOMEM;
3216
3217 for (i = 0; i < buffer_count; i++) {
3218 struct drm_i915_gem_relocation_entry __user *user_relocs;
3219
3220 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3221
3222 ret = copy_from_user(&(*relocs)[reloc_index],
3223 user_relocs,
3224 exec_list[i].relocation_count *
3225 sizeof(**relocs));
3226 if (ret != 0) {
8e7d2b2c 3227 drm_free_large(*relocs);
40a5f0de 3228 *relocs = NULL;
2bc43b5c 3229 return -EFAULT;
40a5f0de
EA
3230 }
3231
3232 reloc_index += exec_list[i].relocation_count;
3233 }
3234
2bc43b5c 3235 return 0;
40a5f0de
EA
3236}
3237
3238static int
3239i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3240 uint32_t buffer_count,
3241 struct drm_i915_gem_relocation_entry *relocs)
3242{
3243 uint32_t reloc_count = 0, i;
2bc43b5c 3244 int ret = 0;
40a5f0de
EA
3245
3246 for (i = 0; i < buffer_count; i++) {
3247 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3248 int unwritten;
40a5f0de
EA
3249
3250 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3251
2bc43b5c
FM
3252 unwritten = copy_to_user(user_relocs,
3253 &relocs[reloc_count],
3254 exec_list[i].relocation_count *
3255 sizeof(*relocs));
3256
3257 if (unwritten) {
3258 ret = -EFAULT;
3259 goto err;
40a5f0de
EA
3260 }
3261
3262 reloc_count += exec_list[i].relocation_count;
3263 }
3264
2bc43b5c 3265err:
8e7d2b2c 3266 drm_free_large(relocs);
40a5f0de
EA
3267
3268 return ret;
3269}
3270
83d60795
CW
3271static int
3272i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3273 uint64_t exec_offset)
3274{
3275 uint32_t exec_start, exec_len;
3276
3277 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3278 exec_len = (uint32_t) exec->batch_len;
3279
3280 if ((exec_start | exec_len) & 0x7)
3281 return -EINVAL;
3282
3283 if (!exec_start)
3284 return -EINVAL;
3285
3286 return 0;
3287}
3288
673a394b
EA
3289int
3290i915_gem_execbuffer(struct drm_device *dev, void *data,
3291 struct drm_file *file_priv)
3292{
3293 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3294 struct drm_i915_gem_execbuffer *args = data;
3295 struct drm_i915_gem_exec_object *exec_list = NULL;
3296 struct drm_gem_object **object_list = NULL;
3297 struct drm_gem_object *batch_obj;
b70d11da 3298 struct drm_i915_gem_object *obj_priv;
201361a5 3299 struct drm_clip_rect *cliprects = NULL;
40a5f0de
EA
3300 struct drm_i915_gem_relocation_entry *relocs;
3301 int ret, ret2, i, pinned = 0;
673a394b 3302 uint64_t exec_offset;
40a5f0de 3303 uint32_t seqno, flush_domains, reloc_index;
ac94a962 3304 int pin_tries;
673a394b
EA
3305
3306#if WATCH_EXEC
3307 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3308 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3309#endif
3310
4f481ed2
EA
3311 if (args->buffer_count < 1) {
3312 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3313 return -EINVAL;
3314 }
673a394b 3315 /* Copy in the exec list from userland */
8e7d2b2c
JB
3316 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3317 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
673a394b
EA
3318 if (exec_list == NULL || object_list == NULL) {
3319 DRM_ERROR("Failed to allocate exec or object list "
3320 "for %d buffers\n",
3321 args->buffer_count);
3322 ret = -ENOMEM;
3323 goto pre_mutex_err;
3324 }
3325 ret = copy_from_user(exec_list,
3326 (struct drm_i915_relocation_entry __user *)
3327 (uintptr_t) args->buffers_ptr,
3328 sizeof(*exec_list) * args->buffer_count);
3329 if (ret != 0) {
3330 DRM_ERROR("copy %d exec entries failed %d\n",
3331 args->buffer_count, ret);
3332 goto pre_mutex_err;
3333 }
3334
201361a5 3335 if (args->num_cliprects != 0) {
9a298b2a
EA
3336 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3337 GFP_KERNEL);
201361a5
EA
3338 if (cliprects == NULL)
3339 goto pre_mutex_err;
3340
3341 ret = copy_from_user(cliprects,
3342 (struct drm_clip_rect __user *)
3343 (uintptr_t) args->cliprects_ptr,
3344 sizeof(*cliprects) * args->num_cliprects);
3345 if (ret != 0) {
3346 DRM_ERROR("copy %d cliprects failed: %d\n",
3347 args->num_cliprects, ret);
3348 goto pre_mutex_err;
3349 }
3350 }
3351
40a5f0de
EA
3352 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3353 &relocs);
3354 if (ret != 0)
3355 goto pre_mutex_err;
3356
673a394b
EA
3357 mutex_lock(&dev->struct_mutex);
3358
3359 i915_verify_inactive(dev, __FILE__, __LINE__);
3360
ba1234d1 3361 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
3362 DRM_ERROR("Execbuf while wedged\n");
3363 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3364 ret = -EIO;
3365 goto pre_mutex_err;
673a394b
EA
3366 }
3367
3368 if (dev_priv->mm.suspended) {
3369 DRM_ERROR("Execbuf while VT-switched.\n");
3370 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3371 ret = -EBUSY;
3372 goto pre_mutex_err;
673a394b
EA
3373 }
3374
ac94a962 3375 /* Look up object handles */
673a394b
EA
3376 for (i = 0; i < args->buffer_count; i++) {
3377 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3378 exec_list[i].handle);
3379 if (object_list[i] == NULL) {
3380 DRM_ERROR("Invalid object handle %d at index %d\n",
3381 exec_list[i].handle, i);
3382 ret = -EBADF;
3383 goto err;
3384 }
b70d11da
KH
3385
3386 obj_priv = object_list[i]->driver_private;
3387 if (obj_priv->in_execbuffer) {
3388 DRM_ERROR("Object %p appears more than once in object list\n",
3389 object_list[i]);
3390 ret = -EBADF;
3391 goto err;
3392 }
3393 obj_priv->in_execbuffer = true;
ac94a962 3394 }
673a394b 3395
ac94a962
KP
3396 /* Pin and relocate */
3397 for (pin_tries = 0; ; pin_tries++) {
3398 ret = 0;
40a5f0de
EA
3399 reloc_index = 0;
3400
ac94a962
KP
3401 for (i = 0; i < args->buffer_count; i++) {
3402 object_list[i]->pending_read_domains = 0;
3403 object_list[i]->pending_write_domain = 0;
3404 ret = i915_gem_object_pin_and_relocate(object_list[i],
3405 file_priv,
40a5f0de
EA
3406 &exec_list[i],
3407 &relocs[reloc_index]);
ac94a962
KP
3408 if (ret)
3409 break;
3410 pinned = i + 1;
40a5f0de 3411 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3412 }
3413 /* success */
3414 if (ret == 0)
3415 break;
3416
3417 /* error other than GTT full, or we've already tried again */
2939e1f5 3418 if (ret != -ENOSPC || pin_tries >= 1) {
f1acec93
EA
3419 if (ret != -ERESTARTSYS)
3420 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
3421 goto err;
3422 }
ac94a962
KP
3423
3424 /* unpin all of our buffers */
3425 for (i = 0; i < pinned; i++)
3426 i915_gem_object_unpin(object_list[i]);
b1177636 3427 pinned = 0;
ac94a962
KP
3428
3429 /* evict everyone we can from the aperture */
3430 ret = i915_gem_evict_everything(dev);
3431 if (ret)
3432 goto err;
673a394b
EA
3433 }
3434
3435 /* Set the pending read domains for the batch buffer to COMMAND */
3436 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3437 if (batch_obj->pending_write_domain) {
3438 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3439 ret = -EINVAL;
3440 goto err;
3441 }
3442 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3443
83d60795
CW
3444 /* Sanity check the batch buffer, prior to moving objects */
3445 exec_offset = exec_list[args->buffer_count - 1].offset;
3446 ret = i915_gem_check_execbuffer (args, exec_offset);
3447 if (ret != 0) {
3448 DRM_ERROR("execbuf with invalid offset/length\n");
3449 goto err;
3450 }
3451
673a394b
EA
3452 i915_verify_inactive(dev, __FILE__, __LINE__);
3453
646f0f6e
KP
3454 /* Zero the global flush/invalidate flags. These
3455 * will be modified as new domains are computed
3456 * for each object
3457 */
3458 dev->invalidate_domains = 0;
3459 dev->flush_domains = 0;
3460
673a394b
EA
3461 for (i = 0; i < args->buffer_count; i++) {
3462 struct drm_gem_object *obj = object_list[i];
673a394b 3463
646f0f6e 3464 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3465 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3466 }
3467
3468 i915_verify_inactive(dev, __FILE__, __LINE__);
3469
646f0f6e
KP
3470 if (dev->invalidate_domains | dev->flush_domains) {
3471#if WATCH_EXEC
3472 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3473 __func__,
3474 dev->invalidate_domains,
3475 dev->flush_domains);
3476#endif
3477 i915_gem_flush(dev,
3478 dev->invalidate_domains,
3479 dev->flush_domains);
3480 if (dev->flush_domains)
b962442e
EA
3481 (void)i915_add_request(dev, file_priv,
3482 dev->flush_domains);
646f0f6e 3483 }
673a394b 3484
efbeed96
EA
3485 for (i = 0; i < args->buffer_count; i++) {
3486 struct drm_gem_object *obj = object_list[i];
3487
3488 obj->write_domain = obj->pending_write_domain;
3489 }
3490
673a394b
EA
3491 i915_verify_inactive(dev, __FILE__, __LINE__);
3492
3493#if WATCH_COHERENCY
3494 for (i = 0; i < args->buffer_count; i++) {
3495 i915_gem_object_check_coherency(object_list[i],
3496 exec_list[i].handle);
3497 }
3498#endif
3499
673a394b 3500#if WATCH_EXEC
6911a9b8 3501 i915_gem_dump_object(batch_obj,
673a394b
EA
3502 args->batch_len,
3503 __func__,
3504 ~0);
3505#endif
3506
673a394b 3507 /* Exec the batchbuffer */
201361a5 3508 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3509 if (ret) {
3510 DRM_ERROR("dispatch failed %d\n", ret);
3511 goto err;
3512 }
3513
3514 /*
3515 * Ensure that the commands in the batch buffer are
3516 * finished before the interrupt fires
3517 */
3518 flush_domains = i915_retire_commands(dev);
3519
3520 i915_verify_inactive(dev, __FILE__, __LINE__);
3521
3522 /*
3523 * Get a seqno representing the execution of the current buffer,
3524 * which we can wait on. We would like to mitigate these interrupts,
3525 * likely by only creating seqnos occasionally (so that we have
3526 * *some* interrupts representing completion of buffers that we can
3527 * wait on when trying to clear up gtt space).
3528 */
b962442e 3529 seqno = i915_add_request(dev, file_priv, flush_domains);
673a394b 3530 BUG_ON(seqno == 0);
673a394b
EA
3531 for (i = 0; i < args->buffer_count; i++) {
3532 struct drm_gem_object *obj = object_list[i];
673a394b 3533
ce44b0ea 3534 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3535#if WATCH_LRU
3536 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3537#endif
3538 }
3539#if WATCH_LRU
3540 i915_dump_lru(dev, __func__);
3541#endif
3542
3543 i915_verify_inactive(dev, __FILE__, __LINE__);
3544
673a394b 3545err:
aad87dff
JL
3546 for (i = 0; i < pinned; i++)
3547 i915_gem_object_unpin(object_list[i]);
3548
b70d11da
KH
3549 for (i = 0; i < args->buffer_count; i++) {
3550 if (object_list[i]) {
3551 obj_priv = object_list[i]->driver_private;
3552 obj_priv->in_execbuffer = false;
3553 }
aad87dff 3554 drm_gem_object_unreference(object_list[i]);
b70d11da 3555 }
673a394b 3556
673a394b
EA
3557 mutex_unlock(&dev->struct_mutex);
3558
a35f2e2b
RD
3559 if (!ret) {
3560 /* Copy the new buffer offsets back to the user's exec list. */
3561 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3562 (uintptr_t) args->buffers_ptr,
3563 exec_list,
3564 sizeof(*exec_list) * args->buffer_count);
2bc43b5c
FM
3565 if (ret) {
3566 ret = -EFAULT;
a35f2e2b
RD
3567 DRM_ERROR("failed to copy %d exec entries "
3568 "back to user (%d)\n",
3569 args->buffer_count, ret);
2bc43b5c 3570 }
a35f2e2b
RD
3571 }
3572
40a5f0de
EA
3573 /* Copy the updated relocations out regardless of current error
3574 * state. Failure to update the relocs would mean that the next
3575 * time userland calls execbuf, it would do so with presumed offset
3576 * state that didn't match the actual object state.
3577 */
3578 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3579 relocs);
3580 if (ret2 != 0) {
3581 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3582
3583 if (ret == 0)
3584 ret = ret2;
3585 }
3586
673a394b 3587pre_mutex_err:
8e7d2b2c
JB
3588 drm_free_large(object_list);
3589 drm_free_large(exec_list);
9a298b2a 3590 kfree(cliprects);
673a394b
EA
3591
3592 return ret;
3593}
3594
3595int
3596i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3597{
3598 struct drm_device *dev = obj->dev;
3599 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3600 int ret;
3601
3602 i915_verify_inactive(dev, __FILE__, __LINE__);
3603 if (obj_priv->gtt_space == NULL) {
3604 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3605 if (ret != 0) {
9bb2d6f9 3606 if (ret != -EBUSY && ret != -ERESTARTSYS)
0fce81e3 3607 DRM_ERROR("Failure to bind: %d\n", ret);
673a394b
EA
3608 return ret;
3609 }
22c344e9
CW
3610 }
3611 /*
3612 * Pre-965 chips need a fence register set up in order to
3613 * properly handle tiled surfaces.
3614 */
a09ba7fa 3615 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 3616 ret = i915_gem_object_get_fence_reg(obj);
22c344e9
CW
3617 if (ret != 0) {
3618 if (ret != -EBUSY && ret != -ERESTARTSYS)
3619 DRM_ERROR("Failure to install fence: %d\n",
3620 ret);
3621 return ret;
3622 }
673a394b
EA
3623 }
3624 obj_priv->pin_count++;
3625
3626 /* If the object is not active and not pending a flush,
3627 * remove it from the inactive list
3628 */
3629 if (obj_priv->pin_count == 1) {
3630 atomic_inc(&dev->pin_count);
3631 atomic_add(obj->size, &dev->pin_memory);
3632 if (!obj_priv->active &&
21d509e3 3633 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
3634 !list_empty(&obj_priv->list))
3635 list_del_init(&obj_priv->list);
3636 }
3637 i915_verify_inactive(dev, __FILE__, __LINE__);
3638
3639 return 0;
3640}
3641
3642void
3643i915_gem_object_unpin(struct drm_gem_object *obj)
3644{
3645 struct drm_device *dev = obj->dev;
3646 drm_i915_private_t *dev_priv = dev->dev_private;
3647 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3648
3649 i915_verify_inactive(dev, __FILE__, __LINE__);
3650 obj_priv->pin_count--;
3651 BUG_ON(obj_priv->pin_count < 0);
3652 BUG_ON(obj_priv->gtt_space == NULL);
3653
3654 /* If the object is no longer pinned, and is
3655 * neither active nor being flushed, then stick it on
3656 * the inactive list
3657 */
3658 if (obj_priv->pin_count == 0) {
3659 if (!obj_priv->active &&
21d509e3 3660 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
3661 list_move_tail(&obj_priv->list,
3662 &dev_priv->mm.inactive_list);
3663 atomic_dec(&dev->pin_count);
3664 atomic_sub(obj->size, &dev->pin_memory);
3665 }
3666 i915_verify_inactive(dev, __FILE__, __LINE__);
3667}
3668
3669int
3670i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3671 struct drm_file *file_priv)
3672{
3673 struct drm_i915_gem_pin *args = data;
3674 struct drm_gem_object *obj;
3675 struct drm_i915_gem_object *obj_priv;
3676 int ret;
3677
3678 mutex_lock(&dev->struct_mutex);
3679
3680 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3681 if (obj == NULL) {
3682 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3683 args->handle);
3684 mutex_unlock(&dev->struct_mutex);
3685 return -EBADF;
3686 }
3687 obj_priv = obj->driver_private;
3688
79e53945
JB
3689 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3690 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3691 args->handle);
96dec61d 3692 drm_gem_object_unreference(obj);
673a394b 3693 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3694 return -EINVAL;
3695 }
3696
3697 obj_priv->user_pin_count++;
3698 obj_priv->pin_filp = file_priv;
3699 if (obj_priv->user_pin_count == 1) {
3700 ret = i915_gem_object_pin(obj, args->alignment);
3701 if (ret != 0) {
3702 drm_gem_object_unreference(obj);
3703 mutex_unlock(&dev->struct_mutex);
3704 return ret;
3705 }
673a394b
EA
3706 }
3707
3708 /* XXX - flush the CPU caches for pinned objects
3709 * as the X server doesn't manage domains yet
3710 */
e47c68e9 3711 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
3712 args->offset = obj_priv->gtt_offset;
3713 drm_gem_object_unreference(obj);
3714 mutex_unlock(&dev->struct_mutex);
3715
3716 return 0;
3717}
3718
3719int
3720i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3721 struct drm_file *file_priv)
3722{
3723 struct drm_i915_gem_pin *args = data;
3724 struct drm_gem_object *obj;
79e53945 3725 struct drm_i915_gem_object *obj_priv;
673a394b
EA
3726
3727 mutex_lock(&dev->struct_mutex);
3728
3729 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3730 if (obj == NULL) {
3731 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3732 args->handle);
3733 mutex_unlock(&dev->struct_mutex);
3734 return -EBADF;
3735 }
3736
79e53945
JB
3737 obj_priv = obj->driver_private;
3738 if (obj_priv->pin_filp != file_priv) {
3739 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3740 args->handle);
3741 drm_gem_object_unreference(obj);
3742 mutex_unlock(&dev->struct_mutex);
3743 return -EINVAL;
3744 }
3745 obj_priv->user_pin_count--;
3746 if (obj_priv->user_pin_count == 0) {
3747 obj_priv->pin_filp = NULL;
3748 i915_gem_object_unpin(obj);
3749 }
673a394b
EA
3750
3751 drm_gem_object_unreference(obj);
3752 mutex_unlock(&dev->struct_mutex);
3753 return 0;
3754}
3755
3756int
3757i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3758 struct drm_file *file_priv)
3759{
3760 struct drm_i915_gem_busy *args = data;
3761 struct drm_gem_object *obj;
3762 struct drm_i915_gem_object *obj_priv;
3763
673a394b
EA
3764 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3765 if (obj == NULL) {
3766 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3767 args->handle);
673a394b
EA
3768 return -EBADF;
3769 }
3770
b1ce786c 3771 mutex_lock(&dev->struct_mutex);
f21289b3
EA
3772 /* Update the active list for the hardware's current position.
3773 * Otherwise this only updates on a delayed timer or when irqs are
3774 * actually unmasked, and our working set ends up being larger than
3775 * required.
3776 */
3777 i915_gem_retire_requests(dev);
3778
673a394b 3779 obj_priv = obj->driver_private;
c4de0a5d
EA
3780 /* Don't count being on the flushing list against the object being
3781 * done. Otherwise, a buffer left on the flushing list but not getting
3782 * flushed (because nobody's flushing that domain) won't ever return
3783 * unbusy and get reused by libdrm's bo cache. The other expected
3784 * consumer of this interface, OpenGL's occlusion queries, also specs
3785 * that the objects get unbusy "eventually" without any interference.
3786 */
3787 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
3788
3789 drm_gem_object_unreference(obj);
3790 mutex_unlock(&dev->struct_mutex);
3791 return 0;
3792}
3793
3794int
3795i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3796 struct drm_file *file_priv)
3797{
3798 return i915_gem_ring_throttle(dev, file_priv);
3799}
3800
3801int i915_gem_init_object(struct drm_gem_object *obj)
3802{
3803 struct drm_i915_gem_object *obj_priv;
3804
9a298b2a 3805 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
673a394b
EA
3806 if (obj_priv == NULL)
3807 return -ENOMEM;
3808
3809 /*
3810 * We've just allocated pages from the kernel,
3811 * so they've just been written by the CPU with
3812 * zeros. They'll need to be clflushed before we
3813 * use them with the GPU.
3814 */
3815 obj->write_domain = I915_GEM_DOMAIN_CPU;
3816 obj->read_domains = I915_GEM_DOMAIN_CPU;
3817
ba1eb1d8
KP
3818 obj_priv->agp_type = AGP_USER_MEMORY;
3819
673a394b
EA
3820 obj->driver_private = obj_priv;
3821 obj_priv->obj = obj;
de151cf6 3822 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 3823 INIT_LIST_HEAD(&obj_priv->list);
a09ba7fa 3824 INIT_LIST_HEAD(&obj_priv->fence_list);
de151cf6 3825
673a394b
EA
3826 return 0;
3827}
3828
3829void i915_gem_free_object(struct drm_gem_object *obj)
3830{
de151cf6 3831 struct drm_device *dev = obj->dev;
673a394b
EA
3832 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3833
3834 while (obj_priv->pin_count > 0)
3835 i915_gem_object_unpin(obj);
3836
71acb5eb
DA
3837 if (obj_priv->phys_obj)
3838 i915_gem_detach_phys_object(dev, obj);
3839
673a394b
EA
3840 i915_gem_object_unbind(obj);
3841
7e616158
CW
3842 if (obj_priv->mmap_offset)
3843 i915_gem_free_mmap_offset(obj);
de151cf6 3844
9a298b2a 3845 kfree(obj_priv->page_cpu_valid);
280b713b 3846 kfree(obj_priv->bit_17);
9a298b2a 3847 kfree(obj->driver_private);
673a394b
EA
3848}
3849
673a394b
EA
3850/** Unbinds all objects that are on the given buffer list. */
3851static int
3852i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3853{
3854 struct drm_gem_object *obj;
3855 struct drm_i915_gem_object *obj_priv;
3856 int ret;
3857
3858 while (!list_empty(head)) {
3859 obj_priv = list_first_entry(head,
3860 struct drm_i915_gem_object,
3861 list);
3862 obj = obj_priv->obj;
3863
3864 if (obj_priv->pin_count != 0) {
3865 DRM_ERROR("Pinned object in unbind list\n");
3866 mutex_unlock(&dev->struct_mutex);
3867 return -EINVAL;
3868 }
3869
3870 ret = i915_gem_object_unbind(obj);
3871 if (ret != 0) {
3872 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3873 ret);
3874 mutex_unlock(&dev->struct_mutex);
3875 return ret;
3876 }
3877 }
3878
3879
3880 return 0;
3881}
3882
5669fcac 3883int
673a394b
EA
3884i915_gem_idle(struct drm_device *dev)
3885{
3886 drm_i915_private_t *dev_priv = dev->dev_private;
3887 uint32_t seqno, cur_seqno, last_seqno;
3888 int stuck, ret;
3889
6dbe2772
KP
3890 mutex_lock(&dev->struct_mutex);
3891
3892 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3893 mutex_unlock(&dev->struct_mutex);
673a394b 3894 return 0;
6dbe2772 3895 }
673a394b
EA
3896
3897 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3898 * We need to replace this with a semaphore, or something.
3899 */
3900 dev_priv->mm.suspended = 1;
f65d9421 3901 del_timer(&dev_priv->hangcheck_timer);
673a394b 3902
6dbe2772
KP
3903 /* Cancel the retire work handler, wait for it to finish if running
3904 */
3905 mutex_unlock(&dev->struct_mutex);
3906 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3907 mutex_lock(&dev->struct_mutex);
3908
673a394b
EA
3909 i915_kernel_lost_context(dev);
3910
3911 /* Flush the GPU along with all non-CPU write domains
3912 */
21d509e3
CW
3913 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3914 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
673a394b
EA
3915
3916 if (seqno == 0) {
3917 mutex_unlock(&dev->struct_mutex);
3918 return -ENOMEM;
3919 }
3920
3921 dev_priv->mm.waiting_gem_seqno = seqno;
3922 last_seqno = 0;
3923 stuck = 0;
3924 for (;;) {
3925 cur_seqno = i915_get_gem_seqno(dev);
3926 if (i915_seqno_passed(cur_seqno, seqno))
3927 break;
3928 if (last_seqno == cur_seqno) {
3929 if (stuck++ > 100) {
3930 DRM_ERROR("hardware wedged\n");
ba1234d1 3931 atomic_set(&dev_priv->mm.wedged, 1);
673a394b
EA
3932 DRM_WAKEUP(&dev_priv->irq_queue);
3933 break;
3934 }
3935 }
3936 msleep(10);
3937 last_seqno = cur_seqno;
3938 }
3939 dev_priv->mm.waiting_gem_seqno = 0;
3940
3941 i915_gem_retire_requests(dev);
3942
5e118f41 3943 spin_lock(&dev_priv->mm.active_list_lock);
ba1234d1 3944 if (!atomic_read(&dev_priv->mm.wedged)) {
28dfe52a
EA
3945 /* Active and flushing should now be empty as we've
3946 * waited for a sequence higher than any pending execbuffer
3947 */
3948 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3949 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3950 /* Request should now be empty as we've also waited
3951 * for the last request in the list
3952 */
3953 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3954 }
673a394b 3955
28dfe52a
EA
3956 /* Empty the active and flushing lists to inactive. If there's
3957 * anything left at this point, it means that we're wedged and
3958 * nothing good's going to happen by leaving them there. So strip
3959 * the GPU domains and just stuff them onto inactive.
673a394b 3960 */
28dfe52a
EA
3961 while (!list_empty(&dev_priv->mm.active_list)) {
3962 struct drm_i915_gem_object *obj_priv;
673a394b 3963
28dfe52a
EA
3964 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3965 struct drm_i915_gem_object,
3966 list);
3967 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3968 i915_gem_object_move_to_inactive(obj_priv->obj);
3969 }
5e118f41 3970 spin_unlock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3971
3972 while (!list_empty(&dev_priv->mm.flushing_list)) {
3973 struct drm_i915_gem_object *obj_priv;
3974
151903d5 3975 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3976 struct drm_i915_gem_object,
3977 list);
3978 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3979 i915_gem_object_move_to_inactive(obj_priv->obj);
3980 }
3981
3982
3983 /* Move all inactive buffers out of the GTT. */
673a394b 3984 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3985 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3986 if (ret) {
3987 mutex_unlock(&dev->struct_mutex);
673a394b 3988 return ret;
6dbe2772 3989 }
673a394b 3990
6dbe2772
KP
3991 i915_gem_cleanup_ringbuffer(dev);
3992 mutex_unlock(&dev->struct_mutex);
3993
673a394b
EA
3994 return 0;
3995}
3996
3997static int
3998i915_gem_init_hws(struct drm_device *dev)
3999{
4000 drm_i915_private_t *dev_priv = dev->dev_private;
4001 struct drm_gem_object *obj;
4002 struct drm_i915_gem_object *obj_priv;
4003 int ret;
4004
4005 /* If we need a physical address for the status page, it's already
4006 * initialized at driver load time.
4007 */
4008 if (!I915_NEED_GFX_HWS(dev))
4009 return 0;
4010
4011 obj = drm_gem_object_alloc(dev, 4096);
4012 if (obj == NULL) {
4013 DRM_ERROR("Failed to allocate status page\n");
4014 return -ENOMEM;
4015 }
4016 obj_priv = obj->driver_private;
ba1eb1d8 4017 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
4018
4019 ret = i915_gem_object_pin(obj, 4096);
4020 if (ret != 0) {
4021 drm_gem_object_unreference(obj);
4022 return ret;
4023 }
4024
4025 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 4026
856fa198 4027 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 4028 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
4029 DRM_ERROR("Failed to map status page.\n");
4030 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 4031 i915_gem_object_unpin(obj);
673a394b
EA
4032 drm_gem_object_unreference(obj);
4033 return -EINVAL;
4034 }
4035 dev_priv->hws_obj = obj;
673a394b
EA
4036 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4037 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 4038 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
4039 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4040
4041 return 0;
4042}
4043
85a7bb98
CW
4044static void
4045i915_gem_cleanup_hws(struct drm_device *dev)
4046{
4047 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
4048 struct drm_gem_object *obj;
4049 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
4050
4051 if (dev_priv->hws_obj == NULL)
4052 return;
4053
bab2d1f6
CW
4054 obj = dev_priv->hws_obj;
4055 obj_priv = obj->driver_private;
4056
856fa198 4057 kunmap(obj_priv->pages[0]);
85a7bb98
CW
4058 i915_gem_object_unpin(obj);
4059 drm_gem_object_unreference(obj);
4060 dev_priv->hws_obj = NULL;
bab2d1f6 4061
85a7bb98
CW
4062 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4063 dev_priv->hw_status_page = NULL;
4064
4065 /* Write high address into HWS_PGA when disabling. */
4066 I915_WRITE(HWS_PGA, 0x1ffff000);
4067}
4068
79e53945 4069int
673a394b
EA
4070i915_gem_init_ringbuffer(struct drm_device *dev)
4071{
4072 drm_i915_private_t *dev_priv = dev->dev_private;
4073 struct drm_gem_object *obj;
4074 struct drm_i915_gem_object *obj_priv;
79e53945 4075 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 4076 int ret;
50aa253d 4077 u32 head;
673a394b
EA
4078
4079 ret = i915_gem_init_hws(dev);
4080 if (ret != 0)
4081 return ret;
4082
4083 obj = drm_gem_object_alloc(dev, 128 * 1024);
4084 if (obj == NULL) {
4085 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 4086 i915_gem_cleanup_hws(dev);
673a394b
EA
4087 return -ENOMEM;
4088 }
4089 obj_priv = obj->driver_private;
4090
4091 ret = i915_gem_object_pin(obj, 4096);
4092 if (ret != 0) {
4093 drm_gem_object_unreference(obj);
85a7bb98 4094 i915_gem_cleanup_hws(dev);
673a394b
EA
4095 return ret;
4096 }
4097
4098 /* Set up the kernel mapping for the ring. */
79e53945 4099 ring->Size = obj->size;
673a394b 4100
79e53945
JB
4101 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4102 ring->map.size = obj->size;
4103 ring->map.type = 0;
4104 ring->map.flags = 0;
4105 ring->map.mtrr = 0;
673a394b 4106
79e53945
JB
4107 drm_core_ioremap_wc(&ring->map, dev);
4108 if (ring->map.handle == NULL) {
673a394b
EA
4109 DRM_ERROR("Failed to map ringbuffer.\n");
4110 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 4111 i915_gem_object_unpin(obj);
673a394b 4112 drm_gem_object_unreference(obj);
85a7bb98 4113 i915_gem_cleanup_hws(dev);
673a394b
EA
4114 return -EINVAL;
4115 }
79e53945
JB
4116 ring->ring_obj = obj;
4117 ring->virtual_start = ring->map.handle;
673a394b
EA
4118
4119 /* Stop the ring if it's running. */
4120 I915_WRITE(PRB0_CTL, 0);
673a394b 4121 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4122 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4123
4124 /* Initialize the ring. */
4125 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4126 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4127
4128 /* G45 ring initialization fails to reset head to zero */
4129 if (head != 0) {
4130 DRM_ERROR("Ring head not reset to zero "
4131 "ctl %08x head %08x tail %08x start %08x\n",
4132 I915_READ(PRB0_CTL),
4133 I915_READ(PRB0_HEAD),
4134 I915_READ(PRB0_TAIL),
4135 I915_READ(PRB0_START));
4136 I915_WRITE(PRB0_HEAD, 0);
4137
4138 DRM_ERROR("Ring head forced to zero "
4139 "ctl %08x head %08x tail %08x start %08x\n",
4140 I915_READ(PRB0_CTL),
4141 I915_READ(PRB0_HEAD),
4142 I915_READ(PRB0_TAIL),
4143 I915_READ(PRB0_START));
4144 }
4145
673a394b
EA
4146 I915_WRITE(PRB0_CTL,
4147 ((obj->size - 4096) & RING_NR_PAGES) |
4148 RING_NO_REPORT |
4149 RING_VALID);
4150
50aa253d
KP
4151 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4152
4153 /* If the head is still not zero, the ring is dead */
4154 if (head != 0) {
4155 DRM_ERROR("Ring initialization failed "
4156 "ctl %08x head %08x tail %08x start %08x\n",
4157 I915_READ(PRB0_CTL),
4158 I915_READ(PRB0_HEAD),
4159 I915_READ(PRB0_TAIL),
4160 I915_READ(PRB0_START));
4161 return -EIO;
4162 }
4163
673a394b 4164 /* Update our cache of the ring state */
79e53945
JB
4165 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4166 i915_kernel_lost_context(dev);
4167 else {
4168 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4169 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4170 ring->space = ring->head - (ring->tail + 8);
4171 if (ring->space < 0)
4172 ring->space += ring->Size;
4173 }
673a394b
EA
4174
4175 return 0;
4176}
4177
79e53945 4178void
673a394b
EA
4179i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4180{
4181 drm_i915_private_t *dev_priv = dev->dev_private;
4182
4183 if (dev_priv->ring.ring_obj == NULL)
4184 return;
4185
4186 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4187
4188 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4189 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4190 dev_priv->ring.ring_obj = NULL;
4191 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4192
85a7bb98 4193 i915_gem_cleanup_hws(dev);
673a394b
EA
4194}
4195
4196int
4197i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4198 struct drm_file *file_priv)
4199{
4200 drm_i915_private_t *dev_priv = dev->dev_private;
4201 int ret;
4202
79e53945
JB
4203 if (drm_core_check_feature(dev, DRIVER_MODESET))
4204 return 0;
4205
ba1234d1 4206 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4207 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4208 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4209 }
4210
673a394b 4211 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4212 dev_priv->mm.suspended = 0;
4213
4214 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4215 if (ret != 0) {
4216 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4217 return ret;
d816f6ac 4218 }
9bb2d6f9 4219
5e118f41 4220 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4221 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4222 spin_unlock(&dev_priv->mm.active_list_lock);
4223
673a394b
EA
4224 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4225 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4226 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4227 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4228
4229 drm_irq_install(dev);
4230
673a394b
EA
4231 return 0;
4232}
4233
4234int
4235i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4236 struct drm_file *file_priv)
4237{
4238 int ret;
4239
79e53945
JB
4240 if (drm_core_check_feature(dev, DRIVER_MODESET))
4241 return 0;
4242
673a394b 4243 ret = i915_gem_idle(dev);
dbb19d30
KH
4244 drm_irq_uninstall(dev);
4245
6dbe2772 4246 return ret;
673a394b
EA
4247}
4248
4249void
4250i915_gem_lastclose(struct drm_device *dev)
4251{
4252 int ret;
673a394b 4253
e806b495
EA
4254 if (drm_core_check_feature(dev, DRIVER_MODESET))
4255 return;
4256
6dbe2772
KP
4257 ret = i915_gem_idle(dev);
4258 if (ret)
4259 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4260}
4261
4262void
4263i915_gem_load(struct drm_device *dev)
4264{
b5aa8a0f 4265 int i;
673a394b
EA
4266 drm_i915_private_t *dev_priv = dev->dev_private;
4267
5e118f41 4268 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4269 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4270 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4271 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4272 INIT_LIST_HEAD(&dev_priv->mm.request_list);
a09ba7fa 4273 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
673a394b
EA
4274 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4275 i915_gem_retire_work_handler);
4276 dev_priv->mm.next_gem_seqno = 1;
4277
de151cf6
JB
4278 /* Old X drivers will take 0-2 for front, back, depth buffers */
4279 dev_priv->fence_reg_start = 3;
4280
0f973f27 4281 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4282 dev_priv->num_fence_regs = 16;
4283 else
4284 dev_priv->num_fence_regs = 8;
4285
b5aa8a0f
GH
4286 /* Initialize fence registers to zero */
4287 if (IS_I965G(dev)) {
4288 for (i = 0; i < 16; i++)
4289 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4290 } else {
4291 for (i = 0; i < 8; i++)
4292 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4293 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4294 for (i = 0; i < 8; i++)
4295 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4296 }
4297
673a394b
EA
4298 i915_gem_detect_bit_6_swizzle(dev);
4299}
71acb5eb
DA
4300
4301/*
4302 * Create a physically contiguous memory object for this object
4303 * e.g. for cursor + overlay regs
4304 */
4305int i915_gem_init_phys_object(struct drm_device *dev,
4306 int id, int size)
4307{
4308 drm_i915_private_t *dev_priv = dev->dev_private;
4309 struct drm_i915_gem_phys_object *phys_obj;
4310 int ret;
4311
4312 if (dev_priv->mm.phys_objs[id - 1] || !size)
4313 return 0;
4314
9a298b2a 4315 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4316 if (!phys_obj)
4317 return -ENOMEM;
4318
4319 phys_obj->id = id;
4320
4321 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4322 if (!phys_obj->handle) {
4323 ret = -ENOMEM;
4324 goto kfree_obj;
4325 }
4326#ifdef CONFIG_X86
4327 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4328#endif
4329
4330 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4331
4332 return 0;
4333kfree_obj:
9a298b2a 4334 kfree(phys_obj);
71acb5eb
DA
4335 return ret;
4336}
4337
4338void i915_gem_free_phys_object(struct drm_device *dev, int id)
4339{
4340 drm_i915_private_t *dev_priv = dev->dev_private;
4341 struct drm_i915_gem_phys_object *phys_obj;
4342
4343 if (!dev_priv->mm.phys_objs[id - 1])
4344 return;
4345
4346 phys_obj = dev_priv->mm.phys_objs[id - 1];
4347 if (phys_obj->cur_obj) {
4348 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4349 }
4350
4351#ifdef CONFIG_X86
4352 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4353#endif
4354 drm_pci_free(dev, phys_obj->handle);
4355 kfree(phys_obj);
4356 dev_priv->mm.phys_objs[id - 1] = NULL;
4357}
4358
4359void i915_gem_free_all_phys_object(struct drm_device *dev)
4360{
4361 int i;
4362
260883c8 4363 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4364 i915_gem_free_phys_object(dev, i);
4365}
4366
4367void i915_gem_detach_phys_object(struct drm_device *dev,
4368 struct drm_gem_object *obj)
4369{
4370 struct drm_i915_gem_object *obj_priv;
4371 int i;
4372 int ret;
4373 int page_count;
4374
4375 obj_priv = obj->driver_private;
4376 if (!obj_priv->phys_obj)
4377 return;
4378
856fa198 4379 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4380 if (ret)
4381 goto out;
4382
4383 page_count = obj->size / PAGE_SIZE;
4384
4385 for (i = 0; i < page_count; i++) {
856fa198 4386 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4387 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4388
4389 memcpy(dst, src, PAGE_SIZE);
4390 kunmap_atomic(dst, KM_USER0);
4391 }
856fa198 4392 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4393 drm_agp_chipset_flush(dev);
d78b47b9
CW
4394
4395 i915_gem_object_put_pages(obj);
71acb5eb
DA
4396out:
4397 obj_priv->phys_obj->cur_obj = NULL;
4398 obj_priv->phys_obj = NULL;
4399}
4400
4401int
4402i915_gem_attach_phys_object(struct drm_device *dev,
4403 struct drm_gem_object *obj, int id)
4404{
4405 drm_i915_private_t *dev_priv = dev->dev_private;
4406 struct drm_i915_gem_object *obj_priv;
4407 int ret = 0;
4408 int page_count;
4409 int i;
4410
4411 if (id > I915_MAX_PHYS_OBJECT)
4412 return -EINVAL;
4413
4414 obj_priv = obj->driver_private;
4415
4416 if (obj_priv->phys_obj) {
4417 if (obj_priv->phys_obj->id == id)
4418 return 0;
4419 i915_gem_detach_phys_object(dev, obj);
4420 }
4421
4422
4423 /* create a new object */
4424 if (!dev_priv->mm.phys_objs[id - 1]) {
4425 ret = i915_gem_init_phys_object(dev, id,
4426 obj->size);
4427 if (ret) {
aeb565df 4428 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4429 goto out;
4430 }
4431 }
4432
4433 /* bind to the object */
4434 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4435 obj_priv->phys_obj->cur_obj = obj;
4436
856fa198 4437 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4438 if (ret) {
4439 DRM_ERROR("failed to get page list\n");
4440 goto out;
4441 }
4442
4443 page_count = obj->size / PAGE_SIZE;
4444
4445 for (i = 0; i < page_count; i++) {
856fa198 4446 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4447 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4448
4449 memcpy(dst, src, PAGE_SIZE);
4450 kunmap_atomic(src, KM_USER0);
4451 }
4452
d78b47b9
CW
4453 i915_gem_object_put_pages(obj);
4454
71acb5eb
DA
4455 return 0;
4456out:
4457 return ret;
4458}
4459
4460static int
4461i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4462 struct drm_i915_gem_pwrite *args,
4463 struct drm_file *file_priv)
4464{
4465 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4466 void *obj_addr;
4467 int ret;
4468 char __user *user_data;
4469
4470 user_data = (char __user *) (uintptr_t) args->data_ptr;
4471 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4472
e08fb4f6 4473 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4474 ret = copy_from_user(obj_addr, user_data, args->size);
4475 if (ret)
4476 return -EFAULT;
4477
4478 drm_agp_chipset_flush(dev);
4479 return 0;
4480}
b962442e
EA
4481
4482void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4483{
4484 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4485
4486 /* Clean up our request list when the client is going away, so that
4487 * later retire_requests won't dereference our soon-to-be-gone
4488 * file_priv.
4489 */
4490 mutex_lock(&dev->struct_mutex);
4491 while (!list_empty(&i915_file_priv->mm.request_list))
4492 list_del_init(i915_file_priv->mm.request_list.next);
4493 mutex_unlock(&dev->struct_mutex);
4494}