Merge tag 'omap-for-v5.7/defconfig-signed' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / drivers / gpu / drm / i915 / i915_active.c
CommitLineData
64d6c500
CW
1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
5361db1a
CW
7#include <linux/debugobjects.h>
8
e6ba7648 9#include "gt/intel_context.h"
7009db14 10#include "gt/intel_engine_pm.h"
2871ea85 11#include "gt/intel_ring.h"
7009db14 12
64d6c500
CW
13#include "i915_drv.h"
14#include "i915_active.h"
103b76ee 15#include "i915_globals.h"
64d6c500 16
5f5c139d
CW
17/*
18 * Active refs memory management
19 *
20 * To be more economical with memory, we reap all the i915_active trees as
21 * they idle (when we know the active requests are inactive) and allocate the
22 * nodes from a local slab cache to hopefully reduce the fragmentation.
23 */
24static struct i915_global_active {
103b76ee 25 struct i915_global base;
5f5c139d
CW
26 struct kmem_cache *slab_cache;
27} global;
28
64d6c500 29struct active_node {
b1e3177b 30 struct i915_active_fence base;
64d6c500
CW
31 struct i915_active *ref;
32 struct rb_node node;
33 u64 timeline;
34};
35
d8af05ff 36static inline struct active_node *
b1e3177b 37node_from_active(struct i915_active_fence *active)
d8af05ff
CW
38{
39 return container_of(active, struct active_node, base);
40}
41
42#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
43
b1e3177b 44static inline bool is_barrier(const struct i915_active_fence *active)
d8af05ff 45{
b1e3177b 46 return IS_ERR(rcu_access_pointer(active->fence));
d8af05ff
CW
47}
48
49static inline struct llist_node *barrier_to_ll(struct active_node *node)
50{
51 GEM_BUG_ON(!is_barrier(&node->base));
b1e3177b 52 return (struct llist_node *)&node->base.cb.node;
d8af05ff
CW
53}
54
f130b712
CW
55static inline struct intel_engine_cs *
56__barrier_to_engine(struct active_node *node)
57{
b1e3177b 58 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
f130b712
CW
59}
60
d8af05ff
CW
61static inline struct intel_engine_cs *
62barrier_to_engine(struct active_node *node)
63{
64 GEM_BUG_ON(!is_barrier(&node->base));
f130b712 65 return __barrier_to_engine(node);
d8af05ff
CW
66}
67
68static inline struct active_node *barrier_from_ll(struct llist_node *x)
69{
70 return container_of((struct list_head *)x,
b1e3177b 71 struct active_node, base.cb.node);
d8af05ff
CW
72}
73
5361db1a
CW
74#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
75
76static void *active_debug_hint(void *addr)
77{
78 struct i915_active *ref = addr;
79
12c255b5 80 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
5361db1a
CW
81}
82
83static struct debug_obj_descr active_debug_desc = {
84 .name = "i915_active",
85 .debug_hint = active_debug_hint,
86};
87
88static void debug_active_init(struct i915_active *ref)
89{
90 debug_object_init(ref, &active_debug_desc);
91}
92
93static void debug_active_activate(struct i915_active *ref)
94{
bbca083d 95 lockdep_assert_held(&ref->tree_lock);
f52c6d0d
CW
96 if (!atomic_read(&ref->count)) /* before the first inc */
97 debug_object_activate(ref, &active_debug_desc);
5361db1a
CW
98}
99
100static void debug_active_deactivate(struct i915_active *ref)
101{
c9ad602f 102 lockdep_assert_held(&ref->tree_lock);
f52c6d0d
CW
103 if (!atomic_read(&ref->count)) /* after the last dec */
104 debug_object_deactivate(ref, &active_debug_desc);
5361db1a
CW
105}
106
107static void debug_active_fini(struct i915_active *ref)
108{
109 debug_object_free(ref, &active_debug_desc);
110}
111
112static void debug_active_assert(struct i915_active *ref)
113{
114 debug_object_assert_init(ref, &active_debug_desc);
115}
116
117#else
118
119static inline void debug_active_init(struct i915_active *ref) { }
120static inline void debug_active_activate(struct i915_active *ref) { }
121static inline void debug_active_deactivate(struct i915_active *ref) { }
122static inline void debug_active_fini(struct i915_active *ref) { }
123static inline void debug_active_assert(struct i915_active *ref) { }
124
125#endif
126
a42375af 127static void
12c255b5 128__active_retire(struct i915_active *ref)
a42375af
CW
129{
130 struct active_node *it, *n;
12c255b5 131 struct rb_root root;
c9ad602f 132 unsigned long flags;
12c255b5 133
274cbf20 134 GEM_BUG_ON(i915_active_is_idle(ref));
12c255b5
CW
135
136 /* return the unused nodes to our slabcache -- flushing the allocator */
c9ad602f 137 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
12c255b5
CW
138 return;
139
b1e3177b 140 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
c9ad602f
CW
141 debug_active_deactivate(ref);
142
143 root = ref->tree;
144 ref->tree = RB_ROOT;
145 ref->cache = NULL;
146
147 spin_unlock_irqrestore(&ref->tree_lock, flags);
e1d7b66b
CW
148
149 /* After the final retire, the entire struct may be freed */
150 if (ref->retire)
151 ref->retire(ref);
b1e3177b
CW
152
153 /* ... except if you wait on it, you must manage your own references! */
154 wake_up_var(ref);
c9ad602f
CW
155
156 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
157 GEM_BUG_ON(i915_active_fence_isset(&it->base));
158 kmem_cache_free(global.slab_cache, it);
159 }
a42375af
CW
160}
161
274cbf20
CW
162static void
163active_work(struct work_struct *wrk)
164{
165 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
166
167 GEM_BUG_ON(!atomic_read(&ref->count));
168 if (atomic_add_unless(&ref->count, -1, 1))
169 return;
170
274cbf20
CW
171 __active_retire(ref);
172}
173
64d6c500 174static void
12c255b5 175active_retire(struct i915_active *ref)
64d6c500 176{
12c255b5
CW
177 GEM_BUG_ON(!atomic_read(&ref->count));
178 if (atomic_add_unless(&ref->count, -1, 1))
a42375af
CW
179 return;
180
c9ad602f 181 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
274cbf20
CW
182 queue_work(system_unbound_wq, &ref->work);
183 return;
184 }
185
12c255b5 186 __active_retire(ref);
64d6c500
CW
187}
188
df9f85d8
CW
189static inline struct dma_fence **
190__active_fence_slot(struct i915_active_fence *active)
191{
192 return (struct dma_fence ** __force)&active->fence;
193}
194
195static inline bool
196active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197{
198 struct i915_active_fence *active =
199 container_of(cb, typeof(*active), cb);
200
201 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
202}
203
64d6c500 204static void
b1e3177b 205node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
64d6c500 206{
df9f85d8
CW
207 if (active_fence_cb(fence, cb))
208 active_retire(container_of(cb, struct active_node, base.cb)->ref);
64d6c500
CW
209}
210
b1e3177b
CW
211static void
212excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
213{
df9f85d8
CW
214 if (active_fence_cb(fence, cb))
215 active_retire(container_of(cb, struct i915_active, excl.cb));
b1e3177b
CW
216}
217
218static struct i915_active_fence *
25ffd4b1 219active_instance(struct i915_active *ref, struct intel_timeline *tl)
64d6c500 220{
12c255b5 221 struct active_node *node, *prealloc;
64d6c500 222 struct rb_node **p, *parent;
25ffd4b1 223 u64 idx = tl->fence_context;
64d6c500
CW
224
225 /*
226 * We track the most recently used timeline to skip a rbtree search
227 * for the common case, under typical loads we never need the rbtree
228 * at all. We can reuse the last slot if it is empty, that is
229 * after the previous activity has been retired, or if it matches the
230 * current timeline.
64d6c500 231 */
12c255b5
CW
232 node = READ_ONCE(ref->cache);
233 if (node && node->timeline == idx)
234 return &node->base;
235
236 /* Preallocate a replacement, just in case */
237 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
238 if (!prealloc)
239 return NULL;
64d6c500 240
c9ad602f 241 spin_lock_irq(&ref->tree_lock);
12c255b5 242 GEM_BUG_ON(i915_active_is_idle(ref));
64d6c500
CW
243
244 parent = NULL;
245 p = &ref->tree.rb_node;
246 while (*p) {
247 parent = *p;
248
249 node = rb_entry(parent, struct active_node, node);
12c255b5
CW
250 if (node->timeline == idx) {
251 kmem_cache_free(global.slab_cache, prealloc);
252 goto out;
253 }
64d6c500
CW
254
255 if (node->timeline < idx)
256 p = &parent->rb_right;
257 else
258 p = &parent->rb_left;
259 }
260
12c255b5 261 node = prealloc;
df9f85d8 262 __i915_active_fence_init(&node->base, NULL, node_retire);
64d6c500
CW
263 node->ref = ref;
264 node->timeline = idx;
265
266 rb_link_node(&node->node, parent, p);
267 rb_insert_color(&node->node, &ref->tree);
268
64d6c500 269out:
12c255b5 270 ref->cache = node;
c9ad602f 271 spin_unlock_irq(&ref->tree_lock);
12c255b5 272
d8af05ff 273 BUILD_BUG_ON(offsetof(typeof(*node), base));
12c255b5 274 return &node->base;
64d6c500
CW
275}
276
b1e3177b 277void __i915_active_init(struct i915_active *ref,
12c255b5
CW
278 int (*active)(struct i915_active *ref),
279 void (*retire)(struct i915_active *ref),
ae303004
CW
280 struct lock_class_key *mkey,
281 struct lock_class_key *wkey)
64d6c500 282{
274cbf20
CW
283 unsigned long bits;
284
5361db1a
CW
285 debug_active_init(ref);
286
79c7a28e 287 ref->flags = 0;
12c255b5 288 ref->active = active;
274cbf20
CW
289 ref->retire = ptr_unpack_bits(retire, &bits, 2);
290 if (bits & I915_ACTIVE_MAY_SLEEP)
291 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
2850748e 292
c9ad602f 293 spin_lock_init(&ref->tree_lock);
64d6c500 294 ref->tree = RB_ROOT;
12c255b5 295 ref->cache = NULL;
c9ad602f 296
d8af05ff 297 init_llist_head(&ref->preallocated_barriers);
12c255b5 298 atomic_set(&ref->count, 0);
ae303004 299 __mutex_init(&ref->mutex, "i915_active", mkey);
df9f85d8 300 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
274cbf20 301 INIT_WORK(&ref->work, active_work);
ae303004
CW
302#if IS_ENABLED(CONFIG_LOCKDEP)
303 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
304#endif
64d6c500
CW
305}
306
f130b712
CW
307static bool ____active_del_barrier(struct i915_active *ref,
308 struct active_node *node,
309 struct intel_engine_cs *engine)
310
d8af05ff 311{
d8af05ff
CW
312 struct llist_node *head = NULL, *tail = NULL;
313 struct llist_node *pos, *next;
314
75d0a7f3 315 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
d8af05ff
CW
316
317 /*
318 * Rebuild the llist excluding our node. We may perform this
319 * outside of the kernel_context timeline mutex and so someone
320 * else may be manipulating the engine->barrier_tasks, in
321 * which case either we or they will be upset :)
322 *
323 * A second __active_del_barrier() will report failure to claim
324 * the active_node and the caller will just shrug and know not to
325 * claim ownership of its node.
326 *
327 * A concurrent i915_request_add_active_barriers() will miss adding
328 * any of the tasks, but we will try again on the next -- and since
329 * we are actively using the barrier, we know that there will be
330 * at least another opportunity when we idle.
331 */
332 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
333 if (node == barrier_from_ll(pos)) {
334 node = NULL;
335 continue;
336 }
337
338 pos->next = head;
339 head = pos;
340 if (!tail)
341 tail = pos;
342 }
343 if (head)
344 llist_add_batch(head, tail, &engine->barrier_tasks);
345
346 return !node;
347}
348
f130b712
CW
349static bool
350__active_del_barrier(struct i915_active *ref, struct active_node *node)
351{
352 return ____active_del_barrier(ref, node, barrier_to_engine(node));
353}
354
64d6c500 355int i915_active_ref(struct i915_active *ref,
25ffd4b1 356 struct intel_timeline *tl,
b1e3177b 357 struct dma_fence *fence)
64d6c500 358{
b1e3177b 359 struct i915_active_fence *active;
12c255b5 360 int err;
312c4ba1 361
25ffd4b1
CW
362 lockdep_assert_held(&tl->mutex);
363
312c4ba1 364 /* Prevent reaping in case we malloc/wait while building the tree */
12c255b5
CW
365 err = i915_active_acquire(ref);
366 if (err)
367 return err;
64d6c500 368
25ffd4b1 369 active = active_instance(ref, tl);
12c255b5
CW
370 if (!active) {
371 err = -ENOMEM;
312c4ba1
CW
372 goto out;
373 }
64d6c500 374
d8af05ff
CW
375 if (is_barrier(active)) { /* proto-node used by our idle barrier */
376 /*
377 * This request is on the kernel_context timeline, and so
378 * we can use it to substitute for the pending idle-barrer
379 * request that we want to emit on the kernel_context.
380 */
381 __active_del_barrier(ref, node_from_active(active));
b1e3177b
CW
382 RCU_INIT_POINTER(active->fence, NULL);
383 atomic_dec(&ref->count);
d8af05ff 384 }
b1e3177b
CW
385 if (!__i915_active_fence_set(active, fence))
386 atomic_inc(&ref->count);
64d6c500 387
312c4ba1
CW
388out:
389 i915_active_release(ref);
390 return err;
64d6c500
CW
391}
392
2850748e
CW
393void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
394{
395 /* We expect the caller to manage the exclusive timeline ordering */
396 GEM_BUG_ON(i915_active_is_idle(ref));
397
b1e3177b
CW
398 if (!__i915_active_fence_set(&ref->excl, f))
399 atomic_inc(&ref->count);
b1e3177b 400}
2850748e 401
b1e3177b
CW
402bool i915_active_acquire_if_busy(struct i915_active *ref)
403{
404 debug_active_assert(ref);
405 return atomic_add_unless(&ref->count, 1, 0);
2850748e
CW
406}
407
12c255b5 408int i915_active_acquire(struct i915_active *ref)
64d6c500 409{
12c255b5
CW
410 int err;
411
b1e3177b 412 if (i915_active_acquire_if_busy(ref))
12c255b5 413 return 0;
5361db1a 414
12c255b5
CW
415 err = mutex_lock_interruptible(&ref->mutex);
416 if (err)
417 return err;
5361db1a 418
7c34bb03
CW
419 if (likely(!i915_active_acquire_if_busy(ref))) {
420 if (ref->active)
421 err = ref->active(ref);
422 if (!err) {
423 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
424 debug_active_activate(ref);
425 atomic_inc(&ref->count);
426 spin_unlock_irq(&ref->tree_lock);
427 }
12c255b5
CW
428 }
429
430 mutex_unlock(&ref->mutex);
431
432 return err;
64d6c500
CW
433}
434
435void i915_active_release(struct i915_active *ref)
436{
5361db1a 437 debug_active_assert(ref);
12c255b5 438 active_retire(ref);
64d6c500
CW
439}
440
b1e3177b 441static void enable_signaling(struct i915_active_fence *active)
79c7a28e 442{
b1e3177b 443 struct dma_fence *fence;
79c7a28e 444
b1e3177b
CW
445 fence = i915_active_fence_get(active);
446 if (!fence)
447 return;
2850748e 448
b1e3177b
CW
449 dma_fence_enable_sw_signaling(fence);
450 dma_fence_put(fence);
2850748e
CW
451}
452
64d6c500
CW
453int i915_active_wait(struct i915_active *ref)
454{
455 struct active_node *it, *n;
b1e3177b 456 int err = 0;
64d6c500 457
12c255b5 458 might_sleep();
12c255b5 459
b1e3177b 460 if (!i915_active_acquire_if_busy(ref))
12c255b5 461 return 0;
2850748e 462
b1e3177b
CW
463 /* Flush lazy signals */
464 enable_signaling(&ref->excl);
64d6c500 465 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
b1e3177b
CW
466 if (is_barrier(&it->base)) /* unconnected idle barrier */
467 continue;
d8af05ff 468
b1e3177b 469 enable_signaling(&it->base);
64d6c500 470 }
b1e3177b 471 /* Any fence added after the wait begins will not be auto-signaled */
64d6c500 472
b1e3177b 473 i915_active_release(ref);
afd1bcd4
CW
474 if (err)
475 return err;
476
b1e3177b 477 if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
79c7a28e
CW
478 return -EINTR;
479
e1cda6a5 480 flush_work(&ref->work);
afd1bcd4 481 return 0;
64d6c500
CW
482}
483
64d6c500
CW
484int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
485{
2850748e 486 int err = 0;
64d6c500 487
b1e3177b 488 if (rcu_access_pointer(ref->excl.fence)) {
2850748e 489 struct dma_fence *fence;
312c4ba1 490
2850748e 491 rcu_read_lock();
b1e3177b 492 fence = dma_fence_get_rcu_safe(&ref->excl.fence);
2850748e
CW
493 rcu_read_unlock();
494 if (fence) {
495 err = i915_request_await_dma_fence(rq, fence);
496 dma_fence_put(fence);
497 }
64d6c500
CW
498 }
499
2850748e
CW
500 /* In the future we may choose to await on all fences */
501
312c4ba1 502 return err;
64d6c500
CW
503}
504
a42375af 505#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
64d6c500
CW
506void i915_active_fini(struct i915_active *ref)
507{
5361db1a 508 debug_active_fini(ref);
12c255b5 509 GEM_BUG_ON(atomic_read(&ref->count));
274cbf20
CW
510 GEM_BUG_ON(work_pending(&ref->work));
511 GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
12c255b5 512 mutex_destroy(&ref->mutex);
64d6c500 513}
a42375af 514#endif
64d6c500 515
d8af05ff
CW
516static inline bool is_idle_barrier(struct active_node *node, u64 idx)
517{
b1e3177b 518 return node->timeline == idx && !i915_active_fence_isset(&node->base);
d8af05ff
CW
519}
520
521static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
522{
523 struct rb_node *prev, *p;
524
525 if (RB_EMPTY_ROOT(&ref->tree))
526 return NULL;
527
c9ad602f 528 spin_lock_irq(&ref->tree_lock);
d8af05ff
CW
529 GEM_BUG_ON(i915_active_is_idle(ref));
530
531 /*
532 * Try to reuse any existing barrier nodes already allocated for this
533 * i915_active, due to overlapping active phases there is likely a
534 * node kept alive (as we reuse before parking). We prefer to reuse
535 * completely idle barriers (less hassle in manipulating the llists),
536 * but otherwise any will do.
537 */
538 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
539 p = &ref->cache->node;
540 goto match;
541 }
542
543 prev = NULL;
544 p = ref->tree.rb_node;
545 while (p) {
546 struct active_node *node =
547 rb_entry(p, struct active_node, node);
548
549 if (is_idle_barrier(node, idx))
550 goto match;
551
552 prev = p;
553 if (node->timeline < idx)
554 p = p->rb_right;
555 else
556 p = p->rb_left;
557 }
558
559 /*
560 * No quick match, but we did find the leftmost rb_node for the
561 * kernel_context. Walk the rb_tree in-order to see if there were
562 * any idle-barriers on this timeline that we missed, or just use
563 * the first pending barrier.
564 */
565 for (p = prev; p; p = rb_next(p)) {
566 struct active_node *node =
567 rb_entry(p, struct active_node, node);
f130b712 568 struct intel_engine_cs *engine;
d8af05ff
CW
569
570 if (node->timeline > idx)
571 break;
572
573 if (node->timeline < idx)
574 continue;
575
576 if (is_idle_barrier(node, idx))
577 goto match;
578
579 /*
580 * The list of pending barriers is protected by the
581 * kernel_context timeline, which notably we do not hold
582 * here. i915_request_add_active_barriers() may consume
583 * the barrier before we claim it, so we have to check
584 * for success.
585 */
f130b712
CW
586 engine = __barrier_to_engine(node);
587 smp_rmb(); /* serialise with add_active_barriers */
588 if (is_barrier(&node->base) &&
589 ____active_del_barrier(ref, node, engine))
d8af05ff
CW
590 goto match;
591 }
592
c9ad602f 593 spin_unlock_irq(&ref->tree_lock);
d8af05ff
CW
594
595 return NULL;
596
597match:
598 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
599 if (p == &ref->cache->node)
600 ref->cache = NULL;
c9ad602f 601 spin_unlock_irq(&ref->tree_lock);
d8af05ff
CW
602
603 return rb_entry(p, struct active_node, node);
604}
605
ce476c80
CW
606int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
607 struct intel_engine_cs *engine)
608{
3f99a614 609 intel_engine_mask_t tmp, mask = engine->mask;
52144db1 610 struct llist_node *first = NULL, *last = NULL;
a50134b1 611 struct intel_gt *gt = engine->gt;
7009db14 612 int err;
ce476c80 613
b5e8e954 614 GEM_BUG_ON(i915_active_is_idle(ref));
84135022
CW
615
616 /* Wait until the previous preallocation is completed */
617 while (!llist_empty(&ref->preallocated_barriers))
618 cond_resched();
d8af05ff
CW
619
620 /*
621 * Preallocate a node for each physical engine supporting the target
622 * engine (remember virtual engines have more than one sibling).
623 * We can then use the preallocated nodes in
624 * i915_active_acquire_barrier()
625 */
a50134b1 626 for_each_engine_masked(engine, gt, mask, tmp) {
75d0a7f3 627 u64 idx = engine->kernel_context->timeline->fence_context;
52144db1 628 struct llist_node *prev = first;
ce476c80
CW
629 struct active_node *node;
630
d8af05ff
CW
631 node = reuse_idle_barrier(ref, idx);
632 if (!node) {
633 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
634 if (!node) {
635 err = ENOMEM;
636 goto unwind;
637 }
638
b1e3177b
CW
639 RCU_INIT_POINTER(node->base.fence, NULL);
640 node->base.cb.func = node_retire;
d8af05ff
CW
641 node->timeline = idx;
642 node->ref = ref;
ce476c80
CW
643 }
644
b1e3177b 645 if (!i915_active_fence_isset(&node->base)) {
d8af05ff
CW
646 /*
647 * Mark this as being *our* unconnected proto-node.
648 *
649 * Since this node is not in any list, and we have
650 * decoupled it from the rbtree, we can reuse the
651 * request to indicate this is an idle-barrier node
652 * and then we can use the rb_node and list pointers
653 * for our tracking of the pending barrier.
654 */
b1e3177b
CW
655 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
656 node->base.cb.node.prev = (void *)engine;
d8af05ff
CW
657 atomic_inc(&ref->count);
658 }
df9f85d8 659 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
ce476c80 660
d8af05ff 661 GEM_BUG_ON(barrier_to_engine(node) != engine);
52144db1
JRS
662 first = barrier_to_ll(node);
663 first->next = prev;
664 if (!last)
665 last = first;
7009db14 666 intel_engine_pm_get(engine);
ce476c80
CW
667 }
668
84135022 669 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
52144db1 670 llist_add_batch(first, last, &ref->preallocated_barriers);
84135022 671
7009db14
CW
672 return 0;
673
674unwind:
52144db1
JRS
675 while (first) {
676 struct active_node *node = barrier_from_ll(first);
7009db14 677
52144db1 678 first = first->next;
84135022 679
d8af05ff
CW
680 atomic_dec(&ref->count);
681 intel_engine_pm_put(barrier_to_engine(node));
7009db14 682
7009db14
CW
683 kmem_cache_free(global.slab_cache, node);
684 }
ce476c80
CW
685 return err;
686}
687
688void i915_active_acquire_barrier(struct i915_active *ref)
689{
690 struct llist_node *pos, *next;
c9ad602f 691 unsigned long flags;
ce476c80 692
12c255b5 693 GEM_BUG_ON(i915_active_is_idle(ref));
ce476c80 694
d8af05ff
CW
695 /*
696 * Transfer the list of preallocated barriers into the
697 * i915_active rbtree, but only as proto-nodes. They will be
698 * populated by i915_request_add_active_barriers() to point to the
699 * request that will eventually release them.
700 */
d8af05ff
CW
701 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
702 struct active_node *node = barrier_from_ll(pos);
703 struct intel_engine_cs *engine = barrier_to_engine(node);
ce476c80
CW
704 struct rb_node **p, *parent;
705
07779a76
CW
706 spin_lock_irqsave_nested(&ref->tree_lock, flags,
707 SINGLE_DEPTH_NESTING);
ce476c80
CW
708 parent = NULL;
709 p = &ref->tree.rb_node;
710 while (*p) {
d8af05ff
CW
711 struct active_node *it;
712
ce476c80 713 parent = *p;
d8af05ff
CW
714
715 it = rb_entry(parent, struct active_node, node);
716 if (it->timeline < node->timeline)
ce476c80
CW
717 p = &parent->rb_right;
718 else
719 p = &parent->rb_left;
720 }
721 rb_link_node(&node->node, parent, p);
722 rb_insert_color(&node->node, &ref->tree);
07779a76 723 spin_unlock_irqrestore(&ref->tree_lock, flags);
ce476c80 724
b7234840 725 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
d8af05ff 726 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
7009db14 727 intel_engine_pm_put(engine);
ce476c80 728 }
ce476c80
CW
729}
730
df9f85d8
CW
731static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
732{
733 return __active_fence_slot(&barrier_from_ll(node)->base);
734}
735
d8af05ff 736void i915_request_add_active_barriers(struct i915_request *rq)
ce476c80
CW
737{
738 struct intel_engine_cs *engine = rq->engine;
739 struct llist_node *node, *next;
b1e3177b 740 unsigned long flags;
ce476c80 741
e6ba7648 742 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
d8af05ff 743 GEM_BUG_ON(intel_engine_is_virtual(engine));
d19d71fc 744 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
d8af05ff 745
b1e3177b
CW
746 node = llist_del_all(&engine->barrier_tasks);
747 if (!node)
748 return;
d8af05ff
CW
749 /*
750 * Attach the list of proto-fences to the in-flight request such
751 * that the parent i915_active will be released when this request
752 * is retired.
753 */
b1e3177b
CW
754 spin_lock_irqsave(&rq->lock, flags);
755 llist_for_each_safe(node, next, node) {
df9f85d8
CW
756 /* serialise with reuse_idle_barrier */
757 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
b1e3177b
CW
758 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
759 }
760 spin_unlock_irqrestore(&rq->lock, flags);
761}
762
b1e3177b
CW
763/*
764 * __i915_active_fence_set: Update the last active fence along its timeline
765 * @active: the active tracker
766 * @fence: the new fence (under construction)
767 *
768 * Records the new @fence as the last active fence along its timeline in
769 * this active tracker, moving the tracking callbacks from the previous
770 * fence onto this one. Returns the previous fence (if not already completed),
771 * which the caller must ensure is executed before the new fence. To ensure
772 * that the order of fences within the timeline of the i915_active_fence is
df9f85d8 773 * understood, it should be locked by the caller.
b1e3177b
CW
774 */
775struct dma_fence *
776__i915_active_fence_set(struct i915_active_fence *active,
777 struct dma_fence *fence)
778{
779 struct dma_fence *prev;
780 unsigned long flags;
781
df9f85d8
CW
782 if (fence == rcu_access_pointer(active->fence))
783 return fence;
784
b1e3177b
CW
785 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
786
df9f85d8
CW
787 /*
788 * Consider that we have two threads arriving (A and B), with
789 * C already resident as the active->fence.
790 *
791 * A does the xchg first, and so it sees C or NULL depending
792 * on the timing of the interrupt handler. If it is NULL, the
793 * previous fence must have been signaled and we know that
794 * we are first on the timeline. If it is still present,
795 * we acquire the lock on that fence and serialise with the interrupt
796 * handler, in the process removing it from any future interrupt
797 * callback. A will then wait on C before executing (if present).
798 *
799 * As B is second, it sees A as the previous fence and so waits for
800 * it to complete its transition and takes over the occupancy for
801 * itself -- remembering that it needs to wait on A before executing.
802 *
803 * Note the strong ordering of the timeline also provides consistent
804 * nesting rules for the fence->lock; the inner lock is always the
805 * older lock.
806 */
807 spin_lock_irqsave(fence->lock, flags);
808 prev = xchg(__active_fence_slot(active), fence);
b1e3177b
CW
809 if (prev) {
810 GEM_BUG_ON(prev == fence);
811 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
812 __list_del_entry(&active->cb.node);
813 spin_unlock(prev->lock); /* serialise with prev->cb_list */
d8af05ff 814 }
df9f85d8 815 GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
b1e3177b 816 list_add_tail(&active->cb.node, &fence->cb_list);
b1e3177b
CW
817 spin_unlock_irqrestore(fence->lock, flags);
818
819 return prev;
ce476c80
CW
820}
821
b1e3177b
CW
822int i915_active_fence_set(struct i915_active_fence *active,
823 struct i915_request *rq)
21950ee7 824{
b1e3177b
CW
825 struct dma_fence *fence;
826 int err = 0;
21950ee7 827
b1e3177b
CW
828 /* Must maintain timeline ordering wrt previous active requests */
829 rcu_read_lock();
830 fence = __i915_active_fence_set(active, &rq->fence);
831 if (fence) /* but the previous fence may not belong to that timeline! */
832 fence = dma_fence_get_rcu(fence);
833 rcu_read_unlock();
834 if (fence) {
835 err = i915_request_await_dma_fence(rq, fence);
836 dma_fence_put(fence);
837 }
21950ee7 838
b1e3177b 839 return err;
21950ee7
CW
840}
841
b1e3177b 842void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
21950ee7 843{
df9f85d8 844 active_fence_cb(fence, cb);
21950ee7
CW
845}
846
64d6c500
CW
847#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
848#include "selftests/i915_active.c"
849#endif
5f5c139d 850
103b76ee 851static void i915_global_active_shrink(void)
5f5c139d 852{
103b76ee 853 kmem_cache_shrink(global.slab_cache);
5f5c139d
CW
854}
855
103b76ee 856static void i915_global_active_exit(void)
32eb6bcf 857{
103b76ee 858 kmem_cache_destroy(global.slab_cache);
32eb6bcf
CW
859}
860
103b76ee
CW
861static struct i915_global_active global = { {
862 .shrink = i915_global_active_shrink,
863 .exit = i915_global_active_exit,
864} };
865
866int __init i915_global_active_init(void)
5f5c139d 867{
103b76ee
CW
868 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
869 if (!global.slab_cache)
870 return -ENOMEM;
871
872 i915_global_register(&global.base);
873 return 0;
5f5c139d 874}