uapi/drm/i915: Document memory residency and Flat-CCS capability of obj
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
52791eee 7#include <linux/dma-resv.h>
e9b67ec2
JN
8#include <linux/highmem.h>
9#include <linux/intel-iommu.h>
fec0445c 10#include <linux/sync_file.h>
ad778f89
CW
11#include <linux/uaccess.h>
12
cf6e7bac 13#include <drm/drm_syncobj.h>
ad778f89 14
df0566a6
JN
15#include "display/intel_frontbuffer.h"
16
afa13085 17#include "gem/i915_gem_ioctls.h"
10be98a7 18#include "gt/intel_context.h"
45233ab2 19#include "gt/intel_gpu_commands.h"
baea429d 20#include "gt/intel_gt.h"
16e87459 21#include "gt/intel_gt_buffer_pool.h"
8f2a1057 22#include "gt/intel_gt_pm.h"
2871ea85 23#include "gt/intel_ring.h"
8f2a1057 24
d3ac8d42
DCS
25#include "pxp/intel_pxp.h"
26
23d639d7 27#include "i915_cmd_parser.h"
6da4a2c4 28#include "i915_drv.h"
5472b3f2 29#include "i915_file_private.h"
57822dc6 30#include "i915_gem_clflush.h"
10be98a7 31#include "i915_gem_context.h"
2ef97818 32#include "i915_gem_evict.h"
6da4a2c4 33#include "i915_gem_ioctls.h"
54cf91dc 34#include "i915_trace.h"
cda9edd0 35#include "i915_user_extensions.h"
54cf91dc 36
7d6236bb
CW
37struct eb_vma {
38 struct i915_vma *vma;
39 unsigned int flags;
40
41 /** This vma's place in the execbuf reservation list */
42 struct drm_i915_gem_exec_object2 *exec;
43 struct list_head bind_link;
44 struct list_head reloc_link;
45
46 struct hlist_node node;
47 u32 handle;
48};
49
ad5d95e4
DA
50enum {
51 FORCE_CPU_RELOC = 1,
52 FORCE_GTT_RELOC,
53 FORCE_GPU_RELOC,
54#define DBG_FORCE_RELOC 0 /* choose one of the above! */
55};
56
bfaae47d
ML
57/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
58#define __EXEC_OBJECT_HAS_PIN BIT(30)
59#define __EXEC_OBJECT_HAS_FENCE BIT(29)
ed29c269
ML
60#define __EXEC_OBJECT_USERPTR_INIT BIT(28)
61#define __EXEC_OBJECT_NEEDS_MAP BIT(27)
62#define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
63#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
8ae275c2 64#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
2889caa9
CW
65
66#define __EXEC_HAS_RELOC BIT(31)
2bf541ff 67#define __EXEC_ENGINE_PINNED BIT(30)
ed29c269
ML
68#define __EXEC_USERPTR_USED BIT(29)
69#define __EXEC_INTERNAL_FLAGS (~0u << 29)
2889caa9 70#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
71
72#define BATCH_OFFSET_BIAS (256*1024)
a415d355 73
650bc635 74#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
75 (__I915_EXEC_UNKNOWN_FLAGS | \
76 I915_EXEC_CONSTANTS_MASK | \
77 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 78
d20ac620
CW
79/* Catch emission of unexpected errors for CI! */
80#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
81#undef EINVAL
82#define EINVAL ({ \
83 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
84 22; \
85})
86#endif
87
2889caa9
CW
88/**
89 * DOC: User command execution
90 *
91 * Userspace submits commands to be executed on the GPU as an instruction
92 * stream within a GEM object we call a batchbuffer. This instructions may
93 * refer to other GEM objects containing auxiliary state such as kernels,
94 * samplers, render targets and even secondary batchbuffers. Userspace does
95 * not know where in the GPU memory these objects reside and so before the
96 * batchbuffer is passed to the GPU for execution, those addresses in the
97 * batchbuffer and auxiliary objects are updated. This is known as relocation,
98 * or patching. To try and avoid having to relocate each object on the next
99 * execution, userspace is told the location of those objects in this pass,
100 * but this remains just a hint as the kernel may choose a new location for
101 * any object in the future.
102 *
99d7e4ee
KR
103 * At the level of talking to the hardware, submitting a batchbuffer for the
104 * GPU to execute is to add content to a buffer from which the HW
105 * command streamer is reading.
106 *
107 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
108 * Execlists, this command is not placed on the same buffer as the
109 * remaining items.
110 *
111 * 2. Add a command to invalidate caches to the buffer.
112 *
113 * 3. Add a batchbuffer start command to the buffer; the start command is
114 * essentially a token together with the GPU address of the batchbuffer
115 * to be executed.
116 *
117 * 4. Add a pipeline flush to the buffer.
118 *
119 * 5. Add a memory write command to the buffer to record when the GPU
120 * is done executing the batchbuffer. The memory write writes the
121 * global sequence number of the request, ``i915_request::global_seqno``;
122 * the i915 driver uses the current value in the register to determine
123 * if the GPU has completed the batchbuffer.
124 *
125 * 6. Add a user interrupt command to the buffer. This command instructs
126 * the GPU to issue an interrupt when the command, pipeline flush and
127 * memory write are completed.
128 *
129 * 7. Inform the hardware of the additional commands added to the buffer
130 * (by updating the tail pointer).
131 *
2889caa9
CW
132 * Processing an execbuf ioctl is conceptually split up into a few phases.
133 *
134 * 1. Validation - Ensure all the pointers, handles and flags are valid.
135 * 2. Reservation - Assign GPU address space for every object
136 * 3. Relocation - Update any addresses to point to the final locations
137 * 4. Serialisation - Order the request with respect to its dependencies
138 * 5. Construction - Construct a request to execute the batchbuffer
139 * 6. Submission (at some point in the future execution)
140 *
141 * Reserving resources for the execbuf is the most complicated phase. We
142 * neither want to have to migrate the object in the address space, nor do
143 * we want to have to update any relocations pointing to this object. Ideally,
144 * we want to leave the object where it is and for all the existing relocations
145 * to match. If the object is given a new address, or if userspace thinks the
146 * object is elsewhere, we have to parse all the relocation entries and update
147 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
148 * all the target addresses in all of its objects match the value in the
149 * relocation entries and that they all match the presumed offsets given by the
150 * list of execbuffer objects. Using this knowledge, we know that if we haven't
151 * moved any buffers, all the relocation entries are valid and we can skip
152 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
153 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154 *
155 * The addresses written in the objects must match the corresponding
156 * reloc.presumed_offset which in turn must match the corresponding
157 * execobject.offset.
158 *
159 * Any render targets written to in the batch must be flagged with
160 * EXEC_OBJECT_WRITE.
161 *
162 * To avoid stalling, execobject.offset should match the current
163 * address of that object within the active context.
164 *
165 * The reservation is done is multiple phases. First we try and keep any
166 * object already bound in its current location - so as long as meets the
167 * constraints imposed by the new execbuffer. Any object left unbound after the
168 * first pass is then fitted into any available idle space. If an object does
169 * not fit, all objects are removed from the reservation and the process rerun
170 * after sorting the objects into a priority order (more difficult to fit
171 * objects are tried first). Failing that, the entire VM is cleared and we try
172 * to fit the execbuf once last time before concluding that it simply will not
173 * fit.
174 *
175 * A small complication to all of this is that we allow userspace not only to
176 * specify an alignment and a size for the object in the address space, but
177 * we also allow userspace to specify the exact offset. This objects are
178 * simpler to place (the location is known a priori) all we have to do is make
179 * sure the space is available.
180 *
181 * Once all the objects are in place, patching up the buried pointers to point
182 * to the final locations is a fairly simple job of walking over the relocation
183 * entry arrays, looking up the right address and rewriting the value into
184 * the object. Simple! ... The relocation entries are stored in user memory
185 * and so to access them we have to copy them into a local buffer. That copy
186 * has to avoid taking any pagefaults as they may lead back to a GEM object
187 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
188 * the relocation into multiple passes. First we try to do everything within an
189 * atomic context (avoid the pagefaults) which requires that we never wait. If
190 * we detect that we may wait, or if we need to fault, then we have to fallback
191 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
192 * bells yet?) Dropping the mutex means that we lose all the state we have
193 * built up so far for the execbuf and we must reset any global data. However,
194 * we do leave the objects pinned in their final locations - which is a
195 * potential issue for concurrent execbufs. Once we have left the mutex, we can
196 * allocate and copy all the relocation entries into a large array at our
197 * leisure, reacquire the mutex, reclaim all the objects and other state and
198 * then proceed to update any incorrect addresses with the objects.
199 *
200 * As we process the relocation entries, we maintain a record of whether the
201 * object is being written to. Using NORELOC, we expect userspace to provide
202 * this information instead. We also check whether we can skip the relocation
203 * by comparing the expected value inside the relocation entry with the target's
204 * final address. If they differ, we have to map the current object and rewrite
205 * the 4 or 8 byte pointer within.
206 *
207 * Serialising an execbuf is quite simple according to the rules of the GEM
208 * ABI. Execution within each context is ordered by the order of submission.
209 * Writes to any GEM object are in order of submission and are exclusive. Reads
210 * from a GEM object are unordered with respect to other reads, but ordered by
211 * writes. A write submitted after a read cannot occur before the read, and
212 * similarly any read submitted after a write cannot occur before the write.
213 * Writes are ordered between engines such that only one write occurs at any
214 * time (completing any reads beforehand) - using semaphores where available
215 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
216 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
217 * reads before starting, and any read (either using set-domain or pread) must
218 * flush all GPU writes before starting. (Note we only employ a barrier before,
219 * we currently rely on userspace not concurrently starting a new execution
220 * whilst reading or writing to an object. This may be an advantage or not
221 * depending on how much you trust userspace not to shoot themselves in the
222 * foot.) Serialisation may just result in the request being inserted into
223 * a DAG awaiting its turn, but most simple is to wait on the CPU until
224 * all dependencies are resolved.
225 *
226 * After all of that, is just a matter of closing the request and handing it to
227 * the hardware (well, leaving it in a queue to be executed). However, we also
228 * offer the ability for batchbuffers to be run with elevated privileges so
229 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
230 * Before any batch is given extra privileges we first must check that it
231 * contains no nefarious instructions, we check that each instruction is from
232 * our whitelist and all registers are also from an allowed list. We first
233 * copy the user's batchbuffer to a shadow (so that the user doesn't have
234 * access to it, either by the CPU or GPU as we scan it) and then parse each
235 * instruction. If everything is ok, we set a flag telling the hardware to run
236 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
237 */
238
13149e8b
LL
239struct eb_fence {
240 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
241 struct dma_fence *dma_fence;
242 u64 value;
243 struct dma_fence_chain *chain_fence;
244};
245
650bc635 246struct i915_execbuffer {
2889caa9
CW
247 struct drm_i915_private *i915; /** i915 backpointer */
248 struct drm_file *file; /** per-file lookup tables and limits */
249 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
250 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 251 struct eb_vma *vma;
2889caa9 252
544460c3 253 struct intel_gt *gt; /* gt for the execbuf */
8f2a1057
CW
254 struct intel_context *context; /* logical state for the request */
255 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 256
544460c3
MB
257 /** our requests to build */
258 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
259 /** identity of the batch obj/vma */
260 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
32d94048 261 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9 262
544460c3
MB
263 /** used for excl fence in dma_resv objects when > 1 BB submitted */
264 struct dma_fence *composite_fence;
265
2889caa9
CW
266 /** actual size of execobj[] as we may extend it for the cmdparser */
267 unsigned int buffer_count;
268
544460c3
MB
269 /* number of batches in execbuf IOCTL */
270 unsigned int num_batches;
271
2889caa9
CW
272 /** list of vma not yet bound during reservation phase */
273 struct list_head unbound;
274
275 /** list of vma that have execobj.relocation_count */
276 struct list_head relocs;
277
c43ce123
ML
278 struct i915_gem_ww_ctx ww;
279
2889caa9
CW
280 /**
281 * Track the most recently used object for relocations, as we
282 * frequently have to perform multiple relocations within the same
283 * obj/page
284 */
650bc635 285 struct reloc_cache {
2889caa9 286 struct drm_mm_node node; /** temporary GTT binding */
ad5d95e4
DA
287 unsigned long vaddr; /** Current kmap address */
288 unsigned long page; /** Currently mapped page index */
8802190f 289 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
650bc635 290 bool use_64bit_reloc : 1;
2889caa9
CW
291 bool has_llc : 1;
292 bool has_fence : 1;
293 bool needs_unfenced : 1;
650bc635 294 } reloc_cache;
2889caa9
CW
295
296 u64 invalid_flags; /** Set of execobj.flags that are invalid */
2889caa9 297
544460c3
MB
298 /** Length of batch within object */
299 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
2889caa9 300 u32 batch_start_offset; /** Location within object of batch */
2889caa9 301 u32 batch_flags; /** Flags composed for emit_bb_start() */
c43ce123 302 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
2889caa9
CW
303
304 /**
305 * Indicate either the size of the hastable used to resolve
306 * relocation handles, or if negative that we are using a direct
307 * index into the execobj[].
308 */
309 int lut_size;
310 struct hlist_head *buckets; /** ht for relocation handles */
cda9edd0 311
13149e8b
LL
312 struct eb_fence *fences;
313 unsigned long num_fences;
ff20afc4
TH
314#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
315 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
316#endif
67731b87
CW
317};
318
8e4ba491 319static int eb_parse(struct i915_execbuffer *eb);
544460c3 320static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
2bf541ff 321static void eb_unpin_engine(struct i915_execbuffer *eb);
ff20afc4 322static void eb_capture_release(struct i915_execbuffer *eb);
8e4ba491 323
3dbf26ed
CW
324static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325{
544460c3
MB
326 return intel_engine_requires_cmd_parser(eb->context->engine) ||
327 (intel_engine_using_cmd_parser(eb->context->engine) &&
435e8fc0 328 eb->args->batch_len);
3dbf26ed
CW
329}
330
650bc635 331static int eb_create(struct i915_execbuffer *eb)
67731b87 332{
2889caa9
CW
333 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
334 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 335
2889caa9
CW
336 /*
337 * Without a 1:1 association between relocation handles and
338 * the execobject[] index, we instead create a hashtable.
339 * We size it dynamically based on available memory, starting
340 * first with 1:1 assocative hash and scaling back until
341 * the allocation succeeds.
342 *
343 * Later on we use a positive lut_size to indicate we are
344 * using this hashtable, and a negative value to indicate a
345 * direct lookup.
346 */
4ff4b44c 347 do {
0d95c883 348 gfp_t flags;
4d470f73
CW
349
350 /* While we can still reduce the allocation size, don't
351 * raise a warning and allow the allocation to fail.
352 * On the last pass though, we want to try as hard
353 * as possible to perform the allocation and warn
354 * if it fails.
355 */
0ee931c4 356 flags = GFP_KERNEL;
4d470f73
CW
357 if (size > 1)
358 flags |= __GFP_NORETRY | __GFP_NOWARN;
359
4ff4b44c 360 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 361 flags);
4ff4b44c
CW
362 if (eb->buckets)
363 break;
364 } while (--size);
365
8ae275c2 366 if (unlikely(!size))
4d470f73 367 return -ENOMEM;
eef90ccb 368
2889caa9 369 eb->lut_size = size;
650bc635 370 } else {
2889caa9 371 eb->lut_size = -eb->buffer_count;
650bc635 372 }
eef90ccb 373
650bc635 374 return 0;
67731b87
CW
375}
376
2889caa9
CW
377static bool
378eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
379 const struct i915_vma *vma,
380 unsigned int flags)
2889caa9 381{
2889caa9
CW
382 if (vma->node.size < entry->pad_to_size)
383 return true;
384
385 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
386 return true;
387
c7c6e46f 388 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
389 vma->node.start != entry->offset)
390 return true;
391
c7c6e46f 392 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
393 vma->node.start < BATCH_OFFSET_BIAS)
394 return true;
395
c7c6e46f 396 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
5f22cc0b 397 (vma->node.start + vma->node.size + 4095) >> 32)
2889caa9
CW
398 return true;
399
1d033beb
CW
400 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
401 !i915_vma_is_map_and_fenceable(vma))
402 return true;
403
2889caa9
CW
404 return false;
405}
406
8a338f4b
CW
407static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
408 unsigned int exec_flags)
409{
410 u64 pin_flags = 0;
411
412 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
413 pin_flags |= PIN_GLOBAL;
414
415 /*
416 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
417 * limit address to the first 4GBs for unflagged objects.
418 */
419 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
420 pin_flags |= PIN_ZONE_4G;
421
422 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
423 pin_flags |= PIN_MAPPABLE;
424
425 if (exec_flags & EXEC_OBJECT_PINNED)
426 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
427 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
428 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
429
430 return pin_flags;
431}
432
237647f4 433static inline int
2889caa9 434eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 435 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 436 struct eb_vma *ev)
2889caa9 437{
7d6236bb 438 struct i915_vma *vma = ev->vma;
c7c6e46f 439 u64 pin_flags;
237647f4 440 int err;
2889caa9 441
616d9cee 442 if (vma->node.size)
c7c6e46f 443 pin_flags = vma->node.start;
616d9cee 444 else
c7c6e46f 445 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 446
b5cfe6f7 447 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
7d6236bb 448 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 449 pin_flags |= PIN_GLOBAL;
616d9cee 450
8a338f4b 451 /* Attempt to reuse the current location if available */
237647f4
ML
452 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
453 if (err == -EDEADLK)
454 return err;
455
456 if (unlikely(err)) {
8a338f4b 457 if (entry->flags & EXEC_OBJECT_PINNED)
237647f4 458 return err;
8a338f4b
CW
459
460 /* Failing that pick any _free_ space if suitable */
237647f4 461 err = i915_vma_pin_ww(vma, &eb->ww,
47b08693
ML
462 entry->pad_to_size,
463 entry->alignment,
464 eb_pin_flags(entry, ev->flags) |
b5cfe6f7 465 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
237647f4
ML
466 if (unlikely(err))
467 return err;
8a338f4b 468 }
2889caa9 469
7d6236bb 470 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
237647f4 471 err = i915_vma_pin_fence(vma);
b5cfe6f7 472 if (unlikely(err))
237647f4 473 return err;
2889caa9 474
3bd40735 475 if (vma->fence)
7d6236bb 476 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
477 }
478
7d6236bb 479 ev->flags |= __EXEC_OBJECT_HAS_PIN;
237647f4
ML
480 if (eb_vma_misplaced(entry, vma, ev->flags))
481 return -EBADSLT;
482
483 return 0;
2889caa9
CW
484}
485
8ae275c2
ML
486static inline void
487eb_unreserve_vma(struct eb_vma *ev)
488{
c43ce123
ML
489 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
490 __i915_vma_unpin_fence(ev->vma);
491
8ae275c2
ML
492 ev->flags &= ~__EXEC_OBJECT_RESERVED;
493}
494
2889caa9
CW
495static int
496eb_validate_vma(struct i915_execbuffer *eb,
497 struct drm_i915_gem_exec_object2 *entry,
498 struct i915_vma *vma)
67731b87 499{
2eb8e1a6
JE
500 /* Relocations are disallowed for all platforms after TGL-LP. This
501 * also covers all platforms with local memory.
502 */
503 if (entry->relocation_count &&
40e1956e 504 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
2eb8e1a6
JE
505 return -EINVAL;
506
2889caa9
CW
507 if (unlikely(entry->flags & eb->invalid_flags))
508 return -EINVAL;
d55495b4 509
2920516b
MA
510 if (unlikely(entry->alignment &&
511 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
512 return -EINVAL;
513
514 /*
515 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
516 * any non-page-aligned or non-canonical addresses.
517 */
518 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 519 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
520 return -EINVAL;
521
522 /* pad_to_size was once a reserved field, so sanitize it */
523 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
524 if (unlikely(offset_in_page(entry->pad_to_size)))
525 return -EINVAL;
526 } else {
527 entry->pad_to_size = 0;
d55495b4 528 }
2889caa9
CW
529 /*
530 * From drm_mm perspective address space is continuous,
531 * so from this point we're always using non-canonical
532 * form internally.
533 */
534 entry->offset = gen8_noncanonical_addr(entry->offset);
535
c7c6e46f
CW
536 if (!eb->reloc_cache.has_fence) {
537 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
538 } else {
539 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
540 eb->reloc_cache.needs_unfenced) &&
541 i915_gem_object_is_tiled(vma->obj))
542 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
543 }
544
2889caa9 545 return 0;
67731b87
CW
546}
547
544460c3
MB
548static inline bool
549is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
550{
551 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
552 buffer_idx < eb->num_batches :
553 buffer_idx >= eb->args->buffer_count - eb->num_batches;
554}
555
556static int
746c8f14 557eb_add_vma(struct i915_execbuffer *eb,
544460c3
MB
558 unsigned int *current_batch,
559 unsigned int i,
746c8f14 560 struct i915_vma *vma)
59bfa124 561{
544460c3 562 struct drm_i915_private *i915 = eb->i915;
c7c6e46f 563 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 564 struct eb_vma *ev = &eb->vma[i];
2889caa9 565
93159e12 566 ev->vma = vma;
7d6236bb
CW
567 ev->exec = entry;
568 ev->flags = entry->flags;
569
4d470f73 570 if (eb->lut_size > 0) {
7d6236bb
CW
571 ev->handle = entry->handle;
572 hlist_add_head(&ev->node,
2889caa9
CW
573 &eb->buckets[hash_32(entry->handle,
574 eb->lut_size)]);
4ff4b44c 575 }
59bfa124 576
2889caa9 577 if (entry->relocation_count)
7d6236bb 578 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 579
746c8f14
CW
580 /*
581 * SNA is doing fancy tricks with compressing batch buffers, which leads
582 * to negative relocation deltas. Usually that works out ok since the
583 * relocate address is still positive, except when the batch is placed
584 * very low in the GTT. Ensure this doesn't happen.
585 *
586 * Note that actual hangs have only been observed on gen7, but for
587 * paranoia do it everywhere.
588 */
544460c3 589 if (is_batch_buffer(eb, i)) {
827db9d8 590 if (entry->relocation_count &&
7d6236bb
CW
591 !(ev->flags & EXEC_OBJECT_PINNED))
592 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 593 if (eb->reloc_cache.has_fence)
7d6236bb 594 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 595
544460c3
MB
596 eb->batches[*current_batch] = ev;
597
598 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
599 drm_dbg(&i915->drm,
600 "Attempting to use self-modifying batch buffer\n");
601 return -EINVAL;
602 }
603
604 if (range_overflows_t(u64,
605 eb->batch_start_offset,
606 eb->args->batch_len,
607 ev->vma->size)) {
608 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
609 return -EINVAL;
610 }
611
612 if (eb->args->batch_len == 0)
613 eb->batch_len[*current_batch] = ev->vma->size -
614 eb->batch_start_offset;
615 else
616 eb->batch_len[*current_batch] = eb->args->batch_len;
617 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
618 drm_dbg(&i915->drm, "Invalid batch length\n");
619 return -EINVAL;
620 }
621
622 ++*current_batch;
746c8f14 623 }
544460c3
MB
624
625 return 0;
2889caa9
CW
626}
627
ad5d95e4
DA
628static inline int use_cpu_reloc(const struct reloc_cache *cache,
629 const struct drm_i915_gem_object *obj)
630{
631 if (!i915_gem_object_has_struct_page(obj))
632 return false;
633
634 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
635 return true;
636
637 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
638 return false;
639
640 return (cache->has_llc ||
641 obj->cache_dirty ||
642 obj->cache_level != I915_CACHE_NONE);
643}
644
47b08693 645static int eb_reserve_vma(struct i915_execbuffer *eb,
7d6236bb 646 struct eb_vma *ev,
2920bb94 647 u64 pin_flags)
2889caa9 648{
7d6236bb 649 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 650 struct i915_vma *vma = ev->vma;
2889caa9
CW
651 int err;
652
003d8b91
CW
653 if (drm_mm_node_allocated(&vma->node) &&
654 eb_vma_misplaced(entry, vma, ev->flags)) {
655 err = i915_vma_unbind(vma);
656 if (err)
657 return err;
658 }
659
47b08693 660 err = i915_vma_pin_ww(vma, &eb->ww,
c7c6e46f 661 entry->pad_to_size, entry->alignment,
8a338f4b 662 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
663 if (err)
664 return err;
665
666 if (entry->offset != vma->node.start) {
667 entry->offset = vma->node.start | UPDATE;
668 eb->args->flags |= __EXEC_HAS_RELOC;
669 }
670
8a338f4b 671 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 672 err = i915_vma_pin_fence(vma);
b5cfe6f7 673 if (unlikely(err))
2889caa9 674 return err;
2889caa9 675
3bd40735 676 if (vma->fence)
8a338f4b 677 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
678 }
679
8a338f4b 680 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 681 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 682
2889caa9
CW
683 return 0;
684}
685
b5cfe6f7 686static bool eb_unbind(struct i915_execbuffer *eb, bool force)
2889caa9
CW
687{
688 const unsigned int count = eb->buffer_count;
b5cfe6f7 689 unsigned int i;
2889caa9 690 struct list_head last;
b5cfe6f7
ML
691 bool unpinned = false;
692
693 /* Resort *all* the objects into priority order */
694 INIT_LIST_HEAD(&eb->unbound);
695 INIT_LIST_HEAD(&last);
696
697 for (i = 0; i < count; i++) {
698 struct eb_vma *ev = &eb->vma[i];
699 unsigned int flags = ev->flags;
700
701 if (!force && flags & EXEC_OBJECT_PINNED &&
702 flags & __EXEC_OBJECT_HAS_PIN)
703 continue;
704
705 unpinned = true;
706 eb_unreserve_vma(ev);
707
708 if (flags & EXEC_OBJECT_PINNED)
709 /* Pinned must have their slot */
710 list_add(&ev->bind_link, &eb->unbound);
711 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
712 /* Map require the lowest 256MiB (aperture) */
713 list_add_tail(&ev->bind_link, &eb->unbound);
714 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
715 /* Prioritise 4GiB region for restricted bo */
716 list_add(&ev->bind_link, &last);
717 else
718 list_add_tail(&ev->bind_link, &last);
719 }
720
721 list_splice_tail(&last, &eb->unbound);
722 return unpinned;
723}
724
725static int eb_reserve(struct i915_execbuffer *eb)
726{
7d6236bb 727 struct eb_vma *ev;
b5cfe6f7 728 unsigned int pass;
ef398881 729 int err = 0;
b5cfe6f7 730 bool unpinned;
2889caa9
CW
731
732 /*
733 * Attempt to pin all of the buffers into the GTT.
b5cfe6f7 734 * This is done in 2 phases:
2889caa9 735 *
b5cfe6f7
ML
736 * 1. Unbind all objects that do not match the GTT constraints for
737 * the execbuffer (fenceable, mappable, alignment etc).
738 * 2. Bind new objects.
2889caa9
CW
739 *
740 * This avoid unnecessary unbinding of later objects in order to make
741 * room for the earlier objects *unless* we need to defragment.
b5cfe6f7
ML
742 *
743 * Defragmenting is skipped if all objects are pinned at a fixed location.
2889caa9 744 */
b5cfe6f7
ML
745 for (pass = 0; pass <= 2; pass++) {
746 int pin_flags = PIN_USER | PIN_VALIDATE;
2889caa9 747
b5cfe6f7
ML
748 if (pass == 0)
749 pin_flags |= PIN_NONBLOCK;
2889caa9 750
b5cfe6f7
ML
751 if (pass >= 1)
752 unpinned = eb_unbind(eb, pass == 2);
2889caa9 753
b5cfe6f7
ML
754 if (pass == 2) {
755 err = mutex_lock_interruptible(&eb->context->vm->mutex);
756 if (!err) {
757 err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
758 mutex_unlock(&eb->context->vm->mutex);
759 }
2889caa9 760 if (err)
c43ce123 761 return err;
b5cfe6f7 762 }
2889caa9 763
b5cfe6f7
ML
764 list_for_each_entry(ev, &eb->unbound, bind_link) {
765 err = eb_reserve_vma(eb, ev, pin_flags);
766 if (err)
767 break;
2889caa9 768 }
2920bb94 769
b5cfe6f7
ML
770 if (err != -ENOSPC)
771 break;
772 }
773
774 return err;
4ff4b44c 775}
59bfa124 776
2889caa9
CW
777static int eb_select_context(struct i915_execbuffer *eb)
778{
779 struct i915_gem_context *ctx;
780
781 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
046d1660
JE
782 if (unlikely(IS_ERR(ctx)))
783 return PTR_ERR(ctx);
2889caa9 784
8f2a1057 785 eb->gem_context = ctx;
a82a9979 786 if (i915_gem_context_has_full_ppgtt(ctx))
4f2c7337 787 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9 788
2889caa9
CW
789 return 0;
790}
791
93159e12
CW
792static int __eb_add_lut(struct i915_execbuffer *eb,
793 u32 handle, struct i915_vma *vma)
3b96eff4 794{
93159e12
CW
795 struct i915_gem_context *ctx = eb->gem_context;
796 struct i915_lut_handle *lut;
2889caa9 797 int err;
3b96eff4 798
93159e12
CW
799 lut = i915_lut_handle_alloc();
800 if (unlikely(!lut))
801 return -ENOMEM;
802
803 i915_vma_get(vma);
804 if (!atomic_fetch_inc(&vma->open_count))
805 i915_vma_reopen(vma);
806 lut->handle = handle;
807 lut->ctx = ctx;
808
809 /* Check that the context hasn't been closed in the meantime */
810 err = -EINTR;
f7ce8639 811 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
e1068a9e 812 if (likely(!i915_gem_context_is_closed(ctx)))
93159e12 813 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
f7ce8639
CW
814 else
815 err = -ENOENT;
93159e12
CW
816 if (err == 0) { /* And nor has this handle */
817 struct drm_i915_gem_object *obj = vma->obj;
818
096a42dd 819 spin_lock(&obj->lut_lock);
93159e12
CW
820 if (idr_find(&eb->file->object_idr, handle) == obj) {
821 list_add(&lut->obj_link, &obj->lut_list);
822 } else {
823 radix_tree_delete(&ctx->handles_vma, handle);
824 err = -ENOENT;
825 }
096a42dd 826 spin_unlock(&obj->lut_lock);
93159e12 827 }
f7ce8639 828 mutex_unlock(&ctx->lut_mutex);
93159e12
CW
829 }
830 if (unlikely(err))
831 goto err;
003d8b91 832
93159e12 833 return 0;
d55495b4 834
93159e12 835err:
50689771 836 i915_vma_close(vma);
93159e12
CW
837 i915_vma_put(vma);
838 i915_lut_handle_free(lut);
839 return err;
840}
746c8f14 841
93159e12
CW
842static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
843{
f7ce8639
CW
844 struct i915_address_space *vm = eb->context->vm;
845
93159e12
CW
846 do {
847 struct drm_i915_gem_object *obj;
170fa29b 848 struct i915_vma *vma;
93159e12 849 int err;
4ff4b44c 850
93159e12
CW
851 rcu_read_lock();
852 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
f7ce8639 853 if (likely(vma && vma->vm == vm))
93159e12
CW
854 vma = i915_vma_tryget(vma);
855 rcu_read_unlock();
856 if (likely(vma))
857 return vma;
4ff4b44c 858
170fa29b 859 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
860 if (unlikely(!obj))
861 return ERR_PTR(-ENOENT);
3b96eff4 862
d3ac8d42
DCS
863 /*
864 * If the user has opted-in for protected-object tracking, make
865 * sure the object encryption can be used.
866 * We only need to do this when the object is first used with
867 * this context, because the context itself will be banned when
868 * the protected objects become invalid.
869 */
870 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
871 i915_gem_object_is_protected(obj)) {
ef6ba31d 872 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
d3ac8d42
DCS
873 if (err) {
874 i915_gem_object_put(obj);
875 return ERR_PTR(err);
876 }
877 }
878
f7ce8639 879 vma = i915_vma_instance(obj, vm, NULL);
772b5408 880 if (IS_ERR(vma)) {
93159e12
CW
881 i915_gem_object_put(obj);
882 return vma;
27173f1f
BW
883 }
884
93159e12
CW
885 err = __eb_add_lut(eb, handle, vma);
886 if (likely(!err))
887 return vma;
d1b48c1e 888
93159e12
CW
889 i915_gem_object_put(obj);
890 if (err != -EEXIST)
891 return ERR_PTR(err);
892 } while (1);
893}
4ff4b44c 894
93159e12
CW
895static int eb_lookup_vmas(struct i915_execbuffer *eb)
896{
544460c3 897 unsigned int i, current_batch = 0;
93159e12 898 int err = 0;
155ab883 899
93159e12 900 INIT_LIST_HEAD(&eb->relocs);
93159e12
CW
901
902 for (i = 0; i < eb->buffer_count; i++) {
903 struct i915_vma *vma;
904
905 vma = eb_lookup_vma(eb, eb->exec[i].handle);
906 if (IS_ERR(vma)) {
907 err = PTR_ERR(vma);
8e4ba491 908 goto err;
93159e12 909 }
d1b48c1e 910
003d8b91 911 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
912 if (unlikely(err)) {
913 i915_vma_put(vma);
8e4ba491 914 goto err;
93159e12 915 }
dade2a61 916
544460c3
MB
917 err = eb_add_vma(eb, &current_batch, i, vma);
918 if (err)
919 return err;
ed29c269
ML
920
921 if (i915_gem_object_is_userptr(vma->obj)) {
922 err = i915_gem_object_userptr_submit_init(vma->obj);
923 if (err) {
924 if (i + 1 < eb->buffer_count) {
925 /*
926 * Execbuffer code expects last vma entry to be NULL,
927 * since we already initialized this entry,
928 * set the next value to NULL or we mess up
929 * cleanup handling.
930 */
931 eb->vma[i + 1].vma = NULL;
932 }
933
934 return err;
935 }
936
937 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
938 eb->args->flags |= __EXEC_USERPTR_USED;
939 }
4ff4b44c
CW
940 }
941
8e4ba491
ML
942 return 0;
943
944err:
7d6236bb 945 eb->vma[i].vma = NULL;
2889caa9 946 return err;
3b96eff4
CW
947}
948
5cd57f67 949static int eb_lock_vmas(struct i915_execbuffer *eb)
c43ce123
ML
950{
951 unsigned int i;
952 int err;
953
c43ce123 954 for (i = 0; i < eb->buffer_count; i++) {
c43ce123
ML
955 struct eb_vma *ev = &eb->vma[i];
956 struct i915_vma *vma = ev->vma;
957
958 err = i915_gem_object_lock(vma->obj, &eb->ww);
959 if (err)
960 return err;
5cd57f67
TH
961 }
962
963 return 0;
964}
965
966static int eb_validate_vmas(struct i915_execbuffer *eb)
967{
968 unsigned int i;
969 int err;
970
971 INIT_LIST_HEAD(&eb->unbound);
972
973 err = eb_lock_vmas(eb);
974 if (err)
975 return err;
976
977 for (i = 0; i < eb->buffer_count; i++) {
978 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
979 struct eb_vma *ev = &eb->vma[i];
980 struct i915_vma *vma = ev->vma;
c43ce123 981
237647f4
ML
982 err = eb_pin_vma(eb, entry, ev);
983 if (err == -EDEADLK)
984 return err;
985
986 if (!err) {
c43ce123
ML
987 if (entry->offset != vma->node.start) {
988 entry->offset = vma->node.start | UPDATE;
989 eb->args->flags |= __EXEC_HAS_RELOC;
990 }
991 } else {
992 eb_unreserve_vma(ev);
993
994 list_add_tail(&ev->bind_link, &eb->unbound);
995 if (drm_mm_node_allocated(&vma->node)) {
996 err = i915_vma_unbind(vma);
997 if (err)
998 return err;
999 }
1000 }
1001
c8d4c18b
CK
1002 err = dma_resv_reserve_fences(vma->obj->base.resv, 1);
1003 if (err)
1004 return err;
bfaae47d 1005
c43ce123
ML
1006 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1007 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1008 }
1009
1010 if (!list_empty(&eb->unbound))
1011 return eb_reserve(eb);
1012
1013 return 0;
1014}
1015
7d6236bb 1016static struct eb_vma *
2889caa9 1017eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 1018{
2889caa9
CW
1019 if (eb->lut_size < 0) {
1020 if (handle >= -eb->lut_size)
eef90ccb 1021 return NULL;
7d6236bb 1022 return &eb->vma[handle];
eef90ccb
CW
1023 } else {
1024 struct hlist_head *head;
7d6236bb 1025 struct eb_vma *ev;
67731b87 1026
2889caa9 1027 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
1028 hlist_for_each_entry(ev, head, node) {
1029 if (ev->handle == handle)
1030 return ev;
eef90ccb
CW
1031 }
1032 return NULL;
1033 }
67731b87
CW
1034}
1035
b4b9731b 1036static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
8ae275c2
ML
1037{
1038 const unsigned int count = eb->buffer_count;
1039 unsigned int i;
1040
1041 for (i = 0; i < count; i++) {
1042 struct eb_vma *ev = &eb->vma[i];
1043 struct i915_vma *vma = ev->vma;
1044
1045 if (!vma)
1046 break;
1047
c43ce123 1048 eb_unreserve_vma(ev);
8ae275c2 1049
c43ce123
ML
1050 if (final)
1051 i915_vma_put(vma);
8ae275c2 1052 }
2bf541ff 1053
ff20afc4 1054 eb_capture_release(eb);
2bf541ff 1055 eb_unpin_engine(eb);
8ae275c2
ML
1056}
1057
2889caa9 1058static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 1059{
4d470f73 1060 if (eb->lut_size > 0)
2889caa9 1061 kfree(eb->buckets);
934acce3
MW
1062}
1063
2889caa9 1064static inline u64
d50415cc 1065relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 1066 const struct i915_vma *target)
934acce3 1067{
2889caa9 1068 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
1069}
1070
d50415cc
CW
1071static void reloc_cache_init(struct reloc_cache *cache,
1072 struct drm_i915_private *i915)
5032d871 1073{
ad5d95e4
DA
1074 cache->page = -1;
1075 cache->vaddr = 0;
dfc5148f 1076 /* Must be a variable in the struct to allow GCC to unroll. */
8802190f 1077 cache->graphics_ver = GRAPHICS_VER(i915);
2889caa9 1078 cache->has_llc = HAS_LLC(i915);
dfc5148f 1079 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
8802190f 1080 cache->has_fence = cache->graphics_ver < 4;
7dd4f672 1081 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 1082 cache->node.flags = 0;
d50415cc 1083}
5032d871 1084
20561da3
DA
1085static inline void *unmask_page(unsigned long p)
1086{
1087 return (void *)(uintptr_t)(p & PAGE_MASK);
1088}
1089
1090static inline unsigned int unmask_flags(unsigned long p)
1091{
1092 return p & ~PAGE_MASK;
1093}
1094
1095#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1096
1097static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1098{
1099 struct drm_i915_private *i915 =
1100 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
5c24c9d2 1101 return to_gt(i915)->ggtt;
20561da3
DA
1102}
1103
c2ea703d
TH
1104static void reloc_cache_unmap(struct reloc_cache *cache)
1105{
1106 void *vaddr;
1107
1108 if (!cache->vaddr)
1109 return;
1110
1111 vaddr = unmask_page(cache->vaddr);
1112 if (cache->vaddr & KMAP)
1113 kunmap_atomic(vaddr);
1114 else
1115 io_mapping_unmap_atomic((void __iomem *)vaddr);
1116}
1117
1118static void reloc_cache_remap(struct reloc_cache *cache,
1119 struct drm_i915_gem_object *obj)
1120{
1121 void *vaddr;
1122
1123 if (!cache->vaddr)
1124 return;
1125
1126 if (cache->vaddr & KMAP) {
1127 struct page *page = i915_gem_object_get_page(obj, cache->page);
1128
1129 vaddr = kmap_atomic(page);
1130 cache->vaddr = unmask_flags(cache->vaddr) |
1131 (unsigned long)vaddr;
1132 } else {
1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1134 unsigned long offset;
1135
1136 offset = cache->node.start;
1137 if (!drm_mm_node_allocated(&cache->node))
1138 offset += cache->page << PAGE_SHIFT;
1139
1140 cache->vaddr = (unsigned long)
1141 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1142 }
1143}
1144
c43ce123 1145static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
ad5d95e4
DA
1146{
1147 void *vaddr;
1148
1149 if (!cache->vaddr)
1150 return;
1151
1152 vaddr = unmask_page(cache->vaddr);
1153 if (cache->vaddr & KMAP) {
1af343cd
ML
1154 struct drm_i915_gem_object *obj =
1155 (struct drm_i915_gem_object *)cache->node.mm;
ad5d95e4
DA
1156 if (cache->vaddr & CLFLUSH_AFTER)
1157 mb();
1158
1159 kunmap_atomic(vaddr);
1af343cd 1160 i915_gem_object_finish_access(obj);
ad5d95e4
DA
1161 } else {
1162 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1163
1164 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1165 io_mapping_unmap_atomic((void __iomem *)vaddr);
1166
1167 if (drm_mm_node_allocated(&cache->node)) {
1168 ggtt->vm.clear_range(&ggtt->vm,
1169 cache->node.start,
1170 cache->node.size);
1171 mutex_lock(&ggtt->vm.mutex);
1172 drm_mm_remove_node(&cache->node);
1173 mutex_unlock(&ggtt->vm.mutex);
1174 } else {
1175 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1176 }
1177 }
1178
1179 cache->vaddr = 0;
1180 cache->page = -1;
1181}
1182
1183static void *reloc_kmap(struct drm_i915_gem_object *obj,
1184 struct reloc_cache *cache,
102a0a90 1185 unsigned long pageno)
ad5d95e4
DA
1186{
1187 void *vaddr;
102a0a90 1188 struct page *page;
ad5d95e4
DA
1189
1190 if (cache->vaddr) {
1191 kunmap_atomic(unmask_page(cache->vaddr));
1192 } else {
1193 unsigned int flushes;
1194 int err;
1195
1196 err = i915_gem_object_prepare_write(obj, &flushes);
1197 if (err)
1198 return ERR_PTR(err);
1199
1200 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1201 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1202
1203 cache->vaddr = flushes | KMAP;
1204 cache->node.mm = (void *)obj;
1205 if (flushes)
1206 mb();
1207 }
1208
102a0a90
ML
1209 page = i915_gem_object_get_page(obj, pageno);
1210 if (!obj->mm.dirty)
1211 set_page_dirty(page);
1212
1213 vaddr = kmap_atomic(page);
ad5d95e4 1214 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
102a0a90 1215 cache->page = pageno;
ad5d95e4
DA
1216
1217 return vaddr;
1218}
1219
b5cfe6f7 1220static void *reloc_iomap(struct i915_vma *batch,
47b08693 1221 struct i915_execbuffer *eb,
ad5d95e4
DA
1222 unsigned long page)
1223{
b5cfe6f7 1224 struct drm_i915_gem_object *obj = batch->obj;
47b08693 1225 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1226 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1227 unsigned long offset;
1228 void *vaddr;
1229
1230 if (cache->vaddr) {
1231 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1232 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1233 } else {
b5cfe6f7 1234 struct i915_vma *vma = ERR_PTR(-ENODEV);
ad5d95e4
DA
1235 int err;
1236
1237 if (i915_gem_object_is_tiled(obj))
1238 return ERR_PTR(-EINVAL);
1239
1240 if (use_cpu_reloc(cache, obj))
1241 return NULL;
1242
ad5d95e4 1243 err = i915_gem_object_set_to_gtt_domain(obj, true);
ad5d95e4
DA
1244 if (err)
1245 return ERR_PTR(err);
1246
b5cfe6f7
ML
1247 /*
1248 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1249 * VMA from the object list because we no longer pin.
1250 *
1251 * Only attempt to pin the batch buffer to ggtt if the current batch
1252 * is not inside ggtt, or the batch buffer is not misplaced.
1253 */
1254 if (!i915_is_ggtt(batch->vm)) {
1255 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1256 PIN_MAPPABLE |
1257 PIN_NONBLOCK /* NOWARN */ |
1258 PIN_NOEVICT);
1259 } else if (i915_vma_is_map_and_fenceable(batch)) {
1260 __i915_vma_pin(batch);
1261 vma = batch;
1262 }
1263
47b08693
ML
1264 if (vma == ERR_PTR(-EDEADLK))
1265 return vma;
1266
ad5d95e4
DA
1267 if (IS_ERR(vma)) {
1268 memset(&cache->node, 0, sizeof(cache->node));
1269 mutex_lock(&ggtt->vm.mutex);
1270 err = drm_mm_insert_node_in_range
1271 (&ggtt->vm.mm, &cache->node,
1272 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1273 0, ggtt->mappable_end,
1274 DRM_MM_INSERT_LOW);
1275 mutex_unlock(&ggtt->vm.mutex);
1276 if (err) /* no inactive aperture space, use cpu reloc */
1277 return NULL;
1278 } else {
1279 cache->node.start = vma->node.start;
1280 cache->node.mm = (void *)vma;
1281 }
1282 }
1283
1284 offset = cache->node.start;
1285 if (drm_mm_node_allocated(&cache->node)) {
1286 ggtt->vm.insert_page(&ggtt->vm,
1287 i915_gem_object_get_dma_address(obj, page),
1288 offset, I915_CACHE_NONE, 0);
1289 } else {
1290 offset += page << PAGE_SHIFT;
1291 }
1292
1293 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1294 offset);
1295 cache->page = page;
1296 cache->vaddr = (unsigned long)vaddr;
1297
1298 return vaddr;
1299}
1300
b5cfe6f7 1301static void *reloc_vaddr(struct i915_vma *vma,
47b08693 1302 struct i915_execbuffer *eb,
ad5d95e4
DA
1303 unsigned long page)
1304{
47b08693 1305 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1306 void *vaddr;
1307
1308 if (cache->page == page) {
1309 vaddr = unmask_page(cache->vaddr);
1310 } else {
1311 vaddr = NULL;
1312 if ((cache->vaddr & KMAP) == 0)
b5cfe6f7 1313 vaddr = reloc_iomap(vma, eb, page);
ad5d95e4 1314 if (!vaddr)
b5cfe6f7 1315 vaddr = reloc_kmap(vma->obj, cache, page);
ad5d95e4
DA
1316 }
1317
1318 return vaddr;
1319}
1320
1321static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1322{
1323 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
89754df8
MC
1324 if (flushes & CLFLUSH_BEFORE)
1325 drm_clflush_virt_range(addr, sizeof(*addr));
ad5d95e4
DA
1326
1327 *addr = value;
1328
1329 /*
1330 * Writes to the same cacheline are serialised by the CPU
1331 * (including clflush). On the write path, we only require
1332 * that it hits memory in an orderly fashion and place
1333 * mb barriers at the start and end of the relocation phase
1334 * to ensure ordering of clflush wrt to the system.
1335 */
1336 if (flushes & CLFLUSH_AFTER)
89754df8 1337 drm_clflush_virt_range(addr, sizeof(*addr));
ad5d95e4
DA
1338 } else
1339 *addr = value;
1340}
1341
e3d29130 1342static u64
ad5d95e4 1343relocate_entry(struct i915_vma *vma,
e3d29130 1344 const struct drm_i915_gem_relocation_entry *reloc,
ad5d95e4 1345 struct i915_execbuffer *eb,
e3d29130
CW
1346 const struct i915_vma *target)
1347{
1348 u64 target_addr = relocation_target(reloc, target);
ad5d95e4 1349 u64 offset = reloc->offset;
ce13c78f
DV
1350 bool wide = eb->reloc_cache.use_64bit_reloc;
1351 void *vaddr;
ad5d95e4
DA
1352
1353repeat:
b5cfe6f7 1354 vaddr = reloc_vaddr(vma, eb,
ce13c78f
DV
1355 offset >> PAGE_SHIFT);
1356 if (IS_ERR(vaddr))
1357 return PTR_ERR(vaddr);
1358
1359 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1360 clflush_write32(vaddr + offset_in_page(offset),
1361 lower_32_bits(target_addr),
1362 eb->reloc_cache.vaddr);
1363
1364 if (wide) {
1365 offset += sizeof(u32);
1366 target_addr >>= 32;
1367 wide = false;
1368 goto repeat;
ad5d95e4 1369 }
edf4427b 1370
2889caa9 1371 return target->node.start | UPDATE;
edf4427b 1372}
edf4427b 1373
2889caa9
CW
1374static u64
1375eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1376 struct eb_vma *ev,
2889caa9 1377 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1378{
baa89ba3 1379 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1380 struct eb_vma *target;
2889caa9 1381 int err;
54cf91dc 1382
67731b87 1383 /* we've already hold a reference to all valid objects */
507d977f
CW
1384 target = eb_get_vma(eb, reloc->target_handle);
1385 if (unlikely(!target))
54cf91dc 1386 return -ENOENT;
e844b990 1387
54cf91dc 1388 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1389 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1390 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1391 "target %d offset %d "
54cf91dc 1392 "read %08x write %08x",
507d977f 1393 reloc->target_handle,
54cf91dc
CW
1394 (int) reloc->offset,
1395 reloc->read_domains,
1396 reloc->write_domain);
8b78f0e5 1397 return -EINVAL;
54cf91dc 1398 }
4ca4a250
DV
1399 if (unlikely((reloc->write_domain | reloc->read_domains)
1400 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1401 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1402 "target %d offset %d "
54cf91dc 1403 "read %08x write %08x",
507d977f 1404 reloc->target_handle,
54cf91dc
CW
1405 (int) reloc->offset,
1406 reloc->read_domains,
1407 reloc->write_domain);
8b78f0e5 1408 return -EINVAL;
54cf91dc 1409 }
54cf91dc 1410
2889caa9 1411 if (reloc->write_domain) {
7d6236bb 1412 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1413
2889caa9
CW
1414 /*
1415 * Sandybridge PPGTT errata: We need a global gtt mapping
1416 * for MI and pipe_control writes because the gpu doesn't
1417 * properly redirect them through the ppgtt for non_secure
1418 * batchbuffers.
1419 */
1420 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
c2ea703d
TH
1421 GRAPHICS_VER(eb->i915) == 6 &&
1422 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1423 struct i915_vma *vma = target->vma;
1424
1425 reloc_cache_unmap(&eb->reloc_cache);
1426 mutex_lock(&vma->vm->mutex);
7d6236bb
CW
1427 err = i915_vma_bind(target->vma,
1428 target->vma->obj->cache_level,
e1a4bbb6 1429 PIN_GLOBAL, NULL, NULL);
c2ea703d
TH
1430 mutex_unlock(&vma->vm->mutex);
1431 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
ea97c4ca 1432 if (err)
2889caa9
CW
1433 return err;
1434 }
507d977f 1435 }
54cf91dc 1436
2889caa9
CW
1437 /*
1438 * If the relocation already has the right value in it, no
54cf91dc
CW
1439 * more work needs to be done.
1440 */
ad5d95e4
DA
1441 if (!DBG_FORCE_RELOC &&
1442 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1443 return 0;
54cf91dc
CW
1444
1445 /* Check that the relocation address is valid... */
3c94ceee 1446 if (unlikely(reloc->offset >
7d6236bb 1447 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1448 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1449 "target %d offset %d size %d.\n",
1450 reloc->target_handle,
1451 (int)reloc->offset,
7d6236bb 1452 (int)ev->vma->size);
8b78f0e5 1453 return -EINVAL;
54cf91dc 1454 }
b8f7ab17 1455 if (unlikely(reloc->offset & 3)) {
baa89ba3 1456 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1457 "target %d offset %d.\n",
1458 reloc->target_handle,
1459 (int)reloc->offset);
8b78f0e5 1460 return -EINVAL;
54cf91dc
CW
1461 }
1462
071750e5
CW
1463 /*
1464 * If we write into the object, we need to force the synchronisation
1465 * barrier, either with an asynchronous clflush or if we executed the
1466 * patching using the GPU (though that should be serialised by the
1467 * timeline). To be completely sure, and since we are required to
1468 * do relocations we are already stalling, disable the user's opt
0519bcb1 1469 * out of our synchronisation.
071750e5 1470 */
7d6236bb 1471 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1472
54cf91dc 1473 /* and update the user's relocation entry */
ad5d95e4 1474 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1475}
1476
7d6236bb 1477static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1478{
1d83f442 1479#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1480 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1481 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1482 struct drm_i915_gem_relocation_entry __user *urelocs =
1483 u64_to_user_ptr(entry->relocs_ptr);
1484 unsigned long remain = entry->relocation_count;
54cf91dc 1485
e94f7856 1486 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1487 return -EINVAL;
ebc0808f 1488
2889caa9
CW
1489 /*
1490 * We must check that the entire relocation array is safe
1491 * to read. However, if the array is not writable the user loses
1492 * the updated relocation values.
1493 */
e94f7856 1494 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1495 return -EFAULT;
1496
1497 do {
1498 struct drm_i915_gem_relocation_entry *r = stack;
1499 unsigned int count =
e94f7856 1500 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1501 unsigned int copied;
1d83f442 1502
2889caa9
CW
1503 /*
1504 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1505 * whilst holding the struct mutex lest the user pass in the
1506 * relocations contained within a mmaped bo. For in such a case
1507 * we, the page fault handler would call i915_gem_fault() and
1508 * we would try to acquire the struct mutex again. Obviously
1509 * this is bad and so lockdep complains vehemently.
1510 */
fd1500fc
ML
1511 pagefault_disable();
1512 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1513 pagefault_enable();
ad5d95e4
DA
1514 if (unlikely(copied)) {
1515 remain = -EFAULT;
1516 goto out;
1517 }
54cf91dc 1518
2889caa9 1519 remain -= count;
1d83f442 1520 do {
7d6236bb 1521 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1522
2889caa9
CW
1523 if (likely(offset == 0)) {
1524 } else if ((s64)offset < 0) {
ad5d95e4
DA
1525 remain = (int)offset;
1526 goto out;
2889caa9
CW
1527 } else {
1528 /*
1529 * Note that reporting an error now
1530 * leaves everything in an inconsistent
1531 * state as we have *already* changed
1532 * the relocation value inside the
1533 * object. As we have not changed the
1534 * reloc.presumed_offset or will not
1535 * change the execobject.offset, on the
1536 * call we may not rewrite the value
1537 * inside the object, leaving it
1538 * dangling and causing a GPU hang. Unless
1539 * userspace dynamically rebuilds the
1540 * relocations on each execbuf rather than
1541 * presume a static tree.
1542 *
1543 * We did previously check if the relocations
1544 * were writable (access_ok), an error now
1545 * would be a strange race with mprotect,
1546 * having already demonstrated that we
1547 * can read from this userspace address.
1548 */
1549 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1550 __put_user(offset,
1551 &urelocs[r - stack].presumed_offset);
1d83f442 1552 }
2889caa9
CW
1553 } while (r++, --count);
1554 urelocs += ARRAY_SIZE(stack);
1555 } while (remain);
ad5d95e4 1556out:
c43ce123 1557 reloc_cache_reset(&eb->reloc_cache, eb);
ad5d95e4 1558 return remain;
54cf91dc
CW
1559}
1560
fd1500fc
ML
1561static int
1562eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1563{
fd1500fc
ML
1564 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1565 struct drm_i915_gem_relocation_entry *relocs =
1566 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1567 unsigned int i;
003d8b91
CW
1568 int err;
1569
fd1500fc
ML
1570 for (i = 0; i < entry->relocation_count; i++) {
1571 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
003d8b91 1572
fd1500fc
ML
1573 if ((s64)offset < 0) {
1574 err = (int)offset;
1575 goto err;
1576 }
ef398881 1577 }
fd1500fc
ML
1578 err = 0;
1579err:
c43ce123 1580 reloc_cache_reset(&eb->reloc_cache, eb);
fd1500fc
ML
1581 return err;
1582}
2889caa9 1583
fd1500fc
ML
1584static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1585{
1586 const char __user *addr, *end;
1587 unsigned long size;
1588 char __maybe_unused c;
2889caa9 1589
fd1500fc
ML
1590 size = entry->relocation_count;
1591 if (size == 0)
1592 return 0;
0e97fbb0 1593
fd1500fc
ML
1594 if (size > N_RELOC(ULONG_MAX))
1595 return -EINVAL;
2889caa9 1596
fd1500fc
ML
1597 addr = u64_to_user_ptr(entry->relocs_ptr);
1598 size *= sizeof(struct drm_i915_gem_relocation_entry);
1599 if (!access_ok(addr, size))
1600 return -EFAULT;
1601
1602 end = addr + size;
1603 for (; addr < end; addr += PAGE_SIZE) {
1604 int err = __get_user(c, addr);
1605 if (err)
1606 return err;
1607 }
1608 return __get_user(c, end - 1);
2889caa9
CW
1609}
1610
fd1500fc 1611static int eb_copy_relocations(const struct i915_execbuffer *eb)
2889caa9 1612{
fd1500fc 1613 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1614 const unsigned int count = eb->buffer_count;
1615 unsigned int i;
fd1500fc 1616 int err;
54cf91dc 1617
2889caa9 1618 for (i = 0; i < count; i++) {
fd1500fc
ML
1619 const unsigned int nreloc = eb->exec[i].relocation_count;
1620 struct drm_i915_gem_relocation_entry __user *urelocs;
1621 unsigned long size;
1622 unsigned long copied;
6951e589 1623
fd1500fc
ML
1624 if (nreloc == 0)
1625 continue;
6951e589 1626
fd1500fc
ML
1627 err = check_relocations(&eb->exec[i]);
1628 if (err)
1629 goto err;
6951e589 1630
fd1500fc
ML
1631 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1632 size = nreloc * sizeof(*relocs);
6951e589 1633
fd1500fc
ML
1634 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1635 if (!relocs) {
1636 err = -ENOMEM;
1637 goto err;
6951e589 1638 }
fd1500fc
ML
1639
1640 /* copy_from_user is limited to < 4GiB */
1641 copied = 0;
1642 do {
1643 unsigned int len =
1644 min_t(u64, BIT_ULL(31), size - copied);
1645
1646 if (__copy_from_user((char *)relocs + copied,
1647 (char __user *)urelocs + copied,
1648 len))
1649 goto end;
1650
1651 copied += len;
1652 } while (copied < size);
1653
1654 /*
1655 * As we do not update the known relocation offsets after
1656 * relocating (due to the complexities in lock handling),
1657 * we need to mark them as invalid now so that we force the
1658 * relocation processing next time. Just in case the target
1659 * object is evicted and then rebound into its old
1660 * presumed_offset before the next execbuffer - if that
1661 * happened we would make the mistake of assuming that the
1662 * relocations were valid.
1663 */
1664 if (!user_access_begin(urelocs, size))
1665 goto end;
1666
1667 for (copied = 0; copied < nreloc; copied++)
1668 unsafe_put_user(-1,
1669 &urelocs[copied].presumed_offset,
1670 end_user);
1671 user_access_end();
1672
1673 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1674 }
1675
1676 return 0;
1677
1678end_user:
1679 user_access_end();
1680end:
1681 kvfree(relocs);
1682 err = -EFAULT;
1683err:
1684 while (i--) {
1685 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1686 if (eb->exec[i].relocation_count)
1687 kvfree(relocs);
1688 }
1689 return err;
1690}
1691
1692static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1693{
1694 const unsigned int count = eb->buffer_count;
1695 unsigned int i;
1696
1697 for (i = 0; i < count; i++) {
1698 int err;
1699
1700 err = check_relocations(&eb->exec[i]);
1701 if (err)
1702 return err;
1703 }
1704
1705 return 0;
1706}
1707
ed29c269
ML
1708static int eb_reinit_userptr(struct i915_execbuffer *eb)
1709{
1710 const unsigned int count = eb->buffer_count;
1711 unsigned int i;
1712 int ret;
1713
1714 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1715 return 0;
1716
1717 for (i = 0; i < count; i++) {
1718 struct eb_vma *ev = &eb->vma[i];
1719
1720 if (!i915_gem_object_is_userptr(ev->vma->obj))
1721 continue;
1722
1723 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1724 if (ret)
1725 return ret;
1726
1727 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1728 }
1729
1730 return 0;
1731}
1732
544460c3 1733static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
fd1500fc
ML
1734{
1735 bool have_copy = false;
1736 struct eb_vma *ev;
1737 int err = 0;
1738
1739repeat:
1740 if (signal_pending(current)) {
1741 err = -ERESTARTSYS;
1742 goto out;
6951e589 1743 }
fd1500fc 1744
c43ce123 1745 /* We may process another execbuffer during the unlock... */
b4b9731b 1746 eb_release_vmas(eb, false);
c43ce123
ML
1747 i915_gem_ww_ctx_fini(&eb->ww);
1748
fd1500fc
ML
1749 /*
1750 * We take 3 passes through the slowpatch.
1751 *
1752 * 1 - we try to just prefault all the user relocation entries and
1753 * then attempt to reuse the atomic pagefault disabled fast path again.
1754 *
1755 * 2 - we copy the user entries to a local buffer here outside of the
1756 * local and allow ourselves to wait upon any rendering before
1757 * relocations
1758 *
1759 * 3 - we already have a local copy of the relocation entries, but
1760 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1761 */
1762 if (!err) {
1763 err = eb_prefault_relocations(eb);
1764 } else if (!have_copy) {
1765 err = eb_copy_relocations(eb);
1766 have_copy = err == 0;
1767 } else {
1768 cond_resched();
1769 err = 0;
1770 }
1771
2bf541ff 1772 if (!err)
ed29c269 1773 err = eb_reinit_userptr(eb);
fd1500fc 1774
c43ce123 1775 i915_gem_ww_ctx_init(&eb->ww, true);
fd1500fc
ML
1776 if (err)
1777 goto out;
1778
c43ce123
ML
1779 /* reacquire the objects */
1780repeat_validate:
544460c3
MB
1781 err = eb_pin_engine(eb, false);
1782 if (err)
2bf541ff 1783 goto err;
2bf541ff 1784
c43ce123 1785 err = eb_validate_vmas(eb);
fd1500fc 1786 if (err)
c43ce123
ML
1787 goto err;
1788
544460c3 1789 GEM_BUG_ON(!eb->batches[0]);
fd1500fc
ML
1790
1791 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1792 if (!have_copy) {
fd1500fc 1793 err = eb_relocate_vma(eb, ev);
fd1500fc
ML
1794 if (err)
1795 break;
1796 } else {
1797 err = eb_relocate_vma_slow(eb, ev);
1798 if (err)
1799 break;
1800 }
1801 }
1802
c43ce123
ML
1803 if (err == -EDEADLK)
1804 goto err;
1805
fd1500fc
ML
1806 if (err && !have_copy)
1807 goto repeat;
1808
1809 if (err)
1810 goto err;
1811
8e4ba491
ML
1812 /* as last step, parse the command buffer */
1813 err = eb_parse(eb);
1814 if (err)
1815 goto err;
1816
fd1500fc
ML
1817 /*
1818 * Leave the user relocations as are, this is the painfully slow path,
1819 * and we want to avoid the complication of dropping the lock whilst
1820 * having buffers reserved in the aperture and so causing spurious
1821 * ENOSPC for random operations.
1822 */
1823
1824err:
c43ce123 1825 if (err == -EDEADLK) {
b4b9731b 1826 eb_release_vmas(eb, false);
c43ce123
ML
1827 err = i915_gem_ww_ctx_backoff(&eb->ww);
1828 if (!err)
1829 goto repeat_validate;
1830 }
1831
fd1500fc
ML
1832 if (err == -EAGAIN)
1833 goto repeat;
1834
1835out:
1836 if (have_copy) {
1837 const unsigned int count = eb->buffer_count;
1838 unsigned int i;
1839
1840 for (i = 0; i < count; i++) {
1841 const struct drm_i915_gem_exec_object2 *entry =
1842 &eb->exec[i];
1843 struct drm_i915_gem_relocation_entry *relocs;
1844
1845 if (!entry->relocation_count)
1846 continue;
1847
1848 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1849 kvfree(relocs);
1850 }
1851 }
1852
1853 return err;
1854}
1855
8e4ba491 1856static int eb_relocate_parse(struct i915_execbuffer *eb)
54cf91dc 1857{
003d8b91 1858 int err;
2bf541ff 1859 bool throttle = true;
003d8b91 1860
c43ce123 1861retry:
544460c3
MB
1862 err = eb_pin_engine(eb, throttle);
1863 if (err) {
2bf541ff
ML
1864 if (err != -EDEADLK)
1865 return err;
1866
1867 goto err;
1868 }
1869
2bf541ff
ML
1870 /* only throttle once, even if we didn't need to throttle */
1871 throttle = false;
1872
c43ce123
ML
1873 err = eb_validate_vmas(eb);
1874 if (err == -EAGAIN)
1875 goto slow;
1876 else if (err)
1877 goto err;
2889caa9
CW
1878
1879 /* The objects are in their final locations, apply the relocations. */
1880 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 1881 struct eb_vma *ev;
2889caa9 1882
7d6236bb 1883 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
1884 err = eb_relocate_vma(eb, ev);
1885 if (err)
fd1500fc 1886 break;
2889caa9 1887 }
fd1500fc 1888
c43ce123
ML
1889 if (err == -EDEADLK)
1890 goto err;
1891 else if (err)
1892 goto slow;
1893 }
1894
1895 if (!err)
1896 err = eb_parse(eb);
1897
1898err:
1899 if (err == -EDEADLK) {
b4b9731b 1900 eb_release_vmas(eb, false);
c43ce123
ML
1901 err = i915_gem_ww_ctx_backoff(&eb->ww);
1902 if (!err)
1903 goto retry;
2889caa9
CW
1904 }
1905
c43ce123
ML
1906 return err;
1907
1908slow:
544460c3 1909 err = eb_relocate_parse_slow(eb);
c43ce123
ML
1910 if (err)
1911 /*
1912 * If the user expects the execobject.offset and
1913 * reloc.presumed_offset to be an exact match,
1914 * as for using NO_RELOC, then we cannot update
1915 * the execobject.offset until we have completed
1916 * relocation.
1917 */
1918 eb->args->flags &= ~__EXEC_HAS_RELOC;
1919
1920 return err;
2889caa9
CW
1921}
1922
544460c3
MB
1923/*
1924 * Using two helper loops for the order of which requests / batches are created
1925 * and added the to backend. Requests are created in order from the parent to
1926 * the last child. Requests are added in the reverse order, from the last child
1927 * to parent. This is done for locking reasons as the timeline lock is acquired
1928 * during request creation and released when the request is added to the
1929 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1930 * the ordering.
1931 */
1932#define for_each_batch_create_order(_eb, _i) \
1933 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1934#define for_each_batch_add_order(_eb, _i) \
1935 BUILD_BUG_ON(!typecheck(int, _i)); \
1936 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1937
1938static struct i915_request *
1939eb_find_first_request_added(struct i915_execbuffer *eb)
1940{
1941 int i;
1942
1943 for_each_batch_add_order(eb, i)
1944 if (eb->requests[i])
1945 return eb->requests[i];
1946
1947 GEM_BUG_ON("Request not found");
1948
1949 return NULL;
1950}
1951
ff20afc4
TH
1952#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1953
1954/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1955static void eb_capture_stage(struct i915_execbuffer *eb)
2889caa9
CW
1956{
1957 const unsigned int count = eb->buffer_count;
ff20afc4 1958 unsigned int i = count, j;
6951e589
CW
1959
1960 while (i--) {
7d6236bb
CW
1961 struct eb_vma *ev = &eb->vma[i];
1962 struct i915_vma *vma = ev->vma;
1963 unsigned int flags = ev->flags;
03ade511 1964
ff20afc4
TH
1965 if (!(flags & EXEC_OBJECT_CAPTURE))
1966 continue;
6951e589 1967
ff20afc4 1968 for_each_batch_create_order(eb, j) {
e61e0f51 1969 struct i915_capture_list *capture;
b0fd47ad 1970
ff20afc4
TH
1971 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1972 if (!capture)
1973 continue;
544460c3 1974
ff20afc4 1975 capture->next = eb->capture_lists[j];
60dc43d1 1976 capture->vma_res = i915_vma_resource_get(vma->resource);
ff20afc4
TH
1977 eb->capture_lists[j] = capture;
1978 }
ff20afc4
TH
1979 }
1980}
1981
1982/* Commit once we're in the critical path */
1983static void eb_capture_commit(struct i915_execbuffer *eb)
1984{
1985 unsigned int j;
1986
1987 for_each_batch_create_order(eb, j) {
1988 struct i915_request *rq = eb->requests[j];
1989
1990 if (!rq)
1991 break;
1992
1993 rq->capture_list = eb->capture_lists[j];
1994 eb->capture_lists[j] = NULL;
1995 }
1996}
1997
1998/*
1999 * Release anything that didn't get committed due to errors.
2000 * The capture_list will otherwise be freed at request retire.
2001 */
2002static void eb_capture_release(struct i915_execbuffer *eb)
2003{
2004 unsigned int j;
2005
2006 for_each_batch_create_order(eb, j) {
2007 if (eb->capture_lists[j]) {
2008 i915_request_free_capture_list(eb->capture_lists[j]);
2009 eb->capture_lists[j] = NULL;
b0fd47ad 2010 }
ff20afc4
TH
2011 }
2012}
2013
2014static void eb_capture_list_clear(struct i915_execbuffer *eb)
2015{
2016 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2017}
2018
2019#else
2020
2021static void eb_capture_stage(struct i915_execbuffer *eb)
2022{
2023}
2024
2025static void eb_capture_commit(struct i915_execbuffer *eb)
2026{
2027}
2028
2029static void eb_capture_release(struct i915_execbuffer *eb)
2030{
2031}
2032
2033static void eb_capture_list_clear(struct i915_execbuffer *eb)
2034{
2035}
2036
2037#endif
2038
2039static int eb_move_to_gpu(struct i915_execbuffer *eb)
2040{
2041 const unsigned int count = eb->buffer_count;
2042 unsigned int i = count;
2043 int err = 0, j;
2044
2045 while (i--) {
2046 struct eb_vma *ev = &eb->vma[i];
2047 struct i915_vma *vma = ev->vma;
2048 unsigned int flags = ev->flags;
2049 struct drm_i915_gem_object *obj = vma->obj;
2050
2051 assert_vma_held(vma);
b0fd47ad 2052
b8f55be6
CW
2053 /*
2054 * If the GPU is not _reading_ through the CPU cache, we need
2055 * to make sure that any writes (both previous GPU writes from
2056 * before a change in snooping levels and normal CPU writes)
2057 * caught in that cache are flushed to main memory.
2058 *
2059 * We want to say
2060 * obj->cache_dirty &&
2061 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2062 * but gcc's optimiser doesn't handle that as well and emits
2063 * two jumps instead of one. Maybe one day...
df94fd05
MA
2064 *
2065 * FIXME: There is also sync flushing in set_pages(), which
2066 * serves a different purpose(some of the time at least).
2067 *
2068 * We should consider:
2069 *
2070 * 1. Rip out the async flush code.
2071 *
2072 * 2. Or make the sync flushing use the async clflush path
2073 * using mandatory fences underneath. Currently the below
2074 * async flush happens after we bind the object.
b8f55be6
CW
2075 */
2076 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 2077 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 2078 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
2079 }
2080
544460c3 2081 /* We only need to await on the first request */
6951e589
CW
2082 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2083 err = i915_request_await_object
544460c3
MB
2084 (eb_find_first_request_added(eb), obj,
2085 flags & EXEC_OBJECT_WRITE);
6951e589 2086 }
2889caa9 2087
544460c3
MB
2088 for_each_batch_add_order(eb, j) {
2089 if (err)
2090 break;
2091 if (!eb->requests[j])
2092 continue;
2093
2094 err = _i915_vma_move_to_active(vma, eb->requests[j],
2095 j ? NULL :
2096 eb->composite_fence ?
2097 eb->composite_fence :
2098 &eb->requests[j]->fence,
2099 flags | __EXEC_OBJECT_NO_RESERVE);
2100 }
c59a333f 2101 }
0f1dd022 2102
ed29c269
ML
2103#ifdef CONFIG_MMU_NOTIFIER
2104 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
b4b9731b 2105 read_lock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2106
2107 /*
2108 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2109 * could not have been set
2110 */
2111 for (i = 0; i < count; i++) {
2112 struct eb_vma *ev = &eb->vma[i];
2113 struct drm_i915_gem_object *obj = ev->vma->obj;
2114
2115 if (!i915_gem_object_is_userptr(obj))
2116 continue;
2117
2118 err = i915_gem_object_userptr_submit_done(obj);
2119 if (err)
2120 break;
2121 }
2122
b4b9731b 2123 read_unlock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2124 }
2125#endif
2126
6951e589
CW
2127 if (unlikely(err))
2128 goto err_skip;
2129
dcd79934 2130 /* Unconditionally flush any chipset caches (for streaming writes). */
544460c3 2131 intel_gt_chipset_flush(eb->gt);
ff20afc4
TH
2132 eb_capture_commit(eb);
2133
2113184c 2134 return 0;
6951e589
CW
2135
2136err_skip:
544460c3
MB
2137 for_each_batch_create_order(eb, j) {
2138 if (!eb->requests[j])
2139 break;
2140
2141 i915_request_set_error_once(eb->requests[j], err);
2142 }
6951e589 2143 return err;
54cf91dc
CW
2144}
2145
00aff3f6 2146static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 2147{
650bc635 2148 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 2149 return -EINVAL;
ed5982e6 2150
2f5945bc 2151 /* Kernel clipping was a DRI1 misfeature */
cda9edd0
LL
2152 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2153 I915_EXEC_USE_EXTENSIONS))) {
cf6e7bac 2154 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 2155 return -EINVAL;
cf6e7bac 2156 }
2f5945bc
CW
2157
2158 if (exec->DR4 == 0xffffffff) {
2159 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2160 exec->DR4 = 0;
2161 }
2162 if (exec->DR1 || exec->DR4)
00aff3f6 2163 return -EINVAL;
2f5945bc
CW
2164
2165 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 2166 return -EINVAL;
2f5945bc 2167
00aff3f6 2168 return 0;
54cf91dc
CW
2169}
2170
e61e0f51 2171static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 2172{
73dec95e
TU
2173 u32 *cs;
2174 int i;
ae662d31 2175
40e1956e 2176 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
5a833995 2177 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
2178 return -EINVAL;
2179 }
ae662d31 2180
e61e0f51 2181 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
2182 if (IS_ERR(cs))
2183 return PTR_ERR(cs);
ae662d31 2184
2889caa9 2185 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2186 for (i = 0; i < 4; i++) {
73dec95e
TU
2187 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2188 *cs++ = 0;
ae662d31 2189 }
2889caa9 2190 *cs++ = MI_NOOP;
e61e0f51 2191 intel_ring_advance(rq, cs);
ae662d31
EA
2192
2193 return 0;
2194}
2195
4f7af194 2196static struct i915_vma *
47b08693
ML
2197shadow_batch_pin(struct i915_execbuffer *eb,
2198 struct drm_i915_gem_object *obj,
32d94048
CW
2199 struct i915_address_space *vm,
2200 unsigned int flags)
4f7af194 2201{
b291ce0a 2202 struct i915_vma *vma;
b291ce0a 2203 int err;
4f7af194 2204
b291ce0a
CW
2205 vma = i915_vma_instance(obj, vm, NULL);
2206 if (IS_ERR(vma))
2207 return vma;
2208
b5cfe6f7 2209 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
b291ce0a
CW
2210 if (err)
2211 return ERR_PTR(err);
2212
2213 return vma;
4f7af194
JB
2214}
2215
47b08693
ML
2216static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2217{
2218 /*
2219 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2220 * batch" bit. Hence we need to pin secure batches into the global gtt.
2221 * hsw should have this fixed, but bdw mucks it up again. */
2222 if (eb->batch_flags & I915_DISPATCH_SECURE)
b5cfe6f7 2223 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
47b08693
ML
2224
2225 return NULL;
2226}
2227
51696691 2228static int eb_parse(struct i915_execbuffer *eb)
71745376 2229{
baa89ba3 2230 struct drm_i915_private *i915 = eb->i915;
c43ce123 2231 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
47b08693 2232 struct i915_vma *shadow, *trampoline, *batch;
d5e87821 2233 unsigned long len;
2889caa9 2234 int err;
71745376 2235
47b08693 2236 if (!eb_use_cmdparser(eb)) {
544460c3 2237 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
47b08693
ML
2238 if (IS_ERR(batch))
2239 return PTR_ERR(batch);
2240
2241 goto secure_batch;
2242 }
51696691 2243
544460c3
MB
2244 if (intel_context_is_parallel(eb->context))
2245 return -EINVAL;
2246
2247 len = eb->batch_len[0];
32d94048
CW
2248 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2249 /*
2250 * ppGTT backed shadow buffers must be mapped RO, to prevent
2251 * post-scan tampering
2252 */
2253 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2254 drm_dbg(&i915->drm,
2255 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2256 return -EINVAL;
2257 }
2258 } else {
2259 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2260 }
544460c3 2261 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
d5e87821 2262 return -EINVAL;
32d94048 2263
c43ce123 2264 if (!pool) {
544460c3 2265 pool = intel_gt_get_buffer_pool(eb->gt, len,
8f47c8c3 2266 I915_MAP_WB);
c43ce123
ML
2267 if (IS_ERR(pool))
2268 return PTR_ERR(pool);
2269 eb->batch_pool = pool;
2270 }
71745376 2271
c43ce123
ML
2272 err = i915_gem_object_lock(pool->obj, &eb->ww);
2273 if (err)
b5cfe6f7 2274 return err;
71745376 2275
47b08693 2276 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
b5cfe6f7
ML
2277 if (IS_ERR(shadow))
2278 return PTR_ERR(shadow);
2279
c9398775 2280 intel_gt_buffer_pool_mark_used(pool);
32d94048 2281 i915_gem_object_set_readonly(shadow->obj);
57a78ca4 2282 shadow->private = pool;
32d94048
CW
2283
2284 trampoline = NULL;
2285 if (CMDPARSER_USES_GGTT(eb->i915)) {
2286 trampoline = shadow;
2287
47b08693 2288 shadow = shadow_batch_pin(eb, pool->obj,
544460c3 2289 &eb->gt->ggtt->vm,
32d94048 2290 PIN_GLOBAL);
b5cfe6f7
ML
2291 if (IS_ERR(shadow))
2292 return PTR_ERR(shadow);
2293
57a78ca4 2294 shadow->private = pool;
32d94048
CW
2295
2296 eb->batch_flags |= I915_DISPATCH_SECURE;
2297 }
f8c08d8f 2298
47b08693 2299 batch = eb_dispatch_secure(eb, shadow);
b5cfe6f7
ML
2300 if (IS_ERR(batch))
2301 return PTR_ERR(batch);
47b08693 2302
c8d4c18b 2303 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
93b71330 2304 if (err)
b5cfe6f7 2305 return err;
93b71330 2306
544460c3
MB
2307 err = intel_engine_cmd_parser(eb->context->engine,
2308 eb->batches[0]->vma,
93b71330 2309 eb->batch_start_offset,
544460c3 2310 eb->batch_len[0],
93b71330 2311 shadow, trampoline);
32d94048 2312 if (err)
b5cfe6f7 2313 return err;
71745376 2314
544460c3
MB
2315 eb->batches[0] = &eb->vma[eb->buffer_count++];
2316 eb->batches[0]->vma = i915_vma_get(shadow);
2317 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
71745376 2318
32d94048 2319 eb->trampoline = trampoline;
4f7af194 2320 eb->batch_start_offset = 0;
4f7af194 2321
47b08693
ML
2322secure_batch:
2323 if (batch) {
544460c3
MB
2324 if (intel_context_is_parallel(eb->context))
2325 return -EINVAL;
2326
2327 eb->batches[0] = &eb->vma[eb->buffer_count++];
2328 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2329 eb->batches[0]->vma = i915_vma_get(batch);
47b08693 2330 }
51696691 2331 return 0;
71745376 2332}
5c6c6003 2333
544460c3
MB
2334static int eb_request_submit(struct i915_execbuffer *eb,
2335 struct i915_request *rq,
2336 struct i915_vma *batch,
2337 u64 batch_len)
78382593 2338{
2889caa9 2339 int err;
78382593 2340
544460c3
MB
2341 if (intel_context_nopreempt(rq->context))
2342 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
78382593 2343
650bc635 2344 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
544460c3 2345 err = i915_reset_gen7_sol_offsets(rq);
2889caa9
CW
2346 if (err)
2347 return err;
78382593
OM
2348 }
2349
85474441
CW
2350 /*
2351 * After we completed waiting for other engines (using HW semaphores)
2352 * then we can signal that this request/batch is ready to run. This
2353 * allows us to determine if the batch is still waiting on the GPU
2354 * or actually running by checking the breadcrumb.
2355 */
544460c3
MB
2356 if (rq->context->engine->emit_init_breadcrumb) {
2357 err = rq->context->engine->emit_init_breadcrumb(rq);
85474441
CW
2358 if (err)
2359 return err;
2360 }
2361
544460c3
MB
2362 err = rq->context->engine->emit_bb_start(rq,
2363 batch->node.start +
2364 eb->batch_start_offset,
2365 batch_len,
2366 eb->batch_flags);
2889caa9
CW
2367 if (err)
2368 return err;
78382593 2369
32d94048 2370 if (eb->trampoline) {
544460c3 2371 GEM_BUG_ON(intel_context_is_parallel(rq->context));
32d94048 2372 GEM_BUG_ON(eb->batch_start_offset);
544460c3
MB
2373 err = rq->context->engine->emit_bb_start(rq,
2374 eb->trampoline->node.start +
2375 batch_len, 0, 0);
32d94048
CW
2376 if (err)
2377 return err;
2378 }
2379
2f5945bc 2380 return 0;
78382593
OM
2381}
2382
544460c3
MB
2383static int eb_submit(struct i915_execbuffer *eb)
2384{
2385 unsigned int i;
2386 int err;
2387
2388 err = eb_move_to_gpu(eb);
2389
2390 for_each_batch_create_order(eb, i) {
2391 if (!eb->requests[i])
2392 break;
2393
2394 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2395 if (!err)
2396 err = eb_request_submit(eb, eb->requests[i],
2397 eb->batches[i]->vma,
2398 eb->batch_len[i]);
2399 }
2400
2401 return err;
2402}
2403
1a9c4db4 2404static int num_vcs_engines(struct drm_i915_private *i915)
d5b2a3a4 2405{
1a9c4db4 2406 return hweight_long(VDBOX_MASK(to_gt(i915)));
d5b2a3a4
CW
2407}
2408
204bcfef 2409/*
a8ebba75 2410 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2411 * The engine index is returned.
a8ebba75 2412 */
de1add36 2413static unsigned int
c80ff16e
CW
2414gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2415 struct drm_file *file)
a8ebba75 2416{
a8ebba75
ZY
2417 struct drm_i915_file_private *file_priv = file->driver_priv;
2418
de1add36 2419 /* Check whether the file_priv has already selected one ring. */
6f633402 2420 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2421 file_priv->bsd_engine =
2422 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2423
c80ff16e 2424 return file_priv->bsd_engine;
d23db88c
CW
2425}
2426
5e2a0419 2427static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2428 [I915_EXEC_DEFAULT] = RCS0,
2429 [I915_EXEC_RENDER] = RCS0,
2430 [I915_EXEC_BLT] = BCS0,
2431 [I915_EXEC_BSD] = VCS0,
2432 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2433};
2434
2bf541ff 2435static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
e5dadff4
CW
2436{
2437 struct intel_ring *ring = ce->ring;
2438 struct intel_timeline *tl = ce->timeline;
2439 struct i915_request *rq;
2440
2441 /*
2442 * Completely unscientific finger-in-the-air estimates for suitable
2443 * maximum user request size (to avoid blocking) and then backoff.
2444 */
2445 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2446 return NULL;
2447
2448 /*
2449 * Find a request that after waiting upon, there will be at least half
2450 * the ring available. The hysteresis allows us to compete for the
2451 * shared ring and should mean that we sleep less often prior to
2452 * claiming our resources, but not so long that the ring completely
2453 * drains before we can submit our next request.
2454 */
2455 list_for_each_entry(rq, &tl->requests, link) {
2456 if (rq->ring != ring)
2457 continue;
2458
2459 if (__intel_ring_space(rq->postfix,
2460 ring->emit, ring->size) > ring->size / 2)
2461 break;
2462 }
2463 if (&rq->link == &tl->requests)
2464 return NULL; /* weird, we will check again later for real */
2465
2466 return i915_request_get(rq);
2467}
2468
544460c3
MB
2469static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2470 bool throttle)
e5dadff4
CW
2471{
2472 struct intel_timeline *tl;
2bf541ff 2473 struct i915_request *rq = NULL;
8f2a1057 2474
a4e57f90
CW
2475 /*
2476 * Take a local wakeref for preparing to dispatch the execbuf as
2477 * we expect to access the hardware fairly frequently in the
2478 * process, and require the engine to be kept awake between accesses.
2479 * Upon dispatch, we acquire another prolonged wakeref that we hold
2480 * until the timeline is idle, which in turn releases the wakeref
2481 * taken on the engine, and the parent device.
2482 */
e5dadff4 2483 tl = intel_context_timeline_lock(ce);
544460c3
MB
2484 if (IS_ERR(tl))
2485 return PTR_ERR(tl);
a4e57f90
CW
2486
2487 intel_context_enter(ce);
2bf541ff
ML
2488 if (throttle)
2489 rq = eb_throttle(eb, ce);
e5dadff4
CW
2490 intel_context_timeline_unlock(tl);
2491
544460c3
MB
2492 if (rq) {
2493 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2494 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2495
2496 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2497 timeout) < 0) {
2498 i915_request_put(rq);
2499
cb935c46
MB
2500 /*
2501 * Error path, cannot use intel_context_timeline_lock as
2502 * that is user interruptable and this clean up step
2503 * must be done.
2504 */
2505 mutex_lock(&ce->timeline->mutex);
544460c3 2506 intel_context_exit(ce);
cb935c46 2507 mutex_unlock(&ce->timeline->mutex);
544460c3
MB
2508
2509 if (nonblock)
2510 return -EWOULDBLOCK;
2511 else
2512 return -EINTR;
2513 }
2514 i915_request_put(rq);
2515 }
2516
2517 return 0;
2518}
2519
2520static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2521{
2522 struct intel_context *ce = eb->context, *child;
2523 int err;
2524 int i = 0, j = 0;
2525
2526 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2527
2528 if (unlikely(intel_context_is_banned(ce)))
2529 return -EIO;
2530
2531 /*
2532 * Pinning the contexts may generate requests in order to acquire
2533 * GGTT space, so do this first before we reserve a seqno for
2534 * ourselves.
2535 */
2536 err = intel_context_pin_ww(ce, &eb->ww);
2537 if (err)
2538 return err;
2539 for_each_child(ce, child) {
2540 err = intel_context_pin_ww(child, &eb->ww);
2541 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2542 }
2543
2544 for_each_child(ce, child) {
2545 err = eb_pin_timeline(eb, child, throttle);
2546 if (err)
2547 goto unwind;
2548 ++i;
2549 }
2550 err = eb_pin_timeline(eb, ce, throttle);
2551 if (err)
2552 goto unwind;
2553
2bf541ff 2554 eb->args->flags |= __EXEC_ENGINE_PINNED;
544460c3
MB
2555 return 0;
2556
2557unwind:
2558 for_each_child(ce, child) {
2559 if (j++ < i) {
2560 mutex_lock(&child->timeline->mutex);
2561 intel_context_exit(child);
2562 mutex_unlock(&child->timeline->mutex);
2563 }
2564 }
2565 for_each_child(ce, child)
2566 intel_context_unpin(child);
2567 intel_context_unpin(ce);
2568 return err;
8f2a1057
CW
2569}
2570
e5dadff4 2571static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2572{
544460c3 2573 struct intel_context *ce = eb->context, *child;
a4e57f90 2574
2bf541ff
ML
2575 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2576 return;
2577
2578 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2579
544460c3
MB
2580 for_each_child(ce, child) {
2581 mutex_lock(&child->timeline->mutex);
2582 intel_context_exit(child);
2583 mutex_unlock(&child->timeline->mutex);
2584
2585 intel_context_unpin(child);
2586 }
2587
2588 mutex_lock(&ce->timeline->mutex);
a4e57f90 2589 intel_context_exit(ce);
544460c3 2590 mutex_unlock(&ce->timeline->mutex);
a4e57f90 2591
2850748e 2592 intel_context_unpin(ce);
8f2a1057 2593}
de1add36 2594
5e2a0419 2595static unsigned int
b49a7d51 2596eb_select_legacy_ring(struct i915_execbuffer *eb)
de1add36 2597{
8f2a1057 2598 struct drm_i915_private *i915 = eb->i915;
b49a7d51 2599 struct drm_i915_gem_execbuffer2 *args = eb->args;
de1add36 2600 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2601
5e2a0419
CW
2602 if (user_ring_id != I915_EXEC_BSD &&
2603 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2604 drm_dbg(&i915->drm,
2605 "execbuf with non bsd ring but with invalid "
2606 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2607 return -1;
de1add36
TU
2608 }
2609
d5b2a3a4 2610 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2611 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2612
2613 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
b49a7d51 2614 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
de1add36
TU
2615 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2616 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2617 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2618 bsd_idx--;
2619 } else {
baa89ba3
WK
2620 drm_dbg(&i915->drm,
2621 "execbuf with unknown bsd ring: %u\n",
2622 bsd_idx);
5e2a0419 2623 return -1;
de1add36
TU
2624 }
2625
5e2a0419 2626 return _VCS(bsd_idx);
de1add36
TU
2627 }
2628
5e2a0419 2629 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2630 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2631 user_ring_id);
5e2a0419 2632 return -1;
de1add36
TU
2633 }
2634
5e2a0419
CW
2635 return user_ring_map[user_ring_id];
2636}
2637
2638static int
2bf541ff 2639eb_select_engine(struct i915_execbuffer *eb)
5e2a0419 2640{
544460c3 2641 struct intel_context *ce, *child;
5e2a0419
CW
2642 unsigned int idx;
2643 int err;
2644
976b55f0 2645 if (i915_gem_context_user_engines(eb->gem_context))
b49a7d51 2646 idx = eb->args->flags & I915_EXEC_RING_MASK;
976b55f0 2647 else
b49a7d51 2648 idx = eb_select_legacy_ring(eb);
5e2a0419
CW
2649
2650 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2651 if (IS_ERR(ce))
2652 return PTR_ERR(ce);
2653
544460c3
MB
2654 if (intel_context_is_parallel(ce)) {
2655 if (eb->buffer_count < ce->parallel.number_children + 1) {
2656 intel_context_put(ce);
2657 return -EINVAL;
2658 }
2659 if (eb->batch_start_offset || eb->args->batch_len) {
2660 intel_context_put(ce);
2661 return -EINVAL;
2662 }
2663 }
2664 eb->num_batches = ce->parallel.number_children + 1;
2665
2666 for_each_child(ce, child)
2667 intel_context_get(child);
2bf541ff 2668 intel_gt_pm_get(ce->engine->gt);
5e2a0419 2669
2bf541ff
ML
2670 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2671 err = intel_context_alloc_state(ce);
2672 if (err)
2673 goto err;
2674 }
544460c3
MB
2675 for_each_child(ce, child) {
2676 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2677 err = intel_context_alloc_state(child);
2678 if (err)
2679 goto err;
2680 }
2681 }
2bf541ff
ML
2682
2683 /*
2684 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2685 * EIO if the GPU is already wedged.
2686 */
2687 err = intel_gt_terminally_wedged(ce->engine->gt);
2688 if (err)
2689 goto err;
2690
e1a7ab4f
TH
2691 if (!i915_vm_tryget(ce->vm)) {
2692 err = -ENOENT;
2693 goto err;
2694 }
2695
2bf541ff 2696 eb->context = ce;
544460c3 2697 eb->gt = ce->engine->gt;
2bf541ff
ML
2698
2699 /*
2700 * Make sure engine pool stays alive even if we call intel_context_put
2701 * during ww handling. The pool is destroyed when last pm reference
2702 * is dropped, which breaks our -EDEADLK handling.
2703 */
2704 return err;
2705
2706err:
2707 intel_gt_pm_put(ce->engine->gt);
544460c3
MB
2708 for_each_child(ce, child)
2709 intel_context_put(child);
2bf541ff 2710 intel_context_put(ce);
5e2a0419 2711 return err;
de1add36
TU
2712}
2713
2bf541ff
ML
2714static void
2715eb_put_engine(struct i915_execbuffer *eb)
2716{
544460c3
MB
2717 struct intel_context *child;
2718
e1a7ab4f 2719 i915_vm_put(eb->context->vm);
544460c3
MB
2720 intel_gt_pm_put(eb->gt);
2721 for_each_child(eb->context, child)
2722 intel_context_put(child);
2bf541ff
ML
2723 intel_context_put(eb->context);
2724}
2725
cf6e7bac 2726static void
13149e8b 2727__free_fence_array(struct eb_fence *fences, unsigned int n)
cf6e7bac 2728{
13149e8b 2729 while (n--) {
cda9edd0 2730 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
13149e8b 2731 dma_fence_put(fences[n].dma_fence);
440d0f12 2732 dma_fence_chain_free(fences[n].chain_fence);
13149e8b 2733 }
cf6e7bac
JE
2734 kvfree(fences);
2735}
2736
cda9edd0 2737static int
13149e8b
LL
2738add_timeline_fence_array(struct i915_execbuffer *eb,
2739 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
cf6e7bac 2740{
13149e8b
LL
2741 struct drm_i915_gem_exec_fence __user *user_fences;
2742 u64 __user *user_values;
2743 struct eb_fence *f;
2744 u64 nfences;
2745 int err = 0;
cf6e7bac 2746
13149e8b
LL
2747 nfences = timeline_fences->fence_count;
2748 if (!nfences)
cda9edd0 2749 return 0;
cf6e7bac 2750
d710fc16
CW
2751 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2752 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2753 if (nfences > min_t(unsigned long,
13149e8b
LL
2754 ULONG_MAX / sizeof(*user_fences),
2755 SIZE_MAX / sizeof(*f)) - eb->num_fences)
cda9edd0 2756 return -EINVAL;
cf6e7bac 2757
13149e8b
LL
2758 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2759 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2760 return -EFAULT;
2761
2762 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2763 if (!access_ok(user_values, nfences * sizeof(*user_values)))
cda9edd0 2764 return -EFAULT;
cf6e7bac 2765
13149e8b
LL
2766 f = krealloc(eb->fences,
2767 (eb->num_fences + nfences) * sizeof(*f),
2768 __GFP_NOWARN | GFP_KERNEL);
2769 if (!f)
cda9edd0 2770 return -ENOMEM;
cf6e7bac 2771
13149e8b
LL
2772 eb->fences = f;
2773 f += eb->num_fences;
2774
2775 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2776 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2777
2778 while (nfences--) {
2779 struct drm_i915_gem_exec_fence user_fence;
cf6e7bac 2780 struct drm_syncobj *syncobj;
13149e8b
LL
2781 struct dma_fence *fence = NULL;
2782 u64 point;
2783
2784 if (__copy_from_user(&user_fence,
2785 user_fences++,
2786 sizeof(user_fence)))
2787 return -EFAULT;
2788
2789 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2790 return -EINVAL;
2791
2792 if (__get_user(point, user_values++))
2793 return -EFAULT;
2794
2795 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2796 if (!syncobj) {
2797 DRM_DEBUG("Invalid syncobj handle provided\n");
2798 return -ENOENT;
2799 }
2800
2801 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac 2802
13149e8b
LL
2803 if (!fence && user_fence.flags &&
2804 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2805 DRM_DEBUG("Syncobj handle has no fence\n");
2806 drm_syncobj_put(syncobj);
2807 return -EINVAL;
cf6e7bac
JE
2808 }
2809
13149e8b
LL
2810 if (fence)
2811 err = dma_fence_chain_find_seqno(&fence, point);
2812
2813 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2814 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
da1ea128 2815 dma_fence_put(fence);
13149e8b
LL
2816 drm_syncobj_put(syncobj);
2817 return err;
2818 }
2819
2820 /*
2821 * A point might have been signaled already and
2822 * garbage collected from the timeline. In this case
2823 * just ignore the point and carry on.
2824 */
2825 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2826 drm_syncobj_put(syncobj);
2827 continue;
2828 }
2829
2830 /*
2831 * For timeline syncobjs we need to preallocate chains for
2832 * later signaling.
2833 */
2834 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2835 /*
2836 * Waiting and signaling the same point (when point !=
2837 * 0) would break the timeline.
2838 */
2839 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2840 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2841 dma_fence_put(fence);
2842 drm_syncobj_put(syncobj);
2843 return -EINVAL;
2844 }
2845
440d0f12 2846 f->chain_fence = dma_fence_chain_alloc();
13149e8b
LL
2847 if (!f->chain_fence) {
2848 drm_syncobj_put(syncobj);
2849 dma_fence_put(fence);
2850 return -ENOMEM;
2851 }
2852 } else {
2853 f->chain_fence = NULL;
ebcaa1ff
TU
2854 }
2855
13149e8b
LL
2856 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2857 f->dma_fence = fence;
2858 f->value = point;
2859 f++;
2860 eb->num_fences++;
2861 }
2862
2863 return 0;
2864}
2865
2866static int add_fence_array(struct i915_execbuffer *eb)
2867{
2868 struct drm_i915_gem_execbuffer2 *args = eb->args;
2869 struct drm_i915_gem_exec_fence __user *user;
2870 unsigned long num_fences = args->num_cliprects;
2871 struct eb_fence *f;
2872
2873 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2874 return 0;
2875
2876 if (!num_fences)
2877 return 0;
2878
2879 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2880 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2881 if (num_fences > min_t(unsigned long,
2882 ULONG_MAX / sizeof(*user),
2883 SIZE_MAX / sizeof(*f) - eb->num_fences))
2884 return -EINVAL;
2885
2886 user = u64_to_user_ptr(args->cliprects_ptr);
2887 if (!access_ok(user, num_fences * sizeof(*user)))
2888 return -EFAULT;
2889
2890 f = krealloc(eb->fences,
2891 (eb->num_fences + num_fences) * sizeof(*f),
2892 __GFP_NOWARN | GFP_KERNEL);
2893 if (!f)
2894 return -ENOMEM;
2895
2896 eb->fences = f;
2897 f += eb->num_fences;
2898 while (num_fences--) {
2899 struct drm_i915_gem_exec_fence user_fence;
2900 struct drm_syncobj *syncobj;
2901 struct dma_fence *fence = NULL;
2902
2903 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2904 return -EFAULT;
2905
2906 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2907 return -EINVAL;
2908
2909 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
cf6e7bac
JE
2910 if (!syncobj) {
2911 DRM_DEBUG("Invalid syncobj handle provided\n");
13149e8b
LL
2912 return -ENOENT;
2913 }
2914
2915 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2916 fence = drm_syncobj_fence_get(syncobj);
2917 if (!fence) {
2918 DRM_DEBUG("Syncobj handle has no fence\n");
2919 drm_syncobj_put(syncobj);
2920 return -EINVAL;
2921 }
cf6e7bac
JE
2922 }
2923
ebcaa1ff
TU
2924 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2925 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2926
13149e8b
LL
2927 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2928 f->dma_fence = fence;
2929 f->value = 0;
2930 f->chain_fence = NULL;
2931 f++;
2932 eb->num_fences++;
cf6e7bac
JE
2933 }
2934
cda9edd0 2935 return 0;
13149e8b 2936}
cf6e7bac 2937
13149e8b
LL
2938static void put_fence_array(struct eb_fence *fences, int num_fences)
2939{
2940 if (fences)
2941 __free_fence_array(fences, num_fences);
cf6e7bac
JE
2942}
2943
2944static int
544460c3
MB
2945await_fence_array(struct i915_execbuffer *eb,
2946 struct i915_request *rq)
cf6e7bac 2947{
cf6e7bac
JE
2948 unsigned int n;
2949 int err;
2950
13149e8b 2951 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac 2952 struct drm_syncobj *syncobj;
cf6e7bac
JE
2953 unsigned int flags;
2954
cda9edd0 2955 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac 2956
13149e8b
LL
2957 if (!eb->fences[n].dma_fence)
2958 continue;
cf6e7bac 2959
544460c3 2960 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
cf6e7bac
JE
2961 if (err < 0)
2962 return err;
2963 }
2964
2965 return 0;
2966}
2967
544460c3
MB
2968static void signal_fence_array(const struct i915_execbuffer *eb,
2969 struct dma_fence * const fence)
cf6e7bac 2970{
cf6e7bac
JE
2971 unsigned int n;
2972
13149e8b 2973 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac
JE
2974 struct drm_syncobj *syncobj;
2975 unsigned int flags;
2976
cda9edd0 2977 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac
JE
2978 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2979 continue;
2980
13149e8b
LL
2981 if (eb->fences[n].chain_fence) {
2982 drm_syncobj_add_point(syncobj,
2983 eb->fences[n].chain_fence,
2984 fence,
2985 eb->fences[n].value);
2986 /*
2987 * The chain's ownership is transferred to the
2988 * timeline.
2989 */
2990 eb->fences[n].chain_fence = NULL;
2991 } else {
2992 drm_syncobj_replace_fence(syncobj, fence);
2993 }
cf6e7bac
JE
2994 }
2995}
2996
13149e8b
LL
2997static int
2998parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2999{
3000 struct i915_execbuffer *eb = data;
3001 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3002
3003 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3004 return -EFAULT;
3005
3006 return add_timeline_fence_array(eb, &timeline_fences);
3007}
3008
61231f6b
CW
3009static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3010{
3011 struct i915_request *rq, *rn;
3012
3013 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3014 if (rq == end || !i915_request_retire(rq))
3015 break;
3016}
3017
544460c3
MB
3018static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3019 int err, bool last_parallel)
61231f6b 3020{
61231f6b
CW
3021 struct intel_timeline * const tl = i915_request_timeline(rq);
3022 struct i915_sched_attr attr = {};
3023 struct i915_request *prev;
3024
3025 lockdep_assert_held(&tl->mutex);
3026 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3027
3028 trace_i915_request_add(rq);
3029
3030 prev = __i915_request_commit(rq);
3031
3032 /* Check that the context wasn't destroyed before submission */
207e4a71 3033 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 3034 attr = eb->gem_context->sched;
61231f6b
CW
3035 } else {
3036 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
3037 i915_request_set_error_once(rq, -ENOENT);
3038 __i915_request_skip(rq);
ba38b79e 3039 err = -ENOENT; /* override any transient errors */
61231f6b
CW
3040 }
3041
544460c3
MB
3042 if (intel_context_is_parallel(eb->context)) {
3043 if (err) {
3044 __i915_request_skip(rq);
3045 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3046 &rq->fence.flags);
3047 }
3048 if (last_parallel)
3049 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3050 &rq->fence.flags);
3051 }
3052
61231f6b 3053 __i915_request_queue(rq, &attr);
61231f6b
CW
3054
3055 /* Try to clean up the client's timeline after submitting the request */
3056 if (prev)
3057 retire_requests(tl, prev);
3058
3059 mutex_unlock(&tl->mutex);
ba38b79e
CW
3060
3061 return err;
61231f6b
CW
3062}
3063
544460c3
MB
3064static int eb_requests_add(struct i915_execbuffer *eb, int err)
3065{
3066 int i;
3067
3068 /*
3069 * We iterate in reverse order of creation to release timeline mutexes in
3070 * same order.
3071 */
3072 for_each_batch_add_order(eb, i) {
3073 struct i915_request *rq = eb->requests[i];
3074
3075 if (!rq)
3076 continue;
3077 err |= eb_request_add(eb, rq, err, i == 0);
3078 }
3079
3080 return err;
3081}
3082
cda9edd0 3083static const i915_user_extension_fn execbuf_extensions[] = {
13149e8b 3084 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
cda9edd0
LL
3085};
3086
3087static int
3088parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3089 struct i915_execbuffer *eb)
3090{
cda9edd0
LL
3091 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3092 return 0;
3093
3094 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3095 * have another flag also using it at the same time.
3096 */
3097 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3098 return -EINVAL;
3099
3100 if (args->num_cliprects != 0)
3101 return -EINVAL;
3102
3103 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3104 execbuf_extensions,
3105 ARRAY_SIZE(execbuf_extensions),
3106 eb);
3107}
3108
544460c3
MB
3109static void eb_requests_get(struct i915_execbuffer *eb)
3110{
3111 unsigned int i;
3112
3113 for_each_batch_create_order(eb, i) {
3114 if (!eb->requests[i])
3115 break;
3116
3117 i915_request_get(eb->requests[i]);
3118 }
3119}
3120
3121static void eb_requests_put(struct i915_execbuffer *eb)
3122{
3123 unsigned int i;
3124
3125 for_each_batch_create_order(eb, i) {
3126 if (!eb->requests[i])
3127 break;
3128
3129 i915_request_put(eb->requests[i]);
3130 }
3131}
3132
3133static struct sync_file *
3134eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3135{
3136 struct sync_file *out_fence = NULL;
3137 struct dma_fence_array *fence_array;
3138 struct dma_fence **fences;
3139 unsigned int i;
3140
3141 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3142
3143 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3144 if (!fences)
3145 return ERR_PTR(-ENOMEM);
3146
7647f009 3147 for_each_batch_create_order(eb, i) {
544460c3 3148 fences[i] = &eb->requests[i]->fence;
7647f009
MB
3149 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3150 &eb->requests[i]->fence.flags);
3151 }
544460c3
MB
3152
3153 fence_array = dma_fence_array_create(eb->num_batches,
3154 fences,
3155 eb->context->parallel.fence_context,
d46f329a 3156 eb->context->parallel.seqno++,
544460c3
MB
3157 false);
3158 if (!fence_array) {
3159 kfree(fences);
3160 return ERR_PTR(-ENOMEM);
3161 }
3162
3163 /* Move ownership to the dma_fence_array created above */
3164 for_each_batch_create_order(eb, i)
3165 dma_fence_get(fences[i]);
3166
3167 if (out_fence_fd != -1) {
3168 out_fence = sync_file_create(&fence_array->base);
3169 /* sync_file now owns fence_arry, drop creation ref */
3170 dma_fence_put(&fence_array->base);
3171 if (!out_fence)
3172 return ERR_PTR(-ENOMEM);
3173 }
3174
3175 eb->composite_fence = &fence_array->base;
3176
3177 return out_fence;
3178}
3179
3180static struct sync_file *
3181eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3182 struct dma_fence *in_fence, int out_fence_fd)
3183{
3184 struct sync_file *out_fence = NULL;
3185 int err;
3186
3187 if (unlikely(eb->gem_context->syncobj)) {
3188 struct dma_fence *fence;
3189
3190 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3191 err = i915_request_await_dma_fence(rq, fence);
3192 dma_fence_put(fence);
3193 if (err)
3194 return ERR_PTR(err);
3195 }
3196
3197 if (in_fence) {
3198 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3199 err = i915_request_await_execution(rq, in_fence);
3200 else
3201 err = i915_request_await_dma_fence(rq, in_fence);
3202 if (err < 0)
3203 return ERR_PTR(err);
3204 }
3205
3206 if (eb->fences) {
3207 err = await_fence_array(eb, rq);
3208 if (err)
3209 return ERR_PTR(err);
3210 }
3211
3212 if (intel_context_is_parallel(eb->context)) {
3213 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3214 if (IS_ERR(out_fence))
3215 return ERR_PTR(-ENOMEM);
3216 } else if (out_fence_fd != -1) {
3217 out_fence = sync_file_create(&rq->fence);
3218 if (!out_fence)
3219 return ERR_PTR(-ENOMEM);
3220 }
3221
3222 return out_fence;
3223}
3224
3225static struct intel_context *
3226eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3227{
3228 struct intel_context *child;
3229
3230 if (likely(context_number == 0))
3231 return eb->context;
3232
3233 for_each_child(eb->context, child)
3234 if (!--context_number)
3235 return child;
3236
3237 GEM_BUG_ON("Context not found");
3238
3239 return NULL;
3240}
3241
3242static struct sync_file *
3243eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3244 int out_fence_fd)
3245{
3246 struct sync_file *out_fence = NULL;
3247 unsigned int i;
3248
3249 for_each_batch_create_order(eb, i) {
3250 /* Allocate a request for this batch buffer nice and early. */
3251 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3252 if (IS_ERR(eb->requests[i])) {
86752bd6 3253 out_fence = ERR_CAST(eb->requests[i]);
544460c3
MB
3254 eb->requests[i] = NULL;
3255 return out_fence;
3256 }
3257
3258 /*
3259 * Only the first request added (committed to backend) has to
3260 * take the in fences into account as all subsequent requests
3261 * will have fences inserted inbetween them.
3262 */
3263 if (i + 1 == eb->num_batches) {
3264 out_fence = eb_fences_add(eb, eb->requests[i],
3265 in_fence, out_fence_fd);
3266 if (IS_ERR(out_fence))
3267 return out_fence;
3268 }
3269
3270 /*
ff20afc4
TH
3271 * Not really on stack, but we don't want to call
3272 * kfree on the batch_snapshot when we put it, so use the
3273 * _onstack interface.
544460c3 3274 */
ff20afc4 3275 if (eb->batches[i]->vma)
60dc43d1
TH
3276 eb->requests[i]->batch_res =
3277 i915_vma_resource_get(eb->batches[i]->vma->resource);
544460c3
MB
3278 if (eb->batch_pool) {
3279 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3280 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3281 eb->requests[i]);
3282 }
3283 }
3284
3285 return out_fence;
3286}
3287
54cf91dc 3288static int
650bc635 3289i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
3290 struct drm_file *file,
3291 struct drm_i915_gem_execbuffer2 *args,
cda9edd0 3292 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 3293{
44157641 3294 struct drm_i915_private *i915 = to_i915(dev);
650bc635 3295 struct i915_execbuffer eb;
fec0445c
CW
3296 struct dma_fence *in_fence = NULL;
3297 struct sync_file *out_fence = NULL;
3298 int out_fence_fd = -1;
2889caa9 3299 int err;
432e58ed 3300
74c1c694 3301 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
3302 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3303 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 3304
44157641 3305 eb.i915 = i915;
650bc635
CW
3306 eb.file = file;
3307 eb.args = args;
ad5d95e4 3308 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 3309 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 3310
650bc635 3311 eb.exec = exec;
8ae275c2
ML
3312 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3313 eb.vma[0].vma = NULL;
8e02cceb 3314 eb.batch_pool = NULL;
c7c6e46f 3315
2889caa9 3316 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
3317 reloc_cache_init(&eb.reloc_cache, eb.i915);
3318
2889caa9 3319 eb.buffer_count = args->buffer_count;
650bc635 3320 eb.batch_start_offset = args->batch_start_offset;
32d94048 3321 eb.trampoline = NULL;
650bc635 3322
cda9edd0 3323 eb.fences = NULL;
13149e8b 3324 eb.num_fences = 0;
cda9edd0 3325
ff20afc4
TH
3326 eb_capture_list_clear(&eb);
3327
544460c3
MB
3328 memset(eb.requests, 0, sizeof(struct i915_request *) *
3329 ARRAY_SIZE(eb.requests));
3330 eb.composite_fence = NULL;
3331
2889caa9 3332 eb.batch_flags = 0;
d7d4eedd 3333 if (args->flags & I915_EXEC_SECURE) {
40e1956e 3334 if (GRAPHICS_VER(i915) >= 11)
44157641
JB
3335 return -ENODEV;
3336
3337 /* Return -EPERM to trigger fallback code on old binaries. */
3338 if (!HAS_SECURE_BATCHES(i915))
3339 return -EPERM;
3340
b3ac9f25 3341 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 3342 return -EPERM;
d7d4eedd 3343
2889caa9 3344 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 3345 }
b45305fc 3346 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 3347 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 3348
13149e8b
LL
3349 err = parse_execbuf2_extensions(args, &eb);
3350 if (err)
3351 goto err_ext;
3352
3353 err = add_fence_array(&eb);
3354 if (err)
3355 goto err_ext;
3356
889333c7
CW
3357#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3358 if (args->flags & IN_FENCES) {
3359 if ((args->flags & IN_FENCES) == IN_FENCES)
3360 return -EINVAL;
3361
fec0445c 3362 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
13149e8b
LL
3363 if (!in_fence) {
3364 err = -EINVAL;
3365 goto err_ext;
3366 }
fec0445c 3367 }
889333c7 3368#undef IN_FENCES
a88b6e4c 3369
fec0445c
CW
3370 if (args->flags & I915_EXEC_FENCE_OUT) {
3371 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3372 if (out_fence_fd < 0) {
2889caa9 3373 err = out_fence_fd;
889333c7 3374 goto err_in_fence;
fec0445c
CW
3375 }
3376 }
3377
cda9edd0
LL
3378 err = eb_create(&eb);
3379 if (err)
13149e8b 3380 goto err_out_fence;
cda9edd0 3381
4d470f73 3382 GEM_BUG_ON(!eb.lut_size);
2889caa9 3383
1acfc104
CW
3384 err = eb_select_context(&eb);
3385 if (unlikely(err))
3386 goto err_destroy;
3387
2bf541ff 3388 err = eb_select_engine(&eb);
d6f328bf 3389 if (unlikely(err))
e5dadff4 3390 goto err_context;
d6f328bf 3391
c43ce123
ML
3392 err = eb_lookup_vmas(&eb);
3393 if (err) {
b4b9731b 3394 eb_release_vmas(&eb, true);
c43ce123
ML
3395 goto err_engine;
3396 }
3397
3398 i915_gem_ww_ctx_init(&eb.ww, true);
3399
8e4ba491 3400 err = eb_relocate_parse(&eb);
1f727d9e 3401 if (err) {
2889caa9
CW
3402 /*
3403 * If the user expects the execobject.offset and
3404 * reloc.presumed_offset to be an exact match,
3405 * as for using NO_RELOC, then we cannot update
3406 * the execobject.offset until we have completed
3407 * relocation.
3408 */
3409 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 3410 goto err_vma;
1f727d9e 3411 }
54cf91dc 3412
c43ce123 3413 ww_acquire_done(&eb.ww.ctx);
ff20afc4 3414 eb_capture_stage(&eb);
7d6236bb 3415
544460c3
MB
3416 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3417 if (IS_ERR(out_fence)) {
3418 err = PTR_ERR(out_fence);
9cdb54be 3419 out_fence = NULL;
544460c3 3420 if (eb.requests[0])
cf6e7bac 3421 goto err_request;
544460c3
MB
3422 else
3423 goto err_vma;
cf6e7bac
JE
3424 }
3425
544460c3 3426 err = eb_submit(&eb);
ed29c269 3427
aa9b7810 3428err_request:
544460c3
MB
3429 eb_requests_get(&eb);
3430 err = eb_requests_add(&eb, err);
c8659efa 3431
13149e8b 3432 if (eb.fences)
544460c3
MB
3433 signal_fence_array(&eb, eb.composite_fence ?
3434 eb.composite_fence :
3435 &eb.requests[0]->fence);
cf6e7bac 3436
fec0445c 3437 if (out_fence) {
2889caa9 3438 if (err == 0) {
fec0445c 3439 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 3440 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
3441 args->rsvd2 |= (u64)out_fence_fd << 32;
3442 out_fence_fd = -1;
3443 } else {
3444 fput(out_fence->file);
3445 }
3446 }
00dae4d3
JE
3447
3448 if (unlikely(eb.gem_context->syncobj)) {
3449 drm_syncobj_replace_fence(eb.gem_context->syncobj,
544460c3
MB
3450 eb.composite_fence ?
3451 eb.composite_fence :
3452 &eb.requests[0]->fence);
00dae4d3
JE
3453 }
3454
544460c3
MB
3455 if (!out_fence && eb.composite_fence)
3456 dma_fence_put(eb.composite_fence);
3457
3458 eb_requests_put(&eb);
54cf91dc 3459
2889caa9 3460err_vma:
b4b9731b 3461 eb_release_vmas(&eb, true);
c43ce123
ML
3462 WARN_ON(err == -EDEADLK);
3463 i915_gem_ww_ctx_fini(&eb.ww);
3464
3465 if (eb.batch_pool)
3466 intel_gt_buffer_pool_put(eb.batch_pool);
c43ce123 3467err_engine:
2bf541ff 3468 eb_put_engine(&eb);
a4e57f90 3469err_context:
8f2a1057 3470 i915_gem_context_put(eb.gem_context);
1acfc104 3471err_destroy:
2889caa9 3472 eb_destroy(&eb);
4d470f73 3473err_out_fence:
fec0445c
CW
3474 if (out_fence_fd != -1)
3475 put_unused_fd(out_fence_fd);
4a04e371 3476err_in_fence:
fec0445c 3477 dma_fence_put(in_fence);
13149e8b
LL
3478err_ext:
3479 put_fence_array(eb.fences, eb.num_fences);
2889caa9 3480 return err;
54cf91dc
CW
3481}
3482
d710fc16
CW
3483static size_t eb_element_size(void)
3484{
8ae275c2 3485 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
3486}
3487
3488static bool check_buffer_count(size_t count)
3489{
3490 const size_t sz = eb_element_size();
3491
3492 /*
3493 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3494 * array size (see eb_create()). Otherwise, we can accept an array as
3495 * large as can be addressed (though use large arrays at your peril)!
3496 */
3497
3498 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3499}
3500
54cf91dc 3501int
6a20fe7b
VS
3502i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3503 struct drm_file *file)
54cf91dc 3504{
d0bf4582 3505 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 3506 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 3507 struct drm_i915_gem_exec_object2 *exec2_list;
d710fc16 3508 const size_t count = args->buffer_count;
2889caa9 3509 int err;
54cf91dc 3510
d710fc16 3511 if (!check_buffer_count(count)) {
d0bf4582 3512 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3513 return -EINVAL;
3514 }
3515
00aff3f6
TU
3516 err = i915_gem_check_execbuffer(args);
3517 if (err)
3518 return err;
2889caa9 3519
47b08693
ML
3520 /* Allocate extra slots for use by the command parser */
3521 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3522 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3523 if (exec2_list == NULL) {
d0bf4582
WK
3524 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3525 count);
54cf91dc
CW
3526 return -ENOMEM;
3527 }
2889caa9
CW
3528 if (copy_from_user(exec2_list,
3529 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3530 sizeof(*exec2_list) * count)) {
d0bf4582 3531 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 3532 kvfree(exec2_list);
54cf91dc
CW
3533 return -EFAULT;
3534 }
3535
cda9edd0 3536 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2889caa9
CW
3537
3538 /*
3539 * Now that we have begun execution of the batchbuffer, we ignore
3540 * any new error after this point. Also given that we have already
3541 * updated the associated relocations, we try to write out the current
3542 * object locations irrespective of any error.
3543 */
3544 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3545 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3546 u64_to_user_ptr(args->buffers_ptr);
3547 unsigned int i;
9aab8bff 3548
2889caa9 3549 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3550 /*
3551 * Note: count * sizeof(*user_exec_list) does not overflow,
3552 * because we checked 'count' in check_buffer_count().
3553 *
3554 * And this range already got effectively checked earlier
3555 * when we did the "copy_from_user()" above.
3556 */
b44f6873
CL
3557 if (!user_write_access_begin(user_exec_list,
3558 count * sizeof(*user_exec_list)))
8f4faed0 3559 goto end;
594cc251 3560
9aab8bff 3561 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3562 if (!(exec2_list[i].offset & UPDATE))
3563 continue;
3564
934acce3 3565 exec2_list[i].offset =
2889caa9
CW
3566 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3567 unsafe_put_user(exec2_list[i].offset,
3568 &user_exec_list[i].offset,
3569 end_user);
54cf91dc 3570 }
2889caa9 3571end_user:
b44f6873 3572 user_write_access_end();
8f4faed0 3573end:;
54cf91dc
CW
3574 }
3575
2889caa9 3576 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 3577 kvfree(exec2_list);
2889caa9 3578 return err;
54cf91dc 3579}