drm/i915: Asynchronous migration selftest
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
52791eee 8#include <linux/dma-resv.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
ad778f89 13
df0566a6
JN
14#include "display/intel_frontbuffer.h"
15
afa13085 16#include "gem/i915_gem_ioctls.h"
10be98a7 17#include "gt/intel_context.h"
45233ab2 18#include "gt/intel_gpu_commands.h"
baea429d 19#include "gt/intel_gt.h"
16e87459 20#include "gt/intel_gt_buffer_pool.h"
8f2a1057 21#include "gt/intel_gt_pm.h"
2871ea85 22#include "gt/intel_ring.h"
8f2a1057 23
d3ac8d42
DCS
24#include "pxp/intel_pxp.h"
25
6da4a2c4 26#include "i915_drv.h"
57822dc6 27#include "i915_gem_clflush.h"
10be98a7 28#include "i915_gem_context.h"
6da4a2c4 29#include "i915_gem_ioctls.h"
54cf91dc 30#include "i915_trace.h"
cda9edd0 31#include "i915_user_extensions.h"
ff20afc4 32#include "i915_vma_snapshot.h"
54cf91dc 33
7d6236bb
CW
34struct eb_vma {
35 struct i915_vma *vma;
36 unsigned int flags;
37
38 /** This vma's place in the execbuf reservation list */
39 struct drm_i915_gem_exec_object2 *exec;
40 struct list_head bind_link;
41 struct list_head reloc_link;
42
43 struct hlist_node node;
44 u32 handle;
45};
46
ad5d95e4
DA
47enum {
48 FORCE_CPU_RELOC = 1,
49 FORCE_GTT_RELOC,
50 FORCE_GPU_RELOC,
51#define DBG_FORCE_RELOC 0 /* choose one of the above! */
52};
53
bfaae47d
ML
54/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
55#define __EXEC_OBJECT_HAS_PIN BIT(30)
56#define __EXEC_OBJECT_HAS_FENCE BIT(29)
ed29c269
ML
57#define __EXEC_OBJECT_USERPTR_INIT BIT(28)
58#define __EXEC_OBJECT_NEEDS_MAP BIT(27)
59#define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
60#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
8ae275c2 61#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
2889caa9
CW
62
63#define __EXEC_HAS_RELOC BIT(31)
2bf541ff 64#define __EXEC_ENGINE_PINNED BIT(30)
ed29c269
ML
65#define __EXEC_USERPTR_USED BIT(29)
66#define __EXEC_INTERNAL_FLAGS (~0u << 29)
2889caa9 67#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
68
69#define BATCH_OFFSET_BIAS (256*1024)
a415d355 70
650bc635 71#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
72 (__I915_EXEC_UNKNOWN_FLAGS | \
73 I915_EXEC_CONSTANTS_MASK | \
74 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 75
d20ac620
CW
76/* Catch emission of unexpected errors for CI! */
77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
78#undef EINVAL
79#define EINVAL ({ \
80 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
81 22; \
82})
83#endif
84
2889caa9
CW
85/**
86 * DOC: User command execution
87 *
88 * Userspace submits commands to be executed on the GPU as an instruction
89 * stream within a GEM object we call a batchbuffer. This instructions may
90 * refer to other GEM objects containing auxiliary state such as kernels,
91 * samplers, render targets and even secondary batchbuffers. Userspace does
92 * not know where in the GPU memory these objects reside and so before the
93 * batchbuffer is passed to the GPU for execution, those addresses in the
94 * batchbuffer and auxiliary objects are updated. This is known as relocation,
95 * or patching. To try and avoid having to relocate each object on the next
96 * execution, userspace is told the location of those objects in this pass,
97 * but this remains just a hint as the kernel may choose a new location for
98 * any object in the future.
99 *
99d7e4ee
KR
100 * At the level of talking to the hardware, submitting a batchbuffer for the
101 * GPU to execute is to add content to a buffer from which the HW
102 * command streamer is reading.
103 *
104 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
105 * Execlists, this command is not placed on the same buffer as the
106 * remaining items.
107 *
108 * 2. Add a command to invalidate caches to the buffer.
109 *
110 * 3. Add a batchbuffer start command to the buffer; the start command is
111 * essentially a token together with the GPU address of the batchbuffer
112 * to be executed.
113 *
114 * 4. Add a pipeline flush to the buffer.
115 *
116 * 5. Add a memory write command to the buffer to record when the GPU
117 * is done executing the batchbuffer. The memory write writes the
118 * global sequence number of the request, ``i915_request::global_seqno``;
119 * the i915 driver uses the current value in the register to determine
120 * if the GPU has completed the batchbuffer.
121 *
122 * 6. Add a user interrupt command to the buffer. This command instructs
123 * the GPU to issue an interrupt when the command, pipeline flush and
124 * memory write are completed.
125 *
126 * 7. Inform the hardware of the additional commands added to the buffer
127 * (by updating the tail pointer).
128 *
2889caa9
CW
129 * Processing an execbuf ioctl is conceptually split up into a few phases.
130 *
131 * 1. Validation - Ensure all the pointers, handles and flags are valid.
132 * 2. Reservation - Assign GPU address space for every object
133 * 3. Relocation - Update any addresses to point to the final locations
134 * 4. Serialisation - Order the request with respect to its dependencies
135 * 5. Construction - Construct a request to execute the batchbuffer
136 * 6. Submission (at some point in the future execution)
137 *
138 * Reserving resources for the execbuf is the most complicated phase. We
139 * neither want to have to migrate the object in the address space, nor do
140 * we want to have to update any relocations pointing to this object. Ideally,
141 * we want to leave the object where it is and for all the existing relocations
142 * to match. If the object is given a new address, or if userspace thinks the
143 * object is elsewhere, we have to parse all the relocation entries and update
144 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
145 * all the target addresses in all of its objects match the value in the
146 * relocation entries and that they all match the presumed offsets given by the
147 * list of execbuffer objects. Using this knowledge, we know that if we haven't
148 * moved any buffers, all the relocation entries are valid and we can skip
149 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
150 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
151 *
152 * The addresses written in the objects must match the corresponding
153 * reloc.presumed_offset which in turn must match the corresponding
154 * execobject.offset.
155 *
156 * Any render targets written to in the batch must be flagged with
157 * EXEC_OBJECT_WRITE.
158 *
159 * To avoid stalling, execobject.offset should match the current
160 * address of that object within the active context.
161 *
162 * The reservation is done is multiple phases. First we try and keep any
163 * object already bound in its current location - so as long as meets the
164 * constraints imposed by the new execbuffer. Any object left unbound after the
165 * first pass is then fitted into any available idle space. If an object does
166 * not fit, all objects are removed from the reservation and the process rerun
167 * after sorting the objects into a priority order (more difficult to fit
168 * objects are tried first). Failing that, the entire VM is cleared and we try
169 * to fit the execbuf once last time before concluding that it simply will not
170 * fit.
171 *
172 * A small complication to all of this is that we allow userspace not only to
173 * specify an alignment and a size for the object in the address space, but
174 * we also allow userspace to specify the exact offset. This objects are
175 * simpler to place (the location is known a priori) all we have to do is make
176 * sure the space is available.
177 *
178 * Once all the objects are in place, patching up the buried pointers to point
179 * to the final locations is a fairly simple job of walking over the relocation
180 * entry arrays, looking up the right address and rewriting the value into
181 * the object. Simple! ... The relocation entries are stored in user memory
182 * and so to access them we have to copy them into a local buffer. That copy
183 * has to avoid taking any pagefaults as they may lead back to a GEM object
184 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
185 * the relocation into multiple passes. First we try to do everything within an
186 * atomic context (avoid the pagefaults) which requires that we never wait. If
187 * we detect that we may wait, or if we need to fault, then we have to fallback
188 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
189 * bells yet?) Dropping the mutex means that we lose all the state we have
190 * built up so far for the execbuf and we must reset any global data. However,
191 * we do leave the objects pinned in their final locations - which is a
192 * potential issue for concurrent execbufs. Once we have left the mutex, we can
193 * allocate and copy all the relocation entries into a large array at our
194 * leisure, reacquire the mutex, reclaim all the objects and other state and
195 * then proceed to update any incorrect addresses with the objects.
196 *
197 * As we process the relocation entries, we maintain a record of whether the
198 * object is being written to. Using NORELOC, we expect userspace to provide
199 * this information instead. We also check whether we can skip the relocation
200 * by comparing the expected value inside the relocation entry with the target's
201 * final address. If they differ, we have to map the current object and rewrite
202 * the 4 or 8 byte pointer within.
203 *
204 * Serialising an execbuf is quite simple according to the rules of the GEM
205 * ABI. Execution within each context is ordered by the order of submission.
206 * Writes to any GEM object are in order of submission and are exclusive. Reads
207 * from a GEM object are unordered with respect to other reads, but ordered by
208 * writes. A write submitted after a read cannot occur before the read, and
209 * similarly any read submitted after a write cannot occur before the write.
210 * Writes are ordered between engines such that only one write occurs at any
211 * time (completing any reads beforehand) - using semaphores where available
212 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
213 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
214 * reads before starting, and any read (either using set-domain or pread) must
215 * flush all GPU writes before starting. (Note we only employ a barrier before,
216 * we currently rely on userspace not concurrently starting a new execution
217 * whilst reading or writing to an object. This may be an advantage or not
218 * depending on how much you trust userspace not to shoot themselves in the
219 * foot.) Serialisation may just result in the request being inserted into
220 * a DAG awaiting its turn, but most simple is to wait on the CPU until
221 * all dependencies are resolved.
222 *
223 * After all of that, is just a matter of closing the request and handing it to
224 * the hardware (well, leaving it in a queue to be executed). However, we also
225 * offer the ability for batchbuffers to be run with elevated privileges so
226 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
227 * Before any batch is given extra privileges we first must check that it
228 * contains no nefarious instructions, we check that each instruction is from
229 * our whitelist and all registers are also from an allowed list. We first
230 * copy the user's batchbuffer to a shadow (so that the user doesn't have
231 * access to it, either by the CPU or GPU as we scan it) and then parse each
232 * instruction. If everything is ok, we set a flag telling the hardware to run
233 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
234 */
235
13149e8b
LL
236struct eb_fence {
237 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
238 struct dma_fence *dma_fence;
239 u64 value;
240 struct dma_fence_chain *chain_fence;
241};
242
650bc635 243struct i915_execbuffer {
2889caa9
CW
244 struct drm_i915_private *i915; /** i915 backpointer */
245 struct drm_file *file; /** per-file lookup tables and limits */
246 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
247 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 248 struct eb_vma *vma;
2889caa9 249
544460c3 250 struct intel_gt *gt; /* gt for the execbuf */
8f2a1057
CW
251 struct intel_context *context; /* logical state for the request */
252 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 253
544460c3
MB
254 /** our requests to build */
255 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
256 /** identity of the batch obj/vma */
257 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
32d94048 258 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9 259
544460c3
MB
260 /** used for excl fence in dma_resv objects when > 1 BB submitted */
261 struct dma_fence *composite_fence;
262
2889caa9
CW
263 /** actual size of execobj[] as we may extend it for the cmdparser */
264 unsigned int buffer_count;
265
544460c3
MB
266 /* number of batches in execbuf IOCTL */
267 unsigned int num_batches;
268
2889caa9
CW
269 /** list of vma not yet bound during reservation phase */
270 struct list_head unbound;
271
272 /** list of vma that have execobj.relocation_count */
273 struct list_head relocs;
274
c43ce123
ML
275 struct i915_gem_ww_ctx ww;
276
2889caa9
CW
277 /**
278 * Track the most recently used object for relocations, as we
279 * frequently have to perform multiple relocations within the same
280 * obj/page
281 */
650bc635 282 struct reloc_cache {
2889caa9 283 struct drm_mm_node node; /** temporary GTT binding */
ad5d95e4
DA
284 unsigned long vaddr; /** Current kmap address */
285 unsigned long page; /** Currently mapped page index */
8802190f 286 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
650bc635 287 bool use_64bit_reloc : 1;
2889caa9
CW
288 bool has_llc : 1;
289 bool has_fence : 1;
290 bool needs_unfenced : 1;
650bc635 291 } reloc_cache;
2889caa9
CW
292
293 u64 invalid_flags; /** Set of execobj.flags that are invalid */
2889caa9 294
544460c3
MB
295 /** Length of batch within object */
296 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
2889caa9 297 u32 batch_start_offset; /** Location within object of batch */
2889caa9 298 u32 batch_flags; /** Flags composed for emit_bb_start() */
c43ce123 299 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
2889caa9
CW
300
301 /**
302 * Indicate either the size of the hastable used to resolve
303 * relocation handles, or if negative that we are using a direct
304 * index into the execobj[].
305 */
306 int lut_size;
307 struct hlist_head *buckets; /** ht for relocation handles */
cda9edd0 308
13149e8b
LL
309 struct eb_fence *fences;
310 unsigned long num_fences;
ff20afc4
TH
311#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
312 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
313#endif
67731b87
CW
314};
315
8e4ba491 316static int eb_parse(struct i915_execbuffer *eb);
544460c3 317static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
2bf541ff 318static void eb_unpin_engine(struct i915_execbuffer *eb);
ff20afc4 319static void eb_capture_release(struct i915_execbuffer *eb);
8e4ba491 320
3dbf26ed
CW
321static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
322{
544460c3
MB
323 return intel_engine_requires_cmd_parser(eb->context->engine) ||
324 (intel_engine_using_cmd_parser(eb->context->engine) &&
435e8fc0 325 eb->args->batch_len);
3dbf26ed
CW
326}
327
650bc635 328static int eb_create(struct i915_execbuffer *eb)
67731b87 329{
2889caa9
CW
330 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
331 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 332
2889caa9
CW
333 /*
334 * Without a 1:1 association between relocation handles and
335 * the execobject[] index, we instead create a hashtable.
336 * We size it dynamically based on available memory, starting
337 * first with 1:1 assocative hash and scaling back until
338 * the allocation succeeds.
339 *
340 * Later on we use a positive lut_size to indicate we are
341 * using this hashtable, and a negative value to indicate a
342 * direct lookup.
343 */
4ff4b44c 344 do {
0d95c883 345 gfp_t flags;
4d470f73
CW
346
347 /* While we can still reduce the allocation size, don't
348 * raise a warning and allow the allocation to fail.
349 * On the last pass though, we want to try as hard
350 * as possible to perform the allocation and warn
351 * if it fails.
352 */
0ee931c4 353 flags = GFP_KERNEL;
4d470f73
CW
354 if (size > 1)
355 flags |= __GFP_NORETRY | __GFP_NOWARN;
356
4ff4b44c 357 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 358 flags);
4ff4b44c
CW
359 if (eb->buckets)
360 break;
361 } while (--size);
362
8ae275c2 363 if (unlikely(!size))
4d470f73 364 return -ENOMEM;
eef90ccb 365
2889caa9 366 eb->lut_size = size;
650bc635 367 } else {
2889caa9 368 eb->lut_size = -eb->buffer_count;
650bc635 369 }
eef90ccb 370
650bc635 371 return 0;
67731b87
CW
372}
373
2889caa9
CW
374static bool
375eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
376 const struct i915_vma *vma,
377 unsigned int flags)
2889caa9 378{
2889caa9
CW
379 if (vma->node.size < entry->pad_to_size)
380 return true;
381
382 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
383 return true;
384
c7c6e46f 385 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
386 vma->node.start != entry->offset)
387 return true;
388
c7c6e46f 389 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
390 vma->node.start < BATCH_OFFSET_BIAS)
391 return true;
392
c7c6e46f 393 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
5f22cc0b 394 (vma->node.start + vma->node.size + 4095) >> 32)
2889caa9
CW
395 return true;
396
1d033beb
CW
397 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
398 !i915_vma_is_map_and_fenceable(vma))
399 return true;
400
2889caa9
CW
401 return false;
402}
403
8a338f4b
CW
404static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
405 unsigned int exec_flags)
406{
407 u64 pin_flags = 0;
408
409 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
410 pin_flags |= PIN_GLOBAL;
411
412 /*
413 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
414 * limit address to the first 4GBs for unflagged objects.
415 */
416 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
417 pin_flags |= PIN_ZONE_4G;
418
419 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
420 pin_flags |= PIN_MAPPABLE;
421
422 if (exec_flags & EXEC_OBJECT_PINNED)
423 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
424 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
425 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
426
427 return pin_flags;
428}
429
237647f4 430static inline int
2889caa9 431eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 432 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 433 struct eb_vma *ev)
2889caa9 434{
7d6236bb 435 struct i915_vma *vma = ev->vma;
c7c6e46f 436 u64 pin_flags;
237647f4 437 int err;
2889caa9 438
616d9cee 439 if (vma->node.size)
c7c6e46f 440 pin_flags = vma->node.start;
616d9cee 441 else
c7c6e46f 442 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 443
c7c6e46f 444 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
7d6236bb 445 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 446 pin_flags |= PIN_GLOBAL;
616d9cee 447
8a338f4b 448 /* Attempt to reuse the current location if available */
237647f4
ML
449 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
450 if (err == -EDEADLK)
451 return err;
452
453 if (unlikely(err)) {
8a338f4b 454 if (entry->flags & EXEC_OBJECT_PINNED)
237647f4 455 return err;
8a338f4b
CW
456
457 /* Failing that pick any _free_ space if suitable */
237647f4 458 err = i915_vma_pin_ww(vma, &eb->ww,
47b08693
ML
459 entry->pad_to_size,
460 entry->alignment,
461 eb_pin_flags(entry, ev->flags) |
237647f4
ML
462 PIN_USER | PIN_NOEVICT);
463 if (unlikely(err))
464 return err;
8a338f4b 465 }
2889caa9 466
7d6236bb 467 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
237647f4
ML
468 err = i915_vma_pin_fence(vma);
469 if (unlikely(err)) {
2889caa9 470 i915_vma_unpin(vma);
237647f4 471 return err;
2889caa9
CW
472 }
473
3bd40735 474 if (vma->fence)
7d6236bb 475 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
476 }
477
7d6236bb 478 ev->flags |= __EXEC_OBJECT_HAS_PIN;
237647f4
ML
479 if (eb_vma_misplaced(entry, vma, ev->flags))
480 return -EBADSLT;
481
482 return 0;
2889caa9
CW
483}
484
8ae275c2
ML
485static inline void
486eb_unreserve_vma(struct eb_vma *ev)
487{
488 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
489 return;
490
c43ce123
ML
491 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
492 __i915_vma_unpin_fence(ev->vma);
493
494 __i915_vma_unpin(ev->vma);
8ae275c2
ML
495 ev->flags &= ~__EXEC_OBJECT_RESERVED;
496}
497
2889caa9
CW
498static int
499eb_validate_vma(struct i915_execbuffer *eb,
500 struct drm_i915_gem_exec_object2 *entry,
501 struct i915_vma *vma)
67731b87 502{
2eb8e1a6
JE
503 /* Relocations are disallowed for all platforms after TGL-LP. This
504 * also covers all platforms with local memory.
505 */
506 if (entry->relocation_count &&
40e1956e 507 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
2eb8e1a6
JE
508 return -EINVAL;
509
2889caa9
CW
510 if (unlikely(entry->flags & eb->invalid_flags))
511 return -EINVAL;
d55495b4 512
2920516b
MA
513 if (unlikely(entry->alignment &&
514 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
515 return -EINVAL;
516
517 /*
518 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519 * any non-page-aligned or non-canonical addresses.
520 */
521 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 522 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
523 return -EINVAL;
524
525 /* pad_to_size was once a reserved field, so sanitize it */
526 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527 if (unlikely(offset_in_page(entry->pad_to_size)))
528 return -EINVAL;
529 } else {
530 entry->pad_to_size = 0;
d55495b4 531 }
2889caa9
CW
532 /*
533 * From drm_mm perspective address space is continuous,
534 * so from this point we're always using non-canonical
535 * form internally.
536 */
537 entry->offset = gen8_noncanonical_addr(entry->offset);
538
c7c6e46f
CW
539 if (!eb->reloc_cache.has_fence) {
540 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541 } else {
542 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543 eb->reloc_cache.needs_unfenced) &&
544 i915_gem_object_is_tiled(vma->obj))
545 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546 }
547
2889caa9 548 return 0;
67731b87
CW
549}
550
544460c3
MB
551static inline bool
552is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
553{
554 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
555 buffer_idx < eb->num_batches :
556 buffer_idx >= eb->args->buffer_count - eb->num_batches;
557}
558
559static int
746c8f14 560eb_add_vma(struct i915_execbuffer *eb,
544460c3
MB
561 unsigned int *current_batch,
562 unsigned int i,
746c8f14 563 struct i915_vma *vma)
59bfa124 564{
544460c3 565 struct drm_i915_private *i915 = eb->i915;
c7c6e46f 566 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 567 struct eb_vma *ev = &eb->vma[i];
2889caa9 568
93159e12 569 ev->vma = vma;
7d6236bb
CW
570 ev->exec = entry;
571 ev->flags = entry->flags;
572
4d470f73 573 if (eb->lut_size > 0) {
7d6236bb
CW
574 ev->handle = entry->handle;
575 hlist_add_head(&ev->node,
2889caa9
CW
576 &eb->buckets[hash_32(entry->handle,
577 eb->lut_size)]);
4ff4b44c 578 }
59bfa124 579
2889caa9 580 if (entry->relocation_count)
7d6236bb 581 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 582
746c8f14
CW
583 /*
584 * SNA is doing fancy tricks with compressing batch buffers, which leads
585 * to negative relocation deltas. Usually that works out ok since the
586 * relocate address is still positive, except when the batch is placed
587 * very low in the GTT. Ensure this doesn't happen.
588 *
589 * Note that actual hangs have only been observed on gen7, but for
590 * paranoia do it everywhere.
591 */
544460c3 592 if (is_batch_buffer(eb, i)) {
827db9d8 593 if (entry->relocation_count &&
7d6236bb
CW
594 !(ev->flags & EXEC_OBJECT_PINNED))
595 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 596 if (eb->reloc_cache.has_fence)
7d6236bb 597 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 598
544460c3
MB
599 eb->batches[*current_batch] = ev;
600
601 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
602 drm_dbg(&i915->drm,
603 "Attempting to use self-modifying batch buffer\n");
604 return -EINVAL;
605 }
606
607 if (range_overflows_t(u64,
608 eb->batch_start_offset,
609 eb->args->batch_len,
610 ev->vma->size)) {
611 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
612 return -EINVAL;
613 }
614
615 if (eb->args->batch_len == 0)
616 eb->batch_len[*current_batch] = ev->vma->size -
617 eb->batch_start_offset;
618 else
619 eb->batch_len[*current_batch] = eb->args->batch_len;
620 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
621 drm_dbg(&i915->drm, "Invalid batch length\n");
622 return -EINVAL;
623 }
624
625 ++*current_batch;
746c8f14 626 }
544460c3
MB
627
628 return 0;
2889caa9
CW
629}
630
ad5d95e4
DA
631static inline int use_cpu_reloc(const struct reloc_cache *cache,
632 const struct drm_i915_gem_object *obj)
633{
634 if (!i915_gem_object_has_struct_page(obj))
635 return false;
636
637 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
638 return true;
639
640 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
641 return false;
642
643 return (cache->has_llc ||
644 obj->cache_dirty ||
645 obj->cache_level != I915_CACHE_NONE);
646}
647
47b08693 648static int eb_reserve_vma(struct i915_execbuffer *eb,
7d6236bb 649 struct eb_vma *ev,
2920bb94 650 u64 pin_flags)
2889caa9 651{
7d6236bb 652 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 653 struct i915_vma *vma = ev->vma;
2889caa9
CW
654 int err;
655
003d8b91
CW
656 if (drm_mm_node_allocated(&vma->node) &&
657 eb_vma_misplaced(entry, vma, ev->flags)) {
658 err = i915_vma_unbind(vma);
659 if (err)
660 return err;
661 }
662
47b08693 663 err = i915_vma_pin_ww(vma, &eb->ww,
c7c6e46f 664 entry->pad_to_size, entry->alignment,
8a338f4b 665 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
666 if (err)
667 return err;
668
669 if (entry->offset != vma->node.start) {
670 entry->offset = vma->node.start | UPDATE;
671 eb->args->flags |= __EXEC_HAS_RELOC;
672 }
673
8a338f4b 674 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 675 err = i915_vma_pin_fence(vma);
2889caa9
CW
676 if (unlikely(err)) {
677 i915_vma_unpin(vma);
678 return err;
679 }
680
3bd40735 681 if (vma->fence)
8a338f4b 682 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
683 }
684
8a338f4b 685 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 686 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 687
2889caa9
CW
688 return 0;
689}
690
691static int eb_reserve(struct i915_execbuffer *eb)
692{
693 const unsigned int count = eb->buffer_count;
2920bb94 694 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
2889caa9 695 struct list_head last;
7d6236bb 696 struct eb_vma *ev;
2889caa9 697 unsigned int i, pass;
ef398881 698 int err = 0;
2889caa9
CW
699
700 /*
701 * Attempt to pin all of the buffers into the GTT.
702 * This is done in 3 phases:
703 *
704 * 1a. Unbind all objects that do not match the GTT constraints for
705 * the execbuffer (fenceable, mappable, alignment etc).
706 * 1b. Increment pin count for already bound objects.
707 * 2. Bind new objects.
708 * 3. Decrement pin count.
709 *
710 * This avoid unnecessary unbinding of later objects in order to make
711 * room for the earlier objects *unless* we need to defragment.
712 */
2889caa9 713 pass = 0;
2889caa9 714 do {
7d6236bb
CW
715 list_for_each_entry(ev, &eb->unbound, bind_link) {
716 err = eb_reserve_vma(eb, ev, pin_flags);
2889caa9
CW
717 if (err)
718 break;
719 }
fd1500fc 720 if (err != -ENOSPC)
c43ce123 721 return err;
2889caa9
CW
722
723 /* Resort *all* the objects into priority order */
724 INIT_LIST_HEAD(&eb->unbound);
725 INIT_LIST_HEAD(&last);
726 for (i = 0; i < count; i++) {
7d6236bb 727 unsigned int flags;
2889caa9 728
7d6236bb
CW
729 ev = &eb->vma[i];
730 flags = ev->flags;
c7c6e46f
CW
731 if (flags & EXEC_OBJECT_PINNED &&
732 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
733 continue;
734
7d6236bb 735 eb_unreserve_vma(ev);
2889caa9 736
c7c6e46f 737 if (flags & EXEC_OBJECT_PINNED)
35e882a4 738 /* Pinned must have their slot */
7d6236bb 739 list_add(&ev->bind_link, &eb->unbound);
c7c6e46f 740 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 741 /* Map require the lowest 256MiB (aperture) */
7d6236bb 742 list_add_tail(&ev->bind_link, &eb->unbound);
35e882a4
CW
743 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
744 /* Prioritise 4GiB region for restricted bo */
7d6236bb 745 list_add(&ev->bind_link, &last);
2889caa9 746 else
7d6236bb 747 list_add_tail(&ev->bind_link, &last);
2889caa9
CW
748 }
749 list_splice_tail(&last, &eb->unbound);
750
751 switch (pass++) {
752 case 0:
753 break;
754
755 case 1:
756 /* Too fragmented, unbind everything and retry */
2850748e 757 mutex_lock(&eb->context->vm->mutex);
f5d974f9 758 err = i915_gem_evict_vm(eb->context->vm);
2850748e 759 mutex_unlock(&eb->context->vm->mutex);
2889caa9 760 if (err)
c43ce123 761 return err;
2889caa9
CW
762 break;
763
764 default:
c43ce123 765 return -ENOSPC;
2889caa9 766 }
2920bb94
CW
767
768 pin_flags = PIN_USER;
2889caa9 769 } while (1);
4ff4b44c 770}
59bfa124 771
2889caa9
CW
772static int eb_select_context(struct i915_execbuffer *eb)
773{
774 struct i915_gem_context *ctx;
775
776 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
046d1660
JE
777 if (unlikely(IS_ERR(ctx)))
778 return PTR_ERR(ctx);
2889caa9 779
8f2a1057 780 eb->gem_context = ctx;
a82a9979 781 if (i915_gem_context_has_full_ppgtt(ctx))
4f2c7337 782 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9 783
2889caa9
CW
784 return 0;
785}
786
93159e12
CW
787static int __eb_add_lut(struct i915_execbuffer *eb,
788 u32 handle, struct i915_vma *vma)
3b96eff4 789{
93159e12
CW
790 struct i915_gem_context *ctx = eb->gem_context;
791 struct i915_lut_handle *lut;
2889caa9 792 int err;
3b96eff4 793
93159e12
CW
794 lut = i915_lut_handle_alloc();
795 if (unlikely(!lut))
796 return -ENOMEM;
797
798 i915_vma_get(vma);
799 if (!atomic_fetch_inc(&vma->open_count))
800 i915_vma_reopen(vma);
801 lut->handle = handle;
802 lut->ctx = ctx;
803
804 /* Check that the context hasn't been closed in the meantime */
805 err = -EINTR;
f7ce8639 806 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
e1068a9e 807 if (likely(!i915_gem_context_is_closed(ctx)))
93159e12 808 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
f7ce8639
CW
809 else
810 err = -ENOENT;
93159e12
CW
811 if (err == 0) { /* And nor has this handle */
812 struct drm_i915_gem_object *obj = vma->obj;
813
096a42dd 814 spin_lock(&obj->lut_lock);
93159e12
CW
815 if (idr_find(&eb->file->object_idr, handle) == obj) {
816 list_add(&lut->obj_link, &obj->lut_list);
817 } else {
818 radix_tree_delete(&ctx->handles_vma, handle);
819 err = -ENOENT;
820 }
096a42dd 821 spin_unlock(&obj->lut_lock);
93159e12 822 }
f7ce8639 823 mutex_unlock(&ctx->lut_mutex);
93159e12
CW
824 }
825 if (unlikely(err))
826 goto err;
003d8b91 827
93159e12 828 return 0;
d55495b4 829
93159e12 830err:
50689771 831 i915_vma_close(vma);
93159e12
CW
832 i915_vma_put(vma);
833 i915_lut_handle_free(lut);
834 return err;
835}
746c8f14 836
93159e12
CW
837static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
838{
f7ce8639
CW
839 struct i915_address_space *vm = eb->context->vm;
840
93159e12
CW
841 do {
842 struct drm_i915_gem_object *obj;
170fa29b 843 struct i915_vma *vma;
93159e12 844 int err;
4ff4b44c 845
93159e12
CW
846 rcu_read_lock();
847 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
f7ce8639 848 if (likely(vma && vma->vm == vm))
93159e12
CW
849 vma = i915_vma_tryget(vma);
850 rcu_read_unlock();
851 if (likely(vma))
852 return vma;
4ff4b44c 853
170fa29b 854 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
855 if (unlikely(!obj))
856 return ERR_PTR(-ENOENT);
3b96eff4 857
d3ac8d42
DCS
858 /*
859 * If the user has opted-in for protected-object tracking, make
860 * sure the object encryption can be used.
861 * We only need to do this when the object is first used with
862 * this context, because the context itself will be banned when
863 * the protected objects become invalid.
864 */
865 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
866 i915_gem_object_is_protected(obj)) {
ef6ba31d 867 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
d3ac8d42
DCS
868 if (err) {
869 i915_gem_object_put(obj);
870 return ERR_PTR(err);
871 }
872 }
873
f7ce8639 874 vma = i915_vma_instance(obj, vm, NULL);
772b5408 875 if (IS_ERR(vma)) {
93159e12
CW
876 i915_gem_object_put(obj);
877 return vma;
27173f1f
BW
878 }
879
93159e12
CW
880 err = __eb_add_lut(eb, handle, vma);
881 if (likely(!err))
882 return vma;
d1b48c1e 883
93159e12
CW
884 i915_gem_object_put(obj);
885 if (err != -EEXIST)
886 return ERR_PTR(err);
887 } while (1);
888}
4ff4b44c 889
93159e12
CW
890static int eb_lookup_vmas(struct i915_execbuffer *eb)
891{
544460c3 892 unsigned int i, current_batch = 0;
93159e12 893 int err = 0;
155ab883 894
93159e12 895 INIT_LIST_HEAD(&eb->relocs);
93159e12
CW
896
897 for (i = 0; i < eb->buffer_count; i++) {
898 struct i915_vma *vma;
899
900 vma = eb_lookup_vma(eb, eb->exec[i].handle);
901 if (IS_ERR(vma)) {
902 err = PTR_ERR(vma);
8e4ba491 903 goto err;
93159e12 904 }
d1b48c1e 905
003d8b91 906 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
907 if (unlikely(err)) {
908 i915_vma_put(vma);
8e4ba491 909 goto err;
93159e12 910 }
dade2a61 911
544460c3
MB
912 err = eb_add_vma(eb, &current_batch, i, vma);
913 if (err)
914 return err;
ed29c269
ML
915
916 if (i915_gem_object_is_userptr(vma->obj)) {
917 err = i915_gem_object_userptr_submit_init(vma->obj);
918 if (err) {
919 if (i + 1 < eb->buffer_count) {
920 /*
921 * Execbuffer code expects last vma entry to be NULL,
922 * since we already initialized this entry,
923 * set the next value to NULL or we mess up
924 * cleanup handling.
925 */
926 eb->vma[i + 1].vma = NULL;
927 }
928
929 return err;
930 }
931
932 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
933 eb->args->flags |= __EXEC_USERPTR_USED;
934 }
4ff4b44c
CW
935 }
936
8e4ba491
ML
937 return 0;
938
939err:
7d6236bb 940 eb->vma[i].vma = NULL;
2889caa9 941 return err;
3b96eff4
CW
942}
943
5cd57f67 944static int eb_lock_vmas(struct i915_execbuffer *eb)
c43ce123
ML
945{
946 unsigned int i;
947 int err;
948
c43ce123 949 for (i = 0; i < eb->buffer_count; i++) {
c43ce123
ML
950 struct eb_vma *ev = &eb->vma[i];
951 struct i915_vma *vma = ev->vma;
952
953 err = i915_gem_object_lock(vma->obj, &eb->ww);
954 if (err)
955 return err;
5cd57f67
TH
956 }
957
958 return 0;
959}
960
961static int eb_validate_vmas(struct i915_execbuffer *eb)
962{
963 unsigned int i;
964 int err;
965
966 INIT_LIST_HEAD(&eb->unbound);
967
968 err = eb_lock_vmas(eb);
969 if (err)
970 return err;
971
972 for (i = 0; i < eb->buffer_count; i++) {
973 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
974 struct eb_vma *ev = &eb->vma[i];
975 struct i915_vma *vma = ev->vma;
c43ce123 976
237647f4
ML
977 err = eb_pin_vma(eb, entry, ev);
978 if (err == -EDEADLK)
979 return err;
980
981 if (!err) {
c43ce123
ML
982 if (entry->offset != vma->node.start) {
983 entry->offset = vma->node.start | UPDATE;
984 eb->args->flags |= __EXEC_HAS_RELOC;
985 }
986 } else {
987 eb_unreserve_vma(ev);
988
989 list_add_tail(&ev->bind_link, &eb->unbound);
990 if (drm_mm_node_allocated(&vma->node)) {
991 err = i915_vma_unbind(vma);
992 if (err)
993 return err;
994 }
995 }
996
bfaae47d 997 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
95c3d275 998 err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
bfaae47d
ML
999 if (err)
1000 return err;
1001 }
1002
c43ce123
ML
1003 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1004 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1005 }
1006
1007 if (!list_empty(&eb->unbound))
1008 return eb_reserve(eb);
1009
1010 return 0;
1011}
1012
7d6236bb 1013static struct eb_vma *
2889caa9 1014eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 1015{
2889caa9
CW
1016 if (eb->lut_size < 0) {
1017 if (handle >= -eb->lut_size)
eef90ccb 1018 return NULL;
7d6236bb 1019 return &eb->vma[handle];
eef90ccb
CW
1020 } else {
1021 struct hlist_head *head;
7d6236bb 1022 struct eb_vma *ev;
67731b87 1023
2889caa9 1024 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
1025 hlist_for_each_entry(ev, head, node) {
1026 if (ev->handle == handle)
1027 return ev;
eef90ccb
CW
1028 }
1029 return NULL;
1030 }
67731b87
CW
1031}
1032
b4b9731b 1033static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
8ae275c2
ML
1034{
1035 const unsigned int count = eb->buffer_count;
1036 unsigned int i;
1037
1038 for (i = 0; i < count; i++) {
1039 struct eb_vma *ev = &eb->vma[i];
1040 struct i915_vma *vma = ev->vma;
1041
1042 if (!vma)
1043 break;
1044
c43ce123 1045 eb_unreserve_vma(ev);
8ae275c2 1046
c43ce123
ML
1047 if (final)
1048 i915_vma_put(vma);
8ae275c2 1049 }
2bf541ff 1050
ff20afc4 1051 eb_capture_release(eb);
2bf541ff 1052 eb_unpin_engine(eb);
8ae275c2
ML
1053}
1054
2889caa9 1055static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 1056{
4d470f73 1057 if (eb->lut_size > 0)
2889caa9 1058 kfree(eb->buckets);
934acce3
MW
1059}
1060
2889caa9 1061static inline u64
d50415cc 1062relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 1063 const struct i915_vma *target)
934acce3 1064{
2889caa9 1065 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
1066}
1067
d50415cc
CW
1068static void reloc_cache_init(struct reloc_cache *cache,
1069 struct drm_i915_private *i915)
5032d871 1070{
ad5d95e4
DA
1071 cache->page = -1;
1072 cache->vaddr = 0;
dfc5148f 1073 /* Must be a variable in the struct to allow GCC to unroll. */
8802190f 1074 cache->graphics_ver = GRAPHICS_VER(i915);
2889caa9 1075 cache->has_llc = HAS_LLC(i915);
dfc5148f 1076 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
8802190f 1077 cache->has_fence = cache->graphics_ver < 4;
7dd4f672 1078 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 1079 cache->node.flags = 0;
d50415cc 1080}
5032d871 1081
20561da3
DA
1082static inline void *unmask_page(unsigned long p)
1083{
1084 return (void *)(uintptr_t)(p & PAGE_MASK);
1085}
1086
1087static inline unsigned int unmask_flags(unsigned long p)
1088{
1089 return p & ~PAGE_MASK;
1090}
1091
1092#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1093
1094static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1095{
1096 struct drm_i915_private *i915 =
1097 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
5c24c9d2 1098 return to_gt(i915)->ggtt;
20561da3
DA
1099}
1100
c2ea703d
TH
1101static void reloc_cache_unmap(struct reloc_cache *cache)
1102{
1103 void *vaddr;
1104
1105 if (!cache->vaddr)
1106 return;
1107
1108 vaddr = unmask_page(cache->vaddr);
1109 if (cache->vaddr & KMAP)
1110 kunmap_atomic(vaddr);
1111 else
1112 io_mapping_unmap_atomic((void __iomem *)vaddr);
1113}
1114
1115static void reloc_cache_remap(struct reloc_cache *cache,
1116 struct drm_i915_gem_object *obj)
1117{
1118 void *vaddr;
1119
1120 if (!cache->vaddr)
1121 return;
1122
1123 if (cache->vaddr & KMAP) {
1124 struct page *page = i915_gem_object_get_page(obj, cache->page);
1125
1126 vaddr = kmap_atomic(page);
1127 cache->vaddr = unmask_flags(cache->vaddr) |
1128 (unsigned long)vaddr;
1129 } else {
1130 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1131 unsigned long offset;
1132
1133 offset = cache->node.start;
1134 if (!drm_mm_node_allocated(&cache->node))
1135 offset += cache->page << PAGE_SHIFT;
1136
1137 cache->vaddr = (unsigned long)
1138 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1139 }
1140}
1141
c43ce123 1142static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
ad5d95e4
DA
1143{
1144 void *vaddr;
1145
1146 if (!cache->vaddr)
1147 return;
1148
1149 vaddr = unmask_page(cache->vaddr);
1150 if (cache->vaddr & KMAP) {
1af343cd
ML
1151 struct drm_i915_gem_object *obj =
1152 (struct drm_i915_gem_object *)cache->node.mm;
ad5d95e4
DA
1153 if (cache->vaddr & CLFLUSH_AFTER)
1154 mb();
1155
1156 kunmap_atomic(vaddr);
1af343cd 1157 i915_gem_object_finish_access(obj);
ad5d95e4
DA
1158 } else {
1159 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1160
1161 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1162 io_mapping_unmap_atomic((void __iomem *)vaddr);
1163
1164 if (drm_mm_node_allocated(&cache->node)) {
1165 ggtt->vm.clear_range(&ggtt->vm,
1166 cache->node.start,
1167 cache->node.size);
1168 mutex_lock(&ggtt->vm.mutex);
1169 drm_mm_remove_node(&cache->node);
1170 mutex_unlock(&ggtt->vm.mutex);
1171 } else {
1172 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1173 }
1174 }
1175
1176 cache->vaddr = 0;
1177 cache->page = -1;
1178}
1179
1180static void *reloc_kmap(struct drm_i915_gem_object *obj,
1181 struct reloc_cache *cache,
102a0a90 1182 unsigned long pageno)
ad5d95e4
DA
1183{
1184 void *vaddr;
102a0a90 1185 struct page *page;
ad5d95e4
DA
1186
1187 if (cache->vaddr) {
1188 kunmap_atomic(unmask_page(cache->vaddr));
1189 } else {
1190 unsigned int flushes;
1191 int err;
1192
1193 err = i915_gem_object_prepare_write(obj, &flushes);
1194 if (err)
1195 return ERR_PTR(err);
1196
1197 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1198 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1199
1200 cache->vaddr = flushes | KMAP;
1201 cache->node.mm = (void *)obj;
1202 if (flushes)
1203 mb();
1204 }
1205
102a0a90
ML
1206 page = i915_gem_object_get_page(obj, pageno);
1207 if (!obj->mm.dirty)
1208 set_page_dirty(page);
1209
1210 vaddr = kmap_atomic(page);
ad5d95e4 1211 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
102a0a90 1212 cache->page = pageno;
ad5d95e4
DA
1213
1214 return vaddr;
1215}
1216
1217static void *reloc_iomap(struct drm_i915_gem_object *obj,
47b08693 1218 struct i915_execbuffer *eb,
ad5d95e4
DA
1219 unsigned long page)
1220{
47b08693 1221 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1222 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1223 unsigned long offset;
1224 void *vaddr;
1225
1226 if (cache->vaddr) {
1227 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1228 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1229 } else {
1230 struct i915_vma *vma;
1231 int err;
1232
1233 if (i915_gem_object_is_tiled(obj))
1234 return ERR_PTR(-EINVAL);
1235
1236 if (use_cpu_reloc(cache, obj))
1237 return NULL;
1238
ad5d95e4 1239 err = i915_gem_object_set_to_gtt_domain(obj, true);
ad5d95e4
DA
1240 if (err)
1241 return ERR_PTR(err);
1242
47b08693
ML
1243 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1244 PIN_MAPPABLE |
1245 PIN_NONBLOCK /* NOWARN */ |
1246 PIN_NOEVICT);
1247 if (vma == ERR_PTR(-EDEADLK))
1248 return vma;
1249
ad5d95e4
DA
1250 if (IS_ERR(vma)) {
1251 memset(&cache->node, 0, sizeof(cache->node));
1252 mutex_lock(&ggtt->vm.mutex);
1253 err = drm_mm_insert_node_in_range
1254 (&ggtt->vm.mm, &cache->node,
1255 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1256 0, ggtt->mappable_end,
1257 DRM_MM_INSERT_LOW);
1258 mutex_unlock(&ggtt->vm.mutex);
1259 if (err) /* no inactive aperture space, use cpu reloc */
1260 return NULL;
1261 } else {
1262 cache->node.start = vma->node.start;
1263 cache->node.mm = (void *)vma;
1264 }
1265 }
1266
1267 offset = cache->node.start;
1268 if (drm_mm_node_allocated(&cache->node)) {
1269 ggtt->vm.insert_page(&ggtt->vm,
1270 i915_gem_object_get_dma_address(obj, page),
1271 offset, I915_CACHE_NONE, 0);
1272 } else {
1273 offset += page << PAGE_SHIFT;
1274 }
1275
1276 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1277 offset);
1278 cache->page = page;
1279 cache->vaddr = (unsigned long)vaddr;
1280
1281 return vaddr;
1282}
1283
1284static void *reloc_vaddr(struct drm_i915_gem_object *obj,
47b08693 1285 struct i915_execbuffer *eb,
ad5d95e4
DA
1286 unsigned long page)
1287{
47b08693 1288 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1289 void *vaddr;
1290
1291 if (cache->page == page) {
1292 vaddr = unmask_page(cache->vaddr);
1293 } else {
1294 vaddr = NULL;
1295 if ((cache->vaddr & KMAP) == 0)
47b08693 1296 vaddr = reloc_iomap(obj, eb, page);
ad5d95e4
DA
1297 if (!vaddr)
1298 vaddr = reloc_kmap(obj, cache, page);
1299 }
1300
1301 return vaddr;
1302}
1303
1304static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1305{
1306 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1307 if (flushes & CLFLUSH_BEFORE) {
1308 clflushopt(addr);
1309 mb();
1310 }
1311
1312 *addr = value;
1313
1314 /*
1315 * Writes to the same cacheline are serialised by the CPU
1316 * (including clflush). On the write path, we only require
1317 * that it hits memory in an orderly fashion and place
1318 * mb barriers at the start and end of the relocation phase
1319 * to ensure ordering of clflush wrt to the system.
1320 */
1321 if (flushes & CLFLUSH_AFTER)
1322 clflushopt(addr);
1323 } else
1324 *addr = value;
1325}
1326
e3d29130 1327static u64
ad5d95e4 1328relocate_entry(struct i915_vma *vma,
e3d29130 1329 const struct drm_i915_gem_relocation_entry *reloc,
ad5d95e4 1330 struct i915_execbuffer *eb,
e3d29130
CW
1331 const struct i915_vma *target)
1332{
1333 u64 target_addr = relocation_target(reloc, target);
ad5d95e4 1334 u64 offset = reloc->offset;
ce13c78f
DV
1335 bool wide = eb->reloc_cache.use_64bit_reloc;
1336 void *vaddr;
ad5d95e4
DA
1337
1338repeat:
ce13c78f
DV
1339 vaddr = reloc_vaddr(vma->obj, eb,
1340 offset >> PAGE_SHIFT);
1341 if (IS_ERR(vaddr))
1342 return PTR_ERR(vaddr);
1343
1344 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1345 clflush_write32(vaddr + offset_in_page(offset),
1346 lower_32_bits(target_addr),
1347 eb->reloc_cache.vaddr);
1348
1349 if (wide) {
1350 offset += sizeof(u32);
1351 target_addr >>= 32;
1352 wide = false;
1353 goto repeat;
ad5d95e4 1354 }
edf4427b 1355
2889caa9 1356 return target->node.start | UPDATE;
edf4427b 1357}
edf4427b 1358
2889caa9
CW
1359static u64
1360eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1361 struct eb_vma *ev,
2889caa9 1362 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1363{
baa89ba3 1364 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1365 struct eb_vma *target;
2889caa9 1366 int err;
54cf91dc 1367
67731b87 1368 /* we've already hold a reference to all valid objects */
507d977f
CW
1369 target = eb_get_vma(eb, reloc->target_handle);
1370 if (unlikely(!target))
54cf91dc 1371 return -ENOENT;
e844b990 1372
54cf91dc 1373 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1374 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1375 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1376 "target %d offset %d "
54cf91dc 1377 "read %08x write %08x",
507d977f 1378 reloc->target_handle,
54cf91dc
CW
1379 (int) reloc->offset,
1380 reloc->read_domains,
1381 reloc->write_domain);
8b78f0e5 1382 return -EINVAL;
54cf91dc 1383 }
4ca4a250
DV
1384 if (unlikely((reloc->write_domain | reloc->read_domains)
1385 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1386 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1387 "target %d offset %d "
54cf91dc 1388 "read %08x write %08x",
507d977f 1389 reloc->target_handle,
54cf91dc
CW
1390 (int) reloc->offset,
1391 reloc->read_domains,
1392 reloc->write_domain);
8b78f0e5 1393 return -EINVAL;
54cf91dc 1394 }
54cf91dc 1395
2889caa9 1396 if (reloc->write_domain) {
7d6236bb 1397 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1398
2889caa9
CW
1399 /*
1400 * Sandybridge PPGTT errata: We need a global gtt mapping
1401 * for MI and pipe_control writes because the gpu doesn't
1402 * properly redirect them through the ppgtt for non_secure
1403 * batchbuffers.
1404 */
1405 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
c2ea703d
TH
1406 GRAPHICS_VER(eb->i915) == 6 &&
1407 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1408 struct i915_vma *vma = target->vma;
1409
1410 reloc_cache_unmap(&eb->reloc_cache);
1411 mutex_lock(&vma->vm->mutex);
7d6236bb
CW
1412 err = i915_vma_bind(target->vma,
1413 target->vma->obj->cache_level,
e1a4bbb6 1414 PIN_GLOBAL, NULL, NULL);
c2ea703d
TH
1415 mutex_unlock(&vma->vm->mutex);
1416 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
ea97c4ca 1417 if (err)
2889caa9
CW
1418 return err;
1419 }
507d977f 1420 }
54cf91dc 1421
2889caa9
CW
1422 /*
1423 * If the relocation already has the right value in it, no
54cf91dc
CW
1424 * more work needs to be done.
1425 */
ad5d95e4
DA
1426 if (!DBG_FORCE_RELOC &&
1427 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1428 return 0;
54cf91dc
CW
1429
1430 /* Check that the relocation address is valid... */
3c94ceee 1431 if (unlikely(reloc->offset >
7d6236bb 1432 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1433 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1434 "target %d offset %d size %d.\n",
1435 reloc->target_handle,
1436 (int)reloc->offset,
7d6236bb 1437 (int)ev->vma->size);
8b78f0e5 1438 return -EINVAL;
54cf91dc 1439 }
b8f7ab17 1440 if (unlikely(reloc->offset & 3)) {
baa89ba3 1441 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1442 "target %d offset %d.\n",
1443 reloc->target_handle,
1444 (int)reloc->offset);
8b78f0e5 1445 return -EINVAL;
54cf91dc
CW
1446 }
1447
071750e5
CW
1448 /*
1449 * If we write into the object, we need to force the synchronisation
1450 * barrier, either with an asynchronous clflush or if we executed the
1451 * patching using the GPU (though that should be serialised by the
1452 * timeline). To be completely sure, and since we are required to
1453 * do relocations we are already stalling, disable the user's opt
0519bcb1 1454 * out of our synchronisation.
071750e5 1455 */
7d6236bb 1456 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1457
54cf91dc 1458 /* and update the user's relocation entry */
ad5d95e4 1459 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1460}
1461
7d6236bb 1462static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1463{
1d83f442 1464#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1465 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1466 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1467 struct drm_i915_gem_relocation_entry __user *urelocs =
1468 u64_to_user_ptr(entry->relocs_ptr);
1469 unsigned long remain = entry->relocation_count;
54cf91dc 1470
e94f7856 1471 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1472 return -EINVAL;
ebc0808f 1473
2889caa9
CW
1474 /*
1475 * We must check that the entire relocation array is safe
1476 * to read. However, if the array is not writable the user loses
1477 * the updated relocation values.
1478 */
e94f7856 1479 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1480 return -EFAULT;
1481
1482 do {
1483 struct drm_i915_gem_relocation_entry *r = stack;
1484 unsigned int count =
e94f7856 1485 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1486 unsigned int copied;
1d83f442 1487
2889caa9
CW
1488 /*
1489 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1490 * whilst holding the struct mutex lest the user pass in the
1491 * relocations contained within a mmaped bo. For in such a case
1492 * we, the page fault handler would call i915_gem_fault() and
1493 * we would try to acquire the struct mutex again. Obviously
1494 * this is bad and so lockdep complains vehemently.
1495 */
fd1500fc
ML
1496 pagefault_disable();
1497 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1498 pagefault_enable();
ad5d95e4
DA
1499 if (unlikely(copied)) {
1500 remain = -EFAULT;
1501 goto out;
1502 }
54cf91dc 1503
2889caa9 1504 remain -= count;
1d83f442 1505 do {
7d6236bb 1506 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1507
2889caa9
CW
1508 if (likely(offset == 0)) {
1509 } else if ((s64)offset < 0) {
ad5d95e4
DA
1510 remain = (int)offset;
1511 goto out;
2889caa9
CW
1512 } else {
1513 /*
1514 * Note that reporting an error now
1515 * leaves everything in an inconsistent
1516 * state as we have *already* changed
1517 * the relocation value inside the
1518 * object. As we have not changed the
1519 * reloc.presumed_offset or will not
1520 * change the execobject.offset, on the
1521 * call we may not rewrite the value
1522 * inside the object, leaving it
1523 * dangling and causing a GPU hang. Unless
1524 * userspace dynamically rebuilds the
1525 * relocations on each execbuf rather than
1526 * presume a static tree.
1527 *
1528 * We did previously check if the relocations
1529 * were writable (access_ok), an error now
1530 * would be a strange race with mprotect,
1531 * having already demonstrated that we
1532 * can read from this userspace address.
1533 */
1534 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1535 __put_user(offset,
1536 &urelocs[r - stack].presumed_offset);
1d83f442 1537 }
2889caa9
CW
1538 } while (r++, --count);
1539 urelocs += ARRAY_SIZE(stack);
1540 } while (remain);
ad5d95e4 1541out:
c43ce123 1542 reloc_cache_reset(&eb->reloc_cache, eb);
ad5d95e4 1543 return remain;
54cf91dc
CW
1544}
1545
fd1500fc
ML
1546static int
1547eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1548{
fd1500fc
ML
1549 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1550 struct drm_i915_gem_relocation_entry *relocs =
1551 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1552 unsigned int i;
003d8b91
CW
1553 int err;
1554
fd1500fc
ML
1555 for (i = 0; i < entry->relocation_count; i++) {
1556 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
003d8b91 1557
fd1500fc
ML
1558 if ((s64)offset < 0) {
1559 err = (int)offset;
1560 goto err;
1561 }
ef398881 1562 }
fd1500fc
ML
1563 err = 0;
1564err:
c43ce123 1565 reloc_cache_reset(&eb->reloc_cache, eb);
fd1500fc
ML
1566 return err;
1567}
2889caa9 1568
fd1500fc
ML
1569static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1570{
1571 const char __user *addr, *end;
1572 unsigned long size;
1573 char __maybe_unused c;
2889caa9 1574
fd1500fc
ML
1575 size = entry->relocation_count;
1576 if (size == 0)
1577 return 0;
0e97fbb0 1578
fd1500fc
ML
1579 if (size > N_RELOC(ULONG_MAX))
1580 return -EINVAL;
2889caa9 1581
fd1500fc
ML
1582 addr = u64_to_user_ptr(entry->relocs_ptr);
1583 size *= sizeof(struct drm_i915_gem_relocation_entry);
1584 if (!access_ok(addr, size))
1585 return -EFAULT;
1586
1587 end = addr + size;
1588 for (; addr < end; addr += PAGE_SIZE) {
1589 int err = __get_user(c, addr);
1590 if (err)
1591 return err;
1592 }
1593 return __get_user(c, end - 1);
2889caa9
CW
1594}
1595
fd1500fc 1596static int eb_copy_relocations(const struct i915_execbuffer *eb)
2889caa9 1597{
fd1500fc 1598 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1599 const unsigned int count = eb->buffer_count;
1600 unsigned int i;
fd1500fc 1601 int err;
54cf91dc 1602
2889caa9 1603 for (i = 0; i < count; i++) {
fd1500fc
ML
1604 const unsigned int nreloc = eb->exec[i].relocation_count;
1605 struct drm_i915_gem_relocation_entry __user *urelocs;
1606 unsigned long size;
1607 unsigned long copied;
6951e589 1608
fd1500fc
ML
1609 if (nreloc == 0)
1610 continue;
6951e589 1611
fd1500fc
ML
1612 err = check_relocations(&eb->exec[i]);
1613 if (err)
1614 goto err;
6951e589 1615
fd1500fc
ML
1616 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1617 size = nreloc * sizeof(*relocs);
6951e589 1618
fd1500fc
ML
1619 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1620 if (!relocs) {
1621 err = -ENOMEM;
1622 goto err;
6951e589 1623 }
fd1500fc
ML
1624
1625 /* copy_from_user is limited to < 4GiB */
1626 copied = 0;
1627 do {
1628 unsigned int len =
1629 min_t(u64, BIT_ULL(31), size - copied);
1630
1631 if (__copy_from_user((char *)relocs + copied,
1632 (char __user *)urelocs + copied,
1633 len))
1634 goto end;
1635
1636 copied += len;
1637 } while (copied < size);
1638
1639 /*
1640 * As we do not update the known relocation offsets after
1641 * relocating (due to the complexities in lock handling),
1642 * we need to mark them as invalid now so that we force the
1643 * relocation processing next time. Just in case the target
1644 * object is evicted and then rebound into its old
1645 * presumed_offset before the next execbuffer - if that
1646 * happened we would make the mistake of assuming that the
1647 * relocations were valid.
1648 */
1649 if (!user_access_begin(urelocs, size))
1650 goto end;
1651
1652 for (copied = 0; copied < nreloc; copied++)
1653 unsafe_put_user(-1,
1654 &urelocs[copied].presumed_offset,
1655 end_user);
1656 user_access_end();
1657
1658 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1659 }
1660
1661 return 0;
1662
1663end_user:
1664 user_access_end();
1665end:
1666 kvfree(relocs);
1667 err = -EFAULT;
1668err:
1669 while (i--) {
1670 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1671 if (eb->exec[i].relocation_count)
1672 kvfree(relocs);
1673 }
1674 return err;
1675}
1676
1677static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1678{
1679 const unsigned int count = eb->buffer_count;
1680 unsigned int i;
1681
1682 for (i = 0; i < count; i++) {
1683 int err;
1684
1685 err = check_relocations(&eb->exec[i]);
1686 if (err)
1687 return err;
1688 }
1689
1690 return 0;
1691}
1692
ed29c269
ML
1693static int eb_reinit_userptr(struct i915_execbuffer *eb)
1694{
1695 const unsigned int count = eb->buffer_count;
1696 unsigned int i;
1697 int ret;
1698
1699 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1700 return 0;
1701
1702 for (i = 0; i < count; i++) {
1703 struct eb_vma *ev = &eb->vma[i];
1704
1705 if (!i915_gem_object_is_userptr(ev->vma->obj))
1706 continue;
1707
1708 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1709 if (ret)
1710 return ret;
1711
1712 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1713 }
1714
1715 return 0;
1716}
1717
544460c3 1718static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
fd1500fc
ML
1719{
1720 bool have_copy = false;
1721 struct eb_vma *ev;
1722 int err = 0;
1723
1724repeat:
1725 if (signal_pending(current)) {
1726 err = -ERESTARTSYS;
1727 goto out;
6951e589 1728 }
fd1500fc 1729
c43ce123 1730 /* We may process another execbuffer during the unlock... */
b4b9731b 1731 eb_release_vmas(eb, false);
c43ce123
ML
1732 i915_gem_ww_ctx_fini(&eb->ww);
1733
fd1500fc
ML
1734 /*
1735 * We take 3 passes through the slowpatch.
1736 *
1737 * 1 - we try to just prefault all the user relocation entries and
1738 * then attempt to reuse the atomic pagefault disabled fast path again.
1739 *
1740 * 2 - we copy the user entries to a local buffer here outside of the
1741 * local and allow ourselves to wait upon any rendering before
1742 * relocations
1743 *
1744 * 3 - we already have a local copy of the relocation entries, but
1745 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1746 */
1747 if (!err) {
1748 err = eb_prefault_relocations(eb);
1749 } else if (!have_copy) {
1750 err = eb_copy_relocations(eb);
1751 have_copy = err == 0;
1752 } else {
1753 cond_resched();
1754 err = 0;
1755 }
1756
2bf541ff 1757 if (!err)
ed29c269 1758 err = eb_reinit_userptr(eb);
fd1500fc 1759
c43ce123 1760 i915_gem_ww_ctx_init(&eb->ww, true);
fd1500fc
ML
1761 if (err)
1762 goto out;
1763
c43ce123
ML
1764 /* reacquire the objects */
1765repeat_validate:
544460c3
MB
1766 err = eb_pin_engine(eb, false);
1767 if (err)
2bf541ff 1768 goto err;
2bf541ff 1769
c43ce123 1770 err = eb_validate_vmas(eb);
fd1500fc 1771 if (err)
c43ce123
ML
1772 goto err;
1773
544460c3 1774 GEM_BUG_ON(!eb->batches[0]);
fd1500fc
ML
1775
1776 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1777 if (!have_copy) {
fd1500fc 1778 err = eb_relocate_vma(eb, ev);
fd1500fc
ML
1779 if (err)
1780 break;
1781 } else {
1782 err = eb_relocate_vma_slow(eb, ev);
1783 if (err)
1784 break;
1785 }
1786 }
1787
c43ce123
ML
1788 if (err == -EDEADLK)
1789 goto err;
1790
fd1500fc
ML
1791 if (err && !have_copy)
1792 goto repeat;
1793
1794 if (err)
1795 goto err;
1796
8e4ba491
ML
1797 /* as last step, parse the command buffer */
1798 err = eb_parse(eb);
1799 if (err)
1800 goto err;
1801
fd1500fc
ML
1802 /*
1803 * Leave the user relocations as are, this is the painfully slow path,
1804 * and we want to avoid the complication of dropping the lock whilst
1805 * having buffers reserved in the aperture and so causing spurious
1806 * ENOSPC for random operations.
1807 */
1808
1809err:
c43ce123 1810 if (err == -EDEADLK) {
b4b9731b 1811 eb_release_vmas(eb, false);
c43ce123
ML
1812 err = i915_gem_ww_ctx_backoff(&eb->ww);
1813 if (!err)
1814 goto repeat_validate;
1815 }
1816
fd1500fc
ML
1817 if (err == -EAGAIN)
1818 goto repeat;
1819
1820out:
1821 if (have_copy) {
1822 const unsigned int count = eb->buffer_count;
1823 unsigned int i;
1824
1825 for (i = 0; i < count; i++) {
1826 const struct drm_i915_gem_exec_object2 *entry =
1827 &eb->exec[i];
1828 struct drm_i915_gem_relocation_entry *relocs;
1829
1830 if (!entry->relocation_count)
1831 continue;
1832
1833 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1834 kvfree(relocs);
1835 }
1836 }
1837
1838 return err;
1839}
1840
8e4ba491 1841static int eb_relocate_parse(struct i915_execbuffer *eb)
54cf91dc 1842{
003d8b91 1843 int err;
2bf541ff 1844 bool throttle = true;
003d8b91 1845
c43ce123 1846retry:
544460c3
MB
1847 err = eb_pin_engine(eb, throttle);
1848 if (err) {
2bf541ff
ML
1849 if (err != -EDEADLK)
1850 return err;
1851
1852 goto err;
1853 }
1854
2bf541ff
ML
1855 /* only throttle once, even if we didn't need to throttle */
1856 throttle = false;
1857
c43ce123
ML
1858 err = eb_validate_vmas(eb);
1859 if (err == -EAGAIN)
1860 goto slow;
1861 else if (err)
1862 goto err;
2889caa9
CW
1863
1864 /* The objects are in their final locations, apply the relocations. */
1865 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 1866 struct eb_vma *ev;
2889caa9 1867
7d6236bb 1868 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
1869 err = eb_relocate_vma(eb, ev);
1870 if (err)
fd1500fc 1871 break;
2889caa9 1872 }
fd1500fc 1873
c43ce123
ML
1874 if (err == -EDEADLK)
1875 goto err;
1876 else if (err)
1877 goto slow;
1878 }
1879
1880 if (!err)
1881 err = eb_parse(eb);
1882
1883err:
1884 if (err == -EDEADLK) {
b4b9731b 1885 eb_release_vmas(eb, false);
c43ce123
ML
1886 err = i915_gem_ww_ctx_backoff(&eb->ww);
1887 if (!err)
1888 goto retry;
2889caa9
CW
1889 }
1890
c43ce123
ML
1891 return err;
1892
1893slow:
544460c3 1894 err = eb_relocate_parse_slow(eb);
c43ce123
ML
1895 if (err)
1896 /*
1897 * If the user expects the execobject.offset and
1898 * reloc.presumed_offset to be an exact match,
1899 * as for using NO_RELOC, then we cannot update
1900 * the execobject.offset until we have completed
1901 * relocation.
1902 */
1903 eb->args->flags &= ~__EXEC_HAS_RELOC;
1904
1905 return err;
2889caa9
CW
1906}
1907
544460c3
MB
1908/*
1909 * Using two helper loops for the order of which requests / batches are created
1910 * and added the to backend. Requests are created in order from the parent to
1911 * the last child. Requests are added in the reverse order, from the last child
1912 * to parent. This is done for locking reasons as the timeline lock is acquired
1913 * during request creation and released when the request is added to the
1914 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1915 * the ordering.
1916 */
1917#define for_each_batch_create_order(_eb, _i) \
1918 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1919#define for_each_batch_add_order(_eb, _i) \
1920 BUILD_BUG_ON(!typecheck(int, _i)); \
1921 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1922
1923static struct i915_request *
1924eb_find_first_request_added(struct i915_execbuffer *eb)
1925{
1926 int i;
1927
1928 for_each_batch_add_order(eb, i)
1929 if (eb->requests[i])
1930 return eb->requests[i];
1931
1932 GEM_BUG_ON("Request not found");
1933
1934 return NULL;
1935}
1936
ff20afc4
TH
1937#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1938
1939/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1940static void eb_capture_stage(struct i915_execbuffer *eb)
2889caa9
CW
1941{
1942 const unsigned int count = eb->buffer_count;
ff20afc4
TH
1943 unsigned int i = count, j;
1944 struct i915_vma_snapshot *vsnap;
6951e589
CW
1945
1946 while (i--) {
7d6236bb
CW
1947 struct eb_vma *ev = &eb->vma[i];
1948 struct i915_vma *vma = ev->vma;
1949 unsigned int flags = ev->flags;
03ade511 1950
ff20afc4
TH
1951 if (!(flags & EXEC_OBJECT_CAPTURE))
1952 continue;
6951e589 1953
ff20afc4
TH
1954 vsnap = i915_vma_snapshot_alloc(GFP_KERNEL);
1955 if (!vsnap)
1956 continue;
1957
1958 i915_vma_snapshot_init(vsnap, vma, "user");
1959 for_each_batch_create_order(eb, j) {
e61e0f51 1960 struct i915_capture_list *capture;
b0fd47ad 1961
ff20afc4
TH
1962 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1963 if (!capture)
1964 continue;
544460c3 1965
ff20afc4
TH
1966 capture->next = eb->capture_lists[j];
1967 capture->vma_snapshot = i915_vma_snapshot_get(vsnap);
1968 eb->capture_lists[j] = capture;
1969 }
1970 i915_vma_snapshot_put(vsnap);
1971 }
1972}
1973
1974/* Commit once we're in the critical path */
1975static void eb_capture_commit(struct i915_execbuffer *eb)
1976{
1977 unsigned int j;
1978
1979 for_each_batch_create_order(eb, j) {
1980 struct i915_request *rq = eb->requests[j];
1981
1982 if (!rq)
1983 break;
1984
1985 rq->capture_list = eb->capture_lists[j];
1986 eb->capture_lists[j] = NULL;
1987 }
1988}
1989
1990/*
1991 * Release anything that didn't get committed due to errors.
1992 * The capture_list will otherwise be freed at request retire.
1993 */
1994static void eb_capture_release(struct i915_execbuffer *eb)
1995{
1996 unsigned int j;
1997
1998 for_each_batch_create_order(eb, j) {
1999 if (eb->capture_lists[j]) {
2000 i915_request_free_capture_list(eb->capture_lists[j]);
2001 eb->capture_lists[j] = NULL;
b0fd47ad 2002 }
ff20afc4
TH
2003 }
2004}
2005
2006static void eb_capture_list_clear(struct i915_execbuffer *eb)
2007{
2008 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2009}
2010
2011#else
2012
2013static void eb_capture_stage(struct i915_execbuffer *eb)
2014{
2015}
2016
2017static void eb_capture_commit(struct i915_execbuffer *eb)
2018{
2019}
2020
2021static void eb_capture_release(struct i915_execbuffer *eb)
2022{
2023}
2024
2025static void eb_capture_list_clear(struct i915_execbuffer *eb)
2026{
2027}
2028
2029#endif
2030
2031static int eb_move_to_gpu(struct i915_execbuffer *eb)
2032{
2033 const unsigned int count = eb->buffer_count;
2034 unsigned int i = count;
2035 int err = 0, j;
2036
2037 while (i--) {
2038 struct eb_vma *ev = &eb->vma[i];
2039 struct i915_vma *vma = ev->vma;
2040 unsigned int flags = ev->flags;
2041 struct drm_i915_gem_object *obj = vma->obj;
2042
2043 assert_vma_held(vma);
b0fd47ad 2044
b8f55be6
CW
2045 /*
2046 * If the GPU is not _reading_ through the CPU cache, we need
2047 * to make sure that any writes (both previous GPU writes from
2048 * before a change in snooping levels and normal CPU writes)
2049 * caught in that cache are flushed to main memory.
2050 *
2051 * We want to say
2052 * obj->cache_dirty &&
2053 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2054 * but gcc's optimiser doesn't handle that as well and emits
2055 * two jumps instead of one. Maybe one day...
df94fd05
MA
2056 *
2057 * FIXME: There is also sync flushing in set_pages(), which
2058 * serves a different purpose(some of the time at least).
2059 *
2060 * We should consider:
2061 *
2062 * 1. Rip out the async flush code.
2063 *
2064 * 2. Or make the sync flushing use the async clflush path
2065 * using mandatory fences underneath. Currently the below
2066 * async flush happens after we bind the object.
b8f55be6
CW
2067 */
2068 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 2069 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 2070 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
2071 }
2072
544460c3 2073 /* We only need to await on the first request */
6951e589
CW
2074 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2075 err = i915_request_await_object
544460c3
MB
2076 (eb_find_first_request_added(eb), obj,
2077 flags & EXEC_OBJECT_WRITE);
6951e589 2078 }
2889caa9 2079
544460c3
MB
2080 for_each_batch_add_order(eb, j) {
2081 if (err)
2082 break;
2083 if (!eb->requests[j])
2084 continue;
2085
2086 err = _i915_vma_move_to_active(vma, eb->requests[j],
2087 j ? NULL :
2088 eb->composite_fence ?
2089 eb->composite_fence :
2090 &eb->requests[j]->fence,
2091 flags | __EXEC_OBJECT_NO_RESERVE);
2092 }
c59a333f 2093 }
0f1dd022 2094
ed29c269
ML
2095#ifdef CONFIG_MMU_NOTIFIER
2096 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
b4b9731b 2097 read_lock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2098
2099 /*
2100 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2101 * could not have been set
2102 */
2103 for (i = 0; i < count; i++) {
2104 struct eb_vma *ev = &eb->vma[i];
2105 struct drm_i915_gem_object *obj = ev->vma->obj;
2106
2107 if (!i915_gem_object_is_userptr(obj))
2108 continue;
2109
2110 err = i915_gem_object_userptr_submit_done(obj);
2111 if (err)
2112 break;
2113 }
2114
b4b9731b 2115 read_unlock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2116 }
2117#endif
2118
6951e589
CW
2119 if (unlikely(err))
2120 goto err_skip;
2121
dcd79934 2122 /* Unconditionally flush any chipset caches (for streaming writes). */
544460c3 2123 intel_gt_chipset_flush(eb->gt);
ff20afc4
TH
2124 eb_capture_commit(eb);
2125
2113184c 2126 return 0;
6951e589
CW
2127
2128err_skip:
544460c3
MB
2129 for_each_batch_create_order(eb, j) {
2130 if (!eb->requests[j])
2131 break;
2132
2133 i915_request_set_error_once(eb->requests[j], err);
2134 }
6951e589 2135 return err;
54cf91dc
CW
2136}
2137
00aff3f6 2138static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 2139{
650bc635 2140 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 2141 return -EINVAL;
ed5982e6 2142
2f5945bc 2143 /* Kernel clipping was a DRI1 misfeature */
cda9edd0
LL
2144 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2145 I915_EXEC_USE_EXTENSIONS))) {
cf6e7bac 2146 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 2147 return -EINVAL;
cf6e7bac 2148 }
2f5945bc
CW
2149
2150 if (exec->DR4 == 0xffffffff) {
2151 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2152 exec->DR4 = 0;
2153 }
2154 if (exec->DR1 || exec->DR4)
00aff3f6 2155 return -EINVAL;
2f5945bc
CW
2156
2157 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 2158 return -EINVAL;
2f5945bc 2159
00aff3f6 2160 return 0;
54cf91dc
CW
2161}
2162
e61e0f51 2163static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 2164{
73dec95e
TU
2165 u32 *cs;
2166 int i;
ae662d31 2167
40e1956e 2168 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
5a833995 2169 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
2170 return -EINVAL;
2171 }
ae662d31 2172
e61e0f51 2173 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
2174 if (IS_ERR(cs))
2175 return PTR_ERR(cs);
ae662d31 2176
2889caa9 2177 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2178 for (i = 0; i < 4; i++) {
73dec95e
TU
2179 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2180 *cs++ = 0;
ae662d31 2181 }
2889caa9 2182 *cs++ = MI_NOOP;
e61e0f51 2183 intel_ring_advance(rq, cs);
ae662d31
EA
2184
2185 return 0;
2186}
2187
4f7af194 2188static struct i915_vma *
47b08693
ML
2189shadow_batch_pin(struct i915_execbuffer *eb,
2190 struct drm_i915_gem_object *obj,
32d94048
CW
2191 struct i915_address_space *vm,
2192 unsigned int flags)
4f7af194 2193{
b291ce0a 2194 struct i915_vma *vma;
b291ce0a 2195 int err;
4f7af194 2196
b291ce0a
CW
2197 vma = i915_vma_instance(obj, vm, NULL);
2198 if (IS_ERR(vma))
2199 return vma;
2200
47b08693 2201 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
b291ce0a
CW
2202 if (err)
2203 return ERR_PTR(err);
2204
2205 return vma;
4f7af194
JB
2206}
2207
47b08693
ML
2208static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2209{
2210 /*
2211 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2212 * batch" bit. Hence we need to pin secure batches into the global gtt.
2213 * hsw should have this fixed, but bdw mucks it up again. */
2214 if (eb->batch_flags & I915_DISPATCH_SECURE)
2215 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2216
2217 return NULL;
2218}
2219
51696691 2220static int eb_parse(struct i915_execbuffer *eb)
71745376 2221{
baa89ba3 2222 struct drm_i915_private *i915 = eb->i915;
c43ce123 2223 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
47b08693 2224 struct i915_vma *shadow, *trampoline, *batch;
d5e87821 2225 unsigned long len;
2889caa9 2226 int err;
71745376 2227
47b08693 2228 if (!eb_use_cmdparser(eb)) {
544460c3 2229 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
47b08693
ML
2230 if (IS_ERR(batch))
2231 return PTR_ERR(batch);
2232
2233 goto secure_batch;
2234 }
51696691 2235
544460c3
MB
2236 if (intel_context_is_parallel(eb->context))
2237 return -EINVAL;
2238
2239 len = eb->batch_len[0];
32d94048
CW
2240 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2241 /*
2242 * ppGTT backed shadow buffers must be mapped RO, to prevent
2243 * post-scan tampering
2244 */
2245 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2246 drm_dbg(&i915->drm,
2247 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2248 return -EINVAL;
2249 }
2250 } else {
2251 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2252 }
544460c3 2253 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
d5e87821 2254 return -EINVAL;
32d94048 2255
c43ce123 2256 if (!pool) {
544460c3 2257 pool = intel_gt_get_buffer_pool(eb->gt, len,
8f47c8c3 2258 I915_MAP_WB);
c43ce123
ML
2259 if (IS_ERR(pool))
2260 return PTR_ERR(pool);
2261 eb->batch_pool = pool;
2262 }
71745376 2263
c43ce123
ML
2264 err = i915_gem_object_lock(pool->obj, &eb->ww);
2265 if (err)
2266 goto err;
71745376 2267
47b08693 2268 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
32d94048
CW
2269 if (IS_ERR(shadow)) {
2270 err = PTR_ERR(shadow);
f8c08d8f 2271 goto err;
51696691 2272 }
c9398775 2273 intel_gt_buffer_pool_mark_used(pool);
32d94048 2274 i915_gem_object_set_readonly(shadow->obj);
57a78ca4 2275 shadow->private = pool;
32d94048
CW
2276
2277 trampoline = NULL;
2278 if (CMDPARSER_USES_GGTT(eb->i915)) {
2279 trampoline = shadow;
2280
47b08693 2281 shadow = shadow_batch_pin(eb, pool->obj,
544460c3 2282 &eb->gt->ggtt->vm,
32d94048
CW
2283 PIN_GLOBAL);
2284 if (IS_ERR(shadow)) {
2285 err = PTR_ERR(shadow);
2286 shadow = trampoline;
2287 goto err_shadow;
2288 }
57a78ca4 2289 shadow->private = pool;
32d94048
CW
2290
2291 eb->batch_flags |= I915_DISPATCH_SECURE;
2292 }
f8c08d8f 2293
47b08693
ML
2294 batch = eb_dispatch_secure(eb, shadow);
2295 if (IS_ERR(batch)) {
2296 err = PTR_ERR(batch);
2297 goto err_trampoline;
2298 }
2299
95c3d275 2300 err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
93b71330
JE
2301 if (err)
2302 goto err_trampoline;
2303
544460c3
MB
2304 err = intel_engine_cmd_parser(eb->context->engine,
2305 eb->batches[0]->vma,
93b71330 2306 eb->batch_start_offset,
544460c3 2307 eb->batch_len[0],
93b71330 2308 shadow, trampoline);
32d94048 2309 if (err)
47b08693 2310 goto err_unpin_batch;
71745376 2311
544460c3
MB
2312 eb->batches[0] = &eb->vma[eb->buffer_count++];
2313 eb->batches[0]->vma = i915_vma_get(shadow);
2314 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
71745376 2315
32d94048 2316 eb->trampoline = trampoline;
4f7af194 2317 eb->batch_start_offset = 0;
4f7af194 2318
47b08693
ML
2319secure_batch:
2320 if (batch) {
544460c3
MB
2321 if (intel_context_is_parallel(eb->context))
2322 return -EINVAL;
2323
2324 eb->batches[0] = &eb->vma[eb->buffer_count++];
2325 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2326 eb->batches[0]->vma = i915_vma_get(batch);
47b08693 2327 }
51696691 2328 return 0;
b40d7378 2329
47b08693
ML
2330err_unpin_batch:
2331 if (batch)
2332 i915_vma_unpin(batch);
32d94048
CW
2333err_trampoline:
2334 if (trampoline)
2335 i915_vma_unpin(trampoline);
2336err_shadow:
2337 i915_vma_unpin(shadow);
b40d7378 2338err:
51696691 2339 return err;
71745376 2340}
5c6c6003 2341
544460c3
MB
2342static int eb_request_submit(struct i915_execbuffer *eb,
2343 struct i915_request *rq,
2344 struct i915_vma *batch,
2345 u64 batch_len)
78382593 2346{
2889caa9 2347 int err;
78382593 2348
544460c3
MB
2349 if (intel_context_nopreempt(rq->context))
2350 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
78382593 2351
650bc635 2352 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
544460c3 2353 err = i915_reset_gen7_sol_offsets(rq);
2889caa9
CW
2354 if (err)
2355 return err;
78382593
OM
2356 }
2357
85474441
CW
2358 /*
2359 * After we completed waiting for other engines (using HW semaphores)
2360 * then we can signal that this request/batch is ready to run. This
2361 * allows us to determine if the batch is still waiting on the GPU
2362 * or actually running by checking the breadcrumb.
2363 */
544460c3
MB
2364 if (rq->context->engine->emit_init_breadcrumb) {
2365 err = rq->context->engine->emit_init_breadcrumb(rq);
85474441
CW
2366 if (err)
2367 return err;
2368 }
2369
544460c3
MB
2370 err = rq->context->engine->emit_bb_start(rq,
2371 batch->node.start +
2372 eb->batch_start_offset,
2373 batch_len,
2374 eb->batch_flags);
2889caa9
CW
2375 if (err)
2376 return err;
78382593 2377
32d94048 2378 if (eb->trampoline) {
544460c3 2379 GEM_BUG_ON(intel_context_is_parallel(rq->context));
32d94048 2380 GEM_BUG_ON(eb->batch_start_offset);
544460c3
MB
2381 err = rq->context->engine->emit_bb_start(rq,
2382 eb->trampoline->node.start +
2383 batch_len, 0, 0);
32d94048
CW
2384 if (err)
2385 return err;
2386 }
2387
2f5945bc 2388 return 0;
78382593
OM
2389}
2390
544460c3
MB
2391static int eb_submit(struct i915_execbuffer *eb)
2392{
2393 unsigned int i;
2394 int err;
2395
2396 err = eb_move_to_gpu(eb);
2397
2398 for_each_batch_create_order(eb, i) {
2399 if (!eb->requests[i])
2400 break;
2401
2402 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2403 if (!err)
2404 err = eb_request_submit(eb, eb->requests[i],
2405 eb->batches[i]->vma,
2406 eb->batch_len[i]);
2407 }
2408
2409 return err;
2410}
2411
1a9c4db4 2412static int num_vcs_engines(struct drm_i915_private *i915)
d5b2a3a4 2413{
1a9c4db4 2414 return hweight_long(VDBOX_MASK(to_gt(i915)));
d5b2a3a4
CW
2415}
2416
204bcfef 2417/*
a8ebba75 2418 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2419 * The engine index is returned.
a8ebba75 2420 */
de1add36 2421static unsigned int
c80ff16e
CW
2422gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2423 struct drm_file *file)
a8ebba75 2424{
a8ebba75
ZY
2425 struct drm_i915_file_private *file_priv = file->driver_priv;
2426
de1add36 2427 /* Check whether the file_priv has already selected one ring. */
6f633402 2428 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2429 file_priv->bsd_engine =
2430 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2431
c80ff16e 2432 return file_priv->bsd_engine;
d23db88c
CW
2433}
2434
5e2a0419 2435static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2436 [I915_EXEC_DEFAULT] = RCS0,
2437 [I915_EXEC_RENDER] = RCS0,
2438 [I915_EXEC_BLT] = BCS0,
2439 [I915_EXEC_BSD] = VCS0,
2440 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2441};
2442
2bf541ff 2443static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
e5dadff4
CW
2444{
2445 struct intel_ring *ring = ce->ring;
2446 struct intel_timeline *tl = ce->timeline;
2447 struct i915_request *rq;
2448
2449 /*
2450 * Completely unscientific finger-in-the-air estimates for suitable
2451 * maximum user request size (to avoid blocking) and then backoff.
2452 */
2453 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2454 return NULL;
2455
2456 /*
2457 * Find a request that after waiting upon, there will be at least half
2458 * the ring available. The hysteresis allows us to compete for the
2459 * shared ring and should mean that we sleep less often prior to
2460 * claiming our resources, but not so long that the ring completely
2461 * drains before we can submit our next request.
2462 */
2463 list_for_each_entry(rq, &tl->requests, link) {
2464 if (rq->ring != ring)
2465 continue;
2466
2467 if (__intel_ring_space(rq->postfix,
2468 ring->emit, ring->size) > ring->size / 2)
2469 break;
2470 }
2471 if (&rq->link == &tl->requests)
2472 return NULL; /* weird, we will check again later for real */
2473
2474 return i915_request_get(rq);
2475}
2476
544460c3
MB
2477static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2478 bool throttle)
e5dadff4
CW
2479{
2480 struct intel_timeline *tl;
2bf541ff 2481 struct i915_request *rq = NULL;
8f2a1057 2482
a4e57f90
CW
2483 /*
2484 * Take a local wakeref for preparing to dispatch the execbuf as
2485 * we expect to access the hardware fairly frequently in the
2486 * process, and require the engine to be kept awake between accesses.
2487 * Upon dispatch, we acquire another prolonged wakeref that we hold
2488 * until the timeline is idle, which in turn releases the wakeref
2489 * taken on the engine, and the parent device.
2490 */
e5dadff4 2491 tl = intel_context_timeline_lock(ce);
544460c3
MB
2492 if (IS_ERR(tl))
2493 return PTR_ERR(tl);
a4e57f90
CW
2494
2495 intel_context_enter(ce);
2bf541ff
ML
2496 if (throttle)
2497 rq = eb_throttle(eb, ce);
e5dadff4
CW
2498 intel_context_timeline_unlock(tl);
2499
544460c3
MB
2500 if (rq) {
2501 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2502 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2503
2504 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2505 timeout) < 0) {
2506 i915_request_put(rq);
2507
2508 tl = intel_context_timeline_lock(ce);
2509 intel_context_exit(ce);
2510 intel_context_timeline_unlock(tl);
2511
2512 if (nonblock)
2513 return -EWOULDBLOCK;
2514 else
2515 return -EINTR;
2516 }
2517 i915_request_put(rq);
2518 }
2519
2520 return 0;
2521}
2522
2523static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2524{
2525 struct intel_context *ce = eb->context, *child;
2526 int err;
2527 int i = 0, j = 0;
2528
2529 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2530
2531 if (unlikely(intel_context_is_banned(ce)))
2532 return -EIO;
2533
2534 /*
2535 * Pinning the contexts may generate requests in order to acquire
2536 * GGTT space, so do this first before we reserve a seqno for
2537 * ourselves.
2538 */
2539 err = intel_context_pin_ww(ce, &eb->ww);
2540 if (err)
2541 return err;
2542 for_each_child(ce, child) {
2543 err = intel_context_pin_ww(child, &eb->ww);
2544 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2545 }
2546
2547 for_each_child(ce, child) {
2548 err = eb_pin_timeline(eb, child, throttle);
2549 if (err)
2550 goto unwind;
2551 ++i;
2552 }
2553 err = eb_pin_timeline(eb, ce, throttle);
2554 if (err)
2555 goto unwind;
2556
2bf541ff 2557 eb->args->flags |= __EXEC_ENGINE_PINNED;
544460c3
MB
2558 return 0;
2559
2560unwind:
2561 for_each_child(ce, child) {
2562 if (j++ < i) {
2563 mutex_lock(&child->timeline->mutex);
2564 intel_context_exit(child);
2565 mutex_unlock(&child->timeline->mutex);
2566 }
2567 }
2568 for_each_child(ce, child)
2569 intel_context_unpin(child);
2570 intel_context_unpin(ce);
2571 return err;
8f2a1057
CW
2572}
2573
e5dadff4 2574static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2575{
544460c3 2576 struct intel_context *ce = eb->context, *child;
a4e57f90 2577
2bf541ff
ML
2578 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2579 return;
2580
2581 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2582
544460c3
MB
2583 for_each_child(ce, child) {
2584 mutex_lock(&child->timeline->mutex);
2585 intel_context_exit(child);
2586 mutex_unlock(&child->timeline->mutex);
2587
2588 intel_context_unpin(child);
2589 }
2590
2591 mutex_lock(&ce->timeline->mutex);
a4e57f90 2592 intel_context_exit(ce);
544460c3 2593 mutex_unlock(&ce->timeline->mutex);
a4e57f90 2594
2850748e 2595 intel_context_unpin(ce);
8f2a1057 2596}
de1add36 2597
5e2a0419 2598static unsigned int
b49a7d51 2599eb_select_legacy_ring(struct i915_execbuffer *eb)
de1add36 2600{
8f2a1057 2601 struct drm_i915_private *i915 = eb->i915;
b49a7d51 2602 struct drm_i915_gem_execbuffer2 *args = eb->args;
de1add36 2603 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2604
5e2a0419
CW
2605 if (user_ring_id != I915_EXEC_BSD &&
2606 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2607 drm_dbg(&i915->drm,
2608 "execbuf with non bsd ring but with invalid "
2609 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2610 return -1;
de1add36
TU
2611 }
2612
d5b2a3a4 2613 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2614 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2615
2616 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
b49a7d51 2617 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
de1add36
TU
2618 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2619 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2620 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2621 bsd_idx--;
2622 } else {
baa89ba3
WK
2623 drm_dbg(&i915->drm,
2624 "execbuf with unknown bsd ring: %u\n",
2625 bsd_idx);
5e2a0419 2626 return -1;
de1add36
TU
2627 }
2628
5e2a0419 2629 return _VCS(bsd_idx);
de1add36
TU
2630 }
2631
5e2a0419 2632 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2633 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2634 user_ring_id);
5e2a0419 2635 return -1;
de1add36
TU
2636 }
2637
5e2a0419
CW
2638 return user_ring_map[user_ring_id];
2639}
2640
2641static int
2bf541ff 2642eb_select_engine(struct i915_execbuffer *eb)
5e2a0419 2643{
544460c3 2644 struct intel_context *ce, *child;
5e2a0419
CW
2645 unsigned int idx;
2646 int err;
2647
976b55f0 2648 if (i915_gem_context_user_engines(eb->gem_context))
b49a7d51 2649 idx = eb->args->flags & I915_EXEC_RING_MASK;
976b55f0 2650 else
b49a7d51 2651 idx = eb_select_legacy_ring(eb);
5e2a0419
CW
2652
2653 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2654 if (IS_ERR(ce))
2655 return PTR_ERR(ce);
2656
544460c3
MB
2657 if (intel_context_is_parallel(ce)) {
2658 if (eb->buffer_count < ce->parallel.number_children + 1) {
2659 intel_context_put(ce);
2660 return -EINVAL;
2661 }
2662 if (eb->batch_start_offset || eb->args->batch_len) {
2663 intel_context_put(ce);
2664 return -EINVAL;
2665 }
2666 }
2667 eb->num_batches = ce->parallel.number_children + 1;
2668
2669 for_each_child(ce, child)
2670 intel_context_get(child);
2bf541ff 2671 intel_gt_pm_get(ce->engine->gt);
5e2a0419 2672
2bf541ff
ML
2673 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2674 err = intel_context_alloc_state(ce);
2675 if (err)
2676 goto err;
2677 }
544460c3
MB
2678 for_each_child(ce, child) {
2679 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2680 err = intel_context_alloc_state(child);
2681 if (err)
2682 goto err;
2683 }
2684 }
2bf541ff
ML
2685
2686 /*
2687 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2688 * EIO if the GPU is already wedged.
2689 */
2690 err = intel_gt_terminally_wedged(ce->engine->gt);
2691 if (err)
2692 goto err;
2693
2694 eb->context = ce;
544460c3 2695 eb->gt = ce->engine->gt;
2bf541ff
ML
2696
2697 /*
2698 * Make sure engine pool stays alive even if we call intel_context_put
2699 * during ww handling. The pool is destroyed when last pm reference
2700 * is dropped, which breaks our -EDEADLK handling.
2701 */
2702 return err;
2703
2704err:
2705 intel_gt_pm_put(ce->engine->gt);
544460c3
MB
2706 for_each_child(ce, child)
2707 intel_context_put(child);
2bf541ff 2708 intel_context_put(ce);
5e2a0419 2709 return err;
de1add36
TU
2710}
2711
2bf541ff
ML
2712static void
2713eb_put_engine(struct i915_execbuffer *eb)
2714{
544460c3
MB
2715 struct intel_context *child;
2716
2717 intel_gt_pm_put(eb->gt);
2718 for_each_child(eb->context, child)
2719 intel_context_put(child);
2bf541ff
ML
2720 intel_context_put(eb->context);
2721}
2722
cf6e7bac 2723static void
13149e8b 2724__free_fence_array(struct eb_fence *fences, unsigned int n)
cf6e7bac 2725{
13149e8b 2726 while (n--) {
cda9edd0 2727 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
13149e8b 2728 dma_fence_put(fences[n].dma_fence);
440d0f12 2729 dma_fence_chain_free(fences[n].chain_fence);
13149e8b 2730 }
cf6e7bac
JE
2731 kvfree(fences);
2732}
2733
cda9edd0 2734static int
13149e8b
LL
2735add_timeline_fence_array(struct i915_execbuffer *eb,
2736 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
cf6e7bac 2737{
13149e8b
LL
2738 struct drm_i915_gem_exec_fence __user *user_fences;
2739 u64 __user *user_values;
2740 struct eb_fence *f;
2741 u64 nfences;
2742 int err = 0;
cf6e7bac 2743
13149e8b
LL
2744 nfences = timeline_fences->fence_count;
2745 if (!nfences)
cda9edd0 2746 return 0;
cf6e7bac 2747
d710fc16
CW
2748 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2749 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2750 if (nfences > min_t(unsigned long,
13149e8b
LL
2751 ULONG_MAX / sizeof(*user_fences),
2752 SIZE_MAX / sizeof(*f)) - eb->num_fences)
cda9edd0 2753 return -EINVAL;
cf6e7bac 2754
13149e8b
LL
2755 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2756 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2757 return -EFAULT;
2758
2759 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2760 if (!access_ok(user_values, nfences * sizeof(*user_values)))
cda9edd0 2761 return -EFAULT;
cf6e7bac 2762
13149e8b
LL
2763 f = krealloc(eb->fences,
2764 (eb->num_fences + nfences) * sizeof(*f),
2765 __GFP_NOWARN | GFP_KERNEL);
2766 if (!f)
cda9edd0 2767 return -ENOMEM;
cf6e7bac 2768
13149e8b
LL
2769 eb->fences = f;
2770 f += eb->num_fences;
2771
2772 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2773 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2774
2775 while (nfences--) {
2776 struct drm_i915_gem_exec_fence user_fence;
cf6e7bac 2777 struct drm_syncobj *syncobj;
13149e8b
LL
2778 struct dma_fence *fence = NULL;
2779 u64 point;
2780
2781 if (__copy_from_user(&user_fence,
2782 user_fences++,
2783 sizeof(user_fence)))
2784 return -EFAULT;
2785
2786 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2787 return -EINVAL;
2788
2789 if (__get_user(point, user_values++))
2790 return -EFAULT;
2791
2792 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2793 if (!syncobj) {
2794 DRM_DEBUG("Invalid syncobj handle provided\n");
2795 return -ENOENT;
2796 }
2797
2798 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac 2799
13149e8b
LL
2800 if (!fence && user_fence.flags &&
2801 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2802 DRM_DEBUG("Syncobj handle has no fence\n");
2803 drm_syncobj_put(syncobj);
2804 return -EINVAL;
cf6e7bac
JE
2805 }
2806
13149e8b
LL
2807 if (fence)
2808 err = dma_fence_chain_find_seqno(&fence, point);
2809
2810 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2811 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
da1ea128 2812 dma_fence_put(fence);
13149e8b
LL
2813 drm_syncobj_put(syncobj);
2814 return err;
2815 }
2816
2817 /*
2818 * A point might have been signaled already and
2819 * garbage collected from the timeline. In this case
2820 * just ignore the point and carry on.
2821 */
2822 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2823 drm_syncobj_put(syncobj);
2824 continue;
2825 }
2826
2827 /*
2828 * For timeline syncobjs we need to preallocate chains for
2829 * later signaling.
2830 */
2831 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2832 /*
2833 * Waiting and signaling the same point (when point !=
2834 * 0) would break the timeline.
2835 */
2836 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2837 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2838 dma_fence_put(fence);
2839 drm_syncobj_put(syncobj);
2840 return -EINVAL;
2841 }
2842
440d0f12 2843 f->chain_fence = dma_fence_chain_alloc();
13149e8b
LL
2844 if (!f->chain_fence) {
2845 drm_syncobj_put(syncobj);
2846 dma_fence_put(fence);
2847 return -ENOMEM;
2848 }
2849 } else {
2850 f->chain_fence = NULL;
ebcaa1ff
TU
2851 }
2852
13149e8b
LL
2853 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2854 f->dma_fence = fence;
2855 f->value = point;
2856 f++;
2857 eb->num_fences++;
2858 }
2859
2860 return 0;
2861}
2862
2863static int add_fence_array(struct i915_execbuffer *eb)
2864{
2865 struct drm_i915_gem_execbuffer2 *args = eb->args;
2866 struct drm_i915_gem_exec_fence __user *user;
2867 unsigned long num_fences = args->num_cliprects;
2868 struct eb_fence *f;
2869
2870 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2871 return 0;
2872
2873 if (!num_fences)
2874 return 0;
2875
2876 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2877 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2878 if (num_fences > min_t(unsigned long,
2879 ULONG_MAX / sizeof(*user),
2880 SIZE_MAX / sizeof(*f) - eb->num_fences))
2881 return -EINVAL;
2882
2883 user = u64_to_user_ptr(args->cliprects_ptr);
2884 if (!access_ok(user, num_fences * sizeof(*user)))
2885 return -EFAULT;
2886
2887 f = krealloc(eb->fences,
2888 (eb->num_fences + num_fences) * sizeof(*f),
2889 __GFP_NOWARN | GFP_KERNEL);
2890 if (!f)
2891 return -ENOMEM;
2892
2893 eb->fences = f;
2894 f += eb->num_fences;
2895 while (num_fences--) {
2896 struct drm_i915_gem_exec_fence user_fence;
2897 struct drm_syncobj *syncobj;
2898 struct dma_fence *fence = NULL;
2899
2900 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2901 return -EFAULT;
2902
2903 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2904 return -EINVAL;
2905
2906 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
cf6e7bac
JE
2907 if (!syncobj) {
2908 DRM_DEBUG("Invalid syncobj handle provided\n");
13149e8b
LL
2909 return -ENOENT;
2910 }
2911
2912 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2913 fence = drm_syncobj_fence_get(syncobj);
2914 if (!fence) {
2915 DRM_DEBUG("Syncobj handle has no fence\n");
2916 drm_syncobj_put(syncobj);
2917 return -EINVAL;
2918 }
cf6e7bac
JE
2919 }
2920
ebcaa1ff
TU
2921 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2922 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2923
13149e8b
LL
2924 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2925 f->dma_fence = fence;
2926 f->value = 0;
2927 f->chain_fence = NULL;
2928 f++;
2929 eb->num_fences++;
cf6e7bac
JE
2930 }
2931
cda9edd0 2932 return 0;
13149e8b 2933}
cf6e7bac 2934
13149e8b
LL
2935static void put_fence_array(struct eb_fence *fences, int num_fences)
2936{
2937 if (fences)
2938 __free_fence_array(fences, num_fences);
cf6e7bac
JE
2939}
2940
2941static int
544460c3
MB
2942await_fence_array(struct i915_execbuffer *eb,
2943 struct i915_request *rq)
cf6e7bac 2944{
cf6e7bac
JE
2945 unsigned int n;
2946 int err;
2947
13149e8b 2948 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac 2949 struct drm_syncobj *syncobj;
cf6e7bac
JE
2950 unsigned int flags;
2951
cda9edd0 2952 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac 2953
13149e8b
LL
2954 if (!eb->fences[n].dma_fence)
2955 continue;
cf6e7bac 2956
544460c3 2957 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
cf6e7bac
JE
2958 if (err < 0)
2959 return err;
2960 }
2961
2962 return 0;
2963}
2964
544460c3
MB
2965static void signal_fence_array(const struct i915_execbuffer *eb,
2966 struct dma_fence * const fence)
cf6e7bac 2967{
cf6e7bac
JE
2968 unsigned int n;
2969
13149e8b 2970 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac
JE
2971 struct drm_syncobj *syncobj;
2972 unsigned int flags;
2973
cda9edd0 2974 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac
JE
2975 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2976 continue;
2977
13149e8b
LL
2978 if (eb->fences[n].chain_fence) {
2979 drm_syncobj_add_point(syncobj,
2980 eb->fences[n].chain_fence,
2981 fence,
2982 eb->fences[n].value);
2983 /*
2984 * The chain's ownership is transferred to the
2985 * timeline.
2986 */
2987 eb->fences[n].chain_fence = NULL;
2988 } else {
2989 drm_syncobj_replace_fence(syncobj, fence);
2990 }
cf6e7bac
JE
2991 }
2992}
2993
13149e8b
LL
2994static int
2995parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2996{
2997 struct i915_execbuffer *eb = data;
2998 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2999
3000 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3001 return -EFAULT;
3002
3003 return add_timeline_fence_array(eb, &timeline_fences);
3004}
3005
61231f6b
CW
3006static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3007{
3008 struct i915_request *rq, *rn;
3009
3010 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3011 if (rq == end || !i915_request_retire(rq))
3012 break;
3013}
3014
544460c3
MB
3015static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3016 int err, bool last_parallel)
61231f6b 3017{
61231f6b
CW
3018 struct intel_timeline * const tl = i915_request_timeline(rq);
3019 struct i915_sched_attr attr = {};
3020 struct i915_request *prev;
3021
3022 lockdep_assert_held(&tl->mutex);
3023 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3024
3025 trace_i915_request_add(rq);
3026
3027 prev = __i915_request_commit(rq);
3028
3029 /* Check that the context wasn't destroyed before submission */
207e4a71 3030 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 3031 attr = eb->gem_context->sched;
61231f6b
CW
3032 } else {
3033 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
3034 i915_request_set_error_once(rq, -ENOENT);
3035 __i915_request_skip(rq);
ba38b79e 3036 err = -ENOENT; /* override any transient errors */
61231f6b
CW
3037 }
3038
544460c3
MB
3039 if (intel_context_is_parallel(eb->context)) {
3040 if (err) {
3041 __i915_request_skip(rq);
3042 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3043 &rq->fence.flags);
3044 }
3045 if (last_parallel)
3046 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3047 &rq->fence.flags);
3048 }
3049
61231f6b 3050 __i915_request_queue(rq, &attr);
61231f6b
CW
3051
3052 /* Try to clean up the client's timeline after submitting the request */
3053 if (prev)
3054 retire_requests(tl, prev);
3055
3056 mutex_unlock(&tl->mutex);
ba38b79e
CW
3057
3058 return err;
61231f6b
CW
3059}
3060
544460c3
MB
3061static int eb_requests_add(struct i915_execbuffer *eb, int err)
3062{
3063 int i;
3064
3065 /*
3066 * We iterate in reverse order of creation to release timeline mutexes in
3067 * same order.
3068 */
3069 for_each_batch_add_order(eb, i) {
3070 struct i915_request *rq = eb->requests[i];
3071
3072 if (!rq)
3073 continue;
3074 err |= eb_request_add(eb, rq, err, i == 0);
3075 }
3076
3077 return err;
3078}
3079
cda9edd0 3080static const i915_user_extension_fn execbuf_extensions[] = {
13149e8b 3081 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
cda9edd0
LL
3082};
3083
3084static int
3085parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3086 struct i915_execbuffer *eb)
3087{
cda9edd0
LL
3088 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3089 return 0;
3090
3091 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3092 * have another flag also using it at the same time.
3093 */
3094 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3095 return -EINVAL;
3096
3097 if (args->num_cliprects != 0)
3098 return -EINVAL;
3099
3100 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3101 execbuf_extensions,
3102 ARRAY_SIZE(execbuf_extensions),
3103 eb);
3104}
3105
544460c3
MB
3106static void eb_requests_get(struct i915_execbuffer *eb)
3107{
3108 unsigned int i;
3109
3110 for_each_batch_create_order(eb, i) {
3111 if (!eb->requests[i])
3112 break;
3113
3114 i915_request_get(eb->requests[i]);
3115 }
3116}
3117
3118static void eb_requests_put(struct i915_execbuffer *eb)
3119{
3120 unsigned int i;
3121
3122 for_each_batch_create_order(eb, i) {
3123 if (!eb->requests[i])
3124 break;
3125
3126 i915_request_put(eb->requests[i]);
3127 }
3128}
3129
3130static struct sync_file *
3131eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3132{
3133 struct sync_file *out_fence = NULL;
3134 struct dma_fence_array *fence_array;
3135 struct dma_fence **fences;
3136 unsigned int i;
3137
3138 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3139
3140 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3141 if (!fences)
3142 return ERR_PTR(-ENOMEM);
3143
7647f009 3144 for_each_batch_create_order(eb, i) {
544460c3 3145 fences[i] = &eb->requests[i]->fence;
7647f009
MB
3146 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3147 &eb->requests[i]->fence.flags);
3148 }
544460c3
MB
3149
3150 fence_array = dma_fence_array_create(eb->num_batches,
3151 fences,
3152 eb->context->parallel.fence_context,
62eeb9ae 3153 eb->context->parallel.seqno++,
544460c3
MB
3154 false);
3155 if (!fence_array) {
3156 kfree(fences);
3157 return ERR_PTR(-ENOMEM);
3158 }
3159
3160 /* Move ownership to the dma_fence_array created above */
3161 for_each_batch_create_order(eb, i)
3162 dma_fence_get(fences[i]);
3163
3164 if (out_fence_fd != -1) {
3165 out_fence = sync_file_create(&fence_array->base);
3166 /* sync_file now owns fence_arry, drop creation ref */
3167 dma_fence_put(&fence_array->base);
3168 if (!out_fence)
3169 return ERR_PTR(-ENOMEM);
3170 }
3171
3172 eb->composite_fence = &fence_array->base;
3173
3174 return out_fence;
3175}
3176
3177static struct sync_file *
3178eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3179 struct dma_fence *in_fence, int out_fence_fd)
3180{
3181 struct sync_file *out_fence = NULL;
3182 int err;
3183
3184 if (unlikely(eb->gem_context->syncobj)) {
3185 struct dma_fence *fence;
3186
3187 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3188 err = i915_request_await_dma_fence(rq, fence);
3189 dma_fence_put(fence);
3190 if (err)
3191 return ERR_PTR(err);
3192 }
3193
3194 if (in_fence) {
3195 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3196 err = i915_request_await_execution(rq, in_fence);
3197 else
3198 err = i915_request_await_dma_fence(rq, in_fence);
3199 if (err < 0)
3200 return ERR_PTR(err);
3201 }
3202
3203 if (eb->fences) {
3204 err = await_fence_array(eb, rq);
3205 if (err)
3206 return ERR_PTR(err);
3207 }
3208
3209 if (intel_context_is_parallel(eb->context)) {
3210 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3211 if (IS_ERR(out_fence))
3212 return ERR_PTR(-ENOMEM);
3213 } else if (out_fence_fd != -1) {
3214 out_fence = sync_file_create(&rq->fence);
3215 if (!out_fence)
3216 return ERR_PTR(-ENOMEM);
3217 }
3218
3219 return out_fence;
3220}
3221
3222static struct intel_context *
3223eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3224{
3225 struct intel_context *child;
3226
3227 if (likely(context_number == 0))
3228 return eb->context;
3229
3230 for_each_child(eb->context, child)
3231 if (!--context_number)
3232 return child;
3233
3234 GEM_BUG_ON("Context not found");
3235
3236 return NULL;
3237}
3238
3239static struct sync_file *
3240eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3241 int out_fence_fd)
3242{
3243 struct sync_file *out_fence = NULL;
3244 unsigned int i;
3245
3246 for_each_batch_create_order(eb, i) {
3247 /* Allocate a request for this batch buffer nice and early. */
3248 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3249 if (IS_ERR(eb->requests[i])) {
86752bd6 3250 out_fence = ERR_CAST(eb->requests[i]);
544460c3
MB
3251 eb->requests[i] = NULL;
3252 return out_fence;
3253 }
3254
3255 /*
3256 * Only the first request added (committed to backend) has to
3257 * take the in fences into account as all subsequent requests
3258 * will have fences inserted inbetween them.
3259 */
3260 if (i + 1 == eb->num_batches) {
3261 out_fence = eb_fences_add(eb, eb->requests[i],
3262 in_fence, out_fence_fd);
3263 if (IS_ERR(out_fence))
3264 return out_fence;
3265 }
3266
3267 /*
ff20afc4
TH
3268 * Not really on stack, but we don't want to call
3269 * kfree on the batch_snapshot when we put it, so use the
3270 * _onstack interface.
544460c3 3271 */
ff20afc4
TH
3272 if (eb->batches[i]->vma)
3273 i915_vma_snapshot_init_onstack(&eb->requests[i]->batch_snapshot,
3274 eb->batches[i]->vma,
3275 "batch");
544460c3
MB
3276 if (eb->batch_pool) {
3277 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3278 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3279 eb->requests[i]);
3280 }
3281 }
3282
3283 return out_fence;
3284}
3285
54cf91dc 3286static int
650bc635 3287i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
3288 struct drm_file *file,
3289 struct drm_i915_gem_execbuffer2 *args,
cda9edd0 3290 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 3291{
44157641 3292 struct drm_i915_private *i915 = to_i915(dev);
650bc635 3293 struct i915_execbuffer eb;
fec0445c
CW
3294 struct dma_fence *in_fence = NULL;
3295 struct sync_file *out_fence = NULL;
3296 int out_fence_fd = -1;
2889caa9 3297 int err;
432e58ed 3298
74c1c694 3299 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
3300 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3301 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 3302
44157641 3303 eb.i915 = i915;
650bc635
CW
3304 eb.file = file;
3305 eb.args = args;
ad5d95e4 3306 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 3307 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 3308
650bc635 3309 eb.exec = exec;
8ae275c2
ML
3310 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3311 eb.vma[0].vma = NULL;
8e02cceb 3312 eb.batch_pool = NULL;
c7c6e46f 3313
2889caa9 3314 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
3315 reloc_cache_init(&eb.reloc_cache, eb.i915);
3316
2889caa9 3317 eb.buffer_count = args->buffer_count;
650bc635 3318 eb.batch_start_offset = args->batch_start_offset;
32d94048 3319 eb.trampoline = NULL;
650bc635 3320
cda9edd0 3321 eb.fences = NULL;
13149e8b 3322 eb.num_fences = 0;
cda9edd0 3323
ff20afc4
TH
3324 eb_capture_list_clear(&eb);
3325
544460c3
MB
3326 memset(eb.requests, 0, sizeof(struct i915_request *) *
3327 ARRAY_SIZE(eb.requests));
3328 eb.composite_fence = NULL;
3329
2889caa9 3330 eb.batch_flags = 0;
d7d4eedd 3331 if (args->flags & I915_EXEC_SECURE) {
40e1956e 3332 if (GRAPHICS_VER(i915) >= 11)
44157641
JB
3333 return -ENODEV;
3334
3335 /* Return -EPERM to trigger fallback code on old binaries. */
3336 if (!HAS_SECURE_BATCHES(i915))
3337 return -EPERM;
3338
b3ac9f25 3339 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 3340 return -EPERM;
d7d4eedd 3341
2889caa9 3342 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 3343 }
b45305fc 3344 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 3345 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 3346
13149e8b
LL
3347 err = parse_execbuf2_extensions(args, &eb);
3348 if (err)
3349 goto err_ext;
3350
3351 err = add_fence_array(&eb);
3352 if (err)
3353 goto err_ext;
3354
889333c7
CW
3355#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3356 if (args->flags & IN_FENCES) {
3357 if ((args->flags & IN_FENCES) == IN_FENCES)
3358 return -EINVAL;
3359
fec0445c 3360 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
13149e8b
LL
3361 if (!in_fence) {
3362 err = -EINVAL;
3363 goto err_ext;
3364 }
fec0445c 3365 }
889333c7 3366#undef IN_FENCES
a88b6e4c 3367
fec0445c
CW
3368 if (args->flags & I915_EXEC_FENCE_OUT) {
3369 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3370 if (out_fence_fd < 0) {
2889caa9 3371 err = out_fence_fd;
889333c7 3372 goto err_in_fence;
fec0445c
CW
3373 }
3374 }
3375
cda9edd0
LL
3376 err = eb_create(&eb);
3377 if (err)
13149e8b 3378 goto err_out_fence;
cda9edd0 3379
4d470f73 3380 GEM_BUG_ON(!eb.lut_size);
2889caa9 3381
1acfc104
CW
3382 err = eb_select_context(&eb);
3383 if (unlikely(err))
3384 goto err_destroy;
3385
2bf541ff 3386 err = eb_select_engine(&eb);
d6f328bf 3387 if (unlikely(err))
e5dadff4 3388 goto err_context;
d6f328bf 3389
c43ce123
ML
3390 err = eb_lookup_vmas(&eb);
3391 if (err) {
b4b9731b 3392 eb_release_vmas(&eb, true);
c43ce123
ML
3393 goto err_engine;
3394 }
3395
3396 i915_gem_ww_ctx_init(&eb.ww, true);
3397
8e4ba491 3398 err = eb_relocate_parse(&eb);
1f727d9e 3399 if (err) {
2889caa9
CW
3400 /*
3401 * If the user expects the execobject.offset and
3402 * reloc.presumed_offset to be an exact match,
3403 * as for using NO_RELOC, then we cannot update
3404 * the execobject.offset until we have completed
3405 * relocation.
3406 */
3407 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 3408 goto err_vma;
1f727d9e 3409 }
54cf91dc 3410
c43ce123 3411 ww_acquire_done(&eb.ww.ctx);
ff20afc4 3412 eb_capture_stage(&eb);
7d6236bb 3413
544460c3
MB
3414 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3415 if (IS_ERR(out_fence)) {
3416 err = PTR_ERR(out_fence);
8722ded4 3417 out_fence = NULL;
544460c3 3418 if (eb.requests[0])
cf6e7bac 3419 goto err_request;
544460c3
MB
3420 else
3421 goto err_vma;
cf6e7bac
JE
3422 }
3423
544460c3 3424 err = eb_submit(&eb);
ed29c269 3425
aa9b7810 3426err_request:
544460c3
MB
3427 eb_requests_get(&eb);
3428 err = eb_requests_add(&eb, err);
c8659efa 3429
13149e8b 3430 if (eb.fences)
544460c3
MB
3431 signal_fence_array(&eb, eb.composite_fence ?
3432 eb.composite_fence :
3433 &eb.requests[0]->fence);
cf6e7bac 3434
fec0445c 3435 if (out_fence) {
2889caa9 3436 if (err == 0) {
fec0445c 3437 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 3438 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
3439 args->rsvd2 |= (u64)out_fence_fd << 32;
3440 out_fence_fd = -1;
3441 } else {
3442 fput(out_fence->file);
3443 }
3444 }
00dae4d3
JE
3445
3446 if (unlikely(eb.gem_context->syncobj)) {
3447 drm_syncobj_replace_fence(eb.gem_context->syncobj,
544460c3
MB
3448 eb.composite_fence ?
3449 eb.composite_fence :
3450 &eb.requests[0]->fence);
00dae4d3
JE
3451 }
3452
544460c3
MB
3453 if (!out_fence && eb.composite_fence)
3454 dma_fence_put(eb.composite_fence);
3455
3456 eb_requests_put(&eb);
54cf91dc 3457
2889caa9 3458err_vma:
b4b9731b 3459 eb_release_vmas(&eb, true);
32d94048
CW
3460 if (eb.trampoline)
3461 i915_vma_unpin(eb.trampoline);
c43ce123
ML
3462 WARN_ON(err == -EDEADLK);
3463 i915_gem_ww_ctx_fini(&eb.ww);
3464
3465 if (eb.batch_pool)
3466 intel_gt_buffer_pool_put(eb.batch_pool);
c43ce123 3467err_engine:
2bf541ff 3468 eb_put_engine(&eb);
a4e57f90 3469err_context:
8f2a1057 3470 i915_gem_context_put(eb.gem_context);
1acfc104 3471err_destroy:
2889caa9 3472 eb_destroy(&eb);
4d470f73 3473err_out_fence:
fec0445c
CW
3474 if (out_fence_fd != -1)
3475 put_unused_fd(out_fence_fd);
4a04e371 3476err_in_fence:
fec0445c 3477 dma_fence_put(in_fence);
13149e8b
LL
3478err_ext:
3479 put_fence_array(eb.fences, eb.num_fences);
2889caa9 3480 return err;
54cf91dc
CW
3481}
3482
d710fc16
CW
3483static size_t eb_element_size(void)
3484{
8ae275c2 3485 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
3486}
3487
3488static bool check_buffer_count(size_t count)
3489{
3490 const size_t sz = eb_element_size();
3491
3492 /*
3493 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3494 * array size (see eb_create()). Otherwise, we can accept an array as
3495 * large as can be addressed (though use large arrays at your peril)!
3496 */
3497
3498 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3499}
3500
54cf91dc 3501int
6a20fe7b
VS
3502i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3503 struct drm_file *file)
54cf91dc 3504{
d0bf4582 3505 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 3506 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 3507 struct drm_i915_gem_exec_object2 *exec2_list;
d710fc16 3508 const size_t count = args->buffer_count;
2889caa9 3509 int err;
54cf91dc 3510
d710fc16 3511 if (!check_buffer_count(count)) {
d0bf4582 3512 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3513 return -EINVAL;
3514 }
3515
00aff3f6
TU
3516 err = i915_gem_check_execbuffer(args);
3517 if (err)
3518 return err;
2889caa9 3519
47b08693
ML
3520 /* Allocate extra slots for use by the command parser */
3521 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3522 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3523 if (exec2_list == NULL) {
d0bf4582
WK
3524 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3525 count);
54cf91dc
CW
3526 return -ENOMEM;
3527 }
2889caa9
CW
3528 if (copy_from_user(exec2_list,
3529 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3530 sizeof(*exec2_list) * count)) {
d0bf4582 3531 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 3532 kvfree(exec2_list);
54cf91dc
CW
3533 return -EFAULT;
3534 }
3535
cda9edd0 3536 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2889caa9
CW
3537
3538 /*
3539 * Now that we have begun execution of the batchbuffer, we ignore
3540 * any new error after this point. Also given that we have already
3541 * updated the associated relocations, we try to write out the current
3542 * object locations irrespective of any error.
3543 */
3544 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3545 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3546 u64_to_user_ptr(args->buffers_ptr);
3547 unsigned int i;
9aab8bff 3548
2889caa9 3549 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3550 /*
3551 * Note: count * sizeof(*user_exec_list) does not overflow,
3552 * because we checked 'count' in check_buffer_count().
3553 *
3554 * And this range already got effectively checked earlier
3555 * when we did the "copy_from_user()" above.
3556 */
b44f6873
CL
3557 if (!user_write_access_begin(user_exec_list,
3558 count * sizeof(*user_exec_list)))
8f4faed0 3559 goto end;
594cc251 3560
9aab8bff 3561 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3562 if (!(exec2_list[i].offset & UPDATE))
3563 continue;
3564
934acce3 3565 exec2_list[i].offset =
2889caa9
CW
3566 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3567 unsafe_put_user(exec2_list[i].offset,
3568 &user_exec_list[i].offset,
3569 end_user);
54cf91dc 3570 }
2889caa9 3571end_user:
b44f6873 3572 user_write_access_end();
8f4faed0 3573end:;
54cf91dc
CW
3574 }
3575
2889caa9 3576 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 3577 kvfree(exec2_list);
2889caa9 3578 return err;
54cf91dc 3579}