Merge branch 'for-5.4/wacom' into for-linus
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
ad778f89 8#include <linux/reservation.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
760285e7 13#include <drm/i915_drm.h>
ad778f89 14
df0566a6
JN
15#include "display/intel_frontbuffer.h"
16
afa13085 17#include "gem/i915_gem_ioctls.h"
10be98a7 18#include "gt/intel_context.h"
8f2a1057
CW
19#include "gt/intel_gt_pm.h"
20
10be98a7 21#include "i915_gem_ioctls.h"
57822dc6 22#include "i915_gem_clflush.h"
10be98a7 23#include "i915_gem_context.h"
54cf91dc
CW
24#include "i915_trace.h"
25#include "intel_drv.h"
26
7dd4f672
CW
27enum {
28 FORCE_CPU_RELOC = 1,
29 FORCE_GTT_RELOC,
30 FORCE_GPU_RELOC,
31#define DBG_FORCE_RELOC 0 /* choose one of the above! */
32};
d50415cc 33
dade2a61
CW
34#define __EXEC_OBJECT_HAS_REF BIT(31)
35#define __EXEC_OBJECT_HAS_PIN BIT(30)
36#define __EXEC_OBJECT_HAS_FENCE BIT(29)
37#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
38#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
39#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
2889caa9
CW
40#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
41
42#define __EXEC_HAS_RELOC BIT(31)
43#define __EXEC_VALIDATED BIT(30)
74c1c694 44#define __EXEC_INTERNAL_FLAGS (~0u << 30)
2889caa9 45#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
46
47#define BATCH_OFFSET_BIAS (256*1024)
a415d355 48
650bc635 49#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
50 (__I915_EXEC_UNKNOWN_FLAGS | \
51 I915_EXEC_CONSTANTS_MASK | \
52 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 53
d20ac620
CW
54/* Catch emission of unexpected errors for CI! */
55#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
56#undef EINVAL
57#define EINVAL ({ \
58 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
59 22; \
60})
61#endif
62
2889caa9
CW
63/**
64 * DOC: User command execution
65 *
66 * Userspace submits commands to be executed on the GPU as an instruction
67 * stream within a GEM object we call a batchbuffer. This instructions may
68 * refer to other GEM objects containing auxiliary state such as kernels,
69 * samplers, render targets and even secondary batchbuffers. Userspace does
70 * not know where in the GPU memory these objects reside and so before the
71 * batchbuffer is passed to the GPU for execution, those addresses in the
72 * batchbuffer and auxiliary objects are updated. This is known as relocation,
73 * or patching. To try and avoid having to relocate each object on the next
74 * execution, userspace is told the location of those objects in this pass,
75 * but this remains just a hint as the kernel may choose a new location for
76 * any object in the future.
77 *
99d7e4ee
KR
78 * At the level of talking to the hardware, submitting a batchbuffer for the
79 * GPU to execute is to add content to a buffer from which the HW
80 * command streamer is reading.
81 *
82 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
83 * Execlists, this command is not placed on the same buffer as the
84 * remaining items.
85 *
86 * 2. Add a command to invalidate caches to the buffer.
87 *
88 * 3. Add a batchbuffer start command to the buffer; the start command is
89 * essentially a token together with the GPU address of the batchbuffer
90 * to be executed.
91 *
92 * 4. Add a pipeline flush to the buffer.
93 *
94 * 5. Add a memory write command to the buffer to record when the GPU
95 * is done executing the batchbuffer. The memory write writes the
96 * global sequence number of the request, ``i915_request::global_seqno``;
97 * the i915 driver uses the current value in the register to determine
98 * if the GPU has completed the batchbuffer.
99 *
100 * 6. Add a user interrupt command to the buffer. This command instructs
101 * the GPU to issue an interrupt when the command, pipeline flush and
102 * memory write are completed.
103 *
104 * 7. Inform the hardware of the additional commands added to the buffer
105 * (by updating the tail pointer).
106 *
2889caa9
CW
107 * Processing an execbuf ioctl is conceptually split up into a few phases.
108 *
109 * 1. Validation - Ensure all the pointers, handles and flags are valid.
110 * 2. Reservation - Assign GPU address space for every object
111 * 3. Relocation - Update any addresses to point to the final locations
112 * 4. Serialisation - Order the request with respect to its dependencies
113 * 5. Construction - Construct a request to execute the batchbuffer
114 * 6. Submission (at some point in the future execution)
115 *
116 * Reserving resources for the execbuf is the most complicated phase. We
117 * neither want to have to migrate the object in the address space, nor do
118 * we want to have to update any relocations pointing to this object. Ideally,
119 * we want to leave the object where it is and for all the existing relocations
120 * to match. If the object is given a new address, or if userspace thinks the
121 * object is elsewhere, we have to parse all the relocation entries and update
122 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
123 * all the target addresses in all of its objects match the value in the
124 * relocation entries and that they all match the presumed offsets given by the
125 * list of execbuffer objects. Using this knowledge, we know that if we haven't
126 * moved any buffers, all the relocation entries are valid and we can skip
127 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
128 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
129 *
130 * The addresses written in the objects must match the corresponding
131 * reloc.presumed_offset which in turn must match the corresponding
132 * execobject.offset.
133 *
134 * Any render targets written to in the batch must be flagged with
135 * EXEC_OBJECT_WRITE.
136 *
137 * To avoid stalling, execobject.offset should match the current
138 * address of that object within the active context.
139 *
140 * The reservation is done is multiple phases. First we try and keep any
141 * object already bound in its current location - so as long as meets the
142 * constraints imposed by the new execbuffer. Any object left unbound after the
143 * first pass is then fitted into any available idle space. If an object does
144 * not fit, all objects are removed from the reservation and the process rerun
145 * after sorting the objects into a priority order (more difficult to fit
146 * objects are tried first). Failing that, the entire VM is cleared and we try
147 * to fit the execbuf once last time before concluding that it simply will not
148 * fit.
149 *
150 * A small complication to all of this is that we allow userspace not only to
151 * specify an alignment and a size for the object in the address space, but
152 * we also allow userspace to specify the exact offset. This objects are
153 * simpler to place (the location is known a priori) all we have to do is make
154 * sure the space is available.
155 *
156 * Once all the objects are in place, patching up the buried pointers to point
157 * to the final locations is a fairly simple job of walking over the relocation
158 * entry arrays, looking up the right address and rewriting the value into
159 * the object. Simple! ... The relocation entries are stored in user memory
160 * and so to access them we have to copy them into a local buffer. That copy
161 * has to avoid taking any pagefaults as they may lead back to a GEM object
162 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
163 * the relocation into multiple passes. First we try to do everything within an
164 * atomic context (avoid the pagefaults) which requires that we never wait. If
165 * we detect that we may wait, or if we need to fault, then we have to fallback
166 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
167 * bells yet?) Dropping the mutex means that we lose all the state we have
168 * built up so far for the execbuf and we must reset any global data. However,
169 * we do leave the objects pinned in their final locations - which is a
170 * potential issue for concurrent execbufs. Once we have left the mutex, we can
171 * allocate and copy all the relocation entries into a large array at our
172 * leisure, reacquire the mutex, reclaim all the objects and other state and
173 * then proceed to update any incorrect addresses with the objects.
174 *
175 * As we process the relocation entries, we maintain a record of whether the
176 * object is being written to. Using NORELOC, we expect userspace to provide
177 * this information instead. We also check whether we can skip the relocation
178 * by comparing the expected value inside the relocation entry with the target's
179 * final address. If they differ, we have to map the current object and rewrite
180 * the 4 or 8 byte pointer within.
181 *
182 * Serialising an execbuf is quite simple according to the rules of the GEM
183 * ABI. Execution within each context is ordered by the order of submission.
184 * Writes to any GEM object are in order of submission and are exclusive. Reads
185 * from a GEM object are unordered with respect to other reads, but ordered by
186 * writes. A write submitted after a read cannot occur before the read, and
187 * similarly any read submitted after a write cannot occur before the write.
188 * Writes are ordered between engines such that only one write occurs at any
189 * time (completing any reads beforehand) - using semaphores where available
190 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
191 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
192 * reads before starting, and any read (either using set-domain or pread) must
193 * flush all GPU writes before starting. (Note we only employ a barrier before,
194 * we currently rely on userspace not concurrently starting a new execution
195 * whilst reading or writing to an object. This may be an advantage or not
196 * depending on how much you trust userspace not to shoot themselves in the
197 * foot.) Serialisation may just result in the request being inserted into
198 * a DAG awaiting its turn, but most simple is to wait on the CPU until
199 * all dependencies are resolved.
200 *
201 * After all of that, is just a matter of closing the request and handing it to
202 * the hardware (well, leaving it in a queue to be executed). However, we also
203 * offer the ability for batchbuffers to be run with elevated privileges so
204 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
205 * Before any batch is given extra privileges we first must check that it
206 * contains no nefarious instructions, we check that each instruction is from
207 * our whitelist and all registers are also from an allowed list. We first
208 * copy the user's batchbuffer to a shadow (so that the user doesn't have
209 * access to it, either by the CPU or GPU as we scan it) and then parse each
210 * instruction. If everything is ok, we set a flag telling the hardware to run
211 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
212 */
213
650bc635 214struct i915_execbuffer {
2889caa9
CW
215 struct drm_i915_private *i915; /** i915 backpointer */
216 struct drm_file *file; /** per-file lookup tables and limits */
217 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
218 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
c7c6e46f
CW
219 struct i915_vma **vma;
220 unsigned int *flags;
2889caa9
CW
221
222 struct intel_engine_cs *engine; /** engine to queue the request to */
8f2a1057
CW
223 struct intel_context *context; /* logical state for the request */
224 struct i915_gem_context *gem_context; /** caller's context */
2889caa9
CW
225 struct i915_address_space *vm; /** GTT and vma for the request */
226
e61e0f51 227 struct i915_request *request; /** our request to build */
2889caa9
CW
228 struct i915_vma *batch; /** identity of the batch obj/vma */
229
230 /** actual size of execobj[] as we may extend it for the cmdparser */
231 unsigned int buffer_count;
232
233 /** list of vma not yet bound during reservation phase */
234 struct list_head unbound;
235
236 /** list of vma that have execobj.relocation_count */
237 struct list_head relocs;
238
239 /**
240 * Track the most recently used object for relocations, as we
241 * frequently have to perform multiple relocations within the same
242 * obj/page
243 */
650bc635 244 struct reloc_cache {
2889caa9
CW
245 struct drm_mm_node node; /** temporary GTT binding */
246 unsigned long vaddr; /** Current kmap address */
247 unsigned long page; /** Currently mapped page index */
7dd4f672 248 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 249 bool use_64bit_reloc : 1;
2889caa9
CW
250 bool has_llc : 1;
251 bool has_fence : 1;
252 bool needs_unfenced : 1;
7dd4f672 253
e61e0f51 254 struct i915_request *rq;
7dd4f672
CW
255 u32 *rq_cmd;
256 unsigned int rq_size;
650bc635 257 } reloc_cache;
2889caa9
CW
258
259 u64 invalid_flags; /** Set of execobj.flags that are invalid */
260 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
261
262 u32 batch_start_offset; /** Location within object of batch */
263 u32 batch_len; /** Length of batch within object */
264 u32 batch_flags; /** Flags composed for emit_bb_start() */
265
266 /**
267 * Indicate either the size of the hastable used to resolve
268 * relocation handles, or if negative that we are using a direct
269 * index into the execobj[].
270 */
271 int lut_size;
272 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
273};
274
c7c6e46f 275#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
4ff4b44c 276
2889caa9
CW
277/*
278 * Used to convert any address to canonical form.
279 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
280 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
281 * addresses to be in a canonical form:
282 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
283 * canonical form [63:48] == [47]."
284 */
285#define GEN8_HIGH_ADDRESS_BIT 47
286static inline u64 gen8_canonical_addr(u64 address)
287{
288 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
289}
290
291static inline u64 gen8_noncanonical_addr(u64 address)
292{
293 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
294}
295
3dbf26ed
CW
296static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
297{
439e2ee4 298 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
3dbf26ed
CW
299}
300
650bc635 301static int eb_create(struct i915_execbuffer *eb)
67731b87 302{
2889caa9
CW
303 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
304 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 305
2889caa9
CW
306 /*
307 * Without a 1:1 association between relocation handles and
308 * the execobject[] index, we instead create a hashtable.
309 * We size it dynamically based on available memory, starting
310 * first with 1:1 assocative hash and scaling back until
311 * the allocation succeeds.
312 *
313 * Later on we use a positive lut_size to indicate we are
314 * using this hashtable, and a negative value to indicate a
315 * direct lookup.
316 */
4ff4b44c 317 do {
0d95c883 318 gfp_t flags;
4d470f73
CW
319
320 /* While we can still reduce the allocation size, don't
321 * raise a warning and allow the allocation to fail.
322 * On the last pass though, we want to try as hard
323 * as possible to perform the allocation and warn
324 * if it fails.
325 */
0ee931c4 326 flags = GFP_KERNEL;
4d470f73
CW
327 if (size > 1)
328 flags |= __GFP_NORETRY | __GFP_NOWARN;
329
4ff4b44c 330 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 331 flags);
4ff4b44c
CW
332 if (eb->buckets)
333 break;
334 } while (--size);
335
4d470f73
CW
336 if (unlikely(!size))
337 return -ENOMEM;
eef90ccb 338
2889caa9 339 eb->lut_size = size;
650bc635 340 } else {
2889caa9 341 eb->lut_size = -eb->buffer_count;
650bc635 342 }
eef90ccb 343
650bc635 344 return 0;
67731b87
CW
345}
346
2889caa9
CW
347static bool
348eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
349 const struct i915_vma *vma,
350 unsigned int flags)
2889caa9 351{
2889caa9
CW
352 if (vma->node.size < entry->pad_to_size)
353 return true;
354
355 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
356 return true;
357
c7c6e46f 358 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
359 vma->node.start != entry->offset)
360 return true;
361
c7c6e46f 362 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
363 vma->node.start < BATCH_OFFSET_BIAS)
364 return true;
365
c7c6e46f 366 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
367 (vma->node.start + vma->node.size - 1) >> 32)
368 return true;
369
1d033beb
CW
370 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
371 !i915_vma_is_map_and_fenceable(vma))
372 return true;
373
2889caa9
CW
374 return false;
375}
376
c7c6e46f 377static inline bool
2889caa9 378eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 379 const struct drm_i915_gem_exec_object2 *entry,
2889caa9
CW
380 struct i915_vma *vma)
381{
c7c6e46f
CW
382 unsigned int exec_flags = *vma->exec_flags;
383 u64 pin_flags;
2889caa9 384
616d9cee 385 if (vma->node.size)
c7c6e46f 386 pin_flags = vma->node.start;
616d9cee 387 else
c7c6e46f 388 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 389
c7c6e46f
CW
390 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
391 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
392 pin_flags |= PIN_GLOBAL;
616d9cee 393
c7c6e46f
CW
394 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
395 return false;
2889caa9 396
c7c6e46f 397 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 398 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 399 i915_vma_unpin(vma);
c7c6e46f 400 return false;
2889caa9
CW
401 }
402
3bd40735 403 if (vma->fence)
c7c6e46f 404 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
405 }
406
c7c6e46f
CW
407 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
408 return !eb_vma_misplaced(entry, vma, exec_flags);
2889caa9
CW
409}
410
c7c6e46f 411static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
d55495b4 412{
c7c6e46f 413 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
2889caa9 414
c7c6e46f 415 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
3bd40735 416 __i915_vma_unpin_fence(vma);
d55495b4 417
2889caa9 418 __i915_vma_unpin(vma);
d55495b4
CW
419}
420
2889caa9 421static inline void
c7c6e46f 422eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
d55495b4 423{
c7c6e46f 424 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
2889caa9 425 return;
d55495b4 426
c7c6e46f
CW
427 __eb_unreserve_vma(vma, *flags);
428 *flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
429}
430
2889caa9
CW
431static int
432eb_validate_vma(struct i915_execbuffer *eb,
433 struct drm_i915_gem_exec_object2 *entry,
434 struct i915_vma *vma)
67731b87 435{
2889caa9
CW
436 if (unlikely(entry->flags & eb->invalid_flags))
437 return -EINVAL;
d55495b4 438
2889caa9
CW
439 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
440 return -EINVAL;
441
442 /*
443 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
444 * any non-page-aligned or non-canonical addresses.
445 */
446 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 447 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
448 return -EINVAL;
449
450 /* pad_to_size was once a reserved field, so sanitize it */
451 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
452 if (unlikely(offset_in_page(entry->pad_to_size)))
453 return -EINVAL;
454 } else {
455 entry->pad_to_size = 0;
d55495b4
CW
456 }
457
c7c6e46f 458 if (unlikely(vma->exec_flags)) {
2889caa9
CW
459 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
460 entry->handle, (int)(entry - eb->exec));
461 return -EINVAL;
462 }
463
464 /*
465 * From drm_mm perspective address space is continuous,
466 * so from this point we're always using non-canonical
467 * form internally.
468 */
469 entry->offset = gen8_noncanonical_addr(entry->offset);
470
c7c6e46f
CW
471 if (!eb->reloc_cache.has_fence) {
472 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
473 } else {
474 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
475 eb->reloc_cache.needs_unfenced) &&
476 i915_gem_object_is_tiled(vma->obj))
477 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
478 }
479
480 if (!(entry->flags & EXEC_OBJECT_PINNED))
481 entry->flags |= eb->context_flags;
482
2889caa9 483 return 0;
67731b87
CW
484}
485
2889caa9 486static int
746c8f14
CW
487eb_add_vma(struct i915_execbuffer *eb,
488 unsigned int i, unsigned batch_idx,
489 struct i915_vma *vma)
59bfa124 490{
c7c6e46f 491 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
2889caa9
CW
492 int err;
493
494 GEM_BUG_ON(i915_vma_is_closed(vma));
495
496 if (!(eb->args->flags & __EXEC_VALIDATED)) {
497 err = eb_validate_vma(eb, entry, vma);
498 if (unlikely(err))
499 return err;
4ff4b44c 500 }
4ff4b44c 501
4d470f73 502 if (eb->lut_size > 0) {
2889caa9 503 vma->exec_handle = entry->handle;
4ff4b44c 504 hlist_add_head(&vma->exec_node,
2889caa9
CW
505 &eb->buckets[hash_32(entry->handle,
506 eb->lut_size)]);
4ff4b44c 507 }
59bfa124 508
2889caa9
CW
509 if (entry->relocation_count)
510 list_add_tail(&vma->reloc_link, &eb->relocs);
511
2889caa9
CW
512 /*
513 * Stash a pointer from the vma to execobj, so we can query its flags,
514 * size, alignment etc as provided by the user. Also we stash a pointer
515 * to the vma inside the execobj so that we can use a direct lookup
516 * to find the right target VMA when doing relocations.
517 */
c7c6e46f 518 eb->vma[i] = vma;
d1b48c1e 519 eb->flags[i] = entry->flags;
c7c6e46f 520 vma->exec_flags = &eb->flags[i];
2889caa9 521
746c8f14
CW
522 /*
523 * SNA is doing fancy tricks with compressing batch buffers, which leads
524 * to negative relocation deltas. Usually that works out ok since the
525 * relocate address is still positive, except when the batch is placed
526 * very low in the GTT. Ensure this doesn't happen.
527 *
528 * Note that actual hangs have only been observed on gen7, but for
529 * paranoia do it everywhere.
530 */
531 if (i == batch_idx) {
827db9d8
CW
532 if (entry->relocation_count &&
533 !(eb->flags[i] & EXEC_OBJECT_PINNED))
746c8f14
CW
534 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
535 if (eb->reloc_cache.has_fence)
536 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
537
538 eb->batch = vma;
539 }
540
2889caa9 541 err = 0;
c7c6e46f 542 if (eb_pin_vma(eb, entry, vma)) {
2889caa9
CW
543 if (entry->offset != vma->node.start) {
544 entry->offset = vma->node.start | UPDATE;
545 eb->args->flags |= __EXEC_HAS_RELOC;
546 }
c7c6e46f
CW
547 } else {
548 eb_unreserve_vma(vma, vma->exec_flags);
549
550 list_add_tail(&vma->exec_link, &eb->unbound);
551 if (drm_mm_node_allocated(&vma->node))
552 err = i915_vma_unbind(vma);
ed2f3532
CW
553 if (unlikely(err))
554 vma->exec_flags = NULL;
2889caa9
CW
555 }
556 return err;
557}
558
559static inline int use_cpu_reloc(const struct reloc_cache *cache,
560 const struct drm_i915_gem_object *obj)
561{
562 if (!i915_gem_object_has_struct_page(obj))
563 return false;
564
7dd4f672
CW
565 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
566 return true;
567
568 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
569 return false;
2889caa9
CW
570
571 return (cache->has_llc ||
572 obj->cache_dirty ||
573 obj->cache_level != I915_CACHE_NONE);
574}
575
576static int eb_reserve_vma(const struct i915_execbuffer *eb,
577 struct i915_vma *vma)
578{
c7c6e46f
CW
579 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
580 unsigned int exec_flags = *vma->exec_flags;
581 u64 pin_flags;
2889caa9
CW
582 int err;
583
c7c6e46f
CW
584 pin_flags = PIN_USER | PIN_NONBLOCK;
585 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
586 pin_flags |= PIN_GLOBAL;
2889caa9
CW
587
588 /*
589 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
590 * limit address to the first 4GBs for unflagged objects.
591 */
c7c6e46f
CW
592 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
593 pin_flags |= PIN_ZONE_4G;
2889caa9 594
c7c6e46f
CW
595 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
596 pin_flags |= PIN_MAPPABLE;
2889caa9 597
c7c6e46f
CW
598 if (exec_flags & EXEC_OBJECT_PINNED) {
599 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
600 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
601 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
602 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
2889caa9
CW
603 }
604
c7c6e46f
CW
605 err = i915_vma_pin(vma,
606 entry->pad_to_size, entry->alignment,
607 pin_flags);
2889caa9
CW
608 if (err)
609 return err;
610
611 if (entry->offset != vma->node.start) {
612 entry->offset = vma->node.start | UPDATE;
613 eb->args->flags |= __EXEC_HAS_RELOC;
614 }
615
c7c6e46f 616 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 617 err = i915_vma_pin_fence(vma);
2889caa9
CW
618 if (unlikely(err)) {
619 i915_vma_unpin(vma);
620 return err;
621 }
622
3bd40735 623 if (vma->fence)
c7c6e46f 624 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
625 }
626
c7c6e46f
CW
627 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
628 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
1da7b54c 629
2889caa9
CW
630 return 0;
631}
632
633static int eb_reserve(struct i915_execbuffer *eb)
634{
635 const unsigned int count = eb->buffer_count;
636 struct list_head last;
637 struct i915_vma *vma;
638 unsigned int i, pass;
639 int err;
640
641 /*
642 * Attempt to pin all of the buffers into the GTT.
643 * This is done in 3 phases:
644 *
645 * 1a. Unbind all objects that do not match the GTT constraints for
646 * the execbuffer (fenceable, mappable, alignment etc).
647 * 1b. Increment pin count for already bound objects.
648 * 2. Bind new objects.
649 * 3. Decrement pin count.
650 *
651 * This avoid unnecessary unbinding of later objects in order to make
652 * room for the earlier objects *unless* we need to defragment.
653 */
654
655 pass = 0;
656 err = 0;
657 do {
658 list_for_each_entry(vma, &eb->unbound, exec_link) {
659 err = eb_reserve_vma(eb, vma);
660 if (err)
661 break;
662 }
663 if (err != -ENOSPC)
664 return err;
665
666 /* Resort *all* the objects into priority order */
667 INIT_LIST_HEAD(&eb->unbound);
668 INIT_LIST_HEAD(&last);
669 for (i = 0; i < count; i++) {
c7c6e46f
CW
670 unsigned int flags = eb->flags[i];
671 struct i915_vma *vma = eb->vma[i];
2889caa9 672
c7c6e46f
CW
673 if (flags & EXEC_OBJECT_PINNED &&
674 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
675 continue;
676
c7c6e46f 677 eb_unreserve_vma(vma, &eb->flags[i]);
2889caa9 678
c7c6e46f 679 if (flags & EXEC_OBJECT_PINNED)
35e882a4 680 /* Pinned must have their slot */
2889caa9 681 list_add(&vma->exec_link, &eb->unbound);
c7c6e46f 682 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 683 /* Map require the lowest 256MiB (aperture) */
2889caa9 684 list_add_tail(&vma->exec_link, &eb->unbound);
35e882a4
CW
685 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
686 /* Prioritise 4GiB region for restricted bo */
687 list_add(&vma->exec_link, &last);
2889caa9
CW
688 else
689 list_add_tail(&vma->exec_link, &last);
690 }
691 list_splice_tail(&last, &eb->unbound);
692
693 switch (pass++) {
694 case 0:
695 break;
696
697 case 1:
698 /* Too fragmented, unbind everything and retry */
699 err = i915_gem_evict_vm(eb->vm);
700 if (err)
701 return err;
702 break;
703
704 default:
705 return -ENOSPC;
706 }
707 } while (1);
4ff4b44c 708}
59bfa124 709
2889caa9
CW
710static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
711{
1a71cf2f
CW
712 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
713 return 0;
714 else
715 return eb->buffer_count - 1;
2889caa9
CW
716}
717
718static int eb_select_context(struct i915_execbuffer *eb)
719{
720 struct i915_gem_context *ctx;
721
722 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
723 if (unlikely(!ctx))
724 return -ENOENT;
2889caa9 725
8f2a1057 726 eb->gem_context = ctx;
e568ac38
CW
727 if (ctx->vm) {
728 eb->vm = ctx->vm;
4f2c7337
CW
729 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
730 } else {
731 eb->vm = &eb->i915->ggtt.vm;
732 }
2889caa9
CW
733
734 eb->context_flags = 0;
d3f3e5e4 735 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
2889caa9
CW
736 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
737
738 return 0;
739}
740
d6f328bf
CW
741static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
742{
743 struct i915_request *rq;
744
745 /*
746 * Completely unscientific finger-in-the-air estimates for suitable
747 * maximum user request size (to avoid blocking) and then backoff.
748 */
749 if (intel_ring_update_space(ring) >= PAGE_SIZE)
750 return NULL;
751
752 /*
753 * Find a request that after waiting upon, there will be at least half
754 * the ring available. The hysteresis allows us to compete for the
755 * shared ring and should mean that we sleep less often prior to
756 * claiming our resources, but not so long that the ring completely
757 * drains before we can submit our next request.
758 */
759 list_for_each_entry(rq, &ring->request_list, ring_link) {
760 if (__intel_ring_space(rq->postfix,
761 ring->emit, ring->size) > ring->size / 2)
762 break;
763 }
764 if (&rq->ring_link == &ring->request_list)
765 return NULL; /* weird, we will check again later for real */
766
767 return i915_request_get(rq);
768}
769
770static int eb_wait_for_ring(const struct i915_execbuffer *eb)
771{
d6f328bf
CW
772 struct i915_request *rq;
773 int ret = 0;
774
775 /*
776 * Apply a light amount of backpressure to prevent excessive hogs
777 * from blocking waiting for space whilst holding struct_mutex and
778 * keeping all of their resources pinned.
779 */
780
8f2a1057 781 rq = __eb_wait_for_ring(eb->context->ring);
d6f328bf
CW
782 if (rq) {
783 mutex_unlock(&eb->i915->drm.struct_mutex);
784
785 if (i915_request_wait(rq,
786 I915_WAIT_INTERRUPTIBLE,
787 MAX_SCHEDULE_TIMEOUT) < 0)
788 ret = -EINTR;
789
790 i915_request_put(rq);
791
792 mutex_lock(&eb->i915->drm.struct_mutex);
793 }
794
795 return ret;
796}
797
2889caa9 798static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 799{
8f2a1057 800 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
ac70ebe8 801 struct drm_i915_gem_object *obj;
746c8f14 802 unsigned int i, batch;
2889caa9 803 int err;
3b96eff4 804
8f2a1057 805 if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
8bcbfb12
CW
806 return -EIO;
807
2889caa9
CW
808 INIT_LIST_HEAD(&eb->relocs);
809 INIT_LIST_HEAD(&eb->unbound);
d55495b4 810
746c8f14
CW
811 batch = eb_batch_index(eb);
812
155ab883
CW
813 mutex_lock(&eb->gem_context->mutex);
814 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
815 err = -ENOENT;
816 goto err_ctx;
817 }
818
170fa29b
CW
819 for (i = 0; i < eb->buffer_count; i++) {
820 u32 handle = eb->exec[i].handle;
d1b48c1e 821 struct i915_lut_handle *lut;
170fa29b 822 struct i915_vma *vma;
4ff4b44c 823
d1b48c1e
CW
824 vma = radix_tree_lookup(handles_vma, handle);
825 if (likely(vma))
170fa29b 826 goto add_vma;
4ff4b44c 827
170fa29b 828 obj = i915_gem_object_lookup(eb->file, handle);
4ff4b44c 829 if (unlikely(!obj)) {
2889caa9 830 err = -ENOENT;
170fa29b 831 goto err_vma;
3b96eff4
CW
832 }
833
650bc635 834 vma = i915_vma_instance(obj, eb->vm, NULL);
772b5408 835 if (IS_ERR(vma)) {
2889caa9 836 err = PTR_ERR(vma);
170fa29b 837 goto err_obj;
27173f1f
BW
838 }
839
13f1bfd3 840 lut = i915_lut_handle_alloc();
d1b48c1e
CW
841 if (unlikely(!lut)) {
842 err = -ENOMEM;
843 goto err_obj;
844 }
845
846 err = radix_tree_insert(handles_vma, handle, vma);
847 if (unlikely(err)) {
13f1bfd3 848 i915_lut_handle_free(lut);
d1b48c1e 849 goto err_obj;
eef90ccb 850 }
4ff4b44c 851
155ab883
CW
852 /* transfer ref to lut */
853 if (!atomic_fetch_inc(&vma->open_count))
3365e226 854 i915_vma_reopen(vma);
d1b48c1e 855 lut->handle = handle;
155ab883
CW
856 lut->ctx = eb->gem_context;
857
858 i915_gem_object_lock(obj);
859 list_add(&lut->obj_link, &obj->lut_list);
860 i915_gem_object_unlock(obj);
d1b48c1e 861
170fa29b 862add_vma:
746c8f14 863 err = eb_add_vma(eb, i, batch, vma);
2889caa9 864 if (unlikely(err))
ac70ebe8 865 goto err_vma;
dade2a61 866
c7c6e46f
CW
867 GEM_BUG_ON(vma != eb->vma[i]);
868 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
746c8f14
CW
869 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
870 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
4ff4b44c
CW
871 }
872
155ab883
CW
873 mutex_unlock(&eb->gem_context->mutex);
874
2889caa9
CW
875 eb->args->flags |= __EXEC_VALIDATED;
876 return eb_reserve(eb);
877
170fa29b 878err_obj:
ac70ebe8 879 i915_gem_object_put(obj);
170fa29b
CW
880err_vma:
881 eb->vma[i] = NULL;
155ab883
CW
882err_ctx:
883 mutex_unlock(&eb->gem_context->mutex);
2889caa9 884 return err;
3b96eff4
CW
885}
886
4ff4b44c 887static struct i915_vma *
2889caa9 888eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 889{
2889caa9
CW
890 if (eb->lut_size < 0) {
891 if (handle >= -eb->lut_size)
eef90ccb 892 return NULL;
c7c6e46f 893 return eb->vma[handle];
eef90ccb
CW
894 } else {
895 struct hlist_head *head;
aa45950b 896 struct i915_vma *vma;
67731b87 897
2889caa9 898 head = &eb->buckets[hash_32(handle, eb->lut_size)];
aa45950b 899 hlist_for_each_entry(vma, head, exec_node) {
27173f1f
BW
900 if (vma->exec_handle == handle)
901 return vma;
eef90ccb
CW
902 }
903 return NULL;
904 }
67731b87
CW
905}
906
2889caa9 907static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 908{
2889caa9
CW
909 const unsigned int count = eb->buffer_count;
910 unsigned int i;
911
912 for (i = 0; i < count; i++) {
c7c6e46f
CW
913 struct i915_vma *vma = eb->vma[i];
914 unsigned int flags = eb->flags[i];
650bc635 915
2889caa9 916 if (!vma)
170fa29b 917 break;
bcffc3fa 918
c7c6e46f
CW
919 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
920 vma->exec_flags = NULL;
921 eb->vma[i] = NULL;
9e53d9be 922
c7c6e46f
CW
923 if (flags & __EXEC_OBJECT_HAS_PIN)
924 __eb_unreserve_vma(vma, flags);
dade2a61 925
c7c6e46f 926 if (flags & __EXEC_OBJECT_HAS_REF)
dade2a61 927 i915_vma_put(vma);
2889caa9 928 }
dabdfe02
CW
929}
930
2889caa9 931static void eb_reset_vmas(const struct i915_execbuffer *eb)
934acce3 932{
2889caa9 933 eb_release_vmas(eb);
4d470f73 934 if (eb->lut_size > 0)
2889caa9
CW
935 memset(eb->buckets, 0,
936 sizeof(struct hlist_head) << eb->lut_size);
934acce3
MW
937}
938
2889caa9 939static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 940{
7dd4f672
CW
941 GEM_BUG_ON(eb->reloc_cache.rq);
942
4d470f73 943 if (eb->lut_size > 0)
2889caa9 944 kfree(eb->buckets);
934acce3
MW
945}
946
2889caa9 947static inline u64
d50415cc 948relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 949 const struct i915_vma *target)
934acce3 950{
2889caa9 951 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
952}
953
d50415cc
CW
954static void reloc_cache_init(struct reloc_cache *cache,
955 struct drm_i915_private *i915)
5032d871 956{
31a39207 957 cache->page = -1;
d50415cc 958 cache->vaddr = 0;
dfc5148f 959 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 960 cache->gen = INTEL_GEN(i915);
2889caa9 961 cache->has_llc = HAS_LLC(i915);
dfc5148f 962 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
963 cache->has_fence = cache->gen < 4;
964 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
e8cb909a 965 cache->node.allocated = false;
7dd4f672
CW
966 cache->rq = NULL;
967 cache->rq_size = 0;
d50415cc 968}
5032d871 969
d50415cc
CW
970static inline void *unmask_page(unsigned long p)
971{
972 return (void *)(uintptr_t)(p & PAGE_MASK);
973}
974
975static inline unsigned int unmask_flags(unsigned long p)
976{
977 return p & ~PAGE_MASK;
31a39207
CW
978}
979
d50415cc
CW
980#define KMAP 0x4 /* after CLFLUSH_FLAGS */
981
650bc635
CW
982static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
983{
984 struct drm_i915_private *i915 =
985 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
986 return &i915->ggtt;
987}
988
7dd4f672
CW
989static void reloc_gpu_flush(struct reloc_cache *cache)
990{
991 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
992 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
a679f58d
CW
993
994 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
7dd4f672 995 i915_gem_object_unpin_map(cache->rq->batch->obj);
a679f58d 996
7dd4f672
CW
997 i915_gem_chipset_flush(cache->rq->i915);
998
697b9a87 999 i915_request_add(cache->rq);
7dd4f672
CW
1000 cache->rq = NULL;
1001}
1002
650bc635 1003static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 1004{
d50415cc 1005 void *vaddr;
5032d871 1006
7dd4f672
CW
1007 if (cache->rq)
1008 reloc_gpu_flush(cache);
1009
31a39207
CW
1010 if (!cache->vaddr)
1011 return;
3c94ceee 1012
d50415cc
CW
1013 vaddr = unmask_page(cache->vaddr);
1014 if (cache->vaddr & KMAP) {
1015 if (cache->vaddr & CLFLUSH_AFTER)
1016 mb();
3c94ceee 1017
d50415cc 1018 kunmap_atomic(vaddr);
f0e4a063 1019 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
d50415cc 1020 } else {
e8cb909a 1021 wmb();
d50415cc 1022 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 1023 if (cache->node.allocated) {
650bc635 1024 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1025
82ad6443
CW
1026 ggtt->vm.clear_range(&ggtt->vm,
1027 cache->node.start,
1028 cache->node.size);
e8cb909a
CW
1029 drm_mm_remove_node(&cache->node);
1030 } else {
1031 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 1032 }
31a39207 1033 }
650bc635
CW
1034
1035 cache->vaddr = 0;
1036 cache->page = -1;
31a39207
CW
1037}
1038
1039static void *reloc_kmap(struct drm_i915_gem_object *obj,
1040 struct reloc_cache *cache,
2889caa9 1041 unsigned long page)
31a39207 1042{
d50415cc
CW
1043 void *vaddr;
1044
1045 if (cache->vaddr) {
1046 kunmap_atomic(unmask_page(cache->vaddr));
1047 } else {
1048 unsigned int flushes;
2889caa9 1049 int err;
31a39207 1050
f0e4a063 1051 err = i915_gem_object_prepare_write(obj, &flushes);
2889caa9
CW
1052 if (err)
1053 return ERR_PTR(err);
d50415cc
CW
1054
1055 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1056 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 1057
d50415cc
CW
1058 cache->vaddr = flushes | KMAP;
1059 cache->node.mm = (void *)obj;
1060 if (flushes)
1061 mb();
3c94ceee
BW
1062 }
1063
d50415cc
CW
1064 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1065 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 1066 cache->page = page;
5032d871 1067
d50415cc 1068 return vaddr;
5032d871
RB
1069}
1070
d50415cc
CW
1071static void *reloc_iomap(struct drm_i915_gem_object *obj,
1072 struct reloc_cache *cache,
2889caa9 1073 unsigned long page)
5032d871 1074{
650bc635 1075 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1076 unsigned long offset;
d50415cc 1077 void *vaddr;
5032d871 1078
d50415cc 1079 if (cache->vaddr) {
615e5000 1080 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
1081 } else {
1082 struct i915_vma *vma;
2889caa9 1083 int err;
5032d871 1084
2889caa9 1085 if (use_cpu_reloc(cache, obj))
d50415cc 1086 return NULL;
3c94ceee 1087
6951e589 1088 i915_gem_object_lock(obj);
2889caa9 1089 err = i915_gem_object_set_to_gtt_domain(obj, true);
6951e589 1090 i915_gem_object_unlock(obj);
2889caa9
CW
1091 if (err)
1092 return ERR_PTR(err);
3c94ceee 1093
d50415cc 1094 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
3c755c5b
CW
1095 PIN_MAPPABLE |
1096 PIN_NONBLOCK |
1097 PIN_NONFAULT);
e8cb909a
CW
1098 if (IS_ERR(vma)) {
1099 memset(&cache->node, 0, sizeof(cache->node));
2889caa9 1100 err = drm_mm_insert_node_in_range
82ad6443 1101 (&ggtt->vm.mm, &cache->node,
f51455d4 1102 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1103 0, ggtt->mappable_end,
4e64e553 1104 DRM_MM_INSERT_LOW);
2889caa9 1105 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1106 return NULL;
e8cb909a 1107 } else {
2889caa9
CW
1108 err = i915_vma_put_fence(vma);
1109 if (err) {
e8cb909a 1110 i915_vma_unpin(vma);
2889caa9 1111 return ERR_PTR(err);
e8cb909a 1112 }
5032d871 1113
e8cb909a
CW
1114 cache->node.start = vma->node.start;
1115 cache->node.mm = (void *)vma;
3c94ceee 1116 }
e8cb909a 1117 }
3c94ceee 1118
e8cb909a
CW
1119 offset = cache->node.start;
1120 if (cache->node.allocated) {
fc099090 1121 wmb();
82ad6443
CW
1122 ggtt->vm.insert_page(&ggtt->vm,
1123 i915_gem_object_get_dma_address(obj, page),
1124 offset, I915_CACHE_NONE, 0);
e8cb909a
CW
1125 } else {
1126 offset += page << PAGE_SHIFT;
3c94ceee
BW
1127 }
1128
73ebd503 1129 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
650bc635 1130 offset);
d50415cc
CW
1131 cache->page = page;
1132 cache->vaddr = (unsigned long)vaddr;
5032d871 1133
d50415cc 1134 return vaddr;
5032d871
RB
1135}
1136
d50415cc
CW
1137static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1138 struct reloc_cache *cache,
2889caa9 1139 unsigned long page)
edf4427b 1140{
d50415cc 1141 void *vaddr;
5032d871 1142
d50415cc
CW
1143 if (cache->page == page) {
1144 vaddr = unmask_page(cache->vaddr);
1145 } else {
1146 vaddr = NULL;
1147 if ((cache->vaddr & KMAP) == 0)
1148 vaddr = reloc_iomap(obj, cache, page);
1149 if (!vaddr)
1150 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1151 }
1152
d50415cc 1153 return vaddr;
edf4427b
CW
1154}
1155
d50415cc 1156static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1157{
d50415cc
CW
1158 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1159 if (flushes & CLFLUSH_BEFORE) {
1160 clflushopt(addr);
1161 mb();
1162 }
edf4427b 1163
d50415cc 1164 *addr = value;
edf4427b 1165
2889caa9
CW
1166 /*
1167 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1168 * (including clflush). On the write path, we only require
1169 * that it hits memory in an orderly fashion and place
1170 * mb barriers at the start and end of the relocation phase
1171 * to ensure ordering of clflush wrt to the system.
1172 */
1173 if (flushes & CLFLUSH_AFTER)
1174 clflushopt(addr);
1175 } else
1176 *addr = value;
edf4427b 1177}
edf4427b 1178
6951e589
CW
1179static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1180{
1181 struct drm_i915_gem_object *obj = vma->obj;
1182 int err;
1183
1184 i915_vma_lock(vma);
1185
1186 if (obj->cache_dirty & ~obj->cache_coherent)
1187 i915_gem_clflush_object(obj, 0);
1188 obj->write_domain = 0;
1189
1190 err = i915_request_await_object(rq, vma->obj, true);
1191 if (err == 0)
1192 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1193
1194 i915_vma_unlock(vma);
1195
1196 return err;
1197}
1198
7dd4f672
CW
1199static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1200 struct i915_vma *vma,
1201 unsigned int len)
1202{
1203 struct reloc_cache *cache = &eb->reloc_cache;
1204 struct drm_i915_gem_object *obj;
e61e0f51 1205 struct i915_request *rq;
7dd4f672
CW
1206 struct i915_vma *batch;
1207 u32 *cmd;
1208 int err;
1209
7dd4f672
CW
1210 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1211 if (IS_ERR(obj))
1212 return PTR_ERR(obj);
1213
1214 cmd = i915_gem_object_pin_map(obj,
a575c676
CW
1215 cache->has_llc ?
1216 I915_MAP_FORCE_WB :
1217 I915_MAP_FORCE_WC);
7dd4f672
CW
1218 i915_gem_object_unpin_pages(obj);
1219 if (IS_ERR(cmd))
1220 return PTR_ERR(cmd);
1221
7dd4f672
CW
1222 batch = i915_vma_instance(obj, vma->vm, NULL);
1223 if (IS_ERR(batch)) {
1224 err = PTR_ERR(batch);
1225 goto err_unmap;
1226 }
1227
1228 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1229 if (err)
1230 goto err_unmap;
1231
8f2a1057 1232 rq = i915_request_create(eb->context);
7dd4f672
CW
1233 if (IS_ERR(rq)) {
1234 err = PTR_ERR(rq);
1235 goto err_unpin;
1236 }
1237
6951e589 1238 err = reloc_move_to_gpu(rq, vma);
7dd4f672
CW
1239 if (err)
1240 goto err_request;
1241
7dd4f672
CW
1242 err = eb->engine->emit_bb_start(rq,
1243 batch->node.start, PAGE_SIZE,
1244 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1245 if (err)
6951e589 1246 goto skip_request;
7dd4f672 1247
6951e589 1248 i915_vma_lock(batch);
95ff7c7d 1249 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
a5236978 1250 err = i915_vma_move_to_active(batch, rq, 0);
6951e589 1251 i915_vma_unlock(batch);
a5236978
CW
1252 if (err)
1253 goto skip_request;
7dd4f672
CW
1254
1255 rq->batch = batch;
a5236978 1256 i915_vma_unpin(batch);
7dd4f672
CW
1257
1258 cache->rq = rq;
1259 cache->rq_cmd = cmd;
1260 cache->rq_size = 0;
1261
1262 /* Return with batch mapping (cmd) still pinned */
1263 return 0;
1264
a5236978
CW
1265skip_request:
1266 i915_request_skip(rq, err);
7dd4f672 1267err_request:
e61e0f51 1268 i915_request_add(rq);
7dd4f672
CW
1269err_unpin:
1270 i915_vma_unpin(batch);
1271err_unmap:
1272 i915_gem_object_unpin_map(obj);
1273 return err;
1274}
1275
1276static u32 *reloc_gpu(struct i915_execbuffer *eb,
1277 struct i915_vma *vma,
1278 unsigned int len)
1279{
1280 struct reloc_cache *cache = &eb->reloc_cache;
1281 u32 *cmd;
1282
1283 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1284 reloc_gpu_flush(cache);
1285
1286 if (unlikely(!cache->rq)) {
1287 int err;
1288
3dbf26ed
CW
1289 /* If we need to copy for the cmdparser, we will stall anyway */
1290 if (eb_use_cmdparser(eb))
1291 return ERR_PTR(-EWOULDBLOCK);
1292
90cad095
CW
1293 if (!intel_engine_can_store_dword(eb->engine))
1294 return ERR_PTR(-ENODEV);
1295
7dd4f672
CW
1296 err = __reloc_gpu_alloc(eb, vma, len);
1297 if (unlikely(err))
1298 return ERR_PTR(err);
1299 }
1300
1301 cmd = cache->rq_cmd + cache->rq_size;
1302 cache->rq_size += len;
1303
1304 return cmd;
1305}
1306
2889caa9
CW
1307static u64
1308relocate_entry(struct i915_vma *vma,
d50415cc 1309 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1310 struct i915_execbuffer *eb,
1311 const struct i915_vma *target)
edf4427b 1312{
d50415cc 1313 u64 offset = reloc->offset;
2889caa9
CW
1314 u64 target_offset = relocation_target(reloc, target);
1315 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1316 void *vaddr;
edf4427b 1317
7dd4f672
CW
1318 if (!eb->reloc_cache.vaddr &&
1319 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
90cad095 1320 !reservation_object_test_signaled_rcu(vma->resv, true))) {
7dd4f672
CW
1321 const unsigned int gen = eb->reloc_cache.gen;
1322 unsigned int len;
1323 u32 *batch;
1324 u64 addr;
1325
1326 if (wide)
1327 len = offset & 7 ? 8 : 5;
1328 else if (gen >= 4)
1329 len = 4;
f2f5c061 1330 else
a889580c 1331 len = 3;
7dd4f672
CW
1332
1333 batch = reloc_gpu(eb, vma, len);
1334 if (IS_ERR(batch))
1335 goto repeat;
1336
1337 addr = gen8_canonical_addr(vma->node.start + offset);
1338 if (wide) {
1339 if (offset & 7) {
1340 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1341 *batch++ = lower_32_bits(addr);
1342 *batch++ = upper_32_bits(addr);
1343 *batch++ = lower_32_bits(target_offset);
1344
1345 addr = gen8_canonical_addr(addr + 4);
1346
1347 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1348 *batch++ = lower_32_bits(addr);
1349 *batch++ = upper_32_bits(addr);
1350 *batch++ = upper_32_bits(target_offset);
1351 } else {
1352 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1353 *batch++ = lower_32_bits(addr);
1354 *batch++ = upper_32_bits(addr);
1355 *batch++ = lower_32_bits(target_offset);
1356 *batch++ = upper_32_bits(target_offset);
1357 }
1358 } else if (gen >= 6) {
1359 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1360 *batch++ = 0;
1361 *batch++ = addr;
1362 *batch++ = target_offset;
1363 } else if (gen >= 4) {
1364 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1365 *batch++ = 0;
1366 *batch++ = addr;
1367 *batch++ = target_offset;
1368 } else {
1369 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1370 *batch++ = addr;
1371 *batch++ = target_offset;
1372 }
1373
1374 goto out;
1375 }
1376
d50415cc 1377repeat:
95ff7c7d 1378 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1379 if (IS_ERR(vaddr))
1380 return PTR_ERR(vaddr);
1381
1382 clflush_write32(vaddr + offset_in_page(offset),
1383 lower_32_bits(target_offset),
2889caa9 1384 eb->reloc_cache.vaddr);
d50415cc
CW
1385
1386 if (wide) {
1387 offset += sizeof(u32);
1388 target_offset >>= 32;
1389 wide = false;
1390 goto repeat;
edf4427b 1391 }
edf4427b 1392
7dd4f672 1393out:
2889caa9 1394 return target->node.start | UPDATE;
edf4427b 1395}
edf4427b 1396
2889caa9
CW
1397static u64
1398eb_relocate_entry(struct i915_execbuffer *eb,
1399 struct i915_vma *vma,
1400 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1401{
507d977f 1402 struct i915_vma *target;
2889caa9 1403 int err;
54cf91dc 1404
67731b87 1405 /* we've already hold a reference to all valid objects */
507d977f
CW
1406 target = eb_get_vma(eb, reloc->target_handle);
1407 if (unlikely(!target))
54cf91dc 1408 return -ENOENT;
e844b990 1409
54cf91dc 1410 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1411 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 1412 DRM_DEBUG("reloc with multiple write domains: "
507d977f 1413 "target %d offset %d "
54cf91dc 1414 "read %08x write %08x",
507d977f 1415 reloc->target_handle,
54cf91dc
CW
1416 (int) reloc->offset,
1417 reloc->read_domains,
1418 reloc->write_domain);
8b78f0e5 1419 return -EINVAL;
54cf91dc 1420 }
4ca4a250
DV
1421 if (unlikely((reloc->write_domain | reloc->read_domains)
1422 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 1423 DRM_DEBUG("reloc with read/write non-GPU domains: "
507d977f 1424 "target %d offset %d "
54cf91dc 1425 "read %08x write %08x",
507d977f 1426 reloc->target_handle,
54cf91dc
CW
1427 (int) reloc->offset,
1428 reloc->read_domains,
1429 reloc->write_domain);
8b78f0e5 1430 return -EINVAL;
54cf91dc 1431 }
54cf91dc 1432
2889caa9 1433 if (reloc->write_domain) {
c7c6e46f 1434 *target->exec_flags |= EXEC_OBJECT_WRITE;
507d977f 1435
2889caa9
CW
1436 /*
1437 * Sandybridge PPGTT errata: We need a global gtt mapping
1438 * for MI and pipe_control writes because the gpu doesn't
1439 * properly redirect them through the ppgtt for non_secure
1440 * batchbuffers.
1441 */
1442 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
cf819eff 1443 IS_GEN(eb->i915, 6)) {
2889caa9
CW
1444 err = i915_vma_bind(target, target->obj->cache_level,
1445 PIN_GLOBAL);
1446 if (WARN_ONCE(err,
1447 "Unexpected failure to bind target VMA!"))
1448 return err;
1449 }
507d977f 1450 }
54cf91dc 1451
2889caa9
CW
1452 /*
1453 * If the relocation already has the right value in it, no
54cf91dc
CW
1454 * more work needs to be done.
1455 */
7dd4f672
CW
1456 if (!DBG_FORCE_RELOC &&
1457 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
67731b87 1458 return 0;
54cf91dc
CW
1459
1460 /* Check that the relocation address is valid... */
3c94ceee 1461 if (unlikely(reloc->offset >
507d977f 1462 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
ff240199 1463 DRM_DEBUG("Relocation beyond object bounds: "
507d977f
CW
1464 "target %d offset %d size %d.\n",
1465 reloc->target_handle,
1466 (int)reloc->offset,
1467 (int)vma->size);
8b78f0e5 1468 return -EINVAL;
54cf91dc 1469 }
b8f7ab17 1470 if (unlikely(reloc->offset & 3)) {
ff240199 1471 DRM_DEBUG("Relocation not 4-byte aligned: "
507d977f
CW
1472 "target %d offset %d.\n",
1473 reloc->target_handle,
1474 (int)reloc->offset);
8b78f0e5 1475 return -EINVAL;
54cf91dc
CW
1476 }
1477
071750e5
CW
1478 /*
1479 * If we write into the object, we need to force the synchronisation
1480 * barrier, either with an asynchronous clflush or if we executed the
1481 * patching using the GPU (though that should be serialised by the
1482 * timeline). To be completely sure, and since we are required to
1483 * do relocations we are already stalling, disable the user's opt
0519bcb1 1484 * out of our synchronisation.
071750e5 1485 */
c7c6e46f 1486 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1487
54cf91dc 1488 /* and update the user's relocation entry */
2889caa9 1489 return relocate_entry(vma, reloc, eb, target);
54cf91dc
CW
1490}
1491
2889caa9 1492static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1493{
1d83f442 1494#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1495 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1496 struct drm_i915_gem_relocation_entry __user *urelocs;
c7c6e46f 1497 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9 1498 unsigned int remain;
54cf91dc 1499
2889caa9 1500 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1501 remain = entry->relocation_count;
2889caa9
CW
1502 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1503 return -EINVAL;
ebc0808f 1504
2889caa9
CW
1505 /*
1506 * We must check that the entire relocation array is safe
1507 * to read. However, if the array is not writable the user loses
1508 * the updated relocation values.
1509 */
96d4f267 1510 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
2889caa9
CW
1511 return -EFAULT;
1512
1513 do {
1514 struct drm_i915_gem_relocation_entry *r = stack;
1515 unsigned int count =
1516 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1517 unsigned int copied;
1d83f442 1518
2889caa9
CW
1519 /*
1520 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1521 * whilst holding the struct mutex lest the user pass in the
1522 * relocations contained within a mmaped bo. For in such a case
1523 * we, the page fault handler would call i915_gem_fault() and
1524 * we would try to acquire the struct mutex again. Obviously
1525 * this is bad and so lockdep complains vehemently.
1526 */
1527 pagefault_disable();
2889caa9 1528 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
ebc0808f 1529 pagefault_enable();
2889caa9
CW
1530 if (unlikely(copied)) {
1531 remain = -EFAULT;
31a39207
CW
1532 goto out;
1533 }
54cf91dc 1534
2889caa9 1535 remain -= count;
1d83f442 1536 do {
2889caa9 1537 u64 offset = eb_relocate_entry(eb, vma, r);
54cf91dc 1538
2889caa9
CW
1539 if (likely(offset == 0)) {
1540 } else if ((s64)offset < 0) {
1541 remain = (int)offset;
31a39207 1542 goto out;
2889caa9
CW
1543 } else {
1544 /*
1545 * Note that reporting an error now
1546 * leaves everything in an inconsistent
1547 * state as we have *already* changed
1548 * the relocation value inside the
1549 * object. As we have not changed the
1550 * reloc.presumed_offset or will not
1551 * change the execobject.offset, on the
1552 * call we may not rewrite the value
1553 * inside the object, leaving it
1554 * dangling and causing a GPU hang. Unless
1555 * userspace dynamically rebuilds the
1556 * relocations on each execbuf rather than
1557 * presume a static tree.
1558 *
1559 * We did previously check if the relocations
1560 * were writable (access_ok), an error now
1561 * would be a strange race with mprotect,
1562 * having already demonstrated that we
1563 * can read from this userspace address.
1564 */
1565 offset = gen8_canonical_addr(offset & ~UPDATE);
fddcd00a
CW
1566 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1567 remain = -EFAULT;
1568 goto out;
1569 }
1d83f442 1570 }
2889caa9
CW
1571 } while (r++, --count);
1572 urelocs += ARRAY_SIZE(stack);
1573 } while (remain);
31a39207 1574out:
650bc635 1575 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1576 return remain;
54cf91dc
CW
1577}
1578
1579static int
2889caa9 1580eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1581{
c7c6e46f 1582 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9
CW
1583 struct drm_i915_gem_relocation_entry *relocs =
1584 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1585 unsigned int i;
1586 int err;
54cf91dc
CW
1587
1588 for (i = 0; i < entry->relocation_count; i++) {
2889caa9 1589 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
d4aeee77 1590
2889caa9
CW
1591 if ((s64)offset < 0) {
1592 err = (int)offset;
1593 goto err;
1594 }
54cf91dc 1595 }
2889caa9
CW
1596 err = 0;
1597err:
1598 reloc_cache_reset(&eb->reloc_cache);
1599 return err;
edf4427b
CW
1600}
1601
2889caa9 1602static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1690e1eb 1603{
2889caa9
CW
1604 const char __user *addr, *end;
1605 unsigned long size;
1606 char __maybe_unused c;
1690e1eb 1607
2889caa9
CW
1608 size = entry->relocation_count;
1609 if (size == 0)
1610 return 0;
7788a765 1611
2889caa9
CW
1612 if (size > N_RELOC(ULONG_MAX))
1613 return -EINVAL;
9a5a53b3 1614
2889caa9
CW
1615 addr = u64_to_user_ptr(entry->relocs_ptr);
1616 size *= sizeof(struct drm_i915_gem_relocation_entry);
96d4f267 1617 if (!access_ok(addr, size))
2889caa9 1618 return -EFAULT;
1690e1eb 1619
2889caa9
CW
1620 end = addr + size;
1621 for (; addr < end; addr += PAGE_SIZE) {
1622 int err = __get_user(c, addr);
1623 if (err)
1624 return err;
ed5982e6 1625 }
2889caa9 1626 return __get_user(c, end - 1);
7788a765 1627}
1690e1eb 1628
2889caa9 1629static int eb_copy_relocations(const struct i915_execbuffer *eb)
d23db88c 1630{
e6a9522a 1631 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1632 const unsigned int count = eb->buffer_count;
1633 unsigned int i;
1634 int err;
e6a84468 1635
2889caa9
CW
1636 for (i = 0; i < count; i++) {
1637 const unsigned int nreloc = eb->exec[i].relocation_count;
1638 struct drm_i915_gem_relocation_entry __user *urelocs;
2889caa9
CW
1639 unsigned long size;
1640 unsigned long copied;
e6a84468 1641
2889caa9
CW
1642 if (nreloc == 0)
1643 continue;
e6a84468 1644
2889caa9
CW
1645 err = check_relocations(&eb->exec[i]);
1646 if (err)
1647 goto err;
d23db88c 1648
2889caa9
CW
1649 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1650 size = nreloc * sizeof(*relocs);
d23db88c 1651
0ee931c4 1652 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
2889caa9 1653 if (!relocs) {
2889caa9
CW
1654 err = -ENOMEM;
1655 goto err;
1656 }
d23db88c 1657
2889caa9
CW
1658 /* copy_from_user is limited to < 4GiB */
1659 copied = 0;
1660 do {
1661 unsigned int len =
1662 min_t(u64, BIT_ULL(31), size - copied);
1663
1664 if (__copy_from_user((char *)relocs + copied,
908a6105 1665 (char __user *)urelocs + copied,
e6a9522a
JP
1666 len))
1667 goto end;
91b2db6f 1668
2889caa9
CW
1669 copied += len;
1670 } while (copied < size);
506a8e87 1671
2889caa9
CW
1672 /*
1673 * As we do not update the known relocation offsets after
1674 * relocating (due to the complexities in lock handling),
1675 * we need to mark them as invalid now so that we force the
1676 * relocation processing next time. Just in case the target
1677 * object is evicted and then rebound into its old
1678 * presumed_offset before the next execbuffer - if that
1679 * happened we would make the mistake of assuming that the
1680 * relocations were valid.
1681 */
594cc251 1682 if (!user_access_begin(urelocs, size))
8f4faed0 1683 goto end;
594cc251 1684
2889caa9
CW
1685 for (copied = 0; copied < nreloc; copied++)
1686 unsafe_put_user(-1,
1687 &urelocs[copied].presumed_offset,
1688 end_user);
2889caa9 1689 user_access_end();
d23db88c 1690
2889caa9
CW
1691 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1692 }
edf4427b 1693
2889caa9 1694 return 0;
101b506a 1695
e6a9522a
JP
1696end_user:
1697 user_access_end();
1698end:
1699 kvfree(relocs);
1700 err = -EFAULT;
2889caa9
CW
1701err:
1702 while (i--) {
e6a9522a 1703 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
2889caa9
CW
1704 if (eb->exec[i].relocation_count)
1705 kvfree(relocs);
1706 }
1707 return err;
d23db88c
CW
1708}
1709
2889caa9 1710static int eb_prefault_relocations(const struct i915_execbuffer *eb)
54cf91dc 1711{
2889caa9
CW
1712 const unsigned int count = eb->buffer_count;
1713 unsigned int i;
54cf91dc 1714
4f044a88 1715 if (unlikely(i915_modparams.prefault_disable))
2889caa9 1716 return 0;
54cf91dc 1717
2889caa9
CW
1718 for (i = 0; i < count; i++) {
1719 int err;
54cf91dc 1720
2889caa9
CW
1721 err = check_relocations(&eb->exec[i]);
1722 if (err)
1723 return err;
1724 }
a415d355 1725
2889caa9 1726 return 0;
54cf91dc
CW
1727}
1728
2889caa9 1729static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
54cf91dc 1730{
650bc635 1731 struct drm_device *dev = &eb->i915->drm;
2889caa9 1732 bool have_copy = false;
27173f1f 1733 struct i915_vma *vma;
2889caa9
CW
1734 int err = 0;
1735
1736repeat:
1737 if (signal_pending(current)) {
1738 err = -ERESTARTSYS;
1739 goto out;
1740 }
27173f1f 1741
67731b87 1742 /* We may process another execbuffer during the unlock... */
2889caa9 1743 eb_reset_vmas(eb);
54cf91dc
CW
1744 mutex_unlock(&dev->struct_mutex);
1745
2889caa9
CW
1746 /*
1747 * We take 3 passes through the slowpatch.
1748 *
1749 * 1 - we try to just prefault all the user relocation entries and
1750 * then attempt to reuse the atomic pagefault disabled fast path again.
1751 *
1752 * 2 - we copy the user entries to a local buffer here outside of the
1753 * local and allow ourselves to wait upon any rendering before
1754 * relocations
1755 *
1756 * 3 - we already have a local copy of the relocation entries, but
1757 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1758 */
1759 if (!err) {
1760 err = eb_prefault_relocations(eb);
1761 } else if (!have_copy) {
1762 err = eb_copy_relocations(eb);
1763 have_copy = err == 0;
1764 } else {
1765 cond_resched();
1766 err = 0;
54cf91dc 1767 }
2889caa9
CW
1768 if (err) {
1769 mutex_lock(&dev->struct_mutex);
1770 goto out;
54cf91dc
CW
1771 }
1772
8a2421bd
CW
1773 /* A frequent cause for EAGAIN are currently unavailable client pages */
1774 flush_workqueue(eb->i915->mm.userptr_wq);
1775
2889caa9
CW
1776 err = i915_mutex_lock_interruptible(dev);
1777 if (err) {
54cf91dc 1778 mutex_lock(&dev->struct_mutex);
2889caa9 1779 goto out;
54cf91dc
CW
1780 }
1781
67731b87 1782 /* reacquire the objects */
2889caa9
CW
1783 err = eb_lookup_vmas(eb);
1784 if (err)
3b96eff4 1785 goto err;
67731b87 1786
c7c6e46f
CW
1787 GEM_BUG_ON(!eb->batch);
1788
2889caa9
CW
1789 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1790 if (!have_copy) {
1791 pagefault_disable();
1792 err = eb_relocate_vma(eb, vma);
1793 pagefault_enable();
1794 if (err)
1795 goto repeat;
1796 } else {
1797 err = eb_relocate_vma_slow(eb, vma);
1798 if (err)
1799 goto err;
1800 }
54cf91dc
CW
1801 }
1802
2889caa9
CW
1803 /*
1804 * Leave the user relocations as are, this is the painfully slow path,
54cf91dc
CW
1805 * and we want to avoid the complication of dropping the lock whilst
1806 * having buffers reserved in the aperture and so causing spurious
1807 * ENOSPC for random operations.
1808 */
1809
1810err:
2889caa9
CW
1811 if (err == -EAGAIN)
1812 goto repeat;
1813
1814out:
1815 if (have_copy) {
1816 const unsigned int count = eb->buffer_count;
1817 unsigned int i;
1818
1819 for (i = 0; i < count; i++) {
1820 const struct drm_i915_gem_exec_object2 *entry =
1821 &eb->exec[i];
1822 struct drm_i915_gem_relocation_entry *relocs;
1823
1824 if (!entry->relocation_count)
1825 continue;
1826
1827 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1828 kvfree(relocs);
1829 }
1830 }
1831
1f727d9e 1832 return err;
54cf91dc
CW
1833}
1834
2889caa9 1835static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1836{
2889caa9
CW
1837 if (eb_lookup_vmas(eb))
1838 goto slow;
1839
1840 /* The objects are in their final locations, apply the relocations. */
1841 if (eb->args->flags & __EXEC_HAS_RELOC) {
1842 struct i915_vma *vma;
1843
1844 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1845 if (eb_relocate_vma(eb, vma))
1846 goto slow;
1847 }
1848 }
1849
1850 return 0;
1851
1852slow:
1853 return eb_relocate_slow(eb);
1854}
1855
2889caa9
CW
1856static int eb_move_to_gpu(struct i915_execbuffer *eb)
1857{
1858 const unsigned int count = eb->buffer_count;
6951e589 1859 struct ww_acquire_ctx acquire;
2889caa9 1860 unsigned int i;
6951e589
CW
1861 int err = 0;
1862
1863 ww_acquire_init(&acquire, &reservation_ww_class);
54cf91dc 1864
2889caa9 1865 for (i = 0; i < count; i++) {
6951e589
CW
1866 struct i915_vma *vma = eb->vma[i];
1867
1868 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1869 if (!err)
1870 continue;
1871
1872 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1873
1874 if (err == -EDEADLK) {
1875 GEM_BUG_ON(i == 0);
1876 do {
1877 int j = i - 1;
1878
1879 ww_mutex_unlock(&eb->vma[j]->resv->lock);
1880
1881 swap(eb->flags[i], eb->flags[j]);
1882 swap(eb->vma[i], eb->vma[j]);
1883 eb->vma[i]->exec_flags = &eb->flags[i];
1884 } while (--i);
1885 GEM_BUG_ON(vma != eb->vma[0]);
1886 vma->exec_flags = &eb->flags[0];
1887
1888 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1889 &acquire);
1890 }
1891 if (err)
1892 break;
1893 }
1894 ww_acquire_done(&acquire);
1895
1896 while (i--) {
c7c6e46f
CW
1897 unsigned int flags = eb->flags[i];
1898 struct i915_vma *vma = eb->vma[i];
27173f1f 1899 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1900
6951e589
CW
1901 assert_vma_held(vma);
1902
c7c6e46f 1903 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 1904 struct i915_capture_list *capture;
b0fd47ad
CW
1905
1906 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
6951e589
CW
1907 if (capture) {
1908 capture->next = eb->request->capture_list;
1909 capture->vma = vma;
1910 eb->request->capture_list = capture;
1911 }
b0fd47ad
CW
1912 }
1913
b8f55be6
CW
1914 /*
1915 * If the GPU is not _reading_ through the CPU cache, we need
1916 * to make sure that any writes (both previous GPU writes from
1917 * before a change in snooping levels and normal CPU writes)
1918 * caught in that cache are flushed to main memory.
1919 *
1920 * We want to say
1921 * obj->cache_dirty &&
1922 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1923 * but gcc's optimiser doesn't handle that as well and emits
1924 * two jumps instead of one. Maybe one day...
1925 */
1926 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1927 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1928 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1929 }
1930
6951e589
CW
1931 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1932 err = i915_request_await_object
1933 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1934 }
2889caa9 1935
6951e589
CW
1936 if (err == 0)
1937 err = i915_vma_move_to_active(vma, eb->request, flags);
c7c6e46f 1938
6951e589 1939 i915_vma_unlock(vma);
2889caa9 1940
c7c6e46f
CW
1941 __eb_unreserve_vma(vma, flags);
1942 vma->exec_flags = NULL;
1943
1944 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
dade2a61 1945 i915_vma_put(vma);
c59a333f 1946 }
6951e589
CW
1947 ww_acquire_fini(&acquire);
1948
1949 if (unlikely(err))
1950 goto err_skip;
1951
2889caa9 1952 eb->exec = NULL;
c59a333f 1953
dcd79934 1954 /* Unconditionally flush any chipset caches (for streaming writes). */
650bc635 1955 i915_gem_chipset_flush(eb->i915);
2113184c 1956 return 0;
6951e589
CW
1957
1958err_skip:
1959 i915_request_skip(eb->request, err);
1960 return err;
54cf91dc
CW
1961}
1962
2889caa9 1963static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1964{
650bc635 1965 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
ed5982e6
DV
1966 return false;
1967
2f5945bc 1968 /* Kernel clipping was a DRI1 misfeature */
cf6e7bac
JE
1969 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1970 if (exec->num_cliprects || exec->cliprects_ptr)
1971 return false;
1972 }
2f5945bc
CW
1973
1974 if (exec->DR4 == 0xffffffff) {
1975 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1976 exec->DR4 = 0;
1977 }
1978 if (exec->DR1 || exec->DR4)
1979 return false;
1980
1981 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1982 return false;
1983
1984 return true;
54cf91dc
CW
1985}
1986
e61e0f51 1987static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 1988{
73dec95e
TU
1989 u32 *cs;
1990 int i;
ae662d31 1991
8a68d464 1992 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
9d662da8
DV
1993 DRM_DEBUG("sol reset is gen7/rcs only\n");
1994 return -EINVAL;
1995 }
ae662d31 1996
e61e0f51 1997 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
1998 if (IS_ERR(cs))
1999 return PTR_ERR(cs);
ae662d31 2000
2889caa9 2001 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2002 for (i = 0; i < 4; i++) {
73dec95e
TU
2003 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2004 *cs++ = 0;
ae662d31 2005 }
2889caa9 2006 *cs++ = MI_NOOP;
e61e0f51 2007 intel_ring_advance(rq, cs);
ae662d31
EA
2008
2009 return 0;
2010}
2011
650bc635 2012static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
71745376 2013{
71745376 2014 struct drm_i915_gem_object *shadow_batch_obj;
17cabf57 2015 struct i915_vma *vma;
2889caa9 2016 int err;
71745376 2017
650bc635
CW
2018 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
2019 PAGE_ALIGN(eb->batch_len));
71745376 2020 if (IS_ERR(shadow_batch_obj))
59bfa124 2021 return ERR_CAST(shadow_batch_obj);
71745376 2022
2889caa9 2023 err = intel_engine_cmd_parser(eb->engine,
650bc635 2024 eb->batch->obj,
33a051a5 2025 shadow_batch_obj,
650bc635
CW
2026 eb->batch_start_offset,
2027 eb->batch_len,
33a051a5 2028 is_master);
2889caa9
CW
2029 if (err) {
2030 if (err == -EACCES) /* unhandled chained batch */
058d88c4
CW
2031 vma = NULL;
2032 else
2889caa9 2033 vma = ERR_PTR(err);
058d88c4
CW
2034 goto out;
2035 }
71745376 2036
058d88c4
CW
2037 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
2038 if (IS_ERR(vma))
2039 goto out;
de4e783a 2040
c7c6e46f
CW
2041 eb->vma[eb->buffer_count] = i915_vma_get(vma);
2042 eb->flags[eb->buffer_count] =
2043 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2044 vma->exec_flags = &eb->flags[eb->buffer_count];
2045 eb->buffer_count++;
71745376 2046
058d88c4 2047out:
de4e783a 2048 i915_gem_object_unpin_pages(shadow_batch_obj);
058d88c4 2049 return vma;
71745376 2050}
5c6c6003 2051
c8659efa 2052static void
e61e0f51 2053add_to_client(struct i915_request *rq, struct drm_file *file)
c8659efa 2054{
e61e0f51
CW
2055 rq->file_priv = file->driver_priv;
2056 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
c8659efa
CW
2057}
2058
2889caa9 2059static int eb_submit(struct i915_execbuffer *eb)
78382593 2060{
2889caa9 2061 int err;
78382593 2062
2889caa9
CW
2063 err = eb_move_to_gpu(eb);
2064 if (err)
2065 return err;
78382593 2066
650bc635 2067 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
2068 err = i915_reset_gen7_sol_offsets(eb->request);
2069 if (err)
2070 return err;
78382593
OM
2071 }
2072
85474441
CW
2073 /*
2074 * After we completed waiting for other engines (using HW semaphores)
2075 * then we can signal that this request/batch is ready to run. This
2076 * allows us to determine if the batch is still waiting on the GPU
2077 * or actually running by checking the breadcrumb.
2078 */
2079 if (eb->engine->emit_init_breadcrumb) {
2080 err = eb->engine->emit_init_breadcrumb(eb->request);
2081 if (err)
2082 return err;
2083 }
2084
2889caa9 2085 err = eb->engine->emit_bb_start(eb->request,
650bc635
CW
2086 eb->batch->node.start +
2087 eb->batch_start_offset,
2088 eb->batch_len,
2889caa9
CW
2089 eb->batch_flags);
2090 if (err)
2091 return err;
78382593 2092
2f5945bc 2093 return 0;
78382593
OM
2094}
2095
204bcfef 2096/*
a8ebba75 2097 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2098 * The engine index is returned.
a8ebba75 2099 */
de1add36 2100static unsigned int
c80ff16e
CW
2101gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2102 struct drm_file *file)
a8ebba75 2103{
a8ebba75
ZY
2104 struct drm_i915_file_private *file_priv = file->driver_priv;
2105
de1add36 2106 /* Check whether the file_priv has already selected one ring. */
6f633402
JL
2107 if ((int)file_priv->bsd_engine < 0)
2108 file_priv->bsd_engine = atomic_fetch_xor(1,
2109 &dev_priv->mm.bsd_engine_dispatch_index);
d23db88c 2110
c80ff16e 2111 return file_priv->bsd_engine;
d23db88c
CW
2112}
2113
5e2a0419 2114static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2115 [I915_EXEC_DEFAULT] = RCS0,
2116 [I915_EXEC_RENDER] = RCS0,
2117 [I915_EXEC_BLT] = BCS0,
2118 [I915_EXEC_BSD] = VCS0,
2119 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2120};
2121
5e2a0419 2122static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
de1add36 2123{
8f2a1057 2124 int err;
de1add36 2125
8f2a1057
CW
2126 /*
2127 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2128 * EIO if the GPU is already wedged.
2129 */
2130 err = i915_terminally_wedged(eb->i915);
2131 if (err)
2132 return err;
2133
2134 /*
2135 * Pinning the contexts may generate requests in order to acquire
2136 * GGTT space, so do this first before we reserve a seqno for
2137 * ourselves.
2138 */
fa9f6681 2139 err = intel_context_pin(ce);
fa9f6681
CW
2140 if (err)
2141 return err;
8f2a1057 2142
5e2a0419 2143 eb->engine = ce->engine;
8f2a1057
CW
2144 eb->context = ce;
2145 return 0;
2146}
2147
2148static void eb_unpin_context(struct i915_execbuffer *eb)
2149{
2150 intel_context_unpin(eb->context);
2151}
de1add36 2152
5e2a0419
CW
2153static unsigned int
2154eb_select_legacy_ring(struct i915_execbuffer *eb,
2155 struct drm_file *file,
2156 struct drm_i915_gem_execbuffer2 *args)
de1add36 2157{
8f2a1057 2158 struct drm_i915_private *i915 = eb->i915;
de1add36 2159 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2160
5e2a0419
CW
2161 if (user_ring_id != I915_EXEC_BSD &&
2162 (args->flags & I915_EXEC_BSD_MASK)) {
de1add36
TU
2163 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2164 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2165 return -1;
de1add36
TU
2166 }
2167
8f2a1057 2168 if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) {
de1add36
TU
2169 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2170
2171 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
8f2a1057 2172 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
de1add36
TU
2173 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2174 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2175 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2176 bsd_idx--;
2177 } else {
2178 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2179 bsd_idx);
5e2a0419 2180 return -1;
de1add36
TU
2181 }
2182
5e2a0419 2183 return _VCS(bsd_idx);
de1add36
TU
2184 }
2185
5e2a0419
CW
2186 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2187 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2188 return -1;
de1add36
TU
2189 }
2190
5e2a0419
CW
2191 return user_ring_map[user_ring_id];
2192}
2193
2194static int
2195eb_select_engine(struct i915_execbuffer *eb,
2196 struct drm_file *file,
2197 struct drm_i915_gem_execbuffer2 *args)
2198{
2199 struct intel_context *ce;
2200 unsigned int idx;
2201 int err;
2202
976b55f0
CW
2203 if (i915_gem_context_user_engines(eb->gem_context))
2204 idx = args->flags & I915_EXEC_RING_MASK;
2205 else
2206 idx = eb_select_legacy_ring(eb, file, args);
5e2a0419
CW
2207
2208 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2209 if (IS_ERR(ce))
2210 return PTR_ERR(ce);
2211
2212 err = eb_pin_context(eb, ce);
2213 intel_context_put(ce);
2214
2215 return err;
de1add36
TU
2216}
2217
cf6e7bac
JE
2218static void
2219__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2220{
2221 while (n--)
2222 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2223 kvfree(fences);
2224}
2225
2226static struct drm_syncobj **
2227get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2228 struct drm_file *file)
2229{
d710fc16 2230 const unsigned long nfences = args->num_cliprects;
cf6e7bac
JE
2231 struct drm_i915_gem_exec_fence __user *user;
2232 struct drm_syncobj **fences;
d710fc16 2233 unsigned long n;
cf6e7bac
JE
2234 int err;
2235
2236 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2237 return NULL;
2238
d710fc16
CW
2239 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2240 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2241 if (nfences > min_t(unsigned long,
2242 ULONG_MAX / sizeof(*user),
2243 SIZE_MAX / sizeof(*fences)))
cf6e7bac
JE
2244 return ERR_PTR(-EINVAL);
2245
2246 user = u64_to_user_ptr(args->cliprects_ptr);
96d4f267 2247 if (!access_ok(user, nfences * sizeof(*user)))
cf6e7bac
JE
2248 return ERR_PTR(-EFAULT);
2249
d710fc16 2250 fences = kvmalloc_array(nfences, sizeof(*fences),
0ee931c4 2251 __GFP_NOWARN | GFP_KERNEL);
cf6e7bac
JE
2252 if (!fences)
2253 return ERR_PTR(-ENOMEM);
2254
2255 for (n = 0; n < nfences; n++) {
2256 struct drm_i915_gem_exec_fence fence;
2257 struct drm_syncobj *syncobj;
2258
2259 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2260 err = -EFAULT;
2261 goto err;
2262 }
2263
ebcaa1ff
TU
2264 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2265 err = -EINVAL;
2266 goto err;
2267 }
2268
cf6e7bac
JE
2269 syncobj = drm_syncobj_find(file, fence.handle);
2270 if (!syncobj) {
2271 DRM_DEBUG("Invalid syncobj handle provided\n");
2272 err = -ENOENT;
2273 goto err;
2274 }
2275
ebcaa1ff
TU
2276 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2277 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2278
cf6e7bac
JE
2279 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2280 }
2281
2282 return fences;
2283
2284err:
2285 __free_fence_array(fences, n);
2286 return ERR_PTR(err);
2287}
2288
2289static void
2290put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2291 struct drm_syncobj **fences)
2292{
2293 if (fences)
2294 __free_fence_array(fences, args->num_cliprects);
2295}
2296
2297static int
2298await_fence_array(struct i915_execbuffer *eb,
2299 struct drm_syncobj **fences)
2300{
2301 const unsigned int nfences = eb->args->num_cliprects;
2302 unsigned int n;
2303 int err;
2304
2305 for (n = 0; n < nfences; n++) {
2306 struct drm_syncobj *syncobj;
2307 struct dma_fence *fence;
2308 unsigned int flags;
2309
2310 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2311 if (!(flags & I915_EXEC_FENCE_WAIT))
2312 continue;
2313
afca4216 2314 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac
JE
2315 if (!fence)
2316 return -EINVAL;
2317
e61e0f51 2318 err = i915_request_await_dma_fence(eb->request, fence);
cf6e7bac
JE
2319 dma_fence_put(fence);
2320 if (err < 0)
2321 return err;
2322 }
2323
2324 return 0;
2325}
2326
2327static void
2328signal_fence_array(struct i915_execbuffer *eb,
2329 struct drm_syncobj **fences)
2330{
2331 const unsigned int nfences = eb->args->num_cliprects;
2332 struct dma_fence * const fence = &eb->request->fence;
2333 unsigned int n;
2334
2335 for (n = 0; n < nfences; n++) {
2336 struct drm_syncobj *syncobj;
2337 unsigned int flags;
2338
2339 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2340 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2341 continue;
2342
0b258ed1 2343 drm_syncobj_replace_fence(syncobj, fence);
cf6e7bac
JE
2344 }
2345}
2346
54cf91dc 2347static int
650bc635 2348i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2349 struct drm_file *file,
2350 struct drm_i915_gem_execbuffer2 *args,
cf6e7bac
JE
2351 struct drm_i915_gem_exec_object2 *exec,
2352 struct drm_syncobj **fences)
54cf91dc 2353{
650bc635 2354 struct i915_execbuffer eb;
fec0445c 2355 struct dma_fence *in_fence = NULL;
a88b6e4c 2356 struct dma_fence *exec_fence = NULL;
fec0445c
CW
2357 struct sync_file *out_fence = NULL;
2358 int out_fence_fd = -1;
2889caa9 2359 int err;
432e58ed 2360
74c1c694 2361 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
2362 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2363 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2364
650bc635
CW
2365 eb.i915 = to_i915(dev);
2366 eb.file = file;
2367 eb.args = args;
7dd4f672 2368 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2369 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 2370
650bc635 2371 eb.exec = exec;
170fa29b
CW
2372 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2373 eb.vma[0] = NULL;
c7c6e46f
CW
2374 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2375
2889caa9 2376 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
2377 reloc_cache_init(&eb.reloc_cache, eb.i915);
2378
2889caa9 2379 eb.buffer_count = args->buffer_count;
650bc635
CW
2380 eb.batch_start_offset = args->batch_start_offset;
2381 eb.batch_len = args->batch_len;
2382
2889caa9 2383 eb.batch_flags = 0;
d7d4eedd 2384 if (args->flags & I915_EXEC_SECURE) {
b3ac9f25 2385 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
d7d4eedd
CW
2386 return -EPERM;
2387
2889caa9 2388 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2389 }
b45305fc 2390 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2391 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2392
fec0445c
CW
2393 if (args->flags & I915_EXEC_FENCE_IN) {
2394 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2395 if (!in_fence)
2396 return -EINVAL;
fec0445c
CW
2397 }
2398
a88b6e4c
CW
2399 if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2400 if (in_fence) {
2401 err = -EINVAL;
2402 goto err_in_fence;
2403 }
2404
2405 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2406 if (!exec_fence) {
2407 err = -EINVAL;
2408 goto err_in_fence;
2409 }
2410 }
2411
fec0445c
CW
2412 if (args->flags & I915_EXEC_FENCE_OUT) {
2413 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2414 if (out_fence_fd < 0) {
2889caa9 2415 err = out_fence_fd;
a88b6e4c 2416 goto err_exec_fence;
fec0445c
CW
2417 }
2418 }
2419
4d470f73
CW
2420 err = eb_create(&eb);
2421 if (err)
2422 goto err_out_fence;
2423
2424 GEM_BUG_ON(!eb.lut_size);
2889caa9 2425
1acfc104
CW
2426 err = eb_select_context(&eb);
2427 if (unlikely(err))
2428 goto err_destroy;
2429
2889caa9
CW
2430 /*
2431 * Take a local wakeref for preparing to dispatch the execbuf as
67d97da3
CW
2432 * we expect to access the hardware fairly frequently in the
2433 * process. Upon first dispatch, we acquire another prolonged
2434 * wakeref that we hold until the GPU has been idle for at least
2435 * 100ms.
2436 */
8f2a1057 2437 intel_gt_pm_get(eb.i915);
1acfc104 2438
2889caa9
CW
2439 err = i915_mutex_lock_interruptible(dev);
2440 if (err)
2441 goto err_rpm;
f65c9168 2442
8f2a1057 2443 err = eb_select_engine(&eb, file, args);
d6f328bf
CW
2444 if (unlikely(err))
2445 goto err_unlock;
2446
8f2a1057
CW
2447 err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
2448 if (unlikely(err))
2449 goto err_engine;
2450
2889caa9 2451 err = eb_relocate(&eb);
1f727d9e 2452 if (err) {
2889caa9
CW
2453 /*
2454 * If the user expects the execobject.offset and
2455 * reloc.presumed_offset to be an exact match,
2456 * as for using NO_RELOC, then we cannot update
2457 * the execobject.offset until we have completed
2458 * relocation.
2459 */
2460 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2461 goto err_vma;
1f727d9e 2462 }
54cf91dc 2463
c7c6e46f 2464 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
ff240199 2465 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2466 err = -EINVAL;
2467 goto err_vma;
54cf91dc 2468 }
650bc635
CW
2469 if (eb.batch_start_offset > eb.batch->size ||
2470 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
0b537272 2471 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2889caa9
CW
2472 err = -EINVAL;
2473 goto err_vma;
0b537272 2474 }
54cf91dc 2475
3dbf26ed 2476 if (eb_use_cmdparser(&eb)) {
59bfa124
CW
2477 struct i915_vma *vma;
2478
650bc635 2479 vma = eb_parse(&eb, drm_is_current_master(file));
59bfa124 2480 if (IS_ERR(vma)) {
2889caa9
CW
2481 err = PTR_ERR(vma);
2482 goto err_vma;
78a42377 2483 }
17cabf57 2484
59bfa124 2485 if (vma) {
c7c7372e
RP
2486 /*
2487 * Batch parsed and accepted:
2488 *
2489 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2490 * bit from MI_BATCH_BUFFER_START commands issued in
2491 * the dispatch_execbuffer implementations. We
2492 * specifically don't want that set on batches the
2493 * command parser has accepted.
2494 */
2889caa9 2495 eb.batch_flags |= I915_DISPATCH_SECURE;
650bc635
CW
2496 eb.batch_start_offset = 0;
2497 eb.batch = vma;
c7c7372e 2498 }
351e3db2
BV
2499 }
2500
650bc635
CW
2501 if (eb.batch_len == 0)
2502 eb.batch_len = eb.batch->size - eb.batch_start_offset;
78a42377 2503
2889caa9
CW
2504 /*
2505 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2506 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2507 * hsw should have this fixed, but bdw mucks it up again. */
2889caa9 2508 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2509 struct i915_vma *vma;
59bfa124 2510
da51a1e7
DV
2511 /*
2512 * So on first glance it looks freaky that we pin the batch here
2513 * outside of the reservation loop. But:
2514 * - The batch is already pinned into the relevant ppgtt, so we
2515 * already have the backing storage fully allocated.
2516 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2517 * so we don't really have issues with multiple objects not
da51a1e7
DV
2518 * fitting due to fragmentation.
2519 * So this is actually safe.
2520 */
2889caa9 2521 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
058d88c4 2522 if (IS_ERR(vma)) {
2889caa9
CW
2523 err = PTR_ERR(vma);
2524 goto err_vma;
058d88c4 2525 }
d7d4eedd 2526
650bc635 2527 eb.batch = vma;
59bfa124 2528 }
d7d4eedd 2529
7dd4f672
CW
2530 /* All GPU relocation batches must be submitted prior to the user rq */
2531 GEM_BUG_ON(eb.reloc_cache.rq);
2532
0c8dac88 2533 /* Allocate a request for this batch buffer nice and early. */
8f2a1057 2534 eb.request = i915_request_create(eb.context);
650bc635 2535 if (IS_ERR(eb.request)) {
2889caa9 2536 err = PTR_ERR(eb.request);
0c8dac88 2537 goto err_batch_unpin;
26827088 2538 }
0c8dac88 2539
fec0445c 2540 if (in_fence) {
e61e0f51 2541 err = i915_request_await_dma_fence(eb.request, in_fence);
2889caa9 2542 if (err < 0)
fec0445c
CW
2543 goto err_request;
2544 }
2545
a88b6e4c
CW
2546 if (exec_fence) {
2547 err = i915_request_await_execution(eb.request, exec_fence,
2548 eb.engine->bond_execute);
2549 if (err < 0)
2550 goto err_request;
2551 }
2552
cf6e7bac
JE
2553 if (fences) {
2554 err = await_fence_array(&eb, fences);
2555 if (err)
2556 goto err_request;
2557 }
2558
fec0445c 2559 if (out_fence_fd != -1) {
650bc635 2560 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2561 if (!out_fence) {
2889caa9 2562 err = -ENOMEM;
fec0445c
CW
2563 goto err_request;
2564 }
2565 }
2566
2889caa9
CW
2567 /*
2568 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2569 * active_list, and so will hold the active reference. Only when this
2570 * request is retired will the the batch_obj be moved onto the
2571 * inactive_list and lose its active reference. Hence we do not need
2572 * to explicitly hold another reference here.
2573 */
650bc635 2574 eb.request->batch = eb.batch;
5f19e2bf 2575
e61e0f51 2576 trace_i915_request_queue(eb.request, eb.batch_flags);
2889caa9 2577 err = eb_submit(&eb);
aa9b7810 2578err_request:
650bc635 2579 add_to_client(eb.request, file);
8f2a1057 2580 i915_request_add(eb.request);
c8659efa 2581
cf6e7bac
JE
2582 if (fences)
2583 signal_fence_array(&eb, fences);
2584
fec0445c 2585 if (out_fence) {
2889caa9 2586 if (err == 0) {
fec0445c 2587 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 2588 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
2589 args->rsvd2 |= (u64)out_fence_fd << 32;
2590 out_fence_fd = -1;
2591 } else {
2592 fput(out_fence->file);
2593 }
2594 }
54cf91dc 2595
0c8dac88 2596err_batch_unpin:
2889caa9 2597 if (eb.batch_flags & I915_DISPATCH_SECURE)
650bc635 2598 i915_vma_unpin(eb.batch);
2889caa9
CW
2599err_vma:
2600 if (eb.exec)
2601 eb_release_vmas(&eb);
8f2a1057
CW
2602err_engine:
2603 eb_unpin_context(&eb);
d6f328bf 2604err_unlock:
54cf91dc 2605 mutex_unlock(&dev->struct_mutex);
2889caa9 2606err_rpm:
8f2a1057
CW
2607 intel_gt_pm_put(eb.i915);
2608 i915_gem_context_put(eb.gem_context);
1acfc104 2609err_destroy:
2889caa9 2610 eb_destroy(&eb);
4d470f73 2611err_out_fence:
fec0445c
CW
2612 if (out_fence_fd != -1)
2613 put_unused_fd(out_fence_fd);
a88b6e4c
CW
2614err_exec_fence:
2615 dma_fence_put(exec_fence);
4a04e371 2616err_in_fence:
fec0445c 2617 dma_fence_put(in_fence);
2889caa9 2618 return err;
54cf91dc
CW
2619}
2620
d710fc16
CW
2621static size_t eb_element_size(void)
2622{
2623 return (sizeof(struct drm_i915_gem_exec_object2) +
2624 sizeof(struct i915_vma *) +
2625 sizeof(unsigned int));
2626}
2627
2628static bool check_buffer_count(size_t count)
2629{
2630 const size_t sz = eb_element_size();
2631
2632 /*
2633 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2634 * array size (see eb_create()). Otherwise, we can accept an array as
2635 * large as can be addressed (though use large arrays at your peril)!
2636 */
2637
2638 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2639}
2640
54cf91dc
CW
2641/*
2642 * Legacy execbuffer just creates an exec2 list from the original exec object
2643 * list array and passes it to the real function.
2644 */
2645int
6a20fe7b
VS
2646i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2647 struct drm_file *file)
54cf91dc
CW
2648{
2649 struct drm_i915_gem_execbuffer *args = data;
2650 struct drm_i915_gem_execbuffer2 exec2;
2651 struct drm_i915_gem_exec_object *exec_list = NULL;
2652 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
d710fc16 2653 const size_t count = args->buffer_count;
2889caa9
CW
2654 unsigned int i;
2655 int err;
54cf91dc 2656
d710fc16
CW
2657 if (!check_buffer_count(count)) {
2658 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2659 return -EINVAL;
2660 }
2661
2889caa9
CW
2662 exec2.buffers_ptr = args->buffers_ptr;
2663 exec2.buffer_count = args->buffer_count;
2664 exec2.batch_start_offset = args->batch_start_offset;
2665 exec2.batch_len = args->batch_len;
2666 exec2.DR1 = args->DR1;
2667 exec2.DR4 = args->DR4;
2668 exec2.num_cliprects = args->num_cliprects;
2669 exec2.cliprects_ptr = args->cliprects_ptr;
2670 exec2.flags = I915_EXEC_RENDER;
2671 i915_execbuffer2_set_context_id(exec2, 0);
2672
2673 if (!i915_gem_check_execbuffer(&exec2))
2674 return -EINVAL;
2675
54cf91dc 2676 /* Copy in the exec list from userland */
d710fc16 2677 exec_list = kvmalloc_array(count, sizeof(*exec_list),
0ee931c4 2678 __GFP_NOWARN | GFP_KERNEL);
d710fc16 2679 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2680 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2681 if (exec_list == NULL || exec2_list == NULL) {
ff240199 2682 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc 2683 args->buffer_count);
2098105e
MH
2684 kvfree(exec_list);
2685 kvfree(exec2_list);
54cf91dc
CW
2686 return -ENOMEM;
2687 }
2889caa9 2688 err = copy_from_user(exec_list,
3ed605bc 2689 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2690 sizeof(*exec_list) * count);
2889caa9 2691 if (err) {
ff240199 2692 DRM_DEBUG("copy %d exec entries failed %d\n",
2889caa9 2693 args->buffer_count, err);
2098105e
MH
2694 kvfree(exec_list);
2695 kvfree(exec2_list);
54cf91dc
CW
2696 return -EFAULT;
2697 }
2698
2699 for (i = 0; i < args->buffer_count; i++) {
2700 exec2_list[i].handle = exec_list[i].handle;
2701 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2702 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2703 exec2_list[i].alignment = exec_list[i].alignment;
2704 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2705 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2706 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2707 else
2708 exec2_list[i].flags = 0;
2709 }
2710
cf6e7bac 2711 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2889caa9 2712 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2713 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2714 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2715
54cf91dc 2716 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2717 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2718 if (!(exec2_list[i].offset & UPDATE))
2719 continue;
2720
934acce3 2721 exec2_list[i].offset =
2889caa9
CW
2722 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2723 exec2_list[i].offset &= PIN_OFFSET_MASK;
2724 if (__copy_to_user(&user_exec_list[i].offset,
2725 &exec2_list[i].offset,
2726 sizeof(user_exec_list[i].offset)))
9aab8bff 2727 break;
54cf91dc
CW
2728 }
2729 }
2730
2098105e
MH
2731 kvfree(exec_list);
2732 kvfree(exec2_list);
2889caa9 2733 return err;
54cf91dc
CW
2734}
2735
2736int
6a20fe7b
VS
2737i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2738 struct drm_file *file)
54cf91dc
CW
2739{
2740 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 2741 struct drm_i915_gem_exec_object2 *exec2_list;
cf6e7bac 2742 struct drm_syncobj **fences = NULL;
d710fc16 2743 const size_t count = args->buffer_count;
2889caa9 2744 int err;
54cf91dc 2745
d710fc16
CW
2746 if (!check_buffer_count(count)) {
2747 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2748 return -EINVAL;
2749 }
2750
2889caa9
CW
2751 if (!i915_gem_check_execbuffer(args))
2752 return -EINVAL;
2753
2754 /* Allocate an extra slot for use by the command parser */
d710fc16 2755 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2756 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2757 if (exec2_list == NULL) {
d710fc16
CW
2758 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2759 count);
54cf91dc
CW
2760 return -ENOMEM;
2761 }
2889caa9
CW
2762 if (copy_from_user(exec2_list,
2763 u64_to_user_ptr(args->buffers_ptr),
d710fc16
CW
2764 sizeof(*exec2_list) * count)) {
2765 DRM_DEBUG("copy %zd exec entries failed\n", count);
2098105e 2766 kvfree(exec2_list);
54cf91dc
CW
2767 return -EFAULT;
2768 }
2769
cf6e7bac
JE
2770 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2771 fences = get_fence_array(args, file);
2772 if (IS_ERR(fences)) {
2773 kvfree(exec2_list);
2774 return PTR_ERR(fences);
2775 }
2776 }
2777
2778 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2889caa9
CW
2779
2780 /*
2781 * Now that we have begun execution of the batchbuffer, we ignore
2782 * any new error after this point. Also given that we have already
2783 * updated the associated relocations, we try to write out the current
2784 * object locations irrespective of any error.
2785 */
2786 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2787 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2788 u64_to_user_ptr(args->buffers_ptr);
2789 unsigned int i;
9aab8bff 2790
2889caa9 2791 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
2792 /*
2793 * Note: count * sizeof(*user_exec_list) does not overflow,
2794 * because we checked 'count' in check_buffer_count().
2795 *
2796 * And this range already got effectively checked earlier
2797 * when we did the "copy_from_user()" above.
2798 */
2799 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
8f4faed0 2800 goto end;
594cc251 2801
9aab8bff 2802 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2803 if (!(exec2_list[i].offset & UPDATE))
2804 continue;
2805
934acce3 2806 exec2_list[i].offset =
2889caa9
CW
2807 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2808 unsafe_put_user(exec2_list[i].offset,
2809 &user_exec_list[i].offset,
2810 end_user);
54cf91dc 2811 }
2889caa9
CW
2812end_user:
2813 user_access_end();
8f4faed0 2814end:;
54cf91dc
CW
2815 }
2816
2889caa9 2817 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
cf6e7bac 2818 put_fence_array(args, fences);
2098105e 2819 kvfree(exec2_list);
2889caa9 2820 return err;
54cf91dc 2821}