drm/i915/gt: Suppress the error message for GT init failure on error injection
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
52791eee 8#include <linux/dma-resv.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
ad778f89 13
df0566a6
JN
14#include "display/intel_frontbuffer.h"
15
afa13085 16#include "gem/i915_gem_ioctls.h"
10be98a7 17#include "gt/intel_context.h"
baea429d 18#include "gt/intel_gt.h"
16e87459 19#include "gt/intel_gt_buffer_pool.h"
8f2a1057 20#include "gt/intel_gt_pm.h"
2871ea85 21#include "gt/intel_ring.h"
8f2a1057 22
6da4a2c4 23#include "i915_drv.h"
57822dc6 24#include "i915_gem_clflush.h"
10be98a7 25#include "i915_gem_context.h"
6da4a2c4 26#include "i915_gem_ioctls.h"
686c7c35 27#include "i915_sw_fence_work.h"
54cf91dc 28#include "i915_trace.h"
54cf91dc 29
7d6236bb
CW
30struct eb_vma {
31 struct i915_vma *vma;
32 unsigned int flags;
33
34 /** This vma's place in the execbuf reservation list */
35 struct drm_i915_gem_exec_object2 *exec;
36 struct list_head bind_link;
37 struct list_head reloc_link;
38
39 struct hlist_node node;
40 u32 handle;
41};
42
0f1dd022
CW
43struct eb_vma_array {
44 struct kref kref;
45 struct eb_vma vma[];
46};
47
7dd4f672
CW
48enum {
49 FORCE_CPU_RELOC = 1,
50 FORCE_GTT_RELOC,
51 FORCE_GPU_RELOC,
52#define DBG_FORCE_RELOC 0 /* choose one of the above! */
53};
d50415cc 54
003d8b91
CW
55#define __EXEC_OBJECT_HAS_PIN BIT(31)
56#define __EXEC_OBJECT_HAS_FENCE BIT(30)
57#define __EXEC_OBJECT_NEEDS_MAP BIT(29)
58#define __EXEC_OBJECT_NEEDS_BIAS BIT(28)
59#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */
2889caa9
CW
60
61#define __EXEC_HAS_RELOC BIT(31)
003d8b91 62#define __EXEC_INTERNAL_FLAGS (~0u << 31)
2889caa9 63#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
64
65#define BATCH_OFFSET_BIAS (256*1024)
a415d355 66
650bc635 67#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
68 (__I915_EXEC_UNKNOWN_FLAGS | \
69 I915_EXEC_CONSTANTS_MASK | \
70 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 71
d20ac620
CW
72/* Catch emission of unexpected errors for CI! */
73#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
74#undef EINVAL
75#define EINVAL ({ \
76 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
77 22; \
78})
79#endif
80
2889caa9
CW
81/**
82 * DOC: User command execution
83 *
84 * Userspace submits commands to be executed on the GPU as an instruction
85 * stream within a GEM object we call a batchbuffer. This instructions may
86 * refer to other GEM objects containing auxiliary state such as kernels,
87 * samplers, render targets and even secondary batchbuffers. Userspace does
88 * not know where in the GPU memory these objects reside and so before the
89 * batchbuffer is passed to the GPU for execution, those addresses in the
90 * batchbuffer and auxiliary objects are updated. This is known as relocation,
91 * or patching. To try and avoid having to relocate each object on the next
92 * execution, userspace is told the location of those objects in this pass,
93 * but this remains just a hint as the kernel may choose a new location for
94 * any object in the future.
95 *
99d7e4ee
KR
96 * At the level of talking to the hardware, submitting a batchbuffer for the
97 * GPU to execute is to add content to a buffer from which the HW
98 * command streamer is reading.
99 *
100 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
101 * Execlists, this command is not placed on the same buffer as the
102 * remaining items.
103 *
104 * 2. Add a command to invalidate caches to the buffer.
105 *
106 * 3. Add a batchbuffer start command to the buffer; the start command is
107 * essentially a token together with the GPU address of the batchbuffer
108 * to be executed.
109 *
110 * 4. Add a pipeline flush to the buffer.
111 *
112 * 5. Add a memory write command to the buffer to record when the GPU
113 * is done executing the batchbuffer. The memory write writes the
114 * global sequence number of the request, ``i915_request::global_seqno``;
115 * the i915 driver uses the current value in the register to determine
116 * if the GPU has completed the batchbuffer.
117 *
118 * 6. Add a user interrupt command to the buffer. This command instructs
119 * the GPU to issue an interrupt when the command, pipeline flush and
120 * memory write are completed.
121 *
122 * 7. Inform the hardware of the additional commands added to the buffer
123 * (by updating the tail pointer).
124 *
2889caa9
CW
125 * Processing an execbuf ioctl is conceptually split up into a few phases.
126 *
127 * 1. Validation - Ensure all the pointers, handles and flags are valid.
128 * 2. Reservation - Assign GPU address space for every object
129 * 3. Relocation - Update any addresses to point to the final locations
130 * 4. Serialisation - Order the request with respect to its dependencies
131 * 5. Construction - Construct a request to execute the batchbuffer
132 * 6. Submission (at some point in the future execution)
133 *
134 * Reserving resources for the execbuf is the most complicated phase. We
135 * neither want to have to migrate the object in the address space, nor do
136 * we want to have to update any relocations pointing to this object. Ideally,
137 * we want to leave the object where it is and for all the existing relocations
138 * to match. If the object is given a new address, or if userspace thinks the
139 * object is elsewhere, we have to parse all the relocation entries and update
140 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
141 * all the target addresses in all of its objects match the value in the
142 * relocation entries and that they all match the presumed offsets given by the
143 * list of execbuffer objects. Using this knowledge, we know that if we haven't
144 * moved any buffers, all the relocation entries are valid and we can skip
145 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
146 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
147 *
148 * The addresses written in the objects must match the corresponding
149 * reloc.presumed_offset which in turn must match the corresponding
150 * execobject.offset.
151 *
152 * Any render targets written to in the batch must be flagged with
153 * EXEC_OBJECT_WRITE.
154 *
155 * To avoid stalling, execobject.offset should match the current
156 * address of that object within the active context.
157 *
158 * The reservation is done is multiple phases. First we try and keep any
159 * object already bound in its current location - so as long as meets the
160 * constraints imposed by the new execbuffer. Any object left unbound after the
161 * first pass is then fitted into any available idle space. If an object does
162 * not fit, all objects are removed from the reservation and the process rerun
163 * after sorting the objects into a priority order (more difficult to fit
164 * objects are tried first). Failing that, the entire VM is cleared and we try
165 * to fit the execbuf once last time before concluding that it simply will not
166 * fit.
167 *
168 * A small complication to all of this is that we allow userspace not only to
169 * specify an alignment and a size for the object in the address space, but
170 * we also allow userspace to specify the exact offset. This objects are
171 * simpler to place (the location is known a priori) all we have to do is make
172 * sure the space is available.
173 *
174 * Once all the objects are in place, patching up the buried pointers to point
175 * to the final locations is a fairly simple job of walking over the relocation
176 * entry arrays, looking up the right address and rewriting the value into
177 * the object. Simple! ... The relocation entries are stored in user memory
178 * and so to access them we have to copy them into a local buffer. That copy
179 * has to avoid taking any pagefaults as they may lead back to a GEM object
180 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
181 * the relocation into multiple passes. First we try to do everything within an
182 * atomic context (avoid the pagefaults) which requires that we never wait. If
183 * we detect that we may wait, or if we need to fault, then we have to fallback
184 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
185 * bells yet?) Dropping the mutex means that we lose all the state we have
186 * built up so far for the execbuf and we must reset any global data. However,
187 * we do leave the objects pinned in their final locations - which is a
188 * potential issue for concurrent execbufs. Once we have left the mutex, we can
189 * allocate and copy all the relocation entries into a large array at our
190 * leisure, reacquire the mutex, reclaim all the objects and other state and
191 * then proceed to update any incorrect addresses with the objects.
192 *
193 * As we process the relocation entries, we maintain a record of whether the
194 * object is being written to. Using NORELOC, we expect userspace to provide
195 * this information instead. We also check whether we can skip the relocation
196 * by comparing the expected value inside the relocation entry with the target's
197 * final address. If they differ, we have to map the current object and rewrite
198 * the 4 or 8 byte pointer within.
199 *
200 * Serialising an execbuf is quite simple according to the rules of the GEM
201 * ABI. Execution within each context is ordered by the order of submission.
202 * Writes to any GEM object are in order of submission and are exclusive. Reads
203 * from a GEM object are unordered with respect to other reads, but ordered by
204 * writes. A write submitted after a read cannot occur before the read, and
205 * similarly any read submitted after a write cannot occur before the write.
206 * Writes are ordered between engines such that only one write occurs at any
207 * time (completing any reads beforehand) - using semaphores where available
208 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
209 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
210 * reads before starting, and any read (either using set-domain or pread) must
211 * flush all GPU writes before starting. (Note we only employ a barrier before,
212 * we currently rely on userspace not concurrently starting a new execution
213 * whilst reading or writing to an object. This may be an advantage or not
214 * depending on how much you trust userspace not to shoot themselves in the
215 * foot.) Serialisation may just result in the request being inserted into
216 * a DAG awaiting its turn, but most simple is to wait on the CPU until
217 * all dependencies are resolved.
218 *
219 * After all of that, is just a matter of closing the request and handing it to
220 * the hardware (well, leaving it in a queue to be executed). However, we also
221 * offer the ability for batchbuffers to be run with elevated privileges so
222 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
223 * Before any batch is given extra privileges we first must check that it
224 * contains no nefarious instructions, we check that each instruction is from
225 * our whitelist and all registers are also from an allowed list. We first
226 * copy the user's batchbuffer to a shadow (so that the user doesn't have
227 * access to it, either by the CPU or GPU as we scan it) and then parse each
228 * instruction. If everything is ok, we set a flag telling the hardware to run
229 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
230 */
231
650bc635 232struct i915_execbuffer {
2889caa9
CW
233 struct drm_i915_private *i915; /** i915 backpointer */
234 struct drm_file *file; /** per-file lookup tables and limits */
235 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
236 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 237 struct eb_vma *vma;
2889caa9
CW
238
239 struct intel_engine_cs *engine; /** engine to queue the request to */
8f2a1057
CW
240 struct intel_context *context; /* logical state for the request */
241 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 242
e61e0f51 243 struct i915_request *request; /** our request to build */
7d6236bb 244 struct eb_vma *batch; /** identity of the batch obj/vma */
32d94048 245 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9
CW
246
247 /** actual size of execobj[] as we may extend it for the cmdparser */
248 unsigned int buffer_count;
249
250 /** list of vma not yet bound during reservation phase */
251 struct list_head unbound;
252
253 /** list of vma that have execobj.relocation_count */
254 struct list_head relocs;
255
256 /**
257 * Track the most recently used object for relocations, as we
258 * frequently have to perform multiple relocations within the same
259 * obj/page
260 */
650bc635 261 struct reloc_cache {
2889caa9
CW
262 struct drm_mm_node node; /** temporary GTT binding */
263 unsigned long vaddr; /** Current kmap address */
264 unsigned long page; /** Currently mapped page index */
7dd4f672 265 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 266 bool use_64bit_reloc : 1;
2889caa9
CW
267 bool has_llc : 1;
268 bool has_fence : 1;
269 bool needs_unfenced : 1;
7dd4f672 270
0e97fbb0 271 struct i915_vma *target;
e61e0f51 272 struct i915_request *rq;
964a9b0f 273 struct i915_vma *rq_vma;
7dd4f672
CW
274 u32 *rq_cmd;
275 unsigned int rq_size;
650bc635 276 } reloc_cache;
2889caa9
CW
277
278 u64 invalid_flags; /** Set of execobj.flags that are invalid */
279 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
280
281 u32 batch_start_offset; /** Location within object of batch */
282 u32 batch_len; /** Length of batch within object */
283 u32 batch_flags; /** Flags composed for emit_bb_start() */
284
285 /**
286 * Indicate either the size of the hastable used to resolve
287 * relocation handles, or if negative that we are using a direct
288 * index into the execobj[].
289 */
290 int lut_size;
291 struct hlist_head *buckets; /** ht for relocation handles */
0f1dd022 292 struct eb_vma_array *array;
67731b87
CW
293};
294
3dbf26ed
CW
295static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
296{
311a50e7 297 return intel_engine_requires_cmd_parser(eb->engine) ||
435e8fc0
JB
298 (intel_engine_using_cmd_parser(eb->engine) &&
299 eb->args->batch_len);
3dbf26ed
CW
300}
301
0f1dd022
CW
302static struct eb_vma_array *eb_vma_array_create(unsigned int count)
303{
304 struct eb_vma_array *arr;
305
306 arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
307 if (!arr)
308 return NULL;
309
310 kref_init(&arr->kref);
311 arr->vma[0].vma = NULL;
312
313 return arr;
314}
315
316static inline void eb_unreserve_vma(struct eb_vma *ev)
317{
318 struct i915_vma *vma = ev->vma;
319
320 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
321 __i915_vma_unpin_fence(vma);
322
323 if (ev->flags & __EXEC_OBJECT_HAS_PIN)
324 __i915_vma_unpin(vma);
325
326 ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
327 __EXEC_OBJECT_HAS_FENCE);
328}
329
330static void eb_vma_array_destroy(struct kref *kref)
331{
332 struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
333 struct eb_vma *ev = arr->vma;
334
335 while (ev->vma) {
336 eb_unreserve_vma(ev);
337 i915_vma_put(ev->vma);
338 ev++;
339 }
340
341 kvfree(arr);
342}
343
344static void eb_vma_array_put(struct eb_vma_array *arr)
345{
346 kref_put(&arr->kref, eb_vma_array_destroy);
347}
348
650bc635 349static int eb_create(struct i915_execbuffer *eb)
67731b87 350{
0f1dd022
CW
351 /* Allocate an extra slot for use by the command parser + sentinel */
352 eb->array = eb_vma_array_create(eb->buffer_count + 2);
353 if (!eb->array)
354 return -ENOMEM;
355
356 eb->vma = eb->array->vma;
357
2889caa9
CW
358 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
359 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 360
2889caa9
CW
361 /*
362 * Without a 1:1 association between relocation handles and
363 * the execobject[] index, we instead create a hashtable.
364 * We size it dynamically based on available memory, starting
365 * first with 1:1 assocative hash and scaling back until
366 * the allocation succeeds.
367 *
368 * Later on we use a positive lut_size to indicate we are
369 * using this hashtable, and a negative value to indicate a
370 * direct lookup.
371 */
4ff4b44c 372 do {
0d95c883 373 gfp_t flags;
4d470f73
CW
374
375 /* While we can still reduce the allocation size, don't
376 * raise a warning and allow the allocation to fail.
377 * On the last pass though, we want to try as hard
378 * as possible to perform the allocation and warn
379 * if it fails.
380 */
0ee931c4 381 flags = GFP_KERNEL;
4d470f73
CW
382 if (size > 1)
383 flags |= __GFP_NORETRY | __GFP_NOWARN;
384
4ff4b44c 385 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 386 flags);
4ff4b44c
CW
387 if (eb->buckets)
388 break;
389 } while (--size);
390
0f1dd022
CW
391 if (unlikely(!size)) {
392 eb_vma_array_put(eb->array);
4d470f73 393 return -ENOMEM;
0f1dd022 394 }
eef90ccb 395
2889caa9 396 eb->lut_size = size;
650bc635 397 } else {
2889caa9 398 eb->lut_size = -eb->buffer_count;
650bc635 399 }
eef90ccb 400
650bc635 401 return 0;
67731b87
CW
402}
403
2889caa9
CW
404static bool
405eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
406 const struct i915_vma *vma,
407 unsigned int flags)
2889caa9 408{
2889caa9
CW
409 if (vma->node.size < entry->pad_to_size)
410 return true;
411
412 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
413 return true;
414
c7c6e46f 415 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
416 vma->node.start != entry->offset)
417 return true;
418
c7c6e46f 419 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
420 vma->node.start < BATCH_OFFSET_BIAS)
421 return true;
422
c7c6e46f 423 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
424 (vma->node.start + vma->node.size - 1) >> 32)
425 return true;
426
1d033beb
CW
427 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
428 !i915_vma_is_map_and_fenceable(vma))
429 return true;
430
2889caa9
CW
431 return false;
432}
433
8a338f4b
CW
434static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
435 unsigned int exec_flags)
436{
437 u64 pin_flags = 0;
438
439 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
440 pin_flags |= PIN_GLOBAL;
441
442 /*
443 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
444 * limit address to the first 4GBs for unflagged objects.
445 */
446 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
447 pin_flags |= PIN_ZONE_4G;
448
449 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
450 pin_flags |= PIN_MAPPABLE;
451
452 if (exec_flags & EXEC_OBJECT_PINNED)
453 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
454 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
455 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
456
457 return pin_flags;
458}
459
c7c6e46f 460static inline bool
2889caa9 461eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 462 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 463 struct eb_vma *ev)
2889caa9 464{
7d6236bb 465 struct i915_vma *vma = ev->vma;
c7c6e46f 466 u64 pin_flags;
2889caa9 467
616d9cee 468 if (vma->node.size)
c7c6e46f 469 pin_flags = vma->node.start;
616d9cee 470 else
c7c6e46f 471 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 472
c7c6e46f 473 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
7d6236bb 474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 475 pin_flags |= PIN_GLOBAL;
616d9cee 476
8a338f4b
CW
477 /* Attempt to reuse the current location if available */
478 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
479 if (entry->flags & EXEC_OBJECT_PINNED)
480 return false;
481
482 /* Failing that pick any _free_ space if suitable */
483 if (unlikely(i915_vma_pin(vma,
484 entry->pad_to_size,
485 entry->alignment,
486 eb_pin_flags(entry, ev->flags) |
487 PIN_USER | PIN_NOEVICT)))
488 return false;
489 }
2889caa9 490
7d6236bb 491 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 492 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 493 i915_vma_unpin(vma);
c7c6e46f 494 return false;
2889caa9
CW
495 }
496
3bd40735 497 if (vma->fence)
7d6236bb 498 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
499 }
500
7d6236bb
CW
501 ev->flags |= __EXEC_OBJECT_HAS_PIN;
502 return !eb_vma_misplaced(entry, vma, ev->flags);
2889caa9
CW
503}
504
2889caa9
CW
505static int
506eb_validate_vma(struct i915_execbuffer *eb,
507 struct drm_i915_gem_exec_object2 *entry,
508 struct i915_vma *vma)
67731b87 509{
2889caa9
CW
510 if (unlikely(entry->flags & eb->invalid_flags))
511 return -EINVAL;
d55495b4 512
2920516b
MA
513 if (unlikely(entry->alignment &&
514 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
515 return -EINVAL;
516
517 /*
518 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519 * any non-page-aligned or non-canonical addresses.
520 */
521 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 522 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
523 return -EINVAL;
524
525 /* pad_to_size was once a reserved field, so sanitize it */
526 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527 if (unlikely(offset_in_page(entry->pad_to_size)))
528 return -EINVAL;
529 } else {
530 entry->pad_to_size = 0;
d55495b4 531 }
2889caa9
CW
532 /*
533 * From drm_mm perspective address space is continuous,
534 * so from this point we're always using non-canonical
535 * form internally.
536 */
537 entry->offset = gen8_noncanonical_addr(entry->offset);
538
c7c6e46f
CW
539 if (!eb->reloc_cache.has_fence) {
540 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541 } else {
542 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543 eb->reloc_cache.needs_unfenced) &&
544 i915_gem_object_is_tiled(vma->obj))
545 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546 }
547
548 if (!(entry->flags & EXEC_OBJECT_PINNED))
549 entry->flags |= eb->context_flags;
550
2889caa9 551 return 0;
67731b87
CW
552}
553
003d8b91 554static void
746c8f14
CW
555eb_add_vma(struct i915_execbuffer *eb,
556 unsigned int i, unsigned batch_idx,
557 struct i915_vma *vma)
59bfa124 558{
c7c6e46f 559 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 560 struct eb_vma *ev = &eb->vma[i];
2889caa9
CW
561
562 GEM_BUG_ON(i915_vma_is_closed(vma));
563
93159e12 564 ev->vma = vma;
7d6236bb
CW
565 ev->exec = entry;
566 ev->flags = entry->flags;
567
4d470f73 568 if (eb->lut_size > 0) {
7d6236bb
CW
569 ev->handle = entry->handle;
570 hlist_add_head(&ev->node,
2889caa9
CW
571 &eb->buckets[hash_32(entry->handle,
572 eb->lut_size)]);
4ff4b44c 573 }
59bfa124 574
2889caa9 575 if (entry->relocation_count)
7d6236bb 576 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 577
746c8f14
CW
578 /*
579 * SNA is doing fancy tricks with compressing batch buffers, which leads
580 * to negative relocation deltas. Usually that works out ok since the
581 * relocate address is still positive, except when the batch is placed
582 * very low in the GTT. Ensure this doesn't happen.
583 *
584 * Note that actual hangs have only been observed on gen7, but for
585 * paranoia do it everywhere.
586 */
587 if (i == batch_idx) {
827db9d8 588 if (entry->relocation_count &&
7d6236bb
CW
589 !(ev->flags & EXEC_OBJECT_PINNED))
590 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 591 if (eb->reloc_cache.has_fence)
7d6236bb 592 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 593
7d6236bb 594 eb->batch = ev;
746c8f14
CW
595 }
596
7d6236bb 597 if (eb_pin_vma(eb, entry, ev)) {
2889caa9
CW
598 if (entry->offset != vma->node.start) {
599 entry->offset = vma->node.start | UPDATE;
600 eb->args->flags |= __EXEC_HAS_RELOC;
601 }
c7c6e46f 602 } else {
7d6236bb 603 eb_unreserve_vma(ev);
7d6236bb 604 list_add_tail(&ev->bind_link, &eb->unbound);
2889caa9 605 }
2889caa9
CW
606}
607
608static inline int use_cpu_reloc(const struct reloc_cache *cache,
609 const struct drm_i915_gem_object *obj)
610{
611 if (!i915_gem_object_has_struct_page(obj))
612 return false;
613
7dd4f672
CW
614 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
615 return true;
616
617 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
618 return false;
2889caa9
CW
619
620 return (cache->has_llc ||
621 obj->cache_dirty ||
622 obj->cache_level != I915_CACHE_NONE);
623}
624
625static int eb_reserve_vma(const struct i915_execbuffer *eb,
7d6236bb 626 struct eb_vma *ev,
2920bb94 627 u64 pin_flags)
2889caa9 628{
7d6236bb 629 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 630 struct i915_vma *vma = ev->vma;
2889caa9
CW
631 int err;
632
003d8b91
CW
633 if (drm_mm_node_allocated(&vma->node) &&
634 eb_vma_misplaced(entry, vma, ev->flags)) {
635 err = i915_vma_unbind(vma);
636 if (err)
637 return err;
638 }
639
c7c6e46f
CW
640 err = i915_vma_pin(vma,
641 entry->pad_to_size, entry->alignment,
8a338f4b 642 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
643 if (err)
644 return err;
645
646 if (entry->offset != vma->node.start) {
647 entry->offset = vma->node.start | UPDATE;
648 eb->args->flags |= __EXEC_HAS_RELOC;
649 }
650
8a338f4b 651 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 652 err = i915_vma_pin_fence(vma);
2889caa9
CW
653 if (unlikely(err)) {
654 i915_vma_unpin(vma);
655 return err;
656 }
657
3bd40735 658 if (vma->fence)
8a338f4b 659 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
660 }
661
8a338f4b 662 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 663 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 664
2889caa9
CW
665 return 0;
666}
667
668static int eb_reserve(struct i915_execbuffer *eb)
669{
670 const unsigned int count = eb->buffer_count;
2920bb94 671 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
2889caa9 672 struct list_head last;
7d6236bb 673 struct eb_vma *ev;
2889caa9 674 unsigned int i, pass;
ef398881 675 int err = 0;
2889caa9
CW
676
677 /*
678 * Attempt to pin all of the buffers into the GTT.
679 * This is done in 3 phases:
680 *
681 * 1a. Unbind all objects that do not match the GTT constraints for
682 * the execbuffer (fenceable, mappable, alignment etc).
683 * 1b. Increment pin count for already bound objects.
684 * 2. Bind new objects.
685 * 3. Decrement pin count.
686 *
687 * This avoid unnecessary unbinding of later objects in order to make
688 * room for the earlier objects *unless* we need to defragment.
689 */
690
ef398881
CW
691 if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
692 return -EINTR;
693
2889caa9 694 pass = 0;
2889caa9 695 do {
7d6236bb
CW
696 list_for_each_entry(ev, &eb->unbound, bind_link) {
697 err = eb_reserve_vma(eb, ev, pin_flags);
2889caa9
CW
698 if (err)
699 break;
700 }
003d8b91 701 if (!(err == -ENOSPC || err == -EAGAIN))
ef398881 702 break;
2889caa9
CW
703
704 /* Resort *all* the objects into priority order */
705 INIT_LIST_HEAD(&eb->unbound);
706 INIT_LIST_HEAD(&last);
707 for (i = 0; i < count; i++) {
7d6236bb 708 unsigned int flags;
2889caa9 709
7d6236bb
CW
710 ev = &eb->vma[i];
711 flags = ev->flags;
c7c6e46f
CW
712 if (flags & EXEC_OBJECT_PINNED &&
713 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
714 continue;
715
7d6236bb 716 eb_unreserve_vma(ev);
2889caa9 717
c7c6e46f 718 if (flags & EXEC_OBJECT_PINNED)
35e882a4 719 /* Pinned must have their slot */
7d6236bb 720 list_add(&ev->bind_link, &eb->unbound);
c7c6e46f 721 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 722 /* Map require the lowest 256MiB (aperture) */
7d6236bb 723 list_add_tail(&ev->bind_link, &eb->unbound);
35e882a4
CW
724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
725 /* Prioritise 4GiB region for restricted bo */
7d6236bb 726 list_add(&ev->bind_link, &last);
2889caa9 727 else
7d6236bb 728 list_add_tail(&ev->bind_link, &last);
2889caa9
CW
729 }
730 list_splice_tail(&last, &eb->unbound);
731
003d8b91 732 if (err == -EAGAIN) {
ef398881 733 mutex_unlock(&eb->i915->drm.struct_mutex);
003d8b91 734 flush_workqueue(eb->i915->mm.userptr_wq);
ef398881 735 mutex_lock(&eb->i915->drm.struct_mutex);
003d8b91
CW
736 continue;
737 }
738
2889caa9
CW
739 switch (pass++) {
740 case 0:
741 break;
742
743 case 1:
744 /* Too fragmented, unbind everything and retry */
2850748e 745 mutex_lock(&eb->context->vm->mutex);
f5d974f9 746 err = i915_gem_evict_vm(eb->context->vm);
2850748e 747 mutex_unlock(&eb->context->vm->mutex);
2889caa9 748 if (err)
ef398881 749 goto unlock;
2889caa9
CW
750 break;
751
752 default:
ef398881
CW
753 err = -ENOSPC;
754 goto unlock;
2889caa9 755 }
2920bb94
CW
756
757 pin_flags = PIN_USER;
2889caa9 758 } while (1);
ef398881
CW
759
760unlock:
761 mutex_unlock(&eb->i915->drm.struct_mutex);
762 return err;
4ff4b44c 763}
59bfa124 764
2889caa9
CW
765static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
766{
1a71cf2f
CW
767 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
768 return 0;
769 else
770 return eb->buffer_count - 1;
2889caa9
CW
771}
772
773static int eb_select_context(struct i915_execbuffer *eb)
774{
775 struct i915_gem_context *ctx;
776
777 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
778 if (unlikely(!ctx))
779 return -ENOENT;
2889caa9 780
8f2a1057 781 eb->gem_context = ctx;
a4e7ccda 782 if (rcu_access_pointer(ctx->vm))
4f2c7337 783 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9
CW
784
785 eb->context_flags = 0;
d3f3e5e4 786 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
2889caa9
CW
787 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
788
789 return 0;
790}
791
93159e12
CW
792static int __eb_add_lut(struct i915_execbuffer *eb,
793 u32 handle, struct i915_vma *vma)
3b96eff4 794{
93159e12
CW
795 struct i915_gem_context *ctx = eb->gem_context;
796 struct i915_lut_handle *lut;
2889caa9 797 int err;
3b96eff4 798
93159e12
CW
799 lut = i915_lut_handle_alloc();
800 if (unlikely(!lut))
801 return -ENOMEM;
802
803 i915_vma_get(vma);
804 if (!atomic_fetch_inc(&vma->open_count))
805 i915_vma_reopen(vma);
806 lut->handle = handle;
807 lut->ctx = ctx;
808
809 /* Check that the context hasn't been closed in the meantime */
810 err = -EINTR;
811 if (!mutex_lock_interruptible(&ctx->mutex)) {
812 err = -ENOENT;
813 if (likely(!i915_gem_context_is_closed(ctx)))
814 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
815 if (err == 0) { /* And nor has this handle */
816 struct drm_i915_gem_object *obj = vma->obj;
817
818 i915_gem_object_lock(obj);
819 if (idr_find(&eb->file->object_idr, handle) == obj) {
820 list_add(&lut->obj_link, &obj->lut_list);
821 } else {
822 radix_tree_delete(&ctx->handles_vma, handle);
823 err = -ENOENT;
824 }
825 i915_gem_object_unlock(obj);
826 }
827 mutex_unlock(&ctx->mutex);
828 }
829 if (unlikely(err))
830 goto err;
003d8b91 831
93159e12 832 return 0;
d55495b4 833
93159e12 834err:
50689771 835 i915_vma_close(vma);
93159e12
CW
836 i915_vma_put(vma);
837 i915_lut_handle_free(lut);
838 return err;
839}
746c8f14 840
93159e12
CW
841static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842{
843 do {
844 struct drm_i915_gem_object *obj;
170fa29b 845 struct i915_vma *vma;
93159e12 846 int err;
4ff4b44c 847
93159e12
CW
848 rcu_read_lock();
849 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
d1b48c1e 850 if (likely(vma))
93159e12
CW
851 vma = i915_vma_tryget(vma);
852 rcu_read_unlock();
853 if (likely(vma))
854 return vma;
4ff4b44c 855
170fa29b 856 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
857 if (unlikely(!obj))
858 return ERR_PTR(-ENOENT);
3b96eff4 859
f5d974f9 860 vma = i915_vma_instance(obj, eb->context->vm, NULL);
772b5408 861 if (IS_ERR(vma)) {
93159e12
CW
862 i915_gem_object_put(obj);
863 return vma;
27173f1f
BW
864 }
865
93159e12
CW
866 err = __eb_add_lut(eb, handle, vma);
867 if (likely(!err))
868 return vma;
d1b48c1e 869
93159e12
CW
870 i915_gem_object_put(obj);
871 if (err != -EEXIST)
872 return ERR_PTR(err);
873 } while (1);
874}
4ff4b44c 875
93159e12
CW
876static int eb_lookup_vmas(struct i915_execbuffer *eb)
877{
878 unsigned int batch = eb_batch_index(eb);
879 unsigned int i;
880 int err = 0;
155ab883 881
93159e12
CW
882 INIT_LIST_HEAD(&eb->relocs);
883 INIT_LIST_HEAD(&eb->unbound);
884
885 for (i = 0; i < eb->buffer_count; i++) {
886 struct i915_vma *vma;
887
888 vma = eb_lookup_vma(eb, eb->exec[i].handle);
889 if (IS_ERR(vma)) {
890 err = PTR_ERR(vma);
891 break;
892 }
d1b48c1e 893
003d8b91 894 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
895 if (unlikely(err)) {
896 i915_vma_put(vma);
897 break;
898 }
dade2a61 899
003d8b91 900 eb_add_vma(eb, i, batch, vma);
4ff4b44c
CW
901 }
902
7d6236bb 903 eb->vma[i].vma = NULL;
2889caa9 904 return err;
3b96eff4
CW
905}
906
7d6236bb 907static struct eb_vma *
2889caa9 908eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 909{
2889caa9
CW
910 if (eb->lut_size < 0) {
911 if (handle >= -eb->lut_size)
eef90ccb 912 return NULL;
7d6236bb 913 return &eb->vma[handle];
eef90ccb
CW
914 } else {
915 struct hlist_head *head;
7d6236bb 916 struct eb_vma *ev;
67731b87 917
2889caa9 918 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
919 hlist_for_each_entry(ev, head, node) {
920 if (ev->handle == handle)
921 return ev;
eef90ccb
CW
922 }
923 return NULL;
924 }
67731b87
CW
925}
926
2889caa9 927static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 928{
7dd4f672
CW
929 GEM_BUG_ON(eb->reloc_cache.rq);
930
0f1dd022
CW
931 if (eb->array)
932 eb_vma_array_put(eb->array);
933
4d470f73 934 if (eb->lut_size > 0)
2889caa9 935 kfree(eb->buckets);
934acce3
MW
936}
937
2889caa9 938static inline u64
d50415cc 939relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 940 const struct i915_vma *target)
934acce3 941{
2889caa9 942 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
943}
944
d50415cc
CW
945static void reloc_cache_init(struct reloc_cache *cache,
946 struct drm_i915_private *i915)
5032d871 947{
31a39207 948 cache->page = -1;
d50415cc 949 cache->vaddr = 0;
dfc5148f 950 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 951 cache->gen = INTEL_GEN(i915);
2889caa9 952 cache->has_llc = HAS_LLC(i915);
dfc5148f 953 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
954 cache->has_fence = cache->gen < 4;
955 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 956 cache->node.flags = 0;
7dd4f672 957 cache->rq = NULL;
e3d29130 958 cache->target = NULL;
d50415cc 959}
5032d871 960
d50415cc
CW
961static inline void *unmask_page(unsigned long p)
962{
963 return (void *)(uintptr_t)(p & PAGE_MASK);
964}
965
966static inline unsigned int unmask_flags(unsigned long p)
967{
968 return p & ~PAGE_MASK;
31a39207
CW
969}
970
d50415cc
CW
971#define KMAP 0x4 /* after CLFLUSH_FLAGS */
972
650bc635
CW
973static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
974{
975 struct drm_i915_private *i915 =
976 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
977 return &i915->ggtt;
978}
979
964a9b0f
CW
980#define RELOC_TAIL 4
981
982static int reloc_gpu_chain(struct reloc_cache *cache)
983{
984 struct intel_gt_buffer_pool_node *pool;
985 struct i915_request *rq = cache->rq;
986 struct i915_vma *batch;
987 u32 *cmd;
988 int err;
989
990 pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
991 if (IS_ERR(pool))
992 return PTR_ERR(pool);
993
994 batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
995 if (IS_ERR(batch)) {
996 err = PTR_ERR(batch);
997 goto out_pool;
998 }
999
1000 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1001 if (err)
1002 goto out_pool;
1003
1004 GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE / sizeof(u32));
1005 cmd = cache->rq_cmd + cache->rq_size;
1006 *cmd++ = MI_ARB_CHECK;
f5b62bdb 1007 if (cache->gen >= 8)
964a9b0f 1008 *cmd++ = MI_BATCH_BUFFER_START_GEN8;
f5b62bdb 1009 else if (cache->gen >= 6)
964a9b0f 1010 *cmd++ = MI_BATCH_BUFFER_START;
f5b62bdb
CW
1011 else
1012 *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1013 *cmd++ = lower_32_bits(batch->node.start);
1014 *cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
964a9b0f
CW
1015 i915_gem_object_flush_map(cache->rq_vma->obj);
1016 i915_gem_object_unpin_map(cache->rq_vma->obj);
1017 cache->rq_vma = NULL;
1018
1019 err = intel_gt_buffer_pool_mark_active(pool, rq);
1020 if (err == 0) {
1021 i915_vma_lock(batch);
1022 err = i915_request_await_object(rq, batch->obj, false);
1023 if (err == 0)
1024 err = i915_vma_move_to_active(batch, rq, 0);
1025 i915_vma_unlock(batch);
1026 }
1027 i915_vma_unpin(batch);
1028 if (err)
1029 goto out_pool;
1030
1031 cmd = i915_gem_object_pin_map(batch->obj,
1032 cache->has_llc ?
1033 I915_MAP_FORCE_WB :
1034 I915_MAP_FORCE_WC);
1035 if (IS_ERR(cmd)) {
1036 err = PTR_ERR(cmd);
1037 goto out_pool;
1038 }
1039
1040 /* Return with batch mapping (cmd) still pinned */
1041 cache->rq_cmd = cmd;
1042 cache->rq_size = 0;
1043 cache->rq_vma = batch;
1044
1045out_pool:
1046 intel_gt_buffer_pool_put(pool);
1047 return err;
1048}
1049
1050static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
1051{
1052 return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
1053}
1054
0e97fbb0 1055static int reloc_gpu_flush(struct reloc_cache *cache)
7dd4f672 1056{
964a9b0f
CW
1057 struct i915_request *rq;
1058 int err;
30c88a47 1059
964a9b0f
CW
1060 rq = fetch_and_zero(&cache->rq);
1061 if (!rq)
0e97fbb0 1062 return 0;
a679f58d 1063
964a9b0f
CW
1064 if (cache->rq_vma) {
1065 struct drm_i915_gem_object *obj = cache->rq_vma->obj;
a679f58d 1066
964a9b0f
CW
1067 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1068 cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
7dd4f672 1069
964a9b0f
CW
1070 __i915_gem_object_flush_map(obj,
1071 0, sizeof(u32) * cache->rq_size);
1072 i915_gem_object_unpin_map(obj);
1073 }
1074
1075 err = 0;
1076 if (rq->engine->emit_init_breadcrumb)
1077 err = rq->engine->emit_init_breadcrumb(rq);
1078 if (!err)
1079 err = rq->engine->emit_bb_start(rq,
1080 rq->batch->node.start,
1081 PAGE_SIZE,
1082 reloc_bb_flags(cache));
1083 if (err)
1084 i915_request_set_error_once(rq, err);
1085
1086 intel_gt_chipset_flush(rq->engine->gt);
1087 i915_request_add(rq);
0e97fbb0
CW
1088
1089 return err;
7dd4f672
CW
1090}
1091
650bc635 1092static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 1093{
d50415cc 1094 void *vaddr;
5032d871 1095
31a39207
CW
1096 if (!cache->vaddr)
1097 return;
3c94ceee 1098
d50415cc
CW
1099 vaddr = unmask_page(cache->vaddr);
1100 if (cache->vaddr & KMAP) {
1101 if (cache->vaddr & CLFLUSH_AFTER)
1102 mb();
3c94ceee 1103
d50415cc 1104 kunmap_atomic(vaddr);
f0e4a063 1105 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
d50415cc 1106 } else {
576f0586
CW
1107 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1108
1109 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
d50415cc 1110 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 1111
b290a78b 1112 if (drm_mm_node_allocated(&cache->node)) {
82ad6443
CW
1113 ggtt->vm.clear_range(&ggtt->vm,
1114 cache->node.start,
1115 cache->node.size);
2850748e 1116 mutex_lock(&ggtt->vm.mutex);
e8cb909a 1117 drm_mm_remove_node(&cache->node);
2850748e 1118 mutex_unlock(&ggtt->vm.mutex);
e8cb909a
CW
1119 } else {
1120 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 1121 }
31a39207 1122 }
650bc635
CW
1123
1124 cache->vaddr = 0;
1125 cache->page = -1;
31a39207
CW
1126}
1127
1128static void *reloc_kmap(struct drm_i915_gem_object *obj,
1129 struct reloc_cache *cache,
2889caa9 1130 unsigned long page)
31a39207 1131{
d50415cc
CW
1132 void *vaddr;
1133
1134 if (cache->vaddr) {
1135 kunmap_atomic(unmask_page(cache->vaddr));
1136 } else {
1137 unsigned int flushes;
2889caa9 1138 int err;
31a39207 1139
f0e4a063 1140 err = i915_gem_object_prepare_write(obj, &flushes);
2889caa9
CW
1141 if (err)
1142 return ERR_PTR(err);
d50415cc
CW
1143
1144 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1145 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 1146
d50415cc
CW
1147 cache->vaddr = flushes | KMAP;
1148 cache->node.mm = (void *)obj;
1149 if (flushes)
1150 mb();
3c94ceee
BW
1151 }
1152
d50415cc
CW
1153 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1154 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 1155 cache->page = page;
5032d871 1156
d50415cc 1157 return vaddr;
5032d871
RB
1158}
1159
d50415cc
CW
1160static void *reloc_iomap(struct drm_i915_gem_object *obj,
1161 struct reloc_cache *cache,
2889caa9 1162 unsigned long page)
5032d871 1163{
650bc635 1164 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1165 unsigned long offset;
d50415cc 1166 void *vaddr;
5032d871 1167
d50415cc 1168 if (cache->vaddr) {
576f0586 1169 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
615e5000 1170 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
1171 } else {
1172 struct i915_vma *vma;
2889caa9 1173 int err;
5032d871 1174
1f7fd484
CW
1175 if (i915_gem_object_is_tiled(obj))
1176 return ERR_PTR(-EINVAL);
1177
2889caa9 1178 if (use_cpu_reloc(cache, obj))
d50415cc 1179 return NULL;
3c94ceee 1180
6951e589 1181 i915_gem_object_lock(obj);
2889caa9 1182 err = i915_gem_object_set_to_gtt_domain(obj, true);
6951e589 1183 i915_gem_object_unlock(obj);
2889caa9
CW
1184 if (err)
1185 return ERR_PTR(err);
3c94ceee 1186
d50415cc 1187 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
3c755c5b 1188 PIN_MAPPABLE |
6846895f
CW
1189 PIN_NONBLOCK /* NOWARN */ |
1190 PIN_NOEVICT);
e8cb909a
CW
1191 if (IS_ERR(vma)) {
1192 memset(&cache->node, 0, sizeof(cache->node));
2850748e 1193 mutex_lock(&ggtt->vm.mutex);
2889caa9 1194 err = drm_mm_insert_node_in_range
82ad6443 1195 (&ggtt->vm.mm, &cache->node,
f51455d4 1196 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1197 0, ggtt->mappable_end,
4e64e553 1198 DRM_MM_INSERT_LOW);
2850748e 1199 mutex_unlock(&ggtt->vm.mutex);
2889caa9 1200 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1201 return NULL;
e8cb909a 1202 } else {
e8cb909a
CW
1203 cache->node.start = vma->node.start;
1204 cache->node.mm = (void *)vma;
3c94ceee 1205 }
e8cb909a 1206 }
3c94ceee 1207
e8cb909a 1208 offset = cache->node.start;
b290a78b 1209 if (drm_mm_node_allocated(&cache->node)) {
82ad6443
CW
1210 ggtt->vm.insert_page(&ggtt->vm,
1211 i915_gem_object_get_dma_address(obj, page),
1212 offset, I915_CACHE_NONE, 0);
e8cb909a
CW
1213 } else {
1214 offset += page << PAGE_SHIFT;
3c94ceee
BW
1215 }
1216
73ebd503 1217 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
650bc635 1218 offset);
d50415cc
CW
1219 cache->page = page;
1220 cache->vaddr = (unsigned long)vaddr;
5032d871 1221
d50415cc 1222 return vaddr;
5032d871
RB
1223}
1224
d50415cc
CW
1225static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1226 struct reloc_cache *cache,
2889caa9 1227 unsigned long page)
edf4427b 1228{
d50415cc 1229 void *vaddr;
5032d871 1230
d50415cc
CW
1231 if (cache->page == page) {
1232 vaddr = unmask_page(cache->vaddr);
1233 } else {
1234 vaddr = NULL;
1235 if ((cache->vaddr & KMAP) == 0)
1236 vaddr = reloc_iomap(obj, cache, page);
1237 if (!vaddr)
1238 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1239 }
1240
d50415cc 1241 return vaddr;
edf4427b
CW
1242}
1243
d50415cc 1244static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1245{
d50415cc
CW
1246 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1247 if (flushes & CLFLUSH_BEFORE) {
1248 clflushopt(addr);
1249 mb();
1250 }
edf4427b 1251
d50415cc 1252 *addr = value;
edf4427b 1253
2889caa9
CW
1254 /*
1255 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1256 * (including clflush). On the write path, we only require
1257 * that it hits memory in an orderly fashion and place
1258 * mb barriers at the start and end of the relocation phase
1259 * to ensure ordering of clflush wrt to the system.
1260 */
1261 if (flushes & CLFLUSH_AFTER)
1262 clflushopt(addr);
1263 } else
1264 *addr = value;
edf4427b 1265}
edf4427b 1266
6951e589
CW
1267static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1268{
1269 struct drm_i915_gem_object *obj = vma->obj;
1270 int err;
1271
1272 i915_vma_lock(vma);
1273
1274 if (obj->cache_dirty & ~obj->cache_coherent)
1275 i915_gem_clflush_object(obj, 0);
1276 obj->write_domain = 0;
1277
1278 err = i915_request_await_object(rq, vma->obj, true);
1279 if (err == 0)
1280 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1281
1282 i915_vma_unlock(vma);
1283
1284 return err;
1285}
1286
7dd4f672 1287static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
6f576d62 1288 struct intel_engine_cs *engine,
7dd4f672
CW
1289 unsigned int len)
1290{
1291 struct reloc_cache *cache = &eb->reloc_cache;
16e87459 1292 struct intel_gt_buffer_pool_node *pool;
e61e0f51 1293 struct i915_request *rq;
7dd4f672
CW
1294 struct i915_vma *batch;
1295 u32 *cmd;
1296 int err;
1297
6f576d62 1298 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
b40d7378
CW
1299 if (IS_ERR(pool))
1300 return PTR_ERR(pool);
7dd4f672 1301
b40d7378 1302 cmd = i915_gem_object_pin_map(pool->obj,
a575c676
CW
1303 cache->has_llc ?
1304 I915_MAP_FORCE_WB :
1305 I915_MAP_FORCE_WC);
b40d7378
CW
1306 if (IS_ERR(cmd)) {
1307 err = PTR_ERR(cmd);
1308 goto out_pool;
1309 }
7dd4f672 1310
0e97fbb0 1311 batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
7dd4f672
CW
1312 if (IS_ERR(batch)) {
1313 err = PTR_ERR(batch);
1314 goto err_unmap;
1315 }
1316
1317 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1318 if (err)
1319 goto err_unmap;
1320
6f576d62
CW
1321 if (engine == eb->context->engine) {
1322 rq = i915_request_create(eb->context);
1323 } else {
1324 struct intel_context *ce;
1325
1326 ce = intel_context_create(engine);
1327 if (IS_ERR(ce)) {
e3d29130 1328 err = PTR_ERR(ce);
6f576d62
CW
1329 goto err_unpin;
1330 }
1331
1332 i915_vm_put(ce->vm);
1333 ce->vm = i915_vm_get(eb->context->vm);
1334
1335 rq = intel_context_create_request(ce);
1336 intel_context_put(ce);
1337 }
7dd4f672
CW
1338 if (IS_ERR(rq)) {
1339 err = PTR_ERR(rq);
1340 goto err_unpin;
1341 }
1342
16e87459 1343 err = intel_gt_buffer_pool_mark_active(pool, rq);
b40d7378
CW
1344 if (err)
1345 goto err_request;
1346
6951e589 1347 i915_vma_lock(batch);
70d6894d
CW
1348 err = i915_request_await_object(rq, batch->obj, false);
1349 if (err == 0)
1350 err = i915_vma_move_to_active(batch, rq, 0);
6951e589 1351 i915_vma_unlock(batch);
a5236978
CW
1352 if (err)
1353 goto skip_request;
7dd4f672
CW
1354
1355 rq->batch = batch;
a5236978 1356 i915_vma_unpin(batch);
7dd4f672
CW
1357
1358 cache->rq = rq;
1359 cache->rq_cmd = cmd;
1360 cache->rq_size = 0;
964a9b0f 1361 cache->rq_vma = batch;
7dd4f672
CW
1362
1363 /* Return with batch mapping (cmd) still pinned */
b40d7378 1364 goto out_pool;
7dd4f672 1365
a5236978 1366skip_request:
36e191f0 1367 i915_request_set_error_once(rq, err);
7dd4f672 1368err_request:
e61e0f51 1369 i915_request_add(rq);
7dd4f672
CW
1370err_unpin:
1371 i915_vma_unpin(batch);
1372err_unmap:
b40d7378
CW
1373 i915_gem_object_unpin_map(pool->obj);
1374out_pool:
16e87459 1375 intel_gt_buffer_pool_put(pool);
7dd4f672
CW
1376 return err;
1377}
1378
e3d29130
CW
1379static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1380{
1381 return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1382}
1383
7dd4f672
CW
1384static u32 *reloc_gpu(struct i915_execbuffer *eb,
1385 struct i915_vma *vma,
1386 unsigned int len)
1387{
1388 struct reloc_cache *cache = &eb->reloc_cache;
1389 u32 *cmd;
964a9b0f 1390 int err;
7dd4f672
CW
1391
1392 if (unlikely(!cache->rq)) {
6f576d62
CW
1393 struct intel_engine_cs *engine = eb->engine;
1394
e3d29130 1395 if (!reloc_can_use_engine(engine)) {
6f576d62 1396 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
e3d29130 1397 if (!engine)
6f576d62
CW
1398 return ERR_PTR(-ENODEV);
1399 }
90cad095 1400
6f576d62 1401 err = __reloc_gpu_alloc(eb, engine, len);
7dd4f672
CW
1402 if (unlikely(err))
1403 return ERR_PTR(err);
1404 }
1405
0e97fbb0
CW
1406 if (vma != cache->target) {
1407 err = reloc_move_to_gpu(cache->rq, vma);
1408 if (unlikely(err)) {
1409 i915_request_set_error_once(cache->rq, err);
1410 return ERR_PTR(err);
1411 }
1412
1413 cache->target = vma;
1414 }
1415
964a9b0f
CW
1416 if (unlikely(cache->rq_size + len >
1417 PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
1418 err = reloc_gpu_chain(cache);
1419 if (unlikely(err)) {
1420 i915_request_set_error_once(cache->rq, err);
1421 return ERR_PTR(err);
1422 }
1423 }
1424
1425 GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE / sizeof(u32));
7dd4f672
CW
1426 cmd = cache->rq_cmd + cache->rq_size;
1427 cache->rq_size += len;
1428
1429 return cmd;
1430}
1431
39d571d1
CW
1432static inline bool use_reloc_gpu(struct i915_vma *vma)
1433{
1434 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1435 return true;
1436
1437 if (DBG_FORCE_RELOC)
1438 return false;
1439
1440 return !dma_resv_test_signaled_rcu(vma->resv, true);
1441}
1442
e3d29130 1443static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
edf4427b 1444{
e3d29130
CW
1445 struct page *page;
1446 unsigned long addr;
edf4427b 1447
e3d29130 1448 GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
7dd4f672 1449
e3d29130
CW
1450 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1451 addr = PFN_PHYS(page_to_pfn(page));
1452 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
7dd4f672 1453
e3d29130
CW
1454 return addr + offset_in_page(offset);
1455}
1456
1457static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
1458 struct i915_vma *vma,
1459 u64 offset,
1460 u64 target_addr)
1461{
1462 const unsigned int gen = eb->reloc_cache.gen;
1463 unsigned int len;
1464 u32 *batch;
1465 u64 addr;
1466
1467 if (gen >= 8)
1468 len = offset & 7 ? 8 : 5;
1469 else if (gen >= 4)
1470 len = 4;
1471 else
1472 len = 3;
1473
1474 batch = reloc_gpu(eb, vma, len);
1475 if (IS_ERR(batch))
1476 return false;
1477
1478 addr = gen8_canonical_addr(vma->node.start + offset);
1479 if (gen >= 8) {
1480 if (offset & 7) {
1481 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1482 *batch++ = lower_32_bits(addr);
1483 *batch++ = upper_32_bits(addr);
1484 *batch++ = lower_32_bits(target_addr);
1485
1486 addr = gen8_canonical_addr(addr + 4);
7dd4f672 1487
7dd4f672 1488 *batch++ = MI_STORE_DWORD_IMM_GEN4;
e3d29130
CW
1489 *batch++ = lower_32_bits(addr);
1490 *batch++ = upper_32_bits(addr);
1491 *batch++ = upper_32_bits(target_addr);
7dd4f672 1492 } else {
e3d29130
CW
1493 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1494 *batch++ = lower_32_bits(addr);
1495 *batch++ = upper_32_bits(addr);
1496 *batch++ = lower_32_bits(target_addr);
1497 *batch++ = upper_32_bits(target_addr);
7dd4f672 1498 }
e3d29130
CW
1499 } else if (gen >= 6) {
1500 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1501 *batch++ = 0;
1502 *batch++ = addr;
1503 *batch++ = target_addr;
1504 } else if (IS_I965G(eb->i915)) {
1505 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1506 *batch++ = 0;
1507 *batch++ = vma_phys_addr(vma, offset);
1508 *batch++ = target_addr;
1509 } else if (gen >= 4) {
1510 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1511 *batch++ = 0;
1512 *batch++ = addr;
1513 *batch++ = target_addr;
1514 } else if (gen >= 3 &&
1515 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1516 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1517 *batch++ = addr;
1518 *batch++ = target_addr;
1519 } else {
1520 *batch++ = MI_STORE_DWORD_IMM;
1521 *batch++ = vma_phys_addr(vma, offset);
1522 *batch++ = target_addr;
7dd4f672
CW
1523 }
1524
e3d29130
CW
1525 return true;
1526}
1527
1528static bool reloc_entry_gpu(struct i915_execbuffer *eb,
1529 struct i915_vma *vma,
1530 u64 offset,
1531 u64 target_addr)
1532{
1533 if (eb->reloc_cache.vaddr)
1534 return false;
1535
1536 if (!use_reloc_gpu(vma))
1537 return false;
1538
1539 return __reloc_entry_gpu(eb, vma, offset, target_addr);
1540}
1541
1542static u64
1543relocate_entry(struct i915_vma *vma,
1544 const struct drm_i915_gem_relocation_entry *reloc,
1545 struct i915_execbuffer *eb,
1546 const struct i915_vma *target)
1547{
1548 u64 target_addr = relocation_target(reloc, target);
1549 u64 offset = reloc->offset;
1550
1551 if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
1552 bool wide = eb->reloc_cache.use_64bit_reloc;
1553 void *vaddr;
1554
d50415cc 1555repeat:
e3d29130
CW
1556 vaddr = reloc_vaddr(vma->obj,
1557 &eb->reloc_cache,
1558 offset >> PAGE_SHIFT);
1559 if (IS_ERR(vaddr))
1560 return PTR_ERR(vaddr);
d50415cc 1561
e3d29130
CW
1562 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1563 clflush_write32(vaddr + offset_in_page(offset),
1564 lower_32_bits(target_addr),
1565 eb->reloc_cache.vaddr);
d50415cc 1566
e3d29130
CW
1567 if (wide) {
1568 offset += sizeof(u32);
1569 target_addr >>= 32;
1570 wide = false;
1571 goto repeat;
1572 }
edf4427b 1573 }
edf4427b 1574
2889caa9 1575 return target->node.start | UPDATE;
edf4427b 1576}
edf4427b 1577
2889caa9
CW
1578static u64
1579eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1580 struct eb_vma *ev,
2889caa9 1581 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1582{
baa89ba3 1583 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1584 struct eb_vma *target;
2889caa9 1585 int err;
54cf91dc 1586
67731b87 1587 /* we've already hold a reference to all valid objects */
507d977f
CW
1588 target = eb_get_vma(eb, reloc->target_handle);
1589 if (unlikely(!target))
54cf91dc 1590 return -ENOENT;
e844b990 1591
54cf91dc 1592 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1593 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1594 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1595 "target %d offset %d "
54cf91dc 1596 "read %08x write %08x",
507d977f 1597 reloc->target_handle,
54cf91dc
CW
1598 (int) reloc->offset,
1599 reloc->read_domains,
1600 reloc->write_domain);
8b78f0e5 1601 return -EINVAL;
54cf91dc 1602 }
4ca4a250
DV
1603 if (unlikely((reloc->write_domain | reloc->read_domains)
1604 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1605 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1606 "target %d offset %d "
54cf91dc 1607 "read %08x write %08x",
507d977f 1608 reloc->target_handle,
54cf91dc
CW
1609 (int) reloc->offset,
1610 reloc->read_domains,
1611 reloc->write_domain);
8b78f0e5 1612 return -EINVAL;
54cf91dc 1613 }
54cf91dc 1614
2889caa9 1615 if (reloc->write_domain) {
7d6236bb 1616 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1617
2889caa9
CW
1618 /*
1619 * Sandybridge PPGTT errata: We need a global gtt mapping
1620 * for MI and pipe_control writes because the gpu doesn't
1621 * properly redirect them through the ppgtt for non_secure
1622 * batchbuffers.
1623 */
1624 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
cf819eff 1625 IS_GEN(eb->i915, 6)) {
7d6236bb
CW
1626 err = i915_vma_bind(target->vma,
1627 target->vma->obj->cache_level,
2850748e 1628 PIN_GLOBAL, NULL);
ea97c4ca 1629 if (err)
2889caa9
CW
1630 return err;
1631 }
507d977f 1632 }
54cf91dc 1633
2889caa9
CW
1634 /*
1635 * If the relocation already has the right value in it, no
54cf91dc
CW
1636 * more work needs to be done.
1637 */
7dd4f672 1638 if (!DBG_FORCE_RELOC &&
7d6236bb 1639 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1640 return 0;
54cf91dc
CW
1641
1642 /* Check that the relocation address is valid... */
3c94ceee 1643 if (unlikely(reloc->offset >
7d6236bb 1644 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1645 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1646 "target %d offset %d size %d.\n",
1647 reloc->target_handle,
1648 (int)reloc->offset,
7d6236bb 1649 (int)ev->vma->size);
8b78f0e5 1650 return -EINVAL;
54cf91dc 1651 }
b8f7ab17 1652 if (unlikely(reloc->offset & 3)) {
baa89ba3 1653 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1654 "target %d offset %d.\n",
1655 reloc->target_handle,
1656 (int)reloc->offset);
8b78f0e5 1657 return -EINVAL;
54cf91dc
CW
1658 }
1659
071750e5
CW
1660 /*
1661 * If we write into the object, we need to force the synchronisation
1662 * barrier, either with an asynchronous clflush or if we executed the
1663 * patching using the GPU (though that should be serialised by the
1664 * timeline). To be completely sure, and since we are required to
1665 * do relocations we are already stalling, disable the user's opt
0519bcb1 1666 * out of our synchronisation.
071750e5 1667 */
7d6236bb 1668 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1669
54cf91dc 1670 /* and update the user's relocation entry */
7d6236bb 1671 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1672}
1673
7d6236bb 1674static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1675{
1d83f442 1676#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1677 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1678 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1679 struct drm_i915_gem_relocation_entry __user *urelocs =
1680 u64_to_user_ptr(entry->relocs_ptr);
1681 unsigned long remain = entry->relocation_count;
54cf91dc 1682
e94f7856 1683 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1684 return -EINVAL;
ebc0808f 1685
2889caa9
CW
1686 /*
1687 * We must check that the entire relocation array is safe
1688 * to read. However, if the array is not writable the user loses
1689 * the updated relocation values.
1690 */
e94f7856 1691 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1692 return -EFAULT;
1693
1694 do {
1695 struct drm_i915_gem_relocation_entry *r = stack;
1696 unsigned int count =
e94f7856 1697 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1698 unsigned int copied;
1d83f442 1699
2889caa9
CW
1700 /*
1701 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1702 * whilst holding the struct mutex lest the user pass in the
1703 * relocations contained within a mmaped bo. For in such a case
1704 * we, the page fault handler would call i915_gem_fault() and
1705 * we would try to acquire the struct mutex again. Obviously
1706 * this is bad and so lockdep complains vehemently.
1707 */
7dc8f114 1708 copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
2889caa9
CW
1709 if (unlikely(copied)) {
1710 remain = -EFAULT;
31a39207
CW
1711 goto out;
1712 }
54cf91dc 1713
2889caa9 1714 remain -= count;
1d83f442 1715 do {
7d6236bb 1716 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1717
2889caa9
CW
1718 if (likely(offset == 0)) {
1719 } else if ((s64)offset < 0) {
1720 remain = (int)offset;
31a39207 1721 goto out;
2889caa9
CW
1722 } else {
1723 /*
1724 * Note that reporting an error now
1725 * leaves everything in an inconsistent
1726 * state as we have *already* changed
1727 * the relocation value inside the
1728 * object. As we have not changed the
1729 * reloc.presumed_offset or will not
1730 * change the execobject.offset, on the
1731 * call we may not rewrite the value
1732 * inside the object, leaving it
1733 * dangling and causing a GPU hang. Unless
1734 * userspace dynamically rebuilds the
1735 * relocations on each execbuf rather than
1736 * presume a static tree.
1737 *
1738 * We did previously check if the relocations
1739 * were writable (access_ok), an error now
1740 * would be a strange race with mprotect,
1741 * having already demonstrated that we
1742 * can read from this userspace address.
1743 */
1744 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1745 __put_user(offset,
1746 &urelocs[r - stack].presumed_offset);
1d83f442 1747 }
2889caa9
CW
1748 } while (r++, --count);
1749 urelocs += ARRAY_SIZE(stack);
1750 } while (remain);
31a39207 1751out:
650bc635 1752 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1753 return remain;
54cf91dc
CW
1754}
1755
2889caa9 1756static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1757{
003d8b91
CW
1758 int err;
1759
003d8b91 1760 err = eb_lookup_vmas(eb);
003d8b91
CW
1761 if (err)
1762 return err;
1763
ef398881
CW
1764 if (!list_empty(&eb->unbound)) {
1765 err = eb_reserve(eb);
1766 if (err)
1767 return err;
1768 }
2889caa9
CW
1769
1770 /* The objects are in their final locations, apply the relocations. */
1771 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 1772 struct eb_vma *ev;
0e97fbb0 1773 int flush;
2889caa9 1774
7d6236bb 1775 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
1776 err = eb_relocate_vma(eb, ev);
1777 if (err)
0e97fbb0 1778 break;
2889caa9 1779 }
0e97fbb0
CW
1780
1781 flush = reloc_gpu_flush(&eb->reloc_cache);
1782 if (!err)
1783 err = flush;
2889caa9
CW
1784 }
1785
0e97fbb0 1786 return err;
2889caa9
CW
1787}
1788
2889caa9
CW
1789static int eb_move_to_gpu(struct i915_execbuffer *eb)
1790{
1791 const unsigned int count = eb->buffer_count;
6951e589 1792 struct ww_acquire_ctx acquire;
2889caa9 1793 unsigned int i;
6951e589
CW
1794 int err = 0;
1795
1796 ww_acquire_init(&acquire, &reservation_ww_class);
54cf91dc 1797
2889caa9 1798 for (i = 0; i < count; i++) {
7d6236bb
CW
1799 struct eb_vma *ev = &eb->vma[i];
1800 struct i915_vma *vma = ev->vma;
6951e589
CW
1801
1802 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
6951e589
CW
1803 if (err == -EDEADLK) {
1804 GEM_BUG_ON(i == 0);
1805 do {
1806 int j = i - 1;
1807
7d6236bb 1808 ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
6951e589 1809
6951e589 1810 swap(eb->vma[i], eb->vma[j]);
6951e589 1811 } while (--i);
6951e589
CW
1812
1813 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1814 &acquire);
1815 }
1816 if (err)
1817 break;
1818 }
1819 ww_acquire_done(&acquire);
1820
1821 while (i--) {
7d6236bb
CW
1822 struct eb_vma *ev = &eb->vma[i];
1823 struct i915_vma *vma = ev->vma;
1824 unsigned int flags = ev->flags;
27173f1f 1825 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1826
6951e589
CW
1827 assert_vma_held(vma);
1828
c7c6e46f 1829 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 1830 struct i915_capture_list *capture;
b0fd47ad
CW
1831
1832 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
6951e589
CW
1833 if (capture) {
1834 capture->next = eb->request->capture_list;
1835 capture->vma = vma;
1836 eb->request->capture_list = capture;
1837 }
b0fd47ad
CW
1838 }
1839
b8f55be6
CW
1840 /*
1841 * If the GPU is not _reading_ through the CPU cache, we need
1842 * to make sure that any writes (both previous GPU writes from
1843 * before a change in snooping levels and normal CPU writes)
1844 * caught in that cache are flushed to main memory.
1845 *
1846 * We want to say
1847 * obj->cache_dirty &&
1848 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1849 * but gcc's optimiser doesn't handle that as well and emits
1850 * two jumps instead of one. Maybe one day...
1851 */
1852 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1853 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1854 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1855 }
1856
6951e589
CW
1857 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1858 err = i915_request_await_object
1859 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1860 }
2889caa9 1861
6951e589
CW
1862 if (err == 0)
1863 err = i915_vma_move_to_active(vma, eb->request, flags);
c7c6e46f 1864
6951e589 1865 i915_vma_unlock(vma);
0f1dd022 1866 eb_unreserve_vma(ev);
c59a333f 1867 }
6951e589
CW
1868 ww_acquire_fini(&acquire);
1869
0f1dd022
CW
1870 eb_vma_array_put(fetch_and_zero(&eb->array));
1871
6951e589
CW
1872 if (unlikely(err))
1873 goto err_skip;
1874
dcd79934 1875 /* Unconditionally flush any chipset caches (for streaming writes). */
baea429d 1876 intel_gt_chipset_flush(eb->engine->gt);
2113184c 1877 return 0;
6951e589
CW
1878
1879err_skip:
36e191f0 1880 i915_request_set_error_once(eb->request, err);
6951e589 1881 return err;
54cf91dc
CW
1882}
1883
00aff3f6 1884static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1885{
650bc635 1886 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 1887 return -EINVAL;
ed5982e6 1888
2f5945bc 1889 /* Kernel clipping was a DRI1 misfeature */
cf6e7bac
JE
1890 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1891 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 1892 return -EINVAL;
cf6e7bac 1893 }
2f5945bc
CW
1894
1895 if (exec->DR4 == 0xffffffff) {
1896 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1897 exec->DR4 = 0;
1898 }
1899 if (exec->DR1 || exec->DR4)
00aff3f6 1900 return -EINVAL;
2f5945bc
CW
1901
1902 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 1903 return -EINVAL;
2f5945bc 1904
00aff3f6 1905 return 0;
54cf91dc
CW
1906}
1907
e61e0f51 1908static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 1909{
73dec95e
TU
1910 u32 *cs;
1911 int i;
ae662d31 1912
8a68d464 1913 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
d0bf4582 1914 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
1915 return -EINVAL;
1916 }
ae662d31 1917
e61e0f51 1918 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
1919 if (IS_ERR(cs))
1920 return PTR_ERR(cs);
ae662d31 1921
2889caa9 1922 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 1923 for (i = 0; i < 4; i++) {
73dec95e
TU
1924 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1925 *cs++ = 0;
ae662d31 1926 }
2889caa9 1927 *cs++ = MI_NOOP;
e61e0f51 1928 intel_ring_advance(rq, cs);
ae662d31
EA
1929
1930 return 0;
1931}
1932
4f7af194 1933static struct i915_vma *
32d94048
CW
1934shadow_batch_pin(struct drm_i915_gem_object *obj,
1935 struct i915_address_space *vm,
1936 unsigned int flags)
4f7af194 1937{
b291ce0a 1938 struct i915_vma *vma;
b291ce0a 1939 int err;
4f7af194 1940
b291ce0a
CW
1941 vma = i915_vma_instance(obj, vm, NULL);
1942 if (IS_ERR(vma))
1943 return vma;
1944
1945 err = i915_vma_pin(vma, 0, 0, flags);
1946 if (err)
1947 return ERR_PTR(err);
1948
1949 return vma;
4f7af194
JB
1950}
1951
686c7c35
CW
1952struct eb_parse_work {
1953 struct dma_fence_work base;
1954 struct intel_engine_cs *engine;
1955 struct i915_vma *batch;
1956 struct i915_vma *shadow;
1957 struct i915_vma *trampoline;
1958 unsigned int batch_offset;
1959 unsigned int batch_length;
1960};
1961
1962static int __eb_parse(struct dma_fence_work *work)
1963{
1964 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1965
1966 return intel_engine_cmd_parser(pw->engine,
1967 pw->batch,
1968 pw->batch_offset,
1969 pw->batch_length,
1970 pw->shadow,
1971 pw->trampoline);
1972}
1973
36c8e356
CW
1974static void __eb_parse_release(struct dma_fence_work *work)
1975{
1976 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1977
1978 if (pw->trampoline)
1979 i915_active_release(&pw->trampoline->active);
1980 i915_active_release(&pw->shadow->active);
1981 i915_active_release(&pw->batch->active);
1982}
1983
686c7c35
CW
1984static const struct dma_fence_work_ops eb_parse_ops = {
1985 .name = "eb_parse",
1986 .work = __eb_parse,
36c8e356 1987 .release = __eb_parse_release,
686c7c35
CW
1988};
1989
1990static int eb_parse_pipeline(struct i915_execbuffer *eb,
1991 struct i915_vma *shadow,
1992 struct i915_vma *trampoline)
1993{
1994 struct eb_parse_work *pw;
1995 int err;
1996
1997 pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1998 if (!pw)
1999 return -ENOMEM;
2000
7d6236bb 2001 err = i915_active_acquire(&eb->batch->vma->active);
36c8e356
CW
2002 if (err)
2003 goto err_free;
2004
2005 err = i915_active_acquire(&shadow->active);
2006 if (err)
2007 goto err_batch;
2008
2009 if (trampoline) {
2010 err = i915_active_acquire(&trampoline->active);
2011 if (err)
2012 goto err_shadow;
2013 }
2014
686c7c35
CW
2015 dma_fence_work_init(&pw->base, &eb_parse_ops);
2016
2017 pw->engine = eb->engine;
7d6236bb 2018 pw->batch = eb->batch->vma;
686c7c35
CW
2019 pw->batch_offset = eb->batch_start_offset;
2020 pw->batch_length = eb->batch_len;
2021 pw->shadow = shadow;
2022 pw->trampoline = trampoline;
2023
36c8e356
CW
2024 err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
2025 if (err)
2026 goto err_trampoline;
686c7c35
CW
2027
2028 err = dma_resv_reserve_shared(pw->batch->resv, 1);
2029 if (err)
2030 goto err_batch_unlock;
2031
2032 /* Wait for all writes (and relocs) into the batch to complete */
2033 err = i915_sw_fence_await_reservation(&pw->base.chain,
2034 pw->batch->resv, NULL, false,
2035 0, I915_FENCE_GFP);
2036 if (err < 0)
2037 goto err_batch_unlock;
2038
2039 /* Keep the batch alive and unwritten as we parse */
2040 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2041
2042 dma_resv_unlock(pw->batch->resv);
2043
2044 /* Force execution to wait for completion of the parser */
2045 dma_resv_lock(shadow->resv, NULL);
2046 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2047 dma_resv_unlock(shadow->resv);
2048
92581f9f 2049 dma_fence_work_commit_imm(&pw->base);
686c7c35
CW
2050 return 0;
2051
2052err_batch_unlock:
2053 dma_resv_unlock(pw->batch->resv);
36c8e356
CW
2054err_trampoline:
2055 if (trampoline)
2056 i915_active_release(&trampoline->active);
2057err_shadow:
2058 i915_active_release(&shadow->active);
2059err_batch:
7d6236bb 2060 i915_active_release(&eb->batch->vma->active);
36c8e356 2061err_free:
686c7c35
CW
2062 kfree(pw);
2063 return err;
2064}
2065
51696691 2066static int eb_parse(struct i915_execbuffer *eb)
71745376 2067{
baa89ba3 2068 struct drm_i915_private *i915 = eb->i915;
16e87459 2069 struct intel_gt_buffer_pool_node *pool;
32d94048
CW
2070 struct i915_vma *shadow, *trampoline;
2071 unsigned int len;
2889caa9 2072 int err;
71745376 2073
51696691
CW
2074 if (!eb_use_cmdparser(eb))
2075 return 0;
2076
32d94048
CW
2077 len = eb->batch_len;
2078 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2079 /*
2080 * ppGTT backed shadow buffers must be mapped RO, to prevent
2081 * post-scan tampering
2082 */
2083 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2084 drm_dbg(&i915->drm,
2085 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2086 return -EINVAL;
2087 }
2088 } else {
2089 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2090 }
2091
16e87459 2092 pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
b40d7378 2093 if (IS_ERR(pool))
51696691 2094 return PTR_ERR(pool);
71745376 2095
32d94048
CW
2096 shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2097 if (IS_ERR(shadow)) {
2098 err = PTR_ERR(shadow);
f8c08d8f 2099 goto err;
51696691 2100 }
32d94048
CW
2101 i915_gem_object_set_readonly(shadow->obj);
2102
2103 trampoline = NULL;
2104 if (CMDPARSER_USES_GGTT(eb->i915)) {
2105 trampoline = shadow;
2106
2107 shadow = shadow_batch_pin(pool->obj,
2108 &eb->engine->gt->ggtt->vm,
2109 PIN_GLOBAL);
2110 if (IS_ERR(shadow)) {
2111 err = PTR_ERR(shadow);
2112 shadow = trampoline;
2113 goto err_shadow;
2114 }
2115
2116 eb->batch_flags |= I915_DISPATCH_SECURE;
2117 }
f8c08d8f 2118
686c7c35 2119 err = eb_parse_pipeline(eb, shadow, trampoline);
32d94048
CW
2120 if (err)
2121 goto err_trampoline;
71745376 2122
7d6236bb 2123 eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
003d8b91 2124 eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
7d6236bb 2125 eb->batch = &eb->vma[eb->buffer_count++];
0f1dd022 2126 eb->vma[eb->buffer_count].vma = NULL;
71745376 2127
32d94048 2128 eb->trampoline = trampoline;
4f7af194 2129 eb->batch_start_offset = 0;
4f7af194 2130
32d94048 2131 shadow->private = pool;
51696691 2132 return 0;
b40d7378 2133
32d94048
CW
2134err_trampoline:
2135 if (trampoline)
2136 i915_vma_unpin(trampoline);
2137err_shadow:
2138 i915_vma_unpin(shadow);
b40d7378 2139err:
16e87459 2140 intel_gt_buffer_pool_put(pool);
51696691 2141 return err;
71745376 2142}
5c6c6003 2143
c8659efa 2144static void
e61e0f51 2145add_to_client(struct i915_request *rq, struct drm_file *file)
c8659efa 2146{
44c22f3f
CW
2147 struct drm_i915_file_private *file_priv = file->driver_priv;
2148
2149 rq->file_priv = file_priv;
2150
2151 spin_lock(&file_priv->mm.lock);
2152 list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2153 spin_unlock(&file_priv->mm.lock);
c8659efa
CW
2154}
2155
7d6236bb 2156static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
78382593 2157{
2889caa9 2158 int err;
78382593 2159
2889caa9
CW
2160 err = eb_move_to_gpu(eb);
2161 if (err)
2162 return err;
78382593 2163
650bc635 2164 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
2165 err = i915_reset_gen7_sol_offsets(eb->request);
2166 if (err)
2167 return err;
78382593
OM
2168 }
2169
85474441
CW
2170 /*
2171 * After we completed waiting for other engines (using HW semaphores)
2172 * then we can signal that this request/batch is ready to run. This
2173 * allows us to determine if the batch is still waiting on the GPU
2174 * or actually running by checking the breadcrumb.
2175 */
2176 if (eb->engine->emit_init_breadcrumb) {
2177 err = eb->engine->emit_init_breadcrumb(eb->request);
2178 if (err)
2179 return err;
2180 }
2181
2889caa9 2182 err = eb->engine->emit_bb_start(eb->request,
7d6236bb 2183 batch->node.start +
650bc635
CW
2184 eb->batch_start_offset,
2185 eb->batch_len,
2889caa9
CW
2186 eb->batch_flags);
2187 if (err)
2188 return err;
78382593 2189
32d94048
CW
2190 if (eb->trampoline) {
2191 GEM_BUG_ON(eb->batch_start_offset);
2192 err = eb->engine->emit_bb_start(eb->request,
2193 eb->trampoline->node.start +
2194 eb->batch_len,
2195 0, 0);
2196 if (err)
2197 return err;
2198 }
2199
9f3ccd40 2200 if (intel_context_nopreempt(eb->context))
e1c31fb5 2201 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
9cd20ef7 2202
2f5945bc 2203 return 0;
78382593
OM
2204}
2205
d5b2a3a4
CW
2206static int num_vcs_engines(const struct drm_i915_private *i915)
2207{
2208 return hweight64(INTEL_INFO(i915)->engine_mask &
2209 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2210}
2211
204bcfef 2212/*
a8ebba75 2213 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2214 * The engine index is returned.
a8ebba75 2215 */
de1add36 2216static unsigned int
c80ff16e
CW
2217gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2218 struct drm_file *file)
a8ebba75 2219{
a8ebba75
ZY
2220 struct drm_i915_file_private *file_priv = file->driver_priv;
2221
de1add36 2222 /* Check whether the file_priv has already selected one ring. */
6f633402 2223 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2224 file_priv->bsd_engine =
2225 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2226
c80ff16e 2227 return file_priv->bsd_engine;
d23db88c
CW
2228}
2229
5e2a0419 2230static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2231 [I915_EXEC_DEFAULT] = RCS0,
2232 [I915_EXEC_RENDER] = RCS0,
2233 [I915_EXEC_BLT] = BCS0,
2234 [I915_EXEC_BSD] = VCS0,
2235 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2236};
2237
e5dadff4
CW
2238static struct i915_request *eb_throttle(struct intel_context *ce)
2239{
2240 struct intel_ring *ring = ce->ring;
2241 struct intel_timeline *tl = ce->timeline;
2242 struct i915_request *rq;
2243
2244 /*
2245 * Completely unscientific finger-in-the-air estimates for suitable
2246 * maximum user request size (to avoid blocking) and then backoff.
2247 */
2248 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2249 return NULL;
2250
2251 /*
2252 * Find a request that after waiting upon, there will be at least half
2253 * the ring available. The hysteresis allows us to compete for the
2254 * shared ring and should mean that we sleep less often prior to
2255 * claiming our resources, but not so long that the ring completely
2256 * drains before we can submit our next request.
2257 */
2258 list_for_each_entry(rq, &tl->requests, link) {
2259 if (rq->ring != ring)
2260 continue;
2261
2262 if (__intel_ring_space(rq->postfix,
2263 ring->emit, ring->size) > ring->size / 2)
2264 break;
2265 }
2266 if (&rq->link == &tl->requests)
2267 return NULL; /* weird, we will check again later for real */
2268
2269 return i915_request_get(rq);
2270}
2271
e5dadff4
CW
2272static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2273{
2274 struct intel_timeline *tl;
2275 struct i915_request *rq;
2276 int err;
2277
8f2a1057
CW
2278 /*
2279 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2280 * EIO if the GPU is already wedged.
2281 */
cb823ed9 2282 err = intel_gt_terminally_wedged(ce->engine->gt);
8f2a1057
CW
2283 if (err)
2284 return err;
2285
9f3ccd40
CW
2286 if (unlikely(intel_context_is_banned(ce)))
2287 return -EIO;
2288
8f2a1057
CW
2289 /*
2290 * Pinning the contexts may generate requests in order to acquire
2291 * GGTT space, so do this first before we reserve a seqno for
2292 * ourselves.
2293 */
2850748e 2294 err = intel_context_pin(ce);
fa9f6681
CW
2295 if (err)
2296 return err;
8f2a1057 2297
a4e57f90
CW
2298 /*
2299 * Take a local wakeref for preparing to dispatch the execbuf as
2300 * we expect to access the hardware fairly frequently in the
2301 * process, and require the engine to be kept awake between accesses.
2302 * Upon dispatch, we acquire another prolonged wakeref that we hold
2303 * until the timeline is idle, which in turn releases the wakeref
2304 * taken on the engine, and the parent device.
2305 */
e5dadff4
CW
2306 tl = intel_context_timeline_lock(ce);
2307 if (IS_ERR(tl)) {
2308 err = PTR_ERR(tl);
a4e57f90 2309 goto err_unpin;
e5dadff4 2310 }
a4e57f90
CW
2311
2312 intel_context_enter(ce);
e5dadff4
CW
2313 rq = eb_throttle(ce);
2314
2315 intel_context_timeline_unlock(tl);
2316
2317 if (rq) {
cb4d5dc3
CW
2318 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2319 long timeout;
2320
2321 timeout = MAX_SCHEDULE_TIMEOUT;
2322 if (nonblock)
2323 timeout = 0;
e5dadff4 2324
cb4d5dc3
CW
2325 timeout = i915_request_wait(rq,
2326 I915_WAIT_INTERRUPTIBLE,
2327 timeout);
e5dadff4 2328 i915_request_put(rq);
cb4d5dc3
CW
2329
2330 if (timeout < 0) {
2331 err = nonblock ? -EWOULDBLOCK : timeout;
2332 goto err_exit;
2333 }
e5dadff4 2334 }
a4e57f90 2335
5e2a0419 2336 eb->engine = ce->engine;
8f2a1057
CW
2337 eb->context = ce;
2338 return 0;
a4e57f90 2339
e5dadff4
CW
2340err_exit:
2341 mutex_lock(&tl->mutex);
2342 intel_context_exit(ce);
2343 intel_context_timeline_unlock(tl);
a4e57f90 2344err_unpin:
2850748e 2345 intel_context_unpin(ce);
a4e57f90 2346 return err;
8f2a1057
CW
2347}
2348
e5dadff4 2349static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2350{
a4e57f90 2351 struct intel_context *ce = eb->context;
75d0a7f3 2352 struct intel_timeline *tl = ce->timeline;
a4e57f90
CW
2353
2354 mutex_lock(&tl->mutex);
2355 intel_context_exit(ce);
2356 mutex_unlock(&tl->mutex);
2357
2850748e 2358 intel_context_unpin(ce);
8f2a1057 2359}
de1add36 2360
5e2a0419
CW
2361static unsigned int
2362eb_select_legacy_ring(struct i915_execbuffer *eb,
2363 struct drm_file *file,
2364 struct drm_i915_gem_execbuffer2 *args)
de1add36 2365{
8f2a1057 2366 struct drm_i915_private *i915 = eb->i915;
de1add36 2367 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2368
5e2a0419
CW
2369 if (user_ring_id != I915_EXEC_BSD &&
2370 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2371 drm_dbg(&i915->drm,
2372 "execbuf with non bsd ring but with invalid "
2373 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2374 return -1;
de1add36
TU
2375 }
2376
d5b2a3a4 2377 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2378 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2379
2380 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
8f2a1057 2381 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
de1add36
TU
2382 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2383 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2384 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2385 bsd_idx--;
2386 } else {
baa89ba3
WK
2387 drm_dbg(&i915->drm,
2388 "execbuf with unknown bsd ring: %u\n",
2389 bsd_idx);
5e2a0419 2390 return -1;
de1add36
TU
2391 }
2392
5e2a0419 2393 return _VCS(bsd_idx);
de1add36
TU
2394 }
2395
5e2a0419 2396 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2397 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2398 user_ring_id);
5e2a0419 2399 return -1;
de1add36
TU
2400 }
2401
5e2a0419
CW
2402 return user_ring_map[user_ring_id];
2403}
2404
2405static int
e5dadff4
CW
2406eb_pin_engine(struct i915_execbuffer *eb,
2407 struct drm_file *file,
2408 struct drm_i915_gem_execbuffer2 *args)
5e2a0419
CW
2409{
2410 struct intel_context *ce;
2411 unsigned int idx;
2412 int err;
2413
976b55f0
CW
2414 if (i915_gem_context_user_engines(eb->gem_context))
2415 idx = args->flags & I915_EXEC_RING_MASK;
2416 else
2417 idx = eb_select_legacy_ring(eb, file, args);
5e2a0419
CW
2418
2419 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2420 if (IS_ERR(ce))
2421 return PTR_ERR(ce);
2422
e5dadff4 2423 err = __eb_pin_engine(eb, ce);
5e2a0419
CW
2424 intel_context_put(ce);
2425
2426 return err;
de1add36
TU
2427}
2428
cf6e7bac
JE
2429static void
2430__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2431{
2432 while (n--)
2433 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2434 kvfree(fences);
2435}
2436
2437static struct drm_syncobj **
2438get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2439 struct drm_file *file)
2440{
d710fc16 2441 const unsigned long nfences = args->num_cliprects;
cf6e7bac
JE
2442 struct drm_i915_gem_exec_fence __user *user;
2443 struct drm_syncobj **fences;
d710fc16 2444 unsigned long n;
cf6e7bac
JE
2445 int err;
2446
2447 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2448 return NULL;
2449
d710fc16
CW
2450 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2451 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2452 if (nfences > min_t(unsigned long,
2453 ULONG_MAX / sizeof(*user),
2454 SIZE_MAX / sizeof(*fences)))
cf6e7bac
JE
2455 return ERR_PTR(-EINVAL);
2456
2457 user = u64_to_user_ptr(args->cliprects_ptr);
96d4f267 2458 if (!access_ok(user, nfences * sizeof(*user)))
cf6e7bac
JE
2459 return ERR_PTR(-EFAULT);
2460
d710fc16 2461 fences = kvmalloc_array(nfences, sizeof(*fences),
0ee931c4 2462 __GFP_NOWARN | GFP_KERNEL);
cf6e7bac
JE
2463 if (!fences)
2464 return ERR_PTR(-ENOMEM);
2465
2466 for (n = 0; n < nfences; n++) {
2467 struct drm_i915_gem_exec_fence fence;
2468 struct drm_syncobj *syncobj;
2469
2470 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2471 err = -EFAULT;
2472 goto err;
2473 }
2474
ebcaa1ff
TU
2475 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2476 err = -EINVAL;
2477 goto err;
2478 }
2479
cf6e7bac
JE
2480 syncobj = drm_syncobj_find(file, fence.handle);
2481 if (!syncobj) {
2482 DRM_DEBUG("Invalid syncobj handle provided\n");
2483 err = -ENOENT;
2484 goto err;
2485 }
2486
ebcaa1ff
TU
2487 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2488 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2489
cf6e7bac
JE
2490 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2491 }
2492
2493 return fences;
2494
2495err:
2496 __free_fence_array(fences, n);
2497 return ERR_PTR(err);
2498}
2499
2500static void
2501put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2502 struct drm_syncobj **fences)
2503{
2504 if (fences)
2505 __free_fence_array(fences, args->num_cliprects);
2506}
2507
2508static int
2509await_fence_array(struct i915_execbuffer *eb,
2510 struct drm_syncobj **fences)
2511{
2512 const unsigned int nfences = eb->args->num_cliprects;
2513 unsigned int n;
2514 int err;
2515
2516 for (n = 0; n < nfences; n++) {
2517 struct drm_syncobj *syncobj;
2518 struct dma_fence *fence;
2519 unsigned int flags;
2520
2521 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2522 if (!(flags & I915_EXEC_FENCE_WAIT))
2523 continue;
2524
afca4216 2525 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac
JE
2526 if (!fence)
2527 return -EINVAL;
2528
e61e0f51 2529 err = i915_request_await_dma_fence(eb->request, fence);
cf6e7bac
JE
2530 dma_fence_put(fence);
2531 if (err < 0)
2532 return err;
2533 }
2534
2535 return 0;
2536}
2537
2538static void
2539signal_fence_array(struct i915_execbuffer *eb,
2540 struct drm_syncobj **fences)
2541{
2542 const unsigned int nfences = eb->args->num_cliprects;
2543 struct dma_fence * const fence = &eb->request->fence;
2544 unsigned int n;
2545
2546 for (n = 0; n < nfences; n++) {
2547 struct drm_syncobj *syncobj;
2548 unsigned int flags;
2549
2550 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2551 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2552 continue;
2553
0b258ed1 2554 drm_syncobj_replace_fence(syncobj, fence);
cf6e7bac
JE
2555 }
2556}
2557
61231f6b
CW
2558static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2559{
2560 struct i915_request *rq, *rn;
2561
2562 list_for_each_entry_safe(rq, rn, &tl->requests, link)
2563 if (rq == end || !i915_request_retire(rq))
2564 break;
2565}
2566
2567static void eb_request_add(struct i915_execbuffer *eb)
2568{
2569 struct i915_request *rq = eb->request;
2570 struct intel_timeline * const tl = i915_request_timeline(rq);
2571 struct i915_sched_attr attr = {};
2572 struct i915_request *prev;
2573
2574 lockdep_assert_held(&tl->mutex);
2575 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2576
2577 trace_i915_request_add(rq);
2578
2579 prev = __i915_request_commit(rq);
2580
2581 /* Check that the context wasn't destroyed before submission */
207e4a71 2582 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 2583 attr = eb->gem_context->sched;
61231f6b
CW
2584 } else {
2585 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
2586 i915_request_set_error_once(rq, -ENOENT);
2587 __i915_request_skip(rq);
61231f6b
CW
2588 }
2589
61231f6b 2590 __i915_request_queue(rq, &attr);
61231f6b
CW
2591
2592 /* Try to clean up the client's timeline after submitting the request */
2593 if (prev)
2594 retire_requests(tl, prev);
2595
2596 mutex_unlock(&tl->mutex);
2597}
2598
54cf91dc 2599static int
650bc635 2600i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2601 struct drm_file *file,
2602 struct drm_i915_gem_execbuffer2 *args,
cf6e7bac
JE
2603 struct drm_i915_gem_exec_object2 *exec,
2604 struct drm_syncobj **fences)
54cf91dc 2605{
44157641 2606 struct drm_i915_private *i915 = to_i915(dev);
650bc635 2607 struct i915_execbuffer eb;
fec0445c
CW
2608 struct dma_fence *in_fence = NULL;
2609 struct sync_file *out_fence = NULL;
7d6236bb 2610 struct i915_vma *batch;
fec0445c 2611 int out_fence_fd = -1;
2889caa9 2612 int err;
432e58ed 2613
74c1c694 2614 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
2615 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2616 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2617
44157641 2618 eb.i915 = i915;
650bc635
CW
2619 eb.file = file;
2620 eb.args = args;
7dd4f672 2621 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2622 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 2623
650bc635 2624 eb.exec = exec;
c7c6e46f 2625
2889caa9 2626 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
2627 reloc_cache_init(&eb.reloc_cache, eb.i915);
2628
2889caa9 2629 eb.buffer_count = args->buffer_count;
650bc635
CW
2630 eb.batch_start_offset = args->batch_start_offset;
2631 eb.batch_len = args->batch_len;
32d94048 2632 eb.trampoline = NULL;
650bc635 2633
2889caa9 2634 eb.batch_flags = 0;
d7d4eedd 2635 if (args->flags & I915_EXEC_SECURE) {
44157641
JB
2636 if (INTEL_GEN(i915) >= 11)
2637 return -ENODEV;
2638
2639 /* Return -EPERM to trigger fallback code on old binaries. */
2640 if (!HAS_SECURE_BATCHES(i915))
2641 return -EPERM;
2642
b3ac9f25 2643 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 2644 return -EPERM;
d7d4eedd 2645
2889caa9 2646 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2647 }
b45305fc 2648 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2649 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2650
889333c7
CW
2651#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
2652 if (args->flags & IN_FENCES) {
2653 if ((args->flags & IN_FENCES) == IN_FENCES)
2654 return -EINVAL;
2655
fec0445c 2656 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2657 if (!in_fence)
2658 return -EINVAL;
fec0445c 2659 }
889333c7 2660#undef IN_FENCES
a88b6e4c 2661
fec0445c
CW
2662 if (args->flags & I915_EXEC_FENCE_OUT) {
2663 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2664 if (out_fence_fd < 0) {
2889caa9 2665 err = out_fence_fd;
889333c7 2666 goto err_in_fence;
fec0445c
CW
2667 }
2668 }
2669
4d470f73
CW
2670 err = eb_create(&eb);
2671 if (err)
2672 goto err_out_fence;
2673
2674 GEM_BUG_ON(!eb.lut_size);
2889caa9 2675
1acfc104
CW
2676 err = eb_select_context(&eb);
2677 if (unlikely(err))
2678 goto err_destroy;
2679
e5dadff4 2680 err = eb_pin_engine(&eb, file, args);
d6f328bf 2681 if (unlikely(err))
e5dadff4 2682 goto err_context;
d6f328bf 2683
2889caa9 2684 err = eb_relocate(&eb);
1f727d9e 2685 if (err) {
2889caa9
CW
2686 /*
2687 * If the user expects the execobject.offset and
2688 * reloc.presumed_offset to be an exact match,
2689 * as for using NO_RELOC, then we cannot update
2690 * the execobject.offset until we have completed
2691 * relocation.
2692 */
2693 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2694 goto err_vma;
1f727d9e 2695 }
54cf91dc 2696
7d6236bb 2697 if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
baa89ba3
WK
2698 drm_dbg(&i915->drm,
2699 "Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2700 err = -EINVAL;
2701 goto err_vma;
54cf91dc 2702 }
7d6236bb
CW
2703
2704 if (range_overflows_t(u64,
2705 eb.batch_start_offset, eb.batch_len,
2706 eb.batch->vma->size)) {
baa89ba3 2707 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2889caa9
CW
2708 err = -EINVAL;
2709 goto err_vma;
0b537272 2710 }
54cf91dc 2711
435e8fc0 2712 if (eb.batch_len == 0)
7d6236bb 2713 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
435e8fc0 2714
51696691
CW
2715 err = eb_parse(&eb);
2716 if (err)
2717 goto err_vma;
351e3db2 2718
2889caa9
CW
2719 /*
2720 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2721 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2722 * hsw should have this fixed, but bdw mucks it up again. */
7d6236bb 2723 batch = eb.batch->vma;
2889caa9 2724 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2725 struct i915_vma *vma;
59bfa124 2726
da51a1e7
DV
2727 /*
2728 * So on first glance it looks freaky that we pin the batch here
2729 * outside of the reservation loop. But:
2730 * - The batch is already pinned into the relevant ppgtt, so we
2731 * already have the backing storage fully allocated.
2732 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2733 * so we don't really have issues with multiple objects not
da51a1e7
DV
2734 * fitting due to fragmentation.
2735 * So this is actually safe.
2736 */
7d6236bb 2737 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
058d88c4 2738 if (IS_ERR(vma)) {
2889caa9 2739 err = PTR_ERR(vma);
2c59fd06 2740 goto err_parse;
058d88c4 2741 }
d7d4eedd 2742
7d6236bb 2743 batch = vma;
59bfa124 2744 }
d7d4eedd 2745
7dd4f672
CW
2746 /* All GPU relocation batches must be submitted prior to the user rq */
2747 GEM_BUG_ON(eb.reloc_cache.rq);
2748
0c8dac88 2749 /* Allocate a request for this batch buffer nice and early. */
8f2a1057 2750 eb.request = i915_request_create(eb.context);
650bc635 2751 if (IS_ERR(eb.request)) {
2889caa9 2752 err = PTR_ERR(eb.request);
0c8dac88 2753 goto err_batch_unpin;
26827088 2754 }
0c8dac88 2755
fec0445c 2756 if (in_fence) {
889333c7
CW
2757 if (args->flags & I915_EXEC_FENCE_SUBMIT)
2758 err = i915_request_await_execution(eb.request,
2759 in_fence,
2760 eb.engine->bond_execute);
2761 else
2762 err = i915_request_await_dma_fence(eb.request,
2763 in_fence);
a88b6e4c
CW
2764 if (err < 0)
2765 goto err_request;
2766 }
2767
cf6e7bac
JE
2768 if (fences) {
2769 err = await_fence_array(&eb, fences);
2770 if (err)
2771 goto err_request;
2772 }
2773
fec0445c 2774 if (out_fence_fd != -1) {
650bc635 2775 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2776 if (!out_fence) {
2889caa9 2777 err = -ENOMEM;
fec0445c
CW
2778 goto err_request;
2779 }
2780 }
2781
2889caa9
CW
2782 /*
2783 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2784 * active_list, and so will hold the active reference. Only when this
2785 * request is retired will the the batch_obj be moved onto the
2786 * inactive_list and lose its active reference. Hence we do not need
2787 * to explicitly hold another reference here.
2788 */
7d6236bb
CW
2789 eb.request->batch = batch;
2790 if (batch->private)
16e87459 2791 intel_gt_buffer_pool_mark_active(batch->private, eb.request);
5f19e2bf 2792
e61e0f51 2793 trace_i915_request_queue(eb.request, eb.batch_flags);
7d6236bb 2794 err = eb_submit(&eb, batch);
aa9b7810 2795err_request:
650bc635 2796 add_to_client(eb.request, file);
e14177f1 2797 i915_request_get(eb.request);
61231f6b 2798 eb_request_add(&eb);
c8659efa 2799
cf6e7bac
JE
2800 if (fences)
2801 signal_fence_array(&eb, fences);
2802
fec0445c 2803 if (out_fence) {
2889caa9 2804 if (err == 0) {
fec0445c 2805 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 2806 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
2807 args->rsvd2 |= (u64)out_fence_fd << 32;
2808 out_fence_fd = -1;
2809 } else {
2810 fput(out_fence->file);
2811 }
2812 }
e14177f1 2813 i915_request_put(eb.request);
54cf91dc 2814
0c8dac88 2815err_batch_unpin:
2889caa9 2816 if (eb.batch_flags & I915_DISPATCH_SECURE)
7d6236bb 2817 i915_vma_unpin(batch);
2c59fd06 2818err_parse:
7d6236bb 2819 if (batch->private)
16e87459 2820 intel_gt_buffer_pool_put(batch->private);
2889caa9 2821err_vma:
32d94048
CW
2822 if (eb.trampoline)
2823 i915_vma_unpin(eb.trampoline);
e5dadff4 2824 eb_unpin_engine(&eb);
a4e57f90 2825err_context:
8f2a1057 2826 i915_gem_context_put(eb.gem_context);
1acfc104 2827err_destroy:
2889caa9 2828 eb_destroy(&eb);
4d470f73 2829err_out_fence:
fec0445c
CW
2830 if (out_fence_fd != -1)
2831 put_unused_fd(out_fence_fd);
4a04e371 2832err_in_fence:
fec0445c 2833 dma_fence_put(in_fence);
2889caa9 2834 return err;
54cf91dc
CW
2835}
2836
d710fc16
CW
2837static size_t eb_element_size(void)
2838{
0f1dd022 2839 return sizeof(struct drm_i915_gem_exec_object2);
d710fc16
CW
2840}
2841
2842static bool check_buffer_count(size_t count)
2843{
2844 const size_t sz = eb_element_size();
2845
2846 /*
2847 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2848 * array size (see eb_create()). Otherwise, we can accept an array as
2849 * large as can be addressed (though use large arrays at your peril)!
2850 */
2851
2852 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2853}
2854
54cf91dc
CW
2855/*
2856 * Legacy execbuffer just creates an exec2 list from the original exec object
2857 * list array and passes it to the real function.
2858 */
2859int
6a20fe7b
VS
2860i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2861 struct drm_file *file)
54cf91dc 2862{
d0bf4582 2863 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc
CW
2864 struct drm_i915_gem_execbuffer *args = data;
2865 struct drm_i915_gem_execbuffer2 exec2;
2866 struct drm_i915_gem_exec_object *exec_list = NULL;
2867 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
d710fc16 2868 const size_t count = args->buffer_count;
2889caa9
CW
2869 unsigned int i;
2870 int err;
54cf91dc 2871
d710fc16 2872 if (!check_buffer_count(count)) {
d0bf4582 2873 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2874 return -EINVAL;
2875 }
2876
2889caa9
CW
2877 exec2.buffers_ptr = args->buffers_ptr;
2878 exec2.buffer_count = args->buffer_count;
2879 exec2.batch_start_offset = args->batch_start_offset;
2880 exec2.batch_len = args->batch_len;
2881 exec2.DR1 = args->DR1;
2882 exec2.DR4 = args->DR4;
2883 exec2.num_cliprects = args->num_cliprects;
2884 exec2.cliprects_ptr = args->cliprects_ptr;
2885 exec2.flags = I915_EXEC_RENDER;
2886 i915_execbuffer2_set_context_id(exec2, 0);
2887
00aff3f6
TU
2888 err = i915_gem_check_execbuffer(&exec2);
2889 if (err)
2890 return err;
2889caa9 2891
54cf91dc 2892 /* Copy in the exec list from userland */
d710fc16 2893 exec_list = kvmalloc_array(count, sizeof(*exec_list),
0ee931c4 2894 __GFP_NOWARN | GFP_KERNEL);
0f1dd022 2895 exec2_list = kvmalloc_array(count, eb_element_size(),
0ee931c4 2896 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2897 if (exec_list == NULL || exec2_list == NULL) {
d0bf4582
WK
2898 drm_dbg(&i915->drm,
2899 "Failed to allocate exec list for %d buffers\n",
2900 args->buffer_count);
2098105e
MH
2901 kvfree(exec_list);
2902 kvfree(exec2_list);
54cf91dc
CW
2903 return -ENOMEM;
2904 }
2889caa9 2905 err = copy_from_user(exec_list,
3ed605bc 2906 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2907 sizeof(*exec_list) * count);
2889caa9 2908 if (err) {
d0bf4582
WK
2909 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2910 args->buffer_count, err);
2098105e
MH
2911 kvfree(exec_list);
2912 kvfree(exec2_list);
54cf91dc
CW
2913 return -EFAULT;
2914 }
2915
2916 for (i = 0; i < args->buffer_count; i++) {
2917 exec2_list[i].handle = exec_list[i].handle;
2918 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2919 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2920 exec2_list[i].alignment = exec_list[i].alignment;
2921 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2922 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2923 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2924 else
2925 exec2_list[i].flags = 0;
2926 }
2927
cf6e7bac 2928 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2889caa9 2929 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2930 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2931 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2932
54cf91dc 2933 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2934 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2935 if (!(exec2_list[i].offset & UPDATE))
2936 continue;
2937
934acce3 2938 exec2_list[i].offset =
2889caa9
CW
2939 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2940 exec2_list[i].offset &= PIN_OFFSET_MASK;
2941 if (__copy_to_user(&user_exec_list[i].offset,
2942 &exec2_list[i].offset,
2943 sizeof(user_exec_list[i].offset)))
9aab8bff 2944 break;
54cf91dc
CW
2945 }
2946 }
2947
2098105e
MH
2948 kvfree(exec_list);
2949 kvfree(exec2_list);
2889caa9 2950 return err;
54cf91dc
CW
2951}
2952
2953int
6a20fe7b
VS
2954i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2955 struct drm_file *file)
54cf91dc 2956{
d0bf4582 2957 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 2958 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 2959 struct drm_i915_gem_exec_object2 *exec2_list;
cf6e7bac 2960 struct drm_syncobj **fences = NULL;
d710fc16 2961 const size_t count = args->buffer_count;
2889caa9 2962 int err;
54cf91dc 2963
d710fc16 2964 if (!check_buffer_count(count)) {
d0bf4582 2965 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2966 return -EINVAL;
2967 }
2968
00aff3f6
TU
2969 err = i915_gem_check_execbuffer(args);
2970 if (err)
2971 return err;
2889caa9 2972
0f1dd022 2973 exec2_list = kvmalloc_array(count, eb_element_size(),
0ee931c4 2974 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2975 if (exec2_list == NULL) {
d0bf4582
WK
2976 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
2977 count);
54cf91dc
CW
2978 return -ENOMEM;
2979 }
2889caa9
CW
2980 if (copy_from_user(exec2_list,
2981 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2982 sizeof(*exec2_list) * count)) {
d0bf4582 2983 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 2984 kvfree(exec2_list);
54cf91dc
CW
2985 return -EFAULT;
2986 }
2987
cf6e7bac
JE
2988 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2989 fences = get_fence_array(args, file);
2990 if (IS_ERR(fences)) {
2991 kvfree(exec2_list);
2992 return PTR_ERR(fences);
2993 }
2994 }
2995
2996 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2889caa9
CW
2997
2998 /*
2999 * Now that we have begun execution of the batchbuffer, we ignore
3000 * any new error after this point. Also given that we have already
3001 * updated the associated relocations, we try to write out the current
3002 * object locations irrespective of any error.
3003 */
3004 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3005 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3006 u64_to_user_ptr(args->buffers_ptr);
3007 unsigned int i;
9aab8bff 3008
2889caa9 3009 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3010 /*
3011 * Note: count * sizeof(*user_exec_list) does not overflow,
3012 * because we checked 'count' in check_buffer_count().
3013 *
3014 * And this range already got effectively checked earlier
3015 * when we did the "copy_from_user()" above.
3016 */
3017 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
8f4faed0 3018 goto end;
594cc251 3019
9aab8bff 3020 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3021 if (!(exec2_list[i].offset & UPDATE))
3022 continue;
3023
934acce3 3024 exec2_list[i].offset =
2889caa9
CW
3025 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3026 unsafe_put_user(exec2_list[i].offset,
3027 &user_exec_list[i].offset,
3028 end_user);
54cf91dc 3029 }
2889caa9
CW
3030end_user:
3031 user_access_end();
8f4faed0 3032end:;
54cf91dc
CW
3033 }
3034
2889caa9 3035 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
cf6e7bac 3036 put_fence_array(args, fences);
2098105e 3037 kvfree(exec2_list);
2889caa9 3038 return err;
54cf91dc 3039}
e3d29130
CW
3040
3041#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3042#include "selftests/i915_gem_execbuffer.c"
3043#endif