drm/i915: Flush the freed object list on file close
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
ad778f89 8#include <linux/reservation.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
760285e7 13#include <drm/i915_drm.h>
ad778f89 14
df0566a6
JN
15#include "display/intel_frontbuffer.h"
16
afa13085 17#include "gem/i915_gem_ioctls.h"
10be98a7 18#include "gt/intel_context.h"
baea429d 19#include "gt/intel_gt.h"
8f2a1057
CW
20#include "gt/intel_gt_pm.h"
21
10be98a7 22#include "i915_gem_ioctls.h"
57822dc6 23#include "i915_gem_clflush.h"
10be98a7 24#include "i915_gem_context.h"
54cf91dc
CW
25#include "i915_trace.h"
26#include "intel_drv.h"
27
7dd4f672
CW
28enum {
29 FORCE_CPU_RELOC = 1,
30 FORCE_GTT_RELOC,
31 FORCE_GPU_RELOC,
32#define DBG_FORCE_RELOC 0 /* choose one of the above! */
33};
d50415cc 34
dade2a61
CW
35#define __EXEC_OBJECT_HAS_REF BIT(31)
36#define __EXEC_OBJECT_HAS_PIN BIT(30)
37#define __EXEC_OBJECT_HAS_FENCE BIT(29)
38#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
39#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
40#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
2889caa9
CW
41#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
42
43#define __EXEC_HAS_RELOC BIT(31)
44#define __EXEC_VALIDATED BIT(30)
74c1c694 45#define __EXEC_INTERNAL_FLAGS (~0u << 30)
2889caa9 46#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
47
48#define BATCH_OFFSET_BIAS (256*1024)
a415d355 49
650bc635 50#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
51 (__I915_EXEC_UNKNOWN_FLAGS | \
52 I915_EXEC_CONSTANTS_MASK | \
53 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 54
d20ac620
CW
55/* Catch emission of unexpected errors for CI! */
56#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
57#undef EINVAL
58#define EINVAL ({ \
59 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
60 22; \
61})
62#endif
63
2889caa9
CW
64/**
65 * DOC: User command execution
66 *
67 * Userspace submits commands to be executed on the GPU as an instruction
68 * stream within a GEM object we call a batchbuffer. This instructions may
69 * refer to other GEM objects containing auxiliary state such as kernels,
70 * samplers, render targets and even secondary batchbuffers. Userspace does
71 * not know where in the GPU memory these objects reside and so before the
72 * batchbuffer is passed to the GPU for execution, those addresses in the
73 * batchbuffer and auxiliary objects are updated. This is known as relocation,
74 * or patching. To try and avoid having to relocate each object on the next
75 * execution, userspace is told the location of those objects in this pass,
76 * but this remains just a hint as the kernel may choose a new location for
77 * any object in the future.
78 *
99d7e4ee
KR
79 * At the level of talking to the hardware, submitting a batchbuffer for the
80 * GPU to execute is to add content to a buffer from which the HW
81 * command streamer is reading.
82 *
83 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
84 * Execlists, this command is not placed on the same buffer as the
85 * remaining items.
86 *
87 * 2. Add a command to invalidate caches to the buffer.
88 *
89 * 3. Add a batchbuffer start command to the buffer; the start command is
90 * essentially a token together with the GPU address of the batchbuffer
91 * to be executed.
92 *
93 * 4. Add a pipeline flush to the buffer.
94 *
95 * 5. Add a memory write command to the buffer to record when the GPU
96 * is done executing the batchbuffer. The memory write writes the
97 * global sequence number of the request, ``i915_request::global_seqno``;
98 * the i915 driver uses the current value in the register to determine
99 * if the GPU has completed the batchbuffer.
100 *
101 * 6. Add a user interrupt command to the buffer. This command instructs
102 * the GPU to issue an interrupt when the command, pipeline flush and
103 * memory write are completed.
104 *
105 * 7. Inform the hardware of the additional commands added to the buffer
106 * (by updating the tail pointer).
107 *
2889caa9
CW
108 * Processing an execbuf ioctl is conceptually split up into a few phases.
109 *
110 * 1. Validation - Ensure all the pointers, handles and flags are valid.
111 * 2. Reservation - Assign GPU address space for every object
112 * 3. Relocation - Update any addresses to point to the final locations
113 * 4. Serialisation - Order the request with respect to its dependencies
114 * 5. Construction - Construct a request to execute the batchbuffer
115 * 6. Submission (at some point in the future execution)
116 *
117 * Reserving resources for the execbuf is the most complicated phase. We
118 * neither want to have to migrate the object in the address space, nor do
119 * we want to have to update any relocations pointing to this object. Ideally,
120 * we want to leave the object where it is and for all the existing relocations
121 * to match. If the object is given a new address, or if userspace thinks the
122 * object is elsewhere, we have to parse all the relocation entries and update
123 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
124 * all the target addresses in all of its objects match the value in the
125 * relocation entries and that they all match the presumed offsets given by the
126 * list of execbuffer objects. Using this knowledge, we know that if we haven't
127 * moved any buffers, all the relocation entries are valid and we can skip
128 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
129 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
130 *
131 * The addresses written in the objects must match the corresponding
132 * reloc.presumed_offset which in turn must match the corresponding
133 * execobject.offset.
134 *
135 * Any render targets written to in the batch must be flagged with
136 * EXEC_OBJECT_WRITE.
137 *
138 * To avoid stalling, execobject.offset should match the current
139 * address of that object within the active context.
140 *
141 * The reservation is done is multiple phases. First we try and keep any
142 * object already bound in its current location - so as long as meets the
143 * constraints imposed by the new execbuffer. Any object left unbound after the
144 * first pass is then fitted into any available idle space. If an object does
145 * not fit, all objects are removed from the reservation and the process rerun
146 * after sorting the objects into a priority order (more difficult to fit
147 * objects are tried first). Failing that, the entire VM is cleared and we try
148 * to fit the execbuf once last time before concluding that it simply will not
149 * fit.
150 *
151 * A small complication to all of this is that we allow userspace not only to
152 * specify an alignment and a size for the object in the address space, but
153 * we also allow userspace to specify the exact offset. This objects are
154 * simpler to place (the location is known a priori) all we have to do is make
155 * sure the space is available.
156 *
157 * Once all the objects are in place, patching up the buried pointers to point
158 * to the final locations is a fairly simple job of walking over the relocation
159 * entry arrays, looking up the right address and rewriting the value into
160 * the object. Simple! ... The relocation entries are stored in user memory
161 * and so to access them we have to copy them into a local buffer. That copy
162 * has to avoid taking any pagefaults as they may lead back to a GEM object
163 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
164 * the relocation into multiple passes. First we try to do everything within an
165 * atomic context (avoid the pagefaults) which requires that we never wait. If
166 * we detect that we may wait, or if we need to fault, then we have to fallback
167 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
168 * bells yet?) Dropping the mutex means that we lose all the state we have
169 * built up so far for the execbuf and we must reset any global data. However,
170 * we do leave the objects pinned in their final locations - which is a
171 * potential issue for concurrent execbufs. Once we have left the mutex, we can
172 * allocate and copy all the relocation entries into a large array at our
173 * leisure, reacquire the mutex, reclaim all the objects and other state and
174 * then proceed to update any incorrect addresses with the objects.
175 *
176 * As we process the relocation entries, we maintain a record of whether the
177 * object is being written to. Using NORELOC, we expect userspace to provide
178 * this information instead. We also check whether we can skip the relocation
179 * by comparing the expected value inside the relocation entry with the target's
180 * final address. If they differ, we have to map the current object and rewrite
181 * the 4 or 8 byte pointer within.
182 *
183 * Serialising an execbuf is quite simple according to the rules of the GEM
184 * ABI. Execution within each context is ordered by the order of submission.
185 * Writes to any GEM object are in order of submission and are exclusive. Reads
186 * from a GEM object are unordered with respect to other reads, but ordered by
187 * writes. A write submitted after a read cannot occur before the read, and
188 * similarly any read submitted after a write cannot occur before the write.
189 * Writes are ordered between engines such that only one write occurs at any
190 * time (completing any reads beforehand) - using semaphores where available
191 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
192 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
193 * reads before starting, and any read (either using set-domain or pread) must
194 * flush all GPU writes before starting. (Note we only employ a barrier before,
195 * we currently rely on userspace not concurrently starting a new execution
196 * whilst reading or writing to an object. This may be an advantage or not
197 * depending on how much you trust userspace not to shoot themselves in the
198 * foot.) Serialisation may just result in the request being inserted into
199 * a DAG awaiting its turn, but most simple is to wait on the CPU until
200 * all dependencies are resolved.
201 *
202 * After all of that, is just a matter of closing the request and handing it to
203 * the hardware (well, leaving it in a queue to be executed). However, we also
204 * offer the ability for batchbuffers to be run with elevated privileges so
205 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
206 * Before any batch is given extra privileges we first must check that it
207 * contains no nefarious instructions, we check that each instruction is from
208 * our whitelist and all registers are also from an allowed list. We first
209 * copy the user's batchbuffer to a shadow (so that the user doesn't have
210 * access to it, either by the CPU or GPU as we scan it) and then parse each
211 * instruction. If everything is ok, we set a flag telling the hardware to run
212 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
213 */
214
650bc635 215struct i915_execbuffer {
2889caa9
CW
216 struct drm_i915_private *i915; /** i915 backpointer */
217 struct drm_file *file; /** per-file lookup tables and limits */
218 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
219 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
c7c6e46f
CW
220 struct i915_vma **vma;
221 unsigned int *flags;
2889caa9
CW
222
223 struct intel_engine_cs *engine; /** engine to queue the request to */
8f2a1057
CW
224 struct intel_context *context; /* logical state for the request */
225 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 226
e61e0f51 227 struct i915_request *request; /** our request to build */
2889caa9
CW
228 struct i915_vma *batch; /** identity of the batch obj/vma */
229
230 /** actual size of execobj[] as we may extend it for the cmdparser */
231 unsigned int buffer_count;
232
233 /** list of vma not yet bound during reservation phase */
234 struct list_head unbound;
235
236 /** list of vma that have execobj.relocation_count */
237 struct list_head relocs;
238
239 /**
240 * Track the most recently used object for relocations, as we
241 * frequently have to perform multiple relocations within the same
242 * obj/page
243 */
650bc635 244 struct reloc_cache {
2889caa9
CW
245 struct drm_mm_node node; /** temporary GTT binding */
246 unsigned long vaddr; /** Current kmap address */
247 unsigned long page; /** Currently mapped page index */
7dd4f672 248 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 249 bool use_64bit_reloc : 1;
2889caa9
CW
250 bool has_llc : 1;
251 bool has_fence : 1;
252 bool needs_unfenced : 1;
7dd4f672 253
e61e0f51 254 struct i915_request *rq;
7dd4f672
CW
255 u32 *rq_cmd;
256 unsigned int rq_size;
650bc635 257 } reloc_cache;
2889caa9
CW
258
259 u64 invalid_flags; /** Set of execobj.flags that are invalid */
260 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
261
262 u32 batch_start_offset; /** Location within object of batch */
263 u32 batch_len; /** Length of batch within object */
264 u32 batch_flags; /** Flags composed for emit_bb_start() */
265
266 /**
267 * Indicate either the size of the hastable used to resolve
268 * relocation handles, or if negative that we are using a direct
269 * index into the execobj[].
270 */
271 int lut_size;
272 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
273};
274
c7c6e46f 275#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
4ff4b44c 276
2889caa9
CW
277/*
278 * Used to convert any address to canonical form.
279 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
280 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
281 * addresses to be in a canonical form:
282 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
283 * canonical form [63:48] == [47]."
284 */
285#define GEN8_HIGH_ADDRESS_BIT 47
286static inline u64 gen8_canonical_addr(u64 address)
287{
288 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
289}
290
291static inline u64 gen8_noncanonical_addr(u64 address)
292{
293 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
294}
295
3dbf26ed
CW
296static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
297{
439e2ee4 298 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
3dbf26ed
CW
299}
300
650bc635 301static int eb_create(struct i915_execbuffer *eb)
67731b87 302{
2889caa9
CW
303 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
304 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 305
2889caa9
CW
306 /*
307 * Without a 1:1 association between relocation handles and
308 * the execobject[] index, we instead create a hashtable.
309 * We size it dynamically based on available memory, starting
310 * first with 1:1 assocative hash and scaling back until
311 * the allocation succeeds.
312 *
313 * Later on we use a positive lut_size to indicate we are
314 * using this hashtable, and a negative value to indicate a
315 * direct lookup.
316 */
4ff4b44c 317 do {
0d95c883 318 gfp_t flags;
4d470f73
CW
319
320 /* While we can still reduce the allocation size, don't
321 * raise a warning and allow the allocation to fail.
322 * On the last pass though, we want to try as hard
323 * as possible to perform the allocation and warn
324 * if it fails.
325 */
0ee931c4 326 flags = GFP_KERNEL;
4d470f73
CW
327 if (size > 1)
328 flags |= __GFP_NORETRY | __GFP_NOWARN;
329
4ff4b44c 330 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 331 flags);
4ff4b44c
CW
332 if (eb->buckets)
333 break;
334 } while (--size);
335
4d470f73
CW
336 if (unlikely(!size))
337 return -ENOMEM;
eef90ccb 338
2889caa9 339 eb->lut_size = size;
650bc635 340 } else {
2889caa9 341 eb->lut_size = -eb->buffer_count;
650bc635 342 }
eef90ccb 343
650bc635 344 return 0;
67731b87
CW
345}
346
2889caa9
CW
347static bool
348eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
349 const struct i915_vma *vma,
350 unsigned int flags)
2889caa9 351{
2889caa9
CW
352 if (vma->node.size < entry->pad_to_size)
353 return true;
354
355 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
356 return true;
357
c7c6e46f 358 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
359 vma->node.start != entry->offset)
360 return true;
361
c7c6e46f 362 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
363 vma->node.start < BATCH_OFFSET_BIAS)
364 return true;
365
c7c6e46f 366 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
367 (vma->node.start + vma->node.size - 1) >> 32)
368 return true;
369
1d033beb
CW
370 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
371 !i915_vma_is_map_and_fenceable(vma))
372 return true;
373
2889caa9
CW
374 return false;
375}
376
c7c6e46f 377static inline bool
2889caa9 378eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 379 const struct drm_i915_gem_exec_object2 *entry,
2889caa9
CW
380 struct i915_vma *vma)
381{
c7c6e46f
CW
382 unsigned int exec_flags = *vma->exec_flags;
383 u64 pin_flags;
2889caa9 384
616d9cee 385 if (vma->node.size)
c7c6e46f 386 pin_flags = vma->node.start;
616d9cee 387 else
c7c6e46f 388 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 389
c7c6e46f
CW
390 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
391 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
392 pin_flags |= PIN_GLOBAL;
616d9cee 393
c7c6e46f
CW
394 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
395 return false;
2889caa9 396
c7c6e46f 397 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 398 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 399 i915_vma_unpin(vma);
c7c6e46f 400 return false;
2889caa9
CW
401 }
402
3bd40735 403 if (vma->fence)
c7c6e46f 404 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
405 }
406
c7c6e46f
CW
407 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
408 return !eb_vma_misplaced(entry, vma, exec_flags);
2889caa9
CW
409}
410
c7c6e46f 411static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
d55495b4 412{
c7c6e46f 413 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
2889caa9 414
c7c6e46f 415 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
3bd40735 416 __i915_vma_unpin_fence(vma);
d55495b4 417
2889caa9 418 __i915_vma_unpin(vma);
d55495b4
CW
419}
420
2889caa9 421static inline void
c7c6e46f 422eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
d55495b4 423{
c7c6e46f 424 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
2889caa9 425 return;
d55495b4 426
c7c6e46f
CW
427 __eb_unreserve_vma(vma, *flags);
428 *flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
429}
430
2889caa9
CW
431static int
432eb_validate_vma(struct i915_execbuffer *eb,
433 struct drm_i915_gem_exec_object2 *entry,
434 struct i915_vma *vma)
67731b87 435{
2889caa9
CW
436 if (unlikely(entry->flags & eb->invalid_flags))
437 return -EINVAL;
d55495b4 438
2889caa9
CW
439 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
440 return -EINVAL;
441
442 /*
443 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
444 * any non-page-aligned or non-canonical addresses.
445 */
446 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 447 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
448 return -EINVAL;
449
450 /* pad_to_size was once a reserved field, so sanitize it */
451 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
452 if (unlikely(offset_in_page(entry->pad_to_size)))
453 return -EINVAL;
454 } else {
455 entry->pad_to_size = 0;
d55495b4
CW
456 }
457
c7c6e46f 458 if (unlikely(vma->exec_flags)) {
2889caa9
CW
459 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
460 entry->handle, (int)(entry - eb->exec));
461 return -EINVAL;
462 }
463
464 /*
465 * From drm_mm perspective address space is continuous,
466 * so from this point we're always using non-canonical
467 * form internally.
468 */
469 entry->offset = gen8_noncanonical_addr(entry->offset);
470
c7c6e46f
CW
471 if (!eb->reloc_cache.has_fence) {
472 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
473 } else {
474 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
475 eb->reloc_cache.needs_unfenced) &&
476 i915_gem_object_is_tiled(vma->obj))
477 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
478 }
479
480 if (!(entry->flags & EXEC_OBJECT_PINNED))
481 entry->flags |= eb->context_flags;
482
2889caa9 483 return 0;
67731b87
CW
484}
485
2889caa9 486static int
746c8f14
CW
487eb_add_vma(struct i915_execbuffer *eb,
488 unsigned int i, unsigned batch_idx,
489 struct i915_vma *vma)
59bfa124 490{
c7c6e46f 491 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
2889caa9
CW
492 int err;
493
494 GEM_BUG_ON(i915_vma_is_closed(vma));
495
496 if (!(eb->args->flags & __EXEC_VALIDATED)) {
497 err = eb_validate_vma(eb, entry, vma);
498 if (unlikely(err))
499 return err;
4ff4b44c 500 }
4ff4b44c 501
4d470f73 502 if (eb->lut_size > 0) {
2889caa9 503 vma->exec_handle = entry->handle;
4ff4b44c 504 hlist_add_head(&vma->exec_node,
2889caa9
CW
505 &eb->buckets[hash_32(entry->handle,
506 eb->lut_size)]);
4ff4b44c 507 }
59bfa124 508
2889caa9
CW
509 if (entry->relocation_count)
510 list_add_tail(&vma->reloc_link, &eb->relocs);
511
2889caa9
CW
512 /*
513 * Stash a pointer from the vma to execobj, so we can query its flags,
514 * size, alignment etc as provided by the user. Also we stash a pointer
515 * to the vma inside the execobj so that we can use a direct lookup
516 * to find the right target VMA when doing relocations.
517 */
c7c6e46f 518 eb->vma[i] = vma;
d1b48c1e 519 eb->flags[i] = entry->flags;
c7c6e46f 520 vma->exec_flags = &eb->flags[i];
2889caa9 521
746c8f14
CW
522 /*
523 * SNA is doing fancy tricks with compressing batch buffers, which leads
524 * to negative relocation deltas. Usually that works out ok since the
525 * relocate address is still positive, except when the batch is placed
526 * very low in the GTT. Ensure this doesn't happen.
527 *
528 * Note that actual hangs have only been observed on gen7, but for
529 * paranoia do it everywhere.
530 */
531 if (i == batch_idx) {
827db9d8
CW
532 if (entry->relocation_count &&
533 !(eb->flags[i] & EXEC_OBJECT_PINNED))
746c8f14
CW
534 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
535 if (eb->reloc_cache.has_fence)
536 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
537
538 eb->batch = vma;
539 }
540
2889caa9 541 err = 0;
c7c6e46f 542 if (eb_pin_vma(eb, entry, vma)) {
2889caa9
CW
543 if (entry->offset != vma->node.start) {
544 entry->offset = vma->node.start | UPDATE;
545 eb->args->flags |= __EXEC_HAS_RELOC;
546 }
c7c6e46f
CW
547 } else {
548 eb_unreserve_vma(vma, vma->exec_flags);
549
550 list_add_tail(&vma->exec_link, &eb->unbound);
551 if (drm_mm_node_allocated(&vma->node))
552 err = i915_vma_unbind(vma);
ed2f3532
CW
553 if (unlikely(err))
554 vma->exec_flags = NULL;
2889caa9
CW
555 }
556 return err;
557}
558
559static inline int use_cpu_reloc(const struct reloc_cache *cache,
560 const struct drm_i915_gem_object *obj)
561{
562 if (!i915_gem_object_has_struct_page(obj))
563 return false;
564
7dd4f672
CW
565 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
566 return true;
567
568 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
569 return false;
2889caa9
CW
570
571 return (cache->has_llc ||
572 obj->cache_dirty ||
573 obj->cache_level != I915_CACHE_NONE);
574}
575
576static int eb_reserve_vma(const struct i915_execbuffer *eb,
577 struct i915_vma *vma)
578{
c7c6e46f
CW
579 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
580 unsigned int exec_flags = *vma->exec_flags;
581 u64 pin_flags;
2889caa9
CW
582 int err;
583
c7c6e46f
CW
584 pin_flags = PIN_USER | PIN_NONBLOCK;
585 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
586 pin_flags |= PIN_GLOBAL;
2889caa9
CW
587
588 /*
589 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
590 * limit address to the first 4GBs for unflagged objects.
591 */
c7c6e46f
CW
592 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
593 pin_flags |= PIN_ZONE_4G;
2889caa9 594
c7c6e46f
CW
595 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
596 pin_flags |= PIN_MAPPABLE;
2889caa9 597
c7c6e46f
CW
598 if (exec_flags & EXEC_OBJECT_PINNED) {
599 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
600 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
601 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
602 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
2889caa9
CW
603 }
604
c7c6e46f
CW
605 err = i915_vma_pin(vma,
606 entry->pad_to_size, entry->alignment,
607 pin_flags);
2889caa9
CW
608 if (err)
609 return err;
610
611 if (entry->offset != vma->node.start) {
612 entry->offset = vma->node.start | UPDATE;
613 eb->args->flags |= __EXEC_HAS_RELOC;
614 }
615
c7c6e46f 616 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 617 err = i915_vma_pin_fence(vma);
2889caa9
CW
618 if (unlikely(err)) {
619 i915_vma_unpin(vma);
620 return err;
621 }
622
3bd40735 623 if (vma->fence)
c7c6e46f 624 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
625 }
626
c7c6e46f
CW
627 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
628 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
1da7b54c 629
2889caa9
CW
630 return 0;
631}
632
633static int eb_reserve(struct i915_execbuffer *eb)
634{
635 const unsigned int count = eb->buffer_count;
636 struct list_head last;
637 struct i915_vma *vma;
638 unsigned int i, pass;
639 int err;
640
641 /*
642 * Attempt to pin all of the buffers into the GTT.
643 * This is done in 3 phases:
644 *
645 * 1a. Unbind all objects that do not match the GTT constraints for
646 * the execbuffer (fenceable, mappable, alignment etc).
647 * 1b. Increment pin count for already bound objects.
648 * 2. Bind new objects.
649 * 3. Decrement pin count.
650 *
651 * This avoid unnecessary unbinding of later objects in order to make
652 * room for the earlier objects *unless* we need to defragment.
653 */
654
655 pass = 0;
656 err = 0;
657 do {
658 list_for_each_entry(vma, &eb->unbound, exec_link) {
659 err = eb_reserve_vma(eb, vma);
660 if (err)
661 break;
662 }
663 if (err != -ENOSPC)
664 return err;
665
666 /* Resort *all* the objects into priority order */
667 INIT_LIST_HEAD(&eb->unbound);
668 INIT_LIST_HEAD(&last);
669 for (i = 0; i < count; i++) {
c7c6e46f
CW
670 unsigned int flags = eb->flags[i];
671 struct i915_vma *vma = eb->vma[i];
2889caa9 672
c7c6e46f
CW
673 if (flags & EXEC_OBJECT_PINNED &&
674 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
675 continue;
676
c7c6e46f 677 eb_unreserve_vma(vma, &eb->flags[i]);
2889caa9 678
c7c6e46f 679 if (flags & EXEC_OBJECT_PINNED)
35e882a4 680 /* Pinned must have their slot */
2889caa9 681 list_add(&vma->exec_link, &eb->unbound);
c7c6e46f 682 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 683 /* Map require the lowest 256MiB (aperture) */
2889caa9 684 list_add_tail(&vma->exec_link, &eb->unbound);
35e882a4
CW
685 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
686 /* Prioritise 4GiB region for restricted bo */
687 list_add(&vma->exec_link, &last);
2889caa9
CW
688 else
689 list_add_tail(&vma->exec_link, &last);
690 }
691 list_splice_tail(&last, &eb->unbound);
692
693 switch (pass++) {
694 case 0:
695 break;
696
697 case 1:
698 /* Too fragmented, unbind everything and retry */
f5d974f9 699 err = i915_gem_evict_vm(eb->context->vm);
2889caa9
CW
700 if (err)
701 return err;
702 break;
703
704 default:
705 return -ENOSPC;
706 }
707 } while (1);
4ff4b44c 708}
59bfa124 709
2889caa9
CW
710static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
711{
1a71cf2f
CW
712 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
713 return 0;
714 else
715 return eb->buffer_count - 1;
2889caa9
CW
716}
717
718static int eb_select_context(struct i915_execbuffer *eb)
719{
720 struct i915_gem_context *ctx;
721
722 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
723 if (unlikely(!ctx))
724 return -ENOENT;
2889caa9 725
8f2a1057 726 eb->gem_context = ctx;
f5d974f9 727 if (ctx->vm)
4f2c7337 728 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9
CW
729
730 eb->context_flags = 0;
d3f3e5e4 731 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
2889caa9
CW
732 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
733
734 return 0;
735}
736
d6f328bf
CW
737static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
738{
739 struct i915_request *rq;
740
741 /*
742 * Completely unscientific finger-in-the-air estimates for suitable
743 * maximum user request size (to avoid blocking) and then backoff.
744 */
745 if (intel_ring_update_space(ring) >= PAGE_SIZE)
746 return NULL;
747
748 /*
749 * Find a request that after waiting upon, there will be at least half
750 * the ring available. The hysteresis allows us to compete for the
751 * shared ring and should mean that we sleep less often prior to
752 * claiming our resources, but not so long that the ring completely
753 * drains before we can submit our next request.
754 */
755 list_for_each_entry(rq, &ring->request_list, ring_link) {
756 if (__intel_ring_space(rq->postfix,
757 ring->emit, ring->size) > ring->size / 2)
758 break;
759 }
760 if (&rq->ring_link == &ring->request_list)
761 return NULL; /* weird, we will check again later for real */
762
763 return i915_request_get(rq);
764}
765
766static int eb_wait_for_ring(const struct i915_execbuffer *eb)
767{
d6f328bf
CW
768 struct i915_request *rq;
769 int ret = 0;
770
771 /*
772 * Apply a light amount of backpressure to prevent excessive hogs
773 * from blocking waiting for space whilst holding struct_mutex and
774 * keeping all of their resources pinned.
775 */
776
8f2a1057 777 rq = __eb_wait_for_ring(eb->context->ring);
d6f328bf
CW
778 if (rq) {
779 mutex_unlock(&eb->i915->drm.struct_mutex);
780
781 if (i915_request_wait(rq,
782 I915_WAIT_INTERRUPTIBLE,
783 MAX_SCHEDULE_TIMEOUT) < 0)
784 ret = -EINTR;
785
786 i915_request_put(rq);
787
788 mutex_lock(&eb->i915->drm.struct_mutex);
789 }
790
791 return ret;
792}
793
2889caa9 794static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 795{
8f2a1057 796 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
ac70ebe8 797 struct drm_i915_gem_object *obj;
746c8f14 798 unsigned int i, batch;
2889caa9 799 int err;
3b96eff4 800
8f2a1057 801 if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
8bcbfb12
CW
802 return -EIO;
803
2889caa9
CW
804 INIT_LIST_HEAD(&eb->relocs);
805 INIT_LIST_HEAD(&eb->unbound);
d55495b4 806
746c8f14
CW
807 batch = eb_batch_index(eb);
808
155ab883
CW
809 mutex_lock(&eb->gem_context->mutex);
810 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
811 err = -ENOENT;
812 goto err_ctx;
813 }
814
170fa29b
CW
815 for (i = 0; i < eb->buffer_count; i++) {
816 u32 handle = eb->exec[i].handle;
d1b48c1e 817 struct i915_lut_handle *lut;
170fa29b 818 struct i915_vma *vma;
4ff4b44c 819
d1b48c1e
CW
820 vma = radix_tree_lookup(handles_vma, handle);
821 if (likely(vma))
170fa29b 822 goto add_vma;
4ff4b44c 823
170fa29b 824 obj = i915_gem_object_lookup(eb->file, handle);
4ff4b44c 825 if (unlikely(!obj)) {
2889caa9 826 err = -ENOENT;
170fa29b 827 goto err_vma;
3b96eff4
CW
828 }
829
f5d974f9 830 vma = i915_vma_instance(obj, eb->context->vm, NULL);
772b5408 831 if (IS_ERR(vma)) {
2889caa9 832 err = PTR_ERR(vma);
170fa29b 833 goto err_obj;
27173f1f
BW
834 }
835
13f1bfd3 836 lut = i915_lut_handle_alloc();
d1b48c1e
CW
837 if (unlikely(!lut)) {
838 err = -ENOMEM;
839 goto err_obj;
840 }
841
842 err = radix_tree_insert(handles_vma, handle, vma);
843 if (unlikely(err)) {
13f1bfd3 844 i915_lut_handle_free(lut);
d1b48c1e 845 goto err_obj;
eef90ccb 846 }
4ff4b44c 847
155ab883
CW
848 /* transfer ref to lut */
849 if (!atomic_fetch_inc(&vma->open_count))
3365e226 850 i915_vma_reopen(vma);
d1b48c1e 851 lut->handle = handle;
155ab883
CW
852 lut->ctx = eb->gem_context;
853
854 i915_gem_object_lock(obj);
855 list_add(&lut->obj_link, &obj->lut_list);
856 i915_gem_object_unlock(obj);
d1b48c1e 857
170fa29b 858add_vma:
746c8f14 859 err = eb_add_vma(eb, i, batch, vma);
2889caa9 860 if (unlikely(err))
ac70ebe8 861 goto err_vma;
dade2a61 862
c7c6e46f
CW
863 GEM_BUG_ON(vma != eb->vma[i]);
864 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
746c8f14
CW
865 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
866 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
4ff4b44c
CW
867 }
868
155ab883
CW
869 mutex_unlock(&eb->gem_context->mutex);
870
2889caa9
CW
871 eb->args->flags |= __EXEC_VALIDATED;
872 return eb_reserve(eb);
873
170fa29b 874err_obj:
ac70ebe8 875 i915_gem_object_put(obj);
170fa29b
CW
876err_vma:
877 eb->vma[i] = NULL;
155ab883
CW
878err_ctx:
879 mutex_unlock(&eb->gem_context->mutex);
2889caa9 880 return err;
3b96eff4
CW
881}
882
4ff4b44c 883static struct i915_vma *
2889caa9 884eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 885{
2889caa9
CW
886 if (eb->lut_size < 0) {
887 if (handle >= -eb->lut_size)
eef90ccb 888 return NULL;
c7c6e46f 889 return eb->vma[handle];
eef90ccb
CW
890 } else {
891 struct hlist_head *head;
aa45950b 892 struct i915_vma *vma;
67731b87 893
2889caa9 894 head = &eb->buckets[hash_32(handle, eb->lut_size)];
aa45950b 895 hlist_for_each_entry(vma, head, exec_node) {
27173f1f
BW
896 if (vma->exec_handle == handle)
897 return vma;
eef90ccb
CW
898 }
899 return NULL;
900 }
67731b87
CW
901}
902
2889caa9 903static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 904{
2889caa9
CW
905 const unsigned int count = eb->buffer_count;
906 unsigned int i;
907
908 for (i = 0; i < count; i++) {
c7c6e46f
CW
909 struct i915_vma *vma = eb->vma[i];
910 unsigned int flags = eb->flags[i];
650bc635 911
2889caa9 912 if (!vma)
170fa29b 913 break;
bcffc3fa 914
c7c6e46f
CW
915 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
916 vma->exec_flags = NULL;
917 eb->vma[i] = NULL;
9e53d9be 918
c7c6e46f
CW
919 if (flags & __EXEC_OBJECT_HAS_PIN)
920 __eb_unreserve_vma(vma, flags);
dade2a61 921
c7c6e46f 922 if (flags & __EXEC_OBJECT_HAS_REF)
dade2a61 923 i915_vma_put(vma);
2889caa9 924 }
dabdfe02
CW
925}
926
2889caa9 927static void eb_reset_vmas(const struct i915_execbuffer *eb)
934acce3 928{
2889caa9 929 eb_release_vmas(eb);
4d470f73 930 if (eb->lut_size > 0)
2889caa9
CW
931 memset(eb->buckets, 0,
932 sizeof(struct hlist_head) << eb->lut_size);
934acce3
MW
933}
934
2889caa9 935static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 936{
7dd4f672
CW
937 GEM_BUG_ON(eb->reloc_cache.rq);
938
4d470f73 939 if (eb->lut_size > 0)
2889caa9 940 kfree(eb->buckets);
934acce3
MW
941}
942
2889caa9 943static inline u64
d50415cc 944relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 945 const struct i915_vma *target)
934acce3 946{
2889caa9 947 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
948}
949
d50415cc
CW
950static void reloc_cache_init(struct reloc_cache *cache,
951 struct drm_i915_private *i915)
5032d871 952{
31a39207 953 cache->page = -1;
d50415cc 954 cache->vaddr = 0;
dfc5148f 955 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 956 cache->gen = INTEL_GEN(i915);
2889caa9 957 cache->has_llc = HAS_LLC(i915);
dfc5148f 958 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
959 cache->has_fence = cache->gen < 4;
960 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
e8cb909a 961 cache->node.allocated = false;
7dd4f672
CW
962 cache->rq = NULL;
963 cache->rq_size = 0;
d50415cc 964}
5032d871 965
d50415cc
CW
966static inline void *unmask_page(unsigned long p)
967{
968 return (void *)(uintptr_t)(p & PAGE_MASK);
969}
970
971static inline unsigned int unmask_flags(unsigned long p)
972{
973 return p & ~PAGE_MASK;
31a39207
CW
974}
975
d50415cc
CW
976#define KMAP 0x4 /* after CLFLUSH_FLAGS */
977
650bc635
CW
978static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
979{
980 struct drm_i915_private *i915 =
981 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
982 return &i915->ggtt;
983}
984
7dd4f672
CW
985static void reloc_gpu_flush(struct reloc_cache *cache)
986{
987 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
988 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
a679f58d
CW
989
990 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
7dd4f672 991 i915_gem_object_unpin_map(cache->rq->batch->obj);
a679f58d 992
baea429d 993 intel_gt_chipset_flush(cache->rq->engine->gt);
7dd4f672 994
697b9a87 995 i915_request_add(cache->rq);
7dd4f672
CW
996 cache->rq = NULL;
997}
998
650bc635 999static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 1000{
d50415cc 1001 void *vaddr;
5032d871 1002
7dd4f672
CW
1003 if (cache->rq)
1004 reloc_gpu_flush(cache);
1005
31a39207
CW
1006 if (!cache->vaddr)
1007 return;
3c94ceee 1008
d50415cc
CW
1009 vaddr = unmask_page(cache->vaddr);
1010 if (cache->vaddr & KMAP) {
1011 if (cache->vaddr & CLFLUSH_AFTER)
1012 mb();
3c94ceee 1013
d50415cc 1014 kunmap_atomic(vaddr);
f0e4a063 1015 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
d50415cc 1016 } else {
576f0586
CW
1017 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1018
1019 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
d50415cc 1020 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 1021
576f0586 1022 if (cache->node.allocated) {
82ad6443
CW
1023 ggtt->vm.clear_range(&ggtt->vm,
1024 cache->node.start,
1025 cache->node.size);
e8cb909a
CW
1026 drm_mm_remove_node(&cache->node);
1027 } else {
1028 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 1029 }
31a39207 1030 }
650bc635
CW
1031
1032 cache->vaddr = 0;
1033 cache->page = -1;
31a39207
CW
1034}
1035
1036static void *reloc_kmap(struct drm_i915_gem_object *obj,
1037 struct reloc_cache *cache,
2889caa9 1038 unsigned long page)
31a39207 1039{
d50415cc
CW
1040 void *vaddr;
1041
1042 if (cache->vaddr) {
1043 kunmap_atomic(unmask_page(cache->vaddr));
1044 } else {
1045 unsigned int flushes;
2889caa9 1046 int err;
31a39207 1047
f0e4a063 1048 err = i915_gem_object_prepare_write(obj, &flushes);
2889caa9
CW
1049 if (err)
1050 return ERR_PTR(err);
d50415cc
CW
1051
1052 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1053 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 1054
d50415cc
CW
1055 cache->vaddr = flushes | KMAP;
1056 cache->node.mm = (void *)obj;
1057 if (flushes)
1058 mb();
3c94ceee
BW
1059 }
1060
d50415cc
CW
1061 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1062 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 1063 cache->page = page;
5032d871 1064
d50415cc 1065 return vaddr;
5032d871
RB
1066}
1067
d50415cc
CW
1068static void *reloc_iomap(struct drm_i915_gem_object *obj,
1069 struct reloc_cache *cache,
2889caa9 1070 unsigned long page)
5032d871 1071{
650bc635 1072 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1073 unsigned long offset;
d50415cc 1074 void *vaddr;
5032d871 1075
d50415cc 1076 if (cache->vaddr) {
576f0586 1077 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
615e5000 1078 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
1079 } else {
1080 struct i915_vma *vma;
2889caa9 1081 int err;
5032d871 1082
2889caa9 1083 if (use_cpu_reloc(cache, obj))
d50415cc 1084 return NULL;
3c94ceee 1085
6951e589 1086 i915_gem_object_lock(obj);
2889caa9 1087 err = i915_gem_object_set_to_gtt_domain(obj, true);
6951e589 1088 i915_gem_object_unlock(obj);
2889caa9
CW
1089 if (err)
1090 return ERR_PTR(err);
3c94ceee 1091
d50415cc 1092 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
3c755c5b
CW
1093 PIN_MAPPABLE |
1094 PIN_NONBLOCK |
1095 PIN_NONFAULT);
e8cb909a
CW
1096 if (IS_ERR(vma)) {
1097 memset(&cache->node, 0, sizeof(cache->node));
2889caa9 1098 err = drm_mm_insert_node_in_range
82ad6443 1099 (&ggtt->vm.mm, &cache->node,
f51455d4 1100 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1101 0, ggtt->mappable_end,
4e64e553 1102 DRM_MM_INSERT_LOW);
2889caa9 1103 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1104 return NULL;
e8cb909a 1105 } else {
2889caa9
CW
1106 err = i915_vma_put_fence(vma);
1107 if (err) {
e8cb909a 1108 i915_vma_unpin(vma);
2889caa9 1109 return ERR_PTR(err);
e8cb909a 1110 }
5032d871 1111
e8cb909a
CW
1112 cache->node.start = vma->node.start;
1113 cache->node.mm = (void *)vma;
3c94ceee 1114 }
e8cb909a 1115 }
3c94ceee 1116
e8cb909a
CW
1117 offset = cache->node.start;
1118 if (cache->node.allocated) {
82ad6443
CW
1119 ggtt->vm.insert_page(&ggtt->vm,
1120 i915_gem_object_get_dma_address(obj, page),
1121 offset, I915_CACHE_NONE, 0);
e8cb909a
CW
1122 } else {
1123 offset += page << PAGE_SHIFT;
3c94ceee
BW
1124 }
1125
73ebd503 1126 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
650bc635 1127 offset);
d50415cc
CW
1128 cache->page = page;
1129 cache->vaddr = (unsigned long)vaddr;
5032d871 1130
d50415cc 1131 return vaddr;
5032d871
RB
1132}
1133
d50415cc
CW
1134static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1135 struct reloc_cache *cache,
2889caa9 1136 unsigned long page)
edf4427b 1137{
d50415cc 1138 void *vaddr;
5032d871 1139
d50415cc
CW
1140 if (cache->page == page) {
1141 vaddr = unmask_page(cache->vaddr);
1142 } else {
1143 vaddr = NULL;
1144 if ((cache->vaddr & KMAP) == 0)
1145 vaddr = reloc_iomap(obj, cache, page);
1146 if (!vaddr)
1147 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1148 }
1149
d50415cc 1150 return vaddr;
edf4427b
CW
1151}
1152
d50415cc 1153static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1154{
d50415cc
CW
1155 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1156 if (flushes & CLFLUSH_BEFORE) {
1157 clflushopt(addr);
1158 mb();
1159 }
edf4427b 1160
d50415cc 1161 *addr = value;
edf4427b 1162
2889caa9
CW
1163 /*
1164 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1165 * (including clflush). On the write path, we only require
1166 * that it hits memory in an orderly fashion and place
1167 * mb barriers at the start and end of the relocation phase
1168 * to ensure ordering of clflush wrt to the system.
1169 */
1170 if (flushes & CLFLUSH_AFTER)
1171 clflushopt(addr);
1172 } else
1173 *addr = value;
edf4427b 1174}
edf4427b 1175
6951e589
CW
1176static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1177{
1178 struct drm_i915_gem_object *obj = vma->obj;
1179 int err;
1180
1181 i915_vma_lock(vma);
1182
1183 if (obj->cache_dirty & ~obj->cache_coherent)
1184 i915_gem_clflush_object(obj, 0);
1185 obj->write_domain = 0;
1186
1187 err = i915_request_await_object(rq, vma->obj, true);
1188 if (err == 0)
1189 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1190
1191 i915_vma_unlock(vma);
1192
1193 return err;
1194}
1195
7dd4f672
CW
1196static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1197 struct i915_vma *vma,
1198 unsigned int len)
1199{
1200 struct reloc_cache *cache = &eb->reloc_cache;
1201 struct drm_i915_gem_object *obj;
e61e0f51 1202 struct i915_request *rq;
7dd4f672
CW
1203 struct i915_vma *batch;
1204 u32 *cmd;
1205 int err;
1206
7dd4f672
CW
1207 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1208 if (IS_ERR(obj))
1209 return PTR_ERR(obj);
1210
1211 cmd = i915_gem_object_pin_map(obj,
a575c676
CW
1212 cache->has_llc ?
1213 I915_MAP_FORCE_WB :
1214 I915_MAP_FORCE_WC);
7dd4f672
CW
1215 i915_gem_object_unpin_pages(obj);
1216 if (IS_ERR(cmd))
1217 return PTR_ERR(cmd);
1218
7dd4f672
CW
1219 batch = i915_vma_instance(obj, vma->vm, NULL);
1220 if (IS_ERR(batch)) {
1221 err = PTR_ERR(batch);
1222 goto err_unmap;
1223 }
1224
1225 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1226 if (err)
1227 goto err_unmap;
1228
8f2a1057 1229 rq = i915_request_create(eb->context);
7dd4f672
CW
1230 if (IS_ERR(rq)) {
1231 err = PTR_ERR(rq);
1232 goto err_unpin;
1233 }
1234
6951e589 1235 err = reloc_move_to_gpu(rq, vma);
7dd4f672
CW
1236 if (err)
1237 goto err_request;
1238
7dd4f672
CW
1239 err = eb->engine->emit_bb_start(rq,
1240 batch->node.start, PAGE_SIZE,
1241 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1242 if (err)
6951e589 1243 goto skip_request;
7dd4f672 1244
6951e589 1245 i915_vma_lock(batch);
95ff7c7d 1246 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
a5236978 1247 err = i915_vma_move_to_active(batch, rq, 0);
6951e589 1248 i915_vma_unlock(batch);
a5236978
CW
1249 if (err)
1250 goto skip_request;
7dd4f672
CW
1251
1252 rq->batch = batch;
a5236978 1253 i915_vma_unpin(batch);
7dd4f672
CW
1254
1255 cache->rq = rq;
1256 cache->rq_cmd = cmd;
1257 cache->rq_size = 0;
1258
1259 /* Return with batch mapping (cmd) still pinned */
1260 return 0;
1261
a5236978
CW
1262skip_request:
1263 i915_request_skip(rq, err);
7dd4f672 1264err_request:
e61e0f51 1265 i915_request_add(rq);
7dd4f672
CW
1266err_unpin:
1267 i915_vma_unpin(batch);
1268err_unmap:
1269 i915_gem_object_unpin_map(obj);
1270 return err;
1271}
1272
1273static u32 *reloc_gpu(struct i915_execbuffer *eb,
1274 struct i915_vma *vma,
1275 unsigned int len)
1276{
1277 struct reloc_cache *cache = &eb->reloc_cache;
1278 u32 *cmd;
1279
1280 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1281 reloc_gpu_flush(cache);
1282
1283 if (unlikely(!cache->rq)) {
1284 int err;
1285
3dbf26ed
CW
1286 /* If we need to copy for the cmdparser, we will stall anyway */
1287 if (eb_use_cmdparser(eb))
1288 return ERR_PTR(-EWOULDBLOCK);
1289
90cad095
CW
1290 if (!intel_engine_can_store_dword(eb->engine))
1291 return ERR_PTR(-ENODEV);
1292
7dd4f672
CW
1293 err = __reloc_gpu_alloc(eb, vma, len);
1294 if (unlikely(err))
1295 return ERR_PTR(err);
1296 }
1297
1298 cmd = cache->rq_cmd + cache->rq_size;
1299 cache->rq_size += len;
1300
1301 return cmd;
1302}
1303
2889caa9
CW
1304static u64
1305relocate_entry(struct i915_vma *vma,
d50415cc 1306 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1307 struct i915_execbuffer *eb,
1308 const struct i915_vma *target)
edf4427b 1309{
d50415cc 1310 u64 offset = reloc->offset;
2889caa9
CW
1311 u64 target_offset = relocation_target(reloc, target);
1312 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1313 void *vaddr;
edf4427b 1314
7dd4f672
CW
1315 if (!eb->reloc_cache.vaddr &&
1316 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
90cad095 1317 !reservation_object_test_signaled_rcu(vma->resv, true))) {
7dd4f672
CW
1318 const unsigned int gen = eb->reloc_cache.gen;
1319 unsigned int len;
1320 u32 *batch;
1321 u64 addr;
1322
1323 if (wide)
1324 len = offset & 7 ? 8 : 5;
1325 else if (gen >= 4)
1326 len = 4;
f2f5c061 1327 else
a889580c 1328 len = 3;
7dd4f672
CW
1329
1330 batch = reloc_gpu(eb, vma, len);
1331 if (IS_ERR(batch))
1332 goto repeat;
1333
1334 addr = gen8_canonical_addr(vma->node.start + offset);
1335 if (wide) {
1336 if (offset & 7) {
1337 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1338 *batch++ = lower_32_bits(addr);
1339 *batch++ = upper_32_bits(addr);
1340 *batch++ = lower_32_bits(target_offset);
1341
1342 addr = gen8_canonical_addr(addr + 4);
1343
1344 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1345 *batch++ = lower_32_bits(addr);
1346 *batch++ = upper_32_bits(addr);
1347 *batch++ = upper_32_bits(target_offset);
1348 } else {
1349 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1350 *batch++ = lower_32_bits(addr);
1351 *batch++ = upper_32_bits(addr);
1352 *batch++ = lower_32_bits(target_offset);
1353 *batch++ = upper_32_bits(target_offset);
1354 }
1355 } else if (gen >= 6) {
1356 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1357 *batch++ = 0;
1358 *batch++ = addr;
1359 *batch++ = target_offset;
1360 } else if (gen >= 4) {
1361 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1362 *batch++ = 0;
1363 *batch++ = addr;
1364 *batch++ = target_offset;
1365 } else {
1366 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1367 *batch++ = addr;
1368 *batch++ = target_offset;
1369 }
1370
1371 goto out;
1372 }
1373
d50415cc 1374repeat:
95ff7c7d 1375 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1376 if (IS_ERR(vaddr))
1377 return PTR_ERR(vaddr);
1378
1379 clflush_write32(vaddr + offset_in_page(offset),
1380 lower_32_bits(target_offset),
2889caa9 1381 eb->reloc_cache.vaddr);
d50415cc
CW
1382
1383 if (wide) {
1384 offset += sizeof(u32);
1385 target_offset >>= 32;
1386 wide = false;
1387 goto repeat;
edf4427b 1388 }
edf4427b 1389
7dd4f672 1390out:
2889caa9 1391 return target->node.start | UPDATE;
edf4427b 1392}
edf4427b 1393
2889caa9
CW
1394static u64
1395eb_relocate_entry(struct i915_execbuffer *eb,
1396 struct i915_vma *vma,
1397 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1398{
507d977f 1399 struct i915_vma *target;
2889caa9 1400 int err;
54cf91dc 1401
67731b87 1402 /* we've already hold a reference to all valid objects */
507d977f
CW
1403 target = eb_get_vma(eb, reloc->target_handle);
1404 if (unlikely(!target))
54cf91dc 1405 return -ENOENT;
e844b990 1406
54cf91dc 1407 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1408 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 1409 DRM_DEBUG("reloc with multiple write domains: "
507d977f 1410 "target %d offset %d "
54cf91dc 1411 "read %08x write %08x",
507d977f 1412 reloc->target_handle,
54cf91dc
CW
1413 (int) reloc->offset,
1414 reloc->read_domains,
1415 reloc->write_domain);
8b78f0e5 1416 return -EINVAL;
54cf91dc 1417 }
4ca4a250
DV
1418 if (unlikely((reloc->write_domain | reloc->read_domains)
1419 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 1420 DRM_DEBUG("reloc with read/write non-GPU domains: "
507d977f 1421 "target %d offset %d "
54cf91dc 1422 "read %08x write %08x",
507d977f 1423 reloc->target_handle,
54cf91dc
CW
1424 (int) reloc->offset,
1425 reloc->read_domains,
1426 reloc->write_domain);
8b78f0e5 1427 return -EINVAL;
54cf91dc 1428 }
54cf91dc 1429
2889caa9 1430 if (reloc->write_domain) {
c7c6e46f 1431 *target->exec_flags |= EXEC_OBJECT_WRITE;
507d977f 1432
2889caa9
CW
1433 /*
1434 * Sandybridge PPGTT errata: We need a global gtt mapping
1435 * for MI and pipe_control writes because the gpu doesn't
1436 * properly redirect them through the ppgtt for non_secure
1437 * batchbuffers.
1438 */
1439 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
cf819eff 1440 IS_GEN(eb->i915, 6)) {
2889caa9
CW
1441 err = i915_vma_bind(target, target->obj->cache_level,
1442 PIN_GLOBAL);
1443 if (WARN_ONCE(err,
1444 "Unexpected failure to bind target VMA!"))
1445 return err;
1446 }
507d977f 1447 }
54cf91dc 1448
2889caa9
CW
1449 /*
1450 * If the relocation already has the right value in it, no
54cf91dc
CW
1451 * more work needs to be done.
1452 */
7dd4f672
CW
1453 if (!DBG_FORCE_RELOC &&
1454 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
67731b87 1455 return 0;
54cf91dc
CW
1456
1457 /* Check that the relocation address is valid... */
3c94ceee 1458 if (unlikely(reloc->offset >
507d977f 1459 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
ff240199 1460 DRM_DEBUG("Relocation beyond object bounds: "
507d977f
CW
1461 "target %d offset %d size %d.\n",
1462 reloc->target_handle,
1463 (int)reloc->offset,
1464 (int)vma->size);
8b78f0e5 1465 return -EINVAL;
54cf91dc 1466 }
b8f7ab17 1467 if (unlikely(reloc->offset & 3)) {
ff240199 1468 DRM_DEBUG("Relocation not 4-byte aligned: "
507d977f
CW
1469 "target %d offset %d.\n",
1470 reloc->target_handle,
1471 (int)reloc->offset);
8b78f0e5 1472 return -EINVAL;
54cf91dc
CW
1473 }
1474
071750e5
CW
1475 /*
1476 * If we write into the object, we need to force the synchronisation
1477 * barrier, either with an asynchronous clflush or if we executed the
1478 * patching using the GPU (though that should be serialised by the
1479 * timeline). To be completely sure, and since we are required to
1480 * do relocations we are already stalling, disable the user's opt
0519bcb1 1481 * out of our synchronisation.
071750e5 1482 */
c7c6e46f 1483 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1484
54cf91dc 1485 /* and update the user's relocation entry */
2889caa9 1486 return relocate_entry(vma, reloc, eb, target);
54cf91dc
CW
1487}
1488
2889caa9 1489static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1490{
1d83f442 1491#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1492 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1493 struct drm_i915_gem_relocation_entry __user *urelocs;
c7c6e46f 1494 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9 1495 unsigned int remain;
54cf91dc 1496
2889caa9 1497 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1498 remain = entry->relocation_count;
2889caa9
CW
1499 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1500 return -EINVAL;
ebc0808f 1501
2889caa9
CW
1502 /*
1503 * We must check that the entire relocation array is safe
1504 * to read. However, if the array is not writable the user loses
1505 * the updated relocation values.
1506 */
96d4f267 1507 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
2889caa9
CW
1508 return -EFAULT;
1509
1510 do {
1511 struct drm_i915_gem_relocation_entry *r = stack;
1512 unsigned int count =
1513 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1514 unsigned int copied;
1d83f442 1515
2889caa9
CW
1516 /*
1517 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1518 * whilst holding the struct mutex lest the user pass in the
1519 * relocations contained within a mmaped bo. For in such a case
1520 * we, the page fault handler would call i915_gem_fault() and
1521 * we would try to acquire the struct mutex again. Obviously
1522 * this is bad and so lockdep complains vehemently.
1523 */
1524 pagefault_disable();
2889caa9 1525 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
ebc0808f 1526 pagefault_enable();
2889caa9
CW
1527 if (unlikely(copied)) {
1528 remain = -EFAULT;
31a39207
CW
1529 goto out;
1530 }
54cf91dc 1531
2889caa9 1532 remain -= count;
1d83f442 1533 do {
2889caa9 1534 u64 offset = eb_relocate_entry(eb, vma, r);
54cf91dc 1535
2889caa9
CW
1536 if (likely(offset == 0)) {
1537 } else if ((s64)offset < 0) {
1538 remain = (int)offset;
31a39207 1539 goto out;
2889caa9
CW
1540 } else {
1541 /*
1542 * Note that reporting an error now
1543 * leaves everything in an inconsistent
1544 * state as we have *already* changed
1545 * the relocation value inside the
1546 * object. As we have not changed the
1547 * reloc.presumed_offset or will not
1548 * change the execobject.offset, on the
1549 * call we may not rewrite the value
1550 * inside the object, leaving it
1551 * dangling and causing a GPU hang. Unless
1552 * userspace dynamically rebuilds the
1553 * relocations on each execbuf rather than
1554 * presume a static tree.
1555 *
1556 * We did previously check if the relocations
1557 * were writable (access_ok), an error now
1558 * would be a strange race with mprotect,
1559 * having already demonstrated that we
1560 * can read from this userspace address.
1561 */
1562 offset = gen8_canonical_addr(offset & ~UPDATE);
fddcd00a
CW
1563 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1564 remain = -EFAULT;
1565 goto out;
1566 }
1d83f442 1567 }
2889caa9
CW
1568 } while (r++, --count);
1569 urelocs += ARRAY_SIZE(stack);
1570 } while (remain);
31a39207 1571out:
650bc635 1572 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1573 return remain;
54cf91dc
CW
1574}
1575
1576static int
2889caa9 1577eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1578{
c7c6e46f 1579 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9
CW
1580 struct drm_i915_gem_relocation_entry *relocs =
1581 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1582 unsigned int i;
1583 int err;
54cf91dc
CW
1584
1585 for (i = 0; i < entry->relocation_count; i++) {
2889caa9 1586 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
d4aeee77 1587
2889caa9
CW
1588 if ((s64)offset < 0) {
1589 err = (int)offset;
1590 goto err;
1591 }
54cf91dc 1592 }
2889caa9
CW
1593 err = 0;
1594err:
1595 reloc_cache_reset(&eb->reloc_cache);
1596 return err;
edf4427b
CW
1597}
1598
2889caa9 1599static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1690e1eb 1600{
2889caa9
CW
1601 const char __user *addr, *end;
1602 unsigned long size;
1603 char __maybe_unused c;
1690e1eb 1604
2889caa9
CW
1605 size = entry->relocation_count;
1606 if (size == 0)
1607 return 0;
7788a765 1608
2889caa9
CW
1609 if (size > N_RELOC(ULONG_MAX))
1610 return -EINVAL;
9a5a53b3 1611
2889caa9
CW
1612 addr = u64_to_user_ptr(entry->relocs_ptr);
1613 size *= sizeof(struct drm_i915_gem_relocation_entry);
96d4f267 1614 if (!access_ok(addr, size))
2889caa9 1615 return -EFAULT;
1690e1eb 1616
2889caa9
CW
1617 end = addr + size;
1618 for (; addr < end; addr += PAGE_SIZE) {
1619 int err = __get_user(c, addr);
1620 if (err)
1621 return err;
ed5982e6 1622 }
2889caa9 1623 return __get_user(c, end - 1);
7788a765 1624}
1690e1eb 1625
2889caa9 1626static int eb_copy_relocations(const struct i915_execbuffer *eb)
d23db88c 1627{
2889caa9
CW
1628 const unsigned int count = eb->buffer_count;
1629 unsigned int i;
1630 int err;
e6a84468 1631
2889caa9
CW
1632 for (i = 0; i < count; i++) {
1633 const unsigned int nreloc = eb->exec[i].relocation_count;
1634 struct drm_i915_gem_relocation_entry __user *urelocs;
1635 struct drm_i915_gem_relocation_entry *relocs;
1636 unsigned long size;
1637 unsigned long copied;
e6a84468 1638
2889caa9
CW
1639 if (nreloc == 0)
1640 continue;
e6a84468 1641
2889caa9
CW
1642 err = check_relocations(&eb->exec[i]);
1643 if (err)
1644 goto err;
d23db88c 1645
2889caa9
CW
1646 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1647 size = nreloc * sizeof(*relocs);
d23db88c 1648
0ee931c4 1649 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
2889caa9 1650 if (!relocs) {
2889caa9
CW
1651 err = -ENOMEM;
1652 goto err;
1653 }
d23db88c 1654
2889caa9
CW
1655 /* copy_from_user is limited to < 4GiB */
1656 copied = 0;
1657 do {
1658 unsigned int len =
1659 min_t(u64, BIT_ULL(31), size - copied);
1660
1661 if (__copy_from_user((char *)relocs + copied,
908a6105 1662 (char __user *)urelocs + copied,
2889caa9 1663 len)) {
fddcd00a 1664end_user:
0b2c8f8b 1665 user_access_end();
8f4faed0 1666end:
2889caa9
CW
1667 kvfree(relocs);
1668 err = -EFAULT;
1669 goto err;
1670 }
91b2db6f 1671
2889caa9
CW
1672 copied += len;
1673 } while (copied < size);
506a8e87 1674
2889caa9
CW
1675 /*
1676 * As we do not update the known relocation offsets after
1677 * relocating (due to the complexities in lock handling),
1678 * we need to mark them as invalid now so that we force the
1679 * relocation processing next time. Just in case the target
1680 * object is evicted and then rebound into its old
1681 * presumed_offset before the next execbuffer - if that
1682 * happened we would make the mistake of assuming that the
1683 * relocations were valid.
1684 */
594cc251 1685 if (!user_access_begin(urelocs, size))
8f4faed0 1686 goto end;
594cc251 1687
2889caa9
CW
1688 for (copied = 0; copied < nreloc; copied++)
1689 unsafe_put_user(-1,
1690 &urelocs[copied].presumed_offset,
1691 end_user);
2889caa9 1692 user_access_end();
d23db88c 1693
2889caa9
CW
1694 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1695 }
edf4427b 1696
2889caa9 1697 return 0;
101b506a 1698
2889caa9
CW
1699err:
1700 while (i--) {
1701 struct drm_i915_gem_relocation_entry *relocs =
1702 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1703 if (eb->exec[i].relocation_count)
1704 kvfree(relocs);
1705 }
1706 return err;
d23db88c
CW
1707}
1708
2889caa9 1709static int eb_prefault_relocations(const struct i915_execbuffer *eb)
54cf91dc 1710{
2889caa9
CW
1711 const unsigned int count = eb->buffer_count;
1712 unsigned int i;
54cf91dc 1713
4f044a88 1714 if (unlikely(i915_modparams.prefault_disable))
2889caa9 1715 return 0;
54cf91dc 1716
2889caa9
CW
1717 for (i = 0; i < count; i++) {
1718 int err;
54cf91dc 1719
2889caa9
CW
1720 err = check_relocations(&eb->exec[i]);
1721 if (err)
1722 return err;
1723 }
a415d355 1724
2889caa9 1725 return 0;
54cf91dc
CW
1726}
1727
2889caa9 1728static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
54cf91dc 1729{
650bc635 1730 struct drm_device *dev = &eb->i915->drm;
2889caa9 1731 bool have_copy = false;
27173f1f 1732 struct i915_vma *vma;
2889caa9
CW
1733 int err = 0;
1734
1735repeat:
1736 if (signal_pending(current)) {
1737 err = -ERESTARTSYS;
1738 goto out;
1739 }
27173f1f 1740
67731b87 1741 /* We may process another execbuffer during the unlock... */
2889caa9 1742 eb_reset_vmas(eb);
54cf91dc
CW
1743 mutex_unlock(&dev->struct_mutex);
1744
2889caa9
CW
1745 /*
1746 * We take 3 passes through the slowpatch.
1747 *
1748 * 1 - we try to just prefault all the user relocation entries and
1749 * then attempt to reuse the atomic pagefault disabled fast path again.
1750 *
1751 * 2 - we copy the user entries to a local buffer here outside of the
1752 * local and allow ourselves to wait upon any rendering before
1753 * relocations
1754 *
1755 * 3 - we already have a local copy of the relocation entries, but
1756 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1757 */
1758 if (!err) {
1759 err = eb_prefault_relocations(eb);
1760 } else if (!have_copy) {
1761 err = eb_copy_relocations(eb);
1762 have_copy = err == 0;
1763 } else {
1764 cond_resched();
1765 err = 0;
54cf91dc 1766 }
2889caa9
CW
1767 if (err) {
1768 mutex_lock(&dev->struct_mutex);
1769 goto out;
54cf91dc
CW
1770 }
1771
8a2421bd
CW
1772 /* A frequent cause for EAGAIN are currently unavailable client pages */
1773 flush_workqueue(eb->i915->mm.userptr_wq);
1774
2889caa9
CW
1775 err = i915_mutex_lock_interruptible(dev);
1776 if (err) {
54cf91dc 1777 mutex_lock(&dev->struct_mutex);
2889caa9 1778 goto out;
54cf91dc
CW
1779 }
1780
67731b87 1781 /* reacquire the objects */
2889caa9
CW
1782 err = eb_lookup_vmas(eb);
1783 if (err)
3b96eff4 1784 goto err;
67731b87 1785
c7c6e46f
CW
1786 GEM_BUG_ON(!eb->batch);
1787
2889caa9
CW
1788 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1789 if (!have_copy) {
1790 pagefault_disable();
1791 err = eb_relocate_vma(eb, vma);
1792 pagefault_enable();
1793 if (err)
1794 goto repeat;
1795 } else {
1796 err = eb_relocate_vma_slow(eb, vma);
1797 if (err)
1798 goto err;
1799 }
54cf91dc
CW
1800 }
1801
2889caa9
CW
1802 /*
1803 * Leave the user relocations as are, this is the painfully slow path,
54cf91dc
CW
1804 * and we want to avoid the complication of dropping the lock whilst
1805 * having buffers reserved in the aperture and so causing spurious
1806 * ENOSPC for random operations.
1807 */
1808
1809err:
2889caa9
CW
1810 if (err == -EAGAIN)
1811 goto repeat;
1812
1813out:
1814 if (have_copy) {
1815 const unsigned int count = eb->buffer_count;
1816 unsigned int i;
1817
1818 for (i = 0; i < count; i++) {
1819 const struct drm_i915_gem_exec_object2 *entry =
1820 &eb->exec[i];
1821 struct drm_i915_gem_relocation_entry *relocs;
1822
1823 if (!entry->relocation_count)
1824 continue;
1825
1826 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1827 kvfree(relocs);
1828 }
1829 }
1830
1f727d9e 1831 return err;
54cf91dc
CW
1832}
1833
2889caa9 1834static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1835{
2889caa9
CW
1836 if (eb_lookup_vmas(eb))
1837 goto slow;
1838
1839 /* The objects are in their final locations, apply the relocations. */
1840 if (eb->args->flags & __EXEC_HAS_RELOC) {
1841 struct i915_vma *vma;
1842
1843 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1844 if (eb_relocate_vma(eb, vma))
1845 goto slow;
1846 }
1847 }
1848
1849 return 0;
1850
1851slow:
1852 return eb_relocate_slow(eb);
1853}
1854
2889caa9
CW
1855static int eb_move_to_gpu(struct i915_execbuffer *eb)
1856{
1857 const unsigned int count = eb->buffer_count;
6951e589 1858 struct ww_acquire_ctx acquire;
2889caa9 1859 unsigned int i;
6951e589
CW
1860 int err = 0;
1861
1862 ww_acquire_init(&acquire, &reservation_ww_class);
54cf91dc 1863
2889caa9 1864 for (i = 0; i < count; i++) {
6951e589
CW
1865 struct i915_vma *vma = eb->vma[i];
1866
1867 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1868 if (!err)
1869 continue;
1870
1871 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1872
1873 if (err == -EDEADLK) {
1874 GEM_BUG_ON(i == 0);
1875 do {
1876 int j = i - 1;
1877
1878 ww_mutex_unlock(&eb->vma[j]->resv->lock);
1879
1880 swap(eb->flags[i], eb->flags[j]);
1881 swap(eb->vma[i], eb->vma[j]);
1882 eb->vma[i]->exec_flags = &eb->flags[i];
1883 } while (--i);
1884 GEM_BUG_ON(vma != eb->vma[0]);
1885 vma->exec_flags = &eb->flags[0];
1886
1887 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1888 &acquire);
1889 }
1890 if (err)
1891 break;
1892 }
1893 ww_acquire_done(&acquire);
1894
1895 while (i--) {
c7c6e46f
CW
1896 unsigned int flags = eb->flags[i];
1897 struct i915_vma *vma = eb->vma[i];
27173f1f 1898 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1899
6951e589
CW
1900 assert_vma_held(vma);
1901
c7c6e46f 1902 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 1903 struct i915_capture_list *capture;
b0fd47ad
CW
1904
1905 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
6951e589
CW
1906 if (capture) {
1907 capture->next = eb->request->capture_list;
1908 capture->vma = vma;
1909 eb->request->capture_list = capture;
1910 }
b0fd47ad
CW
1911 }
1912
b8f55be6
CW
1913 /*
1914 * If the GPU is not _reading_ through the CPU cache, we need
1915 * to make sure that any writes (both previous GPU writes from
1916 * before a change in snooping levels and normal CPU writes)
1917 * caught in that cache are flushed to main memory.
1918 *
1919 * We want to say
1920 * obj->cache_dirty &&
1921 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1922 * but gcc's optimiser doesn't handle that as well and emits
1923 * two jumps instead of one. Maybe one day...
1924 */
1925 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1926 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1927 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1928 }
1929
6951e589
CW
1930 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1931 err = i915_request_await_object
1932 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1933 }
2889caa9 1934
6951e589
CW
1935 if (err == 0)
1936 err = i915_vma_move_to_active(vma, eb->request, flags);
c7c6e46f 1937
6951e589 1938 i915_vma_unlock(vma);
2889caa9 1939
c7c6e46f
CW
1940 __eb_unreserve_vma(vma, flags);
1941 vma->exec_flags = NULL;
1942
1943 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
dade2a61 1944 i915_vma_put(vma);
c59a333f 1945 }
6951e589
CW
1946 ww_acquire_fini(&acquire);
1947
1948 if (unlikely(err))
1949 goto err_skip;
1950
2889caa9 1951 eb->exec = NULL;
c59a333f 1952
dcd79934 1953 /* Unconditionally flush any chipset caches (for streaming writes). */
baea429d 1954 intel_gt_chipset_flush(eb->engine->gt);
2113184c 1955 return 0;
6951e589
CW
1956
1957err_skip:
1958 i915_request_skip(eb->request, err);
1959 return err;
54cf91dc
CW
1960}
1961
2889caa9 1962static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1963{
650bc635 1964 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
ed5982e6
DV
1965 return false;
1966
2f5945bc 1967 /* Kernel clipping was a DRI1 misfeature */
cf6e7bac
JE
1968 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1969 if (exec->num_cliprects || exec->cliprects_ptr)
1970 return false;
1971 }
2f5945bc
CW
1972
1973 if (exec->DR4 == 0xffffffff) {
1974 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1975 exec->DR4 = 0;
1976 }
1977 if (exec->DR1 || exec->DR4)
1978 return false;
1979
1980 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1981 return false;
1982
1983 return true;
54cf91dc
CW
1984}
1985
e61e0f51 1986static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 1987{
73dec95e
TU
1988 u32 *cs;
1989 int i;
ae662d31 1990
8a68d464 1991 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
9d662da8
DV
1992 DRM_DEBUG("sol reset is gen7/rcs only\n");
1993 return -EINVAL;
1994 }
ae662d31 1995
e61e0f51 1996 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
1997 if (IS_ERR(cs))
1998 return PTR_ERR(cs);
ae662d31 1999
2889caa9 2000 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2001 for (i = 0; i < 4; i++) {
73dec95e
TU
2002 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2003 *cs++ = 0;
ae662d31 2004 }
2889caa9 2005 *cs++ = MI_NOOP;
e61e0f51 2006 intel_ring_advance(rq, cs);
ae662d31
EA
2007
2008 return 0;
2009}
2010
650bc635 2011static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
71745376 2012{
71745376 2013 struct drm_i915_gem_object *shadow_batch_obj;
17cabf57 2014 struct i915_vma *vma;
2889caa9 2015 int err;
71745376 2016
650bc635
CW
2017 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
2018 PAGE_ALIGN(eb->batch_len));
71745376 2019 if (IS_ERR(shadow_batch_obj))
59bfa124 2020 return ERR_CAST(shadow_batch_obj);
71745376 2021
2889caa9 2022 err = intel_engine_cmd_parser(eb->engine,
650bc635 2023 eb->batch->obj,
33a051a5 2024 shadow_batch_obj,
650bc635
CW
2025 eb->batch_start_offset,
2026 eb->batch_len,
33a051a5 2027 is_master);
2889caa9
CW
2028 if (err) {
2029 if (err == -EACCES) /* unhandled chained batch */
058d88c4
CW
2030 vma = NULL;
2031 else
2889caa9 2032 vma = ERR_PTR(err);
058d88c4
CW
2033 goto out;
2034 }
71745376 2035
058d88c4
CW
2036 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
2037 if (IS_ERR(vma))
2038 goto out;
de4e783a 2039
c7c6e46f
CW
2040 eb->vma[eb->buffer_count] = i915_vma_get(vma);
2041 eb->flags[eb->buffer_count] =
2042 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2043 vma->exec_flags = &eb->flags[eb->buffer_count];
2044 eb->buffer_count++;
71745376 2045
058d88c4 2046out:
de4e783a 2047 i915_gem_object_unpin_pages(shadow_batch_obj);
058d88c4 2048 return vma;
71745376 2049}
5c6c6003 2050
c8659efa 2051static void
e61e0f51 2052add_to_client(struct i915_request *rq, struct drm_file *file)
c8659efa 2053{
e61e0f51
CW
2054 rq->file_priv = file->driver_priv;
2055 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
c8659efa
CW
2056}
2057
2889caa9 2058static int eb_submit(struct i915_execbuffer *eb)
78382593 2059{
2889caa9 2060 int err;
78382593 2061
2889caa9
CW
2062 err = eb_move_to_gpu(eb);
2063 if (err)
2064 return err;
78382593 2065
650bc635 2066 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
2067 err = i915_reset_gen7_sol_offsets(eb->request);
2068 if (err)
2069 return err;
78382593
OM
2070 }
2071
85474441
CW
2072 /*
2073 * After we completed waiting for other engines (using HW semaphores)
2074 * then we can signal that this request/batch is ready to run. This
2075 * allows us to determine if the batch is still waiting on the GPU
2076 * or actually running by checking the breadcrumb.
2077 */
2078 if (eb->engine->emit_init_breadcrumb) {
2079 err = eb->engine->emit_init_breadcrumb(eb->request);
2080 if (err)
2081 return err;
2082 }
2083
2889caa9 2084 err = eb->engine->emit_bb_start(eb->request,
650bc635
CW
2085 eb->batch->node.start +
2086 eb->batch_start_offset,
2087 eb->batch_len,
2889caa9
CW
2088 eb->batch_flags);
2089 if (err)
2090 return err;
78382593 2091
2f5945bc 2092 return 0;
78382593
OM
2093}
2094
204bcfef 2095/*
a8ebba75 2096 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2097 * The engine index is returned.
a8ebba75 2098 */
de1add36 2099static unsigned int
c80ff16e
CW
2100gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2101 struct drm_file *file)
a8ebba75 2102{
a8ebba75
ZY
2103 struct drm_i915_file_private *file_priv = file->driver_priv;
2104
de1add36 2105 /* Check whether the file_priv has already selected one ring. */
6f633402
JL
2106 if ((int)file_priv->bsd_engine < 0)
2107 file_priv->bsd_engine = atomic_fetch_xor(1,
2108 &dev_priv->mm.bsd_engine_dispatch_index);
d23db88c 2109
c80ff16e 2110 return file_priv->bsd_engine;
d23db88c
CW
2111}
2112
5e2a0419 2113static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2114 [I915_EXEC_DEFAULT] = RCS0,
2115 [I915_EXEC_RENDER] = RCS0,
2116 [I915_EXEC_BLT] = BCS0,
2117 [I915_EXEC_BSD] = VCS0,
2118 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2119};
2120
5e2a0419 2121static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
de1add36 2122{
8f2a1057 2123 int err;
de1add36 2124
8f2a1057
CW
2125 /*
2126 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2127 * EIO if the GPU is already wedged.
2128 */
cb823ed9 2129 err = intel_gt_terminally_wedged(ce->engine->gt);
8f2a1057
CW
2130 if (err)
2131 return err;
2132
2133 /*
2134 * Pinning the contexts may generate requests in order to acquire
2135 * GGTT space, so do this first before we reserve a seqno for
2136 * ourselves.
2137 */
fa9f6681 2138 err = intel_context_pin(ce);
fa9f6681
CW
2139 if (err)
2140 return err;
8f2a1057 2141
5e2a0419 2142 eb->engine = ce->engine;
8f2a1057
CW
2143 eb->context = ce;
2144 return 0;
2145}
2146
2147static void eb_unpin_context(struct i915_execbuffer *eb)
2148{
2149 intel_context_unpin(eb->context);
2150}
de1add36 2151
5e2a0419
CW
2152static unsigned int
2153eb_select_legacy_ring(struct i915_execbuffer *eb,
2154 struct drm_file *file,
2155 struct drm_i915_gem_execbuffer2 *args)
de1add36 2156{
8f2a1057 2157 struct drm_i915_private *i915 = eb->i915;
de1add36 2158 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2159
5e2a0419
CW
2160 if (user_ring_id != I915_EXEC_BSD &&
2161 (args->flags & I915_EXEC_BSD_MASK)) {
de1add36
TU
2162 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2163 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2164 return -1;
de1add36
TU
2165 }
2166
8f2a1057 2167 if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) {
de1add36
TU
2168 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2169
2170 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
8f2a1057 2171 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
de1add36
TU
2172 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2173 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2174 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2175 bsd_idx--;
2176 } else {
2177 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2178 bsd_idx);
5e2a0419 2179 return -1;
de1add36
TU
2180 }
2181
5e2a0419 2182 return _VCS(bsd_idx);
de1add36
TU
2183 }
2184
5e2a0419
CW
2185 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2186 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2187 return -1;
de1add36
TU
2188 }
2189
5e2a0419
CW
2190 return user_ring_map[user_ring_id];
2191}
2192
2193static int
2194eb_select_engine(struct i915_execbuffer *eb,
2195 struct drm_file *file,
2196 struct drm_i915_gem_execbuffer2 *args)
2197{
2198 struct intel_context *ce;
2199 unsigned int idx;
2200 int err;
2201
976b55f0
CW
2202 if (i915_gem_context_user_engines(eb->gem_context))
2203 idx = args->flags & I915_EXEC_RING_MASK;
2204 else
2205 idx = eb_select_legacy_ring(eb, file, args);
5e2a0419
CW
2206
2207 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2208 if (IS_ERR(ce))
2209 return PTR_ERR(ce);
2210
2211 err = eb_pin_context(eb, ce);
2212 intel_context_put(ce);
2213
2214 return err;
de1add36
TU
2215}
2216
cf6e7bac
JE
2217static void
2218__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2219{
2220 while (n--)
2221 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2222 kvfree(fences);
2223}
2224
2225static struct drm_syncobj **
2226get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2227 struct drm_file *file)
2228{
d710fc16 2229 const unsigned long nfences = args->num_cliprects;
cf6e7bac
JE
2230 struct drm_i915_gem_exec_fence __user *user;
2231 struct drm_syncobj **fences;
d710fc16 2232 unsigned long n;
cf6e7bac
JE
2233 int err;
2234
2235 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2236 return NULL;
2237
d710fc16
CW
2238 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2239 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2240 if (nfences > min_t(unsigned long,
2241 ULONG_MAX / sizeof(*user),
2242 SIZE_MAX / sizeof(*fences)))
cf6e7bac
JE
2243 return ERR_PTR(-EINVAL);
2244
2245 user = u64_to_user_ptr(args->cliprects_ptr);
96d4f267 2246 if (!access_ok(user, nfences * sizeof(*user)))
cf6e7bac
JE
2247 return ERR_PTR(-EFAULT);
2248
d710fc16 2249 fences = kvmalloc_array(nfences, sizeof(*fences),
0ee931c4 2250 __GFP_NOWARN | GFP_KERNEL);
cf6e7bac
JE
2251 if (!fences)
2252 return ERR_PTR(-ENOMEM);
2253
2254 for (n = 0; n < nfences; n++) {
2255 struct drm_i915_gem_exec_fence fence;
2256 struct drm_syncobj *syncobj;
2257
2258 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2259 err = -EFAULT;
2260 goto err;
2261 }
2262
ebcaa1ff
TU
2263 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2264 err = -EINVAL;
2265 goto err;
2266 }
2267
cf6e7bac
JE
2268 syncobj = drm_syncobj_find(file, fence.handle);
2269 if (!syncobj) {
2270 DRM_DEBUG("Invalid syncobj handle provided\n");
2271 err = -ENOENT;
2272 goto err;
2273 }
2274
ebcaa1ff
TU
2275 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2276 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2277
cf6e7bac
JE
2278 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2279 }
2280
2281 return fences;
2282
2283err:
2284 __free_fence_array(fences, n);
2285 return ERR_PTR(err);
2286}
2287
2288static void
2289put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2290 struct drm_syncobj **fences)
2291{
2292 if (fences)
2293 __free_fence_array(fences, args->num_cliprects);
2294}
2295
2296static int
2297await_fence_array(struct i915_execbuffer *eb,
2298 struct drm_syncobj **fences)
2299{
2300 const unsigned int nfences = eb->args->num_cliprects;
2301 unsigned int n;
2302 int err;
2303
2304 for (n = 0; n < nfences; n++) {
2305 struct drm_syncobj *syncobj;
2306 struct dma_fence *fence;
2307 unsigned int flags;
2308
2309 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2310 if (!(flags & I915_EXEC_FENCE_WAIT))
2311 continue;
2312
afca4216 2313 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac
JE
2314 if (!fence)
2315 return -EINVAL;
2316
e61e0f51 2317 err = i915_request_await_dma_fence(eb->request, fence);
cf6e7bac
JE
2318 dma_fence_put(fence);
2319 if (err < 0)
2320 return err;
2321 }
2322
2323 return 0;
2324}
2325
2326static void
2327signal_fence_array(struct i915_execbuffer *eb,
2328 struct drm_syncobj **fences)
2329{
2330 const unsigned int nfences = eb->args->num_cliprects;
2331 struct dma_fence * const fence = &eb->request->fence;
2332 unsigned int n;
2333
2334 for (n = 0; n < nfences; n++) {
2335 struct drm_syncobj *syncobj;
2336 unsigned int flags;
2337
2338 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2339 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2340 continue;
2341
0b258ed1 2342 drm_syncobj_replace_fence(syncobj, fence);
cf6e7bac
JE
2343 }
2344}
2345
54cf91dc 2346static int
650bc635 2347i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2348 struct drm_file *file,
2349 struct drm_i915_gem_execbuffer2 *args,
cf6e7bac
JE
2350 struct drm_i915_gem_exec_object2 *exec,
2351 struct drm_syncobj **fences)
54cf91dc 2352{
650bc635 2353 struct i915_execbuffer eb;
fec0445c 2354 struct dma_fence *in_fence = NULL;
a88b6e4c 2355 struct dma_fence *exec_fence = NULL;
fec0445c
CW
2356 struct sync_file *out_fence = NULL;
2357 int out_fence_fd = -1;
2889caa9 2358 int err;
432e58ed 2359
74c1c694 2360 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
2361 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2362 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2363
650bc635
CW
2364 eb.i915 = to_i915(dev);
2365 eb.file = file;
2366 eb.args = args;
7dd4f672 2367 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2368 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 2369
650bc635 2370 eb.exec = exec;
170fa29b
CW
2371 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2372 eb.vma[0] = NULL;
c7c6e46f
CW
2373 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2374
2889caa9 2375 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
2376 reloc_cache_init(&eb.reloc_cache, eb.i915);
2377
2889caa9 2378 eb.buffer_count = args->buffer_count;
650bc635
CW
2379 eb.batch_start_offset = args->batch_start_offset;
2380 eb.batch_len = args->batch_len;
2381
2889caa9 2382 eb.batch_flags = 0;
d7d4eedd 2383 if (args->flags & I915_EXEC_SECURE) {
b3ac9f25 2384 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
d7d4eedd
CW
2385 return -EPERM;
2386
2889caa9 2387 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2388 }
b45305fc 2389 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2390 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2391
fec0445c
CW
2392 if (args->flags & I915_EXEC_FENCE_IN) {
2393 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2394 if (!in_fence)
2395 return -EINVAL;
fec0445c
CW
2396 }
2397
a88b6e4c
CW
2398 if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2399 if (in_fence) {
2400 err = -EINVAL;
2401 goto err_in_fence;
2402 }
2403
2404 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2405 if (!exec_fence) {
2406 err = -EINVAL;
2407 goto err_in_fence;
2408 }
2409 }
2410
fec0445c
CW
2411 if (args->flags & I915_EXEC_FENCE_OUT) {
2412 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2413 if (out_fence_fd < 0) {
2889caa9 2414 err = out_fence_fd;
a88b6e4c 2415 goto err_exec_fence;
fec0445c
CW
2416 }
2417 }
2418
4d470f73
CW
2419 err = eb_create(&eb);
2420 if (err)
2421 goto err_out_fence;
2422
2423 GEM_BUG_ON(!eb.lut_size);
2889caa9 2424
1acfc104
CW
2425 err = eb_select_context(&eb);
2426 if (unlikely(err))
2427 goto err_destroy;
2428
2889caa9
CW
2429 /*
2430 * Take a local wakeref for preparing to dispatch the execbuf as
67d97da3
CW
2431 * we expect to access the hardware fairly frequently in the
2432 * process. Upon first dispatch, we acquire another prolonged
2433 * wakeref that we hold until the GPU has been idle for at least
2434 * 100ms.
2435 */
0c91621c 2436 intel_gt_pm_get(&eb.i915->gt);
1acfc104 2437
2889caa9
CW
2438 err = i915_mutex_lock_interruptible(dev);
2439 if (err)
2440 goto err_rpm;
f65c9168 2441
8f2a1057 2442 err = eb_select_engine(&eb, file, args);
d6f328bf
CW
2443 if (unlikely(err))
2444 goto err_unlock;
2445
8f2a1057
CW
2446 err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
2447 if (unlikely(err))
2448 goto err_engine;
2449
2889caa9 2450 err = eb_relocate(&eb);
1f727d9e 2451 if (err) {
2889caa9
CW
2452 /*
2453 * If the user expects the execobject.offset and
2454 * reloc.presumed_offset to be an exact match,
2455 * as for using NO_RELOC, then we cannot update
2456 * the execobject.offset until we have completed
2457 * relocation.
2458 */
2459 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2460 goto err_vma;
1f727d9e 2461 }
54cf91dc 2462
c7c6e46f 2463 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
ff240199 2464 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2465 err = -EINVAL;
2466 goto err_vma;
54cf91dc 2467 }
650bc635
CW
2468 if (eb.batch_start_offset > eb.batch->size ||
2469 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
0b537272 2470 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2889caa9
CW
2471 err = -EINVAL;
2472 goto err_vma;
0b537272 2473 }
54cf91dc 2474
3dbf26ed 2475 if (eb_use_cmdparser(&eb)) {
59bfa124
CW
2476 struct i915_vma *vma;
2477
650bc635 2478 vma = eb_parse(&eb, drm_is_current_master(file));
59bfa124 2479 if (IS_ERR(vma)) {
2889caa9
CW
2480 err = PTR_ERR(vma);
2481 goto err_vma;
78a42377 2482 }
17cabf57 2483
59bfa124 2484 if (vma) {
c7c7372e
RP
2485 /*
2486 * Batch parsed and accepted:
2487 *
2488 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2489 * bit from MI_BATCH_BUFFER_START commands issued in
2490 * the dispatch_execbuffer implementations. We
2491 * specifically don't want that set on batches the
2492 * command parser has accepted.
2493 */
2889caa9 2494 eb.batch_flags |= I915_DISPATCH_SECURE;
650bc635
CW
2495 eb.batch_start_offset = 0;
2496 eb.batch = vma;
c7c7372e 2497 }
351e3db2
BV
2498 }
2499
650bc635
CW
2500 if (eb.batch_len == 0)
2501 eb.batch_len = eb.batch->size - eb.batch_start_offset;
78a42377 2502
2889caa9
CW
2503 /*
2504 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2505 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2506 * hsw should have this fixed, but bdw mucks it up again. */
2889caa9 2507 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2508 struct i915_vma *vma;
59bfa124 2509
da51a1e7
DV
2510 /*
2511 * So on first glance it looks freaky that we pin the batch here
2512 * outside of the reservation loop. But:
2513 * - The batch is already pinned into the relevant ppgtt, so we
2514 * already have the backing storage fully allocated.
2515 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2516 * so we don't really have issues with multiple objects not
da51a1e7
DV
2517 * fitting due to fragmentation.
2518 * So this is actually safe.
2519 */
2889caa9 2520 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
058d88c4 2521 if (IS_ERR(vma)) {
2889caa9
CW
2522 err = PTR_ERR(vma);
2523 goto err_vma;
058d88c4 2524 }
d7d4eedd 2525
650bc635 2526 eb.batch = vma;
59bfa124 2527 }
d7d4eedd 2528
7dd4f672
CW
2529 /* All GPU relocation batches must be submitted prior to the user rq */
2530 GEM_BUG_ON(eb.reloc_cache.rq);
2531
0c8dac88 2532 /* Allocate a request for this batch buffer nice and early. */
8f2a1057 2533 eb.request = i915_request_create(eb.context);
650bc635 2534 if (IS_ERR(eb.request)) {
2889caa9 2535 err = PTR_ERR(eb.request);
0c8dac88 2536 goto err_batch_unpin;
26827088 2537 }
0c8dac88 2538
fec0445c 2539 if (in_fence) {
e61e0f51 2540 err = i915_request_await_dma_fence(eb.request, in_fence);
2889caa9 2541 if (err < 0)
fec0445c
CW
2542 goto err_request;
2543 }
2544
a88b6e4c
CW
2545 if (exec_fence) {
2546 err = i915_request_await_execution(eb.request, exec_fence,
2547 eb.engine->bond_execute);
2548 if (err < 0)
2549 goto err_request;
2550 }
2551
cf6e7bac
JE
2552 if (fences) {
2553 err = await_fence_array(&eb, fences);
2554 if (err)
2555 goto err_request;
2556 }
2557
fec0445c 2558 if (out_fence_fd != -1) {
650bc635 2559 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2560 if (!out_fence) {
2889caa9 2561 err = -ENOMEM;
fec0445c
CW
2562 goto err_request;
2563 }
2564 }
2565
2889caa9
CW
2566 /*
2567 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2568 * active_list, and so will hold the active reference. Only when this
2569 * request is retired will the the batch_obj be moved onto the
2570 * inactive_list and lose its active reference. Hence we do not need
2571 * to explicitly hold another reference here.
2572 */
650bc635 2573 eb.request->batch = eb.batch;
5f19e2bf 2574
e61e0f51 2575 trace_i915_request_queue(eb.request, eb.batch_flags);
2889caa9 2576 err = eb_submit(&eb);
aa9b7810 2577err_request:
650bc635 2578 add_to_client(eb.request, file);
8f2a1057 2579 i915_request_add(eb.request);
c8659efa 2580
cf6e7bac
JE
2581 if (fences)
2582 signal_fence_array(&eb, fences);
2583
fec0445c 2584 if (out_fence) {
2889caa9 2585 if (err == 0) {
fec0445c 2586 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 2587 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
2588 args->rsvd2 |= (u64)out_fence_fd << 32;
2589 out_fence_fd = -1;
2590 } else {
2591 fput(out_fence->file);
2592 }
2593 }
54cf91dc 2594
0c8dac88 2595err_batch_unpin:
2889caa9 2596 if (eb.batch_flags & I915_DISPATCH_SECURE)
650bc635 2597 i915_vma_unpin(eb.batch);
2889caa9
CW
2598err_vma:
2599 if (eb.exec)
2600 eb_release_vmas(&eb);
8f2a1057
CW
2601err_engine:
2602 eb_unpin_context(&eb);
d6f328bf 2603err_unlock:
54cf91dc 2604 mutex_unlock(&dev->struct_mutex);
2889caa9 2605err_rpm:
0c91621c 2606 intel_gt_pm_put(&eb.i915->gt);
8f2a1057 2607 i915_gem_context_put(eb.gem_context);
1acfc104 2608err_destroy:
2889caa9 2609 eb_destroy(&eb);
4d470f73 2610err_out_fence:
fec0445c
CW
2611 if (out_fence_fd != -1)
2612 put_unused_fd(out_fence_fd);
a88b6e4c
CW
2613err_exec_fence:
2614 dma_fence_put(exec_fence);
4a04e371 2615err_in_fence:
fec0445c 2616 dma_fence_put(in_fence);
2889caa9 2617 return err;
54cf91dc
CW
2618}
2619
d710fc16
CW
2620static size_t eb_element_size(void)
2621{
2622 return (sizeof(struct drm_i915_gem_exec_object2) +
2623 sizeof(struct i915_vma *) +
2624 sizeof(unsigned int));
2625}
2626
2627static bool check_buffer_count(size_t count)
2628{
2629 const size_t sz = eb_element_size();
2630
2631 /*
2632 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2633 * array size (see eb_create()). Otherwise, we can accept an array as
2634 * large as can be addressed (though use large arrays at your peril)!
2635 */
2636
2637 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2638}
2639
54cf91dc
CW
2640/*
2641 * Legacy execbuffer just creates an exec2 list from the original exec object
2642 * list array and passes it to the real function.
2643 */
2644int
6a20fe7b
VS
2645i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2646 struct drm_file *file)
54cf91dc
CW
2647{
2648 struct drm_i915_gem_execbuffer *args = data;
2649 struct drm_i915_gem_execbuffer2 exec2;
2650 struct drm_i915_gem_exec_object *exec_list = NULL;
2651 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
d710fc16 2652 const size_t count = args->buffer_count;
2889caa9
CW
2653 unsigned int i;
2654 int err;
54cf91dc 2655
d710fc16
CW
2656 if (!check_buffer_count(count)) {
2657 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2658 return -EINVAL;
2659 }
2660
2889caa9
CW
2661 exec2.buffers_ptr = args->buffers_ptr;
2662 exec2.buffer_count = args->buffer_count;
2663 exec2.batch_start_offset = args->batch_start_offset;
2664 exec2.batch_len = args->batch_len;
2665 exec2.DR1 = args->DR1;
2666 exec2.DR4 = args->DR4;
2667 exec2.num_cliprects = args->num_cliprects;
2668 exec2.cliprects_ptr = args->cliprects_ptr;
2669 exec2.flags = I915_EXEC_RENDER;
2670 i915_execbuffer2_set_context_id(exec2, 0);
2671
2672 if (!i915_gem_check_execbuffer(&exec2))
2673 return -EINVAL;
2674
54cf91dc 2675 /* Copy in the exec list from userland */
d710fc16 2676 exec_list = kvmalloc_array(count, sizeof(*exec_list),
0ee931c4 2677 __GFP_NOWARN | GFP_KERNEL);
d710fc16 2678 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2679 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2680 if (exec_list == NULL || exec2_list == NULL) {
ff240199 2681 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc 2682 args->buffer_count);
2098105e
MH
2683 kvfree(exec_list);
2684 kvfree(exec2_list);
54cf91dc
CW
2685 return -ENOMEM;
2686 }
2889caa9 2687 err = copy_from_user(exec_list,
3ed605bc 2688 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2689 sizeof(*exec_list) * count);
2889caa9 2690 if (err) {
ff240199 2691 DRM_DEBUG("copy %d exec entries failed %d\n",
2889caa9 2692 args->buffer_count, err);
2098105e
MH
2693 kvfree(exec_list);
2694 kvfree(exec2_list);
54cf91dc
CW
2695 return -EFAULT;
2696 }
2697
2698 for (i = 0; i < args->buffer_count; i++) {
2699 exec2_list[i].handle = exec_list[i].handle;
2700 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2701 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2702 exec2_list[i].alignment = exec_list[i].alignment;
2703 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2704 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2705 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2706 else
2707 exec2_list[i].flags = 0;
2708 }
2709
cf6e7bac 2710 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2889caa9 2711 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2712 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2713 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2714
54cf91dc 2715 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2716 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2717 if (!(exec2_list[i].offset & UPDATE))
2718 continue;
2719
934acce3 2720 exec2_list[i].offset =
2889caa9
CW
2721 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2722 exec2_list[i].offset &= PIN_OFFSET_MASK;
2723 if (__copy_to_user(&user_exec_list[i].offset,
2724 &exec2_list[i].offset,
2725 sizeof(user_exec_list[i].offset)))
9aab8bff 2726 break;
54cf91dc
CW
2727 }
2728 }
2729
2098105e
MH
2730 kvfree(exec_list);
2731 kvfree(exec2_list);
2889caa9 2732 return err;
54cf91dc
CW
2733}
2734
2735int
6a20fe7b
VS
2736i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2737 struct drm_file *file)
54cf91dc
CW
2738{
2739 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 2740 struct drm_i915_gem_exec_object2 *exec2_list;
cf6e7bac 2741 struct drm_syncobj **fences = NULL;
d710fc16 2742 const size_t count = args->buffer_count;
2889caa9 2743 int err;
54cf91dc 2744
d710fc16
CW
2745 if (!check_buffer_count(count)) {
2746 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2747 return -EINVAL;
2748 }
2749
2889caa9
CW
2750 if (!i915_gem_check_execbuffer(args))
2751 return -EINVAL;
2752
2753 /* Allocate an extra slot for use by the command parser */
d710fc16 2754 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2755 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2756 if (exec2_list == NULL) {
d710fc16
CW
2757 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2758 count);
54cf91dc
CW
2759 return -ENOMEM;
2760 }
2889caa9
CW
2761 if (copy_from_user(exec2_list,
2762 u64_to_user_ptr(args->buffers_ptr),
d710fc16
CW
2763 sizeof(*exec2_list) * count)) {
2764 DRM_DEBUG("copy %zd exec entries failed\n", count);
2098105e 2765 kvfree(exec2_list);
54cf91dc
CW
2766 return -EFAULT;
2767 }
2768
cf6e7bac
JE
2769 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2770 fences = get_fence_array(args, file);
2771 if (IS_ERR(fences)) {
2772 kvfree(exec2_list);
2773 return PTR_ERR(fences);
2774 }
2775 }
2776
2777 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2889caa9
CW
2778
2779 /*
2780 * Now that we have begun execution of the batchbuffer, we ignore
2781 * any new error after this point. Also given that we have already
2782 * updated the associated relocations, we try to write out the current
2783 * object locations irrespective of any error.
2784 */
2785 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2786 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2787 u64_to_user_ptr(args->buffers_ptr);
2788 unsigned int i;
9aab8bff 2789
2889caa9 2790 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
2791 /*
2792 * Note: count * sizeof(*user_exec_list) does not overflow,
2793 * because we checked 'count' in check_buffer_count().
2794 *
2795 * And this range already got effectively checked earlier
2796 * when we did the "copy_from_user()" above.
2797 */
2798 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
8f4faed0 2799 goto end;
594cc251 2800
9aab8bff 2801 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2802 if (!(exec2_list[i].offset & UPDATE))
2803 continue;
2804
934acce3 2805 exec2_list[i].offset =
2889caa9
CW
2806 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2807 unsafe_put_user(exec2_list[i].offset,
2808 &user_exec_list[i].offset,
2809 end_user);
54cf91dc 2810 }
2889caa9
CW
2811end_user:
2812 user_access_end();
8f4faed0 2813end:;
54cf91dc
CW
2814 }
2815
2889caa9 2816 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
cf6e7bac 2817 put_fence_array(args, fences);
2098105e 2818 kvfree(exec2_list);
2889caa9 2819 return err;
54cf91dc 2820}