drm/i915: Use i915_gem_object_ggtt_pin_ww for reloc_iomap
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
52791eee 7#include <linux/dma-resv.h>
e9b67ec2
JN
8#include <linux/highmem.h>
9#include <linux/intel-iommu.h>
fec0445c 10#include <linux/sync_file.h>
ad778f89
CW
11#include <linux/uaccess.h>
12
cf6e7bac 13#include <drm/drm_syncobj.h>
ad778f89 14
df0566a6
JN
15#include "display/intel_frontbuffer.h"
16
afa13085 17#include "gem/i915_gem_ioctls.h"
10be98a7 18#include "gt/intel_context.h"
45233ab2 19#include "gt/intel_gpu_commands.h"
baea429d 20#include "gt/intel_gt.h"
16e87459 21#include "gt/intel_gt_buffer_pool.h"
8f2a1057 22#include "gt/intel_gt_pm.h"
2871ea85 23#include "gt/intel_ring.h"
8f2a1057 24
d3ac8d42
DCS
25#include "pxp/intel_pxp.h"
26
23d639d7 27#include "i915_cmd_parser.h"
6da4a2c4 28#include "i915_drv.h"
5472b3f2 29#include "i915_file_private.h"
57822dc6 30#include "i915_gem_clflush.h"
10be98a7 31#include "i915_gem_context.h"
2ef97818 32#include "i915_gem_evict.h"
6da4a2c4 33#include "i915_gem_ioctls.h"
54cf91dc 34#include "i915_trace.h"
cda9edd0 35#include "i915_user_extensions.h"
54cf91dc 36
7d6236bb
CW
37struct eb_vma {
38 struct i915_vma *vma;
39 unsigned int flags;
40
41 /** This vma's place in the execbuf reservation list */
42 struct drm_i915_gem_exec_object2 *exec;
43 struct list_head bind_link;
44 struct list_head reloc_link;
45
46 struct hlist_node node;
47 u32 handle;
48};
49
ad5d95e4
DA
50enum {
51 FORCE_CPU_RELOC = 1,
52 FORCE_GTT_RELOC,
53 FORCE_GPU_RELOC,
54#define DBG_FORCE_RELOC 0 /* choose one of the above! */
55};
56
bfaae47d
ML
57/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
58#define __EXEC_OBJECT_HAS_PIN BIT(30)
59#define __EXEC_OBJECT_HAS_FENCE BIT(29)
ed29c269
ML
60#define __EXEC_OBJECT_USERPTR_INIT BIT(28)
61#define __EXEC_OBJECT_NEEDS_MAP BIT(27)
62#define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
63#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
8ae275c2 64#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
2889caa9
CW
65
66#define __EXEC_HAS_RELOC BIT(31)
2bf541ff 67#define __EXEC_ENGINE_PINNED BIT(30)
ed29c269
ML
68#define __EXEC_USERPTR_USED BIT(29)
69#define __EXEC_INTERNAL_FLAGS (~0u << 29)
2889caa9 70#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
71
72#define BATCH_OFFSET_BIAS (256*1024)
a415d355 73
650bc635 74#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
75 (__I915_EXEC_UNKNOWN_FLAGS | \
76 I915_EXEC_CONSTANTS_MASK | \
77 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 78
d20ac620
CW
79/* Catch emission of unexpected errors for CI! */
80#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
81#undef EINVAL
82#define EINVAL ({ \
83 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
84 22; \
85})
86#endif
87
2889caa9
CW
88/**
89 * DOC: User command execution
90 *
91 * Userspace submits commands to be executed on the GPU as an instruction
92 * stream within a GEM object we call a batchbuffer. This instructions may
93 * refer to other GEM objects containing auxiliary state such as kernels,
94 * samplers, render targets and even secondary batchbuffers. Userspace does
95 * not know where in the GPU memory these objects reside and so before the
96 * batchbuffer is passed to the GPU for execution, those addresses in the
97 * batchbuffer and auxiliary objects are updated. This is known as relocation,
98 * or patching. To try and avoid having to relocate each object on the next
99 * execution, userspace is told the location of those objects in this pass,
100 * but this remains just a hint as the kernel may choose a new location for
101 * any object in the future.
102 *
99d7e4ee
KR
103 * At the level of talking to the hardware, submitting a batchbuffer for the
104 * GPU to execute is to add content to a buffer from which the HW
105 * command streamer is reading.
106 *
107 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
108 * Execlists, this command is not placed on the same buffer as the
109 * remaining items.
110 *
111 * 2. Add a command to invalidate caches to the buffer.
112 *
113 * 3. Add a batchbuffer start command to the buffer; the start command is
114 * essentially a token together with the GPU address of the batchbuffer
115 * to be executed.
116 *
117 * 4. Add a pipeline flush to the buffer.
118 *
119 * 5. Add a memory write command to the buffer to record when the GPU
120 * is done executing the batchbuffer. The memory write writes the
121 * global sequence number of the request, ``i915_request::global_seqno``;
122 * the i915 driver uses the current value in the register to determine
123 * if the GPU has completed the batchbuffer.
124 *
125 * 6. Add a user interrupt command to the buffer. This command instructs
126 * the GPU to issue an interrupt when the command, pipeline flush and
127 * memory write are completed.
128 *
129 * 7. Inform the hardware of the additional commands added to the buffer
130 * (by updating the tail pointer).
131 *
2889caa9
CW
132 * Processing an execbuf ioctl is conceptually split up into a few phases.
133 *
134 * 1. Validation - Ensure all the pointers, handles and flags are valid.
135 * 2. Reservation - Assign GPU address space for every object
136 * 3. Relocation - Update any addresses to point to the final locations
137 * 4. Serialisation - Order the request with respect to its dependencies
138 * 5. Construction - Construct a request to execute the batchbuffer
139 * 6. Submission (at some point in the future execution)
140 *
141 * Reserving resources for the execbuf is the most complicated phase. We
142 * neither want to have to migrate the object in the address space, nor do
143 * we want to have to update any relocations pointing to this object. Ideally,
144 * we want to leave the object where it is and for all the existing relocations
145 * to match. If the object is given a new address, or if userspace thinks the
146 * object is elsewhere, we have to parse all the relocation entries and update
147 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
148 * all the target addresses in all of its objects match the value in the
149 * relocation entries and that they all match the presumed offsets given by the
150 * list of execbuffer objects. Using this knowledge, we know that if we haven't
151 * moved any buffers, all the relocation entries are valid and we can skip
152 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
153 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154 *
155 * The addresses written in the objects must match the corresponding
156 * reloc.presumed_offset which in turn must match the corresponding
157 * execobject.offset.
158 *
159 * Any render targets written to in the batch must be flagged with
160 * EXEC_OBJECT_WRITE.
161 *
162 * To avoid stalling, execobject.offset should match the current
163 * address of that object within the active context.
164 *
165 * The reservation is done is multiple phases. First we try and keep any
166 * object already bound in its current location - so as long as meets the
167 * constraints imposed by the new execbuffer. Any object left unbound after the
168 * first pass is then fitted into any available idle space. If an object does
169 * not fit, all objects are removed from the reservation and the process rerun
170 * after sorting the objects into a priority order (more difficult to fit
171 * objects are tried first). Failing that, the entire VM is cleared and we try
172 * to fit the execbuf once last time before concluding that it simply will not
173 * fit.
174 *
175 * A small complication to all of this is that we allow userspace not only to
176 * specify an alignment and a size for the object in the address space, but
177 * we also allow userspace to specify the exact offset. This objects are
178 * simpler to place (the location is known a priori) all we have to do is make
179 * sure the space is available.
180 *
181 * Once all the objects are in place, patching up the buried pointers to point
182 * to the final locations is a fairly simple job of walking over the relocation
183 * entry arrays, looking up the right address and rewriting the value into
184 * the object. Simple! ... The relocation entries are stored in user memory
185 * and so to access them we have to copy them into a local buffer. That copy
186 * has to avoid taking any pagefaults as they may lead back to a GEM object
187 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
188 * the relocation into multiple passes. First we try to do everything within an
189 * atomic context (avoid the pagefaults) which requires that we never wait. If
190 * we detect that we may wait, or if we need to fault, then we have to fallback
191 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
192 * bells yet?) Dropping the mutex means that we lose all the state we have
193 * built up so far for the execbuf and we must reset any global data. However,
194 * we do leave the objects pinned in their final locations - which is a
195 * potential issue for concurrent execbufs. Once we have left the mutex, we can
196 * allocate and copy all the relocation entries into a large array at our
197 * leisure, reacquire the mutex, reclaim all the objects and other state and
198 * then proceed to update any incorrect addresses with the objects.
199 *
200 * As we process the relocation entries, we maintain a record of whether the
201 * object is being written to. Using NORELOC, we expect userspace to provide
202 * this information instead. We also check whether we can skip the relocation
203 * by comparing the expected value inside the relocation entry with the target's
204 * final address. If they differ, we have to map the current object and rewrite
205 * the 4 or 8 byte pointer within.
206 *
207 * Serialising an execbuf is quite simple according to the rules of the GEM
208 * ABI. Execution within each context is ordered by the order of submission.
209 * Writes to any GEM object are in order of submission and are exclusive. Reads
210 * from a GEM object are unordered with respect to other reads, but ordered by
211 * writes. A write submitted after a read cannot occur before the read, and
212 * similarly any read submitted after a write cannot occur before the write.
213 * Writes are ordered between engines such that only one write occurs at any
214 * time (completing any reads beforehand) - using semaphores where available
215 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
216 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
217 * reads before starting, and any read (either using set-domain or pread) must
218 * flush all GPU writes before starting. (Note we only employ a barrier before,
219 * we currently rely on userspace not concurrently starting a new execution
220 * whilst reading or writing to an object. This may be an advantage or not
221 * depending on how much you trust userspace not to shoot themselves in the
222 * foot.) Serialisation may just result in the request being inserted into
223 * a DAG awaiting its turn, but most simple is to wait on the CPU until
224 * all dependencies are resolved.
225 *
226 * After all of that, is just a matter of closing the request and handing it to
227 * the hardware (well, leaving it in a queue to be executed). However, we also
228 * offer the ability for batchbuffers to be run with elevated privileges so
229 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
230 * Before any batch is given extra privileges we first must check that it
231 * contains no nefarious instructions, we check that each instruction is from
232 * our whitelist and all registers are also from an allowed list. We first
233 * copy the user's batchbuffer to a shadow (so that the user doesn't have
234 * access to it, either by the CPU or GPU as we scan it) and then parse each
235 * instruction. If everything is ok, we set a flag telling the hardware to run
236 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
237 */
238
13149e8b
LL
239struct eb_fence {
240 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
241 struct dma_fence *dma_fence;
242 u64 value;
243 struct dma_fence_chain *chain_fence;
244};
245
650bc635 246struct i915_execbuffer {
2889caa9
CW
247 struct drm_i915_private *i915; /** i915 backpointer */
248 struct drm_file *file; /** per-file lookup tables and limits */
249 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
250 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 251 struct eb_vma *vma;
2889caa9 252
544460c3 253 struct intel_gt *gt; /* gt for the execbuf */
8f2a1057
CW
254 struct intel_context *context; /* logical state for the request */
255 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 256
544460c3
MB
257 /** our requests to build */
258 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
259 /** identity of the batch obj/vma */
260 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
32d94048 261 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9 262
544460c3
MB
263 /** used for excl fence in dma_resv objects when > 1 BB submitted */
264 struct dma_fence *composite_fence;
265
2889caa9
CW
266 /** actual size of execobj[] as we may extend it for the cmdparser */
267 unsigned int buffer_count;
268
544460c3
MB
269 /* number of batches in execbuf IOCTL */
270 unsigned int num_batches;
271
2889caa9
CW
272 /** list of vma not yet bound during reservation phase */
273 struct list_head unbound;
274
275 /** list of vma that have execobj.relocation_count */
276 struct list_head relocs;
277
c43ce123
ML
278 struct i915_gem_ww_ctx ww;
279
2889caa9
CW
280 /**
281 * Track the most recently used object for relocations, as we
282 * frequently have to perform multiple relocations within the same
283 * obj/page
284 */
650bc635 285 struct reloc_cache {
2889caa9 286 struct drm_mm_node node; /** temporary GTT binding */
ad5d95e4
DA
287 unsigned long vaddr; /** Current kmap address */
288 unsigned long page; /** Currently mapped page index */
8802190f 289 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
650bc635 290 bool use_64bit_reloc : 1;
2889caa9
CW
291 bool has_llc : 1;
292 bool has_fence : 1;
293 bool needs_unfenced : 1;
650bc635 294 } reloc_cache;
2889caa9
CW
295
296 u64 invalid_flags; /** Set of execobj.flags that are invalid */
2889caa9 297
544460c3
MB
298 /** Length of batch within object */
299 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
2889caa9 300 u32 batch_start_offset; /** Location within object of batch */
2889caa9 301 u32 batch_flags; /** Flags composed for emit_bb_start() */
c43ce123 302 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
2889caa9
CW
303
304 /**
305 * Indicate either the size of the hastable used to resolve
306 * relocation handles, or if negative that we are using a direct
307 * index into the execobj[].
308 */
309 int lut_size;
310 struct hlist_head *buckets; /** ht for relocation handles */
cda9edd0 311
13149e8b
LL
312 struct eb_fence *fences;
313 unsigned long num_fences;
ff20afc4
TH
314#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
315 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
316#endif
67731b87
CW
317};
318
8e4ba491 319static int eb_parse(struct i915_execbuffer *eb);
544460c3 320static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
2bf541ff 321static void eb_unpin_engine(struct i915_execbuffer *eb);
ff20afc4 322static void eb_capture_release(struct i915_execbuffer *eb);
8e4ba491 323
3dbf26ed
CW
324static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325{
544460c3
MB
326 return intel_engine_requires_cmd_parser(eb->context->engine) ||
327 (intel_engine_using_cmd_parser(eb->context->engine) &&
435e8fc0 328 eb->args->batch_len);
3dbf26ed
CW
329}
330
650bc635 331static int eb_create(struct i915_execbuffer *eb)
67731b87 332{
2889caa9
CW
333 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
334 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 335
2889caa9
CW
336 /*
337 * Without a 1:1 association between relocation handles and
338 * the execobject[] index, we instead create a hashtable.
339 * We size it dynamically based on available memory, starting
340 * first with 1:1 assocative hash and scaling back until
341 * the allocation succeeds.
342 *
343 * Later on we use a positive lut_size to indicate we are
344 * using this hashtable, and a negative value to indicate a
345 * direct lookup.
346 */
4ff4b44c 347 do {
0d95c883 348 gfp_t flags;
4d470f73
CW
349
350 /* While we can still reduce the allocation size, don't
351 * raise a warning and allow the allocation to fail.
352 * On the last pass though, we want to try as hard
353 * as possible to perform the allocation and warn
354 * if it fails.
355 */
0ee931c4 356 flags = GFP_KERNEL;
4d470f73
CW
357 if (size > 1)
358 flags |= __GFP_NORETRY | __GFP_NOWARN;
359
4ff4b44c 360 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 361 flags);
4ff4b44c
CW
362 if (eb->buckets)
363 break;
364 } while (--size);
365
8ae275c2 366 if (unlikely(!size))
4d470f73 367 return -ENOMEM;
eef90ccb 368
2889caa9 369 eb->lut_size = size;
650bc635 370 } else {
2889caa9 371 eb->lut_size = -eb->buffer_count;
650bc635 372 }
eef90ccb 373
650bc635 374 return 0;
67731b87
CW
375}
376
2889caa9
CW
377static bool
378eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
379 const struct i915_vma *vma,
380 unsigned int flags)
2889caa9 381{
2889caa9
CW
382 if (vma->node.size < entry->pad_to_size)
383 return true;
384
385 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
386 return true;
387
c7c6e46f 388 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
389 vma->node.start != entry->offset)
390 return true;
391
c7c6e46f 392 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
393 vma->node.start < BATCH_OFFSET_BIAS)
394 return true;
395
c7c6e46f 396 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
5f22cc0b 397 (vma->node.start + vma->node.size + 4095) >> 32)
2889caa9
CW
398 return true;
399
1d033beb
CW
400 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
401 !i915_vma_is_map_and_fenceable(vma))
402 return true;
403
2889caa9
CW
404 return false;
405}
406
8a338f4b
CW
407static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
408 unsigned int exec_flags)
409{
410 u64 pin_flags = 0;
411
412 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
413 pin_flags |= PIN_GLOBAL;
414
415 /*
416 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
417 * limit address to the first 4GBs for unflagged objects.
418 */
419 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
420 pin_flags |= PIN_ZONE_4G;
421
422 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
423 pin_flags |= PIN_MAPPABLE;
424
425 if (exec_flags & EXEC_OBJECT_PINNED)
426 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
427 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
428 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
429
430 return pin_flags;
431}
432
237647f4 433static inline int
2889caa9 434eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 435 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 436 struct eb_vma *ev)
2889caa9 437{
7d6236bb 438 struct i915_vma *vma = ev->vma;
c7c6e46f 439 u64 pin_flags;
237647f4 440 int err;
2889caa9 441
616d9cee 442 if (vma->node.size)
c7c6e46f 443 pin_flags = vma->node.start;
616d9cee 444 else
c7c6e46f 445 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 446
b5cfe6f7 447 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
7d6236bb 448 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 449 pin_flags |= PIN_GLOBAL;
616d9cee 450
8a338f4b 451 /* Attempt to reuse the current location if available */
237647f4
ML
452 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
453 if (err == -EDEADLK)
454 return err;
455
456 if (unlikely(err)) {
8a338f4b 457 if (entry->flags & EXEC_OBJECT_PINNED)
237647f4 458 return err;
8a338f4b
CW
459
460 /* Failing that pick any _free_ space if suitable */
237647f4 461 err = i915_vma_pin_ww(vma, &eb->ww,
47b08693
ML
462 entry->pad_to_size,
463 entry->alignment,
464 eb_pin_flags(entry, ev->flags) |
b5cfe6f7 465 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
237647f4
ML
466 if (unlikely(err))
467 return err;
8a338f4b 468 }
2889caa9 469
7d6236bb 470 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
237647f4 471 err = i915_vma_pin_fence(vma);
b5cfe6f7 472 if (unlikely(err))
237647f4 473 return err;
2889caa9 474
3bd40735 475 if (vma->fence)
7d6236bb 476 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
477 }
478
7d6236bb 479 ev->flags |= __EXEC_OBJECT_HAS_PIN;
237647f4
ML
480 if (eb_vma_misplaced(entry, vma, ev->flags))
481 return -EBADSLT;
482
483 return 0;
2889caa9
CW
484}
485
8ae275c2
ML
486static inline void
487eb_unreserve_vma(struct eb_vma *ev)
488{
c43ce123
ML
489 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
490 __i915_vma_unpin_fence(ev->vma);
491
8ae275c2
ML
492 ev->flags &= ~__EXEC_OBJECT_RESERVED;
493}
494
2889caa9
CW
495static int
496eb_validate_vma(struct i915_execbuffer *eb,
497 struct drm_i915_gem_exec_object2 *entry,
498 struct i915_vma *vma)
67731b87 499{
2eb8e1a6
JE
500 /* Relocations are disallowed for all platforms after TGL-LP. This
501 * also covers all platforms with local memory.
502 */
503 if (entry->relocation_count &&
40e1956e 504 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
2eb8e1a6
JE
505 return -EINVAL;
506
2889caa9
CW
507 if (unlikely(entry->flags & eb->invalid_flags))
508 return -EINVAL;
d55495b4 509
2920516b
MA
510 if (unlikely(entry->alignment &&
511 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
512 return -EINVAL;
513
514 /*
515 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
516 * any non-page-aligned or non-canonical addresses.
517 */
518 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 519 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
520 return -EINVAL;
521
522 /* pad_to_size was once a reserved field, so sanitize it */
523 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
524 if (unlikely(offset_in_page(entry->pad_to_size)))
525 return -EINVAL;
526 } else {
527 entry->pad_to_size = 0;
d55495b4 528 }
2889caa9
CW
529 /*
530 * From drm_mm perspective address space is continuous,
531 * so from this point we're always using non-canonical
532 * form internally.
533 */
534 entry->offset = gen8_noncanonical_addr(entry->offset);
535
c7c6e46f
CW
536 if (!eb->reloc_cache.has_fence) {
537 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
538 } else {
539 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
540 eb->reloc_cache.needs_unfenced) &&
541 i915_gem_object_is_tiled(vma->obj))
542 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
543 }
544
2889caa9 545 return 0;
67731b87
CW
546}
547
544460c3
MB
548static inline bool
549is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
550{
551 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
552 buffer_idx < eb->num_batches :
553 buffer_idx >= eb->args->buffer_count - eb->num_batches;
554}
555
556static int
746c8f14 557eb_add_vma(struct i915_execbuffer *eb,
544460c3
MB
558 unsigned int *current_batch,
559 unsigned int i,
746c8f14 560 struct i915_vma *vma)
59bfa124 561{
544460c3 562 struct drm_i915_private *i915 = eb->i915;
c7c6e46f 563 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 564 struct eb_vma *ev = &eb->vma[i];
2889caa9 565
93159e12 566 ev->vma = vma;
7d6236bb
CW
567 ev->exec = entry;
568 ev->flags = entry->flags;
569
4d470f73 570 if (eb->lut_size > 0) {
7d6236bb
CW
571 ev->handle = entry->handle;
572 hlist_add_head(&ev->node,
2889caa9
CW
573 &eb->buckets[hash_32(entry->handle,
574 eb->lut_size)]);
4ff4b44c 575 }
59bfa124 576
2889caa9 577 if (entry->relocation_count)
7d6236bb 578 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 579
746c8f14
CW
580 /*
581 * SNA is doing fancy tricks with compressing batch buffers, which leads
582 * to negative relocation deltas. Usually that works out ok since the
583 * relocate address is still positive, except when the batch is placed
584 * very low in the GTT. Ensure this doesn't happen.
585 *
586 * Note that actual hangs have only been observed on gen7, but for
587 * paranoia do it everywhere.
588 */
544460c3 589 if (is_batch_buffer(eb, i)) {
827db9d8 590 if (entry->relocation_count &&
7d6236bb
CW
591 !(ev->flags & EXEC_OBJECT_PINNED))
592 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 593 if (eb->reloc_cache.has_fence)
7d6236bb 594 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 595
544460c3
MB
596 eb->batches[*current_batch] = ev;
597
598 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
599 drm_dbg(&i915->drm,
600 "Attempting to use self-modifying batch buffer\n");
601 return -EINVAL;
602 }
603
604 if (range_overflows_t(u64,
605 eb->batch_start_offset,
606 eb->args->batch_len,
607 ev->vma->size)) {
608 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
609 return -EINVAL;
610 }
611
612 if (eb->args->batch_len == 0)
613 eb->batch_len[*current_batch] = ev->vma->size -
614 eb->batch_start_offset;
615 else
616 eb->batch_len[*current_batch] = eb->args->batch_len;
617 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
618 drm_dbg(&i915->drm, "Invalid batch length\n");
619 return -EINVAL;
620 }
621
622 ++*current_batch;
746c8f14 623 }
544460c3
MB
624
625 return 0;
2889caa9
CW
626}
627
ad5d95e4
DA
628static inline int use_cpu_reloc(const struct reloc_cache *cache,
629 const struct drm_i915_gem_object *obj)
630{
631 if (!i915_gem_object_has_struct_page(obj))
632 return false;
633
634 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
635 return true;
636
637 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
638 return false;
639
640 return (cache->has_llc ||
641 obj->cache_dirty ||
642 obj->cache_level != I915_CACHE_NONE);
643}
644
47b08693 645static int eb_reserve_vma(struct i915_execbuffer *eb,
7d6236bb 646 struct eb_vma *ev,
2920bb94 647 u64 pin_flags)
2889caa9 648{
7d6236bb 649 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 650 struct i915_vma *vma = ev->vma;
2889caa9
CW
651 int err;
652
003d8b91
CW
653 if (drm_mm_node_allocated(&vma->node) &&
654 eb_vma_misplaced(entry, vma, ev->flags)) {
655 err = i915_vma_unbind(vma);
656 if (err)
657 return err;
658 }
659
47b08693 660 err = i915_vma_pin_ww(vma, &eb->ww,
c7c6e46f 661 entry->pad_to_size, entry->alignment,
8a338f4b 662 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
663 if (err)
664 return err;
665
666 if (entry->offset != vma->node.start) {
667 entry->offset = vma->node.start | UPDATE;
668 eb->args->flags |= __EXEC_HAS_RELOC;
669 }
670
8a338f4b 671 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 672 err = i915_vma_pin_fence(vma);
b5cfe6f7 673 if (unlikely(err))
2889caa9 674 return err;
2889caa9 675
3bd40735 676 if (vma->fence)
8a338f4b 677 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
678 }
679
8a338f4b 680 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 681 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 682
2889caa9
CW
683 return 0;
684}
685
b5cfe6f7 686static bool eb_unbind(struct i915_execbuffer *eb, bool force)
2889caa9
CW
687{
688 const unsigned int count = eb->buffer_count;
b5cfe6f7 689 unsigned int i;
2889caa9 690 struct list_head last;
b5cfe6f7
ML
691 bool unpinned = false;
692
693 /* Resort *all* the objects into priority order */
694 INIT_LIST_HEAD(&eb->unbound);
695 INIT_LIST_HEAD(&last);
696
697 for (i = 0; i < count; i++) {
698 struct eb_vma *ev = &eb->vma[i];
699 unsigned int flags = ev->flags;
700
701 if (!force && flags & EXEC_OBJECT_PINNED &&
702 flags & __EXEC_OBJECT_HAS_PIN)
703 continue;
704
705 unpinned = true;
706 eb_unreserve_vma(ev);
707
708 if (flags & EXEC_OBJECT_PINNED)
709 /* Pinned must have their slot */
710 list_add(&ev->bind_link, &eb->unbound);
711 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
712 /* Map require the lowest 256MiB (aperture) */
713 list_add_tail(&ev->bind_link, &eb->unbound);
714 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
715 /* Prioritise 4GiB region for restricted bo */
716 list_add(&ev->bind_link, &last);
717 else
718 list_add_tail(&ev->bind_link, &last);
719 }
720
721 list_splice_tail(&last, &eb->unbound);
722 return unpinned;
723}
724
725static int eb_reserve(struct i915_execbuffer *eb)
726{
7d6236bb 727 struct eb_vma *ev;
b5cfe6f7 728 unsigned int pass;
ef398881 729 int err = 0;
b5cfe6f7 730 bool unpinned;
2889caa9
CW
731
732 /*
733 * Attempt to pin all of the buffers into the GTT.
b5cfe6f7 734 * This is done in 2 phases:
2889caa9 735 *
b5cfe6f7
ML
736 * 1. Unbind all objects that do not match the GTT constraints for
737 * the execbuffer (fenceable, mappable, alignment etc).
738 * 2. Bind new objects.
2889caa9
CW
739 *
740 * This avoid unnecessary unbinding of later objects in order to make
741 * room for the earlier objects *unless* we need to defragment.
b5cfe6f7
ML
742 *
743 * Defragmenting is skipped if all objects are pinned at a fixed location.
2889caa9 744 */
b5cfe6f7
ML
745 for (pass = 0; pass <= 2; pass++) {
746 int pin_flags = PIN_USER | PIN_VALIDATE;
2889caa9 747
b5cfe6f7
ML
748 if (pass == 0)
749 pin_flags |= PIN_NONBLOCK;
2889caa9 750
b5cfe6f7
ML
751 if (pass >= 1)
752 unpinned = eb_unbind(eb, pass == 2);
2889caa9 753
b5cfe6f7
ML
754 if (pass == 2) {
755 err = mutex_lock_interruptible(&eb->context->vm->mutex);
756 if (!err) {
757 err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
758 mutex_unlock(&eb->context->vm->mutex);
759 }
2889caa9 760 if (err)
c43ce123 761 return err;
b5cfe6f7 762 }
2889caa9 763
b5cfe6f7
ML
764 list_for_each_entry(ev, &eb->unbound, bind_link) {
765 err = eb_reserve_vma(eb, ev, pin_flags);
766 if (err)
767 break;
2889caa9 768 }
2920bb94 769
b5cfe6f7
ML
770 if (err != -ENOSPC)
771 break;
772 }
773
774 return err;
4ff4b44c 775}
59bfa124 776
2889caa9
CW
777static int eb_select_context(struct i915_execbuffer *eb)
778{
779 struct i915_gem_context *ctx;
780
781 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
046d1660
JE
782 if (unlikely(IS_ERR(ctx)))
783 return PTR_ERR(ctx);
2889caa9 784
8f2a1057 785 eb->gem_context = ctx;
a82a9979 786 if (i915_gem_context_has_full_ppgtt(ctx))
4f2c7337 787 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9 788
2889caa9
CW
789 return 0;
790}
791
93159e12
CW
792static int __eb_add_lut(struct i915_execbuffer *eb,
793 u32 handle, struct i915_vma *vma)
3b96eff4 794{
93159e12
CW
795 struct i915_gem_context *ctx = eb->gem_context;
796 struct i915_lut_handle *lut;
2889caa9 797 int err;
3b96eff4 798
93159e12
CW
799 lut = i915_lut_handle_alloc();
800 if (unlikely(!lut))
801 return -ENOMEM;
802
803 i915_vma_get(vma);
804 if (!atomic_fetch_inc(&vma->open_count))
805 i915_vma_reopen(vma);
806 lut->handle = handle;
807 lut->ctx = ctx;
808
809 /* Check that the context hasn't been closed in the meantime */
810 err = -EINTR;
f7ce8639 811 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
e1068a9e 812 if (likely(!i915_gem_context_is_closed(ctx)))
93159e12 813 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
f7ce8639
CW
814 else
815 err = -ENOENT;
93159e12
CW
816 if (err == 0) { /* And nor has this handle */
817 struct drm_i915_gem_object *obj = vma->obj;
818
096a42dd 819 spin_lock(&obj->lut_lock);
93159e12
CW
820 if (idr_find(&eb->file->object_idr, handle) == obj) {
821 list_add(&lut->obj_link, &obj->lut_list);
822 } else {
823 radix_tree_delete(&ctx->handles_vma, handle);
824 err = -ENOENT;
825 }
096a42dd 826 spin_unlock(&obj->lut_lock);
93159e12 827 }
f7ce8639 828 mutex_unlock(&ctx->lut_mutex);
93159e12
CW
829 }
830 if (unlikely(err))
831 goto err;
003d8b91 832
93159e12 833 return 0;
d55495b4 834
93159e12 835err:
50689771 836 i915_vma_close(vma);
93159e12
CW
837 i915_vma_put(vma);
838 i915_lut_handle_free(lut);
839 return err;
840}
746c8f14 841
93159e12
CW
842static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
843{
f7ce8639
CW
844 struct i915_address_space *vm = eb->context->vm;
845
93159e12
CW
846 do {
847 struct drm_i915_gem_object *obj;
170fa29b 848 struct i915_vma *vma;
93159e12 849 int err;
4ff4b44c 850
93159e12
CW
851 rcu_read_lock();
852 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
f7ce8639 853 if (likely(vma && vma->vm == vm))
93159e12
CW
854 vma = i915_vma_tryget(vma);
855 rcu_read_unlock();
856 if (likely(vma))
857 return vma;
4ff4b44c 858
170fa29b 859 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
860 if (unlikely(!obj))
861 return ERR_PTR(-ENOENT);
3b96eff4 862
d3ac8d42
DCS
863 /*
864 * If the user has opted-in for protected-object tracking, make
865 * sure the object encryption can be used.
866 * We only need to do this when the object is first used with
867 * this context, because the context itself will be banned when
868 * the protected objects become invalid.
869 */
870 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
871 i915_gem_object_is_protected(obj)) {
ef6ba31d 872 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
d3ac8d42
DCS
873 if (err) {
874 i915_gem_object_put(obj);
875 return ERR_PTR(err);
876 }
877 }
878
f7ce8639 879 vma = i915_vma_instance(obj, vm, NULL);
772b5408 880 if (IS_ERR(vma)) {
93159e12
CW
881 i915_gem_object_put(obj);
882 return vma;
27173f1f
BW
883 }
884
93159e12
CW
885 err = __eb_add_lut(eb, handle, vma);
886 if (likely(!err))
887 return vma;
d1b48c1e 888
93159e12
CW
889 i915_gem_object_put(obj);
890 if (err != -EEXIST)
891 return ERR_PTR(err);
892 } while (1);
893}
4ff4b44c 894
93159e12
CW
895static int eb_lookup_vmas(struct i915_execbuffer *eb)
896{
544460c3 897 unsigned int i, current_batch = 0;
93159e12 898 int err = 0;
155ab883 899
93159e12 900 INIT_LIST_HEAD(&eb->relocs);
93159e12
CW
901
902 for (i = 0; i < eb->buffer_count; i++) {
903 struct i915_vma *vma;
904
905 vma = eb_lookup_vma(eb, eb->exec[i].handle);
906 if (IS_ERR(vma)) {
907 err = PTR_ERR(vma);
8e4ba491 908 goto err;
93159e12 909 }
d1b48c1e 910
003d8b91 911 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
912 if (unlikely(err)) {
913 i915_vma_put(vma);
8e4ba491 914 goto err;
93159e12 915 }
dade2a61 916
544460c3
MB
917 err = eb_add_vma(eb, &current_batch, i, vma);
918 if (err)
919 return err;
ed29c269
ML
920
921 if (i915_gem_object_is_userptr(vma->obj)) {
922 err = i915_gem_object_userptr_submit_init(vma->obj);
923 if (err) {
924 if (i + 1 < eb->buffer_count) {
925 /*
926 * Execbuffer code expects last vma entry to be NULL,
927 * since we already initialized this entry,
928 * set the next value to NULL or we mess up
929 * cleanup handling.
930 */
931 eb->vma[i + 1].vma = NULL;
932 }
933
934 return err;
935 }
936
937 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
938 eb->args->flags |= __EXEC_USERPTR_USED;
939 }
4ff4b44c
CW
940 }
941
8e4ba491
ML
942 return 0;
943
944err:
7d6236bb 945 eb->vma[i].vma = NULL;
2889caa9 946 return err;
3b96eff4
CW
947}
948
5cd57f67 949static int eb_lock_vmas(struct i915_execbuffer *eb)
c43ce123
ML
950{
951 unsigned int i;
952 int err;
953
c43ce123 954 for (i = 0; i < eb->buffer_count; i++) {
c43ce123
ML
955 struct eb_vma *ev = &eb->vma[i];
956 struct i915_vma *vma = ev->vma;
957
958 err = i915_gem_object_lock(vma->obj, &eb->ww);
959 if (err)
960 return err;
5cd57f67
TH
961 }
962
963 return 0;
964}
965
966static int eb_validate_vmas(struct i915_execbuffer *eb)
967{
968 unsigned int i;
969 int err;
970
971 INIT_LIST_HEAD(&eb->unbound);
972
973 err = eb_lock_vmas(eb);
974 if (err)
975 return err;
976
977 for (i = 0; i < eb->buffer_count; i++) {
978 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
979 struct eb_vma *ev = &eb->vma[i];
980 struct i915_vma *vma = ev->vma;
c43ce123 981
237647f4
ML
982 err = eb_pin_vma(eb, entry, ev);
983 if (err == -EDEADLK)
984 return err;
985
986 if (!err) {
c43ce123
ML
987 if (entry->offset != vma->node.start) {
988 entry->offset = vma->node.start | UPDATE;
989 eb->args->flags |= __EXEC_HAS_RELOC;
990 }
991 } else {
992 eb_unreserve_vma(ev);
993
994 list_add_tail(&ev->bind_link, &eb->unbound);
995 if (drm_mm_node_allocated(&vma->node)) {
996 err = i915_vma_unbind(vma);
997 if (err)
998 return err;
999 }
1000 }
1001
c8d4c18b
CK
1002 err = dma_resv_reserve_fences(vma->obj->base.resv, 1);
1003 if (err)
1004 return err;
bfaae47d 1005
c43ce123
ML
1006 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1007 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1008 }
1009
1010 if (!list_empty(&eb->unbound))
1011 return eb_reserve(eb);
1012
1013 return 0;
1014}
1015
7d6236bb 1016static struct eb_vma *
2889caa9 1017eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 1018{
2889caa9
CW
1019 if (eb->lut_size < 0) {
1020 if (handle >= -eb->lut_size)
eef90ccb 1021 return NULL;
7d6236bb 1022 return &eb->vma[handle];
eef90ccb
CW
1023 } else {
1024 struct hlist_head *head;
7d6236bb 1025 struct eb_vma *ev;
67731b87 1026
2889caa9 1027 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
1028 hlist_for_each_entry(ev, head, node) {
1029 if (ev->handle == handle)
1030 return ev;
eef90ccb
CW
1031 }
1032 return NULL;
1033 }
67731b87
CW
1034}
1035
b4b9731b 1036static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
8ae275c2
ML
1037{
1038 const unsigned int count = eb->buffer_count;
1039 unsigned int i;
1040
1041 for (i = 0; i < count; i++) {
1042 struct eb_vma *ev = &eb->vma[i];
1043 struct i915_vma *vma = ev->vma;
1044
1045 if (!vma)
1046 break;
1047
c43ce123 1048 eb_unreserve_vma(ev);
8ae275c2 1049
c43ce123
ML
1050 if (final)
1051 i915_vma_put(vma);
8ae275c2 1052 }
2bf541ff 1053
ff20afc4 1054 eb_capture_release(eb);
2bf541ff 1055 eb_unpin_engine(eb);
8ae275c2
ML
1056}
1057
2889caa9 1058static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 1059{
4d470f73 1060 if (eb->lut_size > 0)
2889caa9 1061 kfree(eb->buckets);
934acce3
MW
1062}
1063
2889caa9 1064static inline u64
d50415cc 1065relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 1066 const struct i915_vma *target)
934acce3 1067{
2889caa9 1068 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
1069}
1070
d50415cc
CW
1071static void reloc_cache_init(struct reloc_cache *cache,
1072 struct drm_i915_private *i915)
5032d871 1073{
ad5d95e4
DA
1074 cache->page = -1;
1075 cache->vaddr = 0;
dfc5148f 1076 /* Must be a variable in the struct to allow GCC to unroll. */
8802190f 1077 cache->graphics_ver = GRAPHICS_VER(i915);
2889caa9 1078 cache->has_llc = HAS_LLC(i915);
dfc5148f 1079 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
8802190f 1080 cache->has_fence = cache->graphics_ver < 4;
7dd4f672 1081 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 1082 cache->node.flags = 0;
d50415cc 1083}
5032d871 1084
20561da3
DA
1085static inline void *unmask_page(unsigned long p)
1086{
1087 return (void *)(uintptr_t)(p & PAGE_MASK);
1088}
1089
1090static inline unsigned int unmask_flags(unsigned long p)
1091{
1092 return p & ~PAGE_MASK;
1093}
1094
1095#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1096
1097static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1098{
1099 struct drm_i915_private *i915 =
1100 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
5c24c9d2 1101 return to_gt(i915)->ggtt;
20561da3
DA
1102}
1103
c2ea703d
TH
1104static void reloc_cache_unmap(struct reloc_cache *cache)
1105{
1106 void *vaddr;
1107
1108 if (!cache->vaddr)
1109 return;
1110
1111 vaddr = unmask_page(cache->vaddr);
1112 if (cache->vaddr & KMAP)
1113 kunmap_atomic(vaddr);
1114 else
1115 io_mapping_unmap_atomic((void __iomem *)vaddr);
1116}
1117
1118static void reloc_cache_remap(struct reloc_cache *cache,
1119 struct drm_i915_gem_object *obj)
1120{
1121 void *vaddr;
1122
1123 if (!cache->vaddr)
1124 return;
1125
1126 if (cache->vaddr & KMAP) {
1127 struct page *page = i915_gem_object_get_page(obj, cache->page);
1128
1129 vaddr = kmap_atomic(page);
1130 cache->vaddr = unmask_flags(cache->vaddr) |
1131 (unsigned long)vaddr;
1132 } else {
1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1134 unsigned long offset;
1135
1136 offset = cache->node.start;
1137 if (!drm_mm_node_allocated(&cache->node))
1138 offset += cache->page << PAGE_SHIFT;
1139
1140 cache->vaddr = (unsigned long)
1141 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1142 }
1143}
1144
c43ce123 1145static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
ad5d95e4
DA
1146{
1147 void *vaddr;
1148
1149 if (!cache->vaddr)
1150 return;
1151
1152 vaddr = unmask_page(cache->vaddr);
1153 if (cache->vaddr & KMAP) {
1af343cd
ML
1154 struct drm_i915_gem_object *obj =
1155 (struct drm_i915_gem_object *)cache->node.mm;
ad5d95e4
DA
1156 if (cache->vaddr & CLFLUSH_AFTER)
1157 mb();
1158
1159 kunmap_atomic(vaddr);
1af343cd 1160 i915_gem_object_finish_access(obj);
ad5d95e4
DA
1161 } else {
1162 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1163
1164 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1165 io_mapping_unmap_atomic((void __iomem *)vaddr);
1166
1167 if (drm_mm_node_allocated(&cache->node)) {
1168 ggtt->vm.clear_range(&ggtt->vm,
1169 cache->node.start,
1170 cache->node.size);
1171 mutex_lock(&ggtt->vm.mutex);
1172 drm_mm_remove_node(&cache->node);
1173 mutex_unlock(&ggtt->vm.mutex);
1174 } else {
1175 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1176 }
1177 }
1178
1179 cache->vaddr = 0;
1180 cache->page = -1;
1181}
1182
1183static void *reloc_kmap(struct drm_i915_gem_object *obj,
1184 struct reloc_cache *cache,
102a0a90 1185 unsigned long pageno)
ad5d95e4
DA
1186{
1187 void *vaddr;
102a0a90 1188 struct page *page;
ad5d95e4
DA
1189
1190 if (cache->vaddr) {
1191 kunmap_atomic(unmask_page(cache->vaddr));
1192 } else {
1193 unsigned int flushes;
1194 int err;
1195
1196 err = i915_gem_object_prepare_write(obj, &flushes);
1197 if (err)
1198 return ERR_PTR(err);
1199
1200 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1201 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1202
1203 cache->vaddr = flushes | KMAP;
1204 cache->node.mm = (void *)obj;
1205 if (flushes)
1206 mb();
1207 }
1208
102a0a90
ML
1209 page = i915_gem_object_get_page(obj, pageno);
1210 if (!obj->mm.dirty)
1211 set_page_dirty(page);
1212
1213 vaddr = kmap_atomic(page);
ad5d95e4 1214 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
102a0a90 1215 cache->page = pageno;
ad5d95e4
DA
1216
1217 return vaddr;
1218}
1219
b5cfe6f7 1220static void *reloc_iomap(struct i915_vma *batch,
47b08693 1221 struct i915_execbuffer *eb,
ad5d95e4
DA
1222 unsigned long page)
1223{
b5cfe6f7 1224 struct drm_i915_gem_object *obj = batch->obj;
47b08693 1225 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1226 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1227 unsigned long offset;
1228 void *vaddr;
1229
1230 if (cache->vaddr) {
1231 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1232 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1233 } else {
b5cfe6f7 1234 struct i915_vma *vma = ERR_PTR(-ENODEV);
ad5d95e4
DA
1235 int err;
1236
1237 if (i915_gem_object_is_tiled(obj))
1238 return ERR_PTR(-EINVAL);
1239
1240 if (use_cpu_reloc(cache, obj))
1241 return NULL;
1242
ad5d95e4 1243 err = i915_gem_object_set_to_gtt_domain(obj, true);
ad5d95e4
DA
1244 if (err)
1245 return ERR_PTR(err);
1246
b5cfe6f7
ML
1247 /*
1248 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1249 * VMA from the object list because we no longer pin.
1250 *
1251 * Only attempt to pin the batch buffer to ggtt if the current batch
1252 * is not inside ggtt, or the batch buffer is not misplaced.
1253 */
451374ee
ML
1254 if (!i915_is_ggtt(batch->vm) ||
1255 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
b5cfe6f7
ML
1256 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1257 PIN_MAPPABLE |
1258 PIN_NONBLOCK /* NOWARN */ |
1259 PIN_NOEVICT);
b5cfe6f7
ML
1260 }
1261
47b08693
ML
1262 if (vma == ERR_PTR(-EDEADLK))
1263 return vma;
1264
ad5d95e4
DA
1265 if (IS_ERR(vma)) {
1266 memset(&cache->node, 0, sizeof(cache->node));
1267 mutex_lock(&ggtt->vm.mutex);
1268 err = drm_mm_insert_node_in_range
1269 (&ggtt->vm.mm, &cache->node,
1270 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1271 0, ggtt->mappable_end,
1272 DRM_MM_INSERT_LOW);
1273 mutex_unlock(&ggtt->vm.mutex);
1274 if (err) /* no inactive aperture space, use cpu reloc */
1275 return NULL;
1276 } else {
1277 cache->node.start = vma->node.start;
1278 cache->node.mm = (void *)vma;
1279 }
1280 }
1281
1282 offset = cache->node.start;
1283 if (drm_mm_node_allocated(&cache->node)) {
1284 ggtt->vm.insert_page(&ggtt->vm,
1285 i915_gem_object_get_dma_address(obj, page),
1286 offset, I915_CACHE_NONE, 0);
1287 } else {
1288 offset += page << PAGE_SHIFT;
1289 }
1290
1291 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1292 offset);
1293 cache->page = page;
1294 cache->vaddr = (unsigned long)vaddr;
1295
1296 return vaddr;
1297}
1298
b5cfe6f7 1299static void *reloc_vaddr(struct i915_vma *vma,
47b08693 1300 struct i915_execbuffer *eb,
ad5d95e4
DA
1301 unsigned long page)
1302{
47b08693 1303 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1304 void *vaddr;
1305
1306 if (cache->page == page) {
1307 vaddr = unmask_page(cache->vaddr);
1308 } else {
1309 vaddr = NULL;
1310 if ((cache->vaddr & KMAP) == 0)
b5cfe6f7 1311 vaddr = reloc_iomap(vma, eb, page);
ad5d95e4 1312 if (!vaddr)
b5cfe6f7 1313 vaddr = reloc_kmap(vma->obj, cache, page);
ad5d95e4
DA
1314 }
1315
1316 return vaddr;
1317}
1318
1319static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1320{
1321 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
89754df8
MC
1322 if (flushes & CLFLUSH_BEFORE)
1323 drm_clflush_virt_range(addr, sizeof(*addr));
ad5d95e4
DA
1324
1325 *addr = value;
1326
1327 /*
1328 * Writes to the same cacheline are serialised by the CPU
1329 * (including clflush). On the write path, we only require
1330 * that it hits memory in an orderly fashion and place
1331 * mb barriers at the start and end of the relocation phase
1332 * to ensure ordering of clflush wrt to the system.
1333 */
1334 if (flushes & CLFLUSH_AFTER)
89754df8 1335 drm_clflush_virt_range(addr, sizeof(*addr));
ad5d95e4
DA
1336 } else
1337 *addr = value;
1338}
1339
e3d29130 1340static u64
ad5d95e4 1341relocate_entry(struct i915_vma *vma,
e3d29130 1342 const struct drm_i915_gem_relocation_entry *reloc,
ad5d95e4 1343 struct i915_execbuffer *eb,
e3d29130
CW
1344 const struct i915_vma *target)
1345{
1346 u64 target_addr = relocation_target(reloc, target);
ad5d95e4 1347 u64 offset = reloc->offset;
ce13c78f
DV
1348 bool wide = eb->reloc_cache.use_64bit_reloc;
1349 void *vaddr;
ad5d95e4
DA
1350
1351repeat:
b5cfe6f7 1352 vaddr = reloc_vaddr(vma, eb,
ce13c78f
DV
1353 offset >> PAGE_SHIFT);
1354 if (IS_ERR(vaddr))
1355 return PTR_ERR(vaddr);
1356
1357 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1358 clflush_write32(vaddr + offset_in_page(offset),
1359 lower_32_bits(target_addr),
1360 eb->reloc_cache.vaddr);
1361
1362 if (wide) {
1363 offset += sizeof(u32);
1364 target_addr >>= 32;
1365 wide = false;
1366 goto repeat;
ad5d95e4 1367 }
edf4427b 1368
2889caa9 1369 return target->node.start | UPDATE;
edf4427b 1370}
edf4427b 1371
2889caa9
CW
1372static u64
1373eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1374 struct eb_vma *ev,
2889caa9 1375 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1376{
baa89ba3 1377 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1378 struct eb_vma *target;
2889caa9 1379 int err;
54cf91dc 1380
67731b87 1381 /* we've already hold a reference to all valid objects */
507d977f
CW
1382 target = eb_get_vma(eb, reloc->target_handle);
1383 if (unlikely(!target))
54cf91dc 1384 return -ENOENT;
e844b990 1385
54cf91dc 1386 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1387 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1388 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1389 "target %d offset %d "
54cf91dc 1390 "read %08x write %08x",
507d977f 1391 reloc->target_handle,
54cf91dc
CW
1392 (int) reloc->offset,
1393 reloc->read_domains,
1394 reloc->write_domain);
8b78f0e5 1395 return -EINVAL;
54cf91dc 1396 }
4ca4a250
DV
1397 if (unlikely((reloc->write_domain | reloc->read_domains)
1398 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1399 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1400 "target %d offset %d "
54cf91dc 1401 "read %08x write %08x",
507d977f 1402 reloc->target_handle,
54cf91dc
CW
1403 (int) reloc->offset,
1404 reloc->read_domains,
1405 reloc->write_domain);
8b78f0e5 1406 return -EINVAL;
54cf91dc 1407 }
54cf91dc 1408
2889caa9 1409 if (reloc->write_domain) {
7d6236bb 1410 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1411
2889caa9
CW
1412 /*
1413 * Sandybridge PPGTT errata: We need a global gtt mapping
1414 * for MI and pipe_control writes because the gpu doesn't
1415 * properly redirect them through the ppgtt for non_secure
1416 * batchbuffers.
1417 */
1418 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
c2ea703d
TH
1419 GRAPHICS_VER(eb->i915) == 6 &&
1420 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1421 struct i915_vma *vma = target->vma;
1422
1423 reloc_cache_unmap(&eb->reloc_cache);
1424 mutex_lock(&vma->vm->mutex);
7d6236bb
CW
1425 err = i915_vma_bind(target->vma,
1426 target->vma->obj->cache_level,
e1a4bbb6 1427 PIN_GLOBAL, NULL, NULL);
c2ea703d
TH
1428 mutex_unlock(&vma->vm->mutex);
1429 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
ea97c4ca 1430 if (err)
2889caa9
CW
1431 return err;
1432 }
507d977f 1433 }
54cf91dc 1434
2889caa9
CW
1435 /*
1436 * If the relocation already has the right value in it, no
54cf91dc
CW
1437 * more work needs to be done.
1438 */
ad5d95e4
DA
1439 if (!DBG_FORCE_RELOC &&
1440 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1441 return 0;
54cf91dc
CW
1442
1443 /* Check that the relocation address is valid... */
3c94ceee 1444 if (unlikely(reloc->offset >
7d6236bb 1445 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1446 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1447 "target %d offset %d size %d.\n",
1448 reloc->target_handle,
1449 (int)reloc->offset,
7d6236bb 1450 (int)ev->vma->size);
8b78f0e5 1451 return -EINVAL;
54cf91dc 1452 }
b8f7ab17 1453 if (unlikely(reloc->offset & 3)) {
baa89ba3 1454 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1455 "target %d offset %d.\n",
1456 reloc->target_handle,
1457 (int)reloc->offset);
8b78f0e5 1458 return -EINVAL;
54cf91dc
CW
1459 }
1460
071750e5
CW
1461 /*
1462 * If we write into the object, we need to force the synchronisation
1463 * barrier, either with an asynchronous clflush or if we executed the
1464 * patching using the GPU (though that should be serialised by the
1465 * timeline). To be completely sure, and since we are required to
1466 * do relocations we are already stalling, disable the user's opt
0519bcb1 1467 * out of our synchronisation.
071750e5 1468 */
7d6236bb 1469 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1470
54cf91dc 1471 /* and update the user's relocation entry */
ad5d95e4 1472 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1473}
1474
7d6236bb 1475static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1476{
1d83f442 1477#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1478 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1479 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1480 struct drm_i915_gem_relocation_entry __user *urelocs =
1481 u64_to_user_ptr(entry->relocs_ptr);
1482 unsigned long remain = entry->relocation_count;
54cf91dc 1483
e94f7856 1484 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1485 return -EINVAL;
ebc0808f 1486
2889caa9
CW
1487 /*
1488 * We must check that the entire relocation array is safe
1489 * to read. However, if the array is not writable the user loses
1490 * the updated relocation values.
1491 */
e94f7856 1492 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1493 return -EFAULT;
1494
1495 do {
1496 struct drm_i915_gem_relocation_entry *r = stack;
1497 unsigned int count =
e94f7856 1498 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1499 unsigned int copied;
1d83f442 1500
2889caa9
CW
1501 /*
1502 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1503 * whilst holding the struct mutex lest the user pass in the
1504 * relocations contained within a mmaped bo. For in such a case
1505 * we, the page fault handler would call i915_gem_fault() and
1506 * we would try to acquire the struct mutex again. Obviously
1507 * this is bad and so lockdep complains vehemently.
1508 */
fd1500fc
ML
1509 pagefault_disable();
1510 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1511 pagefault_enable();
ad5d95e4
DA
1512 if (unlikely(copied)) {
1513 remain = -EFAULT;
1514 goto out;
1515 }
54cf91dc 1516
2889caa9 1517 remain -= count;
1d83f442 1518 do {
7d6236bb 1519 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1520
2889caa9
CW
1521 if (likely(offset == 0)) {
1522 } else if ((s64)offset < 0) {
ad5d95e4
DA
1523 remain = (int)offset;
1524 goto out;
2889caa9
CW
1525 } else {
1526 /*
1527 * Note that reporting an error now
1528 * leaves everything in an inconsistent
1529 * state as we have *already* changed
1530 * the relocation value inside the
1531 * object. As we have not changed the
1532 * reloc.presumed_offset or will not
1533 * change the execobject.offset, on the
1534 * call we may not rewrite the value
1535 * inside the object, leaving it
1536 * dangling and causing a GPU hang. Unless
1537 * userspace dynamically rebuilds the
1538 * relocations on each execbuf rather than
1539 * presume a static tree.
1540 *
1541 * We did previously check if the relocations
1542 * were writable (access_ok), an error now
1543 * would be a strange race with mprotect,
1544 * having already demonstrated that we
1545 * can read from this userspace address.
1546 */
1547 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1548 __put_user(offset,
1549 &urelocs[r - stack].presumed_offset);
1d83f442 1550 }
2889caa9
CW
1551 } while (r++, --count);
1552 urelocs += ARRAY_SIZE(stack);
1553 } while (remain);
ad5d95e4 1554out:
c43ce123 1555 reloc_cache_reset(&eb->reloc_cache, eb);
ad5d95e4 1556 return remain;
54cf91dc
CW
1557}
1558
fd1500fc
ML
1559static int
1560eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1561{
fd1500fc
ML
1562 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1563 struct drm_i915_gem_relocation_entry *relocs =
1564 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1565 unsigned int i;
003d8b91
CW
1566 int err;
1567
fd1500fc
ML
1568 for (i = 0; i < entry->relocation_count; i++) {
1569 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
003d8b91 1570
fd1500fc
ML
1571 if ((s64)offset < 0) {
1572 err = (int)offset;
1573 goto err;
1574 }
ef398881 1575 }
fd1500fc
ML
1576 err = 0;
1577err:
c43ce123 1578 reloc_cache_reset(&eb->reloc_cache, eb);
fd1500fc
ML
1579 return err;
1580}
2889caa9 1581
fd1500fc
ML
1582static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1583{
1584 const char __user *addr, *end;
1585 unsigned long size;
1586 char __maybe_unused c;
2889caa9 1587
fd1500fc
ML
1588 size = entry->relocation_count;
1589 if (size == 0)
1590 return 0;
0e97fbb0 1591
fd1500fc
ML
1592 if (size > N_RELOC(ULONG_MAX))
1593 return -EINVAL;
2889caa9 1594
fd1500fc
ML
1595 addr = u64_to_user_ptr(entry->relocs_ptr);
1596 size *= sizeof(struct drm_i915_gem_relocation_entry);
1597 if (!access_ok(addr, size))
1598 return -EFAULT;
1599
1600 end = addr + size;
1601 for (; addr < end; addr += PAGE_SIZE) {
1602 int err = __get_user(c, addr);
1603 if (err)
1604 return err;
1605 }
1606 return __get_user(c, end - 1);
2889caa9
CW
1607}
1608
fd1500fc 1609static int eb_copy_relocations(const struct i915_execbuffer *eb)
2889caa9 1610{
fd1500fc 1611 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1612 const unsigned int count = eb->buffer_count;
1613 unsigned int i;
fd1500fc 1614 int err;
54cf91dc 1615
2889caa9 1616 for (i = 0; i < count; i++) {
fd1500fc
ML
1617 const unsigned int nreloc = eb->exec[i].relocation_count;
1618 struct drm_i915_gem_relocation_entry __user *urelocs;
1619 unsigned long size;
1620 unsigned long copied;
6951e589 1621
fd1500fc
ML
1622 if (nreloc == 0)
1623 continue;
6951e589 1624
fd1500fc
ML
1625 err = check_relocations(&eb->exec[i]);
1626 if (err)
1627 goto err;
6951e589 1628
fd1500fc
ML
1629 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1630 size = nreloc * sizeof(*relocs);
6951e589 1631
fd1500fc
ML
1632 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1633 if (!relocs) {
1634 err = -ENOMEM;
1635 goto err;
6951e589 1636 }
fd1500fc
ML
1637
1638 /* copy_from_user is limited to < 4GiB */
1639 copied = 0;
1640 do {
1641 unsigned int len =
1642 min_t(u64, BIT_ULL(31), size - copied);
1643
1644 if (__copy_from_user((char *)relocs + copied,
1645 (char __user *)urelocs + copied,
1646 len))
1647 goto end;
1648
1649 copied += len;
1650 } while (copied < size);
1651
1652 /*
1653 * As we do not update the known relocation offsets after
1654 * relocating (due to the complexities in lock handling),
1655 * we need to mark them as invalid now so that we force the
1656 * relocation processing next time. Just in case the target
1657 * object is evicted and then rebound into its old
1658 * presumed_offset before the next execbuffer - if that
1659 * happened we would make the mistake of assuming that the
1660 * relocations were valid.
1661 */
1662 if (!user_access_begin(urelocs, size))
1663 goto end;
1664
1665 for (copied = 0; copied < nreloc; copied++)
1666 unsafe_put_user(-1,
1667 &urelocs[copied].presumed_offset,
1668 end_user);
1669 user_access_end();
1670
1671 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1672 }
1673
1674 return 0;
1675
1676end_user:
1677 user_access_end();
1678end:
1679 kvfree(relocs);
1680 err = -EFAULT;
1681err:
1682 while (i--) {
1683 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1684 if (eb->exec[i].relocation_count)
1685 kvfree(relocs);
1686 }
1687 return err;
1688}
1689
1690static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1691{
1692 const unsigned int count = eb->buffer_count;
1693 unsigned int i;
1694
1695 for (i = 0; i < count; i++) {
1696 int err;
1697
1698 err = check_relocations(&eb->exec[i]);
1699 if (err)
1700 return err;
1701 }
1702
1703 return 0;
1704}
1705
ed29c269
ML
1706static int eb_reinit_userptr(struct i915_execbuffer *eb)
1707{
1708 const unsigned int count = eb->buffer_count;
1709 unsigned int i;
1710 int ret;
1711
1712 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1713 return 0;
1714
1715 for (i = 0; i < count; i++) {
1716 struct eb_vma *ev = &eb->vma[i];
1717
1718 if (!i915_gem_object_is_userptr(ev->vma->obj))
1719 continue;
1720
1721 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1722 if (ret)
1723 return ret;
1724
1725 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1726 }
1727
1728 return 0;
1729}
1730
544460c3 1731static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
fd1500fc
ML
1732{
1733 bool have_copy = false;
1734 struct eb_vma *ev;
1735 int err = 0;
1736
1737repeat:
1738 if (signal_pending(current)) {
1739 err = -ERESTARTSYS;
1740 goto out;
6951e589 1741 }
fd1500fc 1742
c43ce123 1743 /* We may process another execbuffer during the unlock... */
b4b9731b 1744 eb_release_vmas(eb, false);
c43ce123
ML
1745 i915_gem_ww_ctx_fini(&eb->ww);
1746
fd1500fc
ML
1747 /*
1748 * We take 3 passes through the slowpatch.
1749 *
1750 * 1 - we try to just prefault all the user relocation entries and
1751 * then attempt to reuse the atomic pagefault disabled fast path again.
1752 *
1753 * 2 - we copy the user entries to a local buffer here outside of the
1754 * local and allow ourselves to wait upon any rendering before
1755 * relocations
1756 *
1757 * 3 - we already have a local copy of the relocation entries, but
1758 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1759 */
1760 if (!err) {
1761 err = eb_prefault_relocations(eb);
1762 } else if (!have_copy) {
1763 err = eb_copy_relocations(eb);
1764 have_copy = err == 0;
1765 } else {
1766 cond_resched();
1767 err = 0;
1768 }
1769
2bf541ff 1770 if (!err)
ed29c269 1771 err = eb_reinit_userptr(eb);
fd1500fc 1772
c43ce123 1773 i915_gem_ww_ctx_init(&eb->ww, true);
fd1500fc
ML
1774 if (err)
1775 goto out;
1776
c43ce123
ML
1777 /* reacquire the objects */
1778repeat_validate:
544460c3
MB
1779 err = eb_pin_engine(eb, false);
1780 if (err)
2bf541ff 1781 goto err;
2bf541ff 1782
c43ce123 1783 err = eb_validate_vmas(eb);
fd1500fc 1784 if (err)
c43ce123
ML
1785 goto err;
1786
544460c3 1787 GEM_BUG_ON(!eb->batches[0]);
fd1500fc
ML
1788
1789 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1790 if (!have_copy) {
fd1500fc 1791 err = eb_relocate_vma(eb, ev);
fd1500fc
ML
1792 if (err)
1793 break;
1794 } else {
1795 err = eb_relocate_vma_slow(eb, ev);
1796 if (err)
1797 break;
1798 }
1799 }
1800
c43ce123
ML
1801 if (err == -EDEADLK)
1802 goto err;
1803
fd1500fc
ML
1804 if (err && !have_copy)
1805 goto repeat;
1806
1807 if (err)
1808 goto err;
1809
8e4ba491
ML
1810 /* as last step, parse the command buffer */
1811 err = eb_parse(eb);
1812 if (err)
1813 goto err;
1814
fd1500fc
ML
1815 /*
1816 * Leave the user relocations as are, this is the painfully slow path,
1817 * and we want to avoid the complication of dropping the lock whilst
1818 * having buffers reserved in the aperture and so causing spurious
1819 * ENOSPC for random operations.
1820 */
1821
1822err:
c43ce123 1823 if (err == -EDEADLK) {
b4b9731b 1824 eb_release_vmas(eb, false);
c43ce123
ML
1825 err = i915_gem_ww_ctx_backoff(&eb->ww);
1826 if (!err)
1827 goto repeat_validate;
1828 }
1829
fd1500fc
ML
1830 if (err == -EAGAIN)
1831 goto repeat;
1832
1833out:
1834 if (have_copy) {
1835 const unsigned int count = eb->buffer_count;
1836 unsigned int i;
1837
1838 for (i = 0; i < count; i++) {
1839 const struct drm_i915_gem_exec_object2 *entry =
1840 &eb->exec[i];
1841 struct drm_i915_gem_relocation_entry *relocs;
1842
1843 if (!entry->relocation_count)
1844 continue;
1845
1846 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1847 kvfree(relocs);
1848 }
1849 }
1850
1851 return err;
1852}
1853
8e4ba491 1854static int eb_relocate_parse(struct i915_execbuffer *eb)
54cf91dc 1855{
003d8b91 1856 int err;
2bf541ff 1857 bool throttle = true;
003d8b91 1858
c43ce123 1859retry:
544460c3
MB
1860 err = eb_pin_engine(eb, throttle);
1861 if (err) {
2bf541ff
ML
1862 if (err != -EDEADLK)
1863 return err;
1864
1865 goto err;
1866 }
1867
2bf541ff
ML
1868 /* only throttle once, even if we didn't need to throttle */
1869 throttle = false;
1870
c43ce123
ML
1871 err = eb_validate_vmas(eb);
1872 if (err == -EAGAIN)
1873 goto slow;
1874 else if (err)
1875 goto err;
2889caa9
CW
1876
1877 /* The objects are in their final locations, apply the relocations. */
1878 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 1879 struct eb_vma *ev;
2889caa9 1880
7d6236bb 1881 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
1882 err = eb_relocate_vma(eb, ev);
1883 if (err)
fd1500fc 1884 break;
2889caa9 1885 }
fd1500fc 1886
c43ce123
ML
1887 if (err == -EDEADLK)
1888 goto err;
1889 else if (err)
1890 goto slow;
1891 }
1892
1893 if (!err)
1894 err = eb_parse(eb);
1895
1896err:
1897 if (err == -EDEADLK) {
b4b9731b 1898 eb_release_vmas(eb, false);
c43ce123
ML
1899 err = i915_gem_ww_ctx_backoff(&eb->ww);
1900 if (!err)
1901 goto retry;
2889caa9
CW
1902 }
1903
c43ce123
ML
1904 return err;
1905
1906slow:
544460c3 1907 err = eb_relocate_parse_slow(eb);
c43ce123
ML
1908 if (err)
1909 /*
1910 * If the user expects the execobject.offset and
1911 * reloc.presumed_offset to be an exact match,
1912 * as for using NO_RELOC, then we cannot update
1913 * the execobject.offset until we have completed
1914 * relocation.
1915 */
1916 eb->args->flags &= ~__EXEC_HAS_RELOC;
1917
1918 return err;
2889caa9
CW
1919}
1920
544460c3
MB
1921/*
1922 * Using two helper loops for the order of which requests / batches are created
1923 * and added the to backend. Requests are created in order from the parent to
1924 * the last child. Requests are added in the reverse order, from the last child
1925 * to parent. This is done for locking reasons as the timeline lock is acquired
1926 * during request creation and released when the request is added to the
1927 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1928 * the ordering.
1929 */
1930#define for_each_batch_create_order(_eb, _i) \
1931 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1932#define for_each_batch_add_order(_eb, _i) \
1933 BUILD_BUG_ON(!typecheck(int, _i)); \
1934 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1935
1936static struct i915_request *
1937eb_find_first_request_added(struct i915_execbuffer *eb)
1938{
1939 int i;
1940
1941 for_each_batch_add_order(eb, i)
1942 if (eb->requests[i])
1943 return eb->requests[i];
1944
1945 GEM_BUG_ON("Request not found");
1946
1947 return NULL;
1948}
1949
ff20afc4
TH
1950#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1951
1952/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1953static void eb_capture_stage(struct i915_execbuffer *eb)
2889caa9
CW
1954{
1955 const unsigned int count = eb->buffer_count;
ff20afc4 1956 unsigned int i = count, j;
6951e589
CW
1957
1958 while (i--) {
7d6236bb
CW
1959 struct eb_vma *ev = &eb->vma[i];
1960 struct i915_vma *vma = ev->vma;
1961 unsigned int flags = ev->flags;
03ade511 1962
ff20afc4
TH
1963 if (!(flags & EXEC_OBJECT_CAPTURE))
1964 continue;
6951e589 1965
ff20afc4 1966 for_each_batch_create_order(eb, j) {
e61e0f51 1967 struct i915_capture_list *capture;
b0fd47ad 1968
ff20afc4
TH
1969 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1970 if (!capture)
1971 continue;
544460c3 1972
ff20afc4 1973 capture->next = eb->capture_lists[j];
60dc43d1 1974 capture->vma_res = i915_vma_resource_get(vma->resource);
ff20afc4
TH
1975 eb->capture_lists[j] = capture;
1976 }
ff20afc4
TH
1977 }
1978}
1979
1980/* Commit once we're in the critical path */
1981static void eb_capture_commit(struct i915_execbuffer *eb)
1982{
1983 unsigned int j;
1984
1985 for_each_batch_create_order(eb, j) {
1986 struct i915_request *rq = eb->requests[j];
1987
1988 if (!rq)
1989 break;
1990
1991 rq->capture_list = eb->capture_lists[j];
1992 eb->capture_lists[j] = NULL;
1993 }
1994}
1995
1996/*
1997 * Release anything that didn't get committed due to errors.
1998 * The capture_list will otherwise be freed at request retire.
1999 */
2000static void eb_capture_release(struct i915_execbuffer *eb)
2001{
2002 unsigned int j;
2003
2004 for_each_batch_create_order(eb, j) {
2005 if (eb->capture_lists[j]) {
2006 i915_request_free_capture_list(eb->capture_lists[j]);
2007 eb->capture_lists[j] = NULL;
b0fd47ad 2008 }
ff20afc4
TH
2009 }
2010}
2011
2012static void eb_capture_list_clear(struct i915_execbuffer *eb)
2013{
2014 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2015}
2016
2017#else
2018
2019static void eb_capture_stage(struct i915_execbuffer *eb)
2020{
2021}
2022
2023static void eb_capture_commit(struct i915_execbuffer *eb)
2024{
2025}
2026
2027static void eb_capture_release(struct i915_execbuffer *eb)
2028{
2029}
2030
2031static void eb_capture_list_clear(struct i915_execbuffer *eb)
2032{
2033}
2034
2035#endif
2036
2037static int eb_move_to_gpu(struct i915_execbuffer *eb)
2038{
2039 const unsigned int count = eb->buffer_count;
2040 unsigned int i = count;
2041 int err = 0, j;
2042
2043 while (i--) {
2044 struct eb_vma *ev = &eb->vma[i];
2045 struct i915_vma *vma = ev->vma;
2046 unsigned int flags = ev->flags;
2047 struct drm_i915_gem_object *obj = vma->obj;
2048
2049 assert_vma_held(vma);
b0fd47ad 2050
b8f55be6
CW
2051 /*
2052 * If the GPU is not _reading_ through the CPU cache, we need
2053 * to make sure that any writes (both previous GPU writes from
2054 * before a change in snooping levels and normal CPU writes)
2055 * caught in that cache are flushed to main memory.
2056 *
2057 * We want to say
2058 * obj->cache_dirty &&
2059 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2060 * but gcc's optimiser doesn't handle that as well and emits
2061 * two jumps instead of one. Maybe one day...
df94fd05
MA
2062 *
2063 * FIXME: There is also sync flushing in set_pages(), which
2064 * serves a different purpose(some of the time at least).
2065 *
2066 * We should consider:
2067 *
2068 * 1. Rip out the async flush code.
2069 *
2070 * 2. Or make the sync flushing use the async clflush path
2071 * using mandatory fences underneath. Currently the below
2072 * async flush happens after we bind the object.
b8f55be6
CW
2073 */
2074 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 2075 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 2076 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
2077 }
2078
544460c3 2079 /* We only need to await on the first request */
6951e589
CW
2080 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2081 err = i915_request_await_object
544460c3
MB
2082 (eb_find_first_request_added(eb), obj,
2083 flags & EXEC_OBJECT_WRITE);
6951e589 2084 }
2889caa9 2085
544460c3
MB
2086 for_each_batch_add_order(eb, j) {
2087 if (err)
2088 break;
2089 if (!eb->requests[j])
2090 continue;
2091
2092 err = _i915_vma_move_to_active(vma, eb->requests[j],
2093 j ? NULL :
2094 eb->composite_fence ?
2095 eb->composite_fence :
2096 &eb->requests[j]->fence,
2097 flags | __EXEC_OBJECT_NO_RESERVE);
2098 }
c59a333f 2099 }
0f1dd022 2100
ed29c269
ML
2101#ifdef CONFIG_MMU_NOTIFIER
2102 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
b4b9731b 2103 read_lock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2104
2105 /*
2106 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2107 * could not have been set
2108 */
2109 for (i = 0; i < count; i++) {
2110 struct eb_vma *ev = &eb->vma[i];
2111 struct drm_i915_gem_object *obj = ev->vma->obj;
2112
2113 if (!i915_gem_object_is_userptr(obj))
2114 continue;
2115
2116 err = i915_gem_object_userptr_submit_done(obj);
2117 if (err)
2118 break;
2119 }
2120
b4b9731b 2121 read_unlock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2122 }
2123#endif
2124
6951e589
CW
2125 if (unlikely(err))
2126 goto err_skip;
2127
dcd79934 2128 /* Unconditionally flush any chipset caches (for streaming writes). */
544460c3 2129 intel_gt_chipset_flush(eb->gt);
ff20afc4
TH
2130 eb_capture_commit(eb);
2131
2113184c 2132 return 0;
6951e589
CW
2133
2134err_skip:
544460c3
MB
2135 for_each_batch_create_order(eb, j) {
2136 if (!eb->requests[j])
2137 break;
2138
2139 i915_request_set_error_once(eb->requests[j], err);
2140 }
6951e589 2141 return err;
54cf91dc
CW
2142}
2143
00aff3f6 2144static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 2145{
650bc635 2146 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 2147 return -EINVAL;
ed5982e6 2148
2f5945bc 2149 /* Kernel clipping was a DRI1 misfeature */
cda9edd0
LL
2150 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2151 I915_EXEC_USE_EXTENSIONS))) {
cf6e7bac 2152 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 2153 return -EINVAL;
cf6e7bac 2154 }
2f5945bc
CW
2155
2156 if (exec->DR4 == 0xffffffff) {
2157 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2158 exec->DR4 = 0;
2159 }
2160 if (exec->DR1 || exec->DR4)
00aff3f6 2161 return -EINVAL;
2f5945bc
CW
2162
2163 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 2164 return -EINVAL;
2f5945bc 2165
00aff3f6 2166 return 0;
54cf91dc
CW
2167}
2168
e61e0f51 2169static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 2170{
73dec95e
TU
2171 u32 *cs;
2172 int i;
ae662d31 2173
40e1956e 2174 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
5a833995 2175 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
2176 return -EINVAL;
2177 }
ae662d31 2178
e61e0f51 2179 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
2180 if (IS_ERR(cs))
2181 return PTR_ERR(cs);
ae662d31 2182
2889caa9 2183 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2184 for (i = 0; i < 4; i++) {
73dec95e
TU
2185 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2186 *cs++ = 0;
ae662d31 2187 }
2889caa9 2188 *cs++ = MI_NOOP;
e61e0f51 2189 intel_ring_advance(rq, cs);
ae662d31
EA
2190
2191 return 0;
2192}
2193
4f7af194 2194static struct i915_vma *
47b08693
ML
2195shadow_batch_pin(struct i915_execbuffer *eb,
2196 struct drm_i915_gem_object *obj,
32d94048
CW
2197 struct i915_address_space *vm,
2198 unsigned int flags)
4f7af194 2199{
b291ce0a 2200 struct i915_vma *vma;
b291ce0a 2201 int err;
4f7af194 2202
b291ce0a
CW
2203 vma = i915_vma_instance(obj, vm, NULL);
2204 if (IS_ERR(vma))
2205 return vma;
2206
b5cfe6f7 2207 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
b291ce0a
CW
2208 if (err)
2209 return ERR_PTR(err);
2210
2211 return vma;
4f7af194
JB
2212}
2213
47b08693
ML
2214static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2215{
2216 /*
2217 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2218 * batch" bit. Hence we need to pin secure batches into the global gtt.
2219 * hsw should have this fixed, but bdw mucks it up again. */
2220 if (eb->batch_flags & I915_DISPATCH_SECURE)
b5cfe6f7 2221 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
47b08693
ML
2222
2223 return NULL;
2224}
2225
51696691 2226static int eb_parse(struct i915_execbuffer *eb)
71745376 2227{
baa89ba3 2228 struct drm_i915_private *i915 = eb->i915;
c43ce123 2229 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
47b08693 2230 struct i915_vma *shadow, *trampoline, *batch;
d5e87821 2231 unsigned long len;
2889caa9 2232 int err;
71745376 2233
47b08693 2234 if (!eb_use_cmdparser(eb)) {
544460c3 2235 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
47b08693
ML
2236 if (IS_ERR(batch))
2237 return PTR_ERR(batch);
2238
2239 goto secure_batch;
2240 }
51696691 2241
544460c3
MB
2242 if (intel_context_is_parallel(eb->context))
2243 return -EINVAL;
2244
2245 len = eb->batch_len[0];
32d94048
CW
2246 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2247 /*
2248 * ppGTT backed shadow buffers must be mapped RO, to prevent
2249 * post-scan tampering
2250 */
2251 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2252 drm_dbg(&i915->drm,
2253 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2254 return -EINVAL;
2255 }
2256 } else {
2257 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2258 }
544460c3 2259 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
d5e87821 2260 return -EINVAL;
32d94048 2261
c43ce123 2262 if (!pool) {
544460c3 2263 pool = intel_gt_get_buffer_pool(eb->gt, len,
8f47c8c3 2264 I915_MAP_WB);
c43ce123
ML
2265 if (IS_ERR(pool))
2266 return PTR_ERR(pool);
2267 eb->batch_pool = pool;
2268 }
71745376 2269
c43ce123
ML
2270 err = i915_gem_object_lock(pool->obj, &eb->ww);
2271 if (err)
b5cfe6f7 2272 return err;
71745376 2273
47b08693 2274 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
b5cfe6f7
ML
2275 if (IS_ERR(shadow))
2276 return PTR_ERR(shadow);
2277
c9398775 2278 intel_gt_buffer_pool_mark_used(pool);
32d94048 2279 i915_gem_object_set_readonly(shadow->obj);
57a78ca4 2280 shadow->private = pool;
32d94048
CW
2281
2282 trampoline = NULL;
2283 if (CMDPARSER_USES_GGTT(eb->i915)) {
2284 trampoline = shadow;
2285
47b08693 2286 shadow = shadow_batch_pin(eb, pool->obj,
544460c3 2287 &eb->gt->ggtt->vm,
32d94048 2288 PIN_GLOBAL);
b5cfe6f7
ML
2289 if (IS_ERR(shadow))
2290 return PTR_ERR(shadow);
2291
57a78ca4 2292 shadow->private = pool;
32d94048
CW
2293
2294 eb->batch_flags |= I915_DISPATCH_SECURE;
2295 }
f8c08d8f 2296
47b08693 2297 batch = eb_dispatch_secure(eb, shadow);
b5cfe6f7
ML
2298 if (IS_ERR(batch))
2299 return PTR_ERR(batch);
47b08693 2300
c8d4c18b 2301 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
93b71330 2302 if (err)
b5cfe6f7 2303 return err;
93b71330 2304
544460c3
MB
2305 err = intel_engine_cmd_parser(eb->context->engine,
2306 eb->batches[0]->vma,
93b71330 2307 eb->batch_start_offset,
544460c3 2308 eb->batch_len[0],
93b71330 2309 shadow, trampoline);
32d94048 2310 if (err)
b5cfe6f7 2311 return err;
71745376 2312
544460c3
MB
2313 eb->batches[0] = &eb->vma[eb->buffer_count++];
2314 eb->batches[0]->vma = i915_vma_get(shadow);
2315 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
71745376 2316
32d94048 2317 eb->trampoline = trampoline;
4f7af194 2318 eb->batch_start_offset = 0;
4f7af194 2319
47b08693
ML
2320secure_batch:
2321 if (batch) {
544460c3
MB
2322 if (intel_context_is_parallel(eb->context))
2323 return -EINVAL;
2324
2325 eb->batches[0] = &eb->vma[eb->buffer_count++];
2326 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2327 eb->batches[0]->vma = i915_vma_get(batch);
47b08693 2328 }
51696691 2329 return 0;
71745376 2330}
5c6c6003 2331
544460c3
MB
2332static int eb_request_submit(struct i915_execbuffer *eb,
2333 struct i915_request *rq,
2334 struct i915_vma *batch,
2335 u64 batch_len)
78382593 2336{
2889caa9 2337 int err;
78382593 2338
544460c3
MB
2339 if (intel_context_nopreempt(rq->context))
2340 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
78382593 2341
650bc635 2342 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
544460c3 2343 err = i915_reset_gen7_sol_offsets(rq);
2889caa9
CW
2344 if (err)
2345 return err;
78382593
OM
2346 }
2347
85474441
CW
2348 /*
2349 * After we completed waiting for other engines (using HW semaphores)
2350 * then we can signal that this request/batch is ready to run. This
2351 * allows us to determine if the batch is still waiting on the GPU
2352 * or actually running by checking the breadcrumb.
2353 */
544460c3
MB
2354 if (rq->context->engine->emit_init_breadcrumb) {
2355 err = rq->context->engine->emit_init_breadcrumb(rq);
85474441
CW
2356 if (err)
2357 return err;
2358 }
2359
544460c3
MB
2360 err = rq->context->engine->emit_bb_start(rq,
2361 batch->node.start +
2362 eb->batch_start_offset,
2363 batch_len,
2364 eb->batch_flags);
2889caa9
CW
2365 if (err)
2366 return err;
78382593 2367
32d94048 2368 if (eb->trampoline) {
544460c3 2369 GEM_BUG_ON(intel_context_is_parallel(rq->context));
32d94048 2370 GEM_BUG_ON(eb->batch_start_offset);
544460c3
MB
2371 err = rq->context->engine->emit_bb_start(rq,
2372 eb->trampoline->node.start +
2373 batch_len, 0, 0);
32d94048
CW
2374 if (err)
2375 return err;
2376 }
2377
2f5945bc 2378 return 0;
78382593
OM
2379}
2380
544460c3
MB
2381static int eb_submit(struct i915_execbuffer *eb)
2382{
2383 unsigned int i;
2384 int err;
2385
2386 err = eb_move_to_gpu(eb);
2387
2388 for_each_batch_create_order(eb, i) {
2389 if (!eb->requests[i])
2390 break;
2391
2392 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2393 if (!err)
2394 err = eb_request_submit(eb, eb->requests[i],
2395 eb->batches[i]->vma,
2396 eb->batch_len[i]);
2397 }
2398
2399 return err;
2400}
2401
1a9c4db4 2402static int num_vcs_engines(struct drm_i915_private *i915)
d5b2a3a4 2403{
1a9c4db4 2404 return hweight_long(VDBOX_MASK(to_gt(i915)));
d5b2a3a4
CW
2405}
2406
204bcfef 2407/*
a8ebba75 2408 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2409 * The engine index is returned.
a8ebba75 2410 */
de1add36 2411static unsigned int
c80ff16e
CW
2412gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2413 struct drm_file *file)
a8ebba75 2414{
a8ebba75
ZY
2415 struct drm_i915_file_private *file_priv = file->driver_priv;
2416
de1add36 2417 /* Check whether the file_priv has already selected one ring. */
6f633402 2418 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2419 file_priv->bsd_engine =
2420 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2421
c80ff16e 2422 return file_priv->bsd_engine;
d23db88c
CW
2423}
2424
5e2a0419 2425static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2426 [I915_EXEC_DEFAULT] = RCS0,
2427 [I915_EXEC_RENDER] = RCS0,
2428 [I915_EXEC_BLT] = BCS0,
2429 [I915_EXEC_BSD] = VCS0,
2430 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2431};
2432
2bf541ff 2433static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
e5dadff4
CW
2434{
2435 struct intel_ring *ring = ce->ring;
2436 struct intel_timeline *tl = ce->timeline;
2437 struct i915_request *rq;
2438
2439 /*
2440 * Completely unscientific finger-in-the-air estimates for suitable
2441 * maximum user request size (to avoid blocking) and then backoff.
2442 */
2443 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2444 return NULL;
2445
2446 /*
2447 * Find a request that after waiting upon, there will be at least half
2448 * the ring available. The hysteresis allows us to compete for the
2449 * shared ring and should mean that we sleep less often prior to
2450 * claiming our resources, but not so long that the ring completely
2451 * drains before we can submit our next request.
2452 */
2453 list_for_each_entry(rq, &tl->requests, link) {
2454 if (rq->ring != ring)
2455 continue;
2456
2457 if (__intel_ring_space(rq->postfix,
2458 ring->emit, ring->size) > ring->size / 2)
2459 break;
2460 }
2461 if (&rq->link == &tl->requests)
2462 return NULL; /* weird, we will check again later for real */
2463
2464 return i915_request_get(rq);
2465}
2466
544460c3
MB
2467static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2468 bool throttle)
e5dadff4
CW
2469{
2470 struct intel_timeline *tl;
2bf541ff 2471 struct i915_request *rq = NULL;
8f2a1057 2472
a4e57f90
CW
2473 /*
2474 * Take a local wakeref for preparing to dispatch the execbuf as
2475 * we expect to access the hardware fairly frequently in the
2476 * process, and require the engine to be kept awake between accesses.
2477 * Upon dispatch, we acquire another prolonged wakeref that we hold
2478 * until the timeline is idle, which in turn releases the wakeref
2479 * taken on the engine, and the parent device.
2480 */
e5dadff4 2481 tl = intel_context_timeline_lock(ce);
544460c3
MB
2482 if (IS_ERR(tl))
2483 return PTR_ERR(tl);
a4e57f90
CW
2484
2485 intel_context_enter(ce);
2bf541ff
ML
2486 if (throttle)
2487 rq = eb_throttle(eb, ce);
e5dadff4
CW
2488 intel_context_timeline_unlock(tl);
2489
544460c3
MB
2490 if (rq) {
2491 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2492 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2493
2494 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2495 timeout) < 0) {
2496 i915_request_put(rq);
2497
cb935c46
MB
2498 /*
2499 * Error path, cannot use intel_context_timeline_lock as
2500 * that is user interruptable and this clean up step
2501 * must be done.
2502 */
2503 mutex_lock(&ce->timeline->mutex);
544460c3 2504 intel_context_exit(ce);
cb935c46 2505 mutex_unlock(&ce->timeline->mutex);
544460c3
MB
2506
2507 if (nonblock)
2508 return -EWOULDBLOCK;
2509 else
2510 return -EINTR;
2511 }
2512 i915_request_put(rq);
2513 }
2514
2515 return 0;
2516}
2517
2518static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2519{
2520 struct intel_context *ce = eb->context, *child;
2521 int err;
2522 int i = 0, j = 0;
2523
2524 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2525
2526 if (unlikely(intel_context_is_banned(ce)))
2527 return -EIO;
2528
2529 /*
2530 * Pinning the contexts may generate requests in order to acquire
2531 * GGTT space, so do this first before we reserve a seqno for
2532 * ourselves.
2533 */
2534 err = intel_context_pin_ww(ce, &eb->ww);
2535 if (err)
2536 return err;
2537 for_each_child(ce, child) {
2538 err = intel_context_pin_ww(child, &eb->ww);
2539 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2540 }
2541
2542 for_each_child(ce, child) {
2543 err = eb_pin_timeline(eb, child, throttle);
2544 if (err)
2545 goto unwind;
2546 ++i;
2547 }
2548 err = eb_pin_timeline(eb, ce, throttle);
2549 if (err)
2550 goto unwind;
2551
2bf541ff 2552 eb->args->flags |= __EXEC_ENGINE_PINNED;
544460c3
MB
2553 return 0;
2554
2555unwind:
2556 for_each_child(ce, child) {
2557 if (j++ < i) {
2558 mutex_lock(&child->timeline->mutex);
2559 intel_context_exit(child);
2560 mutex_unlock(&child->timeline->mutex);
2561 }
2562 }
2563 for_each_child(ce, child)
2564 intel_context_unpin(child);
2565 intel_context_unpin(ce);
2566 return err;
8f2a1057
CW
2567}
2568
e5dadff4 2569static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2570{
544460c3 2571 struct intel_context *ce = eb->context, *child;
a4e57f90 2572
2bf541ff
ML
2573 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2574 return;
2575
2576 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2577
544460c3
MB
2578 for_each_child(ce, child) {
2579 mutex_lock(&child->timeline->mutex);
2580 intel_context_exit(child);
2581 mutex_unlock(&child->timeline->mutex);
2582
2583 intel_context_unpin(child);
2584 }
2585
2586 mutex_lock(&ce->timeline->mutex);
a4e57f90 2587 intel_context_exit(ce);
544460c3 2588 mutex_unlock(&ce->timeline->mutex);
a4e57f90 2589
2850748e 2590 intel_context_unpin(ce);
8f2a1057 2591}
de1add36 2592
5e2a0419 2593static unsigned int
b49a7d51 2594eb_select_legacy_ring(struct i915_execbuffer *eb)
de1add36 2595{
8f2a1057 2596 struct drm_i915_private *i915 = eb->i915;
b49a7d51 2597 struct drm_i915_gem_execbuffer2 *args = eb->args;
de1add36 2598 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2599
5e2a0419
CW
2600 if (user_ring_id != I915_EXEC_BSD &&
2601 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2602 drm_dbg(&i915->drm,
2603 "execbuf with non bsd ring but with invalid "
2604 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2605 return -1;
de1add36
TU
2606 }
2607
d5b2a3a4 2608 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2609 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2610
2611 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
b49a7d51 2612 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
de1add36
TU
2613 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2614 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2615 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2616 bsd_idx--;
2617 } else {
baa89ba3
WK
2618 drm_dbg(&i915->drm,
2619 "execbuf with unknown bsd ring: %u\n",
2620 bsd_idx);
5e2a0419 2621 return -1;
de1add36
TU
2622 }
2623
5e2a0419 2624 return _VCS(bsd_idx);
de1add36
TU
2625 }
2626
5e2a0419 2627 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2628 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2629 user_ring_id);
5e2a0419 2630 return -1;
de1add36
TU
2631 }
2632
5e2a0419
CW
2633 return user_ring_map[user_ring_id];
2634}
2635
2636static int
2bf541ff 2637eb_select_engine(struct i915_execbuffer *eb)
5e2a0419 2638{
544460c3 2639 struct intel_context *ce, *child;
5e2a0419
CW
2640 unsigned int idx;
2641 int err;
2642
976b55f0 2643 if (i915_gem_context_user_engines(eb->gem_context))
b49a7d51 2644 idx = eb->args->flags & I915_EXEC_RING_MASK;
976b55f0 2645 else
b49a7d51 2646 idx = eb_select_legacy_ring(eb);
5e2a0419
CW
2647
2648 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2649 if (IS_ERR(ce))
2650 return PTR_ERR(ce);
2651
544460c3
MB
2652 if (intel_context_is_parallel(ce)) {
2653 if (eb->buffer_count < ce->parallel.number_children + 1) {
2654 intel_context_put(ce);
2655 return -EINVAL;
2656 }
2657 if (eb->batch_start_offset || eb->args->batch_len) {
2658 intel_context_put(ce);
2659 return -EINVAL;
2660 }
2661 }
2662 eb->num_batches = ce->parallel.number_children + 1;
2663
2664 for_each_child(ce, child)
2665 intel_context_get(child);
2bf541ff 2666 intel_gt_pm_get(ce->engine->gt);
5e2a0419 2667
2bf541ff
ML
2668 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2669 err = intel_context_alloc_state(ce);
2670 if (err)
2671 goto err;
2672 }
544460c3
MB
2673 for_each_child(ce, child) {
2674 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2675 err = intel_context_alloc_state(child);
2676 if (err)
2677 goto err;
2678 }
2679 }
2bf541ff
ML
2680
2681 /*
2682 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2683 * EIO if the GPU is already wedged.
2684 */
2685 err = intel_gt_terminally_wedged(ce->engine->gt);
2686 if (err)
2687 goto err;
2688
e1a7ab4f
TH
2689 if (!i915_vm_tryget(ce->vm)) {
2690 err = -ENOENT;
2691 goto err;
2692 }
2693
2bf541ff 2694 eb->context = ce;
544460c3 2695 eb->gt = ce->engine->gt;
2bf541ff
ML
2696
2697 /*
2698 * Make sure engine pool stays alive even if we call intel_context_put
2699 * during ww handling. The pool is destroyed when last pm reference
2700 * is dropped, which breaks our -EDEADLK handling.
2701 */
2702 return err;
2703
2704err:
2705 intel_gt_pm_put(ce->engine->gt);
544460c3
MB
2706 for_each_child(ce, child)
2707 intel_context_put(child);
2bf541ff 2708 intel_context_put(ce);
5e2a0419 2709 return err;
de1add36
TU
2710}
2711
2bf541ff
ML
2712static void
2713eb_put_engine(struct i915_execbuffer *eb)
2714{
544460c3
MB
2715 struct intel_context *child;
2716
e1a7ab4f 2717 i915_vm_put(eb->context->vm);
544460c3
MB
2718 intel_gt_pm_put(eb->gt);
2719 for_each_child(eb->context, child)
2720 intel_context_put(child);
2bf541ff
ML
2721 intel_context_put(eb->context);
2722}
2723
cf6e7bac 2724static void
13149e8b 2725__free_fence_array(struct eb_fence *fences, unsigned int n)
cf6e7bac 2726{
13149e8b 2727 while (n--) {
cda9edd0 2728 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
13149e8b 2729 dma_fence_put(fences[n].dma_fence);
440d0f12 2730 dma_fence_chain_free(fences[n].chain_fence);
13149e8b 2731 }
cf6e7bac
JE
2732 kvfree(fences);
2733}
2734
cda9edd0 2735static int
13149e8b
LL
2736add_timeline_fence_array(struct i915_execbuffer *eb,
2737 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
cf6e7bac 2738{
13149e8b
LL
2739 struct drm_i915_gem_exec_fence __user *user_fences;
2740 u64 __user *user_values;
2741 struct eb_fence *f;
2742 u64 nfences;
2743 int err = 0;
cf6e7bac 2744
13149e8b
LL
2745 nfences = timeline_fences->fence_count;
2746 if (!nfences)
cda9edd0 2747 return 0;
cf6e7bac 2748
d710fc16
CW
2749 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2750 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2751 if (nfences > min_t(unsigned long,
13149e8b
LL
2752 ULONG_MAX / sizeof(*user_fences),
2753 SIZE_MAX / sizeof(*f)) - eb->num_fences)
cda9edd0 2754 return -EINVAL;
cf6e7bac 2755
13149e8b
LL
2756 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2757 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2758 return -EFAULT;
2759
2760 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2761 if (!access_ok(user_values, nfences * sizeof(*user_values)))
cda9edd0 2762 return -EFAULT;
cf6e7bac 2763
13149e8b
LL
2764 f = krealloc(eb->fences,
2765 (eb->num_fences + nfences) * sizeof(*f),
2766 __GFP_NOWARN | GFP_KERNEL);
2767 if (!f)
cda9edd0 2768 return -ENOMEM;
cf6e7bac 2769
13149e8b
LL
2770 eb->fences = f;
2771 f += eb->num_fences;
2772
2773 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2774 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2775
2776 while (nfences--) {
2777 struct drm_i915_gem_exec_fence user_fence;
cf6e7bac 2778 struct drm_syncobj *syncobj;
13149e8b
LL
2779 struct dma_fence *fence = NULL;
2780 u64 point;
2781
2782 if (__copy_from_user(&user_fence,
2783 user_fences++,
2784 sizeof(user_fence)))
2785 return -EFAULT;
2786
2787 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2788 return -EINVAL;
2789
2790 if (__get_user(point, user_values++))
2791 return -EFAULT;
2792
2793 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2794 if (!syncobj) {
2795 DRM_DEBUG("Invalid syncobj handle provided\n");
2796 return -ENOENT;
2797 }
2798
2799 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac 2800
13149e8b
LL
2801 if (!fence && user_fence.flags &&
2802 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2803 DRM_DEBUG("Syncobj handle has no fence\n");
2804 drm_syncobj_put(syncobj);
2805 return -EINVAL;
cf6e7bac
JE
2806 }
2807
13149e8b
LL
2808 if (fence)
2809 err = dma_fence_chain_find_seqno(&fence, point);
2810
2811 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2812 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
da1ea128 2813 dma_fence_put(fence);
13149e8b
LL
2814 drm_syncobj_put(syncobj);
2815 return err;
2816 }
2817
2818 /*
2819 * A point might have been signaled already and
2820 * garbage collected from the timeline. In this case
2821 * just ignore the point and carry on.
2822 */
2823 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2824 drm_syncobj_put(syncobj);
2825 continue;
2826 }
2827
2828 /*
2829 * For timeline syncobjs we need to preallocate chains for
2830 * later signaling.
2831 */
2832 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2833 /*
2834 * Waiting and signaling the same point (when point !=
2835 * 0) would break the timeline.
2836 */
2837 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2838 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2839 dma_fence_put(fence);
2840 drm_syncobj_put(syncobj);
2841 return -EINVAL;
2842 }
2843
440d0f12 2844 f->chain_fence = dma_fence_chain_alloc();
13149e8b
LL
2845 if (!f->chain_fence) {
2846 drm_syncobj_put(syncobj);
2847 dma_fence_put(fence);
2848 return -ENOMEM;
2849 }
2850 } else {
2851 f->chain_fence = NULL;
ebcaa1ff
TU
2852 }
2853
13149e8b
LL
2854 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2855 f->dma_fence = fence;
2856 f->value = point;
2857 f++;
2858 eb->num_fences++;
2859 }
2860
2861 return 0;
2862}
2863
2864static int add_fence_array(struct i915_execbuffer *eb)
2865{
2866 struct drm_i915_gem_execbuffer2 *args = eb->args;
2867 struct drm_i915_gem_exec_fence __user *user;
2868 unsigned long num_fences = args->num_cliprects;
2869 struct eb_fence *f;
2870
2871 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2872 return 0;
2873
2874 if (!num_fences)
2875 return 0;
2876
2877 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2878 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2879 if (num_fences > min_t(unsigned long,
2880 ULONG_MAX / sizeof(*user),
2881 SIZE_MAX / sizeof(*f) - eb->num_fences))
2882 return -EINVAL;
2883
2884 user = u64_to_user_ptr(args->cliprects_ptr);
2885 if (!access_ok(user, num_fences * sizeof(*user)))
2886 return -EFAULT;
2887
2888 f = krealloc(eb->fences,
2889 (eb->num_fences + num_fences) * sizeof(*f),
2890 __GFP_NOWARN | GFP_KERNEL);
2891 if (!f)
2892 return -ENOMEM;
2893
2894 eb->fences = f;
2895 f += eb->num_fences;
2896 while (num_fences--) {
2897 struct drm_i915_gem_exec_fence user_fence;
2898 struct drm_syncobj *syncobj;
2899 struct dma_fence *fence = NULL;
2900
2901 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2902 return -EFAULT;
2903
2904 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2905 return -EINVAL;
2906
2907 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
cf6e7bac
JE
2908 if (!syncobj) {
2909 DRM_DEBUG("Invalid syncobj handle provided\n");
13149e8b
LL
2910 return -ENOENT;
2911 }
2912
2913 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2914 fence = drm_syncobj_fence_get(syncobj);
2915 if (!fence) {
2916 DRM_DEBUG("Syncobj handle has no fence\n");
2917 drm_syncobj_put(syncobj);
2918 return -EINVAL;
2919 }
cf6e7bac
JE
2920 }
2921
ebcaa1ff
TU
2922 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2923 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2924
13149e8b
LL
2925 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2926 f->dma_fence = fence;
2927 f->value = 0;
2928 f->chain_fence = NULL;
2929 f++;
2930 eb->num_fences++;
cf6e7bac
JE
2931 }
2932
cda9edd0 2933 return 0;
13149e8b 2934}
cf6e7bac 2935
13149e8b
LL
2936static void put_fence_array(struct eb_fence *fences, int num_fences)
2937{
2938 if (fences)
2939 __free_fence_array(fences, num_fences);
cf6e7bac
JE
2940}
2941
2942static int
544460c3
MB
2943await_fence_array(struct i915_execbuffer *eb,
2944 struct i915_request *rq)
cf6e7bac 2945{
cf6e7bac
JE
2946 unsigned int n;
2947 int err;
2948
13149e8b 2949 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac 2950 struct drm_syncobj *syncobj;
cf6e7bac
JE
2951 unsigned int flags;
2952
cda9edd0 2953 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac 2954
13149e8b
LL
2955 if (!eb->fences[n].dma_fence)
2956 continue;
cf6e7bac 2957
544460c3 2958 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
cf6e7bac
JE
2959 if (err < 0)
2960 return err;
2961 }
2962
2963 return 0;
2964}
2965
544460c3
MB
2966static void signal_fence_array(const struct i915_execbuffer *eb,
2967 struct dma_fence * const fence)
cf6e7bac 2968{
cf6e7bac
JE
2969 unsigned int n;
2970
13149e8b 2971 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac
JE
2972 struct drm_syncobj *syncobj;
2973 unsigned int flags;
2974
cda9edd0 2975 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac
JE
2976 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2977 continue;
2978
13149e8b
LL
2979 if (eb->fences[n].chain_fence) {
2980 drm_syncobj_add_point(syncobj,
2981 eb->fences[n].chain_fence,
2982 fence,
2983 eb->fences[n].value);
2984 /*
2985 * The chain's ownership is transferred to the
2986 * timeline.
2987 */
2988 eb->fences[n].chain_fence = NULL;
2989 } else {
2990 drm_syncobj_replace_fence(syncobj, fence);
2991 }
cf6e7bac
JE
2992 }
2993}
2994
13149e8b
LL
2995static int
2996parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2997{
2998 struct i915_execbuffer *eb = data;
2999 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3000
3001 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3002 return -EFAULT;
3003
3004 return add_timeline_fence_array(eb, &timeline_fences);
3005}
3006
61231f6b
CW
3007static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3008{
3009 struct i915_request *rq, *rn;
3010
3011 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3012 if (rq == end || !i915_request_retire(rq))
3013 break;
3014}
3015
544460c3
MB
3016static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3017 int err, bool last_parallel)
61231f6b 3018{
61231f6b
CW
3019 struct intel_timeline * const tl = i915_request_timeline(rq);
3020 struct i915_sched_attr attr = {};
3021 struct i915_request *prev;
3022
3023 lockdep_assert_held(&tl->mutex);
3024 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3025
3026 trace_i915_request_add(rq);
3027
3028 prev = __i915_request_commit(rq);
3029
3030 /* Check that the context wasn't destroyed before submission */
207e4a71 3031 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 3032 attr = eb->gem_context->sched;
61231f6b
CW
3033 } else {
3034 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
3035 i915_request_set_error_once(rq, -ENOENT);
3036 __i915_request_skip(rq);
ba38b79e 3037 err = -ENOENT; /* override any transient errors */
61231f6b
CW
3038 }
3039
544460c3
MB
3040 if (intel_context_is_parallel(eb->context)) {
3041 if (err) {
3042 __i915_request_skip(rq);
3043 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3044 &rq->fence.flags);
3045 }
3046 if (last_parallel)
3047 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3048 &rq->fence.flags);
3049 }
3050
61231f6b 3051 __i915_request_queue(rq, &attr);
61231f6b
CW
3052
3053 /* Try to clean up the client's timeline after submitting the request */
3054 if (prev)
3055 retire_requests(tl, prev);
3056
3057 mutex_unlock(&tl->mutex);
ba38b79e
CW
3058
3059 return err;
61231f6b
CW
3060}
3061
544460c3
MB
3062static int eb_requests_add(struct i915_execbuffer *eb, int err)
3063{
3064 int i;
3065
3066 /*
3067 * We iterate in reverse order of creation to release timeline mutexes in
3068 * same order.
3069 */
3070 for_each_batch_add_order(eb, i) {
3071 struct i915_request *rq = eb->requests[i];
3072
3073 if (!rq)
3074 continue;
3075 err |= eb_request_add(eb, rq, err, i == 0);
3076 }
3077
3078 return err;
3079}
3080
cda9edd0 3081static const i915_user_extension_fn execbuf_extensions[] = {
13149e8b 3082 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
cda9edd0
LL
3083};
3084
3085static int
3086parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3087 struct i915_execbuffer *eb)
3088{
cda9edd0
LL
3089 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3090 return 0;
3091
3092 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3093 * have another flag also using it at the same time.
3094 */
3095 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3096 return -EINVAL;
3097
3098 if (args->num_cliprects != 0)
3099 return -EINVAL;
3100
3101 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3102 execbuf_extensions,
3103 ARRAY_SIZE(execbuf_extensions),
3104 eb);
3105}
3106
544460c3
MB
3107static void eb_requests_get(struct i915_execbuffer *eb)
3108{
3109 unsigned int i;
3110
3111 for_each_batch_create_order(eb, i) {
3112 if (!eb->requests[i])
3113 break;
3114
3115 i915_request_get(eb->requests[i]);
3116 }
3117}
3118
3119static void eb_requests_put(struct i915_execbuffer *eb)
3120{
3121 unsigned int i;
3122
3123 for_each_batch_create_order(eb, i) {
3124 if (!eb->requests[i])
3125 break;
3126
3127 i915_request_put(eb->requests[i]);
3128 }
3129}
3130
3131static struct sync_file *
3132eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3133{
3134 struct sync_file *out_fence = NULL;
3135 struct dma_fence_array *fence_array;
3136 struct dma_fence **fences;
3137 unsigned int i;
3138
3139 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3140
3141 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3142 if (!fences)
3143 return ERR_PTR(-ENOMEM);
3144
7647f009 3145 for_each_batch_create_order(eb, i) {
544460c3 3146 fences[i] = &eb->requests[i]->fence;
7647f009
MB
3147 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3148 &eb->requests[i]->fence.flags);
3149 }
544460c3
MB
3150
3151 fence_array = dma_fence_array_create(eb->num_batches,
3152 fences,
3153 eb->context->parallel.fence_context,
d46f329a 3154 eb->context->parallel.seqno++,
544460c3
MB
3155 false);
3156 if (!fence_array) {
3157 kfree(fences);
3158 return ERR_PTR(-ENOMEM);
3159 }
3160
3161 /* Move ownership to the dma_fence_array created above */
3162 for_each_batch_create_order(eb, i)
3163 dma_fence_get(fences[i]);
3164
3165 if (out_fence_fd != -1) {
3166 out_fence = sync_file_create(&fence_array->base);
3167 /* sync_file now owns fence_arry, drop creation ref */
3168 dma_fence_put(&fence_array->base);
3169 if (!out_fence)
3170 return ERR_PTR(-ENOMEM);
3171 }
3172
3173 eb->composite_fence = &fence_array->base;
3174
3175 return out_fence;
3176}
3177
3178static struct sync_file *
3179eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3180 struct dma_fence *in_fence, int out_fence_fd)
3181{
3182 struct sync_file *out_fence = NULL;
3183 int err;
3184
3185 if (unlikely(eb->gem_context->syncobj)) {
3186 struct dma_fence *fence;
3187
3188 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3189 err = i915_request_await_dma_fence(rq, fence);
3190 dma_fence_put(fence);
3191 if (err)
3192 return ERR_PTR(err);
3193 }
3194
3195 if (in_fence) {
3196 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3197 err = i915_request_await_execution(rq, in_fence);
3198 else
3199 err = i915_request_await_dma_fence(rq, in_fence);
3200 if (err < 0)
3201 return ERR_PTR(err);
3202 }
3203
3204 if (eb->fences) {
3205 err = await_fence_array(eb, rq);
3206 if (err)
3207 return ERR_PTR(err);
3208 }
3209
3210 if (intel_context_is_parallel(eb->context)) {
3211 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3212 if (IS_ERR(out_fence))
3213 return ERR_PTR(-ENOMEM);
3214 } else if (out_fence_fd != -1) {
3215 out_fence = sync_file_create(&rq->fence);
3216 if (!out_fence)
3217 return ERR_PTR(-ENOMEM);
3218 }
3219
3220 return out_fence;
3221}
3222
3223static struct intel_context *
3224eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3225{
3226 struct intel_context *child;
3227
3228 if (likely(context_number == 0))
3229 return eb->context;
3230
3231 for_each_child(eb->context, child)
3232 if (!--context_number)
3233 return child;
3234
3235 GEM_BUG_ON("Context not found");
3236
3237 return NULL;
3238}
3239
3240static struct sync_file *
3241eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3242 int out_fence_fd)
3243{
3244 struct sync_file *out_fence = NULL;
3245 unsigned int i;
3246
3247 for_each_batch_create_order(eb, i) {
3248 /* Allocate a request for this batch buffer nice and early. */
3249 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3250 if (IS_ERR(eb->requests[i])) {
86752bd6 3251 out_fence = ERR_CAST(eb->requests[i]);
544460c3
MB
3252 eb->requests[i] = NULL;
3253 return out_fence;
3254 }
3255
3256 /*
3257 * Only the first request added (committed to backend) has to
3258 * take the in fences into account as all subsequent requests
3259 * will have fences inserted inbetween them.
3260 */
3261 if (i + 1 == eb->num_batches) {
3262 out_fence = eb_fences_add(eb, eb->requests[i],
3263 in_fence, out_fence_fd);
3264 if (IS_ERR(out_fence))
3265 return out_fence;
3266 }
3267
3268 /*
ff20afc4
TH
3269 * Not really on stack, but we don't want to call
3270 * kfree on the batch_snapshot when we put it, so use the
3271 * _onstack interface.
544460c3 3272 */
ff20afc4 3273 if (eb->batches[i]->vma)
60dc43d1
TH
3274 eb->requests[i]->batch_res =
3275 i915_vma_resource_get(eb->batches[i]->vma->resource);
544460c3
MB
3276 if (eb->batch_pool) {
3277 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3278 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3279 eb->requests[i]);
3280 }
3281 }
3282
3283 return out_fence;
3284}
3285
54cf91dc 3286static int
650bc635 3287i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
3288 struct drm_file *file,
3289 struct drm_i915_gem_execbuffer2 *args,
cda9edd0 3290 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 3291{
44157641 3292 struct drm_i915_private *i915 = to_i915(dev);
650bc635 3293 struct i915_execbuffer eb;
fec0445c
CW
3294 struct dma_fence *in_fence = NULL;
3295 struct sync_file *out_fence = NULL;
3296 int out_fence_fd = -1;
2889caa9 3297 int err;
432e58ed 3298
74c1c694 3299 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
3300 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3301 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 3302
44157641 3303 eb.i915 = i915;
650bc635
CW
3304 eb.file = file;
3305 eb.args = args;
ad5d95e4 3306 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 3307 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 3308
650bc635 3309 eb.exec = exec;
8ae275c2
ML
3310 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3311 eb.vma[0].vma = NULL;
8e02cceb 3312 eb.batch_pool = NULL;
c7c6e46f 3313
2889caa9 3314 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
3315 reloc_cache_init(&eb.reloc_cache, eb.i915);
3316
2889caa9 3317 eb.buffer_count = args->buffer_count;
650bc635 3318 eb.batch_start_offset = args->batch_start_offset;
32d94048 3319 eb.trampoline = NULL;
650bc635 3320
cda9edd0 3321 eb.fences = NULL;
13149e8b 3322 eb.num_fences = 0;
cda9edd0 3323
ff20afc4
TH
3324 eb_capture_list_clear(&eb);
3325
544460c3
MB
3326 memset(eb.requests, 0, sizeof(struct i915_request *) *
3327 ARRAY_SIZE(eb.requests));
3328 eb.composite_fence = NULL;
3329
2889caa9 3330 eb.batch_flags = 0;
d7d4eedd 3331 if (args->flags & I915_EXEC_SECURE) {
40e1956e 3332 if (GRAPHICS_VER(i915) >= 11)
44157641
JB
3333 return -ENODEV;
3334
3335 /* Return -EPERM to trigger fallback code on old binaries. */
3336 if (!HAS_SECURE_BATCHES(i915))
3337 return -EPERM;
3338
b3ac9f25 3339 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 3340 return -EPERM;
d7d4eedd 3341
2889caa9 3342 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 3343 }
b45305fc 3344 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 3345 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 3346
13149e8b
LL
3347 err = parse_execbuf2_extensions(args, &eb);
3348 if (err)
3349 goto err_ext;
3350
3351 err = add_fence_array(&eb);
3352 if (err)
3353 goto err_ext;
3354
889333c7
CW
3355#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3356 if (args->flags & IN_FENCES) {
3357 if ((args->flags & IN_FENCES) == IN_FENCES)
3358 return -EINVAL;
3359
fec0445c 3360 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
13149e8b
LL
3361 if (!in_fence) {
3362 err = -EINVAL;
3363 goto err_ext;
3364 }
fec0445c 3365 }
889333c7 3366#undef IN_FENCES
a88b6e4c 3367
fec0445c
CW
3368 if (args->flags & I915_EXEC_FENCE_OUT) {
3369 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3370 if (out_fence_fd < 0) {
2889caa9 3371 err = out_fence_fd;
889333c7 3372 goto err_in_fence;
fec0445c
CW
3373 }
3374 }
3375
cda9edd0
LL
3376 err = eb_create(&eb);
3377 if (err)
13149e8b 3378 goto err_out_fence;
cda9edd0 3379
4d470f73 3380 GEM_BUG_ON(!eb.lut_size);
2889caa9 3381
1acfc104
CW
3382 err = eb_select_context(&eb);
3383 if (unlikely(err))
3384 goto err_destroy;
3385
2bf541ff 3386 err = eb_select_engine(&eb);
d6f328bf 3387 if (unlikely(err))
e5dadff4 3388 goto err_context;
d6f328bf 3389
c43ce123
ML
3390 err = eb_lookup_vmas(&eb);
3391 if (err) {
b4b9731b 3392 eb_release_vmas(&eb, true);
c43ce123
ML
3393 goto err_engine;
3394 }
3395
3396 i915_gem_ww_ctx_init(&eb.ww, true);
3397
8e4ba491 3398 err = eb_relocate_parse(&eb);
1f727d9e 3399 if (err) {
2889caa9
CW
3400 /*
3401 * If the user expects the execobject.offset and
3402 * reloc.presumed_offset to be an exact match,
3403 * as for using NO_RELOC, then we cannot update
3404 * the execobject.offset until we have completed
3405 * relocation.
3406 */
3407 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 3408 goto err_vma;
1f727d9e 3409 }
54cf91dc 3410
c43ce123 3411 ww_acquire_done(&eb.ww.ctx);
ff20afc4 3412 eb_capture_stage(&eb);
7d6236bb 3413
544460c3
MB
3414 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3415 if (IS_ERR(out_fence)) {
3416 err = PTR_ERR(out_fence);
9cdb54be 3417 out_fence = NULL;
544460c3 3418 if (eb.requests[0])
cf6e7bac 3419 goto err_request;
544460c3
MB
3420 else
3421 goto err_vma;
cf6e7bac
JE
3422 }
3423
544460c3 3424 err = eb_submit(&eb);
ed29c269 3425
aa9b7810 3426err_request:
544460c3
MB
3427 eb_requests_get(&eb);
3428 err = eb_requests_add(&eb, err);
c8659efa 3429
13149e8b 3430 if (eb.fences)
544460c3
MB
3431 signal_fence_array(&eb, eb.composite_fence ?
3432 eb.composite_fence :
3433 &eb.requests[0]->fence);
cf6e7bac 3434
fec0445c 3435 if (out_fence) {
2889caa9 3436 if (err == 0) {
fec0445c 3437 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 3438 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
3439 args->rsvd2 |= (u64)out_fence_fd << 32;
3440 out_fence_fd = -1;
3441 } else {
3442 fput(out_fence->file);
3443 }
3444 }
00dae4d3
JE
3445
3446 if (unlikely(eb.gem_context->syncobj)) {
3447 drm_syncobj_replace_fence(eb.gem_context->syncobj,
544460c3
MB
3448 eb.composite_fence ?
3449 eb.composite_fence :
3450 &eb.requests[0]->fence);
00dae4d3
JE
3451 }
3452
544460c3
MB
3453 if (!out_fence && eb.composite_fence)
3454 dma_fence_put(eb.composite_fence);
3455
3456 eb_requests_put(&eb);
54cf91dc 3457
2889caa9 3458err_vma:
b4b9731b 3459 eb_release_vmas(&eb, true);
c43ce123
ML
3460 WARN_ON(err == -EDEADLK);
3461 i915_gem_ww_ctx_fini(&eb.ww);
3462
3463 if (eb.batch_pool)
3464 intel_gt_buffer_pool_put(eb.batch_pool);
c43ce123 3465err_engine:
2bf541ff 3466 eb_put_engine(&eb);
a4e57f90 3467err_context:
8f2a1057 3468 i915_gem_context_put(eb.gem_context);
1acfc104 3469err_destroy:
2889caa9 3470 eb_destroy(&eb);
4d470f73 3471err_out_fence:
fec0445c
CW
3472 if (out_fence_fd != -1)
3473 put_unused_fd(out_fence_fd);
4a04e371 3474err_in_fence:
fec0445c 3475 dma_fence_put(in_fence);
13149e8b
LL
3476err_ext:
3477 put_fence_array(eb.fences, eb.num_fences);
2889caa9 3478 return err;
54cf91dc
CW
3479}
3480
d710fc16
CW
3481static size_t eb_element_size(void)
3482{
8ae275c2 3483 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
3484}
3485
3486static bool check_buffer_count(size_t count)
3487{
3488 const size_t sz = eb_element_size();
3489
3490 /*
3491 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3492 * array size (see eb_create()). Otherwise, we can accept an array as
3493 * large as can be addressed (though use large arrays at your peril)!
3494 */
3495
3496 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3497}
3498
54cf91dc 3499int
6a20fe7b
VS
3500i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3501 struct drm_file *file)
54cf91dc 3502{
d0bf4582 3503 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 3504 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 3505 struct drm_i915_gem_exec_object2 *exec2_list;
d710fc16 3506 const size_t count = args->buffer_count;
2889caa9 3507 int err;
54cf91dc 3508
d710fc16 3509 if (!check_buffer_count(count)) {
d0bf4582 3510 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3511 return -EINVAL;
3512 }
3513
00aff3f6
TU
3514 err = i915_gem_check_execbuffer(args);
3515 if (err)
3516 return err;
2889caa9 3517
47b08693
ML
3518 /* Allocate extra slots for use by the command parser */
3519 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3520 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3521 if (exec2_list == NULL) {
d0bf4582
WK
3522 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3523 count);
54cf91dc
CW
3524 return -ENOMEM;
3525 }
2889caa9
CW
3526 if (copy_from_user(exec2_list,
3527 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3528 sizeof(*exec2_list) * count)) {
d0bf4582 3529 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 3530 kvfree(exec2_list);
54cf91dc
CW
3531 return -EFAULT;
3532 }
3533
cda9edd0 3534 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2889caa9
CW
3535
3536 /*
3537 * Now that we have begun execution of the batchbuffer, we ignore
3538 * any new error after this point. Also given that we have already
3539 * updated the associated relocations, we try to write out the current
3540 * object locations irrespective of any error.
3541 */
3542 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3543 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3544 u64_to_user_ptr(args->buffers_ptr);
3545 unsigned int i;
9aab8bff 3546
2889caa9 3547 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3548 /*
3549 * Note: count * sizeof(*user_exec_list) does not overflow,
3550 * because we checked 'count' in check_buffer_count().
3551 *
3552 * And this range already got effectively checked earlier
3553 * when we did the "copy_from_user()" above.
3554 */
b44f6873
CL
3555 if (!user_write_access_begin(user_exec_list,
3556 count * sizeof(*user_exec_list)))
8f4faed0 3557 goto end;
594cc251 3558
9aab8bff 3559 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3560 if (!(exec2_list[i].offset & UPDATE))
3561 continue;
3562
934acce3 3563 exec2_list[i].offset =
2889caa9
CW
3564 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3565 unsafe_put_user(exec2_list[i].offset,
3566 &user_exec_list[i].offset,
3567 end_user);
54cf91dc 3568 }
2889caa9 3569end_user:
b44f6873 3570 user_write_access_end();
8f4faed0 3571end:;
54cf91dc
CW
3572 }
3573
2889caa9 3574 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 3575 kvfree(exec2_list);
2889caa9 3576 return err;
54cf91dc 3577}