uaccess: Selectively open read or write user access
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
52791eee 8#include <linux/dma-resv.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
ad778f89 13
df0566a6
JN
14#include "display/intel_frontbuffer.h"
15
afa13085 16#include "gem/i915_gem_ioctls.h"
10be98a7 17#include "gt/intel_context.h"
b40d7378 18#include "gt/intel_engine_pool.h"
baea429d 19#include "gt/intel_gt.h"
8f2a1057 20#include "gt/intel_gt_pm.h"
2871ea85 21#include "gt/intel_ring.h"
8f2a1057 22
6da4a2c4 23#include "i915_drv.h"
57822dc6 24#include "i915_gem_clflush.h"
10be98a7 25#include "i915_gem_context.h"
6da4a2c4 26#include "i915_gem_ioctls.h"
686c7c35 27#include "i915_sw_fence_work.h"
54cf91dc 28#include "i915_trace.h"
54cf91dc 29
7d6236bb
CW
30struct eb_vma {
31 struct i915_vma *vma;
32 unsigned int flags;
33
34 /** This vma's place in the execbuf reservation list */
35 struct drm_i915_gem_exec_object2 *exec;
36 struct list_head bind_link;
37 struct list_head reloc_link;
38
39 struct hlist_node node;
40 u32 handle;
41};
42
7dd4f672
CW
43enum {
44 FORCE_CPU_RELOC = 1,
45 FORCE_GTT_RELOC,
46 FORCE_GPU_RELOC,
47#define DBG_FORCE_RELOC 0 /* choose one of the above! */
48};
d50415cc 49
003d8b91
CW
50#define __EXEC_OBJECT_HAS_PIN BIT(31)
51#define __EXEC_OBJECT_HAS_FENCE BIT(30)
52#define __EXEC_OBJECT_NEEDS_MAP BIT(29)
53#define __EXEC_OBJECT_NEEDS_BIAS BIT(28)
54#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */
2889caa9
CW
55#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
56
57#define __EXEC_HAS_RELOC BIT(31)
003d8b91 58#define __EXEC_INTERNAL_FLAGS (~0u << 31)
2889caa9 59#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
60
61#define BATCH_OFFSET_BIAS (256*1024)
a415d355 62
650bc635 63#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
64 (__I915_EXEC_UNKNOWN_FLAGS | \
65 I915_EXEC_CONSTANTS_MASK | \
66 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 67
d20ac620
CW
68/* Catch emission of unexpected errors for CI! */
69#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
70#undef EINVAL
71#define EINVAL ({ \
72 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
73 22; \
74})
75#endif
76
2889caa9
CW
77/**
78 * DOC: User command execution
79 *
80 * Userspace submits commands to be executed on the GPU as an instruction
81 * stream within a GEM object we call a batchbuffer. This instructions may
82 * refer to other GEM objects containing auxiliary state such as kernels,
83 * samplers, render targets and even secondary batchbuffers. Userspace does
84 * not know where in the GPU memory these objects reside and so before the
85 * batchbuffer is passed to the GPU for execution, those addresses in the
86 * batchbuffer and auxiliary objects are updated. This is known as relocation,
87 * or patching. To try and avoid having to relocate each object on the next
88 * execution, userspace is told the location of those objects in this pass,
89 * but this remains just a hint as the kernel may choose a new location for
90 * any object in the future.
91 *
99d7e4ee
KR
92 * At the level of talking to the hardware, submitting a batchbuffer for the
93 * GPU to execute is to add content to a buffer from which the HW
94 * command streamer is reading.
95 *
96 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
97 * Execlists, this command is not placed on the same buffer as the
98 * remaining items.
99 *
100 * 2. Add a command to invalidate caches to the buffer.
101 *
102 * 3. Add a batchbuffer start command to the buffer; the start command is
103 * essentially a token together with the GPU address of the batchbuffer
104 * to be executed.
105 *
106 * 4. Add a pipeline flush to the buffer.
107 *
108 * 5. Add a memory write command to the buffer to record when the GPU
109 * is done executing the batchbuffer. The memory write writes the
110 * global sequence number of the request, ``i915_request::global_seqno``;
111 * the i915 driver uses the current value in the register to determine
112 * if the GPU has completed the batchbuffer.
113 *
114 * 6. Add a user interrupt command to the buffer. This command instructs
115 * the GPU to issue an interrupt when the command, pipeline flush and
116 * memory write are completed.
117 *
118 * 7. Inform the hardware of the additional commands added to the buffer
119 * (by updating the tail pointer).
120 *
2889caa9
CW
121 * Processing an execbuf ioctl is conceptually split up into a few phases.
122 *
123 * 1. Validation - Ensure all the pointers, handles and flags are valid.
124 * 2. Reservation - Assign GPU address space for every object
125 * 3. Relocation - Update any addresses to point to the final locations
126 * 4. Serialisation - Order the request with respect to its dependencies
127 * 5. Construction - Construct a request to execute the batchbuffer
128 * 6. Submission (at some point in the future execution)
129 *
130 * Reserving resources for the execbuf is the most complicated phase. We
131 * neither want to have to migrate the object in the address space, nor do
132 * we want to have to update any relocations pointing to this object. Ideally,
133 * we want to leave the object where it is and for all the existing relocations
134 * to match. If the object is given a new address, or if userspace thinks the
135 * object is elsewhere, we have to parse all the relocation entries and update
136 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
137 * all the target addresses in all of its objects match the value in the
138 * relocation entries and that they all match the presumed offsets given by the
139 * list of execbuffer objects. Using this knowledge, we know that if we haven't
140 * moved any buffers, all the relocation entries are valid and we can skip
141 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
142 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
143 *
144 * The addresses written in the objects must match the corresponding
145 * reloc.presumed_offset which in turn must match the corresponding
146 * execobject.offset.
147 *
148 * Any render targets written to in the batch must be flagged with
149 * EXEC_OBJECT_WRITE.
150 *
151 * To avoid stalling, execobject.offset should match the current
152 * address of that object within the active context.
153 *
154 * The reservation is done is multiple phases. First we try and keep any
155 * object already bound in its current location - so as long as meets the
156 * constraints imposed by the new execbuffer. Any object left unbound after the
157 * first pass is then fitted into any available idle space. If an object does
158 * not fit, all objects are removed from the reservation and the process rerun
159 * after sorting the objects into a priority order (more difficult to fit
160 * objects are tried first). Failing that, the entire VM is cleared and we try
161 * to fit the execbuf once last time before concluding that it simply will not
162 * fit.
163 *
164 * A small complication to all of this is that we allow userspace not only to
165 * specify an alignment and a size for the object in the address space, but
166 * we also allow userspace to specify the exact offset. This objects are
167 * simpler to place (the location is known a priori) all we have to do is make
168 * sure the space is available.
169 *
170 * Once all the objects are in place, patching up the buried pointers to point
171 * to the final locations is a fairly simple job of walking over the relocation
172 * entry arrays, looking up the right address and rewriting the value into
173 * the object. Simple! ... The relocation entries are stored in user memory
174 * and so to access them we have to copy them into a local buffer. That copy
175 * has to avoid taking any pagefaults as they may lead back to a GEM object
176 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
177 * the relocation into multiple passes. First we try to do everything within an
178 * atomic context (avoid the pagefaults) which requires that we never wait. If
179 * we detect that we may wait, or if we need to fault, then we have to fallback
180 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
181 * bells yet?) Dropping the mutex means that we lose all the state we have
182 * built up so far for the execbuf and we must reset any global data. However,
183 * we do leave the objects pinned in their final locations - which is a
184 * potential issue for concurrent execbufs. Once we have left the mutex, we can
185 * allocate and copy all the relocation entries into a large array at our
186 * leisure, reacquire the mutex, reclaim all the objects and other state and
187 * then proceed to update any incorrect addresses with the objects.
188 *
189 * As we process the relocation entries, we maintain a record of whether the
190 * object is being written to. Using NORELOC, we expect userspace to provide
191 * this information instead. We also check whether we can skip the relocation
192 * by comparing the expected value inside the relocation entry with the target's
193 * final address. If they differ, we have to map the current object and rewrite
194 * the 4 or 8 byte pointer within.
195 *
196 * Serialising an execbuf is quite simple according to the rules of the GEM
197 * ABI. Execution within each context is ordered by the order of submission.
198 * Writes to any GEM object are in order of submission and are exclusive. Reads
199 * from a GEM object are unordered with respect to other reads, but ordered by
200 * writes. A write submitted after a read cannot occur before the read, and
201 * similarly any read submitted after a write cannot occur before the write.
202 * Writes are ordered between engines such that only one write occurs at any
203 * time (completing any reads beforehand) - using semaphores where available
204 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
205 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
206 * reads before starting, and any read (either using set-domain or pread) must
207 * flush all GPU writes before starting. (Note we only employ a barrier before,
208 * we currently rely on userspace not concurrently starting a new execution
209 * whilst reading or writing to an object. This may be an advantage or not
210 * depending on how much you trust userspace not to shoot themselves in the
211 * foot.) Serialisation may just result in the request being inserted into
212 * a DAG awaiting its turn, but most simple is to wait on the CPU until
213 * all dependencies are resolved.
214 *
215 * After all of that, is just a matter of closing the request and handing it to
216 * the hardware (well, leaving it in a queue to be executed). However, we also
217 * offer the ability for batchbuffers to be run with elevated privileges so
218 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
219 * Before any batch is given extra privileges we first must check that it
220 * contains no nefarious instructions, we check that each instruction is from
221 * our whitelist and all registers are also from an allowed list. We first
222 * copy the user's batchbuffer to a shadow (so that the user doesn't have
223 * access to it, either by the CPU or GPU as we scan it) and then parse each
224 * instruction. If everything is ok, we set a flag telling the hardware to run
225 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
226 */
227
650bc635 228struct i915_execbuffer {
2889caa9
CW
229 struct drm_i915_private *i915; /** i915 backpointer */
230 struct drm_file *file; /** per-file lookup tables and limits */
231 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
232 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 233 struct eb_vma *vma;
2889caa9
CW
234
235 struct intel_engine_cs *engine; /** engine to queue the request to */
8f2a1057
CW
236 struct intel_context *context; /* logical state for the request */
237 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 238
e61e0f51 239 struct i915_request *request; /** our request to build */
7d6236bb 240 struct eb_vma *batch; /** identity of the batch obj/vma */
32d94048 241 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9
CW
242
243 /** actual size of execobj[] as we may extend it for the cmdparser */
244 unsigned int buffer_count;
245
246 /** list of vma not yet bound during reservation phase */
247 struct list_head unbound;
248
249 /** list of vma that have execobj.relocation_count */
250 struct list_head relocs;
251
252 /**
253 * Track the most recently used object for relocations, as we
254 * frequently have to perform multiple relocations within the same
255 * obj/page
256 */
650bc635 257 struct reloc_cache {
2889caa9
CW
258 struct drm_mm_node node; /** temporary GTT binding */
259 unsigned long vaddr; /** Current kmap address */
260 unsigned long page; /** Currently mapped page index */
7dd4f672 261 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 262 bool use_64bit_reloc : 1;
2889caa9
CW
263 bool has_llc : 1;
264 bool has_fence : 1;
265 bool needs_unfenced : 1;
7dd4f672 266
e61e0f51 267 struct i915_request *rq;
7dd4f672
CW
268 u32 *rq_cmd;
269 unsigned int rq_size;
650bc635 270 } reloc_cache;
2889caa9
CW
271
272 u64 invalid_flags; /** Set of execobj.flags that are invalid */
273 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
274
275 u32 batch_start_offset; /** Location within object of batch */
276 u32 batch_len; /** Length of batch within object */
277 u32 batch_flags; /** Flags composed for emit_bb_start() */
278
279 /**
280 * Indicate either the size of the hastable used to resolve
281 * relocation handles, or if negative that we are using a direct
282 * index into the execobj[].
283 */
284 int lut_size;
285 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
286};
287
3dbf26ed
CW
288static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
289{
311a50e7 290 return intel_engine_requires_cmd_parser(eb->engine) ||
435e8fc0
JB
291 (intel_engine_using_cmd_parser(eb->engine) &&
292 eb->args->batch_len);
3dbf26ed
CW
293}
294
650bc635 295static int eb_create(struct i915_execbuffer *eb)
67731b87 296{
2889caa9
CW
297 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
298 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 299
2889caa9
CW
300 /*
301 * Without a 1:1 association between relocation handles and
302 * the execobject[] index, we instead create a hashtable.
303 * We size it dynamically based on available memory, starting
304 * first with 1:1 assocative hash and scaling back until
305 * the allocation succeeds.
306 *
307 * Later on we use a positive lut_size to indicate we are
308 * using this hashtable, and a negative value to indicate a
309 * direct lookup.
310 */
4ff4b44c 311 do {
0d95c883 312 gfp_t flags;
4d470f73
CW
313
314 /* While we can still reduce the allocation size, don't
315 * raise a warning and allow the allocation to fail.
316 * On the last pass though, we want to try as hard
317 * as possible to perform the allocation and warn
318 * if it fails.
319 */
0ee931c4 320 flags = GFP_KERNEL;
4d470f73
CW
321 if (size > 1)
322 flags |= __GFP_NORETRY | __GFP_NOWARN;
323
4ff4b44c 324 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 325 flags);
4ff4b44c
CW
326 if (eb->buckets)
327 break;
328 } while (--size);
329
4d470f73
CW
330 if (unlikely(!size))
331 return -ENOMEM;
eef90ccb 332
2889caa9 333 eb->lut_size = size;
650bc635 334 } else {
2889caa9 335 eb->lut_size = -eb->buffer_count;
650bc635 336 }
eef90ccb 337
650bc635 338 return 0;
67731b87
CW
339}
340
2889caa9
CW
341static bool
342eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
343 const struct i915_vma *vma,
344 unsigned int flags)
2889caa9 345{
2889caa9
CW
346 if (vma->node.size < entry->pad_to_size)
347 return true;
348
349 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
350 return true;
351
c7c6e46f 352 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
353 vma->node.start != entry->offset)
354 return true;
355
c7c6e46f 356 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
357 vma->node.start < BATCH_OFFSET_BIAS)
358 return true;
359
c7c6e46f 360 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
361 (vma->node.start + vma->node.size - 1) >> 32)
362 return true;
363
1d033beb
CW
364 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
365 !i915_vma_is_map_and_fenceable(vma))
366 return true;
367
2889caa9
CW
368 return false;
369}
370
c7c6e46f 371static inline bool
2889caa9 372eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 373 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 374 struct eb_vma *ev)
2889caa9 375{
7d6236bb 376 struct i915_vma *vma = ev->vma;
c7c6e46f 377 u64 pin_flags;
2889caa9 378
616d9cee 379 if (vma->node.size)
c7c6e46f 380 pin_flags = vma->node.start;
616d9cee 381 else
c7c6e46f 382 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 383
c7c6e46f 384 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
7d6236bb 385 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 386 pin_flags |= PIN_GLOBAL;
616d9cee 387
c7c6e46f
CW
388 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
389 return false;
2889caa9 390
7d6236bb 391 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 392 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 393 i915_vma_unpin(vma);
c7c6e46f 394 return false;
2889caa9
CW
395 }
396
3bd40735 397 if (vma->fence)
7d6236bb 398 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
399 }
400
7d6236bb
CW
401 ev->flags |= __EXEC_OBJECT_HAS_PIN;
402 return !eb_vma_misplaced(entry, vma, ev->flags);
2889caa9
CW
403}
404
c7c6e46f 405static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
d55495b4 406{
c7c6e46f 407 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
2889caa9 408
c7c6e46f 409 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
3bd40735 410 __i915_vma_unpin_fence(vma);
d55495b4 411
2889caa9 412 __i915_vma_unpin(vma);
d55495b4
CW
413}
414
2889caa9 415static inline void
7d6236bb 416eb_unreserve_vma(struct eb_vma *ev)
d55495b4 417{
7d6236bb 418 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
2889caa9 419 return;
d55495b4 420
7d6236bb
CW
421 __eb_unreserve_vma(ev->vma, ev->flags);
422 ev->flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
423}
424
2889caa9
CW
425static int
426eb_validate_vma(struct i915_execbuffer *eb,
427 struct drm_i915_gem_exec_object2 *entry,
428 struct i915_vma *vma)
67731b87 429{
2889caa9
CW
430 if (unlikely(entry->flags & eb->invalid_flags))
431 return -EINVAL;
d55495b4 432
2920516b
MA
433 if (unlikely(entry->alignment &&
434 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
435 return -EINVAL;
436
437 /*
438 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
439 * any non-page-aligned or non-canonical addresses.
440 */
441 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 442 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
443 return -EINVAL;
444
445 /* pad_to_size was once a reserved field, so sanitize it */
446 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
447 if (unlikely(offset_in_page(entry->pad_to_size)))
448 return -EINVAL;
449 } else {
450 entry->pad_to_size = 0;
d55495b4 451 }
2889caa9
CW
452 /*
453 * From drm_mm perspective address space is continuous,
454 * so from this point we're always using non-canonical
455 * form internally.
456 */
457 entry->offset = gen8_noncanonical_addr(entry->offset);
458
c7c6e46f
CW
459 if (!eb->reloc_cache.has_fence) {
460 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
461 } else {
462 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
463 eb->reloc_cache.needs_unfenced) &&
464 i915_gem_object_is_tiled(vma->obj))
465 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
466 }
467
468 if (!(entry->flags & EXEC_OBJECT_PINNED))
469 entry->flags |= eb->context_flags;
470
2889caa9 471 return 0;
67731b87
CW
472}
473
003d8b91 474static void
746c8f14
CW
475eb_add_vma(struct i915_execbuffer *eb,
476 unsigned int i, unsigned batch_idx,
477 struct i915_vma *vma)
59bfa124 478{
c7c6e46f 479 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 480 struct eb_vma *ev = &eb->vma[i];
2889caa9
CW
481
482 GEM_BUG_ON(i915_vma_is_closed(vma));
483
003d8b91 484 ev->vma = i915_vma_get(vma);
7d6236bb
CW
485 ev->exec = entry;
486 ev->flags = entry->flags;
487
4d470f73 488 if (eb->lut_size > 0) {
7d6236bb
CW
489 ev->handle = entry->handle;
490 hlist_add_head(&ev->node,
2889caa9
CW
491 &eb->buckets[hash_32(entry->handle,
492 eb->lut_size)]);
4ff4b44c 493 }
59bfa124 494
2889caa9 495 if (entry->relocation_count)
7d6236bb 496 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 497
746c8f14
CW
498 /*
499 * SNA is doing fancy tricks with compressing batch buffers, which leads
500 * to negative relocation deltas. Usually that works out ok since the
501 * relocate address is still positive, except when the batch is placed
502 * very low in the GTT. Ensure this doesn't happen.
503 *
504 * Note that actual hangs have only been observed on gen7, but for
505 * paranoia do it everywhere.
506 */
507 if (i == batch_idx) {
827db9d8 508 if (entry->relocation_count &&
7d6236bb
CW
509 !(ev->flags & EXEC_OBJECT_PINNED))
510 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 511 if (eb->reloc_cache.has_fence)
7d6236bb 512 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 513
7d6236bb 514 eb->batch = ev;
746c8f14
CW
515 }
516
7d6236bb 517 if (eb_pin_vma(eb, entry, ev)) {
2889caa9
CW
518 if (entry->offset != vma->node.start) {
519 entry->offset = vma->node.start | UPDATE;
520 eb->args->flags |= __EXEC_HAS_RELOC;
521 }
c7c6e46f 522 } else {
7d6236bb 523 eb_unreserve_vma(ev);
7d6236bb 524 list_add_tail(&ev->bind_link, &eb->unbound);
2889caa9 525 }
2889caa9
CW
526}
527
528static inline int use_cpu_reloc(const struct reloc_cache *cache,
529 const struct drm_i915_gem_object *obj)
530{
531 if (!i915_gem_object_has_struct_page(obj))
532 return false;
533
7dd4f672
CW
534 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
535 return true;
536
537 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
538 return false;
2889caa9
CW
539
540 return (cache->has_llc ||
541 obj->cache_dirty ||
542 obj->cache_level != I915_CACHE_NONE);
543}
544
545static int eb_reserve_vma(const struct i915_execbuffer *eb,
7d6236bb 546 struct eb_vma *ev,
2920bb94 547 u64 pin_flags)
2889caa9 548{
7d6236bb
CW
549 struct drm_i915_gem_exec_object2 *entry = ev->exec;
550 unsigned int exec_flags = ev->flags;
551 struct i915_vma *vma = ev->vma;
2889caa9
CW
552 int err;
553
c7c6e46f
CW
554 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
555 pin_flags |= PIN_GLOBAL;
2889caa9
CW
556
557 /*
558 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
559 * limit address to the first 4GBs for unflagged objects.
560 */
c7c6e46f
CW
561 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
562 pin_flags |= PIN_ZONE_4G;
2889caa9 563
c7c6e46f
CW
564 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
565 pin_flags |= PIN_MAPPABLE;
2889caa9 566
2920bb94 567 if (exec_flags & EXEC_OBJECT_PINNED)
c7c6e46f 568 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
2920bb94 569 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
c7c6e46f 570 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
2889caa9 571
003d8b91
CW
572 if (drm_mm_node_allocated(&vma->node) &&
573 eb_vma_misplaced(entry, vma, ev->flags)) {
574 err = i915_vma_unbind(vma);
575 if (err)
576 return err;
577 }
578
c7c6e46f
CW
579 err = i915_vma_pin(vma,
580 entry->pad_to_size, entry->alignment,
581 pin_flags);
2889caa9
CW
582 if (err)
583 return err;
584
585 if (entry->offset != vma->node.start) {
586 entry->offset = vma->node.start | UPDATE;
587 eb->args->flags |= __EXEC_HAS_RELOC;
588 }
589
c7c6e46f 590 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 591 err = i915_vma_pin_fence(vma);
2889caa9
CW
592 if (unlikely(err)) {
593 i915_vma_unpin(vma);
594 return err;
595 }
596
3bd40735 597 if (vma->fence)
c7c6e46f 598 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
599 }
600
7d6236bb
CW
601 ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
602 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 603
2889caa9
CW
604 return 0;
605}
606
607static int eb_reserve(struct i915_execbuffer *eb)
608{
609 const unsigned int count = eb->buffer_count;
2920bb94 610 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
2889caa9 611 struct list_head last;
7d6236bb 612 struct eb_vma *ev;
2889caa9 613 unsigned int i, pass;
ef398881 614 int err = 0;
2889caa9
CW
615
616 /*
617 * Attempt to pin all of the buffers into the GTT.
618 * This is done in 3 phases:
619 *
620 * 1a. Unbind all objects that do not match the GTT constraints for
621 * the execbuffer (fenceable, mappable, alignment etc).
622 * 1b. Increment pin count for already bound objects.
623 * 2. Bind new objects.
624 * 3. Decrement pin count.
625 *
626 * This avoid unnecessary unbinding of later objects in order to make
627 * room for the earlier objects *unless* we need to defragment.
628 */
629
ef398881
CW
630 if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
631 return -EINTR;
632
2889caa9 633 pass = 0;
2889caa9 634 do {
7d6236bb
CW
635 list_for_each_entry(ev, &eb->unbound, bind_link) {
636 err = eb_reserve_vma(eb, ev, pin_flags);
2889caa9
CW
637 if (err)
638 break;
639 }
003d8b91 640 if (!(err == -ENOSPC || err == -EAGAIN))
ef398881 641 break;
2889caa9
CW
642
643 /* Resort *all* the objects into priority order */
644 INIT_LIST_HEAD(&eb->unbound);
645 INIT_LIST_HEAD(&last);
646 for (i = 0; i < count; i++) {
7d6236bb 647 unsigned int flags;
2889caa9 648
7d6236bb
CW
649 ev = &eb->vma[i];
650 flags = ev->flags;
c7c6e46f
CW
651 if (flags & EXEC_OBJECT_PINNED &&
652 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
653 continue;
654
7d6236bb 655 eb_unreserve_vma(ev);
2889caa9 656
c7c6e46f 657 if (flags & EXEC_OBJECT_PINNED)
35e882a4 658 /* Pinned must have their slot */
7d6236bb 659 list_add(&ev->bind_link, &eb->unbound);
c7c6e46f 660 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 661 /* Map require the lowest 256MiB (aperture) */
7d6236bb 662 list_add_tail(&ev->bind_link, &eb->unbound);
35e882a4
CW
663 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
664 /* Prioritise 4GiB region for restricted bo */
7d6236bb 665 list_add(&ev->bind_link, &last);
2889caa9 666 else
7d6236bb 667 list_add_tail(&ev->bind_link, &last);
2889caa9
CW
668 }
669 list_splice_tail(&last, &eb->unbound);
670
003d8b91 671 if (err == -EAGAIN) {
ef398881 672 mutex_unlock(&eb->i915->drm.struct_mutex);
003d8b91 673 flush_workqueue(eb->i915->mm.userptr_wq);
ef398881 674 mutex_lock(&eb->i915->drm.struct_mutex);
003d8b91
CW
675 continue;
676 }
677
2889caa9
CW
678 switch (pass++) {
679 case 0:
680 break;
681
682 case 1:
683 /* Too fragmented, unbind everything and retry */
2850748e 684 mutex_lock(&eb->context->vm->mutex);
f5d974f9 685 err = i915_gem_evict_vm(eb->context->vm);
2850748e 686 mutex_unlock(&eb->context->vm->mutex);
2889caa9 687 if (err)
ef398881 688 goto unlock;
2889caa9
CW
689 break;
690
691 default:
ef398881
CW
692 err = -ENOSPC;
693 goto unlock;
2889caa9 694 }
2920bb94
CW
695
696 pin_flags = PIN_USER;
2889caa9 697 } while (1);
ef398881
CW
698
699unlock:
700 mutex_unlock(&eb->i915->drm.struct_mutex);
701 return err;
4ff4b44c 702}
59bfa124 703
2889caa9
CW
704static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
705{
1a71cf2f
CW
706 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
707 return 0;
708 else
709 return eb->buffer_count - 1;
2889caa9
CW
710}
711
712static int eb_select_context(struct i915_execbuffer *eb)
713{
714 struct i915_gem_context *ctx;
715
716 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
717 if (unlikely(!ctx))
718 return -ENOENT;
2889caa9 719
8f2a1057 720 eb->gem_context = ctx;
a4e7ccda 721 if (rcu_access_pointer(ctx->vm))
4f2c7337 722 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9
CW
723
724 eb->context_flags = 0;
d3f3e5e4 725 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
2889caa9
CW
726 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
727
728 return 0;
729}
730
731static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 732{
8f2a1057 733 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
ac70ebe8 734 struct drm_i915_gem_object *obj;
746c8f14 735 unsigned int i, batch;
2889caa9 736 int err;
3b96eff4 737
003d8b91
CW
738 if (unlikely(i915_gem_context_is_closed(eb->gem_context)))
739 return -ENOENT;
740
2889caa9
CW
741 INIT_LIST_HEAD(&eb->relocs);
742 INIT_LIST_HEAD(&eb->unbound);
d55495b4 743
746c8f14
CW
744 batch = eb_batch_index(eb);
745
170fa29b
CW
746 for (i = 0; i < eb->buffer_count; i++) {
747 u32 handle = eb->exec[i].handle;
d1b48c1e 748 struct i915_lut_handle *lut;
170fa29b 749 struct i915_vma *vma;
4ff4b44c 750
d1b48c1e
CW
751 vma = radix_tree_lookup(handles_vma, handle);
752 if (likely(vma))
170fa29b 753 goto add_vma;
4ff4b44c 754
170fa29b 755 obj = i915_gem_object_lookup(eb->file, handle);
4ff4b44c 756 if (unlikely(!obj)) {
2889caa9 757 err = -ENOENT;
170fa29b 758 goto err_vma;
3b96eff4
CW
759 }
760
f5d974f9 761 vma = i915_vma_instance(obj, eb->context->vm, NULL);
772b5408 762 if (IS_ERR(vma)) {
2889caa9 763 err = PTR_ERR(vma);
170fa29b 764 goto err_obj;
27173f1f
BW
765 }
766
13f1bfd3 767 lut = i915_lut_handle_alloc();
d1b48c1e
CW
768 if (unlikely(!lut)) {
769 err = -ENOMEM;
770 goto err_obj;
771 }
772
773 err = radix_tree_insert(handles_vma, handle, vma);
774 if (unlikely(err)) {
13f1bfd3 775 i915_lut_handle_free(lut);
d1b48c1e 776 goto err_obj;
eef90ccb 777 }
4ff4b44c 778
155ab883
CW
779 /* transfer ref to lut */
780 if (!atomic_fetch_inc(&vma->open_count))
3365e226 781 i915_vma_reopen(vma);
d1b48c1e 782 lut->handle = handle;
155ab883
CW
783 lut->ctx = eb->gem_context;
784
785 i915_gem_object_lock(obj);
786 list_add(&lut->obj_link, &obj->lut_list);
787 i915_gem_object_unlock(obj);
d1b48c1e 788
170fa29b 789add_vma:
003d8b91 790 err = eb_validate_vma(eb, &eb->exec[i], vma);
2889caa9 791 if (unlikely(err))
ac70ebe8 792 goto err_vma;
dade2a61 793
003d8b91 794 eb_add_vma(eb, i, batch, vma);
4ff4b44c
CW
795 }
796
003d8b91 797 return 0;
2889caa9 798
170fa29b 799err_obj:
ac70ebe8 800 i915_gem_object_put(obj);
170fa29b 801err_vma:
7d6236bb 802 eb->vma[i].vma = NULL;
2889caa9 803 return err;
3b96eff4
CW
804}
805
7d6236bb 806static struct eb_vma *
2889caa9 807eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 808{
2889caa9
CW
809 if (eb->lut_size < 0) {
810 if (handle >= -eb->lut_size)
eef90ccb 811 return NULL;
7d6236bb 812 return &eb->vma[handle];
eef90ccb
CW
813 } else {
814 struct hlist_head *head;
7d6236bb 815 struct eb_vma *ev;
67731b87 816
2889caa9 817 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
818 hlist_for_each_entry(ev, head, node) {
819 if (ev->handle == handle)
820 return ev;
eef90ccb
CW
821 }
822 return NULL;
823 }
67731b87
CW
824}
825
2889caa9 826static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 827{
2889caa9
CW
828 const unsigned int count = eb->buffer_count;
829 unsigned int i;
830
831 for (i = 0; i < count; i++) {
7d6236bb
CW
832 struct eb_vma *ev = &eb->vma[i];
833 struct i915_vma *vma = ev->vma;
650bc635 834
2889caa9 835 if (!vma)
170fa29b 836 break;
bcffc3fa 837
7d6236bb 838 eb->vma[i].vma = NULL;
9e53d9be 839
7d6236bb
CW
840 if (ev->flags & __EXEC_OBJECT_HAS_PIN)
841 __eb_unreserve_vma(vma, ev->flags);
dade2a61 842
003d8b91 843 i915_vma_put(vma);
2889caa9 844 }
dabdfe02
CW
845}
846
2889caa9 847static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 848{
7dd4f672
CW
849 GEM_BUG_ON(eb->reloc_cache.rq);
850
4d470f73 851 if (eb->lut_size > 0)
2889caa9 852 kfree(eb->buckets);
934acce3
MW
853}
854
2889caa9 855static inline u64
d50415cc 856relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 857 const struct i915_vma *target)
934acce3 858{
2889caa9 859 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
860}
861
d50415cc
CW
862static void reloc_cache_init(struct reloc_cache *cache,
863 struct drm_i915_private *i915)
5032d871 864{
31a39207 865 cache->page = -1;
d50415cc 866 cache->vaddr = 0;
dfc5148f 867 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 868 cache->gen = INTEL_GEN(i915);
2889caa9 869 cache->has_llc = HAS_LLC(i915);
dfc5148f 870 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
871 cache->has_fence = cache->gen < 4;
872 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 873 cache->node.flags = 0;
7dd4f672
CW
874 cache->rq = NULL;
875 cache->rq_size = 0;
d50415cc 876}
5032d871 877
d50415cc
CW
878static inline void *unmask_page(unsigned long p)
879{
880 return (void *)(uintptr_t)(p & PAGE_MASK);
881}
882
883static inline unsigned int unmask_flags(unsigned long p)
884{
885 return p & ~PAGE_MASK;
31a39207
CW
886}
887
d50415cc
CW
888#define KMAP 0x4 /* after CLFLUSH_FLAGS */
889
650bc635
CW
890static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
891{
892 struct drm_i915_private *i915 =
893 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
894 return &i915->ggtt;
895}
896
7dd4f672
CW
897static void reloc_gpu_flush(struct reloc_cache *cache)
898{
1aaea847
CW
899 struct drm_i915_gem_object *obj = cache->rq->batch->obj;
900
901 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
7dd4f672 902 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
a679f58d 903
1aaea847
CW
904 __i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
905 i915_gem_object_unpin_map(obj);
a679f58d 906
baea429d 907 intel_gt_chipset_flush(cache->rq->engine->gt);
7dd4f672 908
697b9a87 909 i915_request_add(cache->rq);
7dd4f672
CW
910 cache->rq = NULL;
911}
912
650bc635 913static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 914{
d50415cc 915 void *vaddr;
5032d871 916
7dd4f672
CW
917 if (cache->rq)
918 reloc_gpu_flush(cache);
919
31a39207
CW
920 if (!cache->vaddr)
921 return;
3c94ceee 922
d50415cc
CW
923 vaddr = unmask_page(cache->vaddr);
924 if (cache->vaddr & KMAP) {
925 if (cache->vaddr & CLFLUSH_AFTER)
926 mb();
3c94ceee 927
d50415cc 928 kunmap_atomic(vaddr);
f0e4a063 929 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
d50415cc 930 } else {
576f0586
CW
931 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
932
933 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
d50415cc 934 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 935
b290a78b 936 if (drm_mm_node_allocated(&cache->node)) {
82ad6443
CW
937 ggtt->vm.clear_range(&ggtt->vm,
938 cache->node.start,
939 cache->node.size);
2850748e 940 mutex_lock(&ggtt->vm.mutex);
e8cb909a 941 drm_mm_remove_node(&cache->node);
2850748e 942 mutex_unlock(&ggtt->vm.mutex);
e8cb909a
CW
943 } else {
944 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 945 }
31a39207 946 }
650bc635
CW
947
948 cache->vaddr = 0;
949 cache->page = -1;
31a39207
CW
950}
951
952static void *reloc_kmap(struct drm_i915_gem_object *obj,
953 struct reloc_cache *cache,
2889caa9 954 unsigned long page)
31a39207 955{
d50415cc
CW
956 void *vaddr;
957
958 if (cache->vaddr) {
959 kunmap_atomic(unmask_page(cache->vaddr));
960 } else {
961 unsigned int flushes;
2889caa9 962 int err;
31a39207 963
f0e4a063 964 err = i915_gem_object_prepare_write(obj, &flushes);
2889caa9
CW
965 if (err)
966 return ERR_PTR(err);
d50415cc
CW
967
968 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
969 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 970
d50415cc
CW
971 cache->vaddr = flushes | KMAP;
972 cache->node.mm = (void *)obj;
973 if (flushes)
974 mb();
3c94ceee
BW
975 }
976
d50415cc
CW
977 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
978 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 979 cache->page = page;
5032d871 980
d50415cc 981 return vaddr;
5032d871
RB
982}
983
d50415cc
CW
984static void *reloc_iomap(struct drm_i915_gem_object *obj,
985 struct reloc_cache *cache,
2889caa9 986 unsigned long page)
5032d871 987{
650bc635 988 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 989 unsigned long offset;
d50415cc 990 void *vaddr;
5032d871 991
d50415cc 992 if (cache->vaddr) {
576f0586 993 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
615e5000 994 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
995 } else {
996 struct i915_vma *vma;
2889caa9 997 int err;
5032d871 998
1f7fd484
CW
999 if (i915_gem_object_is_tiled(obj))
1000 return ERR_PTR(-EINVAL);
1001
2889caa9 1002 if (use_cpu_reloc(cache, obj))
d50415cc 1003 return NULL;
3c94ceee 1004
6951e589 1005 i915_gem_object_lock(obj);
2889caa9 1006 err = i915_gem_object_set_to_gtt_domain(obj, true);
6951e589 1007 i915_gem_object_unlock(obj);
2889caa9
CW
1008 if (err)
1009 return ERR_PTR(err);
3c94ceee 1010
d50415cc 1011 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
3c755c5b 1012 PIN_MAPPABLE |
6846895f
CW
1013 PIN_NONBLOCK /* NOWARN */ |
1014 PIN_NOEVICT);
e8cb909a
CW
1015 if (IS_ERR(vma)) {
1016 memset(&cache->node, 0, sizeof(cache->node));
2850748e 1017 mutex_lock(&ggtt->vm.mutex);
2889caa9 1018 err = drm_mm_insert_node_in_range
82ad6443 1019 (&ggtt->vm.mm, &cache->node,
f51455d4 1020 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1021 0, ggtt->mappable_end,
4e64e553 1022 DRM_MM_INSERT_LOW);
2850748e 1023 mutex_unlock(&ggtt->vm.mutex);
2889caa9 1024 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1025 return NULL;
e8cb909a 1026 } else {
e8cb909a
CW
1027 cache->node.start = vma->node.start;
1028 cache->node.mm = (void *)vma;
3c94ceee 1029 }
e8cb909a 1030 }
3c94ceee 1031
e8cb909a 1032 offset = cache->node.start;
b290a78b 1033 if (drm_mm_node_allocated(&cache->node)) {
82ad6443
CW
1034 ggtt->vm.insert_page(&ggtt->vm,
1035 i915_gem_object_get_dma_address(obj, page),
1036 offset, I915_CACHE_NONE, 0);
e8cb909a
CW
1037 } else {
1038 offset += page << PAGE_SHIFT;
3c94ceee
BW
1039 }
1040
73ebd503 1041 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
650bc635 1042 offset);
d50415cc
CW
1043 cache->page = page;
1044 cache->vaddr = (unsigned long)vaddr;
5032d871 1045
d50415cc 1046 return vaddr;
5032d871
RB
1047}
1048
d50415cc
CW
1049static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1050 struct reloc_cache *cache,
2889caa9 1051 unsigned long page)
edf4427b 1052{
d50415cc 1053 void *vaddr;
5032d871 1054
d50415cc
CW
1055 if (cache->page == page) {
1056 vaddr = unmask_page(cache->vaddr);
1057 } else {
1058 vaddr = NULL;
1059 if ((cache->vaddr & KMAP) == 0)
1060 vaddr = reloc_iomap(obj, cache, page);
1061 if (!vaddr)
1062 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1063 }
1064
d50415cc 1065 return vaddr;
edf4427b
CW
1066}
1067
d50415cc 1068static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1069{
d50415cc
CW
1070 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1071 if (flushes & CLFLUSH_BEFORE) {
1072 clflushopt(addr);
1073 mb();
1074 }
edf4427b 1075
d50415cc 1076 *addr = value;
edf4427b 1077
2889caa9
CW
1078 /*
1079 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1080 * (including clflush). On the write path, we only require
1081 * that it hits memory in an orderly fashion and place
1082 * mb barriers at the start and end of the relocation phase
1083 * to ensure ordering of clflush wrt to the system.
1084 */
1085 if (flushes & CLFLUSH_AFTER)
1086 clflushopt(addr);
1087 } else
1088 *addr = value;
edf4427b 1089}
edf4427b 1090
6951e589
CW
1091static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1092{
1093 struct drm_i915_gem_object *obj = vma->obj;
1094 int err;
1095
1096 i915_vma_lock(vma);
1097
1098 if (obj->cache_dirty & ~obj->cache_coherent)
1099 i915_gem_clflush_object(obj, 0);
1100 obj->write_domain = 0;
1101
1102 err = i915_request_await_object(rq, vma->obj, true);
1103 if (err == 0)
1104 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1105
1106 i915_vma_unlock(vma);
1107
1108 return err;
1109}
1110
7dd4f672
CW
1111static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1112 struct i915_vma *vma,
1113 unsigned int len)
1114{
1115 struct reloc_cache *cache = &eb->reloc_cache;
b40d7378 1116 struct intel_engine_pool_node *pool;
e61e0f51 1117 struct i915_request *rq;
7dd4f672
CW
1118 struct i915_vma *batch;
1119 u32 *cmd;
1120 int err;
1121
cccdce1d 1122 pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
b40d7378
CW
1123 if (IS_ERR(pool))
1124 return PTR_ERR(pool);
7dd4f672 1125
b40d7378 1126 cmd = i915_gem_object_pin_map(pool->obj,
a575c676
CW
1127 cache->has_llc ?
1128 I915_MAP_FORCE_WB :
1129 I915_MAP_FORCE_WC);
b40d7378
CW
1130 if (IS_ERR(cmd)) {
1131 err = PTR_ERR(cmd);
1132 goto out_pool;
1133 }
7dd4f672 1134
b40d7378 1135 batch = i915_vma_instance(pool->obj, vma->vm, NULL);
7dd4f672
CW
1136 if (IS_ERR(batch)) {
1137 err = PTR_ERR(batch);
1138 goto err_unmap;
1139 }
1140
1141 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1142 if (err)
1143 goto err_unmap;
1144
d92f77de 1145 rq = i915_request_create(eb->context);
7dd4f672
CW
1146 if (IS_ERR(rq)) {
1147 err = PTR_ERR(rq);
1148 goto err_unpin;
1149 }
1150
b40d7378
CW
1151 err = intel_engine_pool_mark_active(pool, rq);
1152 if (err)
1153 goto err_request;
1154
6951e589 1155 err = reloc_move_to_gpu(rq, vma);
7dd4f672
CW
1156 if (err)
1157 goto err_request;
1158
7dd4f672
CW
1159 err = eb->engine->emit_bb_start(rq,
1160 batch->node.start, PAGE_SIZE,
1161 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1162 if (err)
6951e589 1163 goto skip_request;
7dd4f672 1164
6951e589 1165 i915_vma_lock(batch);
70d6894d
CW
1166 err = i915_request_await_object(rq, batch->obj, false);
1167 if (err == 0)
1168 err = i915_vma_move_to_active(batch, rq, 0);
6951e589 1169 i915_vma_unlock(batch);
a5236978
CW
1170 if (err)
1171 goto skip_request;
7dd4f672
CW
1172
1173 rq->batch = batch;
a5236978 1174 i915_vma_unpin(batch);
7dd4f672
CW
1175
1176 cache->rq = rq;
1177 cache->rq_cmd = cmd;
1178 cache->rq_size = 0;
1179
1180 /* Return with batch mapping (cmd) still pinned */
b40d7378 1181 goto out_pool;
7dd4f672 1182
a5236978 1183skip_request:
36e191f0 1184 i915_request_set_error_once(rq, err);
7dd4f672 1185err_request:
e61e0f51 1186 i915_request_add(rq);
7dd4f672
CW
1187err_unpin:
1188 i915_vma_unpin(batch);
1189err_unmap:
b40d7378
CW
1190 i915_gem_object_unpin_map(pool->obj);
1191out_pool:
1192 intel_engine_pool_put(pool);
7dd4f672
CW
1193 return err;
1194}
1195
1196static u32 *reloc_gpu(struct i915_execbuffer *eb,
1197 struct i915_vma *vma,
1198 unsigned int len)
1199{
1200 struct reloc_cache *cache = &eb->reloc_cache;
1201 u32 *cmd;
1202
1203 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1204 reloc_gpu_flush(cache);
1205
1206 if (unlikely(!cache->rq)) {
1207 int err;
1208
90cad095
CW
1209 if (!intel_engine_can_store_dword(eb->engine))
1210 return ERR_PTR(-ENODEV);
1211
7dd4f672
CW
1212 err = __reloc_gpu_alloc(eb, vma, len);
1213 if (unlikely(err))
1214 return ERR_PTR(err);
1215 }
1216
1217 cmd = cache->rq_cmd + cache->rq_size;
1218 cache->rq_size += len;
1219
1220 return cmd;
1221}
1222
2889caa9
CW
1223static u64
1224relocate_entry(struct i915_vma *vma,
d50415cc 1225 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1226 struct i915_execbuffer *eb,
1227 const struct i915_vma *target)
edf4427b 1228{
d50415cc 1229 u64 offset = reloc->offset;
2889caa9
CW
1230 u64 target_offset = relocation_target(reloc, target);
1231 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1232 void *vaddr;
edf4427b 1233
7dd4f672
CW
1234 if (!eb->reloc_cache.vaddr &&
1235 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
52791eee 1236 !dma_resv_test_signaled_rcu(vma->resv, true))) {
7dd4f672
CW
1237 const unsigned int gen = eb->reloc_cache.gen;
1238 unsigned int len;
1239 u32 *batch;
1240 u64 addr;
1241
1242 if (wide)
1243 len = offset & 7 ? 8 : 5;
1244 else if (gen >= 4)
1245 len = 4;
f2f5c061 1246 else
a889580c 1247 len = 3;
7dd4f672
CW
1248
1249 batch = reloc_gpu(eb, vma, len);
1250 if (IS_ERR(batch))
1251 goto repeat;
1252
1253 addr = gen8_canonical_addr(vma->node.start + offset);
1254 if (wide) {
1255 if (offset & 7) {
1256 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1257 *batch++ = lower_32_bits(addr);
1258 *batch++ = upper_32_bits(addr);
1259 *batch++ = lower_32_bits(target_offset);
1260
1261 addr = gen8_canonical_addr(addr + 4);
1262
1263 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1264 *batch++ = lower_32_bits(addr);
1265 *batch++ = upper_32_bits(addr);
1266 *batch++ = upper_32_bits(target_offset);
1267 } else {
1268 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1269 *batch++ = lower_32_bits(addr);
1270 *batch++ = upper_32_bits(addr);
1271 *batch++ = lower_32_bits(target_offset);
1272 *batch++ = upper_32_bits(target_offset);
1273 }
1274 } else if (gen >= 6) {
1275 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1276 *batch++ = 0;
1277 *batch++ = addr;
1278 *batch++ = target_offset;
1279 } else if (gen >= 4) {
1280 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1281 *batch++ = 0;
1282 *batch++ = addr;
1283 *batch++ = target_offset;
1284 } else {
1285 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1286 *batch++ = addr;
1287 *batch++ = target_offset;
1288 }
1289
1290 goto out;
1291 }
1292
d50415cc 1293repeat:
95ff7c7d 1294 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1295 if (IS_ERR(vaddr))
1296 return PTR_ERR(vaddr);
1297
1298 clflush_write32(vaddr + offset_in_page(offset),
1299 lower_32_bits(target_offset),
2889caa9 1300 eb->reloc_cache.vaddr);
d50415cc
CW
1301
1302 if (wide) {
1303 offset += sizeof(u32);
1304 target_offset >>= 32;
1305 wide = false;
1306 goto repeat;
edf4427b 1307 }
edf4427b 1308
7dd4f672 1309out:
2889caa9 1310 return target->node.start | UPDATE;
edf4427b 1311}
edf4427b 1312
2889caa9
CW
1313static u64
1314eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1315 struct eb_vma *ev,
2889caa9 1316 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1317{
baa89ba3 1318 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1319 struct eb_vma *target;
2889caa9 1320 int err;
54cf91dc 1321
67731b87 1322 /* we've already hold a reference to all valid objects */
507d977f
CW
1323 target = eb_get_vma(eb, reloc->target_handle);
1324 if (unlikely(!target))
54cf91dc 1325 return -ENOENT;
e844b990 1326
54cf91dc 1327 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1328 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1329 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1330 "target %d offset %d "
54cf91dc 1331 "read %08x write %08x",
507d977f 1332 reloc->target_handle,
54cf91dc
CW
1333 (int) reloc->offset,
1334 reloc->read_domains,
1335 reloc->write_domain);
8b78f0e5 1336 return -EINVAL;
54cf91dc 1337 }
4ca4a250
DV
1338 if (unlikely((reloc->write_domain | reloc->read_domains)
1339 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1340 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1341 "target %d offset %d "
54cf91dc 1342 "read %08x write %08x",
507d977f 1343 reloc->target_handle,
54cf91dc
CW
1344 (int) reloc->offset,
1345 reloc->read_domains,
1346 reloc->write_domain);
8b78f0e5 1347 return -EINVAL;
54cf91dc 1348 }
54cf91dc 1349
2889caa9 1350 if (reloc->write_domain) {
7d6236bb 1351 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1352
2889caa9
CW
1353 /*
1354 * Sandybridge PPGTT errata: We need a global gtt mapping
1355 * for MI and pipe_control writes because the gpu doesn't
1356 * properly redirect them through the ppgtt for non_secure
1357 * batchbuffers.
1358 */
1359 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
cf819eff 1360 IS_GEN(eb->i915, 6)) {
7d6236bb
CW
1361 err = i915_vma_bind(target->vma,
1362 target->vma->obj->cache_level,
2850748e 1363 PIN_GLOBAL, NULL);
2889caa9
CW
1364 if (WARN_ONCE(err,
1365 "Unexpected failure to bind target VMA!"))
1366 return err;
1367 }
507d977f 1368 }
54cf91dc 1369
2889caa9
CW
1370 /*
1371 * If the relocation already has the right value in it, no
54cf91dc
CW
1372 * more work needs to be done.
1373 */
7dd4f672 1374 if (!DBG_FORCE_RELOC &&
7d6236bb 1375 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1376 return 0;
54cf91dc
CW
1377
1378 /* Check that the relocation address is valid... */
3c94ceee 1379 if (unlikely(reloc->offset >
7d6236bb 1380 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1381 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1382 "target %d offset %d size %d.\n",
1383 reloc->target_handle,
1384 (int)reloc->offset,
7d6236bb 1385 (int)ev->vma->size);
8b78f0e5 1386 return -EINVAL;
54cf91dc 1387 }
b8f7ab17 1388 if (unlikely(reloc->offset & 3)) {
baa89ba3 1389 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1390 "target %d offset %d.\n",
1391 reloc->target_handle,
1392 (int)reloc->offset);
8b78f0e5 1393 return -EINVAL;
54cf91dc
CW
1394 }
1395
071750e5
CW
1396 /*
1397 * If we write into the object, we need to force the synchronisation
1398 * barrier, either with an asynchronous clflush or if we executed the
1399 * patching using the GPU (though that should be serialised by the
1400 * timeline). To be completely sure, and since we are required to
1401 * do relocations we are already stalling, disable the user's opt
0519bcb1 1402 * out of our synchronisation.
071750e5 1403 */
7d6236bb 1404 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1405
54cf91dc 1406 /* and update the user's relocation entry */
7d6236bb 1407 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1408}
1409
7d6236bb 1410static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1411{
1d83f442 1412#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1413 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1414 struct drm_i915_gem_relocation_entry __user *urelocs;
7d6236bb 1415 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
2889caa9 1416 unsigned int remain;
54cf91dc 1417
2889caa9 1418 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1419 remain = entry->relocation_count;
2889caa9
CW
1420 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1421 return -EINVAL;
ebc0808f 1422
2889caa9
CW
1423 /*
1424 * We must check that the entire relocation array is safe
1425 * to read. However, if the array is not writable the user loses
1426 * the updated relocation values.
1427 */
96d4f267 1428 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
2889caa9
CW
1429 return -EFAULT;
1430
1431 do {
1432 struct drm_i915_gem_relocation_entry *r = stack;
1433 unsigned int count =
1434 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1435 unsigned int copied;
1d83f442 1436
2889caa9
CW
1437 /*
1438 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1439 * whilst holding the struct mutex lest the user pass in the
1440 * relocations contained within a mmaped bo. For in such a case
1441 * we, the page fault handler would call i915_gem_fault() and
1442 * we would try to acquire the struct mutex again. Obviously
1443 * this is bad and so lockdep complains vehemently.
1444 */
7dc8f114 1445 copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
2889caa9
CW
1446 if (unlikely(copied)) {
1447 remain = -EFAULT;
31a39207
CW
1448 goto out;
1449 }
54cf91dc 1450
2889caa9 1451 remain -= count;
1d83f442 1452 do {
7d6236bb 1453 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1454
2889caa9
CW
1455 if (likely(offset == 0)) {
1456 } else if ((s64)offset < 0) {
1457 remain = (int)offset;
31a39207 1458 goto out;
2889caa9
CW
1459 } else {
1460 /*
1461 * Note that reporting an error now
1462 * leaves everything in an inconsistent
1463 * state as we have *already* changed
1464 * the relocation value inside the
1465 * object. As we have not changed the
1466 * reloc.presumed_offset or will not
1467 * change the execobject.offset, on the
1468 * call we may not rewrite the value
1469 * inside the object, leaving it
1470 * dangling and causing a GPU hang. Unless
1471 * userspace dynamically rebuilds the
1472 * relocations on each execbuf rather than
1473 * presume a static tree.
1474 *
1475 * We did previously check if the relocations
1476 * were writable (access_ok), an error now
1477 * would be a strange race with mprotect,
1478 * having already demonstrated that we
1479 * can read from this userspace address.
1480 */
1481 offset = gen8_canonical_addr(offset & ~UPDATE);
721017cf
CW
1482 __put_user(offset,
1483 &urelocs[r - stack].presumed_offset);
1d83f442 1484 }
2889caa9
CW
1485 } while (r++, --count);
1486 urelocs += ARRAY_SIZE(stack);
1487 } while (remain);
31a39207 1488out:
650bc635 1489 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1490 return remain;
54cf91dc
CW
1491}
1492
2889caa9 1493static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1494{
003d8b91
CW
1495 int err;
1496
1497 mutex_lock(&eb->gem_context->mutex);
1498 err = eb_lookup_vmas(eb);
1499 mutex_unlock(&eb->gem_context->mutex);
1500 if (err)
1501 return err;
1502
ef398881
CW
1503 if (!list_empty(&eb->unbound)) {
1504 err = eb_reserve(eb);
1505 if (err)
1506 return err;
1507 }
2889caa9
CW
1508
1509 /* The objects are in their final locations, apply the relocations. */
1510 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 1511 struct eb_vma *ev;
2889caa9 1512
7d6236bb 1513 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
1514 err = eb_relocate_vma(eb, ev);
1515 if (err)
1516 return err;
2889caa9
CW
1517 }
1518 }
1519
1520 return 0;
2889caa9
CW
1521}
1522
2889caa9
CW
1523static int eb_move_to_gpu(struct i915_execbuffer *eb)
1524{
1525 const unsigned int count = eb->buffer_count;
6951e589 1526 struct ww_acquire_ctx acquire;
2889caa9 1527 unsigned int i;
6951e589
CW
1528 int err = 0;
1529
1530 ww_acquire_init(&acquire, &reservation_ww_class);
54cf91dc 1531
2889caa9 1532 for (i = 0; i < count; i++) {
7d6236bb
CW
1533 struct eb_vma *ev = &eb->vma[i];
1534 struct i915_vma *vma = ev->vma;
6951e589
CW
1535
1536 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
6951e589
CW
1537 if (err == -EDEADLK) {
1538 GEM_BUG_ON(i == 0);
1539 do {
1540 int j = i - 1;
1541
7d6236bb 1542 ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
6951e589 1543
6951e589 1544 swap(eb->vma[i], eb->vma[j]);
6951e589 1545 } while (--i);
6951e589
CW
1546
1547 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1548 &acquire);
1549 }
1550 if (err)
1551 break;
1552 }
1553 ww_acquire_done(&acquire);
1554
1555 while (i--) {
7d6236bb
CW
1556 struct eb_vma *ev = &eb->vma[i];
1557 struct i915_vma *vma = ev->vma;
1558 unsigned int flags = ev->flags;
27173f1f 1559 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1560
6951e589
CW
1561 assert_vma_held(vma);
1562
c7c6e46f 1563 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 1564 struct i915_capture_list *capture;
b0fd47ad
CW
1565
1566 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
6951e589
CW
1567 if (capture) {
1568 capture->next = eb->request->capture_list;
1569 capture->vma = vma;
1570 eb->request->capture_list = capture;
1571 }
b0fd47ad
CW
1572 }
1573
b8f55be6
CW
1574 /*
1575 * If the GPU is not _reading_ through the CPU cache, we need
1576 * to make sure that any writes (both previous GPU writes from
1577 * before a change in snooping levels and normal CPU writes)
1578 * caught in that cache are flushed to main memory.
1579 *
1580 * We want to say
1581 * obj->cache_dirty &&
1582 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1583 * but gcc's optimiser doesn't handle that as well and emits
1584 * two jumps instead of one. Maybe one day...
1585 */
1586 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1587 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1588 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1589 }
1590
6951e589
CW
1591 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1592 err = i915_request_await_object
1593 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1594 }
2889caa9 1595
6951e589
CW
1596 if (err == 0)
1597 err = i915_vma_move_to_active(vma, eb->request, flags);
c7c6e46f 1598
6951e589 1599 i915_vma_unlock(vma);
2889caa9 1600
c7c6e46f 1601 __eb_unreserve_vma(vma, flags);
003d8b91 1602 i915_vma_put(vma);
7d6236bb
CW
1603
1604 ev->vma = NULL;
c59a333f 1605 }
6951e589
CW
1606 ww_acquire_fini(&acquire);
1607
1608 if (unlikely(err))
1609 goto err_skip;
1610
2889caa9 1611 eb->exec = NULL;
c59a333f 1612
dcd79934 1613 /* Unconditionally flush any chipset caches (for streaming writes). */
baea429d 1614 intel_gt_chipset_flush(eb->engine->gt);
2113184c 1615 return 0;
6951e589
CW
1616
1617err_skip:
36e191f0 1618 i915_request_set_error_once(eb->request, err);
6951e589 1619 return err;
54cf91dc
CW
1620}
1621
00aff3f6 1622static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1623{
650bc635 1624 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 1625 return -EINVAL;
ed5982e6 1626
2f5945bc 1627 /* Kernel clipping was a DRI1 misfeature */
cf6e7bac
JE
1628 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1629 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 1630 return -EINVAL;
cf6e7bac 1631 }
2f5945bc
CW
1632
1633 if (exec->DR4 == 0xffffffff) {
1634 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1635 exec->DR4 = 0;
1636 }
1637 if (exec->DR1 || exec->DR4)
00aff3f6 1638 return -EINVAL;
2f5945bc
CW
1639
1640 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 1641 return -EINVAL;
2f5945bc 1642
00aff3f6 1643 return 0;
54cf91dc
CW
1644}
1645
e61e0f51 1646static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 1647{
73dec95e
TU
1648 u32 *cs;
1649 int i;
ae662d31 1650
8a68d464 1651 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
d0bf4582 1652 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
1653 return -EINVAL;
1654 }
ae662d31 1655
e61e0f51 1656 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
1657 if (IS_ERR(cs))
1658 return PTR_ERR(cs);
ae662d31 1659
2889caa9 1660 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 1661 for (i = 0; i < 4; i++) {
73dec95e
TU
1662 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1663 *cs++ = 0;
ae662d31 1664 }
2889caa9 1665 *cs++ = MI_NOOP;
e61e0f51 1666 intel_ring_advance(rq, cs);
ae662d31
EA
1667
1668 return 0;
1669}
1670
4f7af194 1671static struct i915_vma *
32d94048
CW
1672shadow_batch_pin(struct drm_i915_gem_object *obj,
1673 struct i915_address_space *vm,
1674 unsigned int flags)
4f7af194 1675{
b291ce0a 1676 struct i915_vma *vma;
b291ce0a 1677 int err;
4f7af194 1678
b291ce0a
CW
1679 vma = i915_vma_instance(obj, vm, NULL);
1680 if (IS_ERR(vma))
1681 return vma;
1682
1683 err = i915_vma_pin(vma, 0, 0, flags);
1684 if (err)
1685 return ERR_PTR(err);
1686
1687 return vma;
4f7af194
JB
1688}
1689
686c7c35
CW
1690struct eb_parse_work {
1691 struct dma_fence_work base;
1692 struct intel_engine_cs *engine;
1693 struct i915_vma *batch;
1694 struct i915_vma *shadow;
1695 struct i915_vma *trampoline;
1696 unsigned int batch_offset;
1697 unsigned int batch_length;
1698};
1699
1700static int __eb_parse(struct dma_fence_work *work)
1701{
1702 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1703
1704 return intel_engine_cmd_parser(pw->engine,
1705 pw->batch,
1706 pw->batch_offset,
1707 pw->batch_length,
1708 pw->shadow,
1709 pw->trampoline);
1710}
1711
36c8e356
CW
1712static void __eb_parse_release(struct dma_fence_work *work)
1713{
1714 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1715
1716 if (pw->trampoline)
1717 i915_active_release(&pw->trampoline->active);
1718 i915_active_release(&pw->shadow->active);
1719 i915_active_release(&pw->batch->active);
1720}
1721
686c7c35
CW
1722static const struct dma_fence_work_ops eb_parse_ops = {
1723 .name = "eb_parse",
1724 .work = __eb_parse,
36c8e356 1725 .release = __eb_parse_release,
686c7c35
CW
1726};
1727
1728static int eb_parse_pipeline(struct i915_execbuffer *eb,
1729 struct i915_vma *shadow,
1730 struct i915_vma *trampoline)
1731{
1732 struct eb_parse_work *pw;
1733 int err;
1734
1735 pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1736 if (!pw)
1737 return -ENOMEM;
1738
7d6236bb 1739 err = i915_active_acquire(&eb->batch->vma->active);
36c8e356
CW
1740 if (err)
1741 goto err_free;
1742
1743 err = i915_active_acquire(&shadow->active);
1744 if (err)
1745 goto err_batch;
1746
1747 if (trampoline) {
1748 err = i915_active_acquire(&trampoline->active);
1749 if (err)
1750 goto err_shadow;
1751 }
1752
686c7c35
CW
1753 dma_fence_work_init(&pw->base, &eb_parse_ops);
1754
1755 pw->engine = eb->engine;
7d6236bb 1756 pw->batch = eb->batch->vma;
686c7c35
CW
1757 pw->batch_offset = eb->batch_start_offset;
1758 pw->batch_length = eb->batch_len;
1759 pw->shadow = shadow;
1760 pw->trampoline = trampoline;
1761
36c8e356
CW
1762 err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
1763 if (err)
1764 goto err_trampoline;
686c7c35
CW
1765
1766 err = dma_resv_reserve_shared(pw->batch->resv, 1);
1767 if (err)
1768 goto err_batch_unlock;
1769
1770 /* Wait for all writes (and relocs) into the batch to complete */
1771 err = i915_sw_fence_await_reservation(&pw->base.chain,
1772 pw->batch->resv, NULL, false,
1773 0, I915_FENCE_GFP);
1774 if (err < 0)
1775 goto err_batch_unlock;
1776
1777 /* Keep the batch alive and unwritten as we parse */
1778 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
1779
1780 dma_resv_unlock(pw->batch->resv);
1781
1782 /* Force execution to wait for completion of the parser */
1783 dma_resv_lock(shadow->resv, NULL);
1784 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
1785 dma_resv_unlock(shadow->resv);
1786
1787 dma_fence_work_commit(&pw->base);
1788 return 0;
1789
1790err_batch_unlock:
1791 dma_resv_unlock(pw->batch->resv);
36c8e356
CW
1792err_trampoline:
1793 if (trampoline)
1794 i915_active_release(&trampoline->active);
1795err_shadow:
1796 i915_active_release(&shadow->active);
1797err_batch:
7d6236bb 1798 i915_active_release(&eb->batch->vma->active);
36c8e356 1799err_free:
686c7c35
CW
1800 kfree(pw);
1801 return err;
1802}
1803
51696691 1804static int eb_parse(struct i915_execbuffer *eb)
71745376 1805{
baa89ba3 1806 struct drm_i915_private *i915 = eb->i915;
b40d7378 1807 struct intel_engine_pool_node *pool;
32d94048
CW
1808 struct i915_vma *shadow, *trampoline;
1809 unsigned int len;
2889caa9 1810 int err;
71745376 1811
51696691
CW
1812 if (!eb_use_cmdparser(eb))
1813 return 0;
1814
32d94048
CW
1815 len = eb->batch_len;
1816 if (!CMDPARSER_USES_GGTT(eb->i915)) {
1817 /*
1818 * ppGTT backed shadow buffers must be mapped RO, to prevent
1819 * post-scan tampering
1820 */
1821 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
1822 drm_dbg(&i915->drm,
1823 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
1824 return -EINVAL;
1825 }
1826 } else {
1827 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
1828 }
1829
1830 pool = intel_engine_get_pool(eb->engine, len);
b40d7378 1831 if (IS_ERR(pool))
51696691 1832 return PTR_ERR(pool);
71745376 1833
32d94048
CW
1834 shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
1835 if (IS_ERR(shadow)) {
1836 err = PTR_ERR(shadow);
f8c08d8f 1837 goto err;
51696691 1838 }
32d94048
CW
1839 i915_gem_object_set_readonly(shadow->obj);
1840
1841 trampoline = NULL;
1842 if (CMDPARSER_USES_GGTT(eb->i915)) {
1843 trampoline = shadow;
1844
1845 shadow = shadow_batch_pin(pool->obj,
1846 &eb->engine->gt->ggtt->vm,
1847 PIN_GLOBAL);
1848 if (IS_ERR(shadow)) {
1849 err = PTR_ERR(shadow);
1850 shadow = trampoline;
1851 goto err_shadow;
1852 }
1853
1854 eb->batch_flags |= I915_DISPATCH_SECURE;
1855 }
f8c08d8f 1856
686c7c35 1857 err = eb_parse_pipeline(eb, shadow, trampoline);
32d94048
CW
1858 if (err)
1859 goto err_trampoline;
71745376 1860
7d6236bb 1861 eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
003d8b91 1862 eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
7d6236bb 1863 eb->batch = &eb->vma[eb->buffer_count++];
71745376 1864
32d94048 1865 eb->trampoline = trampoline;
4f7af194 1866 eb->batch_start_offset = 0;
4f7af194 1867
32d94048 1868 shadow->private = pool;
51696691 1869 return 0;
b40d7378 1870
32d94048
CW
1871err_trampoline:
1872 if (trampoline)
1873 i915_vma_unpin(trampoline);
1874err_shadow:
1875 i915_vma_unpin(shadow);
b40d7378
CW
1876err:
1877 intel_engine_pool_put(pool);
51696691 1878 return err;
71745376 1879}
5c6c6003 1880
c8659efa 1881static void
e61e0f51 1882add_to_client(struct i915_request *rq, struct drm_file *file)
c8659efa 1883{
44c22f3f
CW
1884 struct drm_i915_file_private *file_priv = file->driver_priv;
1885
1886 rq->file_priv = file_priv;
1887
1888 spin_lock(&file_priv->mm.lock);
1889 list_add_tail(&rq->client_link, &file_priv->mm.request_list);
1890 spin_unlock(&file_priv->mm.lock);
c8659efa
CW
1891}
1892
7d6236bb 1893static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
78382593 1894{
2889caa9 1895 int err;
78382593 1896
2889caa9
CW
1897 err = eb_move_to_gpu(eb);
1898 if (err)
1899 return err;
78382593 1900
650bc635 1901 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
1902 err = i915_reset_gen7_sol_offsets(eb->request);
1903 if (err)
1904 return err;
78382593
OM
1905 }
1906
85474441
CW
1907 /*
1908 * After we completed waiting for other engines (using HW semaphores)
1909 * then we can signal that this request/batch is ready to run. This
1910 * allows us to determine if the batch is still waiting on the GPU
1911 * or actually running by checking the breadcrumb.
1912 */
1913 if (eb->engine->emit_init_breadcrumb) {
1914 err = eb->engine->emit_init_breadcrumb(eb->request);
1915 if (err)
1916 return err;
1917 }
1918
2889caa9 1919 err = eb->engine->emit_bb_start(eb->request,
7d6236bb 1920 batch->node.start +
650bc635
CW
1921 eb->batch_start_offset,
1922 eb->batch_len,
2889caa9
CW
1923 eb->batch_flags);
1924 if (err)
1925 return err;
78382593 1926
32d94048
CW
1927 if (eb->trampoline) {
1928 GEM_BUG_ON(eb->batch_start_offset);
1929 err = eb->engine->emit_bb_start(eb->request,
1930 eb->trampoline->node.start +
1931 eb->batch_len,
1932 0, 0);
1933 if (err)
1934 return err;
1935 }
1936
9f3ccd40 1937 if (intel_context_nopreempt(eb->context))
e1c31fb5 1938 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
9cd20ef7 1939
2f5945bc 1940 return 0;
78382593
OM
1941}
1942
d5b2a3a4
CW
1943static int num_vcs_engines(const struct drm_i915_private *i915)
1944{
1945 return hweight64(INTEL_INFO(i915)->engine_mask &
1946 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
1947}
1948
204bcfef 1949/*
a8ebba75 1950 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 1951 * The engine index is returned.
a8ebba75 1952 */
de1add36 1953static unsigned int
c80ff16e
CW
1954gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1955 struct drm_file *file)
a8ebba75 1956{
a8ebba75
ZY
1957 struct drm_i915_file_private *file_priv = file->driver_priv;
1958
de1add36 1959 /* Check whether the file_priv has already selected one ring. */
6f633402 1960 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
1961 file_priv->bsd_engine =
1962 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 1963
c80ff16e 1964 return file_priv->bsd_engine;
d23db88c
CW
1965}
1966
5e2a0419 1967static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
1968 [I915_EXEC_DEFAULT] = RCS0,
1969 [I915_EXEC_RENDER] = RCS0,
1970 [I915_EXEC_BLT] = BCS0,
1971 [I915_EXEC_BSD] = VCS0,
1972 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
1973};
1974
e5dadff4
CW
1975static struct i915_request *eb_throttle(struct intel_context *ce)
1976{
1977 struct intel_ring *ring = ce->ring;
1978 struct intel_timeline *tl = ce->timeline;
1979 struct i915_request *rq;
1980
1981 /*
1982 * Completely unscientific finger-in-the-air estimates for suitable
1983 * maximum user request size (to avoid blocking) and then backoff.
1984 */
1985 if (intel_ring_update_space(ring) >= PAGE_SIZE)
1986 return NULL;
1987
1988 /*
1989 * Find a request that after waiting upon, there will be at least half
1990 * the ring available. The hysteresis allows us to compete for the
1991 * shared ring and should mean that we sleep less often prior to
1992 * claiming our resources, but not so long that the ring completely
1993 * drains before we can submit our next request.
1994 */
1995 list_for_each_entry(rq, &tl->requests, link) {
1996 if (rq->ring != ring)
1997 continue;
1998
1999 if (__intel_ring_space(rq->postfix,
2000 ring->emit, ring->size) > ring->size / 2)
2001 break;
2002 }
2003 if (&rq->link == &tl->requests)
2004 return NULL; /* weird, we will check again later for real */
2005
2006 return i915_request_get(rq);
2007}
2008
e5dadff4
CW
2009static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2010{
2011 struct intel_timeline *tl;
2012 struct i915_request *rq;
2013 int err;
2014
8f2a1057
CW
2015 /*
2016 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2017 * EIO if the GPU is already wedged.
2018 */
cb823ed9 2019 err = intel_gt_terminally_wedged(ce->engine->gt);
8f2a1057
CW
2020 if (err)
2021 return err;
2022
9f3ccd40
CW
2023 if (unlikely(intel_context_is_banned(ce)))
2024 return -EIO;
2025
8f2a1057
CW
2026 /*
2027 * Pinning the contexts may generate requests in order to acquire
2028 * GGTT space, so do this first before we reserve a seqno for
2029 * ourselves.
2030 */
2850748e 2031 err = intel_context_pin(ce);
fa9f6681
CW
2032 if (err)
2033 return err;
8f2a1057 2034
a4e57f90
CW
2035 /*
2036 * Take a local wakeref for preparing to dispatch the execbuf as
2037 * we expect to access the hardware fairly frequently in the
2038 * process, and require the engine to be kept awake between accesses.
2039 * Upon dispatch, we acquire another prolonged wakeref that we hold
2040 * until the timeline is idle, which in turn releases the wakeref
2041 * taken on the engine, and the parent device.
2042 */
e5dadff4
CW
2043 tl = intel_context_timeline_lock(ce);
2044 if (IS_ERR(tl)) {
2045 err = PTR_ERR(tl);
a4e57f90 2046 goto err_unpin;
e5dadff4 2047 }
a4e57f90
CW
2048
2049 intel_context_enter(ce);
e5dadff4
CW
2050 rq = eb_throttle(ce);
2051
2052 intel_context_timeline_unlock(tl);
2053
2054 if (rq) {
cb4d5dc3
CW
2055 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2056 long timeout;
2057
2058 timeout = MAX_SCHEDULE_TIMEOUT;
2059 if (nonblock)
2060 timeout = 0;
e5dadff4 2061
cb4d5dc3
CW
2062 timeout = i915_request_wait(rq,
2063 I915_WAIT_INTERRUPTIBLE,
2064 timeout);
e5dadff4 2065 i915_request_put(rq);
cb4d5dc3
CW
2066
2067 if (timeout < 0) {
2068 err = nonblock ? -EWOULDBLOCK : timeout;
2069 goto err_exit;
2070 }
e5dadff4 2071 }
a4e57f90 2072
5e2a0419 2073 eb->engine = ce->engine;
8f2a1057
CW
2074 eb->context = ce;
2075 return 0;
a4e57f90 2076
e5dadff4
CW
2077err_exit:
2078 mutex_lock(&tl->mutex);
2079 intel_context_exit(ce);
2080 intel_context_timeline_unlock(tl);
a4e57f90 2081err_unpin:
2850748e 2082 intel_context_unpin(ce);
a4e57f90 2083 return err;
8f2a1057
CW
2084}
2085
e5dadff4 2086static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2087{
a4e57f90 2088 struct intel_context *ce = eb->context;
75d0a7f3 2089 struct intel_timeline *tl = ce->timeline;
a4e57f90
CW
2090
2091 mutex_lock(&tl->mutex);
2092 intel_context_exit(ce);
2093 mutex_unlock(&tl->mutex);
2094
2850748e 2095 intel_context_unpin(ce);
8f2a1057 2096}
de1add36 2097
5e2a0419
CW
2098static unsigned int
2099eb_select_legacy_ring(struct i915_execbuffer *eb,
2100 struct drm_file *file,
2101 struct drm_i915_gem_execbuffer2 *args)
de1add36 2102{
8f2a1057 2103 struct drm_i915_private *i915 = eb->i915;
de1add36 2104 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2105
5e2a0419
CW
2106 if (user_ring_id != I915_EXEC_BSD &&
2107 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2108 drm_dbg(&i915->drm,
2109 "execbuf with non bsd ring but with invalid "
2110 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2111 return -1;
de1add36
TU
2112 }
2113
d5b2a3a4 2114 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2115 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2116
2117 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
8f2a1057 2118 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
de1add36
TU
2119 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2120 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2121 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2122 bsd_idx--;
2123 } else {
baa89ba3
WK
2124 drm_dbg(&i915->drm,
2125 "execbuf with unknown bsd ring: %u\n",
2126 bsd_idx);
5e2a0419 2127 return -1;
de1add36
TU
2128 }
2129
5e2a0419 2130 return _VCS(bsd_idx);
de1add36
TU
2131 }
2132
5e2a0419 2133 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2134 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2135 user_ring_id);
5e2a0419 2136 return -1;
de1add36
TU
2137 }
2138
5e2a0419
CW
2139 return user_ring_map[user_ring_id];
2140}
2141
2142static int
e5dadff4
CW
2143eb_pin_engine(struct i915_execbuffer *eb,
2144 struct drm_file *file,
2145 struct drm_i915_gem_execbuffer2 *args)
5e2a0419
CW
2146{
2147 struct intel_context *ce;
2148 unsigned int idx;
2149 int err;
2150
976b55f0
CW
2151 if (i915_gem_context_user_engines(eb->gem_context))
2152 idx = args->flags & I915_EXEC_RING_MASK;
2153 else
2154 idx = eb_select_legacy_ring(eb, file, args);
5e2a0419
CW
2155
2156 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2157 if (IS_ERR(ce))
2158 return PTR_ERR(ce);
2159
e5dadff4 2160 err = __eb_pin_engine(eb, ce);
5e2a0419
CW
2161 intel_context_put(ce);
2162
2163 return err;
de1add36
TU
2164}
2165
cf6e7bac
JE
2166static void
2167__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2168{
2169 while (n--)
2170 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2171 kvfree(fences);
2172}
2173
2174static struct drm_syncobj **
2175get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2176 struct drm_file *file)
2177{
d710fc16 2178 const unsigned long nfences = args->num_cliprects;
cf6e7bac
JE
2179 struct drm_i915_gem_exec_fence __user *user;
2180 struct drm_syncobj **fences;
d710fc16 2181 unsigned long n;
cf6e7bac
JE
2182 int err;
2183
2184 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2185 return NULL;
2186
d710fc16
CW
2187 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2188 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2189 if (nfences > min_t(unsigned long,
2190 ULONG_MAX / sizeof(*user),
2191 SIZE_MAX / sizeof(*fences)))
cf6e7bac
JE
2192 return ERR_PTR(-EINVAL);
2193
2194 user = u64_to_user_ptr(args->cliprects_ptr);
96d4f267 2195 if (!access_ok(user, nfences * sizeof(*user)))
cf6e7bac
JE
2196 return ERR_PTR(-EFAULT);
2197
d710fc16 2198 fences = kvmalloc_array(nfences, sizeof(*fences),
0ee931c4 2199 __GFP_NOWARN | GFP_KERNEL);
cf6e7bac
JE
2200 if (!fences)
2201 return ERR_PTR(-ENOMEM);
2202
2203 for (n = 0; n < nfences; n++) {
2204 struct drm_i915_gem_exec_fence fence;
2205 struct drm_syncobj *syncobj;
2206
2207 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2208 err = -EFAULT;
2209 goto err;
2210 }
2211
ebcaa1ff
TU
2212 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2213 err = -EINVAL;
2214 goto err;
2215 }
2216
cf6e7bac
JE
2217 syncobj = drm_syncobj_find(file, fence.handle);
2218 if (!syncobj) {
2219 DRM_DEBUG("Invalid syncobj handle provided\n");
2220 err = -ENOENT;
2221 goto err;
2222 }
2223
ebcaa1ff
TU
2224 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2225 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2226
cf6e7bac
JE
2227 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2228 }
2229
2230 return fences;
2231
2232err:
2233 __free_fence_array(fences, n);
2234 return ERR_PTR(err);
2235}
2236
2237static void
2238put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2239 struct drm_syncobj **fences)
2240{
2241 if (fences)
2242 __free_fence_array(fences, args->num_cliprects);
2243}
2244
2245static int
2246await_fence_array(struct i915_execbuffer *eb,
2247 struct drm_syncobj **fences)
2248{
2249 const unsigned int nfences = eb->args->num_cliprects;
2250 unsigned int n;
2251 int err;
2252
2253 for (n = 0; n < nfences; n++) {
2254 struct drm_syncobj *syncobj;
2255 struct dma_fence *fence;
2256 unsigned int flags;
2257
2258 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2259 if (!(flags & I915_EXEC_FENCE_WAIT))
2260 continue;
2261
afca4216 2262 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac
JE
2263 if (!fence)
2264 return -EINVAL;
2265
e61e0f51 2266 err = i915_request_await_dma_fence(eb->request, fence);
cf6e7bac
JE
2267 dma_fence_put(fence);
2268 if (err < 0)
2269 return err;
2270 }
2271
2272 return 0;
2273}
2274
2275static void
2276signal_fence_array(struct i915_execbuffer *eb,
2277 struct drm_syncobj **fences)
2278{
2279 const unsigned int nfences = eb->args->num_cliprects;
2280 struct dma_fence * const fence = &eb->request->fence;
2281 unsigned int n;
2282
2283 for (n = 0; n < nfences; n++) {
2284 struct drm_syncobj *syncobj;
2285 unsigned int flags;
2286
2287 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2288 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2289 continue;
2290
0b258ed1 2291 drm_syncobj_replace_fence(syncobj, fence);
cf6e7bac
JE
2292 }
2293}
2294
61231f6b
CW
2295static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2296{
2297 struct i915_request *rq, *rn;
2298
2299 list_for_each_entry_safe(rq, rn, &tl->requests, link)
2300 if (rq == end || !i915_request_retire(rq))
2301 break;
2302}
2303
2304static void eb_request_add(struct i915_execbuffer *eb)
2305{
2306 struct i915_request *rq = eb->request;
2307 struct intel_timeline * const tl = i915_request_timeline(rq);
2308 struct i915_sched_attr attr = {};
2309 struct i915_request *prev;
2310
2311 lockdep_assert_held(&tl->mutex);
2312 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2313
2314 trace_i915_request_add(rq);
2315
2316 prev = __i915_request_commit(rq);
2317
2318 /* Check that the context wasn't destroyed before submission */
2e46a2a0 2319 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b
CW
2320 attr = eb->gem_context->sched;
2321
2322 /*
2323 * Boost actual workloads past semaphores!
2324 *
2325 * With semaphores we spin on one engine waiting for another,
2326 * simply to reduce the latency of starting our work when
2327 * the signaler completes. However, if there is any other
2328 * work that we could be doing on this engine instead, that
2329 * is better utilisation and will reduce the overall duration
2330 * of the current work. To avoid PI boosting a semaphore
2331 * far in the distance past over useful work, we keep a history
2332 * of any semaphore use along our dependency chain.
2333 */
2334 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
2335 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
2336
2337 /*
2338 * Boost priorities to new clients (new request flows).
2339 *
2340 * Allow interactive/synchronous clients to jump ahead of
2341 * the bulk clients. (FQ_CODEL)
2342 */
2343 if (list_empty(&rq->sched.signalers_list))
2344 attr.priority |= I915_PRIORITY_WAIT;
2345 } else {
2346 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
2347 i915_request_set_error_once(rq, -ENOENT);
2348 __i915_request_skip(rq);
61231f6b
CW
2349 }
2350
2351 local_bh_disable();
2352 __i915_request_queue(rq, &attr);
2353 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
2354
2355 /* Try to clean up the client's timeline after submitting the request */
2356 if (prev)
2357 retire_requests(tl, prev);
2358
2359 mutex_unlock(&tl->mutex);
2360}
2361
54cf91dc 2362static int
650bc635 2363i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2364 struct drm_file *file,
2365 struct drm_i915_gem_execbuffer2 *args,
cf6e7bac
JE
2366 struct drm_i915_gem_exec_object2 *exec,
2367 struct drm_syncobj **fences)
54cf91dc 2368{
44157641 2369 struct drm_i915_private *i915 = to_i915(dev);
650bc635 2370 struct i915_execbuffer eb;
fec0445c 2371 struct dma_fence *in_fence = NULL;
a88b6e4c 2372 struct dma_fence *exec_fence = NULL;
fec0445c 2373 struct sync_file *out_fence = NULL;
7d6236bb 2374 struct i915_vma *batch;
fec0445c 2375 int out_fence_fd = -1;
2889caa9 2376 int err;
432e58ed 2377
74c1c694 2378 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
2379 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2380 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2381
44157641 2382 eb.i915 = i915;
650bc635
CW
2383 eb.file = file;
2384 eb.args = args;
7dd4f672 2385 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2386 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 2387
650bc635 2388 eb.exec = exec;
7d6236bb
CW
2389 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
2390 eb.vma[0].vma = NULL;
c7c6e46f 2391
2889caa9 2392 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
2393 reloc_cache_init(&eb.reloc_cache, eb.i915);
2394
2889caa9 2395 eb.buffer_count = args->buffer_count;
650bc635
CW
2396 eb.batch_start_offset = args->batch_start_offset;
2397 eb.batch_len = args->batch_len;
32d94048 2398 eb.trampoline = NULL;
650bc635 2399
2889caa9 2400 eb.batch_flags = 0;
d7d4eedd 2401 if (args->flags & I915_EXEC_SECURE) {
44157641
JB
2402 if (INTEL_GEN(i915) >= 11)
2403 return -ENODEV;
2404
2405 /* Return -EPERM to trigger fallback code on old binaries. */
2406 if (!HAS_SECURE_BATCHES(i915))
2407 return -EPERM;
2408
b3ac9f25 2409 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 2410 return -EPERM;
d7d4eedd 2411
2889caa9 2412 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2413 }
b45305fc 2414 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2415 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2416
fec0445c
CW
2417 if (args->flags & I915_EXEC_FENCE_IN) {
2418 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2419 if (!in_fence)
2420 return -EINVAL;
fec0445c
CW
2421 }
2422
a88b6e4c
CW
2423 if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2424 if (in_fence) {
2425 err = -EINVAL;
2426 goto err_in_fence;
2427 }
2428
2429 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2430 if (!exec_fence) {
2431 err = -EINVAL;
2432 goto err_in_fence;
2433 }
2434 }
2435
fec0445c
CW
2436 if (args->flags & I915_EXEC_FENCE_OUT) {
2437 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2438 if (out_fence_fd < 0) {
2889caa9 2439 err = out_fence_fd;
a88b6e4c 2440 goto err_exec_fence;
fec0445c
CW
2441 }
2442 }
2443
4d470f73
CW
2444 err = eb_create(&eb);
2445 if (err)
2446 goto err_out_fence;
2447
2448 GEM_BUG_ON(!eb.lut_size);
2889caa9 2449
1acfc104
CW
2450 err = eb_select_context(&eb);
2451 if (unlikely(err))
2452 goto err_destroy;
2453
e5dadff4 2454 err = eb_pin_engine(&eb, file, args);
d6f328bf 2455 if (unlikely(err))
e5dadff4 2456 goto err_context;
d6f328bf 2457
2889caa9 2458 err = eb_relocate(&eb);
1f727d9e 2459 if (err) {
2889caa9
CW
2460 /*
2461 * If the user expects the execobject.offset and
2462 * reloc.presumed_offset to be an exact match,
2463 * as for using NO_RELOC, then we cannot update
2464 * the execobject.offset until we have completed
2465 * relocation.
2466 */
2467 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2468 goto err_vma;
1f727d9e 2469 }
54cf91dc 2470
7d6236bb 2471 if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
baa89ba3
WK
2472 drm_dbg(&i915->drm,
2473 "Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2474 err = -EINVAL;
2475 goto err_vma;
54cf91dc 2476 }
7d6236bb
CW
2477
2478 if (range_overflows_t(u64,
2479 eb.batch_start_offset, eb.batch_len,
2480 eb.batch->vma->size)) {
baa89ba3 2481 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2889caa9
CW
2482 err = -EINVAL;
2483 goto err_vma;
0b537272 2484 }
54cf91dc 2485
435e8fc0 2486 if (eb.batch_len == 0)
7d6236bb 2487 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
435e8fc0 2488
51696691
CW
2489 err = eb_parse(&eb);
2490 if (err)
2491 goto err_vma;
351e3db2 2492
2889caa9
CW
2493 /*
2494 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2495 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2496 * hsw should have this fixed, but bdw mucks it up again. */
7d6236bb 2497 batch = eb.batch->vma;
2889caa9 2498 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2499 struct i915_vma *vma;
59bfa124 2500
da51a1e7
DV
2501 /*
2502 * So on first glance it looks freaky that we pin the batch here
2503 * outside of the reservation loop. But:
2504 * - The batch is already pinned into the relevant ppgtt, so we
2505 * already have the backing storage fully allocated.
2506 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2507 * so we don't really have issues with multiple objects not
da51a1e7
DV
2508 * fitting due to fragmentation.
2509 * So this is actually safe.
2510 */
7d6236bb 2511 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
058d88c4 2512 if (IS_ERR(vma)) {
2889caa9 2513 err = PTR_ERR(vma);
2c59fd06 2514 goto err_parse;
058d88c4 2515 }
d7d4eedd 2516
7d6236bb 2517 batch = vma;
59bfa124 2518 }
d7d4eedd 2519
7dd4f672
CW
2520 /* All GPU relocation batches must be submitted prior to the user rq */
2521 GEM_BUG_ON(eb.reloc_cache.rq);
2522
0c8dac88 2523 /* Allocate a request for this batch buffer nice and early. */
8f2a1057 2524 eb.request = i915_request_create(eb.context);
650bc635 2525 if (IS_ERR(eb.request)) {
2889caa9 2526 err = PTR_ERR(eb.request);
0c8dac88 2527 goto err_batch_unpin;
26827088 2528 }
0c8dac88 2529
fec0445c 2530 if (in_fence) {
e61e0f51 2531 err = i915_request_await_dma_fence(eb.request, in_fence);
2889caa9 2532 if (err < 0)
fec0445c
CW
2533 goto err_request;
2534 }
2535
a88b6e4c
CW
2536 if (exec_fence) {
2537 err = i915_request_await_execution(eb.request, exec_fence,
2538 eb.engine->bond_execute);
2539 if (err < 0)
2540 goto err_request;
2541 }
2542
cf6e7bac
JE
2543 if (fences) {
2544 err = await_fence_array(&eb, fences);
2545 if (err)
2546 goto err_request;
2547 }
2548
fec0445c 2549 if (out_fence_fd != -1) {
650bc635 2550 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2551 if (!out_fence) {
2889caa9 2552 err = -ENOMEM;
fec0445c
CW
2553 goto err_request;
2554 }
2555 }
2556
2889caa9
CW
2557 /*
2558 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2559 * active_list, and so will hold the active reference. Only when this
2560 * request is retired will the the batch_obj be moved onto the
2561 * inactive_list and lose its active reference. Hence we do not need
2562 * to explicitly hold another reference here.
2563 */
7d6236bb
CW
2564 eb.request->batch = batch;
2565 if (batch->private)
2566 intel_engine_pool_mark_active(batch->private, eb.request);
5f19e2bf 2567
e61e0f51 2568 trace_i915_request_queue(eb.request, eb.batch_flags);
7d6236bb 2569 err = eb_submit(&eb, batch);
aa9b7810 2570err_request:
650bc635 2571 add_to_client(eb.request, file);
e14177f1 2572 i915_request_get(eb.request);
61231f6b 2573 eb_request_add(&eb);
c8659efa 2574
cf6e7bac
JE
2575 if (fences)
2576 signal_fence_array(&eb, fences);
2577
fec0445c 2578 if (out_fence) {
2889caa9 2579 if (err == 0) {
fec0445c 2580 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 2581 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
2582 args->rsvd2 |= (u64)out_fence_fd << 32;
2583 out_fence_fd = -1;
2584 } else {
2585 fput(out_fence->file);
2586 }
2587 }
e14177f1 2588 i915_request_put(eb.request);
54cf91dc 2589
0c8dac88 2590err_batch_unpin:
2889caa9 2591 if (eb.batch_flags & I915_DISPATCH_SECURE)
7d6236bb 2592 i915_vma_unpin(batch);
2c59fd06 2593err_parse:
7d6236bb
CW
2594 if (batch->private)
2595 intel_engine_pool_put(batch->private);
2889caa9
CW
2596err_vma:
2597 if (eb.exec)
2598 eb_release_vmas(&eb);
32d94048
CW
2599 if (eb.trampoline)
2600 i915_vma_unpin(eb.trampoline);
e5dadff4 2601 eb_unpin_engine(&eb);
a4e57f90 2602err_context:
8f2a1057 2603 i915_gem_context_put(eb.gem_context);
1acfc104 2604err_destroy:
2889caa9 2605 eb_destroy(&eb);
4d470f73 2606err_out_fence:
fec0445c
CW
2607 if (out_fence_fd != -1)
2608 put_unused_fd(out_fence_fd);
a88b6e4c
CW
2609err_exec_fence:
2610 dma_fence_put(exec_fence);
4a04e371 2611err_in_fence:
fec0445c 2612 dma_fence_put(in_fence);
2889caa9 2613 return err;
54cf91dc
CW
2614}
2615
d710fc16
CW
2616static size_t eb_element_size(void)
2617{
7d6236bb 2618 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
2619}
2620
2621static bool check_buffer_count(size_t count)
2622{
2623 const size_t sz = eb_element_size();
2624
2625 /*
2626 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2627 * array size (see eb_create()). Otherwise, we can accept an array as
2628 * large as can be addressed (though use large arrays at your peril)!
2629 */
2630
2631 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2632}
2633
54cf91dc
CW
2634/*
2635 * Legacy execbuffer just creates an exec2 list from the original exec object
2636 * list array and passes it to the real function.
2637 */
2638int
6a20fe7b
VS
2639i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2640 struct drm_file *file)
54cf91dc 2641{
d0bf4582 2642 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc
CW
2643 struct drm_i915_gem_execbuffer *args = data;
2644 struct drm_i915_gem_execbuffer2 exec2;
2645 struct drm_i915_gem_exec_object *exec_list = NULL;
2646 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
d710fc16 2647 const size_t count = args->buffer_count;
2889caa9
CW
2648 unsigned int i;
2649 int err;
54cf91dc 2650
d710fc16 2651 if (!check_buffer_count(count)) {
d0bf4582 2652 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2653 return -EINVAL;
2654 }
2655
2889caa9
CW
2656 exec2.buffers_ptr = args->buffers_ptr;
2657 exec2.buffer_count = args->buffer_count;
2658 exec2.batch_start_offset = args->batch_start_offset;
2659 exec2.batch_len = args->batch_len;
2660 exec2.DR1 = args->DR1;
2661 exec2.DR4 = args->DR4;
2662 exec2.num_cliprects = args->num_cliprects;
2663 exec2.cliprects_ptr = args->cliprects_ptr;
2664 exec2.flags = I915_EXEC_RENDER;
2665 i915_execbuffer2_set_context_id(exec2, 0);
2666
00aff3f6
TU
2667 err = i915_gem_check_execbuffer(&exec2);
2668 if (err)
2669 return err;
2889caa9 2670
54cf91dc 2671 /* Copy in the exec list from userland */
d710fc16 2672 exec_list = kvmalloc_array(count, sizeof(*exec_list),
0ee931c4 2673 __GFP_NOWARN | GFP_KERNEL);
d710fc16 2674 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2675 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2676 if (exec_list == NULL || exec2_list == NULL) {
d0bf4582
WK
2677 drm_dbg(&i915->drm,
2678 "Failed to allocate exec list for %d buffers\n",
2679 args->buffer_count);
2098105e
MH
2680 kvfree(exec_list);
2681 kvfree(exec2_list);
54cf91dc
CW
2682 return -ENOMEM;
2683 }
2889caa9 2684 err = copy_from_user(exec_list,
3ed605bc 2685 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2686 sizeof(*exec_list) * count);
2889caa9 2687 if (err) {
d0bf4582
WK
2688 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2689 args->buffer_count, err);
2098105e
MH
2690 kvfree(exec_list);
2691 kvfree(exec2_list);
54cf91dc
CW
2692 return -EFAULT;
2693 }
2694
2695 for (i = 0; i < args->buffer_count; i++) {
2696 exec2_list[i].handle = exec_list[i].handle;
2697 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2698 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2699 exec2_list[i].alignment = exec_list[i].alignment;
2700 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2701 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2702 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2703 else
2704 exec2_list[i].flags = 0;
2705 }
2706
cf6e7bac 2707 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2889caa9 2708 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2709 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2710 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2711
54cf91dc 2712 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2713 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2714 if (!(exec2_list[i].offset & UPDATE))
2715 continue;
2716
934acce3 2717 exec2_list[i].offset =
2889caa9
CW
2718 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2719 exec2_list[i].offset &= PIN_OFFSET_MASK;
2720 if (__copy_to_user(&user_exec_list[i].offset,
2721 &exec2_list[i].offset,
2722 sizeof(user_exec_list[i].offset)))
9aab8bff 2723 break;
54cf91dc
CW
2724 }
2725 }
2726
2098105e
MH
2727 kvfree(exec_list);
2728 kvfree(exec2_list);
2889caa9 2729 return err;
54cf91dc
CW
2730}
2731
2732int
6a20fe7b
VS
2733i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2734 struct drm_file *file)
54cf91dc 2735{
d0bf4582 2736 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 2737 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 2738 struct drm_i915_gem_exec_object2 *exec2_list;
cf6e7bac 2739 struct drm_syncobj **fences = NULL;
d710fc16 2740 const size_t count = args->buffer_count;
2889caa9 2741 int err;
54cf91dc 2742
d710fc16 2743 if (!check_buffer_count(count)) {
d0bf4582 2744 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2745 return -EINVAL;
2746 }
2747
00aff3f6
TU
2748 err = i915_gem_check_execbuffer(args);
2749 if (err)
2750 return err;
2889caa9
CW
2751
2752 /* Allocate an extra slot for use by the command parser */
d710fc16 2753 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2754 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2755 if (exec2_list == NULL) {
d0bf4582
WK
2756 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
2757 count);
54cf91dc
CW
2758 return -ENOMEM;
2759 }
2889caa9
CW
2760 if (copy_from_user(exec2_list,
2761 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2762 sizeof(*exec2_list) * count)) {
d0bf4582 2763 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 2764 kvfree(exec2_list);
54cf91dc
CW
2765 return -EFAULT;
2766 }
2767
cf6e7bac
JE
2768 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2769 fences = get_fence_array(args, file);
2770 if (IS_ERR(fences)) {
2771 kvfree(exec2_list);
2772 return PTR_ERR(fences);
2773 }
2774 }
2775
2776 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2889caa9
CW
2777
2778 /*
2779 * Now that we have begun execution of the batchbuffer, we ignore
2780 * any new error after this point. Also given that we have already
2781 * updated the associated relocations, we try to write out the current
2782 * object locations irrespective of any error.
2783 */
2784 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2785 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2786 u64_to_user_ptr(args->buffers_ptr);
2787 unsigned int i;
9aab8bff 2788
2889caa9 2789 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
2790 /*
2791 * Note: count * sizeof(*user_exec_list) does not overflow,
2792 * because we checked 'count' in check_buffer_count().
2793 *
2794 * And this range already got effectively checked earlier
2795 * when we did the "copy_from_user()" above.
2796 */
2797 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
8f4faed0 2798 goto end;
594cc251 2799
9aab8bff 2800 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2801 if (!(exec2_list[i].offset & UPDATE))
2802 continue;
2803
934acce3 2804 exec2_list[i].offset =
2889caa9
CW
2805 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2806 unsafe_put_user(exec2_list[i].offset,
2807 &user_exec_list[i].offset,
2808 end_user);
54cf91dc 2809 }
2889caa9
CW
2810end_user:
2811 user_access_end();
8f4faed0 2812end:;
54cf91dc
CW
2813 }
2814
2889caa9 2815 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
cf6e7bac 2816 put_fence_array(args, fences);
2098105e 2817 kvfree(exec2_list);
2889caa9 2818 return err;
54cf91dc 2819}