doc: Fix build of documentation after i915 file rename
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
52791eee 8#include <linux/dma-resv.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
ad778f89 13
df0566a6
JN
14#include "display/intel_frontbuffer.h"
15
afa13085 16#include "gem/i915_gem_ioctls.h"
10be98a7 17#include "gt/intel_context.h"
baea429d 18#include "gt/intel_gt.h"
16e87459 19#include "gt/intel_gt_buffer_pool.h"
8f2a1057 20#include "gt/intel_gt_pm.h"
2871ea85 21#include "gt/intel_ring.h"
8f2a1057 22
6da4a2c4 23#include "i915_drv.h"
57822dc6 24#include "i915_gem_clflush.h"
10be98a7 25#include "i915_gem_context.h"
6da4a2c4 26#include "i915_gem_ioctls.h"
686c7c35 27#include "i915_sw_fence_work.h"
54cf91dc 28#include "i915_trace.h"
cda9edd0 29#include "i915_user_extensions.h"
54cf91dc 30
7d6236bb
CW
31struct eb_vma {
32 struct i915_vma *vma;
33 unsigned int flags;
34
35 /** This vma's place in the execbuf reservation list */
36 struct drm_i915_gem_exec_object2 *exec;
37 struct list_head bind_link;
38 struct list_head reloc_link;
39
40 struct hlist_node node;
41 u32 handle;
42};
43
ad5d95e4
DA
44enum {
45 FORCE_CPU_RELOC = 1,
46 FORCE_GTT_RELOC,
47 FORCE_GPU_RELOC,
48#define DBG_FORCE_RELOC 0 /* choose one of the above! */
49};
50
003d8b91
CW
51#define __EXEC_OBJECT_HAS_PIN BIT(31)
52#define __EXEC_OBJECT_HAS_FENCE BIT(30)
53#define __EXEC_OBJECT_NEEDS_MAP BIT(29)
54#define __EXEC_OBJECT_NEEDS_BIAS BIT(28)
55#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */
8ae275c2 56#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
2889caa9
CW
57
58#define __EXEC_HAS_RELOC BIT(31)
2bf541ff
ML
59#define __EXEC_ENGINE_PINNED BIT(30)
60#define __EXEC_INTERNAL_FLAGS (~0u << 30)
2889caa9 61#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
62
63#define BATCH_OFFSET_BIAS (256*1024)
a415d355 64
650bc635 65#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
66 (__I915_EXEC_UNKNOWN_FLAGS | \
67 I915_EXEC_CONSTANTS_MASK | \
68 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 69
d20ac620
CW
70/* Catch emission of unexpected errors for CI! */
71#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
72#undef EINVAL
73#define EINVAL ({ \
74 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
75 22; \
76})
77#endif
78
2889caa9
CW
79/**
80 * DOC: User command execution
81 *
82 * Userspace submits commands to be executed on the GPU as an instruction
83 * stream within a GEM object we call a batchbuffer. This instructions may
84 * refer to other GEM objects containing auxiliary state such as kernels,
85 * samplers, render targets and even secondary batchbuffers. Userspace does
86 * not know where in the GPU memory these objects reside and so before the
87 * batchbuffer is passed to the GPU for execution, those addresses in the
88 * batchbuffer and auxiliary objects are updated. This is known as relocation,
89 * or patching. To try and avoid having to relocate each object on the next
90 * execution, userspace is told the location of those objects in this pass,
91 * but this remains just a hint as the kernel may choose a new location for
92 * any object in the future.
93 *
99d7e4ee
KR
94 * At the level of talking to the hardware, submitting a batchbuffer for the
95 * GPU to execute is to add content to a buffer from which the HW
96 * command streamer is reading.
97 *
98 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
99 * Execlists, this command is not placed on the same buffer as the
100 * remaining items.
101 *
102 * 2. Add a command to invalidate caches to the buffer.
103 *
104 * 3. Add a batchbuffer start command to the buffer; the start command is
105 * essentially a token together with the GPU address of the batchbuffer
106 * to be executed.
107 *
108 * 4. Add a pipeline flush to the buffer.
109 *
110 * 5. Add a memory write command to the buffer to record when the GPU
111 * is done executing the batchbuffer. The memory write writes the
112 * global sequence number of the request, ``i915_request::global_seqno``;
113 * the i915 driver uses the current value in the register to determine
114 * if the GPU has completed the batchbuffer.
115 *
116 * 6. Add a user interrupt command to the buffer. This command instructs
117 * the GPU to issue an interrupt when the command, pipeline flush and
118 * memory write are completed.
119 *
120 * 7. Inform the hardware of the additional commands added to the buffer
121 * (by updating the tail pointer).
122 *
2889caa9
CW
123 * Processing an execbuf ioctl is conceptually split up into a few phases.
124 *
125 * 1. Validation - Ensure all the pointers, handles and flags are valid.
126 * 2. Reservation - Assign GPU address space for every object
127 * 3. Relocation - Update any addresses to point to the final locations
128 * 4. Serialisation - Order the request with respect to its dependencies
129 * 5. Construction - Construct a request to execute the batchbuffer
130 * 6. Submission (at some point in the future execution)
131 *
132 * Reserving resources for the execbuf is the most complicated phase. We
133 * neither want to have to migrate the object in the address space, nor do
134 * we want to have to update any relocations pointing to this object. Ideally,
135 * we want to leave the object where it is and for all the existing relocations
136 * to match. If the object is given a new address, or if userspace thinks the
137 * object is elsewhere, we have to parse all the relocation entries and update
138 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
139 * all the target addresses in all of its objects match the value in the
140 * relocation entries and that they all match the presumed offsets given by the
141 * list of execbuffer objects. Using this knowledge, we know that if we haven't
142 * moved any buffers, all the relocation entries are valid and we can skip
143 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
144 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145 *
146 * The addresses written in the objects must match the corresponding
147 * reloc.presumed_offset which in turn must match the corresponding
148 * execobject.offset.
149 *
150 * Any render targets written to in the batch must be flagged with
151 * EXEC_OBJECT_WRITE.
152 *
153 * To avoid stalling, execobject.offset should match the current
154 * address of that object within the active context.
155 *
156 * The reservation is done is multiple phases. First we try and keep any
157 * object already bound in its current location - so as long as meets the
158 * constraints imposed by the new execbuffer. Any object left unbound after the
159 * first pass is then fitted into any available idle space. If an object does
160 * not fit, all objects are removed from the reservation and the process rerun
161 * after sorting the objects into a priority order (more difficult to fit
162 * objects are tried first). Failing that, the entire VM is cleared and we try
163 * to fit the execbuf once last time before concluding that it simply will not
164 * fit.
165 *
166 * A small complication to all of this is that we allow userspace not only to
167 * specify an alignment and a size for the object in the address space, but
168 * we also allow userspace to specify the exact offset. This objects are
169 * simpler to place (the location is known a priori) all we have to do is make
170 * sure the space is available.
171 *
172 * Once all the objects are in place, patching up the buried pointers to point
173 * to the final locations is a fairly simple job of walking over the relocation
174 * entry arrays, looking up the right address and rewriting the value into
175 * the object. Simple! ... The relocation entries are stored in user memory
176 * and so to access them we have to copy them into a local buffer. That copy
177 * has to avoid taking any pagefaults as they may lead back to a GEM object
178 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
179 * the relocation into multiple passes. First we try to do everything within an
180 * atomic context (avoid the pagefaults) which requires that we never wait. If
181 * we detect that we may wait, or if we need to fault, then we have to fallback
182 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
183 * bells yet?) Dropping the mutex means that we lose all the state we have
184 * built up so far for the execbuf and we must reset any global data. However,
185 * we do leave the objects pinned in their final locations - which is a
186 * potential issue for concurrent execbufs. Once we have left the mutex, we can
187 * allocate and copy all the relocation entries into a large array at our
188 * leisure, reacquire the mutex, reclaim all the objects and other state and
189 * then proceed to update any incorrect addresses with the objects.
190 *
191 * As we process the relocation entries, we maintain a record of whether the
192 * object is being written to. Using NORELOC, we expect userspace to provide
193 * this information instead. We also check whether we can skip the relocation
194 * by comparing the expected value inside the relocation entry with the target's
195 * final address. If they differ, we have to map the current object and rewrite
196 * the 4 or 8 byte pointer within.
197 *
198 * Serialising an execbuf is quite simple according to the rules of the GEM
199 * ABI. Execution within each context is ordered by the order of submission.
200 * Writes to any GEM object are in order of submission and are exclusive. Reads
201 * from a GEM object are unordered with respect to other reads, but ordered by
202 * writes. A write submitted after a read cannot occur before the read, and
203 * similarly any read submitted after a write cannot occur before the write.
204 * Writes are ordered between engines such that only one write occurs at any
205 * time (completing any reads beforehand) - using semaphores where available
206 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
207 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
208 * reads before starting, and any read (either using set-domain or pread) must
209 * flush all GPU writes before starting. (Note we only employ a barrier before,
210 * we currently rely on userspace not concurrently starting a new execution
211 * whilst reading or writing to an object. This may be an advantage or not
212 * depending on how much you trust userspace not to shoot themselves in the
213 * foot.) Serialisation may just result in the request being inserted into
214 * a DAG awaiting its turn, but most simple is to wait on the CPU until
215 * all dependencies are resolved.
216 *
217 * After all of that, is just a matter of closing the request and handing it to
218 * the hardware (well, leaving it in a queue to be executed). However, we also
219 * offer the ability for batchbuffers to be run with elevated privileges so
220 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
221 * Before any batch is given extra privileges we first must check that it
222 * contains no nefarious instructions, we check that each instruction is from
223 * our whitelist and all registers are also from an allowed list. We first
224 * copy the user's batchbuffer to a shadow (so that the user doesn't have
225 * access to it, either by the CPU or GPU as we scan it) and then parse each
226 * instruction. If everything is ok, we set a flag telling the hardware to run
227 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
228 */
229
13149e8b
LL
230struct eb_fence {
231 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
232 struct dma_fence *dma_fence;
233 u64 value;
234 struct dma_fence_chain *chain_fence;
235};
236
650bc635 237struct i915_execbuffer {
2889caa9
CW
238 struct drm_i915_private *i915; /** i915 backpointer */
239 struct drm_file *file; /** per-file lookup tables and limits */
240 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
241 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 242 struct eb_vma *vma;
2889caa9
CW
243
244 struct intel_engine_cs *engine; /** engine to queue the request to */
8f2a1057
CW
245 struct intel_context *context; /* logical state for the request */
246 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 247
e61e0f51 248 struct i915_request *request; /** our request to build */
7d6236bb 249 struct eb_vma *batch; /** identity of the batch obj/vma */
32d94048 250 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9
CW
251
252 /** actual size of execobj[] as we may extend it for the cmdparser */
253 unsigned int buffer_count;
254
255 /** list of vma not yet bound during reservation phase */
256 struct list_head unbound;
257
258 /** list of vma that have execobj.relocation_count */
259 struct list_head relocs;
260
c43ce123
ML
261 struct i915_gem_ww_ctx ww;
262
2889caa9
CW
263 /**
264 * Track the most recently used object for relocations, as we
265 * frequently have to perform multiple relocations within the same
266 * obj/page
267 */
650bc635 268 struct reloc_cache {
2889caa9 269 struct drm_mm_node node; /** temporary GTT binding */
ad5d95e4
DA
270 unsigned long vaddr; /** Current kmap address */
271 unsigned long page; /** Currently mapped page index */
7dd4f672 272 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 273 bool use_64bit_reloc : 1;
2889caa9
CW
274 bool has_llc : 1;
275 bool has_fence : 1;
276 bool needs_unfenced : 1;
7dd4f672 277
e61e0f51 278 struct i915_request *rq;
7dd4f672
CW
279 u32 *rq_cmd;
280 unsigned int rq_size;
c43ce123 281 struct intel_gt_buffer_pool_node *pool;
650bc635 282 } reloc_cache;
2889caa9 283
c43ce123 284 struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
2bf541ff 285 struct intel_context *reloc_context;
c43ce123 286
2889caa9
CW
287 u64 invalid_flags; /** Set of execobj.flags that are invalid */
288 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
289
d5e87821 290 u64 batch_len; /** Length of batch within object */
2889caa9 291 u32 batch_start_offset; /** Location within object of batch */
2889caa9 292 u32 batch_flags; /** Flags composed for emit_bb_start() */
c43ce123 293 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
2889caa9
CW
294
295 /**
296 * Indicate either the size of the hastable used to resolve
297 * relocation handles, or if negative that we are using a direct
298 * index into the execobj[].
299 */
300 int lut_size;
301 struct hlist_head *buckets; /** ht for relocation handles */
cda9edd0 302
13149e8b
LL
303 struct eb_fence *fences;
304 unsigned long num_fences;
67731b87
CW
305};
306
8e4ba491 307static int eb_parse(struct i915_execbuffer *eb);
2bf541ff
ML
308static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
309 bool throttle);
310static void eb_unpin_engine(struct i915_execbuffer *eb);
8e4ba491 311
3dbf26ed
CW
312static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
313{
311a50e7 314 return intel_engine_requires_cmd_parser(eb->engine) ||
435e8fc0
JB
315 (intel_engine_using_cmd_parser(eb->engine) &&
316 eb->args->batch_len);
3dbf26ed
CW
317}
318
650bc635 319static int eb_create(struct i915_execbuffer *eb)
67731b87 320{
2889caa9
CW
321 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
322 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 323
2889caa9
CW
324 /*
325 * Without a 1:1 association between relocation handles and
326 * the execobject[] index, we instead create a hashtable.
327 * We size it dynamically based on available memory, starting
328 * first with 1:1 assocative hash and scaling back until
329 * the allocation succeeds.
330 *
331 * Later on we use a positive lut_size to indicate we are
332 * using this hashtable, and a negative value to indicate a
333 * direct lookup.
334 */
4ff4b44c 335 do {
0d95c883 336 gfp_t flags;
4d470f73
CW
337
338 /* While we can still reduce the allocation size, don't
339 * raise a warning and allow the allocation to fail.
340 * On the last pass though, we want to try as hard
341 * as possible to perform the allocation and warn
342 * if it fails.
343 */
0ee931c4 344 flags = GFP_KERNEL;
4d470f73
CW
345 if (size > 1)
346 flags |= __GFP_NORETRY | __GFP_NOWARN;
347
4ff4b44c 348 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 349 flags);
4ff4b44c
CW
350 if (eb->buckets)
351 break;
352 } while (--size);
353
8ae275c2 354 if (unlikely(!size))
4d470f73 355 return -ENOMEM;
eef90ccb 356
2889caa9 357 eb->lut_size = size;
650bc635 358 } else {
2889caa9 359 eb->lut_size = -eb->buffer_count;
650bc635 360 }
eef90ccb 361
650bc635 362 return 0;
67731b87
CW
363}
364
2889caa9
CW
365static bool
366eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
367 const struct i915_vma *vma,
368 unsigned int flags)
2889caa9 369{
2889caa9
CW
370 if (vma->node.size < entry->pad_to_size)
371 return true;
372
373 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
374 return true;
375
c7c6e46f 376 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
377 vma->node.start != entry->offset)
378 return true;
379
c7c6e46f 380 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
381 vma->node.start < BATCH_OFFSET_BIAS)
382 return true;
383
c7c6e46f 384 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
385 (vma->node.start + vma->node.size - 1) >> 32)
386 return true;
387
1d033beb
CW
388 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
389 !i915_vma_is_map_and_fenceable(vma))
390 return true;
391
2889caa9
CW
392 return false;
393}
394
8a338f4b
CW
395static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
396 unsigned int exec_flags)
397{
398 u64 pin_flags = 0;
399
400 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
401 pin_flags |= PIN_GLOBAL;
402
403 /*
404 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
405 * limit address to the first 4GBs for unflagged objects.
406 */
407 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
408 pin_flags |= PIN_ZONE_4G;
409
410 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
411 pin_flags |= PIN_MAPPABLE;
412
413 if (exec_flags & EXEC_OBJECT_PINNED)
414 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
415 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
416 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
417
418 return pin_flags;
419}
420
c7c6e46f 421static inline bool
2889caa9 422eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 423 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 424 struct eb_vma *ev)
2889caa9 425{
7d6236bb 426 struct i915_vma *vma = ev->vma;
c7c6e46f 427 u64 pin_flags;
2889caa9 428
616d9cee 429 if (vma->node.size)
c7c6e46f 430 pin_flags = vma->node.start;
616d9cee 431 else
c7c6e46f 432 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 433
c7c6e46f 434 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
7d6236bb 435 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 436 pin_flags |= PIN_GLOBAL;
616d9cee 437
8a338f4b 438 /* Attempt to reuse the current location if available */
47b08693
ML
439 /* TODO: Add -EDEADLK handling here */
440 if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
8a338f4b
CW
441 if (entry->flags & EXEC_OBJECT_PINNED)
442 return false;
443
444 /* Failing that pick any _free_ space if suitable */
47b08693
ML
445 if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
446 entry->pad_to_size,
447 entry->alignment,
448 eb_pin_flags(entry, ev->flags) |
449 PIN_USER | PIN_NOEVICT)))
8a338f4b
CW
450 return false;
451 }
2889caa9 452
7d6236bb 453 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 454 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 455 i915_vma_unpin(vma);
c7c6e46f 456 return false;
2889caa9
CW
457 }
458
3bd40735 459 if (vma->fence)
7d6236bb 460 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
461 }
462
7d6236bb
CW
463 ev->flags |= __EXEC_OBJECT_HAS_PIN;
464 return !eb_vma_misplaced(entry, vma, ev->flags);
2889caa9
CW
465}
466
8ae275c2
ML
467static inline void
468eb_unreserve_vma(struct eb_vma *ev)
469{
470 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
471 return;
472
c43ce123
ML
473 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
474 __i915_vma_unpin_fence(ev->vma);
475
476 __i915_vma_unpin(ev->vma);
8ae275c2
ML
477 ev->flags &= ~__EXEC_OBJECT_RESERVED;
478}
479
2889caa9
CW
480static int
481eb_validate_vma(struct i915_execbuffer *eb,
482 struct drm_i915_gem_exec_object2 *entry,
483 struct i915_vma *vma)
67731b87 484{
2889caa9
CW
485 if (unlikely(entry->flags & eb->invalid_flags))
486 return -EINVAL;
d55495b4 487
2920516b
MA
488 if (unlikely(entry->alignment &&
489 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
490 return -EINVAL;
491
492 /*
493 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
494 * any non-page-aligned or non-canonical addresses.
495 */
496 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 497 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
498 return -EINVAL;
499
500 /* pad_to_size was once a reserved field, so sanitize it */
501 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
502 if (unlikely(offset_in_page(entry->pad_to_size)))
503 return -EINVAL;
504 } else {
505 entry->pad_to_size = 0;
d55495b4 506 }
2889caa9
CW
507 /*
508 * From drm_mm perspective address space is continuous,
509 * so from this point we're always using non-canonical
510 * form internally.
511 */
512 entry->offset = gen8_noncanonical_addr(entry->offset);
513
c7c6e46f
CW
514 if (!eb->reloc_cache.has_fence) {
515 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
516 } else {
517 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
518 eb->reloc_cache.needs_unfenced) &&
519 i915_gem_object_is_tiled(vma->obj))
520 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
521 }
522
523 if (!(entry->flags & EXEC_OBJECT_PINNED))
524 entry->flags |= eb->context_flags;
525
2889caa9 526 return 0;
67731b87
CW
527}
528
003d8b91 529static void
746c8f14
CW
530eb_add_vma(struct i915_execbuffer *eb,
531 unsigned int i, unsigned batch_idx,
532 struct i915_vma *vma)
59bfa124 533{
c7c6e46f 534 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 535 struct eb_vma *ev = &eb->vma[i];
2889caa9 536
93159e12 537 ev->vma = vma;
7d6236bb
CW
538 ev->exec = entry;
539 ev->flags = entry->flags;
540
4d470f73 541 if (eb->lut_size > 0) {
7d6236bb
CW
542 ev->handle = entry->handle;
543 hlist_add_head(&ev->node,
2889caa9
CW
544 &eb->buckets[hash_32(entry->handle,
545 eb->lut_size)]);
4ff4b44c 546 }
59bfa124 547
2889caa9 548 if (entry->relocation_count)
7d6236bb 549 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 550
746c8f14
CW
551 /*
552 * SNA is doing fancy tricks with compressing batch buffers, which leads
553 * to negative relocation deltas. Usually that works out ok since the
554 * relocate address is still positive, except when the batch is placed
555 * very low in the GTT. Ensure this doesn't happen.
556 *
557 * Note that actual hangs have only been observed on gen7, but for
558 * paranoia do it everywhere.
559 */
560 if (i == batch_idx) {
827db9d8 561 if (entry->relocation_count &&
7d6236bb
CW
562 !(ev->flags & EXEC_OBJECT_PINNED))
563 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 564 if (eb->reloc_cache.has_fence)
7d6236bb 565 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 566
7d6236bb 567 eb->batch = ev;
746c8f14 568 }
2889caa9
CW
569}
570
ad5d95e4
DA
571static inline int use_cpu_reloc(const struct reloc_cache *cache,
572 const struct drm_i915_gem_object *obj)
573{
574 if (!i915_gem_object_has_struct_page(obj))
575 return false;
576
577 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
578 return true;
579
580 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
581 return false;
582
583 return (cache->has_llc ||
584 obj->cache_dirty ||
585 obj->cache_level != I915_CACHE_NONE);
586}
587
47b08693 588static int eb_reserve_vma(struct i915_execbuffer *eb,
7d6236bb 589 struct eb_vma *ev,
2920bb94 590 u64 pin_flags)
2889caa9 591{
7d6236bb 592 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 593 struct i915_vma *vma = ev->vma;
2889caa9
CW
594 int err;
595
003d8b91
CW
596 if (drm_mm_node_allocated(&vma->node) &&
597 eb_vma_misplaced(entry, vma, ev->flags)) {
598 err = i915_vma_unbind(vma);
599 if (err)
600 return err;
601 }
602
47b08693 603 err = i915_vma_pin_ww(vma, &eb->ww,
c7c6e46f 604 entry->pad_to_size, entry->alignment,
8a338f4b 605 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
606 if (err)
607 return err;
608
609 if (entry->offset != vma->node.start) {
610 entry->offset = vma->node.start | UPDATE;
611 eb->args->flags |= __EXEC_HAS_RELOC;
612 }
613
8a338f4b 614 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 615 err = i915_vma_pin_fence(vma);
2889caa9
CW
616 if (unlikely(err)) {
617 i915_vma_unpin(vma);
618 return err;
619 }
620
3bd40735 621 if (vma->fence)
8a338f4b 622 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
623 }
624
8a338f4b 625 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 626 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 627
2889caa9
CW
628 return 0;
629}
630
631static int eb_reserve(struct i915_execbuffer *eb)
632{
633 const unsigned int count = eb->buffer_count;
2920bb94 634 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
2889caa9 635 struct list_head last;
7d6236bb 636 struct eb_vma *ev;
2889caa9 637 unsigned int i, pass;
ef398881 638 int err = 0;
2889caa9
CW
639
640 /*
641 * Attempt to pin all of the buffers into the GTT.
642 * This is done in 3 phases:
643 *
644 * 1a. Unbind all objects that do not match the GTT constraints for
645 * the execbuffer (fenceable, mappable, alignment etc).
646 * 1b. Increment pin count for already bound objects.
647 * 2. Bind new objects.
648 * 3. Decrement pin count.
649 *
650 * This avoid unnecessary unbinding of later objects in order to make
651 * room for the earlier objects *unless* we need to defragment.
652 */
2889caa9 653 pass = 0;
2889caa9 654 do {
7d6236bb
CW
655 list_for_each_entry(ev, &eb->unbound, bind_link) {
656 err = eb_reserve_vma(eb, ev, pin_flags);
2889caa9
CW
657 if (err)
658 break;
659 }
fd1500fc 660 if (err != -ENOSPC)
c43ce123 661 return err;
2889caa9
CW
662
663 /* Resort *all* the objects into priority order */
664 INIT_LIST_HEAD(&eb->unbound);
665 INIT_LIST_HEAD(&last);
666 for (i = 0; i < count; i++) {
7d6236bb 667 unsigned int flags;
2889caa9 668
7d6236bb
CW
669 ev = &eb->vma[i];
670 flags = ev->flags;
c7c6e46f
CW
671 if (flags & EXEC_OBJECT_PINNED &&
672 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
673 continue;
674
7d6236bb 675 eb_unreserve_vma(ev);
2889caa9 676
c7c6e46f 677 if (flags & EXEC_OBJECT_PINNED)
35e882a4 678 /* Pinned must have their slot */
7d6236bb 679 list_add(&ev->bind_link, &eb->unbound);
c7c6e46f 680 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 681 /* Map require the lowest 256MiB (aperture) */
7d6236bb 682 list_add_tail(&ev->bind_link, &eb->unbound);
35e882a4
CW
683 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
684 /* Prioritise 4GiB region for restricted bo */
7d6236bb 685 list_add(&ev->bind_link, &last);
2889caa9 686 else
7d6236bb 687 list_add_tail(&ev->bind_link, &last);
2889caa9
CW
688 }
689 list_splice_tail(&last, &eb->unbound);
690
691 switch (pass++) {
692 case 0:
693 break;
694
695 case 1:
696 /* Too fragmented, unbind everything and retry */
2850748e 697 mutex_lock(&eb->context->vm->mutex);
f5d974f9 698 err = i915_gem_evict_vm(eb->context->vm);
2850748e 699 mutex_unlock(&eb->context->vm->mutex);
2889caa9 700 if (err)
c43ce123 701 return err;
2889caa9
CW
702 break;
703
704 default:
c43ce123 705 return -ENOSPC;
2889caa9 706 }
2920bb94
CW
707
708 pin_flags = PIN_USER;
2889caa9 709 } while (1);
4ff4b44c 710}
59bfa124 711
2889caa9
CW
712static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
713{
1a71cf2f
CW
714 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
715 return 0;
716 else
717 return eb->buffer_count - 1;
2889caa9
CW
718}
719
720static int eb_select_context(struct i915_execbuffer *eb)
721{
722 struct i915_gem_context *ctx;
723
724 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
725 if (unlikely(!ctx))
726 return -ENOENT;
2889caa9 727
8f2a1057 728 eb->gem_context = ctx;
a4e7ccda 729 if (rcu_access_pointer(ctx->vm))
4f2c7337 730 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9
CW
731
732 eb->context_flags = 0;
d3f3e5e4 733 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
2889caa9
CW
734 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
735
736 return 0;
737}
738
93159e12
CW
739static int __eb_add_lut(struct i915_execbuffer *eb,
740 u32 handle, struct i915_vma *vma)
3b96eff4 741{
93159e12
CW
742 struct i915_gem_context *ctx = eb->gem_context;
743 struct i915_lut_handle *lut;
2889caa9 744 int err;
3b96eff4 745
93159e12
CW
746 lut = i915_lut_handle_alloc();
747 if (unlikely(!lut))
748 return -ENOMEM;
749
750 i915_vma_get(vma);
751 if (!atomic_fetch_inc(&vma->open_count))
752 i915_vma_reopen(vma);
753 lut->handle = handle;
754 lut->ctx = ctx;
755
756 /* Check that the context hasn't been closed in the meantime */
757 err = -EINTR;
f7ce8639
CW
758 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
759 struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
760
761 if (unlikely(vm && vma->vm != vm))
762 err = -EAGAIN; /* user racing with ctx set-vm */
763 else if (likely(!i915_gem_context_is_closed(ctx)))
93159e12 764 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
f7ce8639
CW
765 else
766 err = -ENOENT;
93159e12
CW
767 if (err == 0) { /* And nor has this handle */
768 struct drm_i915_gem_object *obj = vma->obj;
769
096a42dd 770 spin_lock(&obj->lut_lock);
93159e12
CW
771 if (idr_find(&eb->file->object_idr, handle) == obj) {
772 list_add(&lut->obj_link, &obj->lut_list);
773 } else {
774 radix_tree_delete(&ctx->handles_vma, handle);
775 err = -ENOENT;
776 }
096a42dd 777 spin_unlock(&obj->lut_lock);
93159e12 778 }
f7ce8639 779 mutex_unlock(&ctx->lut_mutex);
93159e12
CW
780 }
781 if (unlikely(err))
782 goto err;
003d8b91 783
93159e12 784 return 0;
d55495b4 785
93159e12 786err:
50689771 787 i915_vma_close(vma);
93159e12
CW
788 i915_vma_put(vma);
789 i915_lut_handle_free(lut);
790 return err;
791}
746c8f14 792
93159e12
CW
793static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
794{
f7ce8639
CW
795 struct i915_address_space *vm = eb->context->vm;
796
93159e12
CW
797 do {
798 struct drm_i915_gem_object *obj;
170fa29b 799 struct i915_vma *vma;
93159e12 800 int err;
4ff4b44c 801
93159e12
CW
802 rcu_read_lock();
803 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
f7ce8639 804 if (likely(vma && vma->vm == vm))
93159e12
CW
805 vma = i915_vma_tryget(vma);
806 rcu_read_unlock();
807 if (likely(vma))
808 return vma;
4ff4b44c 809
170fa29b 810 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
811 if (unlikely(!obj))
812 return ERR_PTR(-ENOENT);
3b96eff4 813
f7ce8639 814 vma = i915_vma_instance(obj, vm, NULL);
772b5408 815 if (IS_ERR(vma)) {
93159e12
CW
816 i915_gem_object_put(obj);
817 return vma;
27173f1f
BW
818 }
819
93159e12
CW
820 err = __eb_add_lut(eb, handle, vma);
821 if (likely(!err))
822 return vma;
d1b48c1e 823
93159e12
CW
824 i915_gem_object_put(obj);
825 if (err != -EEXIST)
826 return ERR_PTR(err);
827 } while (1);
828}
4ff4b44c 829
93159e12
CW
830static int eb_lookup_vmas(struct i915_execbuffer *eb)
831{
8e4ba491 832 struct drm_i915_private *i915 = eb->i915;
93159e12
CW
833 unsigned int batch = eb_batch_index(eb);
834 unsigned int i;
835 int err = 0;
155ab883 836
93159e12 837 INIT_LIST_HEAD(&eb->relocs);
93159e12
CW
838
839 for (i = 0; i < eb->buffer_count; i++) {
840 struct i915_vma *vma;
841
842 vma = eb_lookup_vma(eb, eb->exec[i].handle);
843 if (IS_ERR(vma)) {
844 err = PTR_ERR(vma);
8e4ba491 845 goto err;
93159e12 846 }
d1b48c1e 847
003d8b91 848 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
849 if (unlikely(err)) {
850 i915_vma_put(vma);
8e4ba491 851 goto err;
93159e12 852 }
dade2a61 853
003d8b91 854 eb_add_vma(eb, i, batch, vma);
4ff4b44c
CW
855 }
856
8e4ba491
ML
857 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
858 drm_dbg(&i915->drm,
859 "Attempting to use self-modifying batch buffer\n");
860 return -EINVAL;
861 }
862
863 if (range_overflows_t(u64,
864 eb->batch_start_offset, eb->batch_len,
865 eb->batch->vma->size)) {
866 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
867 return -EINVAL;
868 }
869
870 if (eb->batch_len == 0)
871 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
d5e87821
CW
872 if (unlikely(eb->batch_len == 0)) { /* impossible! */
873 drm_dbg(&i915->drm, "Invalid batch length\n");
874 return -EINVAL;
875 }
8e4ba491
ML
876
877 return 0;
878
879err:
7d6236bb 880 eb->vma[i].vma = NULL;
2889caa9 881 return err;
3b96eff4
CW
882}
883
c43ce123
ML
884static int eb_validate_vmas(struct i915_execbuffer *eb)
885{
886 unsigned int i;
887 int err;
888
889 INIT_LIST_HEAD(&eb->unbound);
890
891 for (i = 0; i < eb->buffer_count; i++) {
892 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
893 struct eb_vma *ev = &eb->vma[i];
894 struct i915_vma *vma = ev->vma;
895
896 err = i915_gem_object_lock(vma->obj, &eb->ww);
897 if (err)
898 return err;
899
900 if (eb_pin_vma(eb, entry, ev)) {
901 if (entry->offset != vma->node.start) {
902 entry->offset = vma->node.start | UPDATE;
903 eb->args->flags |= __EXEC_HAS_RELOC;
904 }
905 } else {
906 eb_unreserve_vma(ev);
907
908 list_add_tail(&ev->bind_link, &eb->unbound);
909 if (drm_mm_node_allocated(&vma->node)) {
910 err = i915_vma_unbind(vma);
911 if (err)
912 return err;
913 }
914 }
915
916 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
917 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
918 }
919
920 if (!list_empty(&eb->unbound))
921 return eb_reserve(eb);
922
923 return 0;
924}
925
7d6236bb 926static struct eb_vma *
2889caa9 927eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 928{
2889caa9
CW
929 if (eb->lut_size < 0) {
930 if (handle >= -eb->lut_size)
eef90ccb 931 return NULL;
7d6236bb 932 return &eb->vma[handle];
eef90ccb
CW
933 } else {
934 struct hlist_head *head;
7d6236bb 935 struct eb_vma *ev;
67731b87 936
2889caa9 937 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
938 hlist_for_each_entry(ev, head, node) {
939 if (ev->handle == handle)
940 return ev;
eef90ccb
CW
941 }
942 return NULL;
943 }
67731b87
CW
944}
945
2bf541ff 946static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
8ae275c2
ML
947{
948 const unsigned int count = eb->buffer_count;
949 unsigned int i;
950
951 for (i = 0; i < count; i++) {
952 struct eb_vma *ev = &eb->vma[i];
953 struct i915_vma *vma = ev->vma;
954
955 if (!vma)
956 break;
957
c43ce123 958 eb_unreserve_vma(ev);
8ae275c2 959
c43ce123
ML
960 if (final)
961 i915_vma_put(vma);
8ae275c2 962 }
2bf541ff
ML
963
964 eb_unpin_engine(eb);
8ae275c2
ML
965}
966
2889caa9 967static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 968{
7dd4f672
CW
969 GEM_BUG_ON(eb->reloc_cache.rq);
970
4d470f73 971 if (eb->lut_size > 0)
2889caa9 972 kfree(eb->buckets);
934acce3
MW
973}
974
2889caa9 975static inline u64
d50415cc 976relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 977 const struct i915_vma *target)
934acce3 978{
2889caa9 979 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
980}
981
c43ce123
ML
982static void reloc_cache_clear(struct reloc_cache *cache)
983{
984 cache->rq = NULL;
985 cache->rq_cmd = NULL;
986 cache->pool = NULL;
987 cache->rq_size = 0;
988}
989
d50415cc
CW
990static void reloc_cache_init(struct reloc_cache *cache,
991 struct drm_i915_private *i915)
5032d871 992{
ad5d95e4
DA
993 cache->page = -1;
994 cache->vaddr = 0;
dfc5148f 995 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 996 cache->gen = INTEL_GEN(i915);
2889caa9 997 cache->has_llc = HAS_LLC(i915);
dfc5148f 998 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
999 cache->has_fence = cache->gen < 4;
1000 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 1001 cache->node.flags = 0;
c43ce123 1002 reloc_cache_clear(cache);
d50415cc 1003}
5032d871 1004
20561da3
DA
1005static inline void *unmask_page(unsigned long p)
1006{
1007 return (void *)(uintptr_t)(p & PAGE_MASK);
1008}
1009
1010static inline unsigned int unmask_flags(unsigned long p)
1011{
1012 return p & ~PAGE_MASK;
1013}
1014
1015#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1016
1017static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1018{
1019 struct drm_i915_private *i915 =
1020 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1021 return &i915->ggtt;
1022}
1023
c43ce123 1024static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
964a9b0f 1025{
c43ce123
ML
1026 if (!cache->pool)
1027 return;
964a9b0f 1028
c43ce123
ML
1029 /*
1030 * This is a bit nasty, normally we keep objects locked until the end
1031 * of execbuffer, but we already submit this, and have to unlock before
1032 * dropping the reference. Fortunately we can only hold 1 pool node at
1033 * a time, so this should be harmless.
1034 */
1035 i915_gem_ww_unlock_single(cache->pool->obj);
1036 intel_gt_buffer_pool_put(cache->pool);
1037 cache->pool = NULL;
964a9b0f
CW
1038}
1039
c43ce123 1040static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
7dd4f672 1041{
50ae6c61 1042 struct drm_i915_gem_object *obj = cache->rq->batch->obj;
a679f58d 1043
50ae6c61
ML
1044 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1045 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
a679f58d 1046
50ae6c61
ML
1047 __i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
1048 i915_gem_object_unpin_map(obj);
7dd4f672 1049
50ae6c61 1050 intel_gt_chipset_flush(cache->rq->engine->gt);
964a9b0f 1051
50ae6c61 1052 i915_request_add(cache->rq);
c43ce123
ML
1053 reloc_cache_put_pool(eb, cache);
1054 reloc_cache_clear(cache);
0e97fbb0 1055
c43ce123 1056 eb->reloc_pool = NULL;
7dd4f672
CW
1057}
1058
c43ce123 1059static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
ad5d95e4
DA
1060{
1061 void *vaddr;
1062
50ae6c61 1063 if (cache->rq)
c43ce123 1064 reloc_gpu_flush(eb, cache);
50ae6c61 1065
ad5d95e4
DA
1066 if (!cache->vaddr)
1067 return;
1068
1069 vaddr = unmask_page(cache->vaddr);
1070 if (cache->vaddr & KMAP) {
1af343cd
ML
1071 struct drm_i915_gem_object *obj =
1072 (struct drm_i915_gem_object *)cache->node.mm;
ad5d95e4
DA
1073 if (cache->vaddr & CLFLUSH_AFTER)
1074 mb();
1075
1076 kunmap_atomic(vaddr);
1af343cd 1077 i915_gem_object_finish_access(obj);
ad5d95e4
DA
1078 } else {
1079 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1080
1081 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1082 io_mapping_unmap_atomic((void __iomem *)vaddr);
1083
1084 if (drm_mm_node_allocated(&cache->node)) {
1085 ggtt->vm.clear_range(&ggtt->vm,
1086 cache->node.start,
1087 cache->node.size);
1088 mutex_lock(&ggtt->vm.mutex);
1089 drm_mm_remove_node(&cache->node);
1090 mutex_unlock(&ggtt->vm.mutex);
1091 } else {
1092 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1093 }
1094 }
1095
1096 cache->vaddr = 0;
1097 cache->page = -1;
1098}
1099
1100static void *reloc_kmap(struct drm_i915_gem_object *obj,
1101 struct reloc_cache *cache,
102a0a90 1102 unsigned long pageno)
ad5d95e4
DA
1103{
1104 void *vaddr;
102a0a90 1105 struct page *page;
ad5d95e4
DA
1106
1107 if (cache->vaddr) {
1108 kunmap_atomic(unmask_page(cache->vaddr));
1109 } else {
1110 unsigned int flushes;
1111 int err;
1112
1113 err = i915_gem_object_prepare_write(obj, &flushes);
1114 if (err)
1115 return ERR_PTR(err);
1116
1117 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1118 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1119
1120 cache->vaddr = flushes | KMAP;
1121 cache->node.mm = (void *)obj;
1122 if (flushes)
1123 mb();
1124 }
1125
102a0a90
ML
1126 page = i915_gem_object_get_page(obj, pageno);
1127 if (!obj->mm.dirty)
1128 set_page_dirty(page);
1129
1130 vaddr = kmap_atomic(page);
ad5d95e4 1131 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
102a0a90 1132 cache->page = pageno;
ad5d95e4
DA
1133
1134 return vaddr;
1135}
1136
1137static void *reloc_iomap(struct drm_i915_gem_object *obj,
47b08693 1138 struct i915_execbuffer *eb,
ad5d95e4
DA
1139 unsigned long page)
1140{
47b08693 1141 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1142 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1143 unsigned long offset;
1144 void *vaddr;
1145
1146 if (cache->vaddr) {
1147 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1148 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1149 } else {
1150 struct i915_vma *vma;
1151 int err;
1152
1153 if (i915_gem_object_is_tiled(obj))
1154 return ERR_PTR(-EINVAL);
1155
1156 if (use_cpu_reloc(cache, obj))
1157 return NULL;
1158
ad5d95e4 1159 err = i915_gem_object_set_to_gtt_domain(obj, true);
ad5d95e4
DA
1160 if (err)
1161 return ERR_PTR(err);
1162
47b08693
ML
1163 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1164 PIN_MAPPABLE |
1165 PIN_NONBLOCK /* NOWARN */ |
1166 PIN_NOEVICT);
1167 if (vma == ERR_PTR(-EDEADLK))
1168 return vma;
1169
ad5d95e4
DA
1170 if (IS_ERR(vma)) {
1171 memset(&cache->node, 0, sizeof(cache->node));
1172 mutex_lock(&ggtt->vm.mutex);
1173 err = drm_mm_insert_node_in_range
1174 (&ggtt->vm.mm, &cache->node,
1175 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1176 0, ggtt->mappable_end,
1177 DRM_MM_INSERT_LOW);
1178 mutex_unlock(&ggtt->vm.mutex);
1179 if (err) /* no inactive aperture space, use cpu reloc */
1180 return NULL;
1181 } else {
1182 cache->node.start = vma->node.start;
1183 cache->node.mm = (void *)vma;
1184 }
1185 }
1186
1187 offset = cache->node.start;
1188 if (drm_mm_node_allocated(&cache->node)) {
1189 ggtt->vm.insert_page(&ggtt->vm,
1190 i915_gem_object_get_dma_address(obj, page),
1191 offset, I915_CACHE_NONE, 0);
1192 } else {
1193 offset += page << PAGE_SHIFT;
1194 }
1195
1196 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1197 offset);
1198 cache->page = page;
1199 cache->vaddr = (unsigned long)vaddr;
1200
1201 return vaddr;
1202}
1203
1204static void *reloc_vaddr(struct drm_i915_gem_object *obj,
47b08693 1205 struct i915_execbuffer *eb,
ad5d95e4
DA
1206 unsigned long page)
1207{
47b08693 1208 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1209 void *vaddr;
1210
1211 if (cache->page == page) {
1212 vaddr = unmask_page(cache->vaddr);
1213 } else {
1214 vaddr = NULL;
1215 if ((cache->vaddr & KMAP) == 0)
47b08693 1216 vaddr = reloc_iomap(obj, eb, page);
ad5d95e4
DA
1217 if (!vaddr)
1218 vaddr = reloc_kmap(obj, cache, page);
1219 }
1220
1221 return vaddr;
1222}
1223
1224static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1225{
1226 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1227 if (flushes & CLFLUSH_BEFORE) {
1228 clflushopt(addr);
1229 mb();
1230 }
1231
1232 *addr = value;
1233
1234 /*
1235 * Writes to the same cacheline are serialised by the CPU
1236 * (including clflush). On the write path, we only require
1237 * that it hits memory in an orderly fashion and place
1238 * mb barriers at the start and end of the relocation phase
1239 * to ensure ordering of clflush wrt to the system.
1240 */
1241 if (flushes & CLFLUSH_AFTER)
1242 clflushopt(addr);
1243 } else
1244 *addr = value;
1245}
1246
6951e589
CW
1247static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1248{
1249 struct drm_i915_gem_object *obj = vma->obj;
1250 int err;
1251
c43ce123 1252 assert_vma_held(vma);
6951e589
CW
1253
1254 if (obj->cache_dirty & ~obj->cache_coherent)
1255 i915_gem_clflush_object(obj, 0);
1256 obj->write_domain = 0;
1257
1258 err = i915_request_await_object(rq, vma->obj, true);
1259 if (err == 0)
1260 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1261
6951e589
CW
1262 return err;
1263}
1264
7dd4f672 1265static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
6f576d62 1266 struct intel_engine_cs *engine,
50ae6c61 1267 struct i915_vma *vma,
7dd4f672
CW
1268 unsigned int len)
1269{
1270 struct reloc_cache *cache = &eb->reloc_cache;
c43ce123 1271 struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
e61e0f51 1272 struct i915_request *rq;
7dd4f672
CW
1273 struct i915_vma *batch;
1274 u32 *cmd;
1275 int err;
1276
c43ce123
ML
1277 if (!pool) {
1278 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1279 if (IS_ERR(pool))
1280 return PTR_ERR(pool);
1281 }
1282 eb->reloc_pool = NULL;
1283
1284 err = i915_gem_object_lock(pool->obj, &eb->ww);
1285 if (err)
1286 goto err_pool;
7dd4f672 1287
b40d7378 1288 cmd = i915_gem_object_pin_map(pool->obj,
a575c676
CW
1289 cache->has_llc ?
1290 I915_MAP_FORCE_WB :
1291 I915_MAP_FORCE_WC);
b40d7378
CW
1292 if (IS_ERR(cmd)) {
1293 err = PTR_ERR(cmd);
c43ce123 1294 goto err_pool;
b40d7378 1295 }
7dd4f672 1296
50ae6c61 1297 batch = i915_vma_instance(pool->obj, vma->vm, NULL);
7dd4f672
CW
1298 if (IS_ERR(batch)) {
1299 err = PTR_ERR(batch);
1300 goto err_unmap;
1301 }
1302
47b08693 1303 err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
7dd4f672
CW
1304 if (err)
1305 goto err_unmap;
1306
6f576d62
CW
1307 if (engine == eb->context->engine) {
1308 rq = i915_request_create(eb->context);
1309 } else {
2bf541ff 1310 struct intel_context *ce = eb->reloc_context;
6f576d62 1311
2bf541ff
ML
1312 if (!ce) {
1313 ce = intel_context_create(engine);
1314 if (IS_ERR(ce)) {
1315 err = PTR_ERR(ce);
1316 goto err_unpin;
1317 }
1318
1319 i915_vm_put(ce->vm);
1320 ce->vm = i915_vm_get(eb->context->vm);
1321 eb->reloc_context = ce;
6f576d62
CW
1322 }
1323
47b08693 1324 err = intel_context_pin_ww(ce, &eb->ww);
2bf541ff
ML
1325 if (err)
1326 goto err_unpin;
6f576d62 1327
2bf541ff
ML
1328 rq = i915_request_create(ce);
1329 intel_context_unpin(ce);
6f576d62 1330 }
7dd4f672
CW
1331 if (IS_ERR(rq)) {
1332 err = PTR_ERR(rq);
1333 goto err_unpin;
1334 }
1335
16e87459 1336 err = intel_gt_buffer_pool_mark_active(pool, rq);
b40d7378
CW
1337 if (err)
1338 goto err_request;
1339
50ae6c61
ML
1340 err = reloc_move_to_gpu(rq, vma);
1341 if (err)
1342 goto err_request;
1343
1344 err = eb->engine->emit_bb_start(rq,
1345 batch->node.start, PAGE_SIZE,
1346 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1347 if (err)
1348 goto skip_request;
1349
c43ce123 1350 assert_vma_held(batch);
70d6894d
CW
1351 err = i915_request_await_object(rq, batch->obj, false);
1352 if (err == 0)
1353 err = i915_vma_move_to_active(batch, rq, 0);
a5236978
CW
1354 if (err)
1355 goto skip_request;
7dd4f672
CW
1356
1357 rq->batch = batch;
a5236978 1358 i915_vma_unpin(batch);
7dd4f672
CW
1359
1360 cache->rq = rq;
1361 cache->rq_cmd = cmd;
1362 cache->rq_size = 0;
c43ce123 1363 cache->pool = pool;
7dd4f672
CW
1364
1365 /* Return with batch mapping (cmd) still pinned */
c43ce123 1366 return 0;
7dd4f672 1367
a5236978 1368skip_request:
36e191f0 1369 i915_request_set_error_once(rq, err);
7dd4f672 1370err_request:
e61e0f51 1371 i915_request_add(rq);
7dd4f672
CW
1372err_unpin:
1373 i915_vma_unpin(batch);
1374err_unmap:
b40d7378 1375 i915_gem_object_unpin_map(pool->obj);
c43ce123
ML
1376err_pool:
1377 eb->reloc_pool = pool;
7dd4f672
CW
1378 return err;
1379}
1380
e3d29130
CW
1381static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1382{
1383 return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1384}
1385
7dd4f672
CW
1386static u32 *reloc_gpu(struct i915_execbuffer *eb,
1387 struct i915_vma *vma,
1388 unsigned int len)
1389{
1390 struct reloc_cache *cache = &eb->reloc_cache;
1391 u32 *cmd;
50ae6c61
ML
1392
1393 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
c43ce123 1394 reloc_gpu_flush(eb, cache);
7dd4f672
CW
1395
1396 if (unlikely(!cache->rq)) {
50ae6c61 1397 int err;
6f576d62
CW
1398 struct intel_engine_cs *engine = eb->engine;
1399
e3d29130 1400 if (!reloc_can_use_engine(engine)) {
6f576d62 1401 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
e3d29130 1402 if (!engine)
6f576d62
CW
1403 return ERR_PTR(-ENODEV);
1404 }
90cad095 1405
50ae6c61 1406 err = __reloc_gpu_alloc(eb, engine, vma, len);
7dd4f672
CW
1407 if (unlikely(err))
1408 return ERR_PTR(err);
1409 }
1410
1411 cmd = cache->rq_cmd + cache->rq_size;
1412 cache->rq_size += len;
1413
1414 return cmd;
1415}
1416
ad5d95e4
DA
1417static inline bool use_reloc_gpu(struct i915_vma *vma)
1418{
1419 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1420 return true;
1421
1422 if (DBG_FORCE_RELOC)
1423 return false;
1424
1425 return !dma_resv_test_signaled_rcu(vma->resv, true);
1426}
1427
e3d29130 1428static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
edf4427b 1429{
e3d29130
CW
1430 struct page *page;
1431 unsigned long addr;
edf4427b 1432
e3d29130 1433 GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
7dd4f672 1434
e3d29130
CW
1435 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1436 addr = PFN_PHYS(page_to_pfn(page));
1437 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
7dd4f672 1438
e3d29130
CW
1439 return addr + offset_in_page(offset);
1440}
1441
166774a2 1442static int __reloc_entry_gpu(struct i915_execbuffer *eb,
ad5d95e4
DA
1443 struct i915_vma *vma,
1444 u64 offset,
1445 u64 target_addr)
e3d29130
CW
1446{
1447 const unsigned int gen = eb->reloc_cache.gen;
1448 unsigned int len;
1449 u32 *batch;
1450 u64 addr;
1451
1452 if (gen >= 8)
1453 len = offset & 7 ? 8 : 5;
1454 else if (gen >= 4)
1455 len = 4;
1456 else
1457 len = 3;
1458
1459 batch = reloc_gpu(eb, vma, len);
c43ce123 1460 if (batch == ERR_PTR(-EDEADLK))
166774a2 1461 return -EDEADLK;
c43ce123 1462 else if (IS_ERR(batch))
ad5d95e4 1463 return false;
e3d29130
CW
1464
1465 addr = gen8_canonical_addr(vma->node.start + offset);
1466 if (gen >= 8) {
1467 if (offset & 7) {
1468 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1469 *batch++ = lower_32_bits(addr);
1470 *batch++ = upper_32_bits(addr);
1471 *batch++ = lower_32_bits(target_addr);
1472
1473 addr = gen8_canonical_addr(addr + 4);
7dd4f672 1474
7dd4f672 1475 *batch++ = MI_STORE_DWORD_IMM_GEN4;
e3d29130
CW
1476 *batch++ = lower_32_bits(addr);
1477 *batch++ = upper_32_bits(addr);
1478 *batch++ = upper_32_bits(target_addr);
7dd4f672 1479 } else {
e3d29130
CW
1480 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1481 *batch++ = lower_32_bits(addr);
1482 *batch++ = upper_32_bits(addr);
1483 *batch++ = lower_32_bits(target_addr);
1484 *batch++ = upper_32_bits(target_addr);
7dd4f672 1485 }
e3d29130
CW
1486 } else if (gen >= 6) {
1487 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1488 *batch++ = 0;
1489 *batch++ = addr;
1490 *batch++ = target_addr;
1491 } else if (IS_I965G(eb->i915)) {
1492 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1493 *batch++ = 0;
1494 *batch++ = vma_phys_addr(vma, offset);
1495 *batch++ = target_addr;
1496 } else if (gen >= 4) {
1497 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1498 *batch++ = 0;
1499 *batch++ = addr;
1500 *batch++ = target_addr;
1501 } else if (gen >= 3 &&
1502 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1503 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1504 *batch++ = addr;
1505 *batch++ = target_addr;
1506 } else {
1507 *batch++ = MI_STORE_DWORD_IMM;
1508 *batch++ = vma_phys_addr(vma, offset);
1509 *batch++ = target_addr;
7dd4f672
CW
1510 }
1511
ad5d95e4
DA
1512 return true;
1513}
1514
c43ce123 1515static int reloc_entry_gpu(struct i915_execbuffer *eb,
ad5d95e4
DA
1516 struct i915_vma *vma,
1517 u64 offset,
1518 u64 target_addr)
1519{
1520 if (eb->reloc_cache.vaddr)
1521 return false;
1522
1523 if (!use_reloc_gpu(vma))
1524 return false;
1525
1526 return __reloc_entry_gpu(eb, vma, offset, target_addr);
e3d29130
CW
1527}
1528
1529static u64
ad5d95e4 1530relocate_entry(struct i915_vma *vma,
e3d29130 1531 const struct drm_i915_gem_relocation_entry *reloc,
ad5d95e4 1532 struct i915_execbuffer *eb,
e3d29130
CW
1533 const struct i915_vma *target)
1534{
1535 u64 target_addr = relocation_target(reloc, target);
ad5d95e4 1536 u64 offset = reloc->offset;
c43ce123
ML
1537 int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1538
1539 if (reloc_gpu < 0)
1540 return reloc_gpu;
ad5d95e4 1541
c43ce123 1542 if (!reloc_gpu) {
ad5d95e4
DA
1543 bool wide = eb->reloc_cache.use_64bit_reloc;
1544 void *vaddr;
1545
1546repeat:
47b08693 1547 vaddr = reloc_vaddr(vma->obj, eb,
ad5d95e4
DA
1548 offset >> PAGE_SHIFT);
1549 if (IS_ERR(vaddr))
1550 return PTR_ERR(vaddr);
1551
1552 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1553 clflush_write32(vaddr + offset_in_page(offset),
1554 lower_32_bits(target_addr),
1555 eb->reloc_cache.vaddr);
1556
1557 if (wide) {
1558 offset += sizeof(u32);
1559 target_addr >>= 32;
1560 wide = false;
1561 goto repeat;
1562 }
1563 }
edf4427b 1564
2889caa9 1565 return target->node.start | UPDATE;
edf4427b 1566}
edf4427b 1567
2889caa9
CW
1568static u64
1569eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1570 struct eb_vma *ev,
2889caa9 1571 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1572{
baa89ba3 1573 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1574 struct eb_vma *target;
2889caa9 1575 int err;
54cf91dc 1576
67731b87 1577 /* we've already hold a reference to all valid objects */
507d977f
CW
1578 target = eb_get_vma(eb, reloc->target_handle);
1579 if (unlikely(!target))
54cf91dc 1580 return -ENOENT;
e844b990 1581
54cf91dc 1582 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1583 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1584 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1585 "target %d offset %d "
54cf91dc 1586 "read %08x write %08x",
507d977f 1587 reloc->target_handle,
54cf91dc
CW
1588 (int) reloc->offset,
1589 reloc->read_domains,
1590 reloc->write_domain);
8b78f0e5 1591 return -EINVAL;
54cf91dc 1592 }
4ca4a250
DV
1593 if (unlikely((reloc->write_domain | reloc->read_domains)
1594 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1595 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1596 "target %d offset %d "
54cf91dc 1597 "read %08x write %08x",
507d977f 1598 reloc->target_handle,
54cf91dc
CW
1599 (int) reloc->offset,
1600 reloc->read_domains,
1601 reloc->write_domain);
8b78f0e5 1602 return -EINVAL;
54cf91dc 1603 }
54cf91dc 1604
2889caa9 1605 if (reloc->write_domain) {
7d6236bb 1606 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1607
2889caa9
CW
1608 /*
1609 * Sandybridge PPGTT errata: We need a global gtt mapping
1610 * for MI and pipe_control writes because the gpu doesn't
1611 * properly redirect them through the ppgtt for non_secure
1612 * batchbuffers.
1613 */
1614 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
cf819eff 1615 IS_GEN(eb->i915, 6)) {
7d6236bb
CW
1616 err = i915_vma_bind(target->vma,
1617 target->vma->obj->cache_level,
2850748e 1618 PIN_GLOBAL, NULL);
ea97c4ca 1619 if (err)
2889caa9
CW
1620 return err;
1621 }
507d977f 1622 }
54cf91dc 1623
2889caa9
CW
1624 /*
1625 * If the relocation already has the right value in it, no
54cf91dc
CW
1626 * more work needs to be done.
1627 */
ad5d95e4
DA
1628 if (!DBG_FORCE_RELOC &&
1629 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1630 return 0;
54cf91dc
CW
1631
1632 /* Check that the relocation address is valid... */
3c94ceee 1633 if (unlikely(reloc->offset >
7d6236bb 1634 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1635 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1636 "target %d offset %d size %d.\n",
1637 reloc->target_handle,
1638 (int)reloc->offset,
7d6236bb 1639 (int)ev->vma->size);
8b78f0e5 1640 return -EINVAL;
54cf91dc 1641 }
b8f7ab17 1642 if (unlikely(reloc->offset & 3)) {
baa89ba3 1643 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1644 "target %d offset %d.\n",
1645 reloc->target_handle,
1646 (int)reloc->offset);
8b78f0e5 1647 return -EINVAL;
54cf91dc
CW
1648 }
1649
071750e5
CW
1650 /*
1651 * If we write into the object, we need to force the synchronisation
1652 * barrier, either with an asynchronous clflush or if we executed the
1653 * patching using the GPU (though that should be serialised by the
1654 * timeline). To be completely sure, and since we are required to
1655 * do relocations we are already stalling, disable the user's opt
0519bcb1 1656 * out of our synchronisation.
071750e5 1657 */
7d6236bb 1658 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1659
54cf91dc 1660 /* and update the user's relocation entry */
ad5d95e4 1661 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1662}
1663
7d6236bb 1664static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1665{
1d83f442 1666#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1667 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1668 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1669 struct drm_i915_gem_relocation_entry __user *urelocs =
1670 u64_to_user_ptr(entry->relocs_ptr);
1671 unsigned long remain = entry->relocation_count;
54cf91dc 1672
e94f7856 1673 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1674 return -EINVAL;
ebc0808f 1675
2889caa9
CW
1676 /*
1677 * We must check that the entire relocation array is safe
1678 * to read. However, if the array is not writable the user loses
1679 * the updated relocation values.
1680 */
e94f7856 1681 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1682 return -EFAULT;
1683
1684 do {
1685 struct drm_i915_gem_relocation_entry *r = stack;
1686 unsigned int count =
e94f7856 1687 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1688 unsigned int copied;
1d83f442 1689
2889caa9
CW
1690 /*
1691 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1692 * whilst holding the struct mutex lest the user pass in the
1693 * relocations contained within a mmaped bo. For in such a case
1694 * we, the page fault handler would call i915_gem_fault() and
1695 * we would try to acquire the struct mutex again. Obviously
1696 * this is bad and so lockdep complains vehemently.
1697 */
fd1500fc
ML
1698 pagefault_disable();
1699 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1700 pagefault_enable();
ad5d95e4
DA
1701 if (unlikely(copied)) {
1702 remain = -EFAULT;
1703 goto out;
1704 }
54cf91dc 1705
2889caa9 1706 remain -= count;
1d83f442 1707 do {
7d6236bb 1708 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1709
2889caa9
CW
1710 if (likely(offset == 0)) {
1711 } else if ((s64)offset < 0) {
ad5d95e4
DA
1712 remain = (int)offset;
1713 goto out;
2889caa9
CW
1714 } else {
1715 /*
1716 * Note that reporting an error now
1717 * leaves everything in an inconsistent
1718 * state as we have *already* changed
1719 * the relocation value inside the
1720 * object. As we have not changed the
1721 * reloc.presumed_offset or will not
1722 * change the execobject.offset, on the
1723 * call we may not rewrite the value
1724 * inside the object, leaving it
1725 * dangling and causing a GPU hang. Unless
1726 * userspace dynamically rebuilds the
1727 * relocations on each execbuf rather than
1728 * presume a static tree.
1729 *
1730 * We did previously check if the relocations
1731 * were writable (access_ok), an error now
1732 * would be a strange race with mprotect,
1733 * having already demonstrated that we
1734 * can read from this userspace address.
1735 */
1736 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1737 __put_user(offset,
1738 &urelocs[r - stack].presumed_offset);
1d83f442 1739 }
2889caa9
CW
1740 } while (r++, --count);
1741 urelocs += ARRAY_SIZE(stack);
1742 } while (remain);
ad5d95e4 1743out:
c43ce123 1744 reloc_cache_reset(&eb->reloc_cache, eb);
ad5d95e4 1745 return remain;
54cf91dc
CW
1746}
1747
fd1500fc
ML
1748static int
1749eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1750{
fd1500fc
ML
1751 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1752 struct drm_i915_gem_relocation_entry *relocs =
1753 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1754 unsigned int i;
003d8b91
CW
1755 int err;
1756
fd1500fc
ML
1757 for (i = 0; i < entry->relocation_count; i++) {
1758 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
003d8b91 1759
fd1500fc
ML
1760 if ((s64)offset < 0) {
1761 err = (int)offset;
1762 goto err;
1763 }
ef398881 1764 }
fd1500fc
ML
1765 err = 0;
1766err:
c43ce123 1767 reloc_cache_reset(&eb->reloc_cache, eb);
fd1500fc
ML
1768 return err;
1769}
2889caa9 1770
fd1500fc
ML
1771static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1772{
1773 const char __user *addr, *end;
1774 unsigned long size;
1775 char __maybe_unused c;
2889caa9 1776
fd1500fc
ML
1777 size = entry->relocation_count;
1778 if (size == 0)
1779 return 0;
0e97fbb0 1780
fd1500fc
ML
1781 if (size > N_RELOC(ULONG_MAX))
1782 return -EINVAL;
2889caa9 1783
fd1500fc
ML
1784 addr = u64_to_user_ptr(entry->relocs_ptr);
1785 size *= sizeof(struct drm_i915_gem_relocation_entry);
1786 if (!access_ok(addr, size))
1787 return -EFAULT;
1788
1789 end = addr + size;
1790 for (; addr < end; addr += PAGE_SIZE) {
1791 int err = __get_user(c, addr);
1792 if (err)
1793 return err;
1794 }
1795 return __get_user(c, end - 1);
2889caa9
CW
1796}
1797
fd1500fc 1798static int eb_copy_relocations(const struct i915_execbuffer *eb)
2889caa9 1799{
fd1500fc 1800 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1801 const unsigned int count = eb->buffer_count;
1802 unsigned int i;
fd1500fc 1803 int err;
54cf91dc 1804
2889caa9 1805 for (i = 0; i < count; i++) {
fd1500fc
ML
1806 const unsigned int nreloc = eb->exec[i].relocation_count;
1807 struct drm_i915_gem_relocation_entry __user *urelocs;
1808 unsigned long size;
1809 unsigned long copied;
6951e589 1810
fd1500fc
ML
1811 if (nreloc == 0)
1812 continue;
6951e589 1813
fd1500fc
ML
1814 err = check_relocations(&eb->exec[i]);
1815 if (err)
1816 goto err;
6951e589 1817
fd1500fc
ML
1818 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1819 size = nreloc * sizeof(*relocs);
6951e589 1820
fd1500fc
ML
1821 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1822 if (!relocs) {
1823 err = -ENOMEM;
1824 goto err;
6951e589 1825 }
fd1500fc
ML
1826
1827 /* copy_from_user is limited to < 4GiB */
1828 copied = 0;
1829 do {
1830 unsigned int len =
1831 min_t(u64, BIT_ULL(31), size - copied);
1832
1833 if (__copy_from_user((char *)relocs + copied,
1834 (char __user *)urelocs + copied,
1835 len))
1836 goto end;
1837
1838 copied += len;
1839 } while (copied < size);
1840
1841 /*
1842 * As we do not update the known relocation offsets after
1843 * relocating (due to the complexities in lock handling),
1844 * we need to mark them as invalid now so that we force the
1845 * relocation processing next time. Just in case the target
1846 * object is evicted and then rebound into its old
1847 * presumed_offset before the next execbuffer - if that
1848 * happened we would make the mistake of assuming that the
1849 * relocations were valid.
1850 */
1851 if (!user_access_begin(urelocs, size))
1852 goto end;
1853
1854 for (copied = 0; copied < nreloc; copied++)
1855 unsafe_put_user(-1,
1856 &urelocs[copied].presumed_offset,
1857 end_user);
1858 user_access_end();
1859
1860 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1861 }
1862
1863 return 0;
1864
1865end_user:
1866 user_access_end();
1867end:
1868 kvfree(relocs);
1869 err = -EFAULT;
1870err:
1871 while (i--) {
1872 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1873 if (eb->exec[i].relocation_count)
1874 kvfree(relocs);
1875 }
1876 return err;
1877}
1878
1879static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1880{
1881 const unsigned int count = eb->buffer_count;
1882 unsigned int i;
1883
1884 for (i = 0; i < count; i++) {
1885 int err;
1886
1887 err = check_relocations(&eb->exec[i]);
1888 if (err)
1889 return err;
1890 }
1891
1892 return 0;
1893}
1894
2bf541ff
ML
1895static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1896 struct i915_request *rq)
fd1500fc
ML
1897{
1898 bool have_copy = false;
1899 struct eb_vma *ev;
1900 int err = 0;
1901
1902repeat:
1903 if (signal_pending(current)) {
1904 err = -ERESTARTSYS;
1905 goto out;
6951e589 1906 }
fd1500fc 1907
c43ce123
ML
1908 /* We may process another execbuffer during the unlock... */
1909 eb_release_vmas(eb, false);
1910 i915_gem_ww_ctx_fini(&eb->ww);
1911
2bf541ff
ML
1912 if (rq) {
1913 /* nonblocking is always false */
1914 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1915 MAX_SCHEDULE_TIMEOUT) < 0) {
1916 i915_request_put(rq);
1917 rq = NULL;
1918
1919 err = -EINTR;
1920 goto err_relock;
1921 }
1922
1923 i915_request_put(rq);
1924 rq = NULL;
1925 }
1926
fd1500fc
ML
1927 /*
1928 * We take 3 passes through the slowpatch.
1929 *
1930 * 1 - we try to just prefault all the user relocation entries and
1931 * then attempt to reuse the atomic pagefault disabled fast path again.
1932 *
1933 * 2 - we copy the user entries to a local buffer here outside of the
1934 * local and allow ourselves to wait upon any rendering before
1935 * relocations
1936 *
1937 * 3 - we already have a local copy of the relocation entries, but
1938 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1939 */
1940 if (!err) {
1941 err = eb_prefault_relocations(eb);
1942 } else if (!have_copy) {
1943 err = eb_copy_relocations(eb);
1944 have_copy = err == 0;
1945 } else {
1946 cond_resched();
1947 err = 0;
1948 }
1949
2bf541ff
ML
1950 if (!err)
1951 flush_workqueue(eb->i915->mm.userptr_wq);
fd1500fc 1952
2bf541ff 1953err_relock:
c43ce123 1954 i915_gem_ww_ctx_init(&eb->ww, true);
fd1500fc
ML
1955 if (err)
1956 goto out;
1957
c43ce123
ML
1958 /* reacquire the objects */
1959repeat_validate:
2bf541ff
ML
1960 rq = eb_pin_engine(eb, false);
1961 if (IS_ERR(rq)) {
1962 err = PTR_ERR(rq);
47b08693 1963 rq = NULL;
2bf541ff
ML
1964 goto err;
1965 }
1966
1967 /* We didn't throttle, should be NULL */
1968 GEM_WARN_ON(rq);
1969
c43ce123 1970 err = eb_validate_vmas(eb);
fd1500fc 1971 if (err)
c43ce123
ML
1972 goto err;
1973
1974 GEM_BUG_ON(!eb->batch);
fd1500fc
ML
1975
1976 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1977 if (!have_copy) {
1978 pagefault_disable();
1979 err = eb_relocate_vma(eb, ev);
1980 pagefault_enable();
1981 if (err)
1982 break;
1983 } else {
1984 err = eb_relocate_vma_slow(eb, ev);
1985 if (err)
1986 break;
1987 }
1988 }
1989
c43ce123
ML
1990 if (err == -EDEADLK)
1991 goto err;
1992
fd1500fc
ML
1993 if (err && !have_copy)
1994 goto repeat;
1995
1996 if (err)
1997 goto err;
1998
8e4ba491
ML
1999 /* as last step, parse the command buffer */
2000 err = eb_parse(eb);
2001 if (err)
2002 goto err;
2003
fd1500fc
ML
2004 /*
2005 * Leave the user relocations as are, this is the painfully slow path,
2006 * and we want to avoid the complication of dropping the lock whilst
2007 * having buffers reserved in the aperture and so causing spurious
2008 * ENOSPC for random operations.
2009 */
2010
2011err:
c43ce123
ML
2012 if (err == -EDEADLK) {
2013 eb_release_vmas(eb, false);
2014 err = i915_gem_ww_ctx_backoff(&eb->ww);
2015 if (!err)
2016 goto repeat_validate;
2017 }
2018
fd1500fc
ML
2019 if (err == -EAGAIN)
2020 goto repeat;
2021
2022out:
2023 if (have_copy) {
2024 const unsigned int count = eb->buffer_count;
2025 unsigned int i;
2026
2027 for (i = 0; i < count; i++) {
2028 const struct drm_i915_gem_exec_object2 *entry =
2029 &eb->exec[i];
2030 struct drm_i915_gem_relocation_entry *relocs;
2031
2032 if (!entry->relocation_count)
2033 continue;
2034
2035 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2036 kvfree(relocs);
2037 }
2038 }
2039
2bf541ff
ML
2040 if (rq)
2041 i915_request_put(rq);
2042
fd1500fc
ML
2043 return err;
2044}
2045
8e4ba491 2046static int eb_relocate_parse(struct i915_execbuffer *eb)
54cf91dc 2047{
003d8b91 2048 int err;
2bf541ff
ML
2049 struct i915_request *rq = NULL;
2050 bool throttle = true;
003d8b91 2051
c43ce123 2052retry:
2bf541ff
ML
2053 rq = eb_pin_engine(eb, throttle);
2054 if (IS_ERR(rq)) {
2055 err = PTR_ERR(rq);
2056 rq = NULL;
2057 if (err != -EDEADLK)
2058 return err;
2059
2060 goto err;
2061 }
2062
2063 if (rq) {
2064 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2065
2066 /* Need to drop all locks now for throttling, take slowpath */
2067 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2068 if (err == -ETIME) {
2069 if (nonblock) {
2070 err = -EWOULDBLOCK;
2071 i915_request_put(rq);
2072 goto err;
2073 }
2074 goto slow;
2075 }
2076 i915_request_put(rq);
2077 rq = NULL;
2078 }
2079
2080 /* only throttle once, even if we didn't need to throttle */
2081 throttle = false;
2082
c43ce123
ML
2083 err = eb_validate_vmas(eb);
2084 if (err == -EAGAIN)
2085 goto slow;
2086 else if (err)
2087 goto err;
2889caa9
CW
2088
2089 /* The objects are in their final locations, apply the relocations. */
2090 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 2091 struct eb_vma *ev;
2889caa9 2092
7d6236bb 2093 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
2094 err = eb_relocate_vma(eb, ev);
2095 if (err)
fd1500fc 2096 break;
2889caa9 2097 }
fd1500fc 2098
c43ce123
ML
2099 if (err == -EDEADLK)
2100 goto err;
2101 else if (err)
2102 goto slow;
2103 }
2104
2105 if (!err)
2106 err = eb_parse(eb);
2107
2108err:
2109 if (err == -EDEADLK) {
2110 eb_release_vmas(eb, false);
2111 err = i915_gem_ww_ctx_backoff(&eb->ww);
2112 if (!err)
2113 goto retry;
2889caa9
CW
2114 }
2115
c43ce123
ML
2116 return err;
2117
2118slow:
2bf541ff 2119 err = eb_relocate_parse_slow(eb, rq);
c43ce123
ML
2120 if (err)
2121 /*
2122 * If the user expects the execobject.offset and
2123 * reloc.presumed_offset to be an exact match,
2124 * as for using NO_RELOC, then we cannot update
2125 * the execobject.offset until we have completed
2126 * relocation.
2127 */
2128 eb->args->flags &= ~__EXEC_HAS_RELOC;
2129
2130 return err;
2889caa9
CW
2131}
2132
2889caa9
CW
2133static int eb_move_to_gpu(struct i915_execbuffer *eb)
2134{
2135 const unsigned int count = eb->buffer_count;
c43ce123 2136 unsigned int i = count;
6951e589 2137 int err = 0;
6951e589
CW
2138
2139 while (i--) {
7d6236bb
CW
2140 struct eb_vma *ev = &eb->vma[i];
2141 struct i915_vma *vma = ev->vma;
2142 unsigned int flags = ev->flags;
27173f1f 2143 struct drm_i915_gem_object *obj = vma->obj;
03ade511 2144
6951e589
CW
2145 assert_vma_held(vma);
2146
c7c6e46f 2147 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 2148 struct i915_capture_list *capture;
b0fd47ad
CW
2149
2150 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
6951e589
CW
2151 if (capture) {
2152 capture->next = eb->request->capture_list;
2153 capture->vma = vma;
2154 eb->request->capture_list = capture;
2155 }
b0fd47ad
CW
2156 }
2157
b8f55be6
CW
2158 /*
2159 * If the GPU is not _reading_ through the CPU cache, we need
2160 * to make sure that any writes (both previous GPU writes from
2161 * before a change in snooping levels and normal CPU writes)
2162 * caught in that cache are flushed to main memory.
2163 *
2164 * We want to say
2165 * obj->cache_dirty &&
2166 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2167 * but gcc's optimiser doesn't handle that as well and emits
2168 * two jumps instead of one. Maybe one day...
2169 */
2170 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 2171 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 2172 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
2173 }
2174
6951e589
CW
2175 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2176 err = i915_request_await_object
2177 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2178 }
2889caa9 2179
6951e589
CW
2180 if (err == 0)
2181 err = i915_vma_move_to_active(vma, eb->request, flags);
c59a333f 2182 }
0f1dd022 2183
6951e589
CW
2184 if (unlikely(err))
2185 goto err_skip;
2186
dcd79934 2187 /* Unconditionally flush any chipset caches (for streaming writes). */
baea429d 2188 intel_gt_chipset_flush(eb->engine->gt);
2113184c 2189 return 0;
6951e589
CW
2190
2191err_skip:
36e191f0 2192 i915_request_set_error_once(eb->request, err);
6951e589 2193 return err;
54cf91dc
CW
2194}
2195
00aff3f6 2196static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 2197{
650bc635 2198 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 2199 return -EINVAL;
ed5982e6 2200
2f5945bc 2201 /* Kernel clipping was a DRI1 misfeature */
cda9edd0
LL
2202 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2203 I915_EXEC_USE_EXTENSIONS))) {
cf6e7bac 2204 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 2205 return -EINVAL;
cf6e7bac 2206 }
2f5945bc
CW
2207
2208 if (exec->DR4 == 0xffffffff) {
2209 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2210 exec->DR4 = 0;
2211 }
2212 if (exec->DR1 || exec->DR4)
00aff3f6 2213 return -EINVAL;
2f5945bc
CW
2214
2215 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 2216 return -EINVAL;
2f5945bc 2217
00aff3f6 2218 return 0;
54cf91dc
CW
2219}
2220
e61e0f51 2221static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 2222{
73dec95e
TU
2223 u32 *cs;
2224 int i;
ae662d31 2225
5a833995
CW
2226 if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2227 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
2228 return -EINVAL;
2229 }
ae662d31 2230
e61e0f51 2231 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
2232 if (IS_ERR(cs))
2233 return PTR_ERR(cs);
ae662d31 2234
2889caa9 2235 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2236 for (i = 0; i < 4; i++) {
73dec95e
TU
2237 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2238 *cs++ = 0;
ae662d31 2239 }
2889caa9 2240 *cs++ = MI_NOOP;
e61e0f51 2241 intel_ring_advance(rq, cs);
ae662d31
EA
2242
2243 return 0;
2244}
2245
4f7af194 2246static struct i915_vma *
47b08693
ML
2247shadow_batch_pin(struct i915_execbuffer *eb,
2248 struct drm_i915_gem_object *obj,
32d94048
CW
2249 struct i915_address_space *vm,
2250 unsigned int flags)
4f7af194 2251{
b291ce0a 2252 struct i915_vma *vma;
b291ce0a 2253 int err;
4f7af194 2254
b291ce0a
CW
2255 vma = i915_vma_instance(obj, vm, NULL);
2256 if (IS_ERR(vma))
2257 return vma;
2258
47b08693 2259 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
b291ce0a
CW
2260 if (err)
2261 return ERR_PTR(err);
2262
2263 return vma;
4f7af194
JB
2264}
2265
686c7c35
CW
2266struct eb_parse_work {
2267 struct dma_fence_work base;
2268 struct intel_engine_cs *engine;
2269 struct i915_vma *batch;
2270 struct i915_vma *shadow;
2271 struct i915_vma *trampoline;
c60b93cd
CW
2272 unsigned long batch_offset;
2273 unsigned long batch_length;
686c7c35
CW
2274};
2275
2276static int __eb_parse(struct dma_fence_work *work)
2277{
2278 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2279
2280 return intel_engine_cmd_parser(pw->engine,
2281 pw->batch,
2282 pw->batch_offset,
2283 pw->batch_length,
2284 pw->shadow,
2285 pw->trampoline);
2286}
2287
36c8e356
CW
2288static void __eb_parse_release(struct dma_fence_work *work)
2289{
2290 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2291
2292 if (pw->trampoline)
2293 i915_active_release(&pw->trampoline->active);
2294 i915_active_release(&pw->shadow->active);
2295 i915_active_release(&pw->batch->active);
2296}
2297
686c7c35
CW
2298static const struct dma_fence_work_ops eb_parse_ops = {
2299 .name = "eb_parse",
2300 .work = __eb_parse,
36c8e356 2301 .release = __eb_parse_release,
686c7c35
CW
2302};
2303
57a78ca4
CW
2304static inline int
2305__parser_mark_active(struct i915_vma *vma,
2306 struct intel_timeline *tl,
2307 struct dma_fence *fence)
2308{
2309 struct intel_gt_buffer_pool_node *node = vma->private;
2310
5d934137 2311 return i915_active_ref(&node->active, tl->fence_context, fence);
57a78ca4
CW
2312}
2313
2314static int
2315parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2316{
2317 int err;
2318
2319 mutex_lock(&tl->mutex);
2320
2321 err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2322 if (err)
2323 goto unlock;
2324
2325 if (pw->trampoline) {
2326 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2327 if (err)
2328 goto unlock;
2329 }
2330
2331unlock:
2332 mutex_unlock(&tl->mutex);
2333 return err;
2334}
2335
686c7c35
CW
2336static int eb_parse_pipeline(struct i915_execbuffer *eb,
2337 struct i915_vma *shadow,
2338 struct i915_vma *trampoline)
2339{
2340 struct eb_parse_work *pw;
2341 int err;
2342
c60b93cd
CW
2343 GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2344 GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2345
686c7c35
CW
2346 pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2347 if (!pw)
2348 return -ENOMEM;
2349
7d6236bb 2350 err = i915_active_acquire(&eb->batch->vma->active);
36c8e356
CW
2351 if (err)
2352 goto err_free;
2353
2354 err = i915_active_acquire(&shadow->active);
2355 if (err)
2356 goto err_batch;
2357
2358 if (trampoline) {
2359 err = i915_active_acquire(&trampoline->active);
2360 if (err)
2361 goto err_shadow;
2362 }
2363
686c7c35
CW
2364 dma_fence_work_init(&pw->base, &eb_parse_ops);
2365
2366 pw->engine = eb->engine;
7d6236bb 2367 pw->batch = eb->batch->vma;
686c7c35
CW
2368 pw->batch_offset = eb->batch_start_offset;
2369 pw->batch_length = eb->batch_len;
2370 pw->shadow = shadow;
2371 pw->trampoline = trampoline;
2372
57a78ca4
CW
2373 /* Mark active refs early for this worker, in case we get interrupted */
2374 err = parser_mark_active(pw, eb->context->timeline);
2375 if (err)
2376 goto err_commit;
2377
686c7c35
CW
2378 err = dma_resv_reserve_shared(pw->batch->resv, 1);
2379 if (err)
c43ce123 2380 goto err_commit;
686c7c35
CW
2381
2382 /* Wait for all writes (and relocs) into the batch to complete */
2383 err = i915_sw_fence_await_reservation(&pw->base.chain,
2384 pw->batch->resv, NULL, false,
2385 0, I915_FENCE_GFP);
2386 if (err < 0)
c43ce123 2387 goto err_commit;
686c7c35
CW
2388
2389 /* Keep the batch alive and unwritten as we parse */
2390 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2391
686c7c35 2392 /* Force execution to wait for completion of the parser */
686c7c35 2393 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
686c7c35 2394
92581f9f 2395 dma_fence_work_commit_imm(&pw->base);
686c7c35
CW
2396 return 0;
2397
57a78ca4
CW
2398err_commit:
2399 i915_sw_fence_set_error_once(&pw->base.chain, err);
2400 dma_fence_work_commit_imm(&pw->base);
2401 return err;
2402
36c8e356
CW
2403err_shadow:
2404 i915_active_release(&shadow->active);
2405err_batch:
7d6236bb 2406 i915_active_release(&eb->batch->vma->active);
36c8e356 2407err_free:
686c7c35
CW
2408 kfree(pw);
2409 return err;
2410}
2411
47b08693
ML
2412static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2413{
2414 /*
2415 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2416 * batch" bit. Hence we need to pin secure batches into the global gtt.
2417 * hsw should have this fixed, but bdw mucks it up again. */
2418 if (eb->batch_flags & I915_DISPATCH_SECURE)
2419 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2420
2421 return NULL;
2422}
2423
51696691 2424static int eb_parse(struct i915_execbuffer *eb)
71745376 2425{
baa89ba3 2426 struct drm_i915_private *i915 = eb->i915;
c43ce123 2427 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
47b08693 2428 struct i915_vma *shadow, *trampoline, *batch;
d5e87821 2429 unsigned long len;
2889caa9 2430 int err;
71745376 2431
47b08693
ML
2432 if (!eb_use_cmdparser(eb)) {
2433 batch = eb_dispatch_secure(eb, eb->batch->vma);
2434 if (IS_ERR(batch))
2435 return PTR_ERR(batch);
2436
2437 goto secure_batch;
2438 }
51696691 2439
32d94048
CW
2440 len = eb->batch_len;
2441 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2442 /*
2443 * ppGTT backed shadow buffers must be mapped RO, to prevent
2444 * post-scan tampering
2445 */
2446 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2447 drm_dbg(&i915->drm,
2448 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2449 return -EINVAL;
2450 }
2451 } else {
2452 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2453 }
d5e87821
CW
2454 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2455 return -EINVAL;
32d94048 2456
c43ce123
ML
2457 if (!pool) {
2458 pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2459 if (IS_ERR(pool))
2460 return PTR_ERR(pool);
2461 eb->batch_pool = pool;
2462 }
71745376 2463
c43ce123
ML
2464 err = i915_gem_object_lock(pool->obj, &eb->ww);
2465 if (err)
2466 goto err;
71745376 2467
47b08693 2468 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
32d94048
CW
2469 if (IS_ERR(shadow)) {
2470 err = PTR_ERR(shadow);
f8c08d8f 2471 goto err;
51696691 2472 }
32d94048 2473 i915_gem_object_set_readonly(shadow->obj);
57a78ca4 2474 shadow->private = pool;
32d94048
CW
2475
2476 trampoline = NULL;
2477 if (CMDPARSER_USES_GGTT(eb->i915)) {
2478 trampoline = shadow;
2479
47b08693 2480 shadow = shadow_batch_pin(eb, pool->obj,
32d94048
CW
2481 &eb->engine->gt->ggtt->vm,
2482 PIN_GLOBAL);
2483 if (IS_ERR(shadow)) {
2484 err = PTR_ERR(shadow);
2485 shadow = trampoline;
2486 goto err_shadow;
2487 }
57a78ca4 2488 shadow->private = pool;
32d94048
CW
2489
2490 eb->batch_flags |= I915_DISPATCH_SECURE;
2491 }
f8c08d8f 2492
47b08693
ML
2493 batch = eb_dispatch_secure(eb, shadow);
2494 if (IS_ERR(batch)) {
2495 err = PTR_ERR(batch);
2496 goto err_trampoline;
2497 }
2498
686c7c35 2499 err = eb_parse_pipeline(eb, shadow, trampoline);
32d94048 2500 if (err)
47b08693 2501 goto err_unpin_batch;
71745376 2502
7d6236bb 2503 eb->batch = &eb->vma[eb->buffer_count++];
47b08693
ML
2504 eb->batch->vma = i915_vma_get(shadow);
2505 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
71745376 2506
32d94048 2507 eb->trampoline = trampoline;
4f7af194 2508 eb->batch_start_offset = 0;
4f7af194 2509
47b08693
ML
2510secure_batch:
2511 if (batch) {
2512 eb->batch = &eb->vma[eb->buffer_count++];
2513 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2514 eb->batch->vma = i915_vma_get(batch);
2515 }
51696691 2516 return 0;
b40d7378 2517
47b08693
ML
2518err_unpin_batch:
2519 if (batch)
2520 i915_vma_unpin(batch);
32d94048
CW
2521err_trampoline:
2522 if (trampoline)
2523 i915_vma_unpin(trampoline);
2524err_shadow:
2525 i915_vma_unpin(shadow);
b40d7378 2526err:
51696691 2527 return err;
71745376 2528}
5c6c6003 2529
7d6236bb 2530static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
78382593 2531{
2889caa9 2532 int err;
78382593 2533
2889caa9
CW
2534 err = eb_move_to_gpu(eb);
2535 if (err)
2536 return err;
78382593 2537
650bc635 2538 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
2539 err = i915_reset_gen7_sol_offsets(eb->request);
2540 if (err)
2541 return err;
78382593
OM
2542 }
2543
85474441
CW
2544 /*
2545 * After we completed waiting for other engines (using HW semaphores)
2546 * then we can signal that this request/batch is ready to run. This
2547 * allows us to determine if the batch is still waiting on the GPU
2548 * or actually running by checking the breadcrumb.
2549 */
2550 if (eb->engine->emit_init_breadcrumb) {
2551 err = eb->engine->emit_init_breadcrumb(eb->request);
2552 if (err)
2553 return err;
2554 }
2555
2889caa9 2556 err = eb->engine->emit_bb_start(eb->request,
7d6236bb 2557 batch->node.start +
650bc635
CW
2558 eb->batch_start_offset,
2559 eb->batch_len,
2889caa9
CW
2560 eb->batch_flags);
2561 if (err)
2562 return err;
78382593 2563
32d94048
CW
2564 if (eb->trampoline) {
2565 GEM_BUG_ON(eb->batch_start_offset);
2566 err = eb->engine->emit_bb_start(eb->request,
2567 eb->trampoline->node.start +
2568 eb->batch_len,
2569 0, 0);
2570 if (err)
2571 return err;
2572 }
2573
9f3ccd40 2574 if (intel_context_nopreempt(eb->context))
e1c31fb5 2575 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
9cd20ef7 2576
2f5945bc 2577 return 0;
78382593
OM
2578}
2579
d5b2a3a4
CW
2580static int num_vcs_engines(const struct drm_i915_private *i915)
2581{
792592e7 2582 return hweight64(VDBOX_MASK(&i915->gt));
d5b2a3a4
CW
2583}
2584
204bcfef 2585/*
a8ebba75 2586 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2587 * The engine index is returned.
a8ebba75 2588 */
de1add36 2589static unsigned int
c80ff16e
CW
2590gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2591 struct drm_file *file)
a8ebba75 2592{
a8ebba75
ZY
2593 struct drm_i915_file_private *file_priv = file->driver_priv;
2594
de1add36 2595 /* Check whether the file_priv has already selected one ring. */
6f633402 2596 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2597 file_priv->bsd_engine =
2598 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2599
c80ff16e 2600 return file_priv->bsd_engine;
d23db88c
CW
2601}
2602
5e2a0419 2603static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2604 [I915_EXEC_DEFAULT] = RCS0,
2605 [I915_EXEC_RENDER] = RCS0,
2606 [I915_EXEC_BLT] = BCS0,
2607 [I915_EXEC_BSD] = VCS0,
2608 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2609};
2610
2bf541ff 2611static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
e5dadff4
CW
2612{
2613 struct intel_ring *ring = ce->ring;
2614 struct intel_timeline *tl = ce->timeline;
2615 struct i915_request *rq;
2616
2617 /*
2618 * Completely unscientific finger-in-the-air estimates for suitable
2619 * maximum user request size (to avoid blocking) and then backoff.
2620 */
2621 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2622 return NULL;
2623
2624 /*
2625 * Find a request that after waiting upon, there will be at least half
2626 * the ring available. The hysteresis allows us to compete for the
2627 * shared ring and should mean that we sleep less often prior to
2628 * claiming our resources, but not so long that the ring completely
2629 * drains before we can submit our next request.
2630 */
2631 list_for_each_entry(rq, &tl->requests, link) {
2632 if (rq->ring != ring)
2633 continue;
2634
2635 if (__intel_ring_space(rq->postfix,
2636 ring->emit, ring->size) > ring->size / 2)
2637 break;
2638 }
2639 if (&rq->link == &tl->requests)
2640 return NULL; /* weird, we will check again later for real */
2641
2642 return i915_request_get(rq);
2643}
2644
2bf541ff 2645static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
e5dadff4 2646{
2bf541ff 2647 struct intel_context *ce = eb->context;
e5dadff4 2648 struct intel_timeline *tl;
2bf541ff 2649 struct i915_request *rq = NULL;
e5dadff4
CW
2650 int err;
2651
2bf541ff 2652 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
8f2a1057 2653
9f3ccd40 2654 if (unlikely(intel_context_is_banned(ce)))
2bf541ff 2655 return ERR_PTR(-EIO);
9f3ccd40 2656
8f2a1057
CW
2657 /*
2658 * Pinning the contexts may generate requests in order to acquire
2659 * GGTT space, so do this first before we reserve a seqno for
2660 * ourselves.
2661 */
47b08693 2662 err = intel_context_pin_ww(ce, &eb->ww);
fa9f6681 2663 if (err)
2bf541ff 2664 return ERR_PTR(err);
8f2a1057 2665
a4e57f90
CW
2666 /*
2667 * Take a local wakeref for preparing to dispatch the execbuf as
2668 * we expect to access the hardware fairly frequently in the
2669 * process, and require the engine to be kept awake between accesses.
2670 * Upon dispatch, we acquire another prolonged wakeref that we hold
2671 * until the timeline is idle, which in turn releases the wakeref
2672 * taken on the engine, and the parent device.
2673 */
e5dadff4
CW
2674 tl = intel_context_timeline_lock(ce);
2675 if (IS_ERR(tl)) {
2bf541ff
ML
2676 intel_context_unpin(ce);
2677 return ERR_CAST(tl);
e5dadff4 2678 }
a4e57f90
CW
2679
2680 intel_context_enter(ce);
2bf541ff
ML
2681 if (throttle)
2682 rq = eb_throttle(eb, ce);
e5dadff4
CW
2683 intel_context_timeline_unlock(tl);
2684
2bf541ff
ML
2685 eb->args->flags |= __EXEC_ENGINE_PINNED;
2686 return rq;
8f2a1057
CW
2687}
2688
e5dadff4 2689static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2690{
a4e57f90 2691 struct intel_context *ce = eb->context;
75d0a7f3 2692 struct intel_timeline *tl = ce->timeline;
a4e57f90 2693
2bf541ff
ML
2694 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2695 return;
2696
2697 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2698
a4e57f90
CW
2699 mutex_lock(&tl->mutex);
2700 intel_context_exit(ce);
2701 mutex_unlock(&tl->mutex);
2702
2850748e 2703 intel_context_unpin(ce);
8f2a1057 2704}
de1add36 2705
5e2a0419 2706static unsigned int
b49a7d51 2707eb_select_legacy_ring(struct i915_execbuffer *eb)
de1add36 2708{
8f2a1057 2709 struct drm_i915_private *i915 = eb->i915;
b49a7d51 2710 struct drm_i915_gem_execbuffer2 *args = eb->args;
de1add36 2711 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2712
5e2a0419
CW
2713 if (user_ring_id != I915_EXEC_BSD &&
2714 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2715 drm_dbg(&i915->drm,
2716 "execbuf with non bsd ring but with invalid "
2717 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2718 return -1;
de1add36
TU
2719 }
2720
d5b2a3a4 2721 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2722 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2723
2724 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
b49a7d51 2725 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
de1add36
TU
2726 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2727 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2728 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2729 bsd_idx--;
2730 } else {
baa89ba3
WK
2731 drm_dbg(&i915->drm,
2732 "execbuf with unknown bsd ring: %u\n",
2733 bsd_idx);
5e2a0419 2734 return -1;
de1add36
TU
2735 }
2736
5e2a0419 2737 return _VCS(bsd_idx);
de1add36
TU
2738 }
2739
5e2a0419 2740 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2741 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2742 user_ring_id);
5e2a0419 2743 return -1;
de1add36
TU
2744 }
2745
5e2a0419
CW
2746 return user_ring_map[user_ring_id];
2747}
2748
2749static int
2bf541ff 2750eb_select_engine(struct i915_execbuffer *eb)
5e2a0419
CW
2751{
2752 struct intel_context *ce;
2753 unsigned int idx;
2754 int err;
2755
976b55f0 2756 if (i915_gem_context_user_engines(eb->gem_context))
b49a7d51 2757 idx = eb->args->flags & I915_EXEC_RING_MASK;
976b55f0 2758 else
b49a7d51 2759 idx = eb_select_legacy_ring(eb);
5e2a0419
CW
2760
2761 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2762 if (IS_ERR(ce))
2763 return PTR_ERR(ce);
2764
2bf541ff 2765 intel_gt_pm_get(ce->engine->gt);
5e2a0419 2766
2bf541ff
ML
2767 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2768 err = intel_context_alloc_state(ce);
2769 if (err)
2770 goto err;
2771 }
2772
2773 /*
2774 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2775 * EIO if the GPU is already wedged.
2776 */
2777 err = intel_gt_terminally_wedged(ce->engine->gt);
2778 if (err)
2779 goto err;
2780
2781 eb->context = ce;
2782 eb->engine = ce->engine;
2783
2784 /*
2785 * Make sure engine pool stays alive even if we call intel_context_put
2786 * during ww handling. The pool is destroyed when last pm reference
2787 * is dropped, which breaks our -EDEADLK handling.
2788 */
2789 return err;
2790
2791err:
2792 intel_gt_pm_put(ce->engine->gt);
2793 intel_context_put(ce);
5e2a0419 2794 return err;
de1add36
TU
2795}
2796
2bf541ff
ML
2797static void
2798eb_put_engine(struct i915_execbuffer *eb)
2799{
2800 intel_gt_pm_put(eb->engine->gt);
2801 intel_context_put(eb->context);
2802}
2803
cf6e7bac 2804static void
13149e8b 2805__free_fence_array(struct eb_fence *fences, unsigned int n)
cf6e7bac 2806{
13149e8b 2807 while (n--) {
cda9edd0 2808 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
13149e8b
LL
2809 dma_fence_put(fences[n].dma_fence);
2810 kfree(fences[n].chain_fence);
2811 }
cf6e7bac
JE
2812 kvfree(fences);
2813}
2814
cda9edd0 2815static int
13149e8b
LL
2816add_timeline_fence_array(struct i915_execbuffer *eb,
2817 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
cf6e7bac 2818{
13149e8b
LL
2819 struct drm_i915_gem_exec_fence __user *user_fences;
2820 u64 __user *user_values;
2821 struct eb_fence *f;
2822 u64 nfences;
2823 int err = 0;
cf6e7bac 2824
13149e8b
LL
2825 nfences = timeline_fences->fence_count;
2826 if (!nfences)
cda9edd0 2827 return 0;
cf6e7bac 2828
d710fc16
CW
2829 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2830 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2831 if (nfences > min_t(unsigned long,
13149e8b
LL
2832 ULONG_MAX / sizeof(*user_fences),
2833 SIZE_MAX / sizeof(*f)) - eb->num_fences)
cda9edd0 2834 return -EINVAL;
cf6e7bac 2835
13149e8b
LL
2836 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2837 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2838 return -EFAULT;
2839
2840 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2841 if (!access_ok(user_values, nfences * sizeof(*user_values)))
cda9edd0 2842 return -EFAULT;
cf6e7bac 2843
13149e8b
LL
2844 f = krealloc(eb->fences,
2845 (eb->num_fences + nfences) * sizeof(*f),
2846 __GFP_NOWARN | GFP_KERNEL);
2847 if (!f)
cda9edd0 2848 return -ENOMEM;
cf6e7bac 2849
13149e8b
LL
2850 eb->fences = f;
2851 f += eb->num_fences;
2852
2853 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2854 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2855
2856 while (nfences--) {
2857 struct drm_i915_gem_exec_fence user_fence;
cf6e7bac 2858 struct drm_syncobj *syncobj;
13149e8b
LL
2859 struct dma_fence *fence = NULL;
2860 u64 point;
2861
2862 if (__copy_from_user(&user_fence,
2863 user_fences++,
2864 sizeof(user_fence)))
2865 return -EFAULT;
2866
2867 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2868 return -EINVAL;
2869
2870 if (__get_user(point, user_values++))
2871 return -EFAULT;
2872
2873 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2874 if (!syncobj) {
2875 DRM_DEBUG("Invalid syncobj handle provided\n");
2876 return -ENOENT;
2877 }
2878
2879 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac 2880
13149e8b
LL
2881 if (!fence && user_fence.flags &&
2882 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2883 DRM_DEBUG("Syncobj handle has no fence\n");
2884 drm_syncobj_put(syncobj);
2885 return -EINVAL;
cf6e7bac
JE
2886 }
2887
13149e8b
LL
2888 if (fence)
2889 err = dma_fence_chain_find_seqno(&fence, point);
2890
2891 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2892 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
da1ea128 2893 dma_fence_put(fence);
13149e8b
LL
2894 drm_syncobj_put(syncobj);
2895 return err;
2896 }
2897
2898 /*
2899 * A point might have been signaled already and
2900 * garbage collected from the timeline. In this case
2901 * just ignore the point and carry on.
2902 */
2903 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2904 drm_syncobj_put(syncobj);
2905 continue;
2906 }
2907
2908 /*
2909 * For timeline syncobjs we need to preallocate chains for
2910 * later signaling.
2911 */
2912 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2913 /*
2914 * Waiting and signaling the same point (when point !=
2915 * 0) would break the timeline.
2916 */
2917 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2918 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2919 dma_fence_put(fence);
2920 drm_syncobj_put(syncobj);
2921 return -EINVAL;
2922 }
2923
2924 f->chain_fence =
2925 kmalloc(sizeof(*f->chain_fence),
2926 GFP_KERNEL);
2927 if (!f->chain_fence) {
2928 drm_syncobj_put(syncobj);
2929 dma_fence_put(fence);
2930 return -ENOMEM;
2931 }
2932 } else {
2933 f->chain_fence = NULL;
ebcaa1ff
TU
2934 }
2935
13149e8b
LL
2936 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2937 f->dma_fence = fence;
2938 f->value = point;
2939 f++;
2940 eb->num_fences++;
2941 }
2942
2943 return 0;
2944}
2945
2946static int add_fence_array(struct i915_execbuffer *eb)
2947{
2948 struct drm_i915_gem_execbuffer2 *args = eb->args;
2949 struct drm_i915_gem_exec_fence __user *user;
2950 unsigned long num_fences = args->num_cliprects;
2951 struct eb_fence *f;
2952
2953 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2954 return 0;
2955
2956 if (!num_fences)
2957 return 0;
2958
2959 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2960 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2961 if (num_fences > min_t(unsigned long,
2962 ULONG_MAX / sizeof(*user),
2963 SIZE_MAX / sizeof(*f) - eb->num_fences))
2964 return -EINVAL;
2965
2966 user = u64_to_user_ptr(args->cliprects_ptr);
2967 if (!access_ok(user, num_fences * sizeof(*user)))
2968 return -EFAULT;
2969
2970 f = krealloc(eb->fences,
2971 (eb->num_fences + num_fences) * sizeof(*f),
2972 __GFP_NOWARN | GFP_KERNEL);
2973 if (!f)
2974 return -ENOMEM;
2975
2976 eb->fences = f;
2977 f += eb->num_fences;
2978 while (num_fences--) {
2979 struct drm_i915_gem_exec_fence user_fence;
2980 struct drm_syncobj *syncobj;
2981 struct dma_fence *fence = NULL;
2982
2983 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2984 return -EFAULT;
2985
2986 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2987 return -EINVAL;
2988
2989 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
cf6e7bac
JE
2990 if (!syncobj) {
2991 DRM_DEBUG("Invalid syncobj handle provided\n");
13149e8b
LL
2992 return -ENOENT;
2993 }
2994
2995 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2996 fence = drm_syncobj_fence_get(syncobj);
2997 if (!fence) {
2998 DRM_DEBUG("Syncobj handle has no fence\n");
2999 drm_syncobj_put(syncobj);
3000 return -EINVAL;
3001 }
cf6e7bac
JE
3002 }
3003
ebcaa1ff
TU
3004 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3005 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3006
13149e8b
LL
3007 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3008 f->dma_fence = fence;
3009 f->value = 0;
3010 f->chain_fence = NULL;
3011 f++;
3012 eb->num_fences++;
cf6e7bac
JE
3013 }
3014
cda9edd0 3015 return 0;
13149e8b 3016}
cf6e7bac 3017
13149e8b
LL
3018static void put_fence_array(struct eb_fence *fences, int num_fences)
3019{
3020 if (fences)
3021 __free_fence_array(fences, num_fences);
cf6e7bac
JE
3022}
3023
3024static int
cda9edd0 3025await_fence_array(struct i915_execbuffer *eb)
cf6e7bac 3026{
cf6e7bac
JE
3027 unsigned int n;
3028 int err;
3029
13149e8b 3030 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac 3031 struct drm_syncobj *syncobj;
cf6e7bac
JE
3032 unsigned int flags;
3033
cda9edd0 3034 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac 3035
13149e8b
LL
3036 if (!eb->fences[n].dma_fence)
3037 continue;
cf6e7bac 3038
13149e8b
LL
3039 err = i915_request_await_dma_fence(eb->request,
3040 eb->fences[n].dma_fence);
cf6e7bac
JE
3041 if (err < 0)
3042 return err;
3043 }
3044
3045 return 0;
3046}
3047
13149e8b 3048static void signal_fence_array(const struct i915_execbuffer *eb)
cf6e7bac 3049{
cf6e7bac
JE
3050 struct dma_fence * const fence = &eb->request->fence;
3051 unsigned int n;
3052
13149e8b 3053 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac
JE
3054 struct drm_syncobj *syncobj;
3055 unsigned int flags;
3056
cda9edd0 3057 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac
JE
3058 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3059 continue;
3060
13149e8b
LL
3061 if (eb->fences[n].chain_fence) {
3062 drm_syncobj_add_point(syncobj,
3063 eb->fences[n].chain_fence,
3064 fence,
3065 eb->fences[n].value);
3066 /*
3067 * The chain's ownership is transferred to the
3068 * timeline.
3069 */
3070 eb->fences[n].chain_fence = NULL;
3071 } else {
3072 drm_syncobj_replace_fence(syncobj, fence);
3073 }
cf6e7bac
JE
3074 }
3075}
3076
13149e8b
LL
3077static int
3078parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3079{
3080 struct i915_execbuffer *eb = data;
3081 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3082
3083 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3084 return -EFAULT;
3085
3086 return add_timeline_fence_array(eb, &timeline_fences);
3087}
3088
61231f6b
CW
3089static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3090{
3091 struct i915_request *rq, *rn;
3092
3093 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3094 if (rq == end || !i915_request_retire(rq))
3095 break;
3096}
3097
ba38b79e 3098static int eb_request_add(struct i915_execbuffer *eb, int err)
61231f6b
CW
3099{
3100 struct i915_request *rq = eb->request;
3101 struct intel_timeline * const tl = i915_request_timeline(rq);
3102 struct i915_sched_attr attr = {};
3103 struct i915_request *prev;
3104
3105 lockdep_assert_held(&tl->mutex);
3106 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3107
3108 trace_i915_request_add(rq);
3109
3110 prev = __i915_request_commit(rq);
3111
3112 /* Check that the context wasn't destroyed before submission */
207e4a71 3113 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 3114 attr = eb->gem_context->sched;
61231f6b
CW
3115 } else {
3116 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
3117 i915_request_set_error_once(rq, -ENOENT);
3118 __i915_request_skip(rq);
ba38b79e 3119 err = -ENOENT; /* override any transient errors */
61231f6b
CW
3120 }
3121
61231f6b 3122 __i915_request_queue(rq, &attr);
61231f6b
CW
3123
3124 /* Try to clean up the client's timeline after submitting the request */
3125 if (prev)
3126 retire_requests(tl, prev);
3127
3128 mutex_unlock(&tl->mutex);
ba38b79e
CW
3129
3130 return err;
61231f6b
CW
3131}
3132
cda9edd0 3133static const i915_user_extension_fn execbuf_extensions[] = {
13149e8b 3134 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
cda9edd0
LL
3135};
3136
3137static int
3138parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3139 struct i915_execbuffer *eb)
3140{
cda9edd0
LL
3141 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3142 return 0;
3143
3144 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3145 * have another flag also using it at the same time.
3146 */
3147 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3148 return -EINVAL;
3149
3150 if (args->num_cliprects != 0)
3151 return -EINVAL;
3152
3153 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3154 execbuf_extensions,
3155 ARRAY_SIZE(execbuf_extensions),
3156 eb);
3157}
3158
54cf91dc 3159static int
650bc635 3160i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
3161 struct drm_file *file,
3162 struct drm_i915_gem_execbuffer2 *args,
cda9edd0 3163 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 3164{
44157641 3165 struct drm_i915_private *i915 = to_i915(dev);
650bc635 3166 struct i915_execbuffer eb;
fec0445c
CW
3167 struct dma_fence *in_fence = NULL;
3168 struct sync_file *out_fence = NULL;
7d6236bb 3169 struct i915_vma *batch;
fec0445c 3170 int out_fence_fd = -1;
2889caa9 3171 int err;
432e58ed 3172
74c1c694 3173 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
3174 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3175 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 3176
44157641 3177 eb.i915 = i915;
650bc635
CW
3178 eb.file = file;
3179 eb.args = args;
ad5d95e4 3180 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 3181 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 3182
650bc635 3183 eb.exec = exec;
8ae275c2
ML
3184 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3185 eb.vma[0].vma = NULL;
c43ce123 3186 eb.reloc_pool = eb.batch_pool = NULL;
2bf541ff 3187 eb.reloc_context = NULL;
c7c6e46f 3188
2889caa9 3189 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
3190 reloc_cache_init(&eb.reloc_cache, eb.i915);
3191
2889caa9 3192 eb.buffer_count = args->buffer_count;
650bc635
CW
3193 eb.batch_start_offset = args->batch_start_offset;
3194 eb.batch_len = args->batch_len;
32d94048 3195 eb.trampoline = NULL;
650bc635 3196
cda9edd0 3197 eb.fences = NULL;
13149e8b 3198 eb.num_fences = 0;
cda9edd0 3199
2889caa9 3200 eb.batch_flags = 0;
d7d4eedd 3201 if (args->flags & I915_EXEC_SECURE) {
44157641
JB
3202 if (INTEL_GEN(i915) >= 11)
3203 return -ENODEV;
3204
3205 /* Return -EPERM to trigger fallback code on old binaries. */
3206 if (!HAS_SECURE_BATCHES(i915))
3207 return -EPERM;
3208
b3ac9f25 3209 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 3210 return -EPERM;
d7d4eedd 3211
2889caa9 3212 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 3213 }
b45305fc 3214 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 3215 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 3216
13149e8b
LL
3217 err = parse_execbuf2_extensions(args, &eb);
3218 if (err)
3219 goto err_ext;
3220
3221 err = add_fence_array(&eb);
3222 if (err)
3223 goto err_ext;
3224
889333c7
CW
3225#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3226 if (args->flags & IN_FENCES) {
3227 if ((args->flags & IN_FENCES) == IN_FENCES)
3228 return -EINVAL;
3229
fec0445c 3230 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
13149e8b
LL
3231 if (!in_fence) {
3232 err = -EINVAL;
3233 goto err_ext;
3234 }
fec0445c 3235 }
889333c7 3236#undef IN_FENCES
a88b6e4c 3237
fec0445c
CW
3238 if (args->flags & I915_EXEC_FENCE_OUT) {
3239 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3240 if (out_fence_fd < 0) {
2889caa9 3241 err = out_fence_fd;
889333c7 3242 goto err_in_fence;
fec0445c
CW
3243 }
3244 }
3245
cda9edd0
LL
3246 err = eb_create(&eb);
3247 if (err)
13149e8b 3248 goto err_out_fence;
cda9edd0 3249
4d470f73 3250 GEM_BUG_ON(!eb.lut_size);
2889caa9 3251
1acfc104
CW
3252 err = eb_select_context(&eb);
3253 if (unlikely(err))
3254 goto err_destroy;
3255
2bf541ff 3256 err = eb_select_engine(&eb);
d6f328bf 3257 if (unlikely(err))
e5dadff4 3258 goto err_context;
d6f328bf 3259
c43ce123
ML
3260 err = eb_lookup_vmas(&eb);
3261 if (err) {
3262 eb_release_vmas(&eb, true);
3263 goto err_engine;
3264 }
3265
3266 i915_gem_ww_ctx_init(&eb.ww, true);
3267
8e4ba491 3268 err = eb_relocate_parse(&eb);
1f727d9e 3269 if (err) {
2889caa9
CW
3270 /*
3271 * If the user expects the execobject.offset and
3272 * reloc.presumed_offset to be an exact match,
3273 * as for using NO_RELOC, then we cannot update
3274 * the execobject.offset until we have completed
3275 * relocation.
3276 */
3277 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 3278 goto err_vma;
1f727d9e 3279 }
54cf91dc 3280
c43ce123 3281 ww_acquire_done(&eb.ww.ctx);
7d6236bb 3282
7d6236bb 3283 batch = eb.batch->vma;
d7d4eedd 3284
7dd4f672
CW
3285 /* All GPU relocation batches must be submitted prior to the user rq */
3286 GEM_BUG_ON(eb.reloc_cache.rq);
3287
0c8dac88 3288 /* Allocate a request for this batch buffer nice and early. */
8f2a1057 3289 eb.request = i915_request_create(eb.context);
650bc635 3290 if (IS_ERR(eb.request)) {
2889caa9 3291 err = PTR_ERR(eb.request);
47b08693 3292 goto err_vma;
26827088 3293 }
0c8dac88 3294
fec0445c 3295 if (in_fence) {
889333c7
CW
3296 if (args->flags & I915_EXEC_FENCE_SUBMIT)
3297 err = i915_request_await_execution(eb.request,
3298 in_fence,
3299 eb.engine->bond_execute);
3300 else
3301 err = i915_request_await_dma_fence(eb.request,
3302 in_fence);
a88b6e4c
CW
3303 if (err < 0)
3304 goto err_request;
3305 }
3306
13149e8b 3307 if (eb.fences) {
cda9edd0 3308 err = await_fence_array(&eb);
cf6e7bac
JE
3309 if (err)
3310 goto err_request;
3311 }
3312
fec0445c 3313 if (out_fence_fd != -1) {
650bc635 3314 out_fence = sync_file_create(&eb.request->fence);
fec0445c 3315 if (!out_fence) {
2889caa9 3316 err = -ENOMEM;
fec0445c
CW
3317 goto err_request;
3318 }
3319 }
3320
2889caa9
CW
3321 /*
3322 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
3323 * active_list, and so will hold the active reference. Only when this
3324 * request is retired will the the batch_obj be moved onto the
3325 * inactive_list and lose its active reference. Hence we do not need
3326 * to explicitly hold another reference here.
3327 */
7d6236bb 3328 eb.request->batch = batch;
c43ce123
ML
3329 if (eb.batch_pool)
3330 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
5f19e2bf 3331
e61e0f51 3332 trace_i915_request_queue(eb.request, eb.batch_flags);
7d6236bb 3333 err = eb_submit(&eb, batch);
aa9b7810 3334err_request:
e14177f1 3335 i915_request_get(eb.request);
ba38b79e 3336 err = eb_request_add(&eb, err);
c8659efa 3337
13149e8b 3338 if (eb.fences)
cda9edd0 3339 signal_fence_array(&eb);
cf6e7bac 3340
fec0445c 3341 if (out_fence) {
2889caa9 3342 if (err == 0) {
fec0445c 3343 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 3344 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
3345 args->rsvd2 |= (u64)out_fence_fd << 32;
3346 out_fence_fd = -1;
3347 } else {
3348 fput(out_fence->file);
3349 }
3350 }
e14177f1 3351 i915_request_put(eb.request);
54cf91dc 3352
2889caa9 3353err_vma:
c43ce123 3354 eb_release_vmas(&eb, true);
32d94048
CW
3355 if (eb.trampoline)
3356 i915_vma_unpin(eb.trampoline);
c43ce123
ML
3357 WARN_ON(err == -EDEADLK);
3358 i915_gem_ww_ctx_fini(&eb.ww);
3359
3360 if (eb.batch_pool)
3361 intel_gt_buffer_pool_put(eb.batch_pool);
3362 if (eb.reloc_pool)
3363 intel_gt_buffer_pool_put(eb.reloc_pool);
2bf541ff
ML
3364 if (eb.reloc_context)
3365 intel_context_put(eb.reloc_context);
c43ce123 3366err_engine:
2bf541ff 3367 eb_put_engine(&eb);
a4e57f90 3368err_context:
8f2a1057 3369 i915_gem_context_put(eb.gem_context);
1acfc104 3370err_destroy:
2889caa9 3371 eb_destroy(&eb);
4d470f73 3372err_out_fence:
fec0445c
CW
3373 if (out_fence_fd != -1)
3374 put_unused_fd(out_fence_fd);
4a04e371 3375err_in_fence:
fec0445c 3376 dma_fence_put(in_fence);
13149e8b
LL
3377err_ext:
3378 put_fence_array(eb.fences, eb.num_fences);
2889caa9 3379 return err;
54cf91dc
CW
3380}
3381
d710fc16
CW
3382static size_t eb_element_size(void)
3383{
8ae275c2 3384 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
3385}
3386
3387static bool check_buffer_count(size_t count)
3388{
3389 const size_t sz = eb_element_size();
3390
3391 /*
3392 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3393 * array size (see eb_create()). Otherwise, we can accept an array as
3394 * large as can be addressed (though use large arrays at your peril)!
3395 */
3396
3397 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3398}
3399
54cf91dc
CW
3400/*
3401 * Legacy execbuffer just creates an exec2 list from the original exec object
3402 * list array and passes it to the real function.
3403 */
3404int
6a20fe7b
VS
3405i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file)
54cf91dc 3407{
d0bf4582 3408 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc
CW
3409 struct drm_i915_gem_execbuffer *args = data;
3410 struct drm_i915_gem_execbuffer2 exec2;
3411 struct drm_i915_gem_exec_object *exec_list = NULL;
3412 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
d710fc16 3413 const size_t count = args->buffer_count;
2889caa9
CW
3414 unsigned int i;
3415 int err;
54cf91dc 3416
d710fc16 3417 if (!check_buffer_count(count)) {
d0bf4582 3418 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3419 return -EINVAL;
3420 }
3421
2889caa9
CW
3422 exec2.buffers_ptr = args->buffers_ptr;
3423 exec2.buffer_count = args->buffer_count;
3424 exec2.batch_start_offset = args->batch_start_offset;
3425 exec2.batch_len = args->batch_len;
3426 exec2.DR1 = args->DR1;
3427 exec2.DR4 = args->DR4;
3428 exec2.num_cliprects = args->num_cliprects;
3429 exec2.cliprects_ptr = args->cliprects_ptr;
3430 exec2.flags = I915_EXEC_RENDER;
3431 i915_execbuffer2_set_context_id(exec2, 0);
3432
00aff3f6
TU
3433 err = i915_gem_check_execbuffer(&exec2);
3434 if (err)
3435 return err;
2889caa9 3436
54cf91dc 3437 /* Copy in the exec list from userland */
d710fc16 3438 exec_list = kvmalloc_array(count, sizeof(*exec_list),
0ee931c4 3439 __GFP_NOWARN | GFP_KERNEL);
47b08693
ML
3440
3441 /* Allocate extra slots for use by the command parser */
3442 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3443 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3444 if (exec_list == NULL || exec2_list == NULL) {
d0bf4582
WK
3445 drm_dbg(&i915->drm,
3446 "Failed to allocate exec list for %d buffers\n",
3447 args->buffer_count);
2098105e
MH
3448 kvfree(exec_list);
3449 kvfree(exec2_list);
54cf91dc
CW
3450 return -ENOMEM;
3451 }
2889caa9 3452 err = copy_from_user(exec_list,
3ed605bc 3453 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3454 sizeof(*exec_list) * count);
2889caa9 3455 if (err) {
d0bf4582
WK
3456 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
3457 args->buffer_count, err);
2098105e
MH
3458 kvfree(exec_list);
3459 kvfree(exec2_list);
54cf91dc
CW
3460 return -EFAULT;
3461 }
3462
3463 for (i = 0; i < args->buffer_count; i++) {
3464 exec2_list[i].handle = exec_list[i].handle;
3465 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3466 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3467 exec2_list[i].alignment = exec_list[i].alignment;
3468 exec2_list[i].offset = exec_list[i].offset;
f0836b72 3469 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
3470 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3471 else
3472 exec2_list[i].flags = 0;
3473 }
3474
cda9edd0 3475 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
2889caa9 3476 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 3477 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 3478 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 3479
54cf91dc 3480 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 3481 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3482 if (!(exec2_list[i].offset & UPDATE))
3483 continue;
3484
934acce3 3485 exec2_list[i].offset =
2889caa9
CW
3486 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3487 exec2_list[i].offset &= PIN_OFFSET_MASK;
3488 if (__copy_to_user(&user_exec_list[i].offset,
3489 &exec2_list[i].offset,
3490 sizeof(user_exec_list[i].offset)))
9aab8bff 3491 break;
54cf91dc
CW
3492 }
3493 }
3494
2098105e
MH
3495 kvfree(exec_list);
3496 kvfree(exec2_list);
2889caa9 3497 return err;
54cf91dc
CW
3498}
3499
3500int
6a20fe7b
VS
3501i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3502 struct drm_file *file)
54cf91dc 3503{
d0bf4582 3504 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 3505 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 3506 struct drm_i915_gem_exec_object2 *exec2_list;
d710fc16 3507 const size_t count = args->buffer_count;
2889caa9 3508 int err;
54cf91dc 3509
d710fc16 3510 if (!check_buffer_count(count)) {
d0bf4582 3511 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3512 return -EINVAL;
3513 }
3514
00aff3f6
TU
3515 err = i915_gem_check_execbuffer(args);
3516 if (err)
3517 return err;
2889caa9 3518
47b08693
ML
3519 /* Allocate extra slots for use by the command parser */
3520 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3521 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3522 if (exec2_list == NULL) {
d0bf4582
WK
3523 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3524 count);
54cf91dc
CW
3525 return -ENOMEM;
3526 }
2889caa9
CW
3527 if (copy_from_user(exec2_list,
3528 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3529 sizeof(*exec2_list) * count)) {
d0bf4582 3530 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 3531 kvfree(exec2_list);
54cf91dc
CW
3532 return -EFAULT;
3533 }
3534
cda9edd0 3535 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2889caa9
CW
3536
3537 /*
3538 * Now that we have begun execution of the batchbuffer, we ignore
3539 * any new error after this point. Also given that we have already
3540 * updated the associated relocations, we try to write out the current
3541 * object locations irrespective of any error.
3542 */
3543 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3544 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3545 u64_to_user_ptr(args->buffers_ptr);
3546 unsigned int i;
9aab8bff 3547
2889caa9 3548 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3549 /*
3550 * Note: count * sizeof(*user_exec_list) does not overflow,
3551 * because we checked 'count' in check_buffer_count().
3552 *
3553 * And this range already got effectively checked earlier
3554 * when we did the "copy_from_user()" above.
3555 */
b44f6873
CL
3556 if (!user_write_access_begin(user_exec_list,
3557 count * sizeof(*user_exec_list)))
8f4faed0 3558 goto end;
594cc251 3559
9aab8bff 3560 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3561 if (!(exec2_list[i].offset & UPDATE))
3562 continue;
3563
934acce3 3564 exec2_list[i].offset =
2889caa9
CW
3565 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3566 unsafe_put_user(exec2_list[i].offset,
3567 &user_exec_list[i].offset,
3568 end_user);
54cf91dc 3569 }
2889caa9 3570end_user:
b44f6873 3571 user_write_access_end();
8f4faed0 3572end:;
54cf91dc
CW
3573 }
3574
2889caa9 3575 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 3576 kvfree(exec2_list);
2889caa9 3577 return err;
54cf91dc 3578}
e3d29130
CW
3579
3580#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3581#include "selftests/i915_gem_execbuffer.c"
3582#endif