drm/i915: Pull scatterlist utils out of i915_gem.h
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
ad778f89 8#include <linux/reservation.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
760285e7 13#include <drm/i915_drm.h>
ad778f89 14
afa13085 15#include "gem/i915_gem_ioctls.h"
10be98a7 16#include "gt/intel_context.h"
8f2a1057
CW
17#include "gt/intel_gt_pm.h"
18
10be98a7 19#include "i915_gem_ioctls.h"
57822dc6 20#include "i915_gem_clflush.h"
10be98a7 21#include "i915_gem_context.h"
54cf91dc
CW
22#include "i915_trace.h"
23#include "intel_drv.h"
5d723d7a 24#include "intel_frontbuffer.h"
54cf91dc 25
7dd4f672
CW
26enum {
27 FORCE_CPU_RELOC = 1,
28 FORCE_GTT_RELOC,
29 FORCE_GPU_RELOC,
30#define DBG_FORCE_RELOC 0 /* choose one of the above! */
31};
d50415cc 32
dade2a61
CW
33#define __EXEC_OBJECT_HAS_REF BIT(31)
34#define __EXEC_OBJECT_HAS_PIN BIT(30)
35#define __EXEC_OBJECT_HAS_FENCE BIT(29)
36#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
37#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
38#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
2889caa9
CW
39#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
40
41#define __EXEC_HAS_RELOC BIT(31)
42#define __EXEC_VALIDATED BIT(30)
74c1c694 43#define __EXEC_INTERNAL_FLAGS (~0u << 30)
2889caa9 44#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
45
46#define BATCH_OFFSET_BIAS (256*1024)
a415d355 47
650bc635 48#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
49 (__I915_EXEC_UNKNOWN_FLAGS | \
50 I915_EXEC_CONSTANTS_MASK | \
51 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 52
d20ac620
CW
53/* Catch emission of unexpected errors for CI! */
54#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
55#undef EINVAL
56#define EINVAL ({ \
57 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
58 22; \
59})
60#endif
61
2889caa9
CW
62/**
63 * DOC: User command execution
64 *
65 * Userspace submits commands to be executed on the GPU as an instruction
66 * stream within a GEM object we call a batchbuffer. This instructions may
67 * refer to other GEM objects containing auxiliary state such as kernels,
68 * samplers, render targets and even secondary batchbuffers. Userspace does
69 * not know where in the GPU memory these objects reside and so before the
70 * batchbuffer is passed to the GPU for execution, those addresses in the
71 * batchbuffer and auxiliary objects are updated. This is known as relocation,
72 * or patching. To try and avoid having to relocate each object on the next
73 * execution, userspace is told the location of those objects in this pass,
74 * but this remains just a hint as the kernel may choose a new location for
75 * any object in the future.
76 *
99d7e4ee
KR
77 * At the level of talking to the hardware, submitting a batchbuffer for the
78 * GPU to execute is to add content to a buffer from which the HW
79 * command streamer is reading.
80 *
81 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
82 * Execlists, this command is not placed on the same buffer as the
83 * remaining items.
84 *
85 * 2. Add a command to invalidate caches to the buffer.
86 *
87 * 3. Add a batchbuffer start command to the buffer; the start command is
88 * essentially a token together with the GPU address of the batchbuffer
89 * to be executed.
90 *
91 * 4. Add a pipeline flush to the buffer.
92 *
93 * 5. Add a memory write command to the buffer to record when the GPU
94 * is done executing the batchbuffer. The memory write writes the
95 * global sequence number of the request, ``i915_request::global_seqno``;
96 * the i915 driver uses the current value in the register to determine
97 * if the GPU has completed the batchbuffer.
98 *
99 * 6. Add a user interrupt command to the buffer. This command instructs
100 * the GPU to issue an interrupt when the command, pipeline flush and
101 * memory write are completed.
102 *
103 * 7. Inform the hardware of the additional commands added to the buffer
104 * (by updating the tail pointer).
105 *
2889caa9
CW
106 * Processing an execbuf ioctl is conceptually split up into a few phases.
107 *
108 * 1. Validation - Ensure all the pointers, handles and flags are valid.
109 * 2. Reservation - Assign GPU address space for every object
110 * 3. Relocation - Update any addresses to point to the final locations
111 * 4. Serialisation - Order the request with respect to its dependencies
112 * 5. Construction - Construct a request to execute the batchbuffer
113 * 6. Submission (at some point in the future execution)
114 *
115 * Reserving resources for the execbuf is the most complicated phase. We
116 * neither want to have to migrate the object in the address space, nor do
117 * we want to have to update any relocations pointing to this object. Ideally,
118 * we want to leave the object where it is and for all the existing relocations
119 * to match. If the object is given a new address, or if userspace thinks the
120 * object is elsewhere, we have to parse all the relocation entries and update
121 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
122 * all the target addresses in all of its objects match the value in the
123 * relocation entries and that they all match the presumed offsets given by the
124 * list of execbuffer objects. Using this knowledge, we know that if we haven't
125 * moved any buffers, all the relocation entries are valid and we can skip
126 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
127 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
128 *
129 * The addresses written in the objects must match the corresponding
130 * reloc.presumed_offset which in turn must match the corresponding
131 * execobject.offset.
132 *
133 * Any render targets written to in the batch must be flagged with
134 * EXEC_OBJECT_WRITE.
135 *
136 * To avoid stalling, execobject.offset should match the current
137 * address of that object within the active context.
138 *
139 * The reservation is done is multiple phases. First we try and keep any
140 * object already bound in its current location - so as long as meets the
141 * constraints imposed by the new execbuffer. Any object left unbound after the
142 * first pass is then fitted into any available idle space. If an object does
143 * not fit, all objects are removed from the reservation and the process rerun
144 * after sorting the objects into a priority order (more difficult to fit
145 * objects are tried first). Failing that, the entire VM is cleared and we try
146 * to fit the execbuf once last time before concluding that it simply will not
147 * fit.
148 *
149 * A small complication to all of this is that we allow userspace not only to
150 * specify an alignment and a size for the object in the address space, but
151 * we also allow userspace to specify the exact offset. This objects are
152 * simpler to place (the location is known a priori) all we have to do is make
153 * sure the space is available.
154 *
155 * Once all the objects are in place, patching up the buried pointers to point
156 * to the final locations is a fairly simple job of walking over the relocation
157 * entry arrays, looking up the right address and rewriting the value into
158 * the object. Simple! ... The relocation entries are stored in user memory
159 * and so to access them we have to copy them into a local buffer. That copy
160 * has to avoid taking any pagefaults as they may lead back to a GEM object
161 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
162 * the relocation into multiple passes. First we try to do everything within an
163 * atomic context (avoid the pagefaults) which requires that we never wait. If
164 * we detect that we may wait, or if we need to fault, then we have to fallback
165 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
166 * bells yet?) Dropping the mutex means that we lose all the state we have
167 * built up so far for the execbuf and we must reset any global data. However,
168 * we do leave the objects pinned in their final locations - which is a
169 * potential issue for concurrent execbufs. Once we have left the mutex, we can
170 * allocate and copy all the relocation entries into a large array at our
171 * leisure, reacquire the mutex, reclaim all the objects and other state and
172 * then proceed to update any incorrect addresses with the objects.
173 *
174 * As we process the relocation entries, we maintain a record of whether the
175 * object is being written to. Using NORELOC, we expect userspace to provide
176 * this information instead. We also check whether we can skip the relocation
177 * by comparing the expected value inside the relocation entry with the target's
178 * final address. If they differ, we have to map the current object and rewrite
179 * the 4 or 8 byte pointer within.
180 *
181 * Serialising an execbuf is quite simple according to the rules of the GEM
182 * ABI. Execution within each context is ordered by the order of submission.
183 * Writes to any GEM object are in order of submission and are exclusive. Reads
184 * from a GEM object are unordered with respect to other reads, but ordered by
185 * writes. A write submitted after a read cannot occur before the read, and
186 * similarly any read submitted after a write cannot occur before the write.
187 * Writes are ordered between engines such that only one write occurs at any
188 * time (completing any reads beforehand) - using semaphores where available
189 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
190 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
191 * reads before starting, and any read (either using set-domain or pread) must
192 * flush all GPU writes before starting. (Note we only employ a barrier before,
193 * we currently rely on userspace not concurrently starting a new execution
194 * whilst reading or writing to an object. This may be an advantage or not
195 * depending on how much you trust userspace not to shoot themselves in the
196 * foot.) Serialisation may just result in the request being inserted into
197 * a DAG awaiting its turn, but most simple is to wait on the CPU until
198 * all dependencies are resolved.
199 *
200 * After all of that, is just a matter of closing the request and handing it to
201 * the hardware (well, leaving it in a queue to be executed). However, we also
202 * offer the ability for batchbuffers to be run with elevated privileges so
203 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
204 * Before any batch is given extra privileges we first must check that it
205 * contains no nefarious instructions, we check that each instruction is from
206 * our whitelist and all registers are also from an allowed list. We first
207 * copy the user's batchbuffer to a shadow (so that the user doesn't have
208 * access to it, either by the CPU or GPU as we scan it) and then parse each
209 * instruction. If everything is ok, we set a flag telling the hardware to run
210 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
211 */
212
650bc635 213struct i915_execbuffer {
2889caa9
CW
214 struct drm_i915_private *i915; /** i915 backpointer */
215 struct drm_file *file; /** per-file lookup tables and limits */
216 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
217 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
c7c6e46f
CW
218 struct i915_vma **vma;
219 unsigned int *flags;
2889caa9
CW
220
221 struct intel_engine_cs *engine; /** engine to queue the request to */
8f2a1057
CW
222 struct intel_context *context; /* logical state for the request */
223 struct i915_gem_context *gem_context; /** caller's context */
2889caa9
CW
224 struct i915_address_space *vm; /** GTT and vma for the request */
225
e61e0f51 226 struct i915_request *request; /** our request to build */
2889caa9
CW
227 struct i915_vma *batch; /** identity of the batch obj/vma */
228
229 /** actual size of execobj[] as we may extend it for the cmdparser */
230 unsigned int buffer_count;
231
232 /** list of vma not yet bound during reservation phase */
233 struct list_head unbound;
234
235 /** list of vma that have execobj.relocation_count */
236 struct list_head relocs;
237
238 /**
239 * Track the most recently used object for relocations, as we
240 * frequently have to perform multiple relocations within the same
241 * obj/page
242 */
650bc635 243 struct reloc_cache {
2889caa9
CW
244 struct drm_mm_node node; /** temporary GTT binding */
245 unsigned long vaddr; /** Current kmap address */
246 unsigned long page; /** Currently mapped page index */
7dd4f672 247 unsigned int gen; /** Cached value of INTEL_GEN */
650bc635 248 bool use_64bit_reloc : 1;
2889caa9
CW
249 bool has_llc : 1;
250 bool has_fence : 1;
251 bool needs_unfenced : 1;
7dd4f672 252
e61e0f51 253 struct i915_request *rq;
7dd4f672
CW
254 u32 *rq_cmd;
255 unsigned int rq_size;
650bc635 256 } reloc_cache;
2889caa9
CW
257
258 u64 invalid_flags; /** Set of execobj.flags that are invalid */
259 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
260
261 u32 batch_start_offset; /** Location within object of batch */
262 u32 batch_len; /** Length of batch within object */
263 u32 batch_flags; /** Flags composed for emit_bb_start() */
264
265 /**
266 * Indicate either the size of the hastable used to resolve
267 * relocation handles, or if negative that we are using a direct
268 * index into the execobj[].
269 */
270 int lut_size;
271 struct hlist_head *buckets; /** ht for relocation handles */
67731b87
CW
272};
273
c7c6e46f 274#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
4ff4b44c 275
2889caa9
CW
276/*
277 * Used to convert any address to canonical form.
278 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
279 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
280 * addresses to be in a canonical form:
281 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
282 * canonical form [63:48] == [47]."
283 */
284#define GEN8_HIGH_ADDRESS_BIT 47
285static inline u64 gen8_canonical_addr(u64 address)
286{
287 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
288}
289
290static inline u64 gen8_noncanonical_addr(u64 address)
291{
292 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
293}
294
3dbf26ed
CW
295static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
296{
439e2ee4 297 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
3dbf26ed
CW
298}
299
650bc635 300static int eb_create(struct i915_execbuffer *eb)
67731b87 301{
2889caa9
CW
302 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
303 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 304
2889caa9
CW
305 /*
306 * Without a 1:1 association between relocation handles and
307 * the execobject[] index, we instead create a hashtable.
308 * We size it dynamically based on available memory, starting
309 * first with 1:1 assocative hash and scaling back until
310 * the allocation succeeds.
311 *
312 * Later on we use a positive lut_size to indicate we are
313 * using this hashtable, and a negative value to indicate a
314 * direct lookup.
315 */
4ff4b44c 316 do {
0d95c883 317 gfp_t flags;
4d470f73
CW
318
319 /* While we can still reduce the allocation size, don't
320 * raise a warning and allow the allocation to fail.
321 * On the last pass though, we want to try as hard
322 * as possible to perform the allocation and warn
323 * if it fails.
324 */
0ee931c4 325 flags = GFP_KERNEL;
4d470f73
CW
326 if (size > 1)
327 flags |= __GFP_NORETRY | __GFP_NOWARN;
328
4ff4b44c 329 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 330 flags);
4ff4b44c
CW
331 if (eb->buckets)
332 break;
333 } while (--size);
334
4d470f73
CW
335 if (unlikely(!size))
336 return -ENOMEM;
eef90ccb 337
2889caa9 338 eb->lut_size = size;
650bc635 339 } else {
2889caa9 340 eb->lut_size = -eb->buffer_count;
650bc635 341 }
eef90ccb 342
650bc635 343 return 0;
67731b87
CW
344}
345
2889caa9
CW
346static bool
347eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
348 const struct i915_vma *vma,
349 unsigned int flags)
2889caa9 350{
2889caa9
CW
351 if (vma->node.size < entry->pad_to_size)
352 return true;
353
354 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
355 return true;
356
c7c6e46f 357 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
358 vma->node.start != entry->offset)
359 return true;
360
c7c6e46f 361 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
362 vma->node.start < BATCH_OFFSET_BIAS)
363 return true;
364
c7c6e46f 365 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
2889caa9
CW
366 (vma->node.start + vma->node.size - 1) >> 32)
367 return true;
368
1d033beb
CW
369 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
370 !i915_vma_is_map_and_fenceable(vma))
371 return true;
372
2889caa9
CW
373 return false;
374}
375
c7c6e46f 376static inline bool
2889caa9 377eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 378 const struct drm_i915_gem_exec_object2 *entry,
2889caa9
CW
379 struct i915_vma *vma)
380{
c7c6e46f
CW
381 unsigned int exec_flags = *vma->exec_flags;
382 u64 pin_flags;
2889caa9 383
616d9cee 384 if (vma->node.size)
c7c6e46f 385 pin_flags = vma->node.start;
616d9cee 386 else
c7c6e46f 387 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 388
c7c6e46f
CW
389 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
390 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
391 pin_flags |= PIN_GLOBAL;
616d9cee 392
c7c6e46f
CW
393 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
394 return false;
2889caa9 395
c7c6e46f 396 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 397 if (unlikely(i915_vma_pin_fence(vma))) {
2889caa9 398 i915_vma_unpin(vma);
c7c6e46f 399 return false;
2889caa9
CW
400 }
401
3bd40735 402 if (vma->fence)
c7c6e46f 403 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
404 }
405
c7c6e46f
CW
406 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
407 return !eb_vma_misplaced(entry, vma, exec_flags);
2889caa9
CW
408}
409
c7c6e46f 410static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
d55495b4 411{
c7c6e46f 412 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
2889caa9 413
c7c6e46f 414 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
3bd40735 415 __i915_vma_unpin_fence(vma);
d55495b4 416
2889caa9 417 __i915_vma_unpin(vma);
d55495b4
CW
418}
419
2889caa9 420static inline void
c7c6e46f 421eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
d55495b4 422{
c7c6e46f 423 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
2889caa9 424 return;
d55495b4 425
c7c6e46f
CW
426 __eb_unreserve_vma(vma, *flags);
427 *flags &= ~__EXEC_OBJECT_RESERVED;
d55495b4
CW
428}
429
2889caa9
CW
430static int
431eb_validate_vma(struct i915_execbuffer *eb,
432 struct drm_i915_gem_exec_object2 *entry,
433 struct i915_vma *vma)
67731b87 434{
2889caa9
CW
435 if (unlikely(entry->flags & eb->invalid_flags))
436 return -EINVAL;
d55495b4 437
2889caa9
CW
438 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
439 return -EINVAL;
440
441 /*
442 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
443 * any non-page-aligned or non-canonical addresses.
444 */
445 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 446 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
447 return -EINVAL;
448
449 /* pad_to_size was once a reserved field, so sanitize it */
450 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
451 if (unlikely(offset_in_page(entry->pad_to_size)))
452 return -EINVAL;
453 } else {
454 entry->pad_to_size = 0;
d55495b4
CW
455 }
456
c7c6e46f 457 if (unlikely(vma->exec_flags)) {
2889caa9
CW
458 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
459 entry->handle, (int)(entry - eb->exec));
460 return -EINVAL;
461 }
462
463 /*
464 * From drm_mm perspective address space is continuous,
465 * so from this point we're always using non-canonical
466 * form internally.
467 */
468 entry->offset = gen8_noncanonical_addr(entry->offset);
469
c7c6e46f
CW
470 if (!eb->reloc_cache.has_fence) {
471 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
472 } else {
473 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
474 eb->reloc_cache.needs_unfenced) &&
475 i915_gem_object_is_tiled(vma->obj))
476 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
477 }
478
479 if (!(entry->flags & EXEC_OBJECT_PINNED))
480 entry->flags |= eb->context_flags;
481
2889caa9 482 return 0;
67731b87
CW
483}
484
2889caa9 485static int
746c8f14
CW
486eb_add_vma(struct i915_execbuffer *eb,
487 unsigned int i, unsigned batch_idx,
488 struct i915_vma *vma)
59bfa124 489{
c7c6e46f 490 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
2889caa9
CW
491 int err;
492
493 GEM_BUG_ON(i915_vma_is_closed(vma));
494
495 if (!(eb->args->flags & __EXEC_VALIDATED)) {
496 err = eb_validate_vma(eb, entry, vma);
497 if (unlikely(err))
498 return err;
4ff4b44c 499 }
4ff4b44c 500
4d470f73 501 if (eb->lut_size > 0) {
2889caa9 502 vma->exec_handle = entry->handle;
4ff4b44c 503 hlist_add_head(&vma->exec_node,
2889caa9
CW
504 &eb->buckets[hash_32(entry->handle,
505 eb->lut_size)]);
4ff4b44c 506 }
59bfa124 507
2889caa9
CW
508 if (entry->relocation_count)
509 list_add_tail(&vma->reloc_link, &eb->relocs);
510
2889caa9
CW
511 /*
512 * Stash a pointer from the vma to execobj, so we can query its flags,
513 * size, alignment etc as provided by the user. Also we stash a pointer
514 * to the vma inside the execobj so that we can use a direct lookup
515 * to find the right target VMA when doing relocations.
516 */
c7c6e46f 517 eb->vma[i] = vma;
d1b48c1e 518 eb->flags[i] = entry->flags;
c7c6e46f 519 vma->exec_flags = &eb->flags[i];
2889caa9 520
746c8f14
CW
521 /*
522 * SNA is doing fancy tricks with compressing batch buffers, which leads
523 * to negative relocation deltas. Usually that works out ok since the
524 * relocate address is still positive, except when the batch is placed
525 * very low in the GTT. Ensure this doesn't happen.
526 *
527 * Note that actual hangs have only been observed on gen7, but for
528 * paranoia do it everywhere.
529 */
530 if (i == batch_idx) {
827db9d8
CW
531 if (entry->relocation_count &&
532 !(eb->flags[i] & EXEC_OBJECT_PINNED))
746c8f14
CW
533 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
534 if (eb->reloc_cache.has_fence)
535 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
536
537 eb->batch = vma;
538 }
539
2889caa9 540 err = 0;
c7c6e46f 541 if (eb_pin_vma(eb, entry, vma)) {
2889caa9
CW
542 if (entry->offset != vma->node.start) {
543 entry->offset = vma->node.start | UPDATE;
544 eb->args->flags |= __EXEC_HAS_RELOC;
545 }
c7c6e46f
CW
546 } else {
547 eb_unreserve_vma(vma, vma->exec_flags);
548
549 list_add_tail(&vma->exec_link, &eb->unbound);
550 if (drm_mm_node_allocated(&vma->node))
551 err = i915_vma_unbind(vma);
ed2f3532
CW
552 if (unlikely(err))
553 vma->exec_flags = NULL;
2889caa9
CW
554 }
555 return err;
556}
557
558static inline int use_cpu_reloc(const struct reloc_cache *cache,
559 const struct drm_i915_gem_object *obj)
560{
561 if (!i915_gem_object_has_struct_page(obj))
562 return false;
563
7dd4f672
CW
564 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
565 return true;
566
567 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
568 return false;
2889caa9
CW
569
570 return (cache->has_llc ||
571 obj->cache_dirty ||
572 obj->cache_level != I915_CACHE_NONE);
573}
574
575static int eb_reserve_vma(const struct i915_execbuffer *eb,
576 struct i915_vma *vma)
577{
c7c6e46f
CW
578 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
579 unsigned int exec_flags = *vma->exec_flags;
580 u64 pin_flags;
2889caa9
CW
581 int err;
582
c7c6e46f
CW
583 pin_flags = PIN_USER | PIN_NONBLOCK;
584 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
585 pin_flags |= PIN_GLOBAL;
2889caa9
CW
586
587 /*
588 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
589 * limit address to the first 4GBs for unflagged objects.
590 */
c7c6e46f
CW
591 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
592 pin_flags |= PIN_ZONE_4G;
2889caa9 593
c7c6e46f
CW
594 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
595 pin_flags |= PIN_MAPPABLE;
2889caa9 596
c7c6e46f
CW
597 if (exec_flags & EXEC_OBJECT_PINNED) {
598 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
599 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
600 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
601 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
2889caa9
CW
602 }
603
c7c6e46f
CW
604 err = i915_vma_pin(vma,
605 entry->pad_to_size, entry->alignment,
606 pin_flags);
2889caa9
CW
607 if (err)
608 return err;
609
610 if (entry->offset != vma->node.start) {
611 entry->offset = vma->node.start | UPDATE;
612 eb->args->flags |= __EXEC_HAS_RELOC;
613 }
614
c7c6e46f 615 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 616 err = i915_vma_pin_fence(vma);
2889caa9
CW
617 if (unlikely(err)) {
618 i915_vma_unpin(vma);
619 return err;
620 }
621
3bd40735 622 if (vma->fence)
c7c6e46f 623 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
624 }
625
c7c6e46f
CW
626 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
627 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
1da7b54c 628
2889caa9
CW
629 return 0;
630}
631
632static int eb_reserve(struct i915_execbuffer *eb)
633{
634 const unsigned int count = eb->buffer_count;
635 struct list_head last;
636 struct i915_vma *vma;
637 unsigned int i, pass;
638 int err;
639
640 /*
641 * Attempt to pin all of the buffers into the GTT.
642 * This is done in 3 phases:
643 *
644 * 1a. Unbind all objects that do not match the GTT constraints for
645 * the execbuffer (fenceable, mappable, alignment etc).
646 * 1b. Increment pin count for already bound objects.
647 * 2. Bind new objects.
648 * 3. Decrement pin count.
649 *
650 * This avoid unnecessary unbinding of later objects in order to make
651 * room for the earlier objects *unless* we need to defragment.
652 */
653
654 pass = 0;
655 err = 0;
656 do {
657 list_for_each_entry(vma, &eb->unbound, exec_link) {
658 err = eb_reserve_vma(eb, vma);
659 if (err)
660 break;
661 }
662 if (err != -ENOSPC)
663 return err;
664
665 /* Resort *all* the objects into priority order */
666 INIT_LIST_HEAD(&eb->unbound);
667 INIT_LIST_HEAD(&last);
668 for (i = 0; i < count; i++) {
c7c6e46f
CW
669 unsigned int flags = eb->flags[i];
670 struct i915_vma *vma = eb->vma[i];
2889caa9 671
c7c6e46f
CW
672 if (flags & EXEC_OBJECT_PINNED &&
673 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
674 continue;
675
c7c6e46f 676 eb_unreserve_vma(vma, &eb->flags[i]);
2889caa9 677
c7c6e46f 678 if (flags & EXEC_OBJECT_PINNED)
35e882a4 679 /* Pinned must have their slot */
2889caa9 680 list_add(&vma->exec_link, &eb->unbound);
c7c6e46f 681 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 682 /* Map require the lowest 256MiB (aperture) */
2889caa9 683 list_add_tail(&vma->exec_link, &eb->unbound);
35e882a4
CW
684 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
685 /* Prioritise 4GiB region for restricted bo */
686 list_add(&vma->exec_link, &last);
2889caa9
CW
687 else
688 list_add_tail(&vma->exec_link, &last);
689 }
690 list_splice_tail(&last, &eb->unbound);
691
692 switch (pass++) {
693 case 0:
694 break;
695
696 case 1:
697 /* Too fragmented, unbind everything and retry */
698 err = i915_gem_evict_vm(eb->vm);
699 if (err)
700 return err;
701 break;
702
703 default:
704 return -ENOSPC;
705 }
706 } while (1);
4ff4b44c 707}
59bfa124 708
2889caa9
CW
709static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
710{
1a71cf2f
CW
711 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
712 return 0;
713 else
714 return eb->buffer_count - 1;
2889caa9
CW
715}
716
717static int eb_select_context(struct i915_execbuffer *eb)
718{
719 struct i915_gem_context *ctx;
720
721 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
1acfc104
CW
722 if (unlikely(!ctx))
723 return -ENOENT;
2889caa9 724
8f2a1057 725 eb->gem_context = ctx;
4f2c7337
CW
726 if (ctx->ppgtt) {
727 eb->vm = &ctx->ppgtt->vm;
728 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
729 } else {
730 eb->vm = &eb->i915->ggtt.vm;
731 }
2889caa9
CW
732
733 eb->context_flags = 0;
d3f3e5e4 734 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
2889caa9
CW
735 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
736
737 return 0;
738}
739
d6f328bf
CW
740static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
741{
742 struct i915_request *rq;
743
744 /*
745 * Completely unscientific finger-in-the-air estimates for suitable
746 * maximum user request size (to avoid blocking) and then backoff.
747 */
748 if (intel_ring_update_space(ring) >= PAGE_SIZE)
749 return NULL;
750
751 /*
752 * Find a request that after waiting upon, there will be at least half
753 * the ring available. The hysteresis allows us to compete for the
754 * shared ring and should mean that we sleep less often prior to
755 * claiming our resources, but not so long that the ring completely
756 * drains before we can submit our next request.
757 */
758 list_for_each_entry(rq, &ring->request_list, ring_link) {
759 if (__intel_ring_space(rq->postfix,
760 ring->emit, ring->size) > ring->size / 2)
761 break;
762 }
763 if (&rq->ring_link == &ring->request_list)
764 return NULL; /* weird, we will check again later for real */
765
766 return i915_request_get(rq);
767}
768
769static int eb_wait_for_ring(const struct i915_execbuffer *eb)
770{
d6f328bf
CW
771 struct i915_request *rq;
772 int ret = 0;
773
774 /*
775 * Apply a light amount of backpressure to prevent excessive hogs
776 * from blocking waiting for space whilst holding struct_mutex and
777 * keeping all of their resources pinned.
778 */
779
8f2a1057 780 rq = __eb_wait_for_ring(eb->context->ring);
d6f328bf
CW
781 if (rq) {
782 mutex_unlock(&eb->i915->drm.struct_mutex);
783
784 if (i915_request_wait(rq,
785 I915_WAIT_INTERRUPTIBLE,
786 MAX_SCHEDULE_TIMEOUT) < 0)
787 ret = -EINTR;
788
789 i915_request_put(rq);
790
791 mutex_lock(&eb->i915->drm.struct_mutex);
792 }
793
794 return ret;
795}
796
2889caa9 797static int eb_lookup_vmas(struct i915_execbuffer *eb)
3b96eff4 798{
8f2a1057 799 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
ac70ebe8 800 struct drm_i915_gem_object *obj;
746c8f14 801 unsigned int i, batch;
2889caa9 802 int err;
3b96eff4 803
8f2a1057 804 if (unlikely(i915_gem_context_is_closed(eb->gem_context)))
8bcbfb12
CW
805 return -ENOENT;
806
8f2a1057 807 if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
8bcbfb12
CW
808 return -EIO;
809
2889caa9
CW
810 INIT_LIST_HEAD(&eb->relocs);
811 INIT_LIST_HEAD(&eb->unbound);
d55495b4 812
746c8f14
CW
813 batch = eb_batch_index(eb);
814
170fa29b
CW
815 for (i = 0; i < eb->buffer_count; i++) {
816 u32 handle = eb->exec[i].handle;
d1b48c1e 817 struct i915_lut_handle *lut;
170fa29b 818 struct i915_vma *vma;
4ff4b44c 819
d1b48c1e
CW
820 vma = radix_tree_lookup(handles_vma, handle);
821 if (likely(vma))
170fa29b 822 goto add_vma;
4ff4b44c 823
170fa29b 824 obj = i915_gem_object_lookup(eb->file, handle);
4ff4b44c 825 if (unlikely(!obj)) {
2889caa9 826 err = -ENOENT;
170fa29b 827 goto err_vma;
3b96eff4
CW
828 }
829
650bc635 830 vma = i915_vma_instance(obj, eb->vm, NULL);
772b5408 831 if (IS_ERR(vma)) {
2889caa9 832 err = PTR_ERR(vma);
170fa29b 833 goto err_obj;
27173f1f
BW
834 }
835
13f1bfd3 836 lut = i915_lut_handle_alloc();
d1b48c1e
CW
837 if (unlikely(!lut)) {
838 err = -ENOMEM;
839 goto err_obj;
840 }
841
842 err = radix_tree_insert(handles_vma, handle, vma);
843 if (unlikely(err)) {
13f1bfd3 844 i915_lut_handle_free(lut);
d1b48c1e 845 goto err_obj;
eef90ccb 846 }
4ff4b44c 847
ac70ebe8 848 /* transfer ref to ctx */
3365e226
CW
849 if (!vma->open_count++)
850 i915_vma_reopen(vma);
d1b48c1e 851 list_add(&lut->obj_link, &obj->lut_list);
8f2a1057
CW
852 list_add(&lut->ctx_link, &eb->gem_context->handles_list);
853 lut->ctx = eb->gem_context;
d1b48c1e
CW
854 lut->handle = handle;
855
170fa29b 856add_vma:
746c8f14 857 err = eb_add_vma(eb, i, batch, vma);
2889caa9 858 if (unlikely(err))
ac70ebe8 859 goto err_vma;
dade2a61 860
c7c6e46f
CW
861 GEM_BUG_ON(vma != eb->vma[i]);
862 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
746c8f14
CW
863 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
864 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
4ff4b44c
CW
865 }
866
2889caa9
CW
867 eb->args->flags |= __EXEC_VALIDATED;
868 return eb_reserve(eb);
869
170fa29b 870err_obj:
ac70ebe8 871 i915_gem_object_put(obj);
170fa29b
CW
872err_vma:
873 eb->vma[i] = NULL;
2889caa9 874 return err;
3b96eff4
CW
875}
876
4ff4b44c 877static struct i915_vma *
2889caa9 878eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 879{
2889caa9
CW
880 if (eb->lut_size < 0) {
881 if (handle >= -eb->lut_size)
eef90ccb 882 return NULL;
c7c6e46f 883 return eb->vma[handle];
eef90ccb
CW
884 } else {
885 struct hlist_head *head;
aa45950b 886 struct i915_vma *vma;
67731b87 887
2889caa9 888 head = &eb->buckets[hash_32(handle, eb->lut_size)];
aa45950b 889 hlist_for_each_entry(vma, head, exec_node) {
27173f1f
BW
890 if (vma->exec_handle == handle)
891 return vma;
eef90ccb
CW
892 }
893 return NULL;
894 }
67731b87
CW
895}
896
2889caa9 897static void eb_release_vmas(const struct i915_execbuffer *eb)
a415d355 898{
2889caa9
CW
899 const unsigned int count = eb->buffer_count;
900 unsigned int i;
901
902 for (i = 0; i < count; i++) {
c7c6e46f
CW
903 struct i915_vma *vma = eb->vma[i];
904 unsigned int flags = eb->flags[i];
650bc635 905
2889caa9 906 if (!vma)
170fa29b 907 break;
bcffc3fa 908
c7c6e46f
CW
909 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
910 vma->exec_flags = NULL;
911 eb->vma[i] = NULL;
9e53d9be 912
c7c6e46f
CW
913 if (flags & __EXEC_OBJECT_HAS_PIN)
914 __eb_unreserve_vma(vma, flags);
dade2a61 915
c7c6e46f 916 if (flags & __EXEC_OBJECT_HAS_REF)
dade2a61 917 i915_vma_put(vma);
2889caa9 918 }
dabdfe02
CW
919}
920
2889caa9 921static void eb_reset_vmas(const struct i915_execbuffer *eb)
934acce3 922{
2889caa9 923 eb_release_vmas(eb);
4d470f73 924 if (eb->lut_size > 0)
2889caa9
CW
925 memset(eb->buckets, 0,
926 sizeof(struct hlist_head) << eb->lut_size);
934acce3
MW
927}
928
2889caa9 929static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 930{
7dd4f672
CW
931 GEM_BUG_ON(eb->reloc_cache.rq);
932
4d470f73 933 if (eb->lut_size > 0)
2889caa9 934 kfree(eb->buckets);
934acce3
MW
935}
936
2889caa9 937static inline u64
d50415cc 938relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 939 const struct i915_vma *target)
934acce3 940{
2889caa9 941 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
942}
943
d50415cc
CW
944static void reloc_cache_init(struct reloc_cache *cache,
945 struct drm_i915_private *i915)
5032d871 946{
31a39207 947 cache->page = -1;
d50415cc 948 cache->vaddr = 0;
dfc5148f 949 /* Must be a variable in the struct to allow GCC to unroll. */
7dd4f672 950 cache->gen = INTEL_GEN(i915);
2889caa9 951 cache->has_llc = HAS_LLC(i915);
dfc5148f 952 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
7dd4f672
CW
953 cache->has_fence = cache->gen < 4;
954 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
e8cb909a 955 cache->node.allocated = false;
7dd4f672
CW
956 cache->rq = NULL;
957 cache->rq_size = 0;
d50415cc 958}
5032d871 959
d50415cc
CW
960static inline void *unmask_page(unsigned long p)
961{
962 return (void *)(uintptr_t)(p & PAGE_MASK);
963}
964
965static inline unsigned int unmask_flags(unsigned long p)
966{
967 return p & ~PAGE_MASK;
31a39207
CW
968}
969
d50415cc
CW
970#define KMAP 0x4 /* after CLFLUSH_FLAGS */
971
650bc635
CW
972static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
973{
974 struct drm_i915_private *i915 =
975 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
976 return &i915->ggtt;
977}
978
7dd4f672
CW
979static void reloc_gpu_flush(struct reloc_cache *cache)
980{
981 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
982 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
a679f58d
CW
983
984 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
7dd4f672 985 i915_gem_object_unpin_map(cache->rq->batch->obj);
a679f58d 986
7dd4f672
CW
987 i915_gem_chipset_flush(cache->rq->i915);
988
697b9a87 989 i915_request_add(cache->rq);
7dd4f672
CW
990 cache->rq = NULL;
991}
992
650bc635 993static void reloc_cache_reset(struct reloc_cache *cache)
31a39207 994{
d50415cc 995 void *vaddr;
5032d871 996
7dd4f672
CW
997 if (cache->rq)
998 reloc_gpu_flush(cache);
999
31a39207
CW
1000 if (!cache->vaddr)
1001 return;
3c94ceee 1002
d50415cc
CW
1003 vaddr = unmask_page(cache->vaddr);
1004 if (cache->vaddr & KMAP) {
1005 if (cache->vaddr & CLFLUSH_AFTER)
1006 mb();
3c94ceee 1007
d50415cc 1008 kunmap_atomic(vaddr);
f0e4a063 1009 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
d50415cc 1010 } else {
e8cb909a 1011 wmb();
d50415cc 1012 io_mapping_unmap_atomic((void __iomem *)vaddr);
e8cb909a 1013 if (cache->node.allocated) {
650bc635 1014 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1015
82ad6443
CW
1016 ggtt->vm.clear_range(&ggtt->vm,
1017 cache->node.start,
1018 cache->node.size);
e8cb909a
CW
1019 drm_mm_remove_node(&cache->node);
1020 } else {
1021 i915_vma_unpin((struct i915_vma *)cache->node.mm);
3c94ceee 1022 }
31a39207 1023 }
650bc635
CW
1024
1025 cache->vaddr = 0;
1026 cache->page = -1;
31a39207
CW
1027}
1028
1029static void *reloc_kmap(struct drm_i915_gem_object *obj,
1030 struct reloc_cache *cache,
2889caa9 1031 unsigned long page)
31a39207 1032{
d50415cc
CW
1033 void *vaddr;
1034
1035 if (cache->vaddr) {
1036 kunmap_atomic(unmask_page(cache->vaddr));
1037 } else {
1038 unsigned int flushes;
2889caa9 1039 int err;
31a39207 1040
f0e4a063 1041 err = i915_gem_object_prepare_write(obj, &flushes);
2889caa9
CW
1042 if (err)
1043 return ERR_PTR(err);
d50415cc
CW
1044
1045 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1046 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
3c94ceee 1047
d50415cc
CW
1048 cache->vaddr = flushes | KMAP;
1049 cache->node.mm = (void *)obj;
1050 if (flushes)
1051 mb();
3c94ceee
BW
1052 }
1053
d50415cc
CW
1054 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1055 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
31a39207 1056 cache->page = page;
5032d871 1057
d50415cc 1058 return vaddr;
5032d871
RB
1059}
1060
d50415cc
CW
1061static void *reloc_iomap(struct drm_i915_gem_object *obj,
1062 struct reloc_cache *cache,
2889caa9 1063 unsigned long page)
5032d871 1064{
650bc635 1065 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
e8cb909a 1066 unsigned long offset;
d50415cc 1067 void *vaddr;
5032d871 1068
d50415cc 1069 if (cache->vaddr) {
615e5000 1070 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
d50415cc
CW
1071 } else {
1072 struct i915_vma *vma;
2889caa9 1073 int err;
5032d871 1074
2889caa9 1075 if (use_cpu_reloc(cache, obj))
d50415cc 1076 return NULL;
3c94ceee 1077
2889caa9
CW
1078 err = i915_gem_object_set_to_gtt_domain(obj, true);
1079 if (err)
1080 return ERR_PTR(err);
3c94ceee 1081
d50415cc 1082 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
3c755c5b
CW
1083 PIN_MAPPABLE |
1084 PIN_NONBLOCK |
1085 PIN_NONFAULT);
e8cb909a
CW
1086 if (IS_ERR(vma)) {
1087 memset(&cache->node, 0, sizeof(cache->node));
2889caa9 1088 err = drm_mm_insert_node_in_range
82ad6443 1089 (&ggtt->vm.mm, &cache->node,
f51455d4 1090 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
e8cb909a 1091 0, ggtt->mappable_end,
4e64e553 1092 DRM_MM_INSERT_LOW);
2889caa9 1093 if (err) /* no inactive aperture space, use cpu reloc */
c92fa4fe 1094 return NULL;
e8cb909a 1095 } else {
2889caa9
CW
1096 err = i915_vma_put_fence(vma);
1097 if (err) {
e8cb909a 1098 i915_vma_unpin(vma);
2889caa9 1099 return ERR_PTR(err);
e8cb909a 1100 }
5032d871 1101
e8cb909a
CW
1102 cache->node.start = vma->node.start;
1103 cache->node.mm = (void *)vma;
3c94ceee 1104 }
e8cb909a 1105 }
3c94ceee 1106
e8cb909a
CW
1107 offset = cache->node.start;
1108 if (cache->node.allocated) {
fc099090 1109 wmb();
82ad6443
CW
1110 ggtt->vm.insert_page(&ggtt->vm,
1111 i915_gem_object_get_dma_address(obj, page),
1112 offset, I915_CACHE_NONE, 0);
e8cb909a
CW
1113 } else {
1114 offset += page << PAGE_SHIFT;
3c94ceee
BW
1115 }
1116
73ebd503 1117 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
650bc635 1118 offset);
d50415cc
CW
1119 cache->page = page;
1120 cache->vaddr = (unsigned long)vaddr;
5032d871 1121
d50415cc 1122 return vaddr;
5032d871
RB
1123}
1124
d50415cc
CW
1125static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1126 struct reloc_cache *cache,
2889caa9 1127 unsigned long page)
edf4427b 1128{
d50415cc 1129 void *vaddr;
5032d871 1130
d50415cc
CW
1131 if (cache->page == page) {
1132 vaddr = unmask_page(cache->vaddr);
1133 } else {
1134 vaddr = NULL;
1135 if ((cache->vaddr & KMAP) == 0)
1136 vaddr = reloc_iomap(obj, cache, page);
1137 if (!vaddr)
1138 vaddr = reloc_kmap(obj, cache, page);
3c94ceee
BW
1139 }
1140
d50415cc 1141 return vaddr;
edf4427b
CW
1142}
1143
d50415cc 1144static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
edf4427b 1145{
d50415cc
CW
1146 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1147 if (flushes & CLFLUSH_BEFORE) {
1148 clflushopt(addr);
1149 mb();
1150 }
edf4427b 1151
d50415cc 1152 *addr = value;
edf4427b 1153
2889caa9
CW
1154 /*
1155 * Writes to the same cacheline are serialised by the CPU
d50415cc
CW
1156 * (including clflush). On the write path, we only require
1157 * that it hits memory in an orderly fashion and place
1158 * mb barriers at the start and end of the relocation phase
1159 * to ensure ordering of clflush wrt to the system.
1160 */
1161 if (flushes & CLFLUSH_AFTER)
1162 clflushopt(addr);
1163 } else
1164 *addr = value;
edf4427b 1165}
edf4427b 1166
7dd4f672
CW
1167static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1168 struct i915_vma *vma,
1169 unsigned int len)
1170{
1171 struct reloc_cache *cache = &eb->reloc_cache;
1172 struct drm_i915_gem_object *obj;
e61e0f51 1173 struct i915_request *rq;
7dd4f672
CW
1174 struct i915_vma *batch;
1175 u32 *cmd;
1176 int err;
1177
46223993
CW
1178 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) {
1179 obj = vma->obj;
1180 if (obj->cache_dirty & ~obj->cache_coherent)
1181 i915_gem_clflush_object(obj, 0);
1182 obj->write_domain = 0;
1183 }
1184
c0a51fd0 1185 GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
7dd4f672
CW
1186
1187 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1188 if (IS_ERR(obj))
1189 return PTR_ERR(obj);
1190
1191 cmd = i915_gem_object_pin_map(obj,
a575c676
CW
1192 cache->has_llc ?
1193 I915_MAP_FORCE_WB :
1194 I915_MAP_FORCE_WC);
7dd4f672
CW
1195 i915_gem_object_unpin_pages(obj);
1196 if (IS_ERR(cmd))
1197 return PTR_ERR(cmd);
1198
7dd4f672
CW
1199 batch = i915_vma_instance(obj, vma->vm, NULL);
1200 if (IS_ERR(batch)) {
1201 err = PTR_ERR(batch);
1202 goto err_unmap;
1203 }
1204
1205 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1206 if (err)
1207 goto err_unmap;
1208
8f2a1057 1209 rq = i915_request_create(eb->context);
7dd4f672
CW
1210 if (IS_ERR(rq)) {
1211 err = PTR_ERR(rq);
1212 goto err_unpin;
1213 }
1214
e61e0f51 1215 err = i915_request_await_object(rq, vma->obj, true);
7dd4f672
CW
1216 if (err)
1217 goto err_request;
1218
7dd4f672
CW
1219 err = eb->engine->emit_bb_start(rq,
1220 batch->node.start, PAGE_SIZE,
1221 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1222 if (err)
1223 goto err_request;
1224
95ff7c7d 1225 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
a5236978
CW
1226 err = i915_vma_move_to_active(batch, rq, 0);
1227 if (err)
1228 goto skip_request;
7dd4f672 1229
a5236978
CW
1230 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1231 if (err)
1232 goto skip_request;
7dd4f672
CW
1233
1234 rq->batch = batch;
a5236978 1235 i915_vma_unpin(batch);
7dd4f672
CW
1236
1237 cache->rq = rq;
1238 cache->rq_cmd = cmd;
1239 cache->rq_size = 0;
1240
1241 /* Return with batch mapping (cmd) still pinned */
1242 return 0;
1243
a5236978
CW
1244skip_request:
1245 i915_request_skip(rq, err);
7dd4f672 1246err_request:
e61e0f51 1247 i915_request_add(rq);
7dd4f672
CW
1248err_unpin:
1249 i915_vma_unpin(batch);
1250err_unmap:
1251 i915_gem_object_unpin_map(obj);
1252 return err;
1253}
1254
1255static u32 *reloc_gpu(struct i915_execbuffer *eb,
1256 struct i915_vma *vma,
1257 unsigned int len)
1258{
1259 struct reloc_cache *cache = &eb->reloc_cache;
1260 u32 *cmd;
1261
1262 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1263 reloc_gpu_flush(cache);
1264
1265 if (unlikely(!cache->rq)) {
1266 int err;
1267
3dbf26ed
CW
1268 /* If we need to copy for the cmdparser, we will stall anyway */
1269 if (eb_use_cmdparser(eb))
1270 return ERR_PTR(-EWOULDBLOCK);
1271
90cad095
CW
1272 if (!intel_engine_can_store_dword(eb->engine))
1273 return ERR_PTR(-ENODEV);
1274
7dd4f672
CW
1275 err = __reloc_gpu_alloc(eb, vma, len);
1276 if (unlikely(err))
1277 return ERR_PTR(err);
1278 }
1279
1280 cmd = cache->rq_cmd + cache->rq_size;
1281 cache->rq_size += len;
1282
1283 return cmd;
1284}
1285
2889caa9
CW
1286static u64
1287relocate_entry(struct i915_vma *vma,
d50415cc 1288 const struct drm_i915_gem_relocation_entry *reloc,
2889caa9
CW
1289 struct i915_execbuffer *eb,
1290 const struct i915_vma *target)
edf4427b 1291{
d50415cc 1292 u64 offset = reloc->offset;
2889caa9
CW
1293 u64 target_offset = relocation_target(reloc, target);
1294 bool wide = eb->reloc_cache.use_64bit_reloc;
d50415cc 1295 void *vaddr;
edf4427b 1296
7dd4f672
CW
1297 if (!eb->reloc_cache.vaddr &&
1298 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
90cad095 1299 !reservation_object_test_signaled_rcu(vma->resv, true))) {
7dd4f672
CW
1300 const unsigned int gen = eb->reloc_cache.gen;
1301 unsigned int len;
1302 u32 *batch;
1303 u64 addr;
1304
1305 if (wide)
1306 len = offset & 7 ? 8 : 5;
1307 else if (gen >= 4)
1308 len = 4;
f2f5c061 1309 else
a889580c 1310 len = 3;
7dd4f672
CW
1311
1312 batch = reloc_gpu(eb, vma, len);
1313 if (IS_ERR(batch))
1314 goto repeat;
1315
1316 addr = gen8_canonical_addr(vma->node.start + offset);
1317 if (wide) {
1318 if (offset & 7) {
1319 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1320 *batch++ = lower_32_bits(addr);
1321 *batch++ = upper_32_bits(addr);
1322 *batch++ = lower_32_bits(target_offset);
1323
1324 addr = gen8_canonical_addr(addr + 4);
1325
1326 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1327 *batch++ = lower_32_bits(addr);
1328 *batch++ = upper_32_bits(addr);
1329 *batch++ = upper_32_bits(target_offset);
1330 } else {
1331 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1332 *batch++ = lower_32_bits(addr);
1333 *batch++ = upper_32_bits(addr);
1334 *batch++ = lower_32_bits(target_offset);
1335 *batch++ = upper_32_bits(target_offset);
1336 }
1337 } else if (gen >= 6) {
1338 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1339 *batch++ = 0;
1340 *batch++ = addr;
1341 *batch++ = target_offset;
1342 } else if (gen >= 4) {
1343 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1344 *batch++ = 0;
1345 *batch++ = addr;
1346 *batch++ = target_offset;
1347 } else {
1348 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1349 *batch++ = addr;
1350 *batch++ = target_offset;
1351 }
1352
1353 goto out;
1354 }
1355
d50415cc 1356repeat:
95ff7c7d 1357 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
d50415cc
CW
1358 if (IS_ERR(vaddr))
1359 return PTR_ERR(vaddr);
1360
1361 clflush_write32(vaddr + offset_in_page(offset),
1362 lower_32_bits(target_offset),
2889caa9 1363 eb->reloc_cache.vaddr);
d50415cc
CW
1364
1365 if (wide) {
1366 offset += sizeof(u32);
1367 target_offset >>= 32;
1368 wide = false;
1369 goto repeat;
edf4427b 1370 }
edf4427b 1371
7dd4f672 1372out:
2889caa9 1373 return target->node.start | UPDATE;
edf4427b 1374}
edf4427b 1375
2889caa9
CW
1376static u64
1377eb_relocate_entry(struct i915_execbuffer *eb,
1378 struct i915_vma *vma,
1379 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1380{
507d977f 1381 struct i915_vma *target;
2889caa9 1382 int err;
54cf91dc 1383
67731b87 1384 /* we've already hold a reference to all valid objects */
507d977f
CW
1385 target = eb_get_vma(eb, reloc->target_handle);
1386 if (unlikely(!target))
54cf91dc 1387 return -ENOENT;
e844b990 1388
54cf91dc 1389 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1390 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 1391 DRM_DEBUG("reloc with multiple write domains: "
507d977f 1392 "target %d offset %d "
54cf91dc 1393 "read %08x write %08x",
507d977f 1394 reloc->target_handle,
54cf91dc
CW
1395 (int) reloc->offset,
1396 reloc->read_domains,
1397 reloc->write_domain);
8b78f0e5 1398 return -EINVAL;
54cf91dc 1399 }
4ca4a250
DV
1400 if (unlikely((reloc->write_domain | reloc->read_domains)
1401 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 1402 DRM_DEBUG("reloc with read/write non-GPU domains: "
507d977f 1403 "target %d offset %d "
54cf91dc 1404 "read %08x write %08x",
507d977f 1405 reloc->target_handle,
54cf91dc
CW
1406 (int) reloc->offset,
1407 reloc->read_domains,
1408 reloc->write_domain);
8b78f0e5 1409 return -EINVAL;
54cf91dc 1410 }
54cf91dc 1411
2889caa9 1412 if (reloc->write_domain) {
c7c6e46f 1413 *target->exec_flags |= EXEC_OBJECT_WRITE;
507d977f 1414
2889caa9
CW
1415 /*
1416 * Sandybridge PPGTT errata: We need a global gtt mapping
1417 * for MI and pipe_control writes because the gpu doesn't
1418 * properly redirect them through the ppgtt for non_secure
1419 * batchbuffers.
1420 */
1421 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
cf819eff 1422 IS_GEN(eb->i915, 6)) {
2889caa9
CW
1423 err = i915_vma_bind(target, target->obj->cache_level,
1424 PIN_GLOBAL);
1425 if (WARN_ONCE(err,
1426 "Unexpected failure to bind target VMA!"))
1427 return err;
1428 }
507d977f 1429 }
54cf91dc 1430
2889caa9
CW
1431 /*
1432 * If the relocation already has the right value in it, no
54cf91dc
CW
1433 * more work needs to be done.
1434 */
7dd4f672
CW
1435 if (!DBG_FORCE_RELOC &&
1436 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
67731b87 1437 return 0;
54cf91dc
CW
1438
1439 /* Check that the relocation address is valid... */
3c94ceee 1440 if (unlikely(reloc->offset >
507d977f 1441 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
ff240199 1442 DRM_DEBUG("Relocation beyond object bounds: "
507d977f
CW
1443 "target %d offset %d size %d.\n",
1444 reloc->target_handle,
1445 (int)reloc->offset,
1446 (int)vma->size);
8b78f0e5 1447 return -EINVAL;
54cf91dc 1448 }
b8f7ab17 1449 if (unlikely(reloc->offset & 3)) {
ff240199 1450 DRM_DEBUG("Relocation not 4-byte aligned: "
507d977f
CW
1451 "target %d offset %d.\n",
1452 reloc->target_handle,
1453 (int)reloc->offset);
8b78f0e5 1454 return -EINVAL;
54cf91dc
CW
1455 }
1456
071750e5
CW
1457 /*
1458 * If we write into the object, we need to force the synchronisation
1459 * barrier, either with an asynchronous clflush or if we executed the
1460 * patching using the GPU (though that should be serialised by the
1461 * timeline). To be completely sure, and since we are required to
1462 * do relocations we are already stalling, disable the user's opt
0519bcb1 1463 * out of our synchronisation.
071750e5 1464 */
c7c6e46f 1465 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1466
54cf91dc 1467 /* and update the user's relocation entry */
2889caa9 1468 return relocate_entry(vma, reloc, eb, target);
54cf91dc
CW
1469}
1470
2889caa9 1471static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1472{
1d83f442 1473#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9
CW
1474 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1475 struct drm_i915_gem_relocation_entry __user *urelocs;
c7c6e46f 1476 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9 1477 unsigned int remain;
54cf91dc 1478
2889caa9 1479 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1d83f442 1480 remain = entry->relocation_count;
2889caa9
CW
1481 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1482 return -EINVAL;
ebc0808f 1483
2889caa9
CW
1484 /*
1485 * We must check that the entire relocation array is safe
1486 * to read. However, if the array is not writable the user loses
1487 * the updated relocation values.
1488 */
96d4f267 1489 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
2889caa9
CW
1490 return -EFAULT;
1491
1492 do {
1493 struct drm_i915_gem_relocation_entry *r = stack;
1494 unsigned int count =
1495 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1496 unsigned int copied;
1d83f442 1497
2889caa9
CW
1498 /*
1499 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1500 * whilst holding the struct mutex lest the user pass in the
1501 * relocations contained within a mmaped bo. For in such a case
1502 * we, the page fault handler would call i915_gem_fault() and
1503 * we would try to acquire the struct mutex again. Obviously
1504 * this is bad and so lockdep complains vehemently.
1505 */
1506 pagefault_disable();
2889caa9 1507 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
ebc0808f 1508 pagefault_enable();
2889caa9
CW
1509 if (unlikely(copied)) {
1510 remain = -EFAULT;
31a39207
CW
1511 goto out;
1512 }
54cf91dc 1513
2889caa9 1514 remain -= count;
1d83f442 1515 do {
2889caa9 1516 u64 offset = eb_relocate_entry(eb, vma, r);
54cf91dc 1517
2889caa9
CW
1518 if (likely(offset == 0)) {
1519 } else if ((s64)offset < 0) {
1520 remain = (int)offset;
31a39207 1521 goto out;
2889caa9
CW
1522 } else {
1523 /*
1524 * Note that reporting an error now
1525 * leaves everything in an inconsistent
1526 * state as we have *already* changed
1527 * the relocation value inside the
1528 * object. As we have not changed the
1529 * reloc.presumed_offset or will not
1530 * change the execobject.offset, on the
1531 * call we may not rewrite the value
1532 * inside the object, leaving it
1533 * dangling and causing a GPU hang. Unless
1534 * userspace dynamically rebuilds the
1535 * relocations on each execbuf rather than
1536 * presume a static tree.
1537 *
1538 * We did previously check if the relocations
1539 * were writable (access_ok), an error now
1540 * would be a strange race with mprotect,
1541 * having already demonstrated that we
1542 * can read from this userspace address.
1543 */
1544 offset = gen8_canonical_addr(offset & ~UPDATE);
fddcd00a
CW
1545 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1546 remain = -EFAULT;
1547 goto out;
1548 }
1d83f442 1549 }
2889caa9
CW
1550 } while (r++, --count);
1551 urelocs += ARRAY_SIZE(stack);
1552 } while (remain);
31a39207 1553out:
650bc635 1554 reloc_cache_reset(&eb->reloc_cache);
2889caa9 1555 return remain;
54cf91dc
CW
1556}
1557
1558static int
2889caa9 1559eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
54cf91dc 1560{
c7c6e46f 1561 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
2889caa9
CW
1562 struct drm_i915_gem_relocation_entry *relocs =
1563 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1564 unsigned int i;
1565 int err;
54cf91dc
CW
1566
1567 for (i = 0; i < entry->relocation_count; i++) {
2889caa9 1568 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
d4aeee77 1569
2889caa9
CW
1570 if ((s64)offset < 0) {
1571 err = (int)offset;
1572 goto err;
1573 }
54cf91dc 1574 }
2889caa9
CW
1575 err = 0;
1576err:
1577 reloc_cache_reset(&eb->reloc_cache);
1578 return err;
edf4427b
CW
1579}
1580
2889caa9 1581static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1690e1eb 1582{
2889caa9
CW
1583 const char __user *addr, *end;
1584 unsigned long size;
1585 char __maybe_unused c;
1690e1eb 1586
2889caa9
CW
1587 size = entry->relocation_count;
1588 if (size == 0)
1589 return 0;
7788a765 1590
2889caa9
CW
1591 if (size > N_RELOC(ULONG_MAX))
1592 return -EINVAL;
9a5a53b3 1593
2889caa9
CW
1594 addr = u64_to_user_ptr(entry->relocs_ptr);
1595 size *= sizeof(struct drm_i915_gem_relocation_entry);
96d4f267 1596 if (!access_ok(addr, size))
2889caa9 1597 return -EFAULT;
1690e1eb 1598
2889caa9
CW
1599 end = addr + size;
1600 for (; addr < end; addr += PAGE_SIZE) {
1601 int err = __get_user(c, addr);
1602 if (err)
1603 return err;
ed5982e6 1604 }
2889caa9 1605 return __get_user(c, end - 1);
7788a765 1606}
1690e1eb 1607
2889caa9 1608static int eb_copy_relocations(const struct i915_execbuffer *eb)
d23db88c 1609{
2889caa9
CW
1610 const unsigned int count = eb->buffer_count;
1611 unsigned int i;
1612 int err;
e6a84468 1613
2889caa9
CW
1614 for (i = 0; i < count; i++) {
1615 const unsigned int nreloc = eb->exec[i].relocation_count;
1616 struct drm_i915_gem_relocation_entry __user *urelocs;
1617 struct drm_i915_gem_relocation_entry *relocs;
1618 unsigned long size;
1619 unsigned long copied;
e6a84468 1620
2889caa9
CW
1621 if (nreloc == 0)
1622 continue;
e6a84468 1623
2889caa9
CW
1624 err = check_relocations(&eb->exec[i]);
1625 if (err)
1626 goto err;
d23db88c 1627
2889caa9
CW
1628 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1629 size = nreloc * sizeof(*relocs);
d23db88c 1630
0ee931c4 1631 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
2889caa9 1632 if (!relocs) {
2889caa9
CW
1633 err = -ENOMEM;
1634 goto err;
1635 }
d23db88c 1636
2889caa9
CW
1637 /* copy_from_user is limited to < 4GiB */
1638 copied = 0;
1639 do {
1640 unsigned int len =
1641 min_t(u64, BIT_ULL(31), size - copied);
1642
1643 if (__copy_from_user((char *)relocs + copied,
908a6105 1644 (char __user *)urelocs + copied,
2889caa9 1645 len)) {
fddcd00a 1646end_user:
0b2c8f8b 1647 user_access_end();
8f4faed0 1648end:
2889caa9
CW
1649 kvfree(relocs);
1650 err = -EFAULT;
1651 goto err;
1652 }
91b2db6f 1653
2889caa9
CW
1654 copied += len;
1655 } while (copied < size);
506a8e87 1656
2889caa9
CW
1657 /*
1658 * As we do not update the known relocation offsets after
1659 * relocating (due to the complexities in lock handling),
1660 * we need to mark them as invalid now so that we force the
1661 * relocation processing next time. Just in case the target
1662 * object is evicted and then rebound into its old
1663 * presumed_offset before the next execbuffer - if that
1664 * happened we would make the mistake of assuming that the
1665 * relocations were valid.
1666 */
594cc251 1667 if (!user_access_begin(urelocs, size))
8f4faed0 1668 goto end;
594cc251 1669
2889caa9
CW
1670 for (copied = 0; copied < nreloc; copied++)
1671 unsafe_put_user(-1,
1672 &urelocs[copied].presumed_offset,
1673 end_user);
2889caa9 1674 user_access_end();
d23db88c 1675
2889caa9
CW
1676 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1677 }
edf4427b 1678
2889caa9 1679 return 0;
101b506a 1680
2889caa9
CW
1681err:
1682 while (i--) {
1683 struct drm_i915_gem_relocation_entry *relocs =
1684 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1685 if (eb->exec[i].relocation_count)
1686 kvfree(relocs);
1687 }
1688 return err;
d23db88c
CW
1689}
1690
2889caa9 1691static int eb_prefault_relocations(const struct i915_execbuffer *eb)
54cf91dc 1692{
2889caa9
CW
1693 const unsigned int count = eb->buffer_count;
1694 unsigned int i;
54cf91dc 1695
4f044a88 1696 if (unlikely(i915_modparams.prefault_disable))
2889caa9 1697 return 0;
54cf91dc 1698
2889caa9
CW
1699 for (i = 0; i < count; i++) {
1700 int err;
54cf91dc 1701
2889caa9
CW
1702 err = check_relocations(&eb->exec[i]);
1703 if (err)
1704 return err;
1705 }
a415d355 1706
2889caa9 1707 return 0;
54cf91dc
CW
1708}
1709
2889caa9 1710static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
54cf91dc 1711{
650bc635 1712 struct drm_device *dev = &eb->i915->drm;
2889caa9 1713 bool have_copy = false;
27173f1f 1714 struct i915_vma *vma;
2889caa9
CW
1715 int err = 0;
1716
1717repeat:
1718 if (signal_pending(current)) {
1719 err = -ERESTARTSYS;
1720 goto out;
1721 }
27173f1f 1722
67731b87 1723 /* We may process another execbuffer during the unlock... */
2889caa9 1724 eb_reset_vmas(eb);
54cf91dc
CW
1725 mutex_unlock(&dev->struct_mutex);
1726
2889caa9
CW
1727 /*
1728 * We take 3 passes through the slowpatch.
1729 *
1730 * 1 - we try to just prefault all the user relocation entries and
1731 * then attempt to reuse the atomic pagefault disabled fast path again.
1732 *
1733 * 2 - we copy the user entries to a local buffer here outside of the
1734 * local and allow ourselves to wait upon any rendering before
1735 * relocations
1736 *
1737 * 3 - we already have a local copy of the relocation entries, but
1738 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1739 */
1740 if (!err) {
1741 err = eb_prefault_relocations(eb);
1742 } else if (!have_copy) {
1743 err = eb_copy_relocations(eb);
1744 have_copy = err == 0;
1745 } else {
1746 cond_resched();
1747 err = 0;
54cf91dc 1748 }
2889caa9
CW
1749 if (err) {
1750 mutex_lock(&dev->struct_mutex);
1751 goto out;
54cf91dc
CW
1752 }
1753
8a2421bd
CW
1754 /* A frequent cause for EAGAIN are currently unavailable client pages */
1755 flush_workqueue(eb->i915->mm.userptr_wq);
1756
2889caa9
CW
1757 err = i915_mutex_lock_interruptible(dev);
1758 if (err) {
54cf91dc 1759 mutex_lock(&dev->struct_mutex);
2889caa9 1760 goto out;
54cf91dc
CW
1761 }
1762
67731b87 1763 /* reacquire the objects */
2889caa9
CW
1764 err = eb_lookup_vmas(eb);
1765 if (err)
3b96eff4 1766 goto err;
67731b87 1767
c7c6e46f
CW
1768 GEM_BUG_ON(!eb->batch);
1769
2889caa9
CW
1770 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1771 if (!have_copy) {
1772 pagefault_disable();
1773 err = eb_relocate_vma(eb, vma);
1774 pagefault_enable();
1775 if (err)
1776 goto repeat;
1777 } else {
1778 err = eb_relocate_vma_slow(eb, vma);
1779 if (err)
1780 goto err;
1781 }
54cf91dc
CW
1782 }
1783
2889caa9
CW
1784 /*
1785 * Leave the user relocations as are, this is the painfully slow path,
54cf91dc
CW
1786 * and we want to avoid the complication of dropping the lock whilst
1787 * having buffers reserved in the aperture and so causing spurious
1788 * ENOSPC for random operations.
1789 */
1790
1791err:
2889caa9
CW
1792 if (err == -EAGAIN)
1793 goto repeat;
1794
1795out:
1796 if (have_copy) {
1797 const unsigned int count = eb->buffer_count;
1798 unsigned int i;
1799
1800 for (i = 0; i < count; i++) {
1801 const struct drm_i915_gem_exec_object2 *entry =
1802 &eb->exec[i];
1803 struct drm_i915_gem_relocation_entry *relocs;
1804
1805 if (!entry->relocation_count)
1806 continue;
1807
1808 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1809 kvfree(relocs);
1810 }
1811 }
1812
1f727d9e 1813 return err;
54cf91dc
CW
1814}
1815
2889caa9 1816static int eb_relocate(struct i915_execbuffer *eb)
54cf91dc 1817{
2889caa9
CW
1818 if (eb_lookup_vmas(eb))
1819 goto slow;
1820
1821 /* The objects are in their final locations, apply the relocations. */
1822 if (eb->args->flags & __EXEC_HAS_RELOC) {
1823 struct i915_vma *vma;
1824
1825 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1826 if (eb_relocate_vma(eb, vma))
1827 goto slow;
1828 }
1829 }
1830
1831 return 0;
1832
1833slow:
1834 return eb_relocate_slow(eb);
1835}
1836
2889caa9
CW
1837static int eb_move_to_gpu(struct i915_execbuffer *eb)
1838{
1839 const unsigned int count = eb->buffer_count;
1840 unsigned int i;
1841 int err;
54cf91dc 1842
2889caa9 1843 for (i = 0; i < count; i++) {
c7c6e46f
CW
1844 unsigned int flags = eb->flags[i];
1845 struct i915_vma *vma = eb->vma[i];
27173f1f 1846 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1847
c7c6e46f 1848 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 1849 struct i915_capture_list *capture;
b0fd47ad
CW
1850
1851 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1852 if (unlikely(!capture))
1853 return -ENOMEM;
1854
650bc635 1855 capture->next = eb->request->capture_list;
c7c6e46f 1856 capture->vma = eb->vma[i];
650bc635 1857 eb->request->capture_list = capture;
b0fd47ad
CW
1858 }
1859
b8f55be6
CW
1860 /*
1861 * If the GPU is not _reading_ through the CPU cache, we need
1862 * to make sure that any writes (both previous GPU writes from
1863 * before a change in snooping levels and normal CPU writes)
1864 * caught in that cache are flushed to main memory.
1865 *
1866 * We want to say
1867 * obj->cache_dirty &&
1868 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1869 * but gcc's optimiser doesn't handle that as well and emits
1870 * two jumps instead of one. Maybe one day...
1871 */
1872 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1873 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1874 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1875 }
1876
c7c6e46f
CW
1877 if (flags & EXEC_OBJECT_ASYNC)
1878 continue;
77ae9957 1879
e61e0f51 1880 err = i915_request_await_object
c7c6e46f 1881 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2889caa9
CW
1882 if (err)
1883 return err;
2889caa9
CW
1884 }
1885
1886 for (i = 0; i < count; i++) {
c7c6e46f
CW
1887 unsigned int flags = eb->flags[i];
1888 struct i915_vma *vma = eb->vma[i];
1889
a5236978
CW
1890 err = i915_vma_move_to_active(vma, eb->request, flags);
1891 if (unlikely(err)) {
1892 i915_request_skip(eb->request, err);
1893 return err;
1894 }
2889caa9 1895
c7c6e46f
CW
1896 __eb_unreserve_vma(vma, flags);
1897 vma->exec_flags = NULL;
1898
1899 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
dade2a61 1900 i915_vma_put(vma);
c59a333f 1901 }
2889caa9 1902 eb->exec = NULL;
c59a333f 1903
dcd79934 1904 /* Unconditionally flush any chipset caches (for streaming writes). */
650bc635 1905 i915_gem_chipset_flush(eb->i915);
6ac42f41 1906
2113184c 1907 return 0;
54cf91dc
CW
1908}
1909
2889caa9 1910static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 1911{
650bc635 1912 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
ed5982e6
DV
1913 return false;
1914
2f5945bc 1915 /* Kernel clipping was a DRI1 misfeature */
cf6e7bac
JE
1916 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1917 if (exec->num_cliprects || exec->cliprects_ptr)
1918 return false;
1919 }
2f5945bc
CW
1920
1921 if (exec->DR4 == 0xffffffff) {
1922 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1923 exec->DR4 = 0;
1924 }
1925 if (exec->DR1 || exec->DR4)
1926 return false;
1927
1928 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1929 return false;
1930
1931 return true;
54cf91dc
CW
1932}
1933
e61e0f51 1934static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 1935{
73dec95e
TU
1936 u32 *cs;
1937 int i;
ae662d31 1938
8a68d464 1939 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
9d662da8
DV
1940 DRM_DEBUG("sol reset is gen7/rcs only\n");
1941 return -EINVAL;
1942 }
ae662d31 1943
e61e0f51 1944 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
1945 if (IS_ERR(cs))
1946 return PTR_ERR(cs);
ae662d31 1947
2889caa9 1948 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 1949 for (i = 0; i < 4; i++) {
73dec95e
TU
1950 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1951 *cs++ = 0;
ae662d31 1952 }
2889caa9 1953 *cs++ = MI_NOOP;
e61e0f51 1954 intel_ring_advance(rq, cs);
ae662d31
EA
1955
1956 return 0;
1957}
1958
650bc635 1959static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
71745376 1960{
71745376 1961 struct drm_i915_gem_object *shadow_batch_obj;
17cabf57 1962 struct i915_vma *vma;
2889caa9 1963 int err;
71745376 1964
650bc635
CW
1965 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1966 PAGE_ALIGN(eb->batch_len));
71745376 1967 if (IS_ERR(shadow_batch_obj))
59bfa124 1968 return ERR_CAST(shadow_batch_obj);
71745376 1969
2889caa9 1970 err = intel_engine_cmd_parser(eb->engine,
650bc635 1971 eb->batch->obj,
33a051a5 1972 shadow_batch_obj,
650bc635
CW
1973 eb->batch_start_offset,
1974 eb->batch_len,
33a051a5 1975 is_master);
2889caa9
CW
1976 if (err) {
1977 if (err == -EACCES) /* unhandled chained batch */
058d88c4
CW
1978 vma = NULL;
1979 else
2889caa9 1980 vma = ERR_PTR(err);
058d88c4
CW
1981 goto out;
1982 }
71745376 1983
058d88c4
CW
1984 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1985 if (IS_ERR(vma))
1986 goto out;
de4e783a 1987
c7c6e46f
CW
1988 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1989 eb->flags[eb->buffer_count] =
1990 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1991 vma->exec_flags = &eb->flags[eb->buffer_count];
1992 eb->buffer_count++;
71745376 1993
058d88c4 1994out:
de4e783a 1995 i915_gem_object_unpin_pages(shadow_batch_obj);
058d88c4 1996 return vma;
71745376 1997}
5c6c6003 1998
c8659efa 1999static void
e61e0f51 2000add_to_client(struct i915_request *rq, struct drm_file *file)
c8659efa 2001{
e61e0f51
CW
2002 rq->file_priv = file->driver_priv;
2003 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
c8659efa
CW
2004}
2005
2889caa9 2006static int eb_submit(struct i915_execbuffer *eb)
78382593 2007{
2889caa9 2008 int err;
78382593 2009
2889caa9
CW
2010 err = eb_move_to_gpu(eb);
2011 if (err)
2012 return err;
78382593 2013
650bc635 2014 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
2015 err = i915_reset_gen7_sol_offsets(eb->request);
2016 if (err)
2017 return err;
78382593
OM
2018 }
2019
85474441
CW
2020 /*
2021 * After we completed waiting for other engines (using HW semaphores)
2022 * then we can signal that this request/batch is ready to run. This
2023 * allows us to determine if the batch is still waiting on the GPU
2024 * or actually running by checking the breadcrumb.
2025 */
2026 if (eb->engine->emit_init_breadcrumb) {
2027 err = eb->engine->emit_init_breadcrumb(eb->request);
2028 if (err)
2029 return err;
2030 }
2031
2889caa9 2032 err = eb->engine->emit_bb_start(eb->request,
650bc635
CW
2033 eb->batch->node.start +
2034 eb->batch_start_offset,
2035 eb->batch_len,
2889caa9
CW
2036 eb->batch_flags);
2037 if (err)
2038 return err;
78382593 2039
2f5945bc 2040 return 0;
78382593
OM
2041}
2042
204bcfef 2043/*
a8ebba75 2044 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2045 * The engine index is returned.
a8ebba75 2046 */
de1add36 2047static unsigned int
c80ff16e
CW
2048gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2049 struct drm_file *file)
a8ebba75 2050{
a8ebba75
ZY
2051 struct drm_i915_file_private *file_priv = file->driver_priv;
2052
de1add36 2053 /* Check whether the file_priv has already selected one ring. */
6f633402
JL
2054 if ((int)file_priv->bsd_engine < 0)
2055 file_priv->bsd_engine = atomic_fetch_xor(1,
2056 &dev_priv->mm.bsd_engine_dispatch_index);
d23db88c 2057
c80ff16e 2058 return file_priv->bsd_engine;
d23db88c
CW
2059}
2060
5e2a0419 2061static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2062 [I915_EXEC_DEFAULT] = RCS0,
2063 [I915_EXEC_RENDER] = RCS0,
2064 [I915_EXEC_BLT] = BCS0,
2065 [I915_EXEC_BSD] = VCS0,
2066 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2067};
2068
5e2a0419 2069static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
de1add36 2070{
8f2a1057 2071 int err;
de1add36 2072
8f2a1057
CW
2073 /*
2074 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2075 * EIO if the GPU is already wedged.
2076 */
2077 err = i915_terminally_wedged(eb->i915);
2078 if (err)
2079 return err;
2080
2081 /*
2082 * Pinning the contexts may generate requests in order to acquire
2083 * GGTT space, so do this first before we reserve a seqno for
2084 * ourselves.
2085 */
fa9f6681 2086 err = intel_context_pin(ce);
fa9f6681
CW
2087 if (err)
2088 return err;
8f2a1057 2089
5e2a0419 2090 eb->engine = ce->engine;
8f2a1057
CW
2091 eb->context = ce;
2092 return 0;
2093}
2094
2095static void eb_unpin_context(struct i915_execbuffer *eb)
2096{
2097 intel_context_unpin(eb->context);
2098}
de1add36 2099
5e2a0419
CW
2100static unsigned int
2101eb_select_legacy_ring(struct i915_execbuffer *eb,
2102 struct drm_file *file,
2103 struct drm_i915_gem_execbuffer2 *args)
de1add36 2104{
8f2a1057 2105 struct drm_i915_private *i915 = eb->i915;
de1add36 2106 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2107
5e2a0419
CW
2108 if (user_ring_id != I915_EXEC_BSD &&
2109 (args->flags & I915_EXEC_BSD_MASK)) {
de1add36
TU
2110 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2111 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2112 return -1;
de1add36
TU
2113 }
2114
8f2a1057 2115 if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) {
de1add36
TU
2116 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2117
2118 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
8f2a1057 2119 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
de1add36
TU
2120 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2121 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2122 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2123 bsd_idx--;
2124 } else {
2125 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2126 bsd_idx);
5e2a0419 2127 return -1;
de1add36
TU
2128 }
2129
5e2a0419 2130 return _VCS(bsd_idx);
de1add36
TU
2131 }
2132
5e2a0419
CW
2133 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2134 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2135 return -1;
de1add36
TU
2136 }
2137
5e2a0419
CW
2138 return user_ring_map[user_ring_id];
2139}
2140
2141static int
2142eb_select_engine(struct i915_execbuffer *eb,
2143 struct drm_file *file,
2144 struct drm_i915_gem_execbuffer2 *args)
2145{
2146 struct intel_context *ce;
2147 unsigned int idx;
2148 int err;
2149
976b55f0
CW
2150 if (i915_gem_context_user_engines(eb->gem_context))
2151 idx = args->flags & I915_EXEC_RING_MASK;
2152 else
2153 idx = eb_select_legacy_ring(eb, file, args);
5e2a0419
CW
2154
2155 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2156 if (IS_ERR(ce))
2157 return PTR_ERR(ce);
2158
2159 err = eb_pin_context(eb, ce);
2160 intel_context_put(ce);
2161
2162 return err;
de1add36
TU
2163}
2164
cf6e7bac
JE
2165static void
2166__free_fence_array(struct drm_syncobj **fences, unsigned int n)
2167{
2168 while (n--)
2169 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2170 kvfree(fences);
2171}
2172
2173static struct drm_syncobj **
2174get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2175 struct drm_file *file)
2176{
d710fc16 2177 const unsigned long nfences = args->num_cliprects;
cf6e7bac
JE
2178 struct drm_i915_gem_exec_fence __user *user;
2179 struct drm_syncobj **fences;
d710fc16 2180 unsigned long n;
cf6e7bac
JE
2181 int err;
2182
2183 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2184 return NULL;
2185
d710fc16
CW
2186 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2187 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2188 if (nfences > min_t(unsigned long,
2189 ULONG_MAX / sizeof(*user),
2190 SIZE_MAX / sizeof(*fences)))
cf6e7bac
JE
2191 return ERR_PTR(-EINVAL);
2192
2193 user = u64_to_user_ptr(args->cliprects_ptr);
96d4f267 2194 if (!access_ok(user, nfences * sizeof(*user)))
cf6e7bac
JE
2195 return ERR_PTR(-EFAULT);
2196
d710fc16 2197 fences = kvmalloc_array(nfences, sizeof(*fences),
0ee931c4 2198 __GFP_NOWARN | GFP_KERNEL);
cf6e7bac
JE
2199 if (!fences)
2200 return ERR_PTR(-ENOMEM);
2201
2202 for (n = 0; n < nfences; n++) {
2203 struct drm_i915_gem_exec_fence fence;
2204 struct drm_syncobj *syncobj;
2205
2206 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2207 err = -EFAULT;
2208 goto err;
2209 }
2210
ebcaa1ff
TU
2211 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2212 err = -EINVAL;
2213 goto err;
2214 }
2215
cf6e7bac
JE
2216 syncobj = drm_syncobj_find(file, fence.handle);
2217 if (!syncobj) {
2218 DRM_DEBUG("Invalid syncobj handle provided\n");
2219 err = -ENOENT;
2220 goto err;
2221 }
2222
ebcaa1ff
TU
2223 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2224 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2225
cf6e7bac
JE
2226 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2227 }
2228
2229 return fences;
2230
2231err:
2232 __free_fence_array(fences, n);
2233 return ERR_PTR(err);
2234}
2235
2236static void
2237put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2238 struct drm_syncobj **fences)
2239{
2240 if (fences)
2241 __free_fence_array(fences, args->num_cliprects);
2242}
2243
2244static int
2245await_fence_array(struct i915_execbuffer *eb,
2246 struct drm_syncobj **fences)
2247{
2248 const unsigned int nfences = eb->args->num_cliprects;
2249 unsigned int n;
2250 int err;
2251
2252 for (n = 0; n < nfences; n++) {
2253 struct drm_syncobj *syncobj;
2254 struct dma_fence *fence;
2255 unsigned int flags;
2256
2257 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2258 if (!(flags & I915_EXEC_FENCE_WAIT))
2259 continue;
2260
afca4216 2261 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac
JE
2262 if (!fence)
2263 return -EINVAL;
2264
e61e0f51 2265 err = i915_request_await_dma_fence(eb->request, fence);
cf6e7bac
JE
2266 dma_fence_put(fence);
2267 if (err < 0)
2268 return err;
2269 }
2270
2271 return 0;
2272}
2273
2274static void
2275signal_fence_array(struct i915_execbuffer *eb,
2276 struct drm_syncobj **fences)
2277{
2278 const unsigned int nfences = eb->args->num_cliprects;
2279 struct dma_fence * const fence = &eb->request->fence;
2280 unsigned int n;
2281
2282 for (n = 0; n < nfences; n++) {
2283 struct drm_syncobj *syncobj;
2284 unsigned int flags;
2285
2286 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2287 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2288 continue;
2289
0b258ed1 2290 drm_syncobj_replace_fence(syncobj, fence);
cf6e7bac
JE
2291 }
2292}
2293
54cf91dc 2294static int
650bc635 2295i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
2296 struct drm_file *file,
2297 struct drm_i915_gem_execbuffer2 *args,
cf6e7bac
JE
2298 struct drm_i915_gem_exec_object2 *exec,
2299 struct drm_syncobj **fences)
54cf91dc 2300{
650bc635 2301 struct i915_execbuffer eb;
fec0445c 2302 struct dma_fence *in_fence = NULL;
a88b6e4c 2303 struct dma_fence *exec_fence = NULL;
fec0445c
CW
2304 struct sync_file *out_fence = NULL;
2305 int out_fence_fd = -1;
2889caa9 2306 int err;
432e58ed 2307
74c1c694 2308 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
2309 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2310 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 2311
650bc635
CW
2312 eb.i915 = to_i915(dev);
2313 eb.file = file;
2314 eb.args = args;
7dd4f672 2315 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 2316 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 2317
650bc635 2318 eb.exec = exec;
170fa29b
CW
2319 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2320 eb.vma[0] = NULL;
c7c6e46f
CW
2321 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2322
2889caa9 2323 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
2324 reloc_cache_init(&eb.reloc_cache, eb.i915);
2325
2889caa9 2326 eb.buffer_count = args->buffer_count;
650bc635
CW
2327 eb.batch_start_offset = args->batch_start_offset;
2328 eb.batch_len = args->batch_len;
2329
2889caa9 2330 eb.batch_flags = 0;
d7d4eedd 2331 if (args->flags & I915_EXEC_SECURE) {
b3ac9f25 2332 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
d7d4eedd
CW
2333 return -EPERM;
2334
2889caa9 2335 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 2336 }
b45305fc 2337 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 2338 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 2339
fec0445c
CW
2340 if (args->flags & I915_EXEC_FENCE_IN) {
2341 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
4a04e371
DCS
2342 if (!in_fence)
2343 return -EINVAL;
fec0445c
CW
2344 }
2345
a88b6e4c
CW
2346 if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2347 if (in_fence) {
2348 err = -EINVAL;
2349 goto err_in_fence;
2350 }
2351
2352 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2353 if (!exec_fence) {
2354 err = -EINVAL;
2355 goto err_in_fence;
2356 }
2357 }
2358
fec0445c
CW
2359 if (args->flags & I915_EXEC_FENCE_OUT) {
2360 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2361 if (out_fence_fd < 0) {
2889caa9 2362 err = out_fence_fd;
a88b6e4c 2363 goto err_exec_fence;
fec0445c
CW
2364 }
2365 }
2366
4d470f73
CW
2367 err = eb_create(&eb);
2368 if (err)
2369 goto err_out_fence;
2370
2371 GEM_BUG_ON(!eb.lut_size);
2889caa9 2372
1acfc104
CW
2373 err = eb_select_context(&eb);
2374 if (unlikely(err))
2375 goto err_destroy;
2376
2889caa9
CW
2377 /*
2378 * Take a local wakeref for preparing to dispatch the execbuf as
67d97da3
CW
2379 * we expect to access the hardware fairly frequently in the
2380 * process. Upon first dispatch, we acquire another prolonged
2381 * wakeref that we hold until the GPU has been idle for at least
2382 * 100ms.
2383 */
8f2a1057 2384 intel_gt_pm_get(eb.i915);
1acfc104 2385
2889caa9
CW
2386 err = i915_mutex_lock_interruptible(dev);
2387 if (err)
2388 goto err_rpm;
f65c9168 2389
8f2a1057 2390 err = eb_select_engine(&eb, file, args);
d6f328bf
CW
2391 if (unlikely(err))
2392 goto err_unlock;
2393
8f2a1057
CW
2394 err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
2395 if (unlikely(err))
2396 goto err_engine;
2397
2889caa9 2398 err = eb_relocate(&eb);
1f727d9e 2399 if (err) {
2889caa9
CW
2400 /*
2401 * If the user expects the execobject.offset and
2402 * reloc.presumed_offset to be an exact match,
2403 * as for using NO_RELOC, then we cannot update
2404 * the execobject.offset until we have completed
2405 * relocation.
2406 */
2407 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 2408 goto err_vma;
1f727d9e 2409 }
54cf91dc 2410
c7c6e46f 2411 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
ff240199 2412 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2889caa9
CW
2413 err = -EINVAL;
2414 goto err_vma;
54cf91dc 2415 }
650bc635
CW
2416 if (eb.batch_start_offset > eb.batch->size ||
2417 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
0b537272 2418 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2889caa9
CW
2419 err = -EINVAL;
2420 goto err_vma;
0b537272 2421 }
54cf91dc 2422
3dbf26ed 2423 if (eb_use_cmdparser(&eb)) {
59bfa124
CW
2424 struct i915_vma *vma;
2425
650bc635 2426 vma = eb_parse(&eb, drm_is_current_master(file));
59bfa124 2427 if (IS_ERR(vma)) {
2889caa9
CW
2428 err = PTR_ERR(vma);
2429 goto err_vma;
78a42377 2430 }
17cabf57 2431
59bfa124 2432 if (vma) {
c7c7372e
RP
2433 /*
2434 * Batch parsed and accepted:
2435 *
2436 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2437 * bit from MI_BATCH_BUFFER_START commands issued in
2438 * the dispatch_execbuffer implementations. We
2439 * specifically don't want that set on batches the
2440 * command parser has accepted.
2441 */
2889caa9 2442 eb.batch_flags |= I915_DISPATCH_SECURE;
650bc635
CW
2443 eb.batch_start_offset = 0;
2444 eb.batch = vma;
c7c7372e 2445 }
351e3db2
BV
2446 }
2447
650bc635
CW
2448 if (eb.batch_len == 0)
2449 eb.batch_len = eb.batch->size - eb.batch_start_offset;
78a42377 2450
2889caa9
CW
2451 /*
2452 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
d7d4eedd 2453 * batch" bit. Hence we need to pin secure batches into the global gtt.
28cf5415 2454 * hsw should have this fixed, but bdw mucks it up again. */
2889caa9 2455 if (eb.batch_flags & I915_DISPATCH_SECURE) {
058d88c4 2456 struct i915_vma *vma;
59bfa124 2457
da51a1e7
DV
2458 /*
2459 * So on first glance it looks freaky that we pin the batch here
2460 * outside of the reservation loop. But:
2461 * - The batch is already pinned into the relevant ppgtt, so we
2462 * already have the backing storage fully allocated.
2463 * - No other BO uses the global gtt (well contexts, but meh),
fd0753cf 2464 * so we don't really have issues with multiple objects not
da51a1e7
DV
2465 * fitting due to fragmentation.
2466 * So this is actually safe.
2467 */
2889caa9 2468 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
058d88c4 2469 if (IS_ERR(vma)) {
2889caa9
CW
2470 err = PTR_ERR(vma);
2471 goto err_vma;
058d88c4 2472 }
d7d4eedd 2473
650bc635 2474 eb.batch = vma;
59bfa124 2475 }
d7d4eedd 2476
7dd4f672
CW
2477 /* All GPU relocation batches must be submitted prior to the user rq */
2478 GEM_BUG_ON(eb.reloc_cache.rq);
2479
0c8dac88 2480 /* Allocate a request for this batch buffer nice and early. */
8f2a1057 2481 eb.request = i915_request_create(eb.context);
650bc635 2482 if (IS_ERR(eb.request)) {
2889caa9 2483 err = PTR_ERR(eb.request);
0c8dac88 2484 goto err_batch_unpin;
26827088 2485 }
0c8dac88 2486
fec0445c 2487 if (in_fence) {
e61e0f51 2488 err = i915_request_await_dma_fence(eb.request, in_fence);
2889caa9 2489 if (err < 0)
fec0445c
CW
2490 goto err_request;
2491 }
2492
a88b6e4c
CW
2493 if (exec_fence) {
2494 err = i915_request_await_execution(eb.request, exec_fence,
2495 eb.engine->bond_execute);
2496 if (err < 0)
2497 goto err_request;
2498 }
2499
cf6e7bac
JE
2500 if (fences) {
2501 err = await_fence_array(&eb, fences);
2502 if (err)
2503 goto err_request;
2504 }
2505
fec0445c 2506 if (out_fence_fd != -1) {
650bc635 2507 out_fence = sync_file_create(&eb.request->fence);
fec0445c 2508 if (!out_fence) {
2889caa9 2509 err = -ENOMEM;
fec0445c
CW
2510 goto err_request;
2511 }
2512 }
2513
2889caa9
CW
2514 /*
2515 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
2516 * active_list, and so will hold the active reference. Only when this
2517 * request is retired will the the batch_obj be moved onto the
2518 * inactive_list and lose its active reference. Hence we do not need
2519 * to explicitly hold another reference here.
2520 */
650bc635 2521 eb.request->batch = eb.batch;
5f19e2bf 2522
e61e0f51 2523 trace_i915_request_queue(eb.request, eb.batch_flags);
2889caa9 2524 err = eb_submit(&eb);
aa9b7810 2525err_request:
650bc635 2526 add_to_client(eb.request, file);
8f2a1057 2527 i915_request_add(eb.request);
c8659efa 2528
cf6e7bac
JE
2529 if (fences)
2530 signal_fence_array(&eb, fences);
2531
fec0445c 2532 if (out_fence) {
2889caa9 2533 if (err == 0) {
fec0445c 2534 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 2535 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
2536 args->rsvd2 |= (u64)out_fence_fd << 32;
2537 out_fence_fd = -1;
2538 } else {
2539 fput(out_fence->file);
2540 }
2541 }
54cf91dc 2542
0c8dac88 2543err_batch_unpin:
2889caa9 2544 if (eb.batch_flags & I915_DISPATCH_SECURE)
650bc635 2545 i915_vma_unpin(eb.batch);
2889caa9
CW
2546err_vma:
2547 if (eb.exec)
2548 eb_release_vmas(&eb);
8f2a1057
CW
2549err_engine:
2550 eb_unpin_context(&eb);
d6f328bf 2551err_unlock:
54cf91dc 2552 mutex_unlock(&dev->struct_mutex);
2889caa9 2553err_rpm:
8f2a1057
CW
2554 intel_gt_pm_put(eb.i915);
2555 i915_gem_context_put(eb.gem_context);
1acfc104 2556err_destroy:
2889caa9 2557 eb_destroy(&eb);
4d470f73 2558err_out_fence:
fec0445c
CW
2559 if (out_fence_fd != -1)
2560 put_unused_fd(out_fence_fd);
a88b6e4c
CW
2561err_exec_fence:
2562 dma_fence_put(exec_fence);
4a04e371 2563err_in_fence:
fec0445c 2564 dma_fence_put(in_fence);
2889caa9 2565 return err;
54cf91dc
CW
2566}
2567
d710fc16
CW
2568static size_t eb_element_size(void)
2569{
2570 return (sizeof(struct drm_i915_gem_exec_object2) +
2571 sizeof(struct i915_vma *) +
2572 sizeof(unsigned int));
2573}
2574
2575static bool check_buffer_count(size_t count)
2576{
2577 const size_t sz = eb_element_size();
2578
2579 /*
2580 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2581 * array size (see eb_create()). Otherwise, we can accept an array as
2582 * large as can be addressed (though use large arrays at your peril)!
2583 */
2584
2585 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2586}
2587
54cf91dc
CW
2588/*
2589 * Legacy execbuffer just creates an exec2 list from the original exec object
2590 * list array and passes it to the real function.
2591 */
2592int
6a20fe7b
VS
2593i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2594 struct drm_file *file)
54cf91dc
CW
2595{
2596 struct drm_i915_gem_execbuffer *args = data;
2597 struct drm_i915_gem_execbuffer2 exec2;
2598 struct drm_i915_gem_exec_object *exec_list = NULL;
2599 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
d710fc16 2600 const size_t count = args->buffer_count;
2889caa9
CW
2601 unsigned int i;
2602 int err;
54cf91dc 2603
d710fc16
CW
2604 if (!check_buffer_count(count)) {
2605 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2606 return -EINVAL;
2607 }
2608
2889caa9
CW
2609 exec2.buffers_ptr = args->buffers_ptr;
2610 exec2.buffer_count = args->buffer_count;
2611 exec2.batch_start_offset = args->batch_start_offset;
2612 exec2.batch_len = args->batch_len;
2613 exec2.DR1 = args->DR1;
2614 exec2.DR4 = args->DR4;
2615 exec2.num_cliprects = args->num_cliprects;
2616 exec2.cliprects_ptr = args->cliprects_ptr;
2617 exec2.flags = I915_EXEC_RENDER;
2618 i915_execbuffer2_set_context_id(exec2, 0);
2619
2620 if (!i915_gem_check_execbuffer(&exec2))
2621 return -EINVAL;
2622
54cf91dc 2623 /* Copy in the exec list from userland */
d710fc16 2624 exec_list = kvmalloc_array(count, sizeof(*exec_list),
0ee931c4 2625 __GFP_NOWARN | GFP_KERNEL);
d710fc16 2626 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2627 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2628 if (exec_list == NULL || exec2_list == NULL) {
ff240199 2629 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc 2630 args->buffer_count);
2098105e
MH
2631 kvfree(exec_list);
2632 kvfree(exec2_list);
54cf91dc
CW
2633 return -ENOMEM;
2634 }
2889caa9 2635 err = copy_from_user(exec_list,
3ed605bc 2636 u64_to_user_ptr(args->buffers_ptr),
d710fc16 2637 sizeof(*exec_list) * count);
2889caa9 2638 if (err) {
ff240199 2639 DRM_DEBUG("copy %d exec entries failed %d\n",
2889caa9 2640 args->buffer_count, err);
2098105e
MH
2641 kvfree(exec_list);
2642 kvfree(exec2_list);
54cf91dc
CW
2643 return -EFAULT;
2644 }
2645
2646 for (i = 0; i < args->buffer_count; i++) {
2647 exec2_list[i].handle = exec_list[i].handle;
2648 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2649 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2650 exec2_list[i].alignment = exec_list[i].alignment;
2651 exec2_list[i].offset = exec_list[i].offset;
f0836b72 2652 if (INTEL_GEN(to_i915(dev)) < 4)
54cf91dc
CW
2653 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2654 else
2655 exec2_list[i].flags = 0;
2656 }
2657
cf6e7bac 2658 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2889caa9 2659 if (exec2.flags & __EXEC_HAS_RELOC) {
9aab8bff 2660 struct drm_i915_gem_exec_object __user *user_exec_list =
3ed605bc 2661 u64_to_user_ptr(args->buffers_ptr);
9aab8bff 2662
54cf91dc 2663 /* Copy the new buffer offsets back to the user's exec list. */
9aab8bff 2664 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2665 if (!(exec2_list[i].offset & UPDATE))
2666 continue;
2667
934acce3 2668 exec2_list[i].offset =
2889caa9
CW
2669 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2670 exec2_list[i].offset &= PIN_OFFSET_MASK;
2671 if (__copy_to_user(&user_exec_list[i].offset,
2672 &exec2_list[i].offset,
2673 sizeof(user_exec_list[i].offset)))
9aab8bff 2674 break;
54cf91dc
CW
2675 }
2676 }
2677
2098105e
MH
2678 kvfree(exec_list);
2679 kvfree(exec2_list);
2889caa9 2680 return err;
54cf91dc
CW
2681}
2682
2683int
6a20fe7b
VS
2684i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2685 struct drm_file *file)
54cf91dc
CW
2686{
2687 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 2688 struct drm_i915_gem_exec_object2 *exec2_list;
cf6e7bac 2689 struct drm_syncobj **fences = NULL;
d710fc16 2690 const size_t count = args->buffer_count;
2889caa9 2691 int err;
54cf91dc 2692
d710fc16
CW
2693 if (!check_buffer_count(count)) {
2694 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
54cf91dc
CW
2695 return -EINVAL;
2696 }
2697
2889caa9
CW
2698 if (!i915_gem_check_execbuffer(args))
2699 return -EINVAL;
2700
2701 /* Allocate an extra slot for use by the command parser */
d710fc16 2702 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
0ee931c4 2703 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 2704 if (exec2_list == NULL) {
d710fc16
CW
2705 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2706 count);
54cf91dc
CW
2707 return -ENOMEM;
2708 }
2889caa9
CW
2709 if (copy_from_user(exec2_list,
2710 u64_to_user_ptr(args->buffers_ptr),
d710fc16
CW
2711 sizeof(*exec2_list) * count)) {
2712 DRM_DEBUG("copy %zd exec entries failed\n", count);
2098105e 2713 kvfree(exec2_list);
54cf91dc
CW
2714 return -EFAULT;
2715 }
2716
cf6e7bac
JE
2717 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2718 fences = get_fence_array(args, file);
2719 if (IS_ERR(fences)) {
2720 kvfree(exec2_list);
2721 return PTR_ERR(fences);
2722 }
2723 }
2724
2725 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2889caa9
CW
2726
2727 /*
2728 * Now that we have begun execution of the batchbuffer, we ignore
2729 * any new error after this point. Also given that we have already
2730 * updated the associated relocations, we try to write out the current
2731 * object locations irrespective of any error.
2732 */
2733 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 2734 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
2735 u64_to_user_ptr(args->buffers_ptr);
2736 unsigned int i;
9aab8bff 2737
2889caa9 2738 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
2739 /*
2740 * Note: count * sizeof(*user_exec_list) does not overflow,
2741 * because we checked 'count' in check_buffer_count().
2742 *
2743 * And this range already got effectively checked earlier
2744 * when we did the "copy_from_user()" above.
2745 */
2746 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
8f4faed0 2747 goto end;
594cc251 2748
9aab8bff 2749 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
2750 if (!(exec2_list[i].offset & UPDATE))
2751 continue;
2752
934acce3 2753 exec2_list[i].offset =
2889caa9
CW
2754 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2755 unsafe_put_user(exec2_list[i].offset,
2756 &user_exec_list[i].offset,
2757 end_user);
54cf91dc 2758 }
2889caa9
CW
2759end_user:
2760 user_access_end();
8f4faed0 2761end:;
54cf91dc
CW
2762 }
2763
2889caa9 2764 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
cf6e7bac 2765 put_fence_array(args, fences);
2098105e 2766 kvfree(exec2_list);
2889caa9 2767 return err;
54cf91dc 2768}