drm/i915: split out i915_cmd_parser.h from i915_drv.h
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
52791eee 8#include <linux/dma-resv.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
ad778f89 13
df0566a6
JN
14#include "display/intel_frontbuffer.h"
15
afa13085 16#include "gem/i915_gem_ioctls.h"
10be98a7 17#include "gt/intel_context.h"
45233ab2 18#include "gt/intel_gpu_commands.h"
baea429d 19#include "gt/intel_gt.h"
16e87459 20#include "gt/intel_gt_buffer_pool.h"
8f2a1057 21#include "gt/intel_gt_pm.h"
2871ea85 22#include "gt/intel_ring.h"
8f2a1057 23
d3ac8d42
DCS
24#include "pxp/intel_pxp.h"
25
23d639d7 26#include "i915_cmd_parser.h"
6da4a2c4 27#include "i915_drv.h"
57822dc6 28#include "i915_gem_clflush.h"
10be98a7 29#include "i915_gem_context.h"
6da4a2c4 30#include "i915_gem_ioctls.h"
54cf91dc 31#include "i915_trace.h"
cda9edd0 32#include "i915_user_extensions.h"
54cf91dc 33
7d6236bb
CW
34struct eb_vma {
35 struct i915_vma *vma;
36 unsigned int flags;
37
38 /** This vma's place in the execbuf reservation list */
39 struct drm_i915_gem_exec_object2 *exec;
40 struct list_head bind_link;
41 struct list_head reloc_link;
42
43 struct hlist_node node;
44 u32 handle;
45};
46
ad5d95e4
DA
47enum {
48 FORCE_CPU_RELOC = 1,
49 FORCE_GTT_RELOC,
50 FORCE_GPU_RELOC,
51#define DBG_FORCE_RELOC 0 /* choose one of the above! */
52};
53
bfaae47d
ML
54/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
55#define __EXEC_OBJECT_HAS_PIN BIT(30)
56#define __EXEC_OBJECT_HAS_FENCE BIT(29)
ed29c269
ML
57#define __EXEC_OBJECT_USERPTR_INIT BIT(28)
58#define __EXEC_OBJECT_NEEDS_MAP BIT(27)
59#define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
60#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
8ae275c2 61#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
2889caa9
CW
62
63#define __EXEC_HAS_RELOC BIT(31)
2bf541ff 64#define __EXEC_ENGINE_PINNED BIT(30)
ed29c269
ML
65#define __EXEC_USERPTR_USED BIT(29)
66#define __EXEC_INTERNAL_FLAGS (~0u << 29)
2889caa9 67#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
68
69#define BATCH_OFFSET_BIAS (256*1024)
a415d355 70
650bc635 71#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
72 (__I915_EXEC_UNKNOWN_FLAGS | \
73 I915_EXEC_CONSTANTS_MASK | \
74 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 75
d20ac620
CW
76/* Catch emission of unexpected errors for CI! */
77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
78#undef EINVAL
79#define EINVAL ({ \
80 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
81 22; \
82})
83#endif
84
2889caa9
CW
85/**
86 * DOC: User command execution
87 *
88 * Userspace submits commands to be executed on the GPU as an instruction
89 * stream within a GEM object we call a batchbuffer. This instructions may
90 * refer to other GEM objects containing auxiliary state such as kernels,
91 * samplers, render targets and even secondary batchbuffers. Userspace does
92 * not know where in the GPU memory these objects reside and so before the
93 * batchbuffer is passed to the GPU for execution, those addresses in the
94 * batchbuffer and auxiliary objects are updated. This is known as relocation,
95 * or patching. To try and avoid having to relocate each object on the next
96 * execution, userspace is told the location of those objects in this pass,
97 * but this remains just a hint as the kernel may choose a new location for
98 * any object in the future.
99 *
99d7e4ee
KR
100 * At the level of talking to the hardware, submitting a batchbuffer for the
101 * GPU to execute is to add content to a buffer from which the HW
102 * command streamer is reading.
103 *
104 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
105 * Execlists, this command is not placed on the same buffer as the
106 * remaining items.
107 *
108 * 2. Add a command to invalidate caches to the buffer.
109 *
110 * 3. Add a batchbuffer start command to the buffer; the start command is
111 * essentially a token together with the GPU address of the batchbuffer
112 * to be executed.
113 *
114 * 4. Add a pipeline flush to the buffer.
115 *
116 * 5. Add a memory write command to the buffer to record when the GPU
117 * is done executing the batchbuffer. The memory write writes the
118 * global sequence number of the request, ``i915_request::global_seqno``;
119 * the i915 driver uses the current value in the register to determine
120 * if the GPU has completed the batchbuffer.
121 *
122 * 6. Add a user interrupt command to the buffer. This command instructs
123 * the GPU to issue an interrupt when the command, pipeline flush and
124 * memory write are completed.
125 *
126 * 7. Inform the hardware of the additional commands added to the buffer
127 * (by updating the tail pointer).
128 *
2889caa9
CW
129 * Processing an execbuf ioctl is conceptually split up into a few phases.
130 *
131 * 1. Validation - Ensure all the pointers, handles and flags are valid.
132 * 2. Reservation - Assign GPU address space for every object
133 * 3. Relocation - Update any addresses to point to the final locations
134 * 4. Serialisation - Order the request with respect to its dependencies
135 * 5. Construction - Construct a request to execute the batchbuffer
136 * 6. Submission (at some point in the future execution)
137 *
138 * Reserving resources for the execbuf is the most complicated phase. We
139 * neither want to have to migrate the object in the address space, nor do
140 * we want to have to update any relocations pointing to this object. Ideally,
141 * we want to leave the object where it is and for all the existing relocations
142 * to match. If the object is given a new address, or if userspace thinks the
143 * object is elsewhere, we have to parse all the relocation entries and update
144 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
145 * all the target addresses in all of its objects match the value in the
146 * relocation entries and that they all match the presumed offsets given by the
147 * list of execbuffer objects. Using this knowledge, we know that if we haven't
148 * moved any buffers, all the relocation entries are valid and we can skip
149 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
150 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
151 *
152 * The addresses written in the objects must match the corresponding
153 * reloc.presumed_offset which in turn must match the corresponding
154 * execobject.offset.
155 *
156 * Any render targets written to in the batch must be flagged with
157 * EXEC_OBJECT_WRITE.
158 *
159 * To avoid stalling, execobject.offset should match the current
160 * address of that object within the active context.
161 *
162 * The reservation is done is multiple phases. First we try and keep any
163 * object already bound in its current location - so as long as meets the
164 * constraints imposed by the new execbuffer. Any object left unbound after the
165 * first pass is then fitted into any available idle space. If an object does
166 * not fit, all objects are removed from the reservation and the process rerun
167 * after sorting the objects into a priority order (more difficult to fit
168 * objects are tried first). Failing that, the entire VM is cleared and we try
169 * to fit the execbuf once last time before concluding that it simply will not
170 * fit.
171 *
172 * A small complication to all of this is that we allow userspace not only to
173 * specify an alignment and a size for the object in the address space, but
174 * we also allow userspace to specify the exact offset. This objects are
175 * simpler to place (the location is known a priori) all we have to do is make
176 * sure the space is available.
177 *
178 * Once all the objects are in place, patching up the buried pointers to point
179 * to the final locations is a fairly simple job of walking over the relocation
180 * entry arrays, looking up the right address and rewriting the value into
181 * the object. Simple! ... The relocation entries are stored in user memory
182 * and so to access them we have to copy them into a local buffer. That copy
183 * has to avoid taking any pagefaults as they may lead back to a GEM object
184 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
185 * the relocation into multiple passes. First we try to do everything within an
186 * atomic context (avoid the pagefaults) which requires that we never wait. If
187 * we detect that we may wait, or if we need to fault, then we have to fallback
188 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
189 * bells yet?) Dropping the mutex means that we lose all the state we have
190 * built up so far for the execbuf and we must reset any global data. However,
191 * we do leave the objects pinned in their final locations - which is a
192 * potential issue for concurrent execbufs. Once we have left the mutex, we can
193 * allocate and copy all the relocation entries into a large array at our
194 * leisure, reacquire the mutex, reclaim all the objects and other state and
195 * then proceed to update any incorrect addresses with the objects.
196 *
197 * As we process the relocation entries, we maintain a record of whether the
198 * object is being written to. Using NORELOC, we expect userspace to provide
199 * this information instead. We also check whether we can skip the relocation
200 * by comparing the expected value inside the relocation entry with the target's
201 * final address. If they differ, we have to map the current object and rewrite
202 * the 4 or 8 byte pointer within.
203 *
204 * Serialising an execbuf is quite simple according to the rules of the GEM
205 * ABI. Execution within each context is ordered by the order of submission.
206 * Writes to any GEM object are in order of submission and are exclusive. Reads
207 * from a GEM object are unordered with respect to other reads, but ordered by
208 * writes. A write submitted after a read cannot occur before the read, and
209 * similarly any read submitted after a write cannot occur before the write.
210 * Writes are ordered between engines such that only one write occurs at any
211 * time (completing any reads beforehand) - using semaphores where available
212 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
213 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
214 * reads before starting, and any read (either using set-domain or pread) must
215 * flush all GPU writes before starting. (Note we only employ a barrier before,
216 * we currently rely on userspace not concurrently starting a new execution
217 * whilst reading or writing to an object. This may be an advantage or not
218 * depending on how much you trust userspace not to shoot themselves in the
219 * foot.) Serialisation may just result in the request being inserted into
220 * a DAG awaiting its turn, but most simple is to wait on the CPU until
221 * all dependencies are resolved.
222 *
223 * After all of that, is just a matter of closing the request and handing it to
224 * the hardware (well, leaving it in a queue to be executed). However, we also
225 * offer the ability for batchbuffers to be run with elevated privileges so
226 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
227 * Before any batch is given extra privileges we first must check that it
228 * contains no nefarious instructions, we check that each instruction is from
229 * our whitelist and all registers are also from an allowed list. We first
230 * copy the user's batchbuffer to a shadow (so that the user doesn't have
231 * access to it, either by the CPU or GPU as we scan it) and then parse each
232 * instruction. If everything is ok, we set a flag telling the hardware to run
233 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
234 */
235
13149e8b
LL
236struct eb_fence {
237 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
238 struct dma_fence *dma_fence;
239 u64 value;
240 struct dma_fence_chain *chain_fence;
241};
242
650bc635 243struct i915_execbuffer {
2889caa9
CW
244 struct drm_i915_private *i915; /** i915 backpointer */
245 struct drm_file *file; /** per-file lookup tables and limits */
246 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
247 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 248 struct eb_vma *vma;
2889caa9 249
544460c3 250 struct intel_gt *gt; /* gt for the execbuf */
8f2a1057
CW
251 struct intel_context *context; /* logical state for the request */
252 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 253
544460c3
MB
254 /** our requests to build */
255 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
256 /** identity of the batch obj/vma */
257 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
32d94048 258 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9 259
544460c3
MB
260 /** used for excl fence in dma_resv objects when > 1 BB submitted */
261 struct dma_fence *composite_fence;
262
2889caa9
CW
263 /** actual size of execobj[] as we may extend it for the cmdparser */
264 unsigned int buffer_count;
265
544460c3
MB
266 /* number of batches in execbuf IOCTL */
267 unsigned int num_batches;
268
2889caa9
CW
269 /** list of vma not yet bound during reservation phase */
270 struct list_head unbound;
271
272 /** list of vma that have execobj.relocation_count */
273 struct list_head relocs;
274
c43ce123
ML
275 struct i915_gem_ww_ctx ww;
276
2889caa9
CW
277 /**
278 * Track the most recently used object for relocations, as we
279 * frequently have to perform multiple relocations within the same
280 * obj/page
281 */
650bc635 282 struct reloc_cache {
2889caa9 283 struct drm_mm_node node; /** temporary GTT binding */
ad5d95e4
DA
284 unsigned long vaddr; /** Current kmap address */
285 unsigned long page; /** Currently mapped page index */
8802190f 286 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
650bc635 287 bool use_64bit_reloc : 1;
2889caa9
CW
288 bool has_llc : 1;
289 bool has_fence : 1;
290 bool needs_unfenced : 1;
650bc635 291 } reloc_cache;
2889caa9
CW
292
293 u64 invalid_flags; /** Set of execobj.flags that are invalid */
2889caa9 294
544460c3
MB
295 /** Length of batch within object */
296 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
2889caa9 297 u32 batch_start_offset; /** Location within object of batch */
2889caa9 298 u32 batch_flags; /** Flags composed for emit_bb_start() */
c43ce123 299 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
2889caa9
CW
300
301 /**
302 * Indicate either the size of the hastable used to resolve
303 * relocation handles, or if negative that we are using a direct
304 * index into the execobj[].
305 */
306 int lut_size;
307 struct hlist_head *buckets; /** ht for relocation handles */
cda9edd0 308
13149e8b
LL
309 struct eb_fence *fences;
310 unsigned long num_fences;
67731b87
CW
311};
312
8e4ba491 313static int eb_parse(struct i915_execbuffer *eb);
544460c3 314static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
2bf541ff 315static void eb_unpin_engine(struct i915_execbuffer *eb);
8e4ba491 316
3dbf26ed
CW
317static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
318{
544460c3
MB
319 return intel_engine_requires_cmd_parser(eb->context->engine) ||
320 (intel_engine_using_cmd_parser(eb->context->engine) &&
435e8fc0 321 eb->args->batch_len);
3dbf26ed
CW
322}
323
650bc635 324static int eb_create(struct i915_execbuffer *eb)
67731b87 325{
2889caa9
CW
326 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
327 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 328
2889caa9
CW
329 /*
330 * Without a 1:1 association between relocation handles and
331 * the execobject[] index, we instead create a hashtable.
332 * We size it dynamically based on available memory, starting
333 * first with 1:1 assocative hash and scaling back until
334 * the allocation succeeds.
335 *
336 * Later on we use a positive lut_size to indicate we are
337 * using this hashtable, and a negative value to indicate a
338 * direct lookup.
339 */
4ff4b44c 340 do {
0d95c883 341 gfp_t flags;
4d470f73
CW
342
343 /* While we can still reduce the allocation size, don't
344 * raise a warning and allow the allocation to fail.
345 * On the last pass though, we want to try as hard
346 * as possible to perform the allocation and warn
347 * if it fails.
348 */
0ee931c4 349 flags = GFP_KERNEL;
4d470f73
CW
350 if (size > 1)
351 flags |= __GFP_NORETRY | __GFP_NOWARN;
352
4ff4b44c 353 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 354 flags);
4ff4b44c
CW
355 if (eb->buckets)
356 break;
357 } while (--size);
358
8ae275c2 359 if (unlikely(!size))
4d470f73 360 return -ENOMEM;
eef90ccb 361
2889caa9 362 eb->lut_size = size;
650bc635 363 } else {
2889caa9 364 eb->lut_size = -eb->buffer_count;
650bc635 365 }
eef90ccb 366
650bc635 367 return 0;
67731b87
CW
368}
369
2889caa9
CW
370static bool
371eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
372 const struct i915_vma *vma,
373 unsigned int flags)
2889caa9 374{
2889caa9
CW
375 if (vma->node.size < entry->pad_to_size)
376 return true;
377
378 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
379 return true;
380
c7c6e46f 381 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
382 vma->node.start != entry->offset)
383 return true;
384
c7c6e46f 385 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
386 vma->node.start < BATCH_OFFSET_BIAS)
387 return true;
388
c7c6e46f 389 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
5f22cc0b 390 (vma->node.start + vma->node.size + 4095) >> 32)
2889caa9
CW
391 return true;
392
1d033beb
CW
393 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
394 !i915_vma_is_map_and_fenceable(vma))
395 return true;
396
2889caa9
CW
397 return false;
398}
399
8a338f4b
CW
400static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
401 unsigned int exec_flags)
402{
403 u64 pin_flags = 0;
404
405 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
406 pin_flags |= PIN_GLOBAL;
407
408 /*
409 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
410 * limit address to the first 4GBs for unflagged objects.
411 */
412 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
413 pin_flags |= PIN_ZONE_4G;
414
415 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
416 pin_flags |= PIN_MAPPABLE;
417
418 if (exec_flags & EXEC_OBJECT_PINNED)
419 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
420 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
421 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
422
423 return pin_flags;
424}
425
237647f4 426static inline int
2889caa9 427eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 428 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 429 struct eb_vma *ev)
2889caa9 430{
7d6236bb 431 struct i915_vma *vma = ev->vma;
c7c6e46f 432 u64 pin_flags;
237647f4 433 int err;
2889caa9 434
616d9cee 435 if (vma->node.size)
c7c6e46f 436 pin_flags = vma->node.start;
616d9cee 437 else
c7c6e46f 438 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 439
c7c6e46f 440 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
7d6236bb 441 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 442 pin_flags |= PIN_GLOBAL;
616d9cee 443
8a338f4b 444 /* Attempt to reuse the current location if available */
237647f4
ML
445 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
446 if (err == -EDEADLK)
447 return err;
448
449 if (unlikely(err)) {
8a338f4b 450 if (entry->flags & EXEC_OBJECT_PINNED)
237647f4 451 return err;
8a338f4b
CW
452
453 /* Failing that pick any _free_ space if suitable */
237647f4 454 err = i915_vma_pin_ww(vma, &eb->ww,
47b08693
ML
455 entry->pad_to_size,
456 entry->alignment,
457 eb_pin_flags(entry, ev->flags) |
237647f4
ML
458 PIN_USER | PIN_NOEVICT);
459 if (unlikely(err))
460 return err;
8a338f4b 461 }
2889caa9 462
7d6236bb 463 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
237647f4
ML
464 err = i915_vma_pin_fence(vma);
465 if (unlikely(err)) {
2889caa9 466 i915_vma_unpin(vma);
237647f4 467 return err;
2889caa9
CW
468 }
469
3bd40735 470 if (vma->fence)
7d6236bb 471 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
472 }
473
7d6236bb 474 ev->flags |= __EXEC_OBJECT_HAS_PIN;
237647f4
ML
475 if (eb_vma_misplaced(entry, vma, ev->flags))
476 return -EBADSLT;
477
478 return 0;
2889caa9
CW
479}
480
8ae275c2
ML
481static inline void
482eb_unreserve_vma(struct eb_vma *ev)
483{
484 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
485 return;
486
c43ce123
ML
487 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
488 __i915_vma_unpin_fence(ev->vma);
489
490 __i915_vma_unpin(ev->vma);
8ae275c2
ML
491 ev->flags &= ~__EXEC_OBJECT_RESERVED;
492}
493
2889caa9
CW
494static int
495eb_validate_vma(struct i915_execbuffer *eb,
496 struct drm_i915_gem_exec_object2 *entry,
497 struct i915_vma *vma)
67731b87 498{
2eb8e1a6
JE
499 /* Relocations are disallowed for all platforms after TGL-LP. This
500 * also covers all platforms with local memory.
501 */
502 if (entry->relocation_count &&
40e1956e 503 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
2eb8e1a6
JE
504 return -EINVAL;
505
2889caa9
CW
506 if (unlikely(entry->flags & eb->invalid_flags))
507 return -EINVAL;
d55495b4 508
2920516b
MA
509 if (unlikely(entry->alignment &&
510 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
511 return -EINVAL;
512
513 /*
514 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515 * any non-page-aligned or non-canonical addresses.
516 */
517 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 518 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
519 return -EINVAL;
520
521 /* pad_to_size was once a reserved field, so sanitize it */
522 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523 if (unlikely(offset_in_page(entry->pad_to_size)))
524 return -EINVAL;
525 } else {
526 entry->pad_to_size = 0;
d55495b4 527 }
2889caa9
CW
528 /*
529 * From drm_mm perspective address space is continuous,
530 * so from this point we're always using non-canonical
531 * form internally.
532 */
533 entry->offset = gen8_noncanonical_addr(entry->offset);
534
c7c6e46f
CW
535 if (!eb->reloc_cache.has_fence) {
536 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537 } else {
538 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539 eb->reloc_cache.needs_unfenced) &&
540 i915_gem_object_is_tiled(vma->obj))
541 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542 }
543
2889caa9 544 return 0;
67731b87
CW
545}
546
544460c3
MB
547static inline bool
548is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
549{
550 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551 buffer_idx < eb->num_batches :
552 buffer_idx >= eb->args->buffer_count - eb->num_batches;
553}
554
555static int
746c8f14 556eb_add_vma(struct i915_execbuffer *eb,
544460c3
MB
557 unsigned int *current_batch,
558 unsigned int i,
746c8f14 559 struct i915_vma *vma)
59bfa124 560{
544460c3 561 struct drm_i915_private *i915 = eb->i915;
c7c6e46f 562 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 563 struct eb_vma *ev = &eb->vma[i];
2889caa9 564
93159e12 565 ev->vma = vma;
7d6236bb
CW
566 ev->exec = entry;
567 ev->flags = entry->flags;
568
4d470f73 569 if (eb->lut_size > 0) {
7d6236bb
CW
570 ev->handle = entry->handle;
571 hlist_add_head(&ev->node,
2889caa9
CW
572 &eb->buckets[hash_32(entry->handle,
573 eb->lut_size)]);
4ff4b44c 574 }
59bfa124 575
2889caa9 576 if (entry->relocation_count)
7d6236bb 577 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 578
746c8f14
CW
579 /*
580 * SNA is doing fancy tricks with compressing batch buffers, which leads
581 * to negative relocation deltas. Usually that works out ok since the
582 * relocate address is still positive, except when the batch is placed
583 * very low in the GTT. Ensure this doesn't happen.
584 *
585 * Note that actual hangs have only been observed on gen7, but for
586 * paranoia do it everywhere.
587 */
544460c3 588 if (is_batch_buffer(eb, i)) {
827db9d8 589 if (entry->relocation_count &&
7d6236bb
CW
590 !(ev->flags & EXEC_OBJECT_PINNED))
591 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 592 if (eb->reloc_cache.has_fence)
7d6236bb 593 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 594
544460c3
MB
595 eb->batches[*current_batch] = ev;
596
597 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
598 drm_dbg(&i915->drm,
599 "Attempting to use self-modifying batch buffer\n");
600 return -EINVAL;
601 }
602
603 if (range_overflows_t(u64,
604 eb->batch_start_offset,
605 eb->args->batch_len,
606 ev->vma->size)) {
607 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
608 return -EINVAL;
609 }
610
611 if (eb->args->batch_len == 0)
612 eb->batch_len[*current_batch] = ev->vma->size -
613 eb->batch_start_offset;
614 else
615 eb->batch_len[*current_batch] = eb->args->batch_len;
616 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617 drm_dbg(&i915->drm, "Invalid batch length\n");
618 return -EINVAL;
619 }
620
621 ++*current_batch;
746c8f14 622 }
544460c3
MB
623
624 return 0;
2889caa9
CW
625}
626
ad5d95e4
DA
627static inline int use_cpu_reloc(const struct reloc_cache *cache,
628 const struct drm_i915_gem_object *obj)
629{
630 if (!i915_gem_object_has_struct_page(obj))
631 return false;
632
633 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
634 return true;
635
636 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
637 return false;
638
639 return (cache->has_llc ||
640 obj->cache_dirty ||
641 obj->cache_level != I915_CACHE_NONE);
642}
643
47b08693 644static int eb_reserve_vma(struct i915_execbuffer *eb,
7d6236bb 645 struct eb_vma *ev,
2920bb94 646 u64 pin_flags)
2889caa9 647{
7d6236bb 648 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 649 struct i915_vma *vma = ev->vma;
2889caa9
CW
650 int err;
651
003d8b91
CW
652 if (drm_mm_node_allocated(&vma->node) &&
653 eb_vma_misplaced(entry, vma, ev->flags)) {
654 err = i915_vma_unbind(vma);
655 if (err)
656 return err;
657 }
658
47b08693 659 err = i915_vma_pin_ww(vma, &eb->ww,
c7c6e46f 660 entry->pad_to_size, entry->alignment,
8a338f4b 661 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
662 if (err)
663 return err;
664
665 if (entry->offset != vma->node.start) {
666 entry->offset = vma->node.start | UPDATE;
667 eb->args->flags |= __EXEC_HAS_RELOC;
668 }
669
8a338f4b 670 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 671 err = i915_vma_pin_fence(vma);
2889caa9
CW
672 if (unlikely(err)) {
673 i915_vma_unpin(vma);
674 return err;
675 }
676
3bd40735 677 if (vma->fence)
8a338f4b 678 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
679 }
680
8a338f4b 681 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 682 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 683
2889caa9
CW
684 return 0;
685}
686
687static int eb_reserve(struct i915_execbuffer *eb)
688{
689 const unsigned int count = eb->buffer_count;
2920bb94 690 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
2889caa9 691 struct list_head last;
7d6236bb 692 struct eb_vma *ev;
2889caa9 693 unsigned int i, pass;
ef398881 694 int err = 0;
2889caa9
CW
695
696 /*
697 * Attempt to pin all of the buffers into the GTT.
698 * This is done in 3 phases:
699 *
700 * 1a. Unbind all objects that do not match the GTT constraints for
701 * the execbuffer (fenceable, mappable, alignment etc).
702 * 1b. Increment pin count for already bound objects.
703 * 2. Bind new objects.
704 * 3. Decrement pin count.
705 *
706 * This avoid unnecessary unbinding of later objects in order to make
707 * room for the earlier objects *unless* we need to defragment.
708 */
2889caa9 709 pass = 0;
2889caa9 710 do {
7d6236bb
CW
711 list_for_each_entry(ev, &eb->unbound, bind_link) {
712 err = eb_reserve_vma(eb, ev, pin_flags);
2889caa9
CW
713 if (err)
714 break;
715 }
fd1500fc 716 if (err != -ENOSPC)
c43ce123 717 return err;
2889caa9
CW
718
719 /* Resort *all* the objects into priority order */
720 INIT_LIST_HEAD(&eb->unbound);
721 INIT_LIST_HEAD(&last);
722 for (i = 0; i < count; i++) {
7d6236bb 723 unsigned int flags;
2889caa9 724
7d6236bb
CW
725 ev = &eb->vma[i];
726 flags = ev->flags;
c7c6e46f
CW
727 if (flags & EXEC_OBJECT_PINNED &&
728 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
729 continue;
730
7d6236bb 731 eb_unreserve_vma(ev);
2889caa9 732
c7c6e46f 733 if (flags & EXEC_OBJECT_PINNED)
35e882a4 734 /* Pinned must have their slot */
7d6236bb 735 list_add(&ev->bind_link, &eb->unbound);
c7c6e46f 736 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 737 /* Map require the lowest 256MiB (aperture) */
7d6236bb 738 list_add_tail(&ev->bind_link, &eb->unbound);
35e882a4
CW
739 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
740 /* Prioritise 4GiB region for restricted bo */
7d6236bb 741 list_add(&ev->bind_link, &last);
2889caa9 742 else
7d6236bb 743 list_add_tail(&ev->bind_link, &last);
2889caa9
CW
744 }
745 list_splice_tail(&last, &eb->unbound);
746
747 switch (pass++) {
748 case 0:
749 break;
750
751 case 1:
752 /* Too fragmented, unbind everything and retry */
2850748e 753 mutex_lock(&eb->context->vm->mutex);
f5d974f9 754 err = i915_gem_evict_vm(eb->context->vm);
2850748e 755 mutex_unlock(&eb->context->vm->mutex);
2889caa9 756 if (err)
c43ce123 757 return err;
2889caa9
CW
758 break;
759
760 default:
c43ce123 761 return -ENOSPC;
2889caa9 762 }
2920bb94
CW
763
764 pin_flags = PIN_USER;
2889caa9 765 } while (1);
4ff4b44c 766}
59bfa124 767
2889caa9
CW
768static int eb_select_context(struct i915_execbuffer *eb)
769{
770 struct i915_gem_context *ctx;
771
772 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
046d1660
JE
773 if (unlikely(IS_ERR(ctx)))
774 return PTR_ERR(ctx);
2889caa9 775
8f2a1057 776 eb->gem_context = ctx;
a82a9979 777 if (i915_gem_context_has_full_ppgtt(ctx))
4f2c7337 778 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9 779
2889caa9
CW
780 return 0;
781}
782
93159e12
CW
783static int __eb_add_lut(struct i915_execbuffer *eb,
784 u32 handle, struct i915_vma *vma)
3b96eff4 785{
93159e12
CW
786 struct i915_gem_context *ctx = eb->gem_context;
787 struct i915_lut_handle *lut;
2889caa9 788 int err;
3b96eff4 789
93159e12
CW
790 lut = i915_lut_handle_alloc();
791 if (unlikely(!lut))
792 return -ENOMEM;
793
794 i915_vma_get(vma);
795 if (!atomic_fetch_inc(&vma->open_count))
796 i915_vma_reopen(vma);
797 lut->handle = handle;
798 lut->ctx = ctx;
799
800 /* Check that the context hasn't been closed in the meantime */
801 err = -EINTR;
f7ce8639 802 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
e1068a9e 803 if (likely(!i915_gem_context_is_closed(ctx)))
93159e12 804 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
f7ce8639
CW
805 else
806 err = -ENOENT;
93159e12
CW
807 if (err == 0) { /* And nor has this handle */
808 struct drm_i915_gem_object *obj = vma->obj;
809
096a42dd 810 spin_lock(&obj->lut_lock);
93159e12
CW
811 if (idr_find(&eb->file->object_idr, handle) == obj) {
812 list_add(&lut->obj_link, &obj->lut_list);
813 } else {
814 radix_tree_delete(&ctx->handles_vma, handle);
815 err = -ENOENT;
816 }
096a42dd 817 spin_unlock(&obj->lut_lock);
93159e12 818 }
f7ce8639 819 mutex_unlock(&ctx->lut_mutex);
93159e12
CW
820 }
821 if (unlikely(err))
822 goto err;
003d8b91 823
93159e12 824 return 0;
d55495b4 825
93159e12 826err:
50689771 827 i915_vma_close(vma);
93159e12
CW
828 i915_vma_put(vma);
829 i915_lut_handle_free(lut);
830 return err;
831}
746c8f14 832
93159e12
CW
833static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
834{
f7ce8639
CW
835 struct i915_address_space *vm = eb->context->vm;
836
93159e12
CW
837 do {
838 struct drm_i915_gem_object *obj;
170fa29b 839 struct i915_vma *vma;
93159e12 840 int err;
4ff4b44c 841
93159e12
CW
842 rcu_read_lock();
843 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
f7ce8639 844 if (likely(vma && vma->vm == vm))
93159e12
CW
845 vma = i915_vma_tryget(vma);
846 rcu_read_unlock();
847 if (likely(vma))
848 return vma;
4ff4b44c 849
170fa29b 850 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
851 if (unlikely(!obj))
852 return ERR_PTR(-ENOENT);
3b96eff4 853
d3ac8d42
DCS
854 /*
855 * If the user has opted-in for protected-object tracking, make
856 * sure the object encryption can be used.
857 * We only need to do this when the object is first used with
858 * this context, because the context itself will be banned when
859 * the protected objects become invalid.
860 */
861 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
862 i915_gem_object_is_protected(obj)) {
ef6ba31d 863 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
d3ac8d42
DCS
864 if (err) {
865 i915_gem_object_put(obj);
866 return ERR_PTR(err);
867 }
868 }
869
f7ce8639 870 vma = i915_vma_instance(obj, vm, NULL);
772b5408 871 if (IS_ERR(vma)) {
93159e12
CW
872 i915_gem_object_put(obj);
873 return vma;
27173f1f
BW
874 }
875
93159e12
CW
876 err = __eb_add_lut(eb, handle, vma);
877 if (likely(!err))
878 return vma;
d1b48c1e 879
93159e12
CW
880 i915_gem_object_put(obj);
881 if (err != -EEXIST)
882 return ERR_PTR(err);
883 } while (1);
884}
4ff4b44c 885
93159e12
CW
886static int eb_lookup_vmas(struct i915_execbuffer *eb)
887{
544460c3 888 unsigned int i, current_batch = 0;
93159e12 889 int err = 0;
155ab883 890
93159e12 891 INIT_LIST_HEAD(&eb->relocs);
93159e12
CW
892
893 for (i = 0; i < eb->buffer_count; i++) {
894 struct i915_vma *vma;
895
896 vma = eb_lookup_vma(eb, eb->exec[i].handle);
897 if (IS_ERR(vma)) {
898 err = PTR_ERR(vma);
8e4ba491 899 goto err;
93159e12 900 }
d1b48c1e 901
003d8b91 902 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
903 if (unlikely(err)) {
904 i915_vma_put(vma);
8e4ba491 905 goto err;
93159e12 906 }
dade2a61 907
544460c3
MB
908 err = eb_add_vma(eb, &current_batch, i, vma);
909 if (err)
910 return err;
ed29c269
ML
911
912 if (i915_gem_object_is_userptr(vma->obj)) {
913 err = i915_gem_object_userptr_submit_init(vma->obj);
914 if (err) {
915 if (i + 1 < eb->buffer_count) {
916 /*
917 * Execbuffer code expects last vma entry to be NULL,
918 * since we already initialized this entry,
919 * set the next value to NULL or we mess up
920 * cleanup handling.
921 */
922 eb->vma[i + 1].vma = NULL;
923 }
924
925 return err;
926 }
927
928 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
929 eb->args->flags |= __EXEC_USERPTR_USED;
930 }
4ff4b44c
CW
931 }
932
8e4ba491
ML
933 return 0;
934
935err:
7d6236bb 936 eb->vma[i].vma = NULL;
2889caa9 937 return err;
3b96eff4
CW
938}
939
5cd57f67 940static int eb_lock_vmas(struct i915_execbuffer *eb)
c43ce123
ML
941{
942 unsigned int i;
943 int err;
944
c43ce123 945 for (i = 0; i < eb->buffer_count; i++) {
c43ce123
ML
946 struct eb_vma *ev = &eb->vma[i];
947 struct i915_vma *vma = ev->vma;
948
949 err = i915_gem_object_lock(vma->obj, &eb->ww);
950 if (err)
951 return err;
5cd57f67
TH
952 }
953
954 return 0;
955}
956
957static int eb_validate_vmas(struct i915_execbuffer *eb)
958{
959 unsigned int i;
960 int err;
961
962 INIT_LIST_HEAD(&eb->unbound);
963
964 err = eb_lock_vmas(eb);
965 if (err)
966 return err;
967
968 for (i = 0; i < eb->buffer_count; i++) {
969 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
970 struct eb_vma *ev = &eb->vma[i];
971 struct i915_vma *vma = ev->vma;
c43ce123 972
237647f4
ML
973 err = eb_pin_vma(eb, entry, ev);
974 if (err == -EDEADLK)
975 return err;
976
977 if (!err) {
c43ce123
ML
978 if (entry->offset != vma->node.start) {
979 entry->offset = vma->node.start | UPDATE;
980 eb->args->flags |= __EXEC_HAS_RELOC;
981 }
982 } else {
983 eb_unreserve_vma(ev);
984
985 list_add_tail(&ev->bind_link, &eb->unbound);
986 if (drm_mm_node_allocated(&vma->node)) {
987 err = i915_vma_unbind(vma);
988 if (err)
989 return err;
990 }
991 }
992
bfaae47d
ML
993 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
994 err = dma_resv_reserve_shared(vma->resv, 1);
995 if (err)
996 return err;
997 }
998
c43ce123
ML
999 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1000 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1001 }
1002
1003 if (!list_empty(&eb->unbound))
1004 return eb_reserve(eb);
1005
1006 return 0;
1007}
1008
7d6236bb 1009static struct eb_vma *
2889caa9 1010eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 1011{
2889caa9
CW
1012 if (eb->lut_size < 0) {
1013 if (handle >= -eb->lut_size)
eef90ccb 1014 return NULL;
7d6236bb 1015 return &eb->vma[handle];
eef90ccb
CW
1016 } else {
1017 struct hlist_head *head;
7d6236bb 1018 struct eb_vma *ev;
67731b87 1019
2889caa9 1020 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
1021 hlist_for_each_entry(ev, head, node) {
1022 if (ev->handle == handle)
1023 return ev;
eef90ccb
CW
1024 }
1025 return NULL;
1026 }
67731b87
CW
1027}
1028
b4b9731b 1029static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
8ae275c2
ML
1030{
1031 const unsigned int count = eb->buffer_count;
1032 unsigned int i;
1033
1034 for (i = 0; i < count; i++) {
1035 struct eb_vma *ev = &eb->vma[i];
1036 struct i915_vma *vma = ev->vma;
1037
1038 if (!vma)
1039 break;
1040
c43ce123 1041 eb_unreserve_vma(ev);
8ae275c2 1042
c43ce123
ML
1043 if (final)
1044 i915_vma_put(vma);
8ae275c2 1045 }
2bf541ff
ML
1046
1047 eb_unpin_engine(eb);
8ae275c2
ML
1048}
1049
2889caa9 1050static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 1051{
4d470f73 1052 if (eb->lut_size > 0)
2889caa9 1053 kfree(eb->buckets);
934acce3
MW
1054}
1055
2889caa9 1056static inline u64
d50415cc 1057relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 1058 const struct i915_vma *target)
934acce3 1059{
2889caa9 1060 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
1061}
1062
d50415cc
CW
1063static void reloc_cache_init(struct reloc_cache *cache,
1064 struct drm_i915_private *i915)
5032d871 1065{
ad5d95e4
DA
1066 cache->page = -1;
1067 cache->vaddr = 0;
dfc5148f 1068 /* Must be a variable in the struct to allow GCC to unroll. */
8802190f 1069 cache->graphics_ver = GRAPHICS_VER(i915);
2889caa9 1070 cache->has_llc = HAS_LLC(i915);
dfc5148f 1071 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
8802190f 1072 cache->has_fence = cache->graphics_ver < 4;
7dd4f672 1073 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 1074 cache->node.flags = 0;
d50415cc 1075}
5032d871 1076
20561da3
DA
1077static inline void *unmask_page(unsigned long p)
1078{
1079 return (void *)(uintptr_t)(p & PAGE_MASK);
1080}
1081
1082static inline unsigned int unmask_flags(unsigned long p)
1083{
1084 return p & ~PAGE_MASK;
1085}
1086
1087#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1088
1089static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1090{
1091 struct drm_i915_private *i915 =
1092 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1093 return &i915->ggtt;
1094}
1095
c43ce123 1096static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
ad5d95e4
DA
1097{
1098 void *vaddr;
1099
1100 if (!cache->vaddr)
1101 return;
1102
1103 vaddr = unmask_page(cache->vaddr);
1104 if (cache->vaddr & KMAP) {
1af343cd
ML
1105 struct drm_i915_gem_object *obj =
1106 (struct drm_i915_gem_object *)cache->node.mm;
ad5d95e4
DA
1107 if (cache->vaddr & CLFLUSH_AFTER)
1108 mb();
1109
1110 kunmap_atomic(vaddr);
1af343cd 1111 i915_gem_object_finish_access(obj);
ad5d95e4
DA
1112 } else {
1113 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1114
1115 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1116 io_mapping_unmap_atomic((void __iomem *)vaddr);
1117
1118 if (drm_mm_node_allocated(&cache->node)) {
1119 ggtt->vm.clear_range(&ggtt->vm,
1120 cache->node.start,
1121 cache->node.size);
1122 mutex_lock(&ggtt->vm.mutex);
1123 drm_mm_remove_node(&cache->node);
1124 mutex_unlock(&ggtt->vm.mutex);
1125 } else {
1126 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1127 }
1128 }
1129
1130 cache->vaddr = 0;
1131 cache->page = -1;
1132}
1133
1134static void *reloc_kmap(struct drm_i915_gem_object *obj,
1135 struct reloc_cache *cache,
102a0a90 1136 unsigned long pageno)
ad5d95e4
DA
1137{
1138 void *vaddr;
102a0a90 1139 struct page *page;
ad5d95e4
DA
1140
1141 if (cache->vaddr) {
1142 kunmap_atomic(unmask_page(cache->vaddr));
1143 } else {
1144 unsigned int flushes;
1145 int err;
1146
1147 err = i915_gem_object_prepare_write(obj, &flushes);
1148 if (err)
1149 return ERR_PTR(err);
1150
1151 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1152 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1153
1154 cache->vaddr = flushes | KMAP;
1155 cache->node.mm = (void *)obj;
1156 if (flushes)
1157 mb();
1158 }
1159
102a0a90
ML
1160 page = i915_gem_object_get_page(obj, pageno);
1161 if (!obj->mm.dirty)
1162 set_page_dirty(page);
1163
1164 vaddr = kmap_atomic(page);
ad5d95e4 1165 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
102a0a90 1166 cache->page = pageno;
ad5d95e4
DA
1167
1168 return vaddr;
1169}
1170
1171static void *reloc_iomap(struct drm_i915_gem_object *obj,
47b08693 1172 struct i915_execbuffer *eb,
ad5d95e4
DA
1173 unsigned long page)
1174{
47b08693 1175 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1176 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1177 unsigned long offset;
1178 void *vaddr;
1179
1180 if (cache->vaddr) {
1181 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1182 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1183 } else {
1184 struct i915_vma *vma;
1185 int err;
1186
1187 if (i915_gem_object_is_tiled(obj))
1188 return ERR_PTR(-EINVAL);
1189
1190 if (use_cpu_reloc(cache, obj))
1191 return NULL;
1192
ad5d95e4 1193 err = i915_gem_object_set_to_gtt_domain(obj, true);
ad5d95e4
DA
1194 if (err)
1195 return ERR_PTR(err);
1196
47b08693
ML
1197 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1198 PIN_MAPPABLE |
1199 PIN_NONBLOCK /* NOWARN */ |
1200 PIN_NOEVICT);
1201 if (vma == ERR_PTR(-EDEADLK))
1202 return vma;
1203
ad5d95e4
DA
1204 if (IS_ERR(vma)) {
1205 memset(&cache->node, 0, sizeof(cache->node));
1206 mutex_lock(&ggtt->vm.mutex);
1207 err = drm_mm_insert_node_in_range
1208 (&ggtt->vm.mm, &cache->node,
1209 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1210 0, ggtt->mappable_end,
1211 DRM_MM_INSERT_LOW);
1212 mutex_unlock(&ggtt->vm.mutex);
1213 if (err) /* no inactive aperture space, use cpu reloc */
1214 return NULL;
1215 } else {
1216 cache->node.start = vma->node.start;
1217 cache->node.mm = (void *)vma;
1218 }
1219 }
1220
1221 offset = cache->node.start;
1222 if (drm_mm_node_allocated(&cache->node)) {
1223 ggtt->vm.insert_page(&ggtt->vm,
1224 i915_gem_object_get_dma_address(obj, page),
1225 offset, I915_CACHE_NONE, 0);
1226 } else {
1227 offset += page << PAGE_SHIFT;
1228 }
1229
1230 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1231 offset);
1232 cache->page = page;
1233 cache->vaddr = (unsigned long)vaddr;
1234
1235 return vaddr;
1236}
1237
1238static void *reloc_vaddr(struct drm_i915_gem_object *obj,
47b08693 1239 struct i915_execbuffer *eb,
ad5d95e4
DA
1240 unsigned long page)
1241{
47b08693 1242 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1243 void *vaddr;
1244
1245 if (cache->page == page) {
1246 vaddr = unmask_page(cache->vaddr);
1247 } else {
1248 vaddr = NULL;
1249 if ((cache->vaddr & KMAP) == 0)
47b08693 1250 vaddr = reloc_iomap(obj, eb, page);
ad5d95e4
DA
1251 if (!vaddr)
1252 vaddr = reloc_kmap(obj, cache, page);
1253 }
1254
1255 return vaddr;
1256}
1257
1258static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1259{
1260 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1261 if (flushes & CLFLUSH_BEFORE) {
1262 clflushopt(addr);
1263 mb();
1264 }
1265
1266 *addr = value;
1267
1268 /*
1269 * Writes to the same cacheline are serialised by the CPU
1270 * (including clflush). On the write path, we only require
1271 * that it hits memory in an orderly fashion and place
1272 * mb barriers at the start and end of the relocation phase
1273 * to ensure ordering of clflush wrt to the system.
1274 */
1275 if (flushes & CLFLUSH_AFTER)
1276 clflushopt(addr);
1277 } else
1278 *addr = value;
1279}
1280
e3d29130 1281static u64
ad5d95e4 1282relocate_entry(struct i915_vma *vma,
e3d29130 1283 const struct drm_i915_gem_relocation_entry *reloc,
ad5d95e4 1284 struct i915_execbuffer *eb,
e3d29130
CW
1285 const struct i915_vma *target)
1286{
1287 u64 target_addr = relocation_target(reloc, target);
ad5d95e4 1288 u64 offset = reloc->offset;
ce13c78f
DV
1289 bool wide = eb->reloc_cache.use_64bit_reloc;
1290 void *vaddr;
ad5d95e4
DA
1291
1292repeat:
ce13c78f
DV
1293 vaddr = reloc_vaddr(vma->obj, eb,
1294 offset >> PAGE_SHIFT);
1295 if (IS_ERR(vaddr))
1296 return PTR_ERR(vaddr);
1297
1298 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1299 clflush_write32(vaddr + offset_in_page(offset),
1300 lower_32_bits(target_addr),
1301 eb->reloc_cache.vaddr);
1302
1303 if (wide) {
1304 offset += sizeof(u32);
1305 target_addr >>= 32;
1306 wide = false;
1307 goto repeat;
ad5d95e4 1308 }
edf4427b 1309
2889caa9 1310 return target->node.start | UPDATE;
edf4427b 1311}
edf4427b 1312
2889caa9
CW
1313static u64
1314eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1315 struct eb_vma *ev,
2889caa9 1316 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1317{
baa89ba3 1318 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1319 struct eb_vma *target;
2889caa9 1320 int err;
54cf91dc 1321
67731b87 1322 /* we've already hold a reference to all valid objects */
507d977f
CW
1323 target = eb_get_vma(eb, reloc->target_handle);
1324 if (unlikely(!target))
54cf91dc 1325 return -ENOENT;
e844b990 1326
54cf91dc 1327 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1328 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1329 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1330 "target %d offset %d "
54cf91dc 1331 "read %08x write %08x",
507d977f 1332 reloc->target_handle,
54cf91dc
CW
1333 (int) reloc->offset,
1334 reloc->read_domains,
1335 reloc->write_domain);
8b78f0e5 1336 return -EINVAL;
54cf91dc 1337 }
4ca4a250
DV
1338 if (unlikely((reloc->write_domain | reloc->read_domains)
1339 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1340 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1341 "target %d offset %d "
54cf91dc 1342 "read %08x write %08x",
507d977f 1343 reloc->target_handle,
54cf91dc
CW
1344 (int) reloc->offset,
1345 reloc->read_domains,
1346 reloc->write_domain);
8b78f0e5 1347 return -EINVAL;
54cf91dc 1348 }
54cf91dc 1349
2889caa9 1350 if (reloc->write_domain) {
7d6236bb 1351 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1352
2889caa9
CW
1353 /*
1354 * Sandybridge PPGTT errata: We need a global gtt mapping
1355 * for MI and pipe_control writes because the gpu doesn't
1356 * properly redirect them through the ppgtt for non_secure
1357 * batchbuffers.
1358 */
1359 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
40e1956e 1360 GRAPHICS_VER(eb->i915) == 6) {
7d6236bb
CW
1361 err = i915_vma_bind(target->vma,
1362 target->vma->obj->cache_level,
2850748e 1363 PIN_GLOBAL, NULL);
ea97c4ca 1364 if (err)
2889caa9
CW
1365 return err;
1366 }
507d977f 1367 }
54cf91dc 1368
2889caa9
CW
1369 /*
1370 * If the relocation already has the right value in it, no
54cf91dc
CW
1371 * more work needs to be done.
1372 */
ad5d95e4
DA
1373 if (!DBG_FORCE_RELOC &&
1374 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1375 return 0;
54cf91dc
CW
1376
1377 /* Check that the relocation address is valid... */
3c94ceee 1378 if (unlikely(reloc->offset >
7d6236bb 1379 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1380 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1381 "target %d offset %d size %d.\n",
1382 reloc->target_handle,
1383 (int)reloc->offset,
7d6236bb 1384 (int)ev->vma->size);
8b78f0e5 1385 return -EINVAL;
54cf91dc 1386 }
b8f7ab17 1387 if (unlikely(reloc->offset & 3)) {
baa89ba3 1388 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1389 "target %d offset %d.\n",
1390 reloc->target_handle,
1391 (int)reloc->offset);
8b78f0e5 1392 return -EINVAL;
54cf91dc
CW
1393 }
1394
071750e5
CW
1395 /*
1396 * If we write into the object, we need to force the synchronisation
1397 * barrier, either with an asynchronous clflush or if we executed the
1398 * patching using the GPU (though that should be serialised by the
1399 * timeline). To be completely sure, and since we are required to
1400 * do relocations we are already stalling, disable the user's opt
0519bcb1 1401 * out of our synchronisation.
071750e5 1402 */
7d6236bb 1403 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1404
54cf91dc 1405 /* and update the user's relocation entry */
ad5d95e4 1406 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1407}
1408
7d6236bb 1409static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1410{
1d83f442 1411#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1412 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1413 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1414 struct drm_i915_gem_relocation_entry __user *urelocs =
1415 u64_to_user_ptr(entry->relocs_ptr);
1416 unsigned long remain = entry->relocation_count;
54cf91dc 1417
e94f7856 1418 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1419 return -EINVAL;
ebc0808f 1420
2889caa9
CW
1421 /*
1422 * We must check that the entire relocation array is safe
1423 * to read. However, if the array is not writable the user loses
1424 * the updated relocation values.
1425 */
e94f7856 1426 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1427 return -EFAULT;
1428
1429 do {
1430 struct drm_i915_gem_relocation_entry *r = stack;
1431 unsigned int count =
e94f7856 1432 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1433 unsigned int copied;
1d83f442 1434
2889caa9
CW
1435 /*
1436 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1437 * whilst holding the struct mutex lest the user pass in the
1438 * relocations contained within a mmaped bo. For in such a case
1439 * we, the page fault handler would call i915_gem_fault() and
1440 * we would try to acquire the struct mutex again. Obviously
1441 * this is bad and so lockdep complains vehemently.
1442 */
fd1500fc
ML
1443 pagefault_disable();
1444 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1445 pagefault_enable();
ad5d95e4
DA
1446 if (unlikely(copied)) {
1447 remain = -EFAULT;
1448 goto out;
1449 }
54cf91dc 1450
2889caa9 1451 remain -= count;
1d83f442 1452 do {
7d6236bb 1453 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1454
2889caa9
CW
1455 if (likely(offset == 0)) {
1456 } else if ((s64)offset < 0) {
ad5d95e4
DA
1457 remain = (int)offset;
1458 goto out;
2889caa9
CW
1459 } else {
1460 /*
1461 * Note that reporting an error now
1462 * leaves everything in an inconsistent
1463 * state as we have *already* changed
1464 * the relocation value inside the
1465 * object. As we have not changed the
1466 * reloc.presumed_offset or will not
1467 * change the execobject.offset, on the
1468 * call we may not rewrite the value
1469 * inside the object, leaving it
1470 * dangling and causing a GPU hang. Unless
1471 * userspace dynamically rebuilds the
1472 * relocations on each execbuf rather than
1473 * presume a static tree.
1474 *
1475 * We did previously check if the relocations
1476 * were writable (access_ok), an error now
1477 * would be a strange race with mprotect,
1478 * having already demonstrated that we
1479 * can read from this userspace address.
1480 */
1481 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1482 __put_user(offset,
1483 &urelocs[r - stack].presumed_offset);
1d83f442 1484 }
2889caa9
CW
1485 } while (r++, --count);
1486 urelocs += ARRAY_SIZE(stack);
1487 } while (remain);
ad5d95e4 1488out:
c43ce123 1489 reloc_cache_reset(&eb->reloc_cache, eb);
ad5d95e4 1490 return remain;
54cf91dc
CW
1491}
1492
fd1500fc
ML
1493static int
1494eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1495{
fd1500fc
ML
1496 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1497 struct drm_i915_gem_relocation_entry *relocs =
1498 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1499 unsigned int i;
003d8b91
CW
1500 int err;
1501
fd1500fc
ML
1502 for (i = 0; i < entry->relocation_count; i++) {
1503 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
003d8b91 1504
fd1500fc
ML
1505 if ((s64)offset < 0) {
1506 err = (int)offset;
1507 goto err;
1508 }
ef398881 1509 }
fd1500fc
ML
1510 err = 0;
1511err:
c43ce123 1512 reloc_cache_reset(&eb->reloc_cache, eb);
fd1500fc
ML
1513 return err;
1514}
2889caa9 1515
fd1500fc
ML
1516static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1517{
1518 const char __user *addr, *end;
1519 unsigned long size;
1520 char __maybe_unused c;
2889caa9 1521
fd1500fc
ML
1522 size = entry->relocation_count;
1523 if (size == 0)
1524 return 0;
0e97fbb0 1525
fd1500fc
ML
1526 if (size > N_RELOC(ULONG_MAX))
1527 return -EINVAL;
2889caa9 1528
fd1500fc
ML
1529 addr = u64_to_user_ptr(entry->relocs_ptr);
1530 size *= sizeof(struct drm_i915_gem_relocation_entry);
1531 if (!access_ok(addr, size))
1532 return -EFAULT;
1533
1534 end = addr + size;
1535 for (; addr < end; addr += PAGE_SIZE) {
1536 int err = __get_user(c, addr);
1537 if (err)
1538 return err;
1539 }
1540 return __get_user(c, end - 1);
2889caa9
CW
1541}
1542
fd1500fc 1543static int eb_copy_relocations(const struct i915_execbuffer *eb)
2889caa9 1544{
fd1500fc 1545 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1546 const unsigned int count = eb->buffer_count;
1547 unsigned int i;
fd1500fc 1548 int err;
54cf91dc 1549
2889caa9 1550 for (i = 0; i < count; i++) {
fd1500fc
ML
1551 const unsigned int nreloc = eb->exec[i].relocation_count;
1552 struct drm_i915_gem_relocation_entry __user *urelocs;
1553 unsigned long size;
1554 unsigned long copied;
6951e589 1555
fd1500fc
ML
1556 if (nreloc == 0)
1557 continue;
6951e589 1558
fd1500fc
ML
1559 err = check_relocations(&eb->exec[i]);
1560 if (err)
1561 goto err;
6951e589 1562
fd1500fc
ML
1563 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1564 size = nreloc * sizeof(*relocs);
6951e589 1565
fd1500fc
ML
1566 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1567 if (!relocs) {
1568 err = -ENOMEM;
1569 goto err;
6951e589 1570 }
fd1500fc
ML
1571
1572 /* copy_from_user is limited to < 4GiB */
1573 copied = 0;
1574 do {
1575 unsigned int len =
1576 min_t(u64, BIT_ULL(31), size - copied);
1577
1578 if (__copy_from_user((char *)relocs + copied,
1579 (char __user *)urelocs + copied,
1580 len))
1581 goto end;
1582
1583 copied += len;
1584 } while (copied < size);
1585
1586 /*
1587 * As we do not update the known relocation offsets after
1588 * relocating (due to the complexities in lock handling),
1589 * we need to mark them as invalid now so that we force the
1590 * relocation processing next time. Just in case the target
1591 * object is evicted and then rebound into its old
1592 * presumed_offset before the next execbuffer - if that
1593 * happened we would make the mistake of assuming that the
1594 * relocations were valid.
1595 */
1596 if (!user_access_begin(urelocs, size))
1597 goto end;
1598
1599 for (copied = 0; copied < nreloc; copied++)
1600 unsafe_put_user(-1,
1601 &urelocs[copied].presumed_offset,
1602 end_user);
1603 user_access_end();
1604
1605 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1606 }
1607
1608 return 0;
1609
1610end_user:
1611 user_access_end();
1612end:
1613 kvfree(relocs);
1614 err = -EFAULT;
1615err:
1616 while (i--) {
1617 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1618 if (eb->exec[i].relocation_count)
1619 kvfree(relocs);
1620 }
1621 return err;
1622}
1623
1624static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1625{
1626 const unsigned int count = eb->buffer_count;
1627 unsigned int i;
1628
1629 for (i = 0; i < count; i++) {
1630 int err;
1631
1632 err = check_relocations(&eb->exec[i]);
1633 if (err)
1634 return err;
1635 }
1636
1637 return 0;
1638}
1639
ed29c269
ML
1640static int eb_reinit_userptr(struct i915_execbuffer *eb)
1641{
1642 const unsigned int count = eb->buffer_count;
1643 unsigned int i;
1644 int ret;
1645
1646 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1647 return 0;
1648
1649 for (i = 0; i < count; i++) {
1650 struct eb_vma *ev = &eb->vma[i];
1651
1652 if (!i915_gem_object_is_userptr(ev->vma->obj))
1653 continue;
1654
1655 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1656 if (ret)
1657 return ret;
1658
1659 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1660 }
1661
1662 return 0;
1663}
1664
544460c3 1665static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
fd1500fc
ML
1666{
1667 bool have_copy = false;
1668 struct eb_vma *ev;
1669 int err = 0;
1670
1671repeat:
1672 if (signal_pending(current)) {
1673 err = -ERESTARTSYS;
1674 goto out;
6951e589 1675 }
fd1500fc 1676
c43ce123 1677 /* We may process another execbuffer during the unlock... */
b4b9731b 1678 eb_release_vmas(eb, false);
c43ce123
ML
1679 i915_gem_ww_ctx_fini(&eb->ww);
1680
fd1500fc
ML
1681 /*
1682 * We take 3 passes through the slowpatch.
1683 *
1684 * 1 - we try to just prefault all the user relocation entries and
1685 * then attempt to reuse the atomic pagefault disabled fast path again.
1686 *
1687 * 2 - we copy the user entries to a local buffer here outside of the
1688 * local and allow ourselves to wait upon any rendering before
1689 * relocations
1690 *
1691 * 3 - we already have a local copy of the relocation entries, but
1692 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1693 */
1694 if (!err) {
1695 err = eb_prefault_relocations(eb);
1696 } else if (!have_copy) {
1697 err = eb_copy_relocations(eb);
1698 have_copy = err == 0;
1699 } else {
1700 cond_resched();
1701 err = 0;
1702 }
1703
2bf541ff 1704 if (!err)
ed29c269 1705 err = eb_reinit_userptr(eb);
fd1500fc 1706
c43ce123 1707 i915_gem_ww_ctx_init(&eb->ww, true);
fd1500fc
ML
1708 if (err)
1709 goto out;
1710
c43ce123
ML
1711 /* reacquire the objects */
1712repeat_validate:
544460c3
MB
1713 err = eb_pin_engine(eb, false);
1714 if (err)
2bf541ff 1715 goto err;
2bf541ff 1716
c43ce123 1717 err = eb_validate_vmas(eb);
fd1500fc 1718 if (err)
c43ce123
ML
1719 goto err;
1720
544460c3 1721 GEM_BUG_ON(!eb->batches[0]);
fd1500fc
ML
1722
1723 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1724 if (!have_copy) {
fd1500fc 1725 err = eb_relocate_vma(eb, ev);
fd1500fc
ML
1726 if (err)
1727 break;
1728 } else {
1729 err = eb_relocate_vma_slow(eb, ev);
1730 if (err)
1731 break;
1732 }
1733 }
1734
c43ce123
ML
1735 if (err == -EDEADLK)
1736 goto err;
1737
fd1500fc
ML
1738 if (err && !have_copy)
1739 goto repeat;
1740
1741 if (err)
1742 goto err;
1743
8e4ba491
ML
1744 /* as last step, parse the command buffer */
1745 err = eb_parse(eb);
1746 if (err)
1747 goto err;
1748
fd1500fc
ML
1749 /*
1750 * Leave the user relocations as are, this is the painfully slow path,
1751 * and we want to avoid the complication of dropping the lock whilst
1752 * having buffers reserved in the aperture and so causing spurious
1753 * ENOSPC for random operations.
1754 */
1755
1756err:
c43ce123 1757 if (err == -EDEADLK) {
b4b9731b 1758 eb_release_vmas(eb, false);
c43ce123
ML
1759 err = i915_gem_ww_ctx_backoff(&eb->ww);
1760 if (!err)
1761 goto repeat_validate;
1762 }
1763
fd1500fc
ML
1764 if (err == -EAGAIN)
1765 goto repeat;
1766
1767out:
1768 if (have_copy) {
1769 const unsigned int count = eb->buffer_count;
1770 unsigned int i;
1771
1772 for (i = 0; i < count; i++) {
1773 const struct drm_i915_gem_exec_object2 *entry =
1774 &eb->exec[i];
1775 struct drm_i915_gem_relocation_entry *relocs;
1776
1777 if (!entry->relocation_count)
1778 continue;
1779
1780 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1781 kvfree(relocs);
1782 }
1783 }
1784
1785 return err;
1786}
1787
8e4ba491 1788static int eb_relocate_parse(struct i915_execbuffer *eb)
54cf91dc 1789{
003d8b91 1790 int err;
2bf541ff 1791 bool throttle = true;
003d8b91 1792
c43ce123 1793retry:
544460c3
MB
1794 err = eb_pin_engine(eb, throttle);
1795 if (err) {
2bf541ff
ML
1796 if (err != -EDEADLK)
1797 return err;
1798
1799 goto err;
1800 }
1801
2bf541ff
ML
1802 /* only throttle once, even if we didn't need to throttle */
1803 throttle = false;
1804
c43ce123
ML
1805 err = eb_validate_vmas(eb);
1806 if (err == -EAGAIN)
1807 goto slow;
1808 else if (err)
1809 goto err;
2889caa9
CW
1810
1811 /* The objects are in their final locations, apply the relocations. */
1812 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 1813 struct eb_vma *ev;
2889caa9 1814
7d6236bb 1815 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
1816 err = eb_relocate_vma(eb, ev);
1817 if (err)
fd1500fc 1818 break;
2889caa9 1819 }
fd1500fc 1820
c43ce123
ML
1821 if (err == -EDEADLK)
1822 goto err;
1823 else if (err)
1824 goto slow;
1825 }
1826
1827 if (!err)
1828 err = eb_parse(eb);
1829
1830err:
1831 if (err == -EDEADLK) {
b4b9731b 1832 eb_release_vmas(eb, false);
c43ce123
ML
1833 err = i915_gem_ww_ctx_backoff(&eb->ww);
1834 if (!err)
1835 goto retry;
2889caa9
CW
1836 }
1837
c43ce123
ML
1838 return err;
1839
1840slow:
544460c3 1841 err = eb_relocate_parse_slow(eb);
c43ce123
ML
1842 if (err)
1843 /*
1844 * If the user expects the execobject.offset and
1845 * reloc.presumed_offset to be an exact match,
1846 * as for using NO_RELOC, then we cannot update
1847 * the execobject.offset until we have completed
1848 * relocation.
1849 */
1850 eb->args->flags &= ~__EXEC_HAS_RELOC;
1851
1852 return err;
2889caa9
CW
1853}
1854
544460c3
MB
1855/*
1856 * Using two helper loops for the order of which requests / batches are created
1857 * and added the to backend. Requests are created in order from the parent to
1858 * the last child. Requests are added in the reverse order, from the last child
1859 * to parent. This is done for locking reasons as the timeline lock is acquired
1860 * during request creation and released when the request is added to the
1861 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1862 * the ordering.
1863 */
1864#define for_each_batch_create_order(_eb, _i) \
1865 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1866#define for_each_batch_add_order(_eb, _i) \
1867 BUILD_BUG_ON(!typecheck(int, _i)); \
1868 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1869
1870static struct i915_request *
1871eb_find_first_request_added(struct i915_execbuffer *eb)
1872{
1873 int i;
1874
1875 for_each_batch_add_order(eb, i)
1876 if (eb->requests[i])
1877 return eb->requests[i];
1878
1879 GEM_BUG_ON("Request not found");
1880
1881 return NULL;
1882}
1883
2889caa9
CW
1884static int eb_move_to_gpu(struct i915_execbuffer *eb)
1885{
1886 const unsigned int count = eb->buffer_count;
c43ce123 1887 unsigned int i = count;
544460c3 1888 int err = 0, j;
6951e589
CW
1889
1890 while (i--) {
7d6236bb
CW
1891 struct eb_vma *ev = &eb->vma[i];
1892 struct i915_vma *vma = ev->vma;
1893 unsigned int flags = ev->flags;
27173f1f 1894 struct drm_i915_gem_object *obj = vma->obj;
03ade511 1895
6951e589
CW
1896 assert_vma_held(vma);
1897
c7c6e46f 1898 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 1899 struct i915_capture_list *capture;
b0fd47ad 1900
544460c3
MB
1901 for_each_batch_create_order(eb, j) {
1902 if (!eb->requests[j])
1903 break;
1904
1905 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1906 if (capture) {
1907 capture->next =
1908 eb->requests[j]->capture_list;
1909 capture->vma = vma;
1910 eb->requests[j]->capture_list = capture;
1911 }
6951e589 1912 }
b0fd47ad
CW
1913 }
1914
b8f55be6
CW
1915 /*
1916 * If the GPU is not _reading_ through the CPU cache, we need
1917 * to make sure that any writes (both previous GPU writes from
1918 * before a change in snooping levels and normal CPU writes)
1919 * caught in that cache are flushed to main memory.
1920 *
1921 * We want to say
1922 * obj->cache_dirty &&
1923 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1924 * but gcc's optimiser doesn't handle that as well and emits
1925 * two jumps instead of one. Maybe one day...
df94fd05
MA
1926 *
1927 * FIXME: There is also sync flushing in set_pages(), which
1928 * serves a different purpose(some of the time at least).
1929 *
1930 * We should consider:
1931 *
1932 * 1. Rip out the async flush code.
1933 *
1934 * 2. Or make the sync flushing use the async clflush path
1935 * using mandatory fences underneath. Currently the below
1936 * async flush happens after we bind the object.
b8f55be6
CW
1937 */
1938 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 1939 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 1940 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
1941 }
1942
544460c3 1943 /* We only need to await on the first request */
6951e589
CW
1944 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1945 err = i915_request_await_object
544460c3
MB
1946 (eb_find_first_request_added(eb), obj,
1947 flags & EXEC_OBJECT_WRITE);
6951e589 1948 }
2889caa9 1949
544460c3
MB
1950 for_each_batch_add_order(eb, j) {
1951 if (err)
1952 break;
1953 if (!eb->requests[j])
1954 continue;
1955
1956 err = _i915_vma_move_to_active(vma, eb->requests[j],
1957 j ? NULL :
1958 eb->composite_fence ?
1959 eb->composite_fence :
1960 &eb->requests[j]->fence,
1961 flags | __EXEC_OBJECT_NO_RESERVE);
1962 }
c59a333f 1963 }
0f1dd022 1964
ed29c269
ML
1965#ifdef CONFIG_MMU_NOTIFIER
1966 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
b4b9731b 1967 read_lock(&eb->i915->mm.notifier_lock);
ed29c269
ML
1968
1969 /*
1970 * count is always at least 1, otherwise __EXEC_USERPTR_USED
1971 * could not have been set
1972 */
1973 for (i = 0; i < count; i++) {
1974 struct eb_vma *ev = &eb->vma[i];
1975 struct drm_i915_gem_object *obj = ev->vma->obj;
1976
1977 if (!i915_gem_object_is_userptr(obj))
1978 continue;
1979
1980 err = i915_gem_object_userptr_submit_done(obj);
1981 if (err)
1982 break;
1983 }
1984
b4b9731b 1985 read_unlock(&eb->i915->mm.notifier_lock);
ed29c269
ML
1986 }
1987#endif
1988
6951e589
CW
1989 if (unlikely(err))
1990 goto err_skip;
1991
dcd79934 1992 /* Unconditionally flush any chipset caches (for streaming writes). */
544460c3 1993 intel_gt_chipset_flush(eb->gt);
2113184c 1994 return 0;
6951e589
CW
1995
1996err_skip:
544460c3
MB
1997 for_each_batch_create_order(eb, j) {
1998 if (!eb->requests[j])
1999 break;
2000
2001 i915_request_set_error_once(eb->requests[j], err);
2002 }
6951e589 2003 return err;
54cf91dc
CW
2004}
2005
00aff3f6 2006static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 2007{
650bc635 2008 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 2009 return -EINVAL;
ed5982e6 2010
2f5945bc 2011 /* Kernel clipping was a DRI1 misfeature */
cda9edd0
LL
2012 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2013 I915_EXEC_USE_EXTENSIONS))) {
cf6e7bac 2014 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 2015 return -EINVAL;
cf6e7bac 2016 }
2f5945bc
CW
2017
2018 if (exec->DR4 == 0xffffffff) {
2019 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2020 exec->DR4 = 0;
2021 }
2022 if (exec->DR1 || exec->DR4)
00aff3f6 2023 return -EINVAL;
2f5945bc
CW
2024
2025 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 2026 return -EINVAL;
2f5945bc 2027
00aff3f6 2028 return 0;
54cf91dc
CW
2029}
2030
e61e0f51 2031static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 2032{
73dec95e
TU
2033 u32 *cs;
2034 int i;
ae662d31 2035
40e1956e 2036 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
5a833995 2037 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
2038 return -EINVAL;
2039 }
ae662d31 2040
e61e0f51 2041 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
2042 if (IS_ERR(cs))
2043 return PTR_ERR(cs);
ae662d31 2044
2889caa9 2045 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2046 for (i = 0; i < 4; i++) {
73dec95e
TU
2047 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2048 *cs++ = 0;
ae662d31 2049 }
2889caa9 2050 *cs++ = MI_NOOP;
e61e0f51 2051 intel_ring_advance(rq, cs);
ae662d31
EA
2052
2053 return 0;
2054}
2055
4f7af194 2056static struct i915_vma *
47b08693
ML
2057shadow_batch_pin(struct i915_execbuffer *eb,
2058 struct drm_i915_gem_object *obj,
32d94048
CW
2059 struct i915_address_space *vm,
2060 unsigned int flags)
4f7af194 2061{
b291ce0a 2062 struct i915_vma *vma;
b291ce0a 2063 int err;
4f7af194 2064
b291ce0a
CW
2065 vma = i915_vma_instance(obj, vm, NULL);
2066 if (IS_ERR(vma))
2067 return vma;
2068
47b08693 2069 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
b291ce0a
CW
2070 if (err)
2071 return ERR_PTR(err);
2072
2073 return vma;
4f7af194
JB
2074}
2075
47b08693
ML
2076static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2077{
2078 /*
2079 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2080 * batch" bit. Hence we need to pin secure batches into the global gtt.
2081 * hsw should have this fixed, but bdw mucks it up again. */
2082 if (eb->batch_flags & I915_DISPATCH_SECURE)
2083 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2084
2085 return NULL;
2086}
2087
51696691 2088static int eb_parse(struct i915_execbuffer *eb)
71745376 2089{
baa89ba3 2090 struct drm_i915_private *i915 = eb->i915;
c43ce123 2091 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
47b08693 2092 struct i915_vma *shadow, *trampoline, *batch;
d5e87821 2093 unsigned long len;
2889caa9 2094 int err;
71745376 2095
47b08693 2096 if (!eb_use_cmdparser(eb)) {
544460c3 2097 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
47b08693
ML
2098 if (IS_ERR(batch))
2099 return PTR_ERR(batch);
2100
2101 goto secure_batch;
2102 }
51696691 2103
544460c3
MB
2104 if (intel_context_is_parallel(eb->context))
2105 return -EINVAL;
2106
2107 len = eb->batch_len[0];
32d94048
CW
2108 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2109 /*
2110 * ppGTT backed shadow buffers must be mapped RO, to prevent
2111 * post-scan tampering
2112 */
2113 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2114 drm_dbg(&i915->drm,
2115 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2116 return -EINVAL;
2117 }
2118 } else {
2119 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2120 }
544460c3 2121 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
d5e87821 2122 return -EINVAL;
32d94048 2123
c43ce123 2124 if (!pool) {
544460c3 2125 pool = intel_gt_get_buffer_pool(eb->gt, len,
8f47c8c3 2126 I915_MAP_WB);
c43ce123
ML
2127 if (IS_ERR(pool))
2128 return PTR_ERR(pool);
2129 eb->batch_pool = pool;
2130 }
71745376 2131
c43ce123
ML
2132 err = i915_gem_object_lock(pool->obj, &eb->ww);
2133 if (err)
2134 goto err;
71745376 2135
47b08693 2136 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
32d94048
CW
2137 if (IS_ERR(shadow)) {
2138 err = PTR_ERR(shadow);
f8c08d8f 2139 goto err;
51696691 2140 }
c9398775 2141 intel_gt_buffer_pool_mark_used(pool);
32d94048 2142 i915_gem_object_set_readonly(shadow->obj);
57a78ca4 2143 shadow->private = pool;
32d94048
CW
2144
2145 trampoline = NULL;
2146 if (CMDPARSER_USES_GGTT(eb->i915)) {
2147 trampoline = shadow;
2148
47b08693 2149 shadow = shadow_batch_pin(eb, pool->obj,
544460c3 2150 &eb->gt->ggtt->vm,
32d94048
CW
2151 PIN_GLOBAL);
2152 if (IS_ERR(shadow)) {
2153 err = PTR_ERR(shadow);
2154 shadow = trampoline;
2155 goto err_shadow;
2156 }
57a78ca4 2157 shadow->private = pool;
32d94048
CW
2158
2159 eb->batch_flags |= I915_DISPATCH_SECURE;
2160 }
f8c08d8f 2161
47b08693
ML
2162 batch = eb_dispatch_secure(eb, shadow);
2163 if (IS_ERR(batch)) {
2164 err = PTR_ERR(batch);
2165 goto err_trampoline;
2166 }
2167
93b71330
JE
2168 err = dma_resv_reserve_shared(shadow->resv, 1);
2169 if (err)
2170 goto err_trampoline;
2171
544460c3
MB
2172 err = intel_engine_cmd_parser(eb->context->engine,
2173 eb->batches[0]->vma,
93b71330 2174 eb->batch_start_offset,
544460c3 2175 eb->batch_len[0],
93b71330 2176 shadow, trampoline);
32d94048 2177 if (err)
47b08693 2178 goto err_unpin_batch;
71745376 2179
544460c3
MB
2180 eb->batches[0] = &eb->vma[eb->buffer_count++];
2181 eb->batches[0]->vma = i915_vma_get(shadow);
2182 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
71745376 2183
32d94048 2184 eb->trampoline = trampoline;
4f7af194 2185 eb->batch_start_offset = 0;
4f7af194 2186
47b08693
ML
2187secure_batch:
2188 if (batch) {
544460c3
MB
2189 if (intel_context_is_parallel(eb->context))
2190 return -EINVAL;
2191
2192 eb->batches[0] = &eb->vma[eb->buffer_count++];
2193 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2194 eb->batches[0]->vma = i915_vma_get(batch);
47b08693 2195 }
51696691 2196 return 0;
b40d7378 2197
47b08693
ML
2198err_unpin_batch:
2199 if (batch)
2200 i915_vma_unpin(batch);
32d94048
CW
2201err_trampoline:
2202 if (trampoline)
2203 i915_vma_unpin(trampoline);
2204err_shadow:
2205 i915_vma_unpin(shadow);
b40d7378 2206err:
51696691 2207 return err;
71745376 2208}
5c6c6003 2209
544460c3
MB
2210static int eb_request_submit(struct i915_execbuffer *eb,
2211 struct i915_request *rq,
2212 struct i915_vma *batch,
2213 u64 batch_len)
78382593 2214{
2889caa9 2215 int err;
78382593 2216
544460c3
MB
2217 if (intel_context_nopreempt(rq->context))
2218 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
78382593 2219
650bc635 2220 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
544460c3 2221 err = i915_reset_gen7_sol_offsets(rq);
2889caa9
CW
2222 if (err)
2223 return err;
78382593
OM
2224 }
2225
85474441
CW
2226 /*
2227 * After we completed waiting for other engines (using HW semaphores)
2228 * then we can signal that this request/batch is ready to run. This
2229 * allows us to determine if the batch is still waiting on the GPU
2230 * or actually running by checking the breadcrumb.
2231 */
544460c3
MB
2232 if (rq->context->engine->emit_init_breadcrumb) {
2233 err = rq->context->engine->emit_init_breadcrumb(rq);
85474441
CW
2234 if (err)
2235 return err;
2236 }
2237
544460c3
MB
2238 err = rq->context->engine->emit_bb_start(rq,
2239 batch->node.start +
2240 eb->batch_start_offset,
2241 batch_len,
2242 eb->batch_flags);
2889caa9
CW
2243 if (err)
2244 return err;
78382593 2245
32d94048 2246 if (eb->trampoline) {
544460c3 2247 GEM_BUG_ON(intel_context_is_parallel(rq->context));
32d94048 2248 GEM_BUG_ON(eb->batch_start_offset);
544460c3
MB
2249 err = rq->context->engine->emit_bb_start(rq,
2250 eb->trampoline->node.start +
2251 batch_len, 0, 0);
32d94048
CW
2252 if (err)
2253 return err;
2254 }
2255
2f5945bc 2256 return 0;
78382593
OM
2257}
2258
544460c3
MB
2259static int eb_submit(struct i915_execbuffer *eb)
2260{
2261 unsigned int i;
2262 int err;
2263
2264 err = eb_move_to_gpu(eb);
2265
2266 for_each_batch_create_order(eb, i) {
2267 if (!eb->requests[i])
2268 break;
2269
2270 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2271 if (!err)
2272 err = eb_request_submit(eb, eb->requests[i],
2273 eb->batches[i]->vma,
2274 eb->batch_len[i]);
2275 }
2276
2277 return err;
2278}
2279
d5b2a3a4
CW
2280static int num_vcs_engines(const struct drm_i915_private *i915)
2281{
bb80d878 2282 return hweight_long(VDBOX_MASK(&i915->gt));
d5b2a3a4
CW
2283}
2284
204bcfef 2285/*
a8ebba75 2286 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2287 * The engine index is returned.
a8ebba75 2288 */
de1add36 2289static unsigned int
c80ff16e
CW
2290gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2291 struct drm_file *file)
a8ebba75 2292{
a8ebba75
ZY
2293 struct drm_i915_file_private *file_priv = file->driver_priv;
2294
de1add36 2295 /* Check whether the file_priv has already selected one ring. */
6f633402 2296 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2297 file_priv->bsd_engine =
2298 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2299
c80ff16e 2300 return file_priv->bsd_engine;
d23db88c
CW
2301}
2302
5e2a0419 2303static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2304 [I915_EXEC_DEFAULT] = RCS0,
2305 [I915_EXEC_RENDER] = RCS0,
2306 [I915_EXEC_BLT] = BCS0,
2307 [I915_EXEC_BSD] = VCS0,
2308 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2309};
2310
2bf541ff 2311static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
e5dadff4
CW
2312{
2313 struct intel_ring *ring = ce->ring;
2314 struct intel_timeline *tl = ce->timeline;
2315 struct i915_request *rq;
2316
2317 /*
2318 * Completely unscientific finger-in-the-air estimates for suitable
2319 * maximum user request size (to avoid blocking) and then backoff.
2320 */
2321 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2322 return NULL;
2323
2324 /*
2325 * Find a request that after waiting upon, there will be at least half
2326 * the ring available. The hysteresis allows us to compete for the
2327 * shared ring and should mean that we sleep less often prior to
2328 * claiming our resources, but not so long that the ring completely
2329 * drains before we can submit our next request.
2330 */
2331 list_for_each_entry(rq, &tl->requests, link) {
2332 if (rq->ring != ring)
2333 continue;
2334
2335 if (__intel_ring_space(rq->postfix,
2336 ring->emit, ring->size) > ring->size / 2)
2337 break;
2338 }
2339 if (&rq->link == &tl->requests)
2340 return NULL; /* weird, we will check again later for real */
2341
2342 return i915_request_get(rq);
2343}
2344
544460c3
MB
2345static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2346 bool throttle)
e5dadff4
CW
2347{
2348 struct intel_timeline *tl;
2bf541ff 2349 struct i915_request *rq = NULL;
8f2a1057 2350
a4e57f90
CW
2351 /*
2352 * Take a local wakeref for preparing to dispatch the execbuf as
2353 * we expect to access the hardware fairly frequently in the
2354 * process, and require the engine to be kept awake between accesses.
2355 * Upon dispatch, we acquire another prolonged wakeref that we hold
2356 * until the timeline is idle, which in turn releases the wakeref
2357 * taken on the engine, and the parent device.
2358 */
e5dadff4 2359 tl = intel_context_timeline_lock(ce);
544460c3
MB
2360 if (IS_ERR(tl))
2361 return PTR_ERR(tl);
a4e57f90
CW
2362
2363 intel_context_enter(ce);
2bf541ff
ML
2364 if (throttle)
2365 rq = eb_throttle(eb, ce);
e5dadff4
CW
2366 intel_context_timeline_unlock(tl);
2367
544460c3
MB
2368 if (rq) {
2369 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2370 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2371
2372 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2373 timeout) < 0) {
2374 i915_request_put(rq);
2375
2376 tl = intel_context_timeline_lock(ce);
2377 intel_context_exit(ce);
2378 intel_context_timeline_unlock(tl);
2379
2380 if (nonblock)
2381 return -EWOULDBLOCK;
2382 else
2383 return -EINTR;
2384 }
2385 i915_request_put(rq);
2386 }
2387
2388 return 0;
2389}
2390
2391static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2392{
2393 struct intel_context *ce = eb->context, *child;
2394 int err;
2395 int i = 0, j = 0;
2396
2397 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2398
2399 if (unlikely(intel_context_is_banned(ce)))
2400 return -EIO;
2401
2402 /*
2403 * Pinning the contexts may generate requests in order to acquire
2404 * GGTT space, so do this first before we reserve a seqno for
2405 * ourselves.
2406 */
2407 err = intel_context_pin_ww(ce, &eb->ww);
2408 if (err)
2409 return err;
2410 for_each_child(ce, child) {
2411 err = intel_context_pin_ww(child, &eb->ww);
2412 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2413 }
2414
2415 for_each_child(ce, child) {
2416 err = eb_pin_timeline(eb, child, throttle);
2417 if (err)
2418 goto unwind;
2419 ++i;
2420 }
2421 err = eb_pin_timeline(eb, ce, throttle);
2422 if (err)
2423 goto unwind;
2424
2bf541ff 2425 eb->args->flags |= __EXEC_ENGINE_PINNED;
544460c3
MB
2426 return 0;
2427
2428unwind:
2429 for_each_child(ce, child) {
2430 if (j++ < i) {
2431 mutex_lock(&child->timeline->mutex);
2432 intel_context_exit(child);
2433 mutex_unlock(&child->timeline->mutex);
2434 }
2435 }
2436 for_each_child(ce, child)
2437 intel_context_unpin(child);
2438 intel_context_unpin(ce);
2439 return err;
8f2a1057
CW
2440}
2441
e5dadff4 2442static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2443{
544460c3 2444 struct intel_context *ce = eb->context, *child;
a4e57f90 2445
2bf541ff
ML
2446 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2447 return;
2448
2449 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2450
544460c3
MB
2451 for_each_child(ce, child) {
2452 mutex_lock(&child->timeline->mutex);
2453 intel_context_exit(child);
2454 mutex_unlock(&child->timeline->mutex);
2455
2456 intel_context_unpin(child);
2457 }
2458
2459 mutex_lock(&ce->timeline->mutex);
a4e57f90 2460 intel_context_exit(ce);
544460c3 2461 mutex_unlock(&ce->timeline->mutex);
a4e57f90 2462
2850748e 2463 intel_context_unpin(ce);
8f2a1057 2464}
de1add36 2465
5e2a0419 2466static unsigned int
b49a7d51 2467eb_select_legacy_ring(struct i915_execbuffer *eb)
de1add36 2468{
8f2a1057 2469 struct drm_i915_private *i915 = eb->i915;
b49a7d51 2470 struct drm_i915_gem_execbuffer2 *args = eb->args;
de1add36 2471 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2472
5e2a0419
CW
2473 if (user_ring_id != I915_EXEC_BSD &&
2474 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2475 drm_dbg(&i915->drm,
2476 "execbuf with non bsd ring but with invalid "
2477 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2478 return -1;
de1add36
TU
2479 }
2480
d5b2a3a4 2481 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2482 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2483
2484 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
b49a7d51 2485 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
de1add36
TU
2486 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2487 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2488 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2489 bsd_idx--;
2490 } else {
baa89ba3
WK
2491 drm_dbg(&i915->drm,
2492 "execbuf with unknown bsd ring: %u\n",
2493 bsd_idx);
5e2a0419 2494 return -1;
de1add36
TU
2495 }
2496
5e2a0419 2497 return _VCS(bsd_idx);
de1add36
TU
2498 }
2499
5e2a0419 2500 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2501 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2502 user_ring_id);
5e2a0419 2503 return -1;
de1add36
TU
2504 }
2505
5e2a0419
CW
2506 return user_ring_map[user_ring_id];
2507}
2508
2509static int
2bf541ff 2510eb_select_engine(struct i915_execbuffer *eb)
5e2a0419 2511{
544460c3 2512 struct intel_context *ce, *child;
5e2a0419
CW
2513 unsigned int idx;
2514 int err;
2515
976b55f0 2516 if (i915_gem_context_user_engines(eb->gem_context))
b49a7d51 2517 idx = eb->args->flags & I915_EXEC_RING_MASK;
976b55f0 2518 else
b49a7d51 2519 idx = eb_select_legacy_ring(eb);
5e2a0419
CW
2520
2521 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2522 if (IS_ERR(ce))
2523 return PTR_ERR(ce);
2524
544460c3
MB
2525 if (intel_context_is_parallel(ce)) {
2526 if (eb->buffer_count < ce->parallel.number_children + 1) {
2527 intel_context_put(ce);
2528 return -EINVAL;
2529 }
2530 if (eb->batch_start_offset || eb->args->batch_len) {
2531 intel_context_put(ce);
2532 return -EINVAL;
2533 }
2534 }
2535 eb->num_batches = ce->parallel.number_children + 1;
2536
2537 for_each_child(ce, child)
2538 intel_context_get(child);
2bf541ff 2539 intel_gt_pm_get(ce->engine->gt);
5e2a0419 2540
2bf541ff
ML
2541 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2542 err = intel_context_alloc_state(ce);
2543 if (err)
2544 goto err;
2545 }
544460c3
MB
2546 for_each_child(ce, child) {
2547 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2548 err = intel_context_alloc_state(child);
2549 if (err)
2550 goto err;
2551 }
2552 }
2bf541ff
ML
2553
2554 /*
2555 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2556 * EIO if the GPU is already wedged.
2557 */
2558 err = intel_gt_terminally_wedged(ce->engine->gt);
2559 if (err)
2560 goto err;
2561
2562 eb->context = ce;
544460c3 2563 eb->gt = ce->engine->gt;
2bf541ff
ML
2564
2565 /*
2566 * Make sure engine pool stays alive even if we call intel_context_put
2567 * during ww handling. The pool is destroyed when last pm reference
2568 * is dropped, which breaks our -EDEADLK handling.
2569 */
2570 return err;
2571
2572err:
2573 intel_gt_pm_put(ce->engine->gt);
544460c3
MB
2574 for_each_child(ce, child)
2575 intel_context_put(child);
2bf541ff 2576 intel_context_put(ce);
5e2a0419 2577 return err;
de1add36
TU
2578}
2579
2bf541ff
ML
2580static void
2581eb_put_engine(struct i915_execbuffer *eb)
2582{
544460c3
MB
2583 struct intel_context *child;
2584
2585 intel_gt_pm_put(eb->gt);
2586 for_each_child(eb->context, child)
2587 intel_context_put(child);
2bf541ff
ML
2588 intel_context_put(eb->context);
2589}
2590
cf6e7bac 2591static void
13149e8b 2592__free_fence_array(struct eb_fence *fences, unsigned int n)
cf6e7bac 2593{
13149e8b 2594 while (n--) {
cda9edd0 2595 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
13149e8b 2596 dma_fence_put(fences[n].dma_fence);
440d0f12 2597 dma_fence_chain_free(fences[n].chain_fence);
13149e8b 2598 }
cf6e7bac
JE
2599 kvfree(fences);
2600}
2601
cda9edd0 2602static int
13149e8b
LL
2603add_timeline_fence_array(struct i915_execbuffer *eb,
2604 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
cf6e7bac 2605{
13149e8b
LL
2606 struct drm_i915_gem_exec_fence __user *user_fences;
2607 u64 __user *user_values;
2608 struct eb_fence *f;
2609 u64 nfences;
2610 int err = 0;
cf6e7bac 2611
13149e8b
LL
2612 nfences = timeline_fences->fence_count;
2613 if (!nfences)
cda9edd0 2614 return 0;
cf6e7bac 2615
d710fc16
CW
2616 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2617 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2618 if (nfences > min_t(unsigned long,
13149e8b
LL
2619 ULONG_MAX / sizeof(*user_fences),
2620 SIZE_MAX / sizeof(*f)) - eb->num_fences)
cda9edd0 2621 return -EINVAL;
cf6e7bac 2622
13149e8b
LL
2623 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2624 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2625 return -EFAULT;
2626
2627 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2628 if (!access_ok(user_values, nfences * sizeof(*user_values)))
cda9edd0 2629 return -EFAULT;
cf6e7bac 2630
13149e8b
LL
2631 f = krealloc(eb->fences,
2632 (eb->num_fences + nfences) * sizeof(*f),
2633 __GFP_NOWARN | GFP_KERNEL);
2634 if (!f)
cda9edd0 2635 return -ENOMEM;
cf6e7bac 2636
13149e8b
LL
2637 eb->fences = f;
2638 f += eb->num_fences;
2639
2640 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2641 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2642
2643 while (nfences--) {
2644 struct drm_i915_gem_exec_fence user_fence;
cf6e7bac 2645 struct drm_syncobj *syncobj;
13149e8b
LL
2646 struct dma_fence *fence = NULL;
2647 u64 point;
2648
2649 if (__copy_from_user(&user_fence,
2650 user_fences++,
2651 sizeof(user_fence)))
2652 return -EFAULT;
2653
2654 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2655 return -EINVAL;
2656
2657 if (__get_user(point, user_values++))
2658 return -EFAULT;
2659
2660 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2661 if (!syncobj) {
2662 DRM_DEBUG("Invalid syncobj handle provided\n");
2663 return -ENOENT;
2664 }
2665
2666 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac 2667
13149e8b
LL
2668 if (!fence && user_fence.flags &&
2669 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2670 DRM_DEBUG("Syncobj handle has no fence\n");
2671 drm_syncobj_put(syncobj);
2672 return -EINVAL;
cf6e7bac
JE
2673 }
2674
13149e8b
LL
2675 if (fence)
2676 err = dma_fence_chain_find_seqno(&fence, point);
2677
2678 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2679 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
da1ea128 2680 dma_fence_put(fence);
13149e8b
LL
2681 drm_syncobj_put(syncobj);
2682 return err;
2683 }
2684
2685 /*
2686 * A point might have been signaled already and
2687 * garbage collected from the timeline. In this case
2688 * just ignore the point and carry on.
2689 */
2690 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2691 drm_syncobj_put(syncobj);
2692 continue;
2693 }
2694
2695 /*
2696 * For timeline syncobjs we need to preallocate chains for
2697 * later signaling.
2698 */
2699 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2700 /*
2701 * Waiting and signaling the same point (when point !=
2702 * 0) would break the timeline.
2703 */
2704 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2705 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2706 dma_fence_put(fence);
2707 drm_syncobj_put(syncobj);
2708 return -EINVAL;
2709 }
2710
440d0f12 2711 f->chain_fence = dma_fence_chain_alloc();
13149e8b
LL
2712 if (!f->chain_fence) {
2713 drm_syncobj_put(syncobj);
2714 dma_fence_put(fence);
2715 return -ENOMEM;
2716 }
2717 } else {
2718 f->chain_fence = NULL;
ebcaa1ff
TU
2719 }
2720
13149e8b
LL
2721 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2722 f->dma_fence = fence;
2723 f->value = point;
2724 f++;
2725 eb->num_fences++;
2726 }
2727
2728 return 0;
2729}
2730
2731static int add_fence_array(struct i915_execbuffer *eb)
2732{
2733 struct drm_i915_gem_execbuffer2 *args = eb->args;
2734 struct drm_i915_gem_exec_fence __user *user;
2735 unsigned long num_fences = args->num_cliprects;
2736 struct eb_fence *f;
2737
2738 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2739 return 0;
2740
2741 if (!num_fences)
2742 return 0;
2743
2744 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2745 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2746 if (num_fences > min_t(unsigned long,
2747 ULONG_MAX / sizeof(*user),
2748 SIZE_MAX / sizeof(*f) - eb->num_fences))
2749 return -EINVAL;
2750
2751 user = u64_to_user_ptr(args->cliprects_ptr);
2752 if (!access_ok(user, num_fences * sizeof(*user)))
2753 return -EFAULT;
2754
2755 f = krealloc(eb->fences,
2756 (eb->num_fences + num_fences) * sizeof(*f),
2757 __GFP_NOWARN | GFP_KERNEL);
2758 if (!f)
2759 return -ENOMEM;
2760
2761 eb->fences = f;
2762 f += eb->num_fences;
2763 while (num_fences--) {
2764 struct drm_i915_gem_exec_fence user_fence;
2765 struct drm_syncobj *syncobj;
2766 struct dma_fence *fence = NULL;
2767
2768 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2769 return -EFAULT;
2770
2771 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2772 return -EINVAL;
2773
2774 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
cf6e7bac
JE
2775 if (!syncobj) {
2776 DRM_DEBUG("Invalid syncobj handle provided\n");
13149e8b
LL
2777 return -ENOENT;
2778 }
2779
2780 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2781 fence = drm_syncobj_fence_get(syncobj);
2782 if (!fence) {
2783 DRM_DEBUG("Syncobj handle has no fence\n");
2784 drm_syncobj_put(syncobj);
2785 return -EINVAL;
2786 }
cf6e7bac
JE
2787 }
2788
ebcaa1ff
TU
2789 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2790 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2791
13149e8b
LL
2792 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2793 f->dma_fence = fence;
2794 f->value = 0;
2795 f->chain_fence = NULL;
2796 f++;
2797 eb->num_fences++;
cf6e7bac
JE
2798 }
2799
cda9edd0 2800 return 0;
13149e8b 2801}
cf6e7bac 2802
13149e8b
LL
2803static void put_fence_array(struct eb_fence *fences, int num_fences)
2804{
2805 if (fences)
2806 __free_fence_array(fences, num_fences);
cf6e7bac
JE
2807}
2808
2809static int
544460c3
MB
2810await_fence_array(struct i915_execbuffer *eb,
2811 struct i915_request *rq)
cf6e7bac 2812{
cf6e7bac
JE
2813 unsigned int n;
2814 int err;
2815
13149e8b 2816 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac 2817 struct drm_syncobj *syncobj;
cf6e7bac
JE
2818 unsigned int flags;
2819
cda9edd0 2820 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac 2821
13149e8b
LL
2822 if (!eb->fences[n].dma_fence)
2823 continue;
cf6e7bac 2824
544460c3 2825 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
cf6e7bac
JE
2826 if (err < 0)
2827 return err;
2828 }
2829
2830 return 0;
2831}
2832
544460c3
MB
2833static void signal_fence_array(const struct i915_execbuffer *eb,
2834 struct dma_fence * const fence)
cf6e7bac 2835{
cf6e7bac
JE
2836 unsigned int n;
2837
13149e8b 2838 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac
JE
2839 struct drm_syncobj *syncobj;
2840 unsigned int flags;
2841
cda9edd0 2842 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac
JE
2843 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2844 continue;
2845
13149e8b
LL
2846 if (eb->fences[n].chain_fence) {
2847 drm_syncobj_add_point(syncobj,
2848 eb->fences[n].chain_fence,
2849 fence,
2850 eb->fences[n].value);
2851 /*
2852 * The chain's ownership is transferred to the
2853 * timeline.
2854 */
2855 eb->fences[n].chain_fence = NULL;
2856 } else {
2857 drm_syncobj_replace_fence(syncobj, fence);
2858 }
cf6e7bac
JE
2859 }
2860}
2861
13149e8b
LL
2862static int
2863parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2864{
2865 struct i915_execbuffer *eb = data;
2866 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2867
2868 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
2869 return -EFAULT;
2870
2871 return add_timeline_fence_array(eb, &timeline_fences);
2872}
2873
61231f6b
CW
2874static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2875{
2876 struct i915_request *rq, *rn;
2877
2878 list_for_each_entry_safe(rq, rn, &tl->requests, link)
2879 if (rq == end || !i915_request_retire(rq))
2880 break;
2881}
2882
544460c3
MB
2883static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
2884 int err, bool last_parallel)
61231f6b 2885{
61231f6b
CW
2886 struct intel_timeline * const tl = i915_request_timeline(rq);
2887 struct i915_sched_attr attr = {};
2888 struct i915_request *prev;
2889
2890 lockdep_assert_held(&tl->mutex);
2891 lockdep_unpin_lock(&tl->mutex, rq->cookie);
2892
2893 trace_i915_request_add(rq);
2894
2895 prev = __i915_request_commit(rq);
2896
2897 /* Check that the context wasn't destroyed before submission */
207e4a71 2898 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 2899 attr = eb->gem_context->sched;
61231f6b
CW
2900 } else {
2901 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
2902 i915_request_set_error_once(rq, -ENOENT);
2903 __i915_request_skip(rq);
ba38b79e 2904 err = -ENOENT; /* override any transient errors */
61231f6b
CW
2905 }
2906
544460c3
MB
2907 if (intel_context_is_parallel(eb->context)) {
2908 if (err) {
2909 __i915_request_skip(rq);
2910 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
2911 &rq->fence.flags);
2912 }
2913 if (last_parallel)
2914 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
2915 &rq->fence.flags);
2916 }
2917
61231f6b 2918 __i915_request_queue(rq, &attr);
61231f6b
CW
2919
2920 /* Try to clean up the client's timeline after submitting the request */
2921 if (prev)
2922 retire_requests(tl, prev);
2923
2924 mutex_unlock(&tl->mutex);
ba38b79e
CW
2925
2926 return err;
61231f6b
CW
2927}
2928
544460c3
MB
2929static int eb_requests_add(struct i915_execbuffer *eb, int err)
2930{
2931 int i;
2932
2933 /*
2934 * We iterate in reverse order of creation to release timeline mutexes in
2935 * same order.
2936 */
2937 for_each_batch_add_order(eb, i) {
2938 struct i915_request *rq = eb->requests[i];
2939
2940 if (!rq)
2941 continue;
2942 err |= eb_request_add(eb, rq, err, i == 0);
2943 }
2944
2945 return err;
2946}
2947
cda9edd0 2948static const i915_user_extension_fn execbuf_extensions[] = {
13149e8b 2949 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
cda9edd0
LL
2950};
2951
2952static int
2953parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
2954 struct i915_execbuffer *eb)
2955{
cda9edd0
LL
2956 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
2957 return 0;
2958
2959 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
2960 * have another flag also using it at the same time.
2961 */
2962 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
2963 return -EINVAL;
2964
2965 if (args->num_cliprects != 0)
2966 return -EINVAL;
2967
2968 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
2969 execbuf_extensions,
2970 ARRAY_SIZE(execbuf_extensions),
2971 eb);
2972}
2973
544460c3
MB
2974static void eb_requests_get(struct i915_execbuffer *eb)
2975{
2976 unsigned int i;
2977
2978 for_each_batch_create_order(eb, i) {
2979 if (!eb->requests[i])
2980 break;
2981
2982 i915_request_get(eb->requests[i]);
2983 }
2984}
2985
2986static void eb_requests_put(struct i915_execbuffer *eb)
2987{
2988 unsigned int i;
2989
2990 for_each_batch_create_order(eb, i) {
2991 if (!eb->requests[i])
2992 break;
2993
2994 i915_request_put(eb->requests[i]);
2995 }
2996}
2997
2998static struct sync_file *
2999eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3000{
3001 struct sync_file *out_fence = NULL;
3002 struct dma_fence_array *fence_array;
3003 struct dma_fence **fences;
3004 unsigned int i;
3005
3006 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3007
3008 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3009 if (!fences)
3010 return ERR_PTR(-ENOMEM);
3011
7647f009 3012 for_each_batch_create_order(eb, i) {
544460c3 3013 fences[i] = &eb->requests[i]->fence;
7647f009
MB
3014 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3015 &eb->requests[i]->fence.flags);
3016 }
544460c3
MB
3017
3018 fence_array = dma_fence_array_create(eb->num_batches,
3019 fences,
3020 eb->context->parallel.fence_context,
3021 eb->context->parallel.seqno,
3022 false);
3023 if (!fence_array) {
3024 kfree(fences);
3025 return ERR_PTR(-ENOMEM);
3026 }
3027
3028 /* Move ownership to the dma_fence_array created above */
3029 for_each_batch_create_order(eb, i)
3030 dma_fence_get(fences[i]);
3031
3032 if (out_fence_fd != -1) {
3033 out_fence = sync_file_create(&fence_array->base);
3034 /* sync_file now owns fence_arry, drop creation ref */
3035 dma_fence_put(&fence_array->base);
3036 if (!out_fence)
3037 return ERR_PTR(-ENOMEM);
3038 }
3039
3040 eb->composite_fence = &fence_array->base;
3041
3042 return out_fence;
3043}
3044
3045static struct sync_file *
3046eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3047 struct dma_fence *in_fence, int out_fence_fd)
3048{
3049 struct sync_file *out_fence = NULL;
3050 int err;
3051
3052 if (unlikely(eb->gem_context->syncobj)) {
3053 struct dma_fence *fence;
3054
3055 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3056 err = i915_request_await_dma_fence(rq, fence);
3057 dma_fence_put(fence);
3058 if (err)
3059 return ERR_PTR(err);
3060 }
3061
3062 if (in_fence) {
3063 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3064 err = i915_request_await_execution(rq, in_fence);
3065 else
3066 err = i915_request_await_dma_fence(rq, in_fence);
3067 if (err < 0)
3068 return ERR_PTR(err);
3069 }
3070
3071 if (eb->fences) {
3072 err = await_fence_array(eb, rq);
3073 if (err)
3074 return ERR_PTR(err);
3075 }
3076
3077 if (intel_context_is_parallel(eb->context)) {
3078 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3079 if (IS_ERR(out_fence))
3080 return ERR_PTR(-ENOMEM);
3081 } else if (out_fence_fd != -1) {
3082 out_fence = sync_file_create(&rq->fence);
3083 if (!out_fence)
3084 return ERR_PTR(-ENOMEM);
3085 }
3086
3087 return out_fence;
3088}
3089
3090static struct intel_context *
3091eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3092{
3093 struct intel_context *child;
3094
3095 if (likely(context_number == 0))
3096 return eb->context;
3097
3098 for_each_child(eb->context, child)
3099 if (!--context_number)
3100 return child;
3101
3102 GEM_BUG_ON("Context not found");
3103
3104 return NULL;
3105}
3106
3107static struct sync_file *
3108eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3109 int out_fence_fd)
3110{
3111 struct sync_file *out_fence = NULL;
3112 unsigned int i;
3113
3114 for_each_batch_create_order(eb, i) {
3115 /* Allocate a request for this batch buffer nice and early. */
3116 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3117 if (IS_ERR(eb->requests[i])) {
3118 out_fence = ERR_PTR(PTR_ERR(eb->requests[i]));
3119 eb->requests[i] = NULL;
3120 return out_fence;
3121 }
3122
3123 /*
3124 * Only the first request added (committed to backend) has to
3125 * take the in fences into account as all subsequent requests
3126 * will have fences inserted inbetween them.
3127 */
3128 if (i + 1 == eb->num_batches) {
3129 out_fence = eb_fences_add(eb, eb->requests[i],
3130 in_fence, out_fence_fd);
3131 if (IS_ERR(out_fence))
3132 return out_fence;
3133 }
3134
3135 /*
3136 * Whilst this request exists, batch_obj will be on the
3137 * active_list, and so will hold the active reference. Only when
3138 * this request is retired will the batch_obj be moved onto
3139 * the inactive_list and lose its active reference. Hence we do
3140 * not need to explicitly hold another reference here.
3141 */
3142 eb->requests[i]->batch = eb->batches[i]->vma;
3143 if (eb->batch_pool) {
3144 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3145 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3146 eb->requests[i]);
3147 }
3148 }
3149
3150 return out_fence;
3151}
3152
54cf91dc 3153static int
650bc635 3154i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
3155 struct drm_file *file,
3156 struct drm_i915_gem_execbuffer2 *args,
cda9edd0 3157 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 3158{
44157641 3159 struct drm_i915_private *i915 = to_i915(dev);
650bc635 3160 struct i915_execbuffer eb;
fec0445c
CW
3161 struct dma_fence *in_fence = NULL;
3162 struct sync_file *out_fence = NULL;
3163 int out_fence_fd = -1;
2889caa9 3164 int err;
432e58ed 3165
74c1c694 3166 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
3167 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3168 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 3169
44157641 3170 eb.i915 = i915;
650bc635
CW
3171 eb.file = file;
3172 eb.args = args;
ad5d95e4 3173 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 3174 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 3175
650bc635 3176 eb.exec = exec;
8ae275c2
ML
3177 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3178 eb.vma[0].vma = NULL;
8e02cceb 3179 eb.batch_pool = NULL;
c7c6e46f 3180
2889caa9 3181 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
3182 reloc_cache_init(&eb.reloc_cache, eb.i915);
3183
2889caa9 3184 eb.buffer_count = args->buffer_count;
650bc635 3185 eb.batch_start_offset = args->batch_start_offset;
32d94048 3186 eb.trampoline = NULL;
650bc635 3187
cda9edd0 3188 eb.fences = NULL;
13149e8b 3189 eb.num_fences = 0;
cda9edd0 3190
544460c3
MB
3191 memset(eb.requests, 0, sizeof(struct i915_request *) *
3192 ARRAY_SIZE(eb.requests));
3193 eb.composite_fence = NULL;
3194
2889caa9 3195 eb.batch_flags = 0;
d7d4eedd 3196 if (args->flags & I915_EXEC_SECURE) {
40e1956e 3197 if (GRAPHICS_VER(i915) >= 11)
44157641
JB
3198 return -ENODEV;
3199
3200 /* Return -EPERM to trigger fallback code on old binaries. */
3201 if (!HAS_SECURE_BATCHES(i915))
3202 return -EPERM;
3203
b3ac9f25 3204 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 3205 return -EPERM;
d7d4eedd 3206
2889caa9 3207 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 3208 }
b45305fc 3209 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 3210 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 3211
13149e8b
LL
3212 err = parse_execbuf2_extensions(args, &eb);
3213 if (err)
3214 goto err_ext;
3215
3216 err = add_fence_array(&eb);
3217 if (err)
3218 goto err_ext;
3219
889333c7
CW
3220#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3221 if (args->flags & IN_FENCES) {
3222 if ((args->flags & IN_FENCES) == IN_FENCES)
3223 return -EINVAL;
3224
fec0445c 3225 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
13149e8b
LL
3226 if (!in_fence) {
3227 err = -EINVAL;
3228 goto err_ext;
3229 }
fec0445c 3230 }
889333c7 3231#undef IN_FENCES
a88b6e4c 3232
fec0445c
CW
3233 if (args->flags & I915_EXEC_FENCE_OUT) {
3234 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3235 if (out_fence_fd < 0) {
2889caa9 3236 err = out_fence_fd;
889333c7 3237 goto err_in_fence;
fec0445c
CW
3238 }
3239 }
3240
cda9edd0
LL
3241 err = eb_create(&eb);
3242 if (err)
13149e8b 3243 goto err_out_fence;
cda9edd0 3244
4d470f73 3245 GEM_BUG_ON(!eb.lut_size);
2889caa9 3246
1acfc104
CW
3247 err = eb_select_context(&eb);
3248 if (unlikely(err))
3249 goto err_destroy;
3250
2bf541ff 3251 err = eb_select_engine(&eb);
d6f328bf 3252 if (unlikely(err))
e5dadff4 3253 goto err_context;
d6f328bf 3254
c43ce123
ML
3255 err = eb_lookup_vmas(&eb);
3256 if (err) {
b4b9731b 3257 eb_release_vmas(&eb, true);
c43ce123
ML
3258 goto err_engine;
3259 }
3260
3261 i915_gem_ww_ctx_init(&eb.ww, true);
3262
8e4ba491 3263 err = eb_relocate_parse(&eb);
1f727d9e 3264 if (err) {
2889caa9
CW
3265 /*
3266 * If the user expects the execobject.offset and
3267 * reloc.presumed_offset to be an exact match,
3268 * as for using NO_RELOC, then we cannot update
3269 * the execobject.offset until we have completed
3270 * relocation.
3271 */
3272 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 3273 goto err_vma;
1f727d9e 3274 }
54cf91dc 3275
c43ce123 3276 ww_acquire_done(&eb.ww.ctx);
7d6236bb 3277
544460c3
MB
3278 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3279 if (IS_ERR(out_fence)) {
3280 err = PTR_ERR(out_fence);
3281 if (eb.requests[0])
cf6e7bac 3282 goto err_request;
544460c3
MB
3283 else
3284 goto err_vma;
cf6e7bac
JE
3285 }
3286
544460c3 3287 err = eb_submit(&eb);
ed29c269 3288
aa9b7810 3289err_request:
544460c3
MB
3290 eb_requests_get(&eb);
3291 err = eb_requests_add(&eb, err);
c8659efa 3292
13149e8b 3293 if (eb.fences)
544460c3
MB
3294 signal_fence_array(&eb, eb.composite_fence ?
3295 eb.composite_fence :
3296 &eb.requests[0]->fence);
cf6e7bac 3297
fec0445c 3298 if (out_fence) {
2889caa9 3299 if (err == 0) {
fec0445c 3300 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 3301 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
3302 args->rsvd2 |= (u64)out_fence_fd << 32;
3303 out_fence_fd = -1;
3304 } else {
3305 fput(out_fence->file);
3306 }
3307 }
00dae4d3
JE
3308
3309 if (unlikely(eb.gem_context->syncobj)) {
3310 drm_syncobj_replace_fence(eb.gem_context->syncobj,
544460c3
MB
3311 eb.composite_fence ?
3312 eb.composite_fence :
3313 &eb.requests[0]->fence);
00dae4d3
JE
3314 }
3315
544460c3
MB
3316 if (!out_fence && eb.composite_fence)
3317 dma_fence_put(eb.composite_fence);
3318
3319 eb_requests_put(&eb);
54cf91dc 3320
2889caa9 3321err_vma:
b4b9731b 3322 eb_release_vmas(&eb, true);
32d94048
CW
3323 if (eb.trampoline)
3324 i915_vma_unpin(eb.trampoline);
c43ce123
ML
3325 WARN_ON(err == -EDEADLK);
3326 i915_gem_ww_ctx_fini(&eb.ww);
3327
3328 if (eb.batch_pool)
3329 intel_gt_buffer_pool_put(eb.batch_pool);
c43ce123 3330err_engine:
2bf541ff 3331 eb_put_engine(&eb);
a4e57f90 3332err_context:
8f2a1057 3333 i915_gem_context_put(eb.gem_context);
1acfc104 3334err_destroy:
2889caa9 3335 eb_destroy(&eb);
4d470f73 3336err_out_fence:
fec0445c
CW
3337 if (out_fence_fd != -1)
3338 put_unused_fd(out_fence_fd);
4a04e371 3339err_in_fence:
fec0445c 3340 dma_fence_put(in_fence);
13149e8b
LL
3341err_ext:
3342 put_fence_array(eb.fences, eb.num_fences);
2889caa9 3343 return err;
54cf91dc
CW
3344}
3345
d710fc16
CW
3346static size_t eb_element_size(void)
3347{
8ae275c2 3348 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
3349}
3350
3351static bool check_buffer_count(size_t count)
3352{
3353 const size_t sz = eb_element_size();
3354
3355 /*
3356 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3357 * array size (see eb_create()). Otherwise, we can accept an array as
3358 * large as can be addressed (though use large arrays at your peril)!
3359 */
3360
3361 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3362}
3363
54cf91dc 3364int
6a20fe7b
VS
3365i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3366 struct drm_file *file)
54cf91dc 3367{
d0bf4582 3368 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 3369 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 3370 struct drm_i915_gem_exec_object2 *exec2_list;
d710fc16 3371 const size_t count = args->buffer_count;
2889caa9 3372 int err;
54cf91dc 3373
d710fc16 3374 if (!check_buffer_count(count)) {
d0bf4582 3375 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3376 return -EINVAL;
3377 }
3378
00aff3f6
TU
3379 err = i915_gem_check_execbuffer(args);
3380 if (err)
3381 return err;
2889caa9 3382
47b08693
ML
3383 /* Allocate extra slots for use by the command parser */
3384 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3385 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3386 if (exec2_list == NULL) {
d0bf4582
WK
3387 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3388 count);
54cf91dc
CW
3389 return -ENOMEM;
3390 }
2889caa9
CW
3391 if (copy_from_user(exec2_list,
3392 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3393 sizeof(*exec2_list) * count)) {
d0bf4582 3394 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 3395 kvfree(exec2_list);
54cf91dc
CW
3396 return -EFAULT;
3397 }
3398
cda9edd0 3399 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2889caa9
CW
3400
3401 /*
3402 * Now that we have begun execution of the batchbuffer, we ignore
3403 * any new error after this point. Also given that we have already
3404 * updated the associated relocations, we try to write out the current
3405 * object locations irrespective of any error.
3406 */
3407 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3408 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3409 u64_to_user_ptr(args->buffers_ptr);
3410 unsigned int i;
9aab8bff 3411
2889caa9 3412 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3413 /*
3414 * Note: count * sizeof(*user_exec_list) does not overflow,
3415 * because we checked 'count' in check_buffer_count().
3416 *
3417 * And this range already got effectively checked earlier
3418 * when we did the "copy_from_user()" above.
3419 */
b44f6873
CL
3420 if (!user_write_access_begin(user_exec_list,
3421 count * sizeof(*user_exec_list)))
8f4faed0 3422 goto end;
594cc251 3423
9aab8bff 3424 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3425 if (!(exec2_list[i].offset & UPDATE))
3426 continue;
3427
934acce3 3428 exec2_list[i].offset =
2889caa9
CW
3429 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3430 unsafe_put_user(exec2_list[i].offset,
3431 &user_exec_list[i].offset,
3432 end_user);
54cf91dc 3433 }
2889caa9 3434end_user:
b44f6873 3435 user_write_access_end();
8f4faed0 3436end:;
54cf91dc
CW
3437 }
3438
2889caa9 3439 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 3440 kvfree(exec2_list);
2889caa9 3441 return err;
54cf91dc 3442}