drm/drm_modeset_helper_vtables.h: fix a typo
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
52791eee 8#include <linux/dma-resv.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
ad778f89 13
df0566a6
JN
14#include "display/intel_frontbuffer.h"
15
afa13085 16#include "gem/i915_gem_ioctls.h"
10be98a7 17#include "gt/intel_context.h"
45233ab2 18#include "gt/intel_gpu_commands.h"
baea429d 19#include "gt/intel_gt.h"
16e87459 20#include "gt/intel_gt_buffer_pool.h"
8f2a1057 21#include "gt/intel_gt_pm.h"
2871ea85 22#include "gt/intel_ring.h"
8f2a1057 23
d3ac8d42
DCS
24#include "pxp/intel_pxp.h"
25
23d639d7 26#include "i915_cmd_parser.h"
6da4a2c4 27#include "i915_drv.h"
5472b3f2 28#include "i915_file_private.h"
57822dc6 29#include "i915_gem_clflush.h"
10be98a7 30#include "i915_gem_context.h"
2ef97818 31#include "i915_gem_evict.h"
6da4a2c4 32#include "i915_gem_ioctls.h"
54cf91dc 33#include "i915_trace.h"
cda9edd0 34#include "i915_user_extensions.h"
54cf91dc 35
7d6236bb
CW
36struct eb_vma {
37 struct i915_vma *vma;
38 unsigned int flags;
39
40 /** This vma's place in the execbuf reservation list */
41 struct drm_i915_gem_exec_object2 *exec;
42 struct list_head bind_link;
43 struct list_head reloc_link;
44
45 struct hlist_node node;
46 u32 handle;
47};
48
ad5d95e4
DA
49enum {
50 FORCE_CPU_RELOC = 1,
51 FORCE_GTT_RELOC,
52 FORCE_GPU_RELOC,
53#define DBG_FORCE_RELOC 0 /* choose one of the above! */
54};
55
bfaae47d
ML
56/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57#define __EXEC_OBJECT_HAS_PIN BIT(30)
58#define __EXEC_OBJECT_HAS_FENCE BIT(29)
ed29c269
ML
59#define __EXEC_OBJECT_USERPTR_INIT BIT(28)
60#define __EXEC_OBJECT_NEEDS_MAP BIT(27)
61#define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
62#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
8ae275c2 63#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
2889caa9
CW
64
65#define __EXEC_HAS_RELOC BIT(31)
2bf541ff 66#define __EXEC_ENGINE_PINNED BIT(30)
ed29c269
ML
67#define __EXEC_USERPTR_USED BIT(29)
68#define __EXEC_INTERNAL_FLAGS (~0u << 29)
2889caa9 69#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
70
71#define BATCH_OFFSET_BIAS (256*1024)
a415d355 72
650bc635 73#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
74 (__I915_EXEC_UNKNOWN_FLAGS | \
75 I915_EXEC_CONSTANTS_MASK | \
76 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 77
d20ac620
CW
78/* Catch emission of unexpected errors for CI! */
79#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80#undef EINVAL
81#define EINVAL ({ \
82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 22; \
84})
85#endif
86
2889caa9
CW
87/**
88 * DOC: User command execution
89 *
90 * Userspace submits commands to be executed on the GPU as an instruction
91 * stream within a GEM object we call a batchbuffer. This instructions may
92 * refer to other GEM objects containing auxiliary state such as kernels,
93 * samplers, render targets and even secondary batchbuffers. Userspace does
94 * not know where in the GPU memory these objects reside and so before the
95 * batchbuffer is passed to the GPU for execution, those addresses in the
96 * batchbuffer and auxiliary objects are updated. This is known as relocation,
97 * or patching. To try and avoid having to relocate each object on the next
98 * execution, userspace is told the location of those objects in this pass,
99 * but this remains just a hint as the kernel may choose a new location for
100 * any object in the future.
101 *
99d7e4ee
KR
102 * At the level of talking to the hardware, submitting a batchbuffer for the
103 * GPU to execute is to add content to a buffer from which the HW
104 * command streamer is reading.
105 *
106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107 * Execlists, this command is not placed on the same buffer as the
108 * remaining items.
109 *
110 * 2. Add a command to invalidate caches to the buffer.
111 *
112 * 3. Add a batchbuffer start command to the buffer; the start command is
113 * essentially a token together with the GPU address of the batchbuffer
114 * to be executed.
115 *
116 * 4. Add a pipeline flush to the buffer.
117 *
118 * 5. Add a memory write command to the buffer to record when the GPU
119 * is done executing the batchbuffer. The memory write writes the
120 * global sequence number of the request, ``i915_request::global_seqno``;
121 * the i915 driver uses the current value in the register to determine
122 * if the GPU has completed the batchbuffer.
123 *
124 * 6. Add a user interrupt command to the buffer. This command instructs
125 * the GPU to issue an interrupt when the command, pipeline flush and
126 * memory write are completed.
127 *
128 * 7. Inform the hardware of the additional commands added to the buffer
129 * (by updating the tail pointer).
130 *
2889caa9
CW
131 * Processing an execbuf ioctl is conceptually split up into a few phases.
132 *
133 * 1. Validation - Ensure all the pointers, handles and flags are valid.
134 * 2. Reservation - Assign GPU address space for every object
135 * 3. Relocation - Update any addresses to point to the final locations
136 * 4. Serialisation - Order the request with respect to its dependencies
137 * 5. Construction - Construct a request to execute the batchbuffer
138 * 6. Submission (at some point in the future execution)
139 *
140 * Reserving resources for the execbuf is the most complicated phase. We
141 * neither want to have to migrate the object in the address space, nor do
142 * we want to have to update any relocations pointing to this object. Ideally,
143 * we want to leave the object where it is and for all the existing relocations
144 * to match. If the object is given a new address, or if userspace thinks the
145 * object is elsewhere, we have to parse all the relocation entries and update
146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147 * all the target addresses in all of its objects match the value in the
148 * relocation entries and that they all match the presumed offsets given by the
149 * list of execbuffer objects. Using this knowledge, we know that if we haven't
150 * moved any buffers, all the relocation entries are valid and we can skip
151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153 *
154 * The addresses written in the objects must match the corresponding
155 * reloc.presumed_offset which in turn must match the corresponding
156 * execobject.offset.
157 *
158 * Any render targets written to in the batch must be flagged with
159 * EXEC_OBJECT_WRITE.
160 *
161 * To avoid stalling, execobject.offset should match the current
162 * address of that object within the active context.
163 *
164 * The reservation is done is multiple phases. First we try and keep any
165 * object already bound in its current location - so as long as meets the
166 * constraints imposed by the new execbuffer. Any object left unbound after the
167 * first pass is then fitted into any available idle space. If an object does
168 * not fit, all objects are removed from the reservation and the process rerun
169 * after sorting the objects into a priority order (more difficult to fit
170 * objects are tried first). Failing that, the entire VM is cleared and we try
171 * to fit the execbuf once last time before concluding that it simply will not
172 * fit.
173 *
174 * A small complication to all of this is that we allow userspace not only to
175 * specify an alignment and a size for the object in the address space, but
176 * we also allow userspace to specify the exact offset. This objects are
177 * simpler to place (the location is known a priori) all we have to do is make
178 * sure the space is available.
179 *
180 * Once all the objects are in place, patching up the buried pointers to point
181 * to the final locations is a fairly simple job of walking over the relocation
182 * entry arrays, looking up the right address and rewriting the value into
183 * the object. Simple! ... The relocation entries are stored in user memory
184 * and so to access them we have to copy them into a local buffer. That copy
185 * has to avoid taking any pagefaults as they may lead back to a GEM object
186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187 * the relocation into multiple passes. First we try to do everything within an
188 * atomic context (avoid the pagefaults) which requires that we never wait. If
189 * we detect that we may wait, or if we need to fault, then we have to fallback
190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191 * bells yet?) Dropping the mutex means that we lose all the state we have
192 * built up so far for the execbuf and we must reset any global data. However,
193 * we do leave the objects pinned in their final locations - which is a
194 * potential issue for concurrent execbufs. Once we have left the mutex, we can
195 * allocate and copy all the relocation entries into a large array at our
196 * leisure, reacquire the mutex, reclaim all the objects and other state and
197 * then proceed to update any incorrect addresses with the objects.
198 *
199 * As we process the relocation entries, we maintain a record of whether the
200 * object is being written to. Using NORELOC, we expect userspace to provide
201 * this information instead. We also check whether we can skip the relocation
202 * by comparing the expected value inside the relocation entry with the target's
203 * final address. If they differ, we have to map the current object and rewrite
204 * the 4 or 8 byte pointer within.
205 *
206 * Serialising an execbuf is quite simple according to the rules of the GEM
207 * ABI. Execution within each context is ordered by the order of submission.
208 * Writes to any GEM object are in order of submission and are exclusive. Reads
209 * from a GEM object are unordered with respect to other reads, but ordered by
210 * writes. A write submitted after a read cannot occur before the read, and
211 * similarly any read submitted after a write cannot occur before the write.
212 * Writes are ordered between engines such that only one write occurs at any
213 * time (completing any reads beforehand) - using semaphores where available
214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216 * reads before starting, and any read (either using set-domain or pread) must
217 * flush all GPU writes before starting. (Note we only employ a barrier before,
218 * we currently rely on userspace not concurrently starting a new execution
219 * whilst reading or writing to an object. This may be an advantage or not
220 * depending on how much you trust userspace not to shoot themselves in the
221 * foot.) Serialisation may just result in the request being inserted into
222 * a DAG awaiting its turn, but most simple is to wait on the CPU until
223 * all dependencies are resolved.
224 *
225 * After all of that, is just a matter of closing the request and handing it to
226 * the hardware (well, leaving it in a queue to be executed). However, we also
227 * offer the ability for batchbuffers to be run with elevated privileges so
228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229 * Before any batch is given extra privileges we first must check that it
230 * contains no nefarious instructions, we check that each instruction is from
231 * our whitelist and all registers are also from an allowed list. We first
232 * copy the user's batchbuffer to a shadow (so that the user doesn't have
233 * access to it, either by the CPU or GPU as we scan it) and then parse each
234 * instruction. If everything is ok, we set a flag telling the hardware to run
235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236 */
237
13149e8b
LL
238struct eb_fence {
239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 struct dma_fence *dma_fence;
241 u64 value;
242 struct dma_fence_chain *chain_fence;
243};
244
650bc635 245struct i915_execbuffer {
2889caa9
CW
246 struct drm_i915_private *i915; /** i915 backpointer */
247 struct drm_file *file; /** per-file lookup tables and limits */
248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 250 struct eb_vma *vma;
2889caa9 251
544460c3 252 struct intel_gt *gt; /* gt for the execbuf */
8f2a1057
CW
253 struct intel_context *context; /* logical state for the request */
254 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 255
544460c3
MB
256 /** our requests to build */
257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258 /** identity of the batch obj/vma */
259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
32d94048 260 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9 261
544460c3
MB
262 /** used for excl fence in dma_resv objects when > 1 BB submitted */
263 struct dma_fence *composite_fence;
264
2889caa9
CW
265 /** actual size of execobj[] as we may extend it for the cmdparser */
266 unsigned int buffer_count;
267
544460c3
MB
268 /* number of batches in execbuf IOCTL */
269 unsigned int num_batches;
270
2889caa9
CW
271 /** list of vma not yet bound during reservation phase */
272 struct list_head unbound;
273
274 /** list of vma that have execobj.relocation_count */
275 struct list_head relocs;
276
c43ce123
ML
277 struct i915_gem_ww_ctx ww;
278
2889caa9
CW
279 /**
280 * Track the most recently used object for relocations, as we
281 * frequently have to perform multiple relocations within the same
282 * obj/page
283 */
650bc635 284 struct reloc_cache {
2889caa9 285 struct drm_mm_node node; /** temporary GTT binding */
ad5d95e4
DA
286 unsigned long vaddr; /** Current kmap address */
287 unsigned long page; /** Currently mapped page index */
8802190f 288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
650bc635 289 bool use_64bit_reloc : 1;
2889caa9
CW
290 bool has_llc : 1;
291 bool has_fence : 1;
292 bool needs_unfenced : 1;
650bc635 293 } reloc_cache;
2889caa9
CW
294
295 u64 invalid_flags; /** Set of execobj.flags that are invalid */
2889caa9 296
544460c3
MB
297 /** Length of batch within object */
298 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
2889caa9 299 u32 batch_start_offset; /** Location within object of batch */
2889caa9 300 u32 batch_flags; /** Flags composed for emit_bb_start() */
c43ce123 301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
2889caa9
CW
302
303 /**
304 * Indicate either the size of the hastable used to resolve
305 * relocation handles, or if negative that we are using a direct
306 * index into the execobj[].
307 */
308 int lut_size;
309 struct hlist_head *buckets; /** ht for relocation handles */
cda9edd0 310
13149e8b
LL
311 struct eb_fence *fences;
312 unsigned long num_fences;
ff20afc4
TH
313#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315#endif
67731b87
CW
316};
317
8e4ba491 318static int eb_parse(struct i915_execbuffer *eb);
544460c3 319static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
2bf541ff 320static void eb_unpin_engine(struct i915_execbuffer *eb);
ff20afc4 321static void eb_capture_release(struct i915_execbuffer *eb);
8e4ba491 322
3dbf26ed
CW
323static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324{
544460c3
MB
325 return intel_engine_requires_cmd_parser(eb->context->engine) ||
326 (intel_engine_using_cmd_parser(eb->context->engine) &&
435e8fc0 327 eb->args->batch_len);
3dbf26ed
CW
328}
329
650bc635 330static int eb_create(struct i915_execbuffer *eb)
67731b87 331{
2889caa9
CW
332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 334
2889caa9
CW
335 /*
336 * Without a 1:1 association between relocation handles and
337 * the execobject[] index, we instead create a hashtable.
338 * We size it dynamically based on available memory, starting
339 * first with 1:1 assocative hash and scaling back until
340 * the allocation succeeds.
341 *
342 * Later on we use a positive lut_size to indicate we are
343 * using this hashtable, and a negative value to indicate a
344 * direct lookup.
345 */
4ff4b44c 346 do {
0d95c883 347 gfp_t flags;
4d470f73
CW
348
349 /* While we can still reduce the allocation size, don't
350 * raise a warning and allow the allocation to fail.
351 * On the last pass though, we want to try as hard
352 * as possible to perform the allocation and warn
353 * if it fails.
354 */
0ee931c4 355 flags = GFP_KERNEL;
4d470f73
CW
356 if (size > 1)
357 flags |= __GFP_NORETRY | __GFP_NOWARN;
358
4ff4b44c 359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 360 flags);
4ff4b44c
CW
361 if (eb->buckets)
362 break;
363 } while (--size);
364
8ae275c2 365 if (unlikely(!size))
4d470f73 366 return -ENOMEM;
eef90ccb 367
2889caa9 368 eb->lut_size = size;
650bc635 369 } else {
2889caa9 370 eb->lut_size = -eb->buffer_count;
650bc635 371 }
eef90ccb 372
650bc635 373 return 0;
67731b87
CW
374}
375
2889caa9
CW
376static bool
377eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
378 const struct i915_vma *vma,
379 unsigned int flags)
2889caa9 380{
2889caa9
CW
381 if (vma->node.size < entry->pad_to_size)
382 return true;
383
384 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
385 return true;
386
c7c6e46f 387 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
388 vma->node.start != entry->offset)
389 return true;
390
c7c6e46f 391 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
392 vma->node.start < BATCH_OFFSET_BIAS)
393 return true;
394
c7c6e46f 395 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
5f22cc0b 396 (vma->node.start + vma->node.size + 4095) >> 32)
2889caa9
CW
397 return true;
398
1d033beb
CW
399 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400 !i915_vma_is_map_and_fenceable(vma))
401 return true;
402
2889caa9
CW
403 return false;
404}
405
8a338f4b
CW
406static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407 unsigned int exec_flags)
408{
409 u64 pin_flags = 0;
410
411 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412 pin_flags |= PIN_GLOBAL;
413
414 /*
415 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416 * limit address to the first 4GBs for unflagged objects.
417 */
418 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419 pin_flags |= PIN_ZONE_4G;
420
421 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422 pin_flags |= PIN_MAPPABLE;
423
424 if (exec_flags & EXEC_OBJECT_PINNED)
425 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
428
429 return pin_flags;
430}
431
237647f4 432static inline int
2889caa9 433eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 434 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 435 struct eb_vma *ev)
2889caa9 436{
7d6236bb 437 struct i915_vma *vma = ev->vma;
c7c6e46f 438 u64 pin_flags;
237647f4 439 int err;
2889caa9 440
616d9cee 441 if (vma->node.size)
c7c6e46f 442 pin_flags = vma->node.start;
616d9cee 443 else
c7c6e46f 444 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 445
b5cfe6f7 446 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
7d6236bb 447 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 448 pin_flags |= PIN_GLOBAL;
616d9cee 449
8a338f4b 450 /* Attempt to reuse the current location if available */
237647f4
ML
451 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
452 if (err == -EDEADLK)
453 return err;
454
455 if (unlikely(err)) {
8a338f4b 456 if (entry->flags & EXEC_OBJECT_PINNED)
237647f4 457 return err;
8a338f4b
CW
458
459 /* Failing that pick any _free_ space if suitable */
237647f4 460 err = i915_vma_pin_ww(vma, &eb->ww,
47b08693
ML
461 entry->pad_to_size,
462 entry->alignment,
463 eb_pin_flags(entry, ev->flags) |
b5cfe6f7 464 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
237647f4
ML
465 if (unlikely(err))
466 return err;
8a338f4b 467 }
2889caa9 468
7d6236bb 469 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
237647f4 470 err = i915_vma_pin_fence(vma);
b5cfe6f7 471 if (unlikely(err))
237647f4 472 return err;
2889caa9 473
3bd40735 474 if (vma->fence)
7d6236bb 475 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
476 }
477
7d6236bb 478 ev->flags |= __EXEC_OBJECT_HAS_PIN;
237647f4
ML
479 if (eb_vma_misplaced(entry, vma, ev->flags))
480 return -EBADSLT;
481
482 return 0;
2889caa9
CW
483}
484
8ae275c2
ML
485static inline void
486eb_unreserve_vma(struct eb_vma *ev)
487{
c43ce123
ML
488 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
489 __i915_vma_unpin_fence(ev->vma);
490
8ae275c2
ML
491 ev->flags &= ~__EXEC_OBJECT_RESERVED;
492}
493
2889caa9
CW
494static int
495eb_validate_vma(struct i915_execbuffer *eb,
496 struct drm_i915_gem_exec_object2 *entry,
497 struct i915_vma *vma)
67731b87 498{
2eb8e1a6
JE
499 /* Relocations are disallowed for all platforms after TGL-LP. This
500 * also covers all platforms with local memory.
501 */
502 if (entry->relocation_count &&
40e1956e 503 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
2eb8e1a6
JE
504 return -EINVAL;
505
2889caa9
CW
506 if (unlikely(entry->flags & eb->invalid_flags))
507 return -EINVAL;
d55495b4 508
2920516b
MA
509 if (unlikely(entry->alignment &&
510 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
511 return -EINVAL;
512
513 /*
514 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515 * any non-page-aligned or non-canonical addresses.
516 */
517 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 518 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
519 return -EINVAL;
520
521 /* pad_to_size was once a reserved field, so sanitize it */
522 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523 if (unlikely(offset_in_page(entry->pad_to_size)))
524 return -EINVAL;
525 } else {
526 entry->pad_to_size = 0;
d55495b4 527 }
2889caa9
CW
528 /*
529 * From drm_mm perspective address space is continuous,
530 * so from this point we're always using non-canonical
531 * form internally.
532 */
533 entry->offset = gen8_noncanonical_addr(entry->offset);
534
c7c6e46f
CW
535 if (!eb->reloc_cache.has_fence) {
536 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537 } else {
538 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539 eb->reloc_cache.needs_unfenced) &&
540 i915_gem_object_is_tiled(vma->obj))
541 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542 }
543
2889caa9 544 return 0;
67731b87
CW
545}
546
544460c3
MB
547static inline bool
548is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
549{
550 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551 buffer_idx < eb->num_batches :
552 buffer_idx >= eb->args->buffer_count - eb->num_batches;
553}
554
555static int
746c8f14 556eb_add_vma(struct i915_execbuffer *eb,
544460c3
MB
557 unsigned int *current_batch,
558 unsigned int i,
746c8f14 559 struct i915_vma *vma)
59bfa124 560{
544460c3 561 struct drm_i915_private *i915 = eb->i915;
c7c6e46f 562 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 563 struct eb_vma *ev = &eb->vma[i];
2889caa9 564
93159e12 565 ev->vma = vma;
7d6236bb
CW
566 ev->exec = entry;
567 ev->flags = entry->flags;
568
4d470f73 569 if (eb->lut_size > 0) {
7d6236bb
CW
570 ev->handle = entry->handle;
571 hlist_add_head(&ev->node,
2889caa9
CW
572 &eb->buckets[hash_32(entry->handle,
573 eb->lut_size)]);
4ff4b44c 574 }
59bfa124 575
2889caa9 576 if (entry->relocation_count)
7d6236bb 577 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 578
746c8f14
CW
579 /*
580 * SNA is doing fancy tricks with compressing batch buffers, which leads
581 * to negative relocation deltas. Usually that works out ok since the
582 * relocate address is still positive, except when the batch is placed
583 * very low in the GTT. Ensure this doesn't happen.
584 *
585 * Note that actual hangs have only been observed on gen7, but for
586 * paranoia do it everywhere.
587 */
544460c3 588 if (is_batch_buffer(eb, i)) {
827db9d8 589 if (entry->relocation_count &&
7d6236bb
CW
590 !(ev->flags & EXEC_OBJECT_PINNED))
591 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 592 if (eb->reloc_cache.has_fence)
7d6236bb 593 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 594
544460c3
MB
595 eb->batches[*current_batch] = ev;
596
597 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
598 drm_dbg(&i915->drm,
599 "Attempting to use self-modifying batch buffer\n");
600 return -EINVAL;
601 }
602
603 if (range_overflows_t(u64,
604 eb->batch_start_offset,
605 eb->args->batch_len,
606 ev->vma->size)) {
607 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
608 return -EINVAL;
609 }
610
611 if (eb->args->batch_len == 0)
612 eb->batch_len[*current_batch] = ev->vma->size -
613 eb->batch_start_offset;
614 else
615 eb->batch_len[*current_batch] = eb->args->batch_len;
616 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617 drm_dbg(&i915->drm, "Invalid batch length\n");
618 return -EINVAL;
619 }
620
621 ++*current_batch;
746c8f14 622 }
544460c3
MB
623
624 return 0;
2889caa9
CW
625}
626
ad5d95e4
DA
627static inline int use_cpu_reloc(const struct reloc_cache *cache,
628 const struct drm_i915_gem_object *obj)
629{
630 if (!i915_gem_object_has_struct_page(obj))
631 return false;
632
633 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
634 return true;
635
636 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
637 return false;
638
639 return (cache->has_llc ||
640 obj->cache_dirty ||
641 obj->cache_level != I915_CACHE_NONE);
642}
643
47b08693 644static int eb_reserve_vma(struct i915_execbuffer *eb,
7d6236bb 645 struct eb_vma *ev,
2920bb94 646 u64 pin_flags)
2889caa9 647{
7d6236bb 648 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 649 struct i915_vma *vma = ev->vma;
2889caa9
CW
650 int err;
651
003d8b91
CW
652 if (drm_mm_node_allocated(&vma->node) &&
653 eb_vma_misplaced(entry, vma, ev->flags)) {
654 err = i915_vma_unbind(vma);
655 if (err)
656 return err;
657 }
658
47b08693 659 err = i915_vma_pin_ww(vma, &eb->ww,
c7c6e46f 660 entry->pad_to_size, entry->alignment,
8a338f4b 661 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
662 if (err)
663 return err;
664
665 if (entry->offset != vma->node.start) {
666 entry->offset = vma->node.start | UPDATE;
667 eb->args->flags |= __EXEC_HAS_RELOC;
668 }
669
8a338f4b 670 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 671 err = i915_vma_pin_fence(vma);
b5cfe6f7 672 if (unlikely(err))
2889caa9 673 return err;
2889caa9 674
3bd40735 675 if (vma->fence)
8a338f4b 676 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
677 }
678
8a338f4b 679 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 680 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 681
2889caa9
CW
682 return 0;
683}
684
b5cfe6f7 685static bool eb_unbind(struct i915_execbuffer *eb, bool force)
2889caa9
CW
686{
687 const unsigned int count = eb->buffer_count;
b5cfe6f7 688 unsigned int i;
2889caa9 689 struct list_head last;
b5cfe6f7
ML
690 bool unpinned = false;
691
692 /* Resort *all* the objects into priority order */
693 INIT_LIST_HEAD(&eb->unbound);
694 INIT_LIST_HEAD(&last);
695
696 for (i = 0; i < count; i++) {
697 struct eb_vma *ev = &eb->vma[i];
698 unsigned int flags = ev->flags;
699
700 if (!force && flags & EXEC_OBJECT_PINNED &&
701 flags & __EXEC_OBJECT_HAS_PIN)
702 continue;
703
704 unpinned = true;
705 eb_unreserve_vma(ev);
706
707 if (flags & EXEC_OBJECT_PINNED)
708 /* Pinned must have their slot */
709 list_add(&ev->bind_link, &eb->unbound);
710 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
711 /* Map require the lowest 256MiB (aperture) */
712 list_add_tail(&ev->bind_link, &eb->unbound);
713 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
714 /* Prioritise 4GiB region for restricted bo */
715 list_add(&ev->bind_link, &last);
716 else
717 list_add_tail(&ev->bind_link, &last);
718 }
719
720 list_splice_tail(&last, &eb->unbound);
721 return unpinned;
722}
723
724static int eb_reserve(struct i915_execbuffer *eb)
725{
7d6236bb 726 struct eb_vma *ev;
b5cfe6f7 727 unsigned int pass;
ef398881 728 int err = 0;
b5cfe6f7 729 bool unpinned;
2889caa9
CW
730
731 /*
732 * Attempt to pin all of the buffers into the GTT.
b5cfe6f7 733 * This is done in 2 phases:
2889caa9 734 *
b5cfe6f7
ML
735 * 1. Unbind all objects that do not match the GTT constraints for
736 * the execbuffer (fenceable, mappable, alignment etc).
737 * 2. Bind new objects.
2889caa9
CW
738 *
739 * This avoid unnecessary unbinding of later objects in order to make
740 * room for the earlier objects *unless* we need to defragment.
b5cfe6f7
ML
741 *
742 * Defragmenting is skipped if all objects are pinned at a fixed location.
2889caa9 743 */
b5cfe6f7
ML
744 for (pass = 0; pass <= 2; pass++) {
745 int pin_flags = PIN_USER | PIN_VALIDATE;
2889caa9 746
b5cfe6f7
ML
747 if (pass == 0)
748 pin_flags |= PIN_NONBLOCK;
2889caa9 749
b5cfe6f7
ML
750 if (pass >= 1)
751 unpinned = eb_unbind(eb, pass == 2);
2889caa9 752
b5cfe6f7
ML
753 if (pass == 2) {
754 err = mutex_lock_interruptible(&eb->context->vm->mutex);
755 if (!err) {
756 err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
757 mutex_unlock(&eb->context->vm->mutex);
758 }
2889caa9 759 if (err)
c43ce123 760 return err;
b5cfe6f7 761 }
2889caa9 762
b5cfe6f7
ML
763 list_for_each_entry(ev, &eb->unbound, bind_link) {
764 err = eb_reserve_vma(eb, ev, pin_flags);
765 if (err)
766 break;
2889caa9 767 }
2920bb94 768
b5cfe6f7
ML
769 if (err != -ENOSPC)
770 break;
771 }
772
773 return err;
4ff4b44c 774}
59bfa124 775
2889caa9
CW
776static int eb_select_context(struct i915_execbuffer *eb)
777{
778 struct i915_gem_context *ctx;
779
780 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
046d1660
JE
781 if (unlikely(IS_ERR(ctx)))
782 return PTR_ERR(ctx);
2889caa9 783
8f2a1057 784 eb->gem_context = ctx;
a82a9979 785 if (i915_gem_context_has_full_ppgtt(ctx))
4f2c7337 786 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9 787
2889caa9
CW
788 return 0;
789}
790
93159e12
CW
791static int __eb_add_lut(struct i915_execbuffer *eb,
792 u32 handle, struct i915_vma *vma)
3b96eff4 793{
93159e12
CW
794 struct i915_gem_context *ctx = eb->gem_context;
795 struct i915_lut_handle *lut;
2889caa9 796 int err;
3b96eff4 797
93159e12
CW
798 lut = i915_lut_handle_alloc();
799 if (unlikely(!lut))
800 return -ENOMEM;
801
802 i915_vma_get(vma);
803 if (!atomic_fetch_inc(&vma->open_count))
804 i915_vma_reopen(vma);
805 lut->handle = handle;
806 lut->ctx = ctx;
807
808 /* Check that the context hasn't been closed in the meantime */
809 err = -EINTR;
f7ce8639 810 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
e1068a9e 811 if (likely(!i915_gem_context_is_closed(ctx)))
93159e12 812 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
f7ce8639
CW
813 else
814 err = -ENOENT;
93159e12
CW
815 if (err == 0) { /* And nor has this handle */
816 struct drm_i915_gem_object *obj = vma->obj;
817
096a42dd 818 spin_lock(&obj->lut_lock);
93159e12
CW
819 if (idr_find(&eb->file->object_idr, handle) == obj) {
820 list_add(&lut->obj_link, &obj->lut_list);
821 } else {
822 radix_tree_delete(&ctx->handles_vma, handle);
823 err = -ENOENT;
824 }
096a42dd 825 spin_unlock(&obj->lut_lock);
93159e12 826 }
f7ce8639 827 mutex_unlock(&ctx->lut_mutex);
93159e12
CW
828 }
829 if (unlikely(err))
830 goto err;
003d8b91 831
93159e12 832 return 0;
d55495b4 833
93159e12 834err:
50689771 835 i915_vma_close(vma);
93159e12
CW
836 i915_vma_put(vma);
837 i915_lut_handle_free(lut);
838 return err;
839}
746c8f14 840
93159e12
CW
841static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842{
f7ce8639
CW
843 struct i915_address_space *vm = eb->context->vm;
844
93159e12
CW
845 do {
846 struct drm_i915_gem_object *obj;
170fa29b 847 struct i915_vma *vma;
93159e12 848 int err;
4ff4b44c 849
93159e12
CW
850 rcu_read_lock();
851 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
f7ce8639 852 if (likely(vma && vma->vm == vm))
93159e12
CW
853 vma = i915_vma_tryget(vma);
854 rcu_read_unlock();
855 if (likely(vma))
856 return vma;
4ff4b44c 857
170fa29b 858 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
859 if (unlikely(!obj))
860 return ERR_PTR(-ENOENT);
3b96eff4 861
d3ac8d42
DCS
862 /*
863 * If the user has opted-in for protected-object tracking, make
864 * sure the object encryption can be used.
865 * We only need to do this when the object is first used with
866 * this context, because the context itself will be banned when
867 * the protected objects become invalid.
868 */
869 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
870 i915_gem_object_is_protected(obj)) {
ef6ba31d 871 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
d3ac8d42
DCS
872 if (err) {
873 i915_gem_object_put(obj);
874 return ERR_PTR(err);
875 }
876 }
877
f7ce8639 878 vma = i915_vma_instance(obj, vm, NULL);
772b5408 879 if (IS_ERR(vma)) {
93159e12
CW
880 i915_gem_object_put(obj);
881 return vma;
27173f1f
BW
882 }
883
93159e12
CW
884 err = __eb_add_lut(eb, handle, vma);
885 if (likely(!err))
886 return vma;
d1b48c1e 887
93159e12
CW
888 i915_gem_object_put(obj);
889 if (err != -EEXIST)
890 return ERR_PTR(err);
891 } while (1);
892}
4ff4b44c 893
93159e12
CW
894static int eb_lookup_vmas(struct i915_execbuffer *eb)
895{
544460c3 896 unsigned int i, current_batch = 0;
93159e12 897 int err = 0;
155ab883 898
93159e12 899 INIT_LIST_HEAD(&eb->relocs);
93159e12
CW
900
901 for (i = 0; i < eb->buffer_count; i++) {
902 struct i915_vma *vma;
903
904 vma = eb_lookup_vma(eb, eb->exec[i].handle);
905 if (IS_ERR(vma)) {
906 err = PTR_ERR(vma);
8e4ba491 907 goto err;
93159e12 908 }
d1b48c1e 909
003d8b91 910 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
911 if (unlikely(err)) {
912 i915_vma_put(vma);
8e4ba491 913 goto err;
93159e12 914 }
dade2a61 915
544460c3
MB
916 err = eb_add_vma(eb, &current_batch, i, vma);
917 if (err)
918 return err;
ed29c269
ML
919
920 if (i915_gem_object_is_userptr(vma->obj)) {
921 err = i915_gem_object_userptr_submit_init(vma->obj);
922 if (err) {
923 if (i + 1 < eb->buffer_count) {
924 /*
925 * Execbuffer code expects last vma entry to be NULL,
926 * since we already initialized this entry,
927 * set the next value to NULL or we mess up
928 * cleanup handling.
929 */
930 eb->vma[i + 1].vma = NULL;
931 }
932
933 return err;
934 }
935
936 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
937 eb->args->flags |= __EXEC_USERPTR_USED;
938 }
4ff4b44c
CW
939 }
940
8e4ba491
ML
941 return 0;
942
943err:
7d6236bb 944 eb->vma[i].vma = NULL;
2889caa9 945 return err;
3b96eff4
CW
946}
947
5cd57f67 948static int eb_lock_vmas(struct i915_execbuffer *eb)
c43ce123
ML
949{
950 unsigned int i;
951 int err;
952
c43ce123 953 for (i = 0; i < eb->buffer_count; i++) {
c43ce123
ML
954 struct eb_vma *ev = &eb->vma[i];
955 struct i915_vma *vma = ev->vma;
956
957 err = i915_gem_object_lock(vma->obj, &eb->ww);
958 if (err)
959 return err;
5cd57f67
TH
960 }
961
962 return 0;
963}
964
965static int eb_validate_vmas(struct i915_execbuffer *eb)
966{
967 unsigned int i;
968 int err;
969
970 INIT_LIST_HEAD(&eb->unbound);
971
972 err = eb_lock_vmas(eb);
973 if (err)
974 return err;
975
976 for (i = 0; i < eb->buffer_count; i++) {
977 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
978 struct eb_vma *ev = &eb->vma[i];
979 struct i915_vma *vma = ev->vma;
c43ce123 980
237647f4
ML
981 err = eb_pin_vma(eb, entry, ev);
982 if (err == -EDEADLK)
983 return err;
984
985 if (!err) {
c43ce123
ML
986 if (entry->offset != vma->node.start) {
987 entry->offset = vma->node.start | UPDATE;
988 eb->args->flags |= __EXEC_HAS_RELOC;
989 }
990 } else {
991 eb_unreserve_vma(ev);
992
993 list_add_tail(&ev->bind_link, &eb->unbound);
994 if (drm_mm_node_allocated(&vma->node)) {
995 err = i915_vma_unbind(vma);
996 if (err)
997 return err;
998 }
999 }
1000
bfaae47d 1001 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
95c3d275 1002 err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
bfaae47d
ML
1003 if (err)
1004 return err;
1005 }
1006
c43ce123
ML
1007 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1008 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1009 }
1010
1011 if (!list_empty(&eb->unbound))
1012 return eb_reserve(eb);
1013
1014 return 0;
1015}
1016
7d6236bb 1017static struct eb_vma *
2889caa9 1018eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 1019{
2889caa9
CW
1020 if (eb->lut_size < 0) {
1021 if (handle >= -eb->lut_size)
eef90ccb 1022 return NULL;
7d6236bb 1023 return &eb->vma[handle];
eef90ccb
CW
1024 } else {
1025 struct hlist_head *head;
7d6236bb 1026 struct eb_vma *ev;
67731b87 1027
2889caa9 1028 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
1029 hlist_for_each_entry(ev, head, node) {
1030 if (ev->handle == handle)
1031 return ev;
eef90ccb
CW
1032 }
1033 return NULL;
1034 }
67731b87
CW
1035}
1036
b4b9731b 1037static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
8ae275c2
ML
1038{
1039 const unsigned int count = eb->buffer_count;
1040 unsigned int i;
1041
1042 for (i = 0; i < count; i++) {
1043 struct eb_vma *ev = &eb->vma[i];
1044 struct i915_vma *vma = ev->vma;
1045
1046 if (!vma)
1047 break;
1048
c43ce123 1049 eb_unreserve_vma(ev);
8ae275c2 1050
c43ce123
ML
1051 if (final)
1052 i915_vma_put(vma);
8ae275c2 1053 }
2bf541ff 1054
ff20afc4 1055 eb_capture_release(eb);
2bf541ff 1056 eb_unpin_engine(eb);
8ae275c2
ML
1057}
1058
2889caa9 1059static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 1060{
4d470f73 1061 if (eb->lut_size > 0)
2889caa9 1062 kfree(eb->buckets);
934acce3
MW
1063}
1064
2889caa9 1065static inline u64
d50415cc 1066relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 1067 const struct i915_vma *target)
934acce3 1068{
2889caa9 1069 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
1070}
1071
d50415cc
CW
1072static void reloc_cache_init(struct reloc_cache *cache,
1073 struct drm_i915_private *i915)
5032d871 1074{
ad5d95e4
DA
1075 cache->page = -1;
1076 cache->vaddr = 0;
dfc5148f 1077 /* Must be a variable in the struct to allow GCC to unroll. */
8802190f 1078 cache->graphics_ver = GRAPHICS_VER(i915);
2889caa9 1079 cache->has_llc = HAS_LLC(i915);
dfc5148f 1080 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
8802190f 1081 cache->has_fence = cache->graphics_ver < 4;
7dd4f672 1082 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 1083 cache->node.flags = 0;
d50415cc 1084}
5032d871 1085
20561da3
DA
1086static inline void *unmask_page(unsigned long p)
1087{
1088 return (void *)(uintptr_t)(p & PAGE_MASK);
1089}
1090
1091static inline unsigned int unmask_flags(unsigned long p)
1092{
1093 return p & ~PAGE_MASK;
1094}
1095
1096#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1097
1098static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1099{
1100 struct drm_i915_private *i915 =
1101 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
5c24c9d2 1102 return to_gt(i915)->ggtt;
20561da3
DA
1103}
1104
c2ea703d
TH
1105static void reloc_cache_unmap(struct reloc_cache *cache)
1106{
1107 void *vaddr;
1108
1109 if (!cache->vaddr)
1110 return;
1111
1112 vaddr = unmask_page(cache->vaddr);
1113 if (cache->vaddr & KMAP)
1114 kunmap_atomic(vaddr);
1115 else
1116 io_mapping_unmap_atomic((void __iomem *)vaddr);
1117}
1118
1119static void reloc_cache_remap(struct reloc_cache *cache,
1120 struct drm_i915_gem_object *obj)
1121{
1122 void *vaddr;
1123
1124 if (!cache->vaddr)
1125 return;
1126
1127 if (cache->vaddr & KMAP) {
1128 struct page *page = i915_gem_object_get_page(obj, cache->page);
1129
1130 vaddr = kmap_atomic(page);
1131 cache->vaddr = unmask_flags(cache->vaddr) |
1132 (unsigned long)vaddr;
1133 } else {
1134 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1135 unsigned long offset;
1136
1137 offset = cache->node.start;
1138 if (!drm_mm_node_allocated(&cache->node))
1139 offset += cache->page << PAGE_SHIFT;
1140
1141 cache->vaddr = (unsigned long)
1142 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1143 }
1144}
1145
c43ce123 1146static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
ad5d95e4
DA
1147{
1148 void *vaddr;
1149
1150 if (!cache->vaddr)
1151 return;
1152
1153 vaddr = unmask_page(cache->vaddr);
1154 if (cache->vaddr & KMAP) {
1af343cd
ML
1155 struct drm_i915_gem_object *obj =
1156 (struct drm_i915_gem_object *)cache->node.mm;
ad5d95e4
DA
1157 if (cache->vaddr & CLFLUSH_AFTER)
1158 mb();
1159
1160 kunmap_atomic(vaddr);
1af343cd 1161 i915_gem_object_finish_access(obj);
ad5d95e4
DA
1162 } else {
1163 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1164
1165 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1166 io_mapping_unmap_atomic((void __iomem *)vaddr);
1167
1168 if (drm_mm_node_allocated(&cache->node)) {
1169 ggtt->vm.clear_range(&ggtt->vm,
1170 cache->node.start,
1171 cache->node.size);
1172 mutex_lock(&ggtt->vm.mutex);
1173 drm_mm_remove_node(&cache->node);
1174 mutex_unlock(&ggtt->vm.mutex);
1175 } else {
1176 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1177 }
1178 }
1179
1180 cache->vaddr = 0;
1181 cache->page = -1;
1182}
1183
1184static void *reloc_kmap(struct drm_i915_gem_object *obj,
1185 struct reloc_cache *cache,
102a0a90 1186 unsigned long pageno)
ad5d95e4
DA
1187{
1188 void *vaddr;
102a0a90 1189 struct page *page;
ad5d95e4
DA
1190
1191 if (cache->vaddr) {
1192 kunmap_atomic(unmask_page(cache->vaddr));
1193 } else {
1194 unsigned int flushes;
1195 int err;
1196
1197 err = i915_gem_object_prepare_write(obj, &flushes);
1198 if (err)
1199 return ERR_PTR(err);
1200
1201 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1202 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1203
1204 cache->vaddr = flushes | KMAP;
1205 cache->node.mm = (void *)obj;
1206 if (flushes)
1207 mb();
1208 }
1209
102a0a90
ML
1210 page = i915_gem_object_get_page(obj, pageno);
1211 if (!obj->mm.dirty)
1212 set_page_dirty(page);
1213
1214 vaddr = kmap_atomic(page);
ad5d95e4 1215 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
102a0a90 1216 cache->page = pageno;
ad5d95e4
DA
1217
1218 return vaddr;
1219}
1220
b5cfe6f7 1221static void *reloc_iomap(struct i915_vma *batch,
47b08693 1222 struct i915_execbuffer *eb,
ad5d95e4
DA
1223 unsigned long page)
1224{
b5cfe6f7 1225 struct drm_i915_gem_object *obj = batch->obj;
47b08693 1226 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1227 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1228 unsigned long offset;
1229 void *vaddr;
1230
1231 if (cache->vaddr) {
1232 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1233 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1234 } else {
b5cfe6f7 1235 struct i915_vma *vma = ERR_PTR(-ENODEV);
ad5d95e4
DA
1236 int err;
1237
1238 if (i915_gem_object_is_tiled(obj))
1239 return ERR_PTR(-EINVAL);
1240
1241 if (use_cpu_reloc(cache, obj))
1242 return NULL;
1243
ad5d95e4 1244 err = i915_gem_object_set_to_gtt_domain(obj, true);
ad5d95e4
DA
1245 if (err)
1246 return ERR_PTR(err);
1247
b5cfe6f7
ML
1248 /*
1249 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1250 * VMA from the object list because we no longer pin.
1251 *
1252 * Only attempt to pin the batch buffer to ggtt if the current batch
1253 * is not inside ggtt, or the batch buffer is not misplaced.
1254 */
1255 if (!i915_is_ggtt(batch->vm)) {
1256 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1257 PIN_MAPPABLE |
1258 PIN_NONBLOCK /* NOWARN */ |
1259 PIN_NOEVICT);
1260 } else if (i915_vma_is_map_and_fenceable(batch)) {
1261 __i915_vma_pin(batch);
1262 vma = batch;
1263 }
1264
47b08693
ML
1265 if (vma == ERR_PTR(-EDEADLK))
1266 return vma;
1267
ad5d95e4
DA
1268 if (IS_ERR(vma)) {
1269 memset(&cache->node, 0, sizeof(cache->node));
1270 mutex_lock(&ggtt->vm.mutex);
1271 err = drm_mm_insert_node_in_range
1272 (&ggtt->vm.mm, &cache->node,
1273 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1274 0, ggtt->mappable_end,
1275 DRM_MM_INSERT_LOW);
1276 mutex_unlock(&ggtt->vm.mutex);
1277 if (err) /* no inactive aperture space, use cpu reloc */
1278 return NULL;
1279 } else {
1280 cache->node.start = vma->node.start;
1281 cache->node.mm = (void *)vma;
1282 }
1283 }
1284
1285 offset = cache->node.start;
1286 if (drm_mm_node_allocated(&cache->node)) {
1287 ggtt->vm.insert_page(&ggtt->vm,
1288 i915_gem_object_get_dma_address(obj, page),
1289 offset, I915_CACHE_NONE, 0);
1290 } else {
1291 offset += page << PAGE_SHIFT;
1292 }
1293
1294 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1295 offset);
1296 cache->page = page;
1297 cache->vaddr = (unsigned long)vaddr;
1298
1299 return vaddr;
1300}
1301
b5cfe6f7 1302static void *reloc_vaddr(struct i915_vma *vma,
47b08693 1303 struct i915_execbuffer *eb,
ad5d95e4
DA
1304 unsigned long page)
1305{
47b08693 1306 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1307 void *vaddr;
1308
1309 if (cache->page == page) {
1310 vaddr = unmask_page(cache->vaddr);
1311 } else {
1312 vaddr = NULL;
1313 if ((cache->vaddr & KMAP) == 0)
b5cfe6f7 1314 vaddr = reloc_iomap(vma, eb, page);
ad5d95e4 1315 if (!vaddr)
b5cfe6f7 1316 vaddr = reloc_kmap(vma->obj, cache, page);
ad5d95e4
DA
1317 }
1318
1319 return vaddr;
1320}
1321
1322static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1323{
1324 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1325 if (flushes & CLFLUSH_BEFORE) {
1326 clflushopt(addr);
1327 mb();
1328 }
1329
1330 *addr = value;
1331
1332 /*
1333 * Writes to the same cacheline are serialised by the CPU
1334 * (including clflush). On the write path, we only require
1335 * that it hits memory in an orderly fashion and place
1336 * mb barriers at the start and end of the relocation phase
1337 * to ensure ordering of clflush wrt to the system.
1338 */
1339 if (flushes & CLFLUSH_AFTER)
1340 clflushopt(addr);
1341 } else
1342 *addr = value;
1343}
1344
e3d29130 1345static u64
ad5d95e4 1346relocate_entry(struct i915_vma *vma,
e3d29130 1347 const struct drm_i915_gem_relocation_entry *reloc,
ad5d95e4 1348 struct i915_execbuffer *eb,
e3d29130
CW
1349 const struct i915_vma *target)
1350{
1351 u64 target_addr = relocation_target(reloc, target);
ad5d95e4 1352 u64 offset = reloc->offset;
ce13c78f
DV
1353 bool wide = eb->reloc_cache.use_64bit_reloc;
1354 void *vaddr;
ad5d95e4
DA
1355
1356repeat:
b5cfe6f7 1357 vaddr = reloc_vaddr(vma, eb,
ce13c78f
DV
1358 offset >> PAGE_SHIFT);
1359 if (IS_ERR(vaddr))
1360 return PTR_ERR(vaddr);
1361
1362 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1363 clflush_write32(vaddr + offset_in_page(offset),
1364 lower_32_bits(target_addr),
1365 eb->reloc_cache.vaddr);
1366
1367 if (wide) {
1368 offset += sizeof(u32);
1369 target_addr >>= 32;
1370 wide = false;
1371 goto repeat;
ad5d95e4 1372 }
edf4427b 1373
2889caa9 1374 return target->node.start | UPDATE;
edf4427b 1375}
edf4427b 1376
2889caa9
CW
1377static u64
1378eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1379 struct eb_vma *ev,
2889caa9 1380 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1381{
baa89ba3 1382 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1383 struct eb_vma *target;
2889caa9 1384 int err;
54cf91dc 1385
67731b87 1386 /* we've already hold a reference to all valid objects */
507d977f
CW
1387 target = eb_get_vma(eb, reloc->target_handle);
1388 if (unlikely(!target))
54cf91dc 1389 return -ENOENT;
e844b990 1390
54cf91dc 1391 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1392 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1393 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1394 "target %d offset %d "
54cf91dc 1395 "read %08x write %08x",
507d977f 1396 reloc->target_handle,
54cf91dc
CW
1397 (int) reloc->offset,
1398 reloc->read_domains,
1399 reloc->write_domain);
8b78f0e5 1400 return -EINVAL;
54cf91dc 1401 }
4ca4a250
DV
1402 if (unlikely((reloc->write_domain | reloc->read_domains)
1403 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1404 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1405 "target %d offset %d "
54cf91dc 1406 "read %08x write %08x",
507d977f 1407 reloc->target_handle,
54cf91dc
CW
1408 (int) reloc->offset,
1409 reloc->read_domains,
1410 reloc->write_domain);
8b78f0e5 1411 return -EINVAL;
54cf91dc 1412 }
54cf91dc 1413
2889caa9 1414 if (reloc->write_domain) {
7d6236bb 1415 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1416
2889caa9
CW
1417 /*
1418 * Sandybridge PPGTT errata: We need a global gtt mapping
1419 * for MI and pipe_control writes because the gpu doesn't
1420 * properly redirect them through the ppgtt for non_secure
1421 * batchbuffers.
1422 */
1423 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
c2ea703d
TH
1424 GRAPHICS_VER(eb->i915) == 6 &&
1425 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1426 struct i915_vma *vma = target->vma;
1427
1428 reloc_cache_unmap(&eb->reloc_cache);
1429 mutex_lock(&vma->vm->mutex);
7d6236bb
CW
1430 err = i915_vma_bind(target->vma,
1431 target->vma->obj->cache_level,
e1a4bbb6 1432 PIN_GLOBAL, NULL, NULL);
c2ea703d
TH
1433 mutex_unlock(&vma->vm->mutex);
1434 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
ea97c4ca 1435 if (err)
2889caa9
CW
1436 return err;
1437 }
507d977f 1438 }
54cf91dc 1439
2889caa9
CW
1440 /*
1441 * If the relocation already has the right value in it, no
54cf91dc
CW
1442 * more work needs to be done.
1443 */
ad5d95e4
DA
1444 if (!DBG_FORCE_RELOC &&
1445 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1446 return 0;
54cf91dc
CW
1447
1448 /* Check that the relocation address is valid... */
3c94ceee 1449 if (unlikely(reloc->offset >
7d6236bb 1450 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1451 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1452 "target %d offset %d size %d.\n",
1453 reloc->target_handle,
1454 (int)reloc->offset,
7d6236bb 1455 (int)ev->vma->size);
8b78f0e5 1456 return -EINVAL;
54cf91dc 1457 }
b8f7ab17 1458 if (unlikely(reloc->offset & 3)) {
baa89ba3 1459 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1460 "target %d offset %d.\n",
1461 reloc->target_handle,
1462 (int)reloc->offset);
8b78f0e5 1463 return -EINVAL;
54cf91dc
CW
1464 }
1465
071750e5
CW
1466 /*
1467 * If we write into the object, we need to force the synchronisation
1468 * barrier, either with an asynchronous clflush or if we executed the
1469 * patching using the GPU (though that should be serialised by the
1470 * timeline). To be completely sure, and since we are required to
1471 * do relocations we are already stalling, disable the user's opt
0519bcb1 1472 * out of our synchronisation.
071750e5 1473 */
7d6236bb 1474 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1475
54cf91dc 1476 /* and update the user's relocation entry */
ad5d95e4 1477 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1478}
1479
7d6236bb 1480static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1481{
1d83f442 1482#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1483 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1484 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1485 struct drm_i915_gem_relocation_entry __user *urelocs =
1486 u64_to_user_ptr(entry->relocs_ptr);
1487 unsigned long remain = entry->relocation_count;
54cf91dc 1488
e94f7856 1489 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1490 return -EINVAL;
ebc0808f 1491
2889caa9
CW
1492 /*
1493 * We must check that the entire relocation array is safe
1494 * to read. However, if the array is not writable the user loses
1495 * the updated relocation values.
1496 */
e94f7856 1497 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1498 return -EFAULT;
1499
1500 do {
1501 struct drm_i915_gem_relocation_entry *r = stack;
1502 unsigned int count =
e94f7856 1503 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1504 unsigned int copied;
1d83f442 1505
2889caa9
CW
1506 /*
1507 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1508 * whilst holding the struct mutex lest the user pass in the
1509 * relocations contained within a mmaped bo. For in such a case
1510 * we, the page fault handler would call i915_gem_fault() and
1511 * we would try to acquire the struct mutex again. Obviously
1512 * this is bad and so lockdep complains vehemently.
1513 */
fd1500fc
ML
1514 pagefault_disable();
1515 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1516 pagefault_enable();
ad5d95e4
DA
1517 if (unlikely(copied)) {
1518 remain = -EFAULT;
1519 goto out;
1520 }
54cf91dc 1521
2889caa9 1522 remain -= count;
1d83f442 1523 do {
7d6236bb 1524 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1525
2889caa9
CW
1526 if (likely(offset == 0)) {
1527 } else if ((s64)offset < 0) {
ad5d95e4
DA
1528 remain = (int)offset;
1529 goto out;
2889caa9
CW
1530 } else {
1531 /*
1532 * Note that reporting an error now
1533 * leaves everything in an inconsistent
1534 * state as we have *already* changed
1535 * the relocation value inside the
1536 * object. As we have not changed the
1537 * reloc.presumed_offset or will not
1538 * change the execobject.offset, on the
1539 * call we may not rewrite the value
1540 * inside the object, leaving it
1541 * dangling and causing a GPU hang. Unless
1542 * userspace dynamically rebuilds the
1543 * relocations on each execbuf rather than
1544 * presume a static tree.
1545 *
1546 * We did previously check if the relocations
1547 * were writable (access_ok), an error now
1548 * would be a strange race with mprotect,
1549 * having already demonstrated that we
1550 * can read from this userspace address.
1551 */
1552 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1553 __put_user(offset,
1554 &urelocs[r - stack].presumed_offset);
1d83f442 1555 }
2889caa9
CW
1556 } while (r++, --count);
1557 urelocs += ARRAY_SIZE(stack);
1558 } while (remain);
ad5d95e4 1559out:
c43ce123 1560 reloc_cache_reset(&eb->reloc_cache, eb);
ad5d95e4 1561 return remain;
54cf91dc
CW
1562}
1563
fd1500fc
ML
1564static int
1565eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1566{
fd1500fc
ML
1567 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1568 struct drm_i915_gem_relocation_entry *relocs =
1569 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1570 unsigned int i;
003d8b91
CW
1571 int err;
1572
fd1500fc
ML
1573 for (i = 0; i < entry->relocation_count; i++) {
1574 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
003d8b91 1575
fd1500fc
ML
1576 if ((s64)offset < 0) {
1577 err = (int)offset;
1578 goto err;
1579 }
ef398881 1580 }
fd1500fc
ML
1581 err = 0;
1582err:
c43ce123 1583 reloc_cache_reset(&eb->reloc_cache, eb);
fd1500fc
ML
1584 return err;
1585}
2889caa9 1586
fd1500fc
ML
1587static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1588{
1589 const char __user *addr, *end;
1590 unsigned long size;
1591 char __maybe_unused c;
2889caa9 1592
fd1500fc
ML
1593 size = entry->relocation_count;
1594 if (size == 0)
1595 return 0;
0e97fbb0 1596
fd1500fc
ML
1597 if (size > N_RELOC(ULONG_MAX))
1598 return -EINVAL;
2889caa9 1599
fd1500fc
ML
1600 addr = u64_to_user_ptr(entry->relocs_ptr);
1601 size *= sizeof(struct drm_i915_gem_relocation_entry);
1602 if (!access_ok(addr, size))
1603 return -EFAULT;
1604
1605 end = addr + size;
1606 for (; addr < end; addr += PAGE_SIZE) {
1607 int err = __get_user(c, addr);
1608 if (err)
1609 return err;
1610 }
1611 return __get_user(c, end - 1);
2889caa9
CW
1612}
1613
fd1500fc 1614static int eb_copy_relocations(const struct i915_execbuffer *eb)
2889caa9 1615{
fd1500fc 1616 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1617 const unsigned int count = eb->buffer_count;
1618 unsigned int i;
fd1500fc 1619 int err;
54cf91dc 1620
2889caa9 1621 for (i = 0; i < count; i++) {
fd1500fc
ML
1622 const unsigned int nreloc = eb->exec[i].relocation_count;
1623 struct drm_i915_gem_relocation_entry __user *urelocs;
1624 unsigned long size;
1625 unsigned long copied;
6951e589 1626
fd1500fc
ML
1627 if (nreloc == 0)
1628 continue;
6951e589 1629
fd1500fc
ML
1630 err = check_relocations(&eb->exec[i]);
1631 if (err)
1632 goto err;
6951e589 1633
fd1500fc
ML
1634 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1635 size = nreloc * sizeof(*relocs);
6951e589 1636
fd1500fc
ML
1637 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1638 if (!relocs) {
1639 err = -ENOMEM;
1640 goto err;
6951e589 1641 }
fd1500fc
ML
1642
1643 /* copy_from_user is limited to < 4GiB */
1644 copied = 0;
1645 do {
1646 unsigned int len =
1647 min_t(u64, BIT_ULL(31), size - copied);
1648
1649 if (__copy_from_user((char *)relocs + copied,
1650 (char __user *)urelocs + copied,
1651 len))
1652 goto end;
1653
1654 copied += len;
1655 } while (copied < size);
1656
1657 /*
1658 * As we do not update the known relocation offsets after
1659 * relocating (due to the complexities in lock handling),
1660 * we need to mark them as invalid now so that we force the
1661 * relocation processing next time. Just in case the target
1662 * object is evicted and then rebound into its old
1663 * presumed_offset before the next execbuffer - if that
1664 * happened we would make the mistake of assuming that the
1665 * relocations were valid.
1666 */
1667 if (!user_access_begin(urelocs, size))
1668 goto end;
1669
1670 for (copied = 0; copied < nreloc; copied++)
1671 unsafe_put_user(-1,
1672 &urelocs[copied].presumed_offset,
1673 end_user);
1674 user_access_end();
1675
1676 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1677 }
1678
1679 return 0;
1680
1681end_user:
1682 user_access_end();
1683end:
1684 kvfree(relocs);
1685 err = -EFAULT;
1686err:
1687 while (i--) {
1688 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1689 if (eb->exec[i].relocation_count)
1690 kvfree(relocs);
1691 }
1692 return err;
1693}
1694
1695static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1696{
1697 const unsigned int count = eb->buffer_count;
1698 unsigned int i;
1699
1700 for (i = 0; i < count; i++) {
1701 int err;
1702
1703 err = check_relocations(&eb->exec[i]);
1704 if (err)
1705 return err;
1706 }
1707
1708 return 0;
1709}
1710
ed29c269
ML
1711static int eb_reinit_userptr(struct i915_execbuffer *eb)
1712{
1713 const unsigned int count = eb->buffer_count;
1714 unsigned int i;
1715 int ret;
1716
1717 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1718 return 0;
1719
1720 for (i = 0; i < count; i++) {
1721 struct eb_vma *ev = &eb->vma[i];
1722
1723 if (!i915_gem_object_is_userptr(ev->vma->obj))
1724 continue;
1725
1726 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1727 if (ret)
1728 return ret;
1729
1730 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1731 }
1732
1733 return 0;
1734}
1735
544460c3 1736static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
fd1500fc
ML
1737{
1738 bool have_copy = false;
1739 struct eb_vma *ev;
1740 int err = 0;
1741
1742repeat:
1743 if (signal_pending(current)) {
1744 err = -ERESTARTSYS;
1745 goto out;
6951e589 1746 }
fd1500fc 1747
c43ce123 1748 /* We may process another execbuffer during the unlock... */
b4b9731b 1749 eb_release_vmas(eb, false);
c43ce123
ML
1750 i915_gem_ww_ctx_fini(&eb->ww);
1751
fd1500fc
ML
1752 /*
1753 * We take 3 passes through the slowpatch.
1754 *
1755 * 1 - we try to just prefault all the user relocation entries and
1756 * then attempt to reuse the atomic pagefault disabled fast path again.
1757 *
1758 * 2 - we copy the user entries to a local buffer here outside of the
1759 * local and allow ourselves to wait upon any rendering before
1760 * relocations
1761 *
1762 * 3 - we already have a local copy of the relocation entries, but
1763 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1764 */
1765 if (!err) {
1766 err = eb_prefault_relocations(eb);
1767 } else if (!have_copy) {
1768 err = eb_copy_relocations(eb);
1769 have_copy = err == 0;
1770 } else {
1771 cond_resched();
1772 err = 0;
1773 }
1774
2bf541ff 1775 if (!err)
ed29c269 1776 err = eb_reinit_userptr(eb);
fd1500fc 1777
c43ce123 1778 i915_gem_ww_ctx_init(&eb->ww, true);
fd1500fc
ML
1779 if (err)
1780 goto out;
1781
c43ce123
ML
1782 /* reacquire the objects */
1783repeat_validate:
544460c3
MB
1784 err = eb_pin_engine(eb, false);
1785 if (err)
2bf541ff 1786 goto err;
2bf541ff 1787
c43ce123 1788 err = eb_validate_vmas(eb);
fd1500fc 1789 if (err)
c43ce123
ML
1790 goto err;
1791
544460c3 1792 GEM_BUG_ON(!eb->batches[0]);
fd1500fc
ML
1793
1794 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1795 if (!have_copy) {
fd1500fc 1796 err = eb_relocate_vma(eb, ev);
fd1500fc
ML
1797 if (err)
1798 break;
1799 } else {
1800 err = eb_relocate_vma_slow(eb, ev);
1801 if (err)
1802 break;
1803 }
1804 }
1805
c43ce123
ML
1806 if (err == -EDEADLK)
1807 goto err;
1808
fd1500fc
ML
1809 if (err && !have_copy)
1810 goto repeat;
1811
1812 if (err)
1813 goto err;
1814
8e4ba491
ML
1815 /* as last step, parse the command buffer */
1816 err = eb_parse(eb);
1817 if (err)
1818 goto err;
1819
fd1500fc
ML
1820 /*
1821 * Leave the user relocations as are, this is the painfully slow path,
1822 * and we want to avoid the complication of dropping the lock whilst
1823 * having buffers reserved in the aperture and so causing spurious
1824 * ENOSPC for random operations.
1825 */
1826
1827err:
c43ce123 1828 if (err == -EDEADLK) {
b4b9731b 1829 eb_release_vmas(eb, false);
c43ce123
ML
1830 err = i915_gem_ww_ctx_backoff(&eb->ww);
1831 if (!err)
1832 goto repeat_validate;
1833 }
1834
fd1500fc
ML
1835 if (err == -EAGAIN)
1836 goto repeat;
1837
1838out:
1839 if (have_copy) {
1840 const unsigned int count = eb->buffer_count;
1841 unsigned int i;
1842
1843 for (i = 0; i < count; i++) {
1844 const struct drm_i915_gem_exec_object2 *entry =
1845 &eb->exec[i];
1846 struct drm_i915_gem_relocation_entry *relocs;
1847
1848 if (!entry->relocation_count)
1849 continue;
1850
1851 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1852 kvfree(relocs);
1853 }
1854 }
1855
1856 return err;
1857}
1858
8e4ba491 1859static int eb_relocate_parse(struct i915_execbuffer *eb)
54cf91dc 1860{
003d8b91 1861 int err;
2bf541ff 1862 bool throttle = true;
003d8b91 1863
c43ce123 1864retry:
544460c3
MB
1865 err = eb_pin_engine(eb, throttle);
1866 if (err) {
2bf541ff
ML
1867 if (err != -EDEADLK)
1868 return err;
1869
1870 goto err;
1871 }
1872
2bf541ff
ML
1873 /* only throttle once, even if we didn't need to throttle */
1874 throttle = false;
1875
c43ce123
ML
1876 err = eb_validate_vmas(eb);
1877 if (err == -EAGAIN)
1878 goto slow;
1879 else if (err)
1880 goto err;
2889caa9
CW
1881
1882 /* The objects are in their final locations, apply the relocations. */
1883 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 1884 struct eb_vma *ev;
2889caa9 1885
7d6236bb 1886 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
1887 err = eb_relocate_vma(eb, ev);
1888 if (err)
fd1500fc 1889 break;
2889caa9 1890 }
fd1500fc 1891
c43ce123
ML
1892 if (err == -EDEADLK)
1893 goto err;
1894 else if (err)
1895 goto slow;
1896 }
1897
1898 if (!err)
1899 err = eb_parse(eb);
1900
1901err:
1902 if (err == -EDEADLK) {
b4b9731b 1903 eb_release_vmas(eb, false);
c43ce123
ML
1904 err = i915_gem_ww_ctx_backoff(&eb->ww);
1905 if (!err)
1906 goto retry;
2889caa9
CW
1907 }
1908
c43ce123
ML
1909 return err;
1910
1911slow:
544460c3 1912 err = eb_relocate_parse_slow(eb);
c43ce123
ML
1913 if (err)
1914 /*
1915 * If the user expects the execobject.offset and
1916 * reloc.presumed_offset to be an exact match,
1917 * as for using NO_RELOC, then we cannot update
1918 * the execobject.offset until we have completed
1919 * relocation.
1920 */
1921 eb->args->flags &= ~__EXEC_HAS_RELOC;
1922
1923 return err;
2889caa9
CW
1924}
1925
544460c3
MB
1926/*
1927 * Using two helper loops for the order of which requests / batches are created
1928 * and added the to backend. Requests are created in order from the parent to
1929 * the last child. Requests are added in the reverse order, from the last child
1930 * to parent. This is done for locking reasons as the timeline lock is acquired
1931 * during request creation and released when the request is added to the
1932 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1933 * the ordering.
1934 */
1935#define for_each_batch_create_order(_eb, _i) \
1936 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1937#define for_each_batch_add_order(_eb, _i) \
1938 BUILD_BUG_ON(!typecheck(int, _i)); \
1939 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1940
1941static struct i915_request *
1942eb_find_first_request_added(struct i915_execbuffer *eb)
1943{
1944 int i;
1945
1946 for_each_batch_add_order(eb, i)
1947 if (eb->requests[i])
1948 return eb->requests[i];
1949
1950 GEM_BUG_ON("Request not found");
1951
1952 return NULL;
1953}
1954
ff20afc4
TH
1955#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1956
1957/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1958static void eb_capture_stage(struct i915_execbuffer *eb)
2889caa9
CW
1959{
1960 const unsigned int count = eb->buffer_count;
ff20afc4 1961 unsigned int i = count, j;
6951e589
CW
1962
1963 while (i--) {
7d6236bb
CW
1964 struct eb_vma *ev = &eb->vma[i];
1965 struct i915_vma *vma = ev->vma;
1966 unsigned int flags = ev->flags;
03ade511 1967
ff20afc4
TH
1968 if (!(flags & EXEC_OBJECT_CAPTURE))
1969 continue;
6951e589 1970
ff20afc4 1971 for_each_batch_create_order(eb, j) {
e61e0f51 1972 struct i915_capture_list *capture;
b0fd47ad 1973
ff20afc4
TH
1974 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1975 if (!capture)
1976 continue;
544460c3 1977
ff20afc4 1978 capture->next = eb->capture_lists[j];
60dc43d1 1979 capture->vma_res = i915_vma_resource_get(vma->resource);
ff20afc4
TH
1980 eb->capture_lists[j] = capture;
1981 }
ff20afc4
TH
1982 }
1983}
1984
1985/* Commit once we're in the critical path */
1986static void eb_capture_commit(struct i915_execbuffer *eb)
1987{
1988 unsigned int j;
1989
1990 for_each_batch_create_order(eb, j) {
1991 struct i915_request *rq = eb->requests[j];
1992
1993 if (!rq)
1994 break;
1995
1996 rq->capture_list = eb->capture_lists[j];
1997 eb->capture_lists[j] = NULL;
1998 }
1999}
2000
2001/*
2002 * Release anything that didn't get committed due to errors.
2003 * The capture_list will otherwise be freed at request retire.
2004 */
2005static void eb_capture_release(struct i915_execbuffer *eb)
2006{
2007 unsigned int j;
2008
2009 for_each_batch_create_order(eb, j) {
2010 if (eb->capture_lists[j]) {
2011 i915_request_free_capture_list(eb->capture_lists[j]);
2012 eb->capture_lists[j] = NULL;
b0fd47ad 2013 }
ff20afc4
TH
2014 }
2015}
2016
2017static void eb_capture_list_clear(struct i915_execbuffer *eb)
2018{
2019 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2020}
2021
2022#else
2023
2024static void eb_capture_stage(struct i915_execbuffer *eb)
2025{
2026}
2027
2028static void eb_capture_commit(struct i915_execbuffer *eb)
2029{
2030}
2031
2032static void eb_capture_release(struct i915_execbuffer *eb)
2033{
2034}
2035
2036static void eb_capture_list_clear(struct i915_execbuffer *eb)
2037{
2038}
2039
2040#endif
2041
2042static int eb_move_to_gpu(struct i915_execbuffer *eb)
2043{
2044 const unsigned int count = eb->buffer_count;
2045 unsigned int i = count;
2046 int err = 0, j;
2047
2048 while (i--) {
2049 struct eb_vma *ev = &eb->vma[i];
2050 struct i915_vma *vma = ev->vma;
2051 unsigned int flags = ev->flags;
2052 struct drm_i915_gem_object *obj = vma->obj;
2053
2054 assert_vma_held(vma);
b0fd47ad 2055
b8f55be6
CW
2056 /*
2057 * If the GPU is not _reading_ through the CPU cache, we need
2058 * to make sure that any writes (both previous GPU writes from
2059 * before a change in snooping levels and normal CPU writes)
2060 * caught in that cache are flushed to main memory.
2061 *
2062 * We want to say
2063 * obj->cache_dirty &&
2064 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2065 * but gcc's optimiser doesn't handle that as well and emits
2066 * two jumps instead of one. Maybe one day...
df94fd05
MA
2067 *
2068 * FIXME: There is also sync flushing in set_pages(), which
2069 * serves a different purpose(some of the time at least).
2070 *
2071 * We should consider:
2072 *
2073 * 1. Rip out the async flush code.
2074 *
2075 * 2. Or make the sync flushing use the async clflush path
2076 * using mandatory fences underneath. Currently the below
2077 * async flush happens after we bind the object.
b8f55be6
CW
2078 */
2079 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 2080 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 2081 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
2082 }
2083
544460c3 2084 /* We only need to await on the first request */
6951e589
CW
2085 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2086 err = i915_request_await_object
544460c3
MB
2087 (eb_find_first_request_added(eb), obj,
2088 flags & EXEC_OBJECT_WRITE);
6951e589 2089 }
2889caa9 2090
544460c3
MB
2091 for_each_batch_add_order(eb, j) {
2092 if (err)
2093 break;
2094 if (!eb->requests[j])
2095 continue;
2096
2097 err = _i915_vma_move_to_active(vma, eb->requests[j],
2098 j ? NULL :
2099 eb->composite_fence ?
2100 eb->composite_fence :
2101 &eb->requests[j]->fence,
2102 flags | __EXEC_OBJECT_NO_RESERVE);
2103 }
c59a333f 2104 }
0f1dd022 2105
ed29c269
ML
2106#ifdef CONFIG_MMU_NOTIFIER
2107 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
b4b9731b 2108 read_lock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2109
2110 /*
2111 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2112 * could not have been set
2113 */
2114 for (i = 0; i < count; i++) {
2115 struct eb_vma *ev = &eb->vma[i];
2116 struct drm_i915_gem_object *obj = ev->vma->obj;
2117
2118 if (!i915_gem_object_is_userptr(obj))
2119 continue;
2120
2121 err = i915_gem_object_userptr_submit_done(obj);
2122 if (err)
2123 break;
2124 }
2125
b4b9731b 2126 read_unlock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2127 }
2128#endif
2129
6951e589
CW
2130 if (unlikely(err))
2131 goto err_skip;
2132
dcd79934 2133 /* Unconditionally flush any chipset caches (for streaming writes). */
544460c3 2134 intel_gt_chipset_flush(eb->gt);
ff20afc4
TH
2135 eb_capture_commit(eb);
2136
2113184c 2137 return 0;
6951e589
CW
2138
2139err_skip:
544460c3
MB
2140 for_each_batch_create_order(eb, j) {
2141 if (!eb->requests[j])
2142 break;
2143
2144 i915_request_set_error_once(eb->requests[j], err);
2145 }
6951e589 2146 return err;
54cf91dc
CW
2147}
2148
00aff3f6 2149static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 2150{
650bc635 2151 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 2152 return -EINVAL;
ed5982e6 2153
2f5945bc 2154 /* Kernel clipping was a DRI1 misfeature */
cda9edd0
LL
2155 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2156 I915_EXEC_USE_EXTENSIONS))) {
cf6e7bac 2157 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 2158 return -EINVAL;
cf6e7bac 2159 }
2f5945bc
CW
2160
2161 if (exec->DR4 == 0xffffffff) {
2162 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2163 exec->DR4 = 0;
2164 }
2165 if (exec->DR1 || exec->DR4)
00aff3f6 2166 return -EINVAL;
2f5945bc
CW
2167
2168 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 2169 return -EINVAL;
2f5945bc 2170
00aff3f6 2171 return 0;
54cf91dc
CW
2172}
2173
e61e0f51 2174static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 2175{
73dec95e
TU
2176 u32 *cs;
2177 int i;
ae662d31 2178
40e1956e 2179 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
5a833995 2180 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
2181 return -EINVAL;
2182 }
ae662d31 2183
e61e0f51 2184 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
2185 if (IS_ERR(cs))
2186 return PTR_ERR(cs);
ae662d31 2187
2889caa9 2188 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2189 for (i = 0; i < 4; i++) {
73dec95e
TU
2190 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2191 *cs++ = 0;
ae662d31 2192 }
2889caa9 2193 *cs++ = MI_NOOP;
e61e0f51 2194 intel_ring_advance(rq, cs);
ae662d31
EA
2195
2196 return 0;
2197}
2198
4f7af194 2199static struct i915_vma *
47b08693
ML
2200shadow_batch_pin(struct i915_execbuffer *eb,
2201 struct drm_i915_gem_object *obj,
32d94048
CW
2202 struct i915_address_space *vm,
2203 unsigned int flags)
4f7af194 2204{
b291ce0a 2205 struct i915_vma *vma;
b291ce0a 2206 int err;
4f7af194 2207
b291ce0a
CW
2208 vma = i915_vma_instance(obj, vm, NULL);
2209 if (IS_ERR(vma))
2210 return vma;
2211
b5cfe6f7 2212 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
b291ce0a
CW
2213 if (err)
2214 return ERR_PTR(err);
2215
2216 return vma;
4f7af194
JB
2217}
2218
47b08693
ML
2219static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2220{
2221 /*
2222 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2223 * batch" bit. Hence we need to pin secure batches into the global gtt.
2224 * hsw should have this fixed, but bdw mucks it up again. */
2225 if (eb->batch_flags & I915_DISPATCH_SECURE)
b5cfe6f7 2226 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
47b08693
ML
2227
2228 return NULL;
2229}
2230
51696691 2231static int eb_parse(struct i915_execbuffer *eb)
71745376 2232{
baa89ba3 2233 struct drm_i915_private *i915 = eb->i915;
c43ce123 2234 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
47b08693 2235 struct i915_vma *shadow, *trampoline, *batch;
d5e87821 2236 unsigned long len;
2889caa9 2237 int err;
71745376 2238
47b08693 2239 if (!eb_use_cmdparser(eb)) {
544460c3 2240 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
47b08693
ML
2241 if (IS_ERR(batch))
2242 return PTR_ERR(batch);
2243
2244 goto secure_batch;
2245 }
51696691 2246
544460c3
MB
2247 if (intel_context_is_parallel(eb->context))
2248 return -EINVAL;
2249
2250 len = eb->batch_len[0];
32d94048
CW
2251 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2252 /*
2253 * ppGTT backed shadow buffers must be mapped RO, to prevent
2254 * post-scan tampering
2255 */
2256 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2257 drm_dbg(&i915->drm,
2258 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2259 return -EINVAL;
2260 }
2261 } else {
2262 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2263 }
544460c3 2264 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
d5e87821 2265 return -EINVAL;
32d94048 2266
c43ce123 2267 if (!pool) {
544460c3 2268 pool = intel_gt_get_buffer_pool(eb->gt, len,
8f47c8c3 2269 I915_MAP_WB);
c43ce123
ML
2270 if (IS_ERR(pool))
2271 return PTR_ERR(pool);
2272 eb->batch_pool = pool;
2273 }
71745376 2274
c43ce123
ML
2275 err = i915_gem_object_lock(pool->obj, &eb->ww);
2276 if (err)
b5cfe6f7 2277 return err;
71745376 2278
47b08693 2279 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
b5cfe6f7
ML
2280 if (IS_ERR(shadow))
2281 return PTR_ERR(shadow);
2282
c9398775 2283 intel_gt_buffer_pool_mark_used(pool);
32d94048 2284 i915_gem_object_set_readonly(shadow->obj);
57a78ca4 2285 shadow->private = pool;
32d94048
CW
2286
2287 trampoline = NULL;
2288 if (CMDPARSER_USES_GGTT(eb->i915)) {
2289 trampoline = shadow;
2290
47b08693 2291 shadow = shadow_batch_pin(eb, pool->obj,
544460c3 2292 &eb->gt->ggtt->vm,
32d94048 2293 PIN_GLOBAL);
b5cfe6f7
ML
2294 if (IS_ERR(shadow))
2295 return PTR_ERR(shadow);
2296
57a78ca4 2297 shadow->private = pool;
32d94048
CW
2298
2299 eb->batch_flags |= I915_DISPATCH_SECURE;
2300 }
f8c08d8f 2301
47b08693 2302 batch = eb_dispatch_secure(eb, shadow);
b5cfe6f7
ML
2303 if (IS_ERR(batch))
2304 return PTR_ERR(batch);
47b08693 2305
95c3d275 2306 err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
93b71330 2307 if (err)
b5cfe6f7 2308 return err;
93b71330 2309
544460c3
MB
2310 err = intel_engine_cmd_parser(eb->context->engine,
2311 eb->batches[0]->vma,
93b71330 2312 eb->batch_start_offset,
544460c3 2313 eb->batch_len[0],
93b71330 2314 shadow, trampoline);
32d94048 2315 if (err)
b5cfe6f7 2316 return err;
71745376 2317
544460c3
MB
2318 eb->batches[0] = &eb->vma[eb->buffer_count++];
2319 eb->batches[0]->vma = i915_vma_get(shadow);
2320 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
71745376 2321
32d94048 2322 eb->trampoline = trampoline;
4f7af194 2323 eb->batch_start_offset = 0;
4f7af194 2324
47b08693
ML
2325secure_batch:
2326 if (batch) {
544460c3
MB
2327 if (intel_context_is_parallel(eb->context))
2328 return -EINVAL;
2329
2330 eb->batches[0] = &eb->vma[eb->buffer_count++];
2331 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2332 eb->batches[0]->vma = i915_vma_get(batch);
47b08693 2333 }
51696691 2334 return 0;
71745376 2335}
5c6c6003 2336
544460c3
MB
2337static int eb_request_submit(struct i915_execbuffer *eb,
2338 struct i915_request *rq,
2339 struct i915_vma *batch,
2340 u64 batch_len)
78382593 2341{
2889caa9 2342 int err;
78382593 2343
544460c3
MB
2344 if (intel_context_nopreempt(rq->context))
2345 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
78382593 2346
650bc635 2347 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
544460c3 2348 err = i915_reset_gen7_sol_offsets(rq);
2889caa9
CW
2349 if (err)
2350 return err;
78382593
OM
2351 }
2352
85474441
CW
2353 /*
2354 * After we completed waiting for other engines (using HW semaphores)
2355 * then we can signal that this request/batch is ready to run. This
2356 * allows us to determine if the batch is still waiting on the GPU
2357 * or actually running by checking the breadcrumb.
2358 */
544460c3
MB
2359 if (rq->context->engine->emit_init_breadcrumb) {
2360 err = rq->context->engine->emit_init_breadcrumb(rq);
85474441
CW
2361 if (err)
2362 return err;
2363 }
2364
544460c3
MB
2365 err = rq->context->engine->emit_bb_start(rq,
2366 batch->node.start +
2367 eb->batch_start_offset,
2368 batch_len,
2369 eb->batch_flags);
2889caa9
CW
2370 if (err)
2371 return err;
78382593 2372
32d94048 2373 if (eb->trampoline) {
544460c3 2374 GEM_BUG_ON(intel_context_is_parallel(rq->context));
32d94048 2375 GEM_BUG_ON(eb->batch_start_offset);
544460c3
MB
2376 err = rq->context->engine->emit_bb_start(rq,
2377 eb->trampoline->node.start +
2378 batch_len, 0, 0);
32d94048
CW
2379 if (err)
2380 return err;
2381 }
2382
2f5945bc 2383 return 0;
78382593
OM
2384}
2385
544460c3
MB
2386static int eb_submit(struct i915_execbuffer *eb)
2387{
2388 unsigned int i;
2389 int err;
2390
2391 err = eb_move_to_gpu(eb);
2392
2393 for_each_batch_create_order(eb, i) {
2394 if (!eb->requests[i])
2395 break;
2396
2397 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2398 if (!err)
2399 err = eb_request_submit(eb, eb->requests[i],
2400 eb->batches[i]->vma,
2401 eb->batch_len[i]);
2402 }
2403
2404 return err;
2405}
2406
1a9c4db4 2407static int num_vcs_engines(struct drm_i915_private *i915)
d5b2a3a4 2408{
1a9c4db4 2409 return hweight_long(VDBOX_MASK(to_gt(i915)));
d5b2a3a4
CW
2410}
2411
204bcfef 2412/*
a8ebba75 2413 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2414 * The engine index is returned.
a8ebba75 2415 */
de1add36 2416static unsigned int
c80ff16e
CW
2417gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2418 struct drm_file *file)
a8ebba75 2419{
a8ebba75
ZY
2420 struct drm_i915_file_private *file_priv = file->driver_priv;
2421
de1add36 2422 /* Check whether the file_priv has already selected one ring. */
6f633402 2423 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2424 file_priv->bsd_engine =
2425 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2426
c80ff16e 2427 return file_priv->bsd_engine;
d23db88c
CW
2428}
2429
5e2a0419 2430static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2431 [I915_EXEC_DEFAULT] = RCS0,
2432 [I915_EXEC_RENDER] = RCS0,
2433 [I915_EXEC_BLT] = BCS0,
2434 [I915_EXEC_BSD] = VCS0,
2435 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2436};
2437
2bf541ff 2438static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
e5dadff4
CW
2439{
2440 struct intel_ring *ring = ce->ring;
2441 struct intel_timeline *tl = ce->timeline;
2442 struct i915_request *rq;
2443
2444 /*
2445 * Completely unscientific finger-in-the-air estimates for suitable
2446 * maximum user request size (to avoid blocking) and then backoff.
2447 */
2448 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2449 return NULL;
2450
2451 /*
2452 * Find a request that after waiting upon, there will be at least half
2453 * the ring available. The hysteresis allows us to compete for the
2454 * shared ring and should mean that we sleep less often prior to
2455 * claiming our resources, but not so long that the ring completely
2456 * drains before we can submit our next request.
2457 */
2458 list_for_each_entry(rq, &tl->requests, link) {
2459 if (rq->ring != ring)
2460 continue;
2461
2462 if (__intel_ring_space(rq->postfix,
2463 ring->emit, ring->size) > ring->size / 2)
2464 break;
2465 }
2466 if (&rq->link == &tl->requests)
2467 return NULL; /* weird, we will check again later for real */
2468
2469 return i915_request_get(rq);
2470}
2471
544460c3
MB
2472static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2473 bool throttle)
e5dadff4
CW
2474{
2475 struct intel_timeline *tl;
2bf541ff 2476 struct i915_request *rq = NULL;
8f2a1057 2477
a4e57f90
CW
2478 /*
2479 * Take a local wakeref for preparing to dispatch the execbuf as
2480 * we expect to access the hardware fairly frequently in the
2481 * process, and require the engine to be kept awake between accesses.
2482 * Upon dispatch, we acquire another prolonged wakeref that we hold
2483 * until the timeline is idle, which in turn releases the wakeref
2484 * taken on the engine, and the parent device.
2485 */
e5dadff4 2486 tl = intel_context_timeline_lock(ce);
544460c3
MB
2487 if (IS_ERR(tl))
2488 return PTR_ERR(tl);
a4e57f90
CW
2489
2490 intel_context_enter(ce);
2bf541ff
ML
2491 if (throttle)
2492 rq = eb_throttle(eb, ce);
e5dadff4
CW
2493 intel_context_timeline_unlock(tl);
2494
544460c3
MB
2495 if (rq) {
2496 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2497 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2498
2499 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2500 timeout) < 0) {
2501 i915_request_put(rq);
2502
cb935c46
MB
2503 /*
2504 * Error path, cannot use intel_context_timeline_lock as
2505 * that is user interruptable and this clean up step
2506 * must be done.
2507 */
2508 mutex_lock(&ce->timeline->mutex);
544460c3 2509 intel_context_exit(ce);
cb935c46 2510 mutex_unlock(&ce->timeline->mutex);
544460c3
MB
2511
2512 if (nonblock)
2513 return -EWOULDBLOCK;
2514 else
2515 return -EINTR;
2516 }
2517 i915_request_put(rq);
2518 }
2519
2520 return 0;
2521}
2522
2523static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2524{
2525 struct intel_context *ce = eb->context, *child;
2526 int err;
2527 int i = 0, j = 0;
2528
2529 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2530
2531 if (unlikely(intel_context_is_banned(ce)))
2532 return -EIO;
2533
2534 /*
2535 * Pinning the contexts may generate requests in order to acquire
2536 * GGTT space, so do this first before we reserve a seqno for
2537 * ourselves.
2538 */
2539 err = intel_context_pin_ww(ce, &eb->ww);
2540 if (err)
2541 return err;
2542 for_each_child(ce, child) {
2543 err = intel_context_pin_ww(child, &eb->ww);
2544 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2545 }
2546
2547 for_each_child(ce, child) {
2548 err = eb_pin_timeline(eb, child, throttle);
2549 if (err)
2550 goto unwind;
2551 ++i;
2552 }
2553 err = eb_pin_timeline(eb, ce, throttle);
2554 if (err)
2555 goto unwind;
2556
2bf541ff 2557 eb->args->flags |= __EXEC_ENGINE_PINNED;
544460c3
MB
2558 return 0;
2559
2560unwind:
2561 for_each_child(ce, child) {
2562 if (j++ < i) {
2563 mutex_lock(&child->timeline->mutex);
2564 intel_context_exit(child);
2565 mutex_unlock(&child->timeline->mutex);
2566 }
2567 }
2568 for_each_child(ce, child)
2569 intel_context_unpin(child);
2570 intel_context_unpin(ce);
2571 return err;
8f2a1057
CW
2572}
2573
e5dadff4 2574static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2575{
544460c3 2576 struct intel_context *ce = eb->context, *child;
a4e57f90 2577
2bf541ff
ML
2578 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2579 return;
2580
2581 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2582
544460c3
MB
2583 for_each_child(ce, child) {
2584 mutex_lock(&child->timeline->mutex);
2585 intel_context_exit(child);
2586 mutex_unlock(&child->timeline->mutex);
2587
2588 intel_context_unpin(child);
2589 }
2590
2591 mutex_lock(&ce->timeline->mutex);
a4e57f90 2592 intel_context_exit(ce);
544460c3 2593 mutex_unlock(&ce->timeline->mutex);
a4e57f90 2594
2850748e 2595 intel_context_unpin(ce);
8f2a1057 2596}
de1add36 2597
5e2a0419 2598static unsigned int
b49a7d51 2599eb_select_legacy_ring(struct i915_execbuffer *eb)
de1add36 2600{
8f2a1057 2601 struct drm_i915_private *i915 = eb->i915;
b49a7d51 2602 struct drm_i915_gem_execbuffer2 *args = eb->args;
de1add36 2603 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2604
5e2a0419
CW
2605 if (user_ring_id != I915_EXEC_BSD &&
2606 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2607 drm_dbg(&i915->drm,
2608 "execbuf with non bsd ring but with invalid "
2609 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2610 return -1;
de1add36
TU
2611 }
2612
d5b2a3a4 2613 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2614 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2615
2616 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
b49a7d51 2617 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
de1add36
TU
2618 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2619 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2620 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2621 bsd_idx--;
2622 } else {
baa89ba3
WK
2623 drm_dbg(&i915->drm,
2624 "execbuf with unknown bsd ring: %u\n",
2625 bsd_idx);
5e2a0419 2626 return -1;
de1add36
TU
2627 }
2628
5e2a0419 2629 return _VCS(bsd_idx);
de1add36
TU
2630 }
2631
5e2a0419 2632 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2633 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2634 user_ring_id);
5e2a0419 2635 return -1;
de1add36
TU
2636 }
2637
5e2a0419
CW
2638 return user_ring_map[user_ring_id];
2639}
2640
2641static int
2bf541ff 2642eb_select_engine(struct i915_execbuffer *eb)
5e2a0419 2643{
544460c3 2644 struct intel_context *ce, *child;
5e2a0419
CW
2645 unsigned int idx;
2646 int err;
2647
976b55f0 2648 if (i915_gem_context_user_engines(eb->gem_context))
b49a7d51 2649 idx = eb->args->flags & I915_EXEC_RING_MASK;
976b55f0 2650 else
b49a7d51 2651 idx = eb_select_legacy_ring(eb);
5e2a0419
CW
2652
2653 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2654 if (IS_ERR(ce))
2655 return PTR_ERR(ce);
2656
544460c3
MB
2657 if (intel_context_is_parallel(ce)) {
2658 if (eb->buffer_count < ce->parallel.number_children + 1) {
2659 intel_context_put(ce);
2660 return -EINVAL;
2661 }
2662 if (eb->batch_start_offset || eb->args->batch_len) {
2663 intel_context_put(ce);
2664 return -EINVAL;
2665 }
2666 }
2667 eb->num_batches = ce->parallel.number_children + 1;
2668
2669 for_each_child(ce, child)
2670 intel_context_get(child);
2bf541ff 2671 intel_gt_pm_get(ce->engine->gt);
5e2a0419 2672
2bf541ff
ML
2673 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2674 err = intel_context_alloc_state(ce);
2675 if (err)
2676 goto err;
2677 }
544460c3
MB
2678 for_each_child(ce, child) {
2679 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2680 err = intel_context_alloc_state(child);
2681 if (err)
2682 goto err;
2683 }
2684 }
2bf541ff
ML
2685
2686 /*
2687 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2688 * EIO if the GPU is already wedged.
2689 */
2690 err = intel_gt_terminally_wedged(ce->engine->gt);
2691 if (err)
2692 goto err;
2693
2694 eb->context = ce;
544460c3 2695 eb->gt = ce->engine->gt;
2bf541ff
ML
2696
2697 /*
2698 * Make sure engine pool stays alive even if we call intel_context_put
2699 * during ww handling. The pool is destroyed when last pm reference
2700 * is dropped, which breaks our -EDEADLK handling.
2701 */
2702 return err;
2703
2704err:
2705 intel_gt_pm_put(ce->engine->gt);
544460c3
MB
2706 for_each_child(ce, child)
2707 intel_context_put(child);
2bf541ff 2708 intel_context_put(ce);
5e2a0419 2709 return err;
de1add36
TU
2710}
2711
2bf541ff
ML
2712static void
2713eb_put_engine(struct i915_execbuffer *eb)
2714{
544460c3
MB
2715 struct intel_context *child;
2716
2717 intel_gt_pm_put(eb->gt);
2718 for_each_child(eb->context, child)
2719 intel_context_put(child);
2bf541ff
ML
2720 intel_context_put(eb->context);
2721}
2722
cf6e7bac 2723static void
13149e8b 2724__free_fence_array(struct eb_fence *fences, unsigned int n)
cf6e7bac 2725{
13149e8b 2726 while (n--) {
cda9edd0 2727 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
13149e8b 2728 dma_fence_put(fences[n].dma_fence);
440d0f12 2729 dma_fence_chain_free(fences[n].chain_fence);
13149e8b 2730 }
cf6e7bac
JE
2731 kvfree(fences);
2732}
2733
cda9edd0 2734static int
13149e8b
LL
2735add_timeline_fence_array(struct i915_execbuffer *eb,
2736 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
cf6e7bac 2737{
13149e8b
LL
2738 struct drm_i915_gem_exec_fence __user *user_fences;
2739 u64 __user *user_values;
2740 struct eb_fence *f;
2741 u64 nfences;
2742 int err = 0;
cf6e7bac 2743
13149e8b
LL
2744 nfences = timeline_fences->fence_count;
2745 if (!nfences)
cda9edd0 2746 return 0;
cf6e7bac 2747
d710fc16
CW
2748 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2749 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2750 if (nfences > min_t(unsigned long,
13149e8b
LL
2751 ULONG_MAX / sizeof(*user_fences),
2752 SIZE_MAX / sizeof(*f)) - eb->num_fences)
cda9edd0 2753 return -EINVAL;
cf6e7bac 2754
13149e8b
LL
2755 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2756 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2757 return -EFAULT;
2758
2759 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2760 if (!access_ok(user_values, nfences * sizeof(*user_values)))
cda9edd0 2761 return -EFAULT;
cf6e7bac 2762
13149e8b
LL
2763 f = krealloc(eb->fences,
2764 (eb->num_fences + nfences) * sizeof(*f),
2765 __GFP_NOWARN | GFP_KERNEL);
2766 if (!f)
cda9edd0 2767 return -ENOMEM;
cf6e7bac 2768
13149e8b
LL
2769 eb->fences = f;
2770 f += eb->num_fences;
2771
2772 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2773 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2774
2775 while (nfences--) {
2776 struct drm_i915_gem_exec_fence user_fence;
cf6e7bac 2777 struct drm_syncobj *syncobj;
13149e8b
LL
2778 struct dma_fence *fence = NULL;
2779 u64 point;
2780
2781 if (__copy_from_user(&user_fence,
2782 user_fences++,
2783 sizeof(user_fence)))
2784 return -EFAULT;
2785
2786 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2787 return -EINVAL;
2788
2789 if (__get_user(point, user_values++))
2790 return -EFAULT;
2791
2792 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2793 if (!syncobj) {
2794 DRM_DEBUG("Invalid syncobj handle provided\n");
2795 return -ENOENT;
2796 }
2797
2798 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac 2799
13149e8b
LL
2800 if (!fence && user_fence.flags &&
2801 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2802 DRM_DEBUG("Syncobj handle has no fence\n");
2803 drm_syncobj_put(syncobj);
2804 return -EINVAL;
cf6e7bac
JE
2805 }
2806
13149e8b
LL
2807 if (fence)
2808 err = dma_fence_chain_find_seqno(&fence, point);
2809
2810 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2811 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
da1ea128 2812 dma_fence_put(fence);
13149e8b
LL
2813 drm_syncobj_put(syncobj);
2814 return err;
2815 }
2816
2817 /*
2818 * A point might have been signaled already and
2819 * garbage collected from the timeline. In this case
2820 * just ignore the point and carry on.
2821 */
2822 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2823 drm_syncobj_put(syncobj);
2824 continue;
2825 }
2826
2827 /*
2828 * For timeline syncobjs we need to preallocate chains for
2829 * later signaling.
2830 */
2831 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2832 /*
2833 * Waiting and signaling the same point (when point !=
2834 * 0) would break the timeline.
2835 */
2836 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2837 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2838 dma_fence_put(fence);
2839 drm_syncobj_put(syncobj);
2840 return -EINVAL;
2841 }
2842
440d0f12 2843 f->chain_fence = dma_fence_chain_alloc();
13149e8b
LL
2844 if (!f->chain_fence) {
2845 drm_syncobj_put(syncobj);
2846 dma_fence_put(fence);
2847 return -ENOMEM;
2848 }
2849 } else {
2850 f->chain_fence = NULL;
ebcaa1ff
TU
2851 }
2852
13149e8b
LL
2853 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2854 f->dma_fence = fence;
2855 f->value = point;
2856 f++;
2857 eb->num_fences++;
2858 }
2859
2860 return 0;
2861}
2862
2863static int add_fence_array(struct i915_execbuffer *eb)
2864{
2865 struct drm_i915_gem_execbuffer2 *args = eb->args;
2866 struct drm_i915_gem_exec_fence __user *user;
2867 unsigned long num_fences = args->num_cliprects;
2868 struct eb_fence *f;
2869
2870 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2871 return 0;
2872
2873 if (!num_fences)
2874 return 0;
2875
2876 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2877 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2878 if (num_fences > min_t(unsigned long,
2879 ULONG_MAX / sizeof(*user),
2880 SIZE_MAX / sizeof(*f) - eb->num_fences))
2881 return -EINVAL;
2882
2883 user = u64_to_user_ptr(args->cliprects_ptr);
2884 if (!access_ok(user, num_fences * sizeof(*user)))
2885 return -EFAULT;
2886
2887 f = krealloc(eb->fences,
2888 (eb->num_fences + num_fences) * sizeof(*f),
2889 __GFP_NOWARN | GFP_KERNEL);
2890 if (!f)
2891 return -ENOMEM;
2892
2893 eb->fences = f;
2894 f += eb->num_fences;
2895 while (num_fences--) {
2896 struct drm_i915_gem_exec_fence user_fence;
2897 struct drm_syncobj *syncobj;
2898 struct dma_fence *fence = NULL;
2899
2900 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2901 return -EFAULT;
2902
2903 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2904 return -EINVAL;
2905
2906 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
cf6e7bac
JE
2907 if (!syncobj) {
2908 DRM_DEBUG("Invalid syncobj handle provided\n");
13149e8b
LL
2909 return -ENOENT;
2910 }
2911
2912 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2913 fence = drm_syncobj_fence_get(syncobj);
2914 if (!fence) {
2915 DRM_DEBUG("Syncobj handle has no fence\n");
2916 drm_syncobj_put(syncobj);
2917 return -EINVAL;
2918 }
cf6e7bac
JE
2919 }
2920
ebcaa1ff
TU
2921 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2922 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2923
13149e8b
LL
2924 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2925 f->dma_fence = fence;
2926 f->value = 0;
2927 f->chain_fence = NULL;
2928 f++;
2929 eb->num_fences++;
cf6e7bac
JE
2930 }
2931
cda9edd0 2932 return 0;
13149e8b 2933}
cf6e7bac 2934
13149e8b
LL
2935static void put_fence_array(struct eb_fence *fences, int num_fences)
2936{
2937 if (fences)
2938 __free_fence_array(fences, num_fences);
cf6e7bac
JE
2939}
2940
2941static int
544460c3
MB
2942await_fence_array(struct i915_execbuffer *eb,
2943 struct i915_request *rq)
cf6e7bac 2944{
cf6e7bac
JE
2945 unsigned int n;
2946 int err;
2947
13149e8b 2948 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac 2949 struct drm_syncobj *syncobj;
cf6e7bac
JE
2950 unsigned int flags;
2951
cda9edd0 2952 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac 2953
13149e8b
LL
2954 if (!eb->fences[n].dma_fence)
2955 continue;
cf6e7bac 2956
544460c3 2957 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
cf6e7bac
JE
2958 if (err < 0)
2959 return err;
2960 }
2961
2962 return 0;
2963}
2964
544460c3
MB
2965static void signal_fence_array(const struct i915_execbuffer *eb,
2966 struct dma_fence * const fence)
cf6e7bac 2967{
cf6e7bac
JE
2968 unsigned int n;
2969
13149e8b 2970 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac
JE
2971 struct drm_syncobj *syncobj;
2972 unsigned int flags;
2973
cda9edd0 2974 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac
JE
2975 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2976 continue;
2977
13149e8b
LL
2978 if (eb->fences[n].chain_fence) {
2979 drm_syncobj_add_point(syncobj,
2980 eb->fences[n].chain_fence,
2981 fence,
2982 eb->fences[n].value);
2983 /*
2984 * The chain's ownership is transferred to the
2985 * timeline.
2986 */
2987 eb->fences[n].chain_fence = NULL;
2988 } else {
2989 drm_syncobj_replace_fence(syncobj, fence);
2990 }
cf6e7bac
JE
2991 }
2992}
2993
13149e8b
LL
2994static int
2995parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2996{
2997 struct i915_execbuffer *eb = data;
2998 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2999
3000 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3001 return -EFAULT;
3002
3003 return add_timeline_fence_array(eb, &timeline_fences);
3004}
3005
61231f6b
CW
3006static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3007{
3008 struct i915_request *rq, *rn;
3009
3010 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3011 if (rq == end || !i915_request_retire(rq))
3012 break;
3013}
3014
544460c3
MB
3015static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3016 int err, bool last_parallel)
61231f6b 3017{
61231f6b
CW
3018 struct intel_timeline * const tl = i915_request_timeline(rq);
3019 struct i915_sched_attr attr = {};
3020 struct i915_request *prev;
3021
3022 lockdep_assert_held(&tl->mutex);
3023 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3024
3025 trace_i915_request_add(rq);
3026
3027 prev = __i915_request_commit(rq);
3028
3029 /* Check that the context wasn't destroyed before submission */
207e4a71 3030 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 3031 attr = eb->gem_context->sched;
61231f6b
CW
3032 } else {
3033 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
3034 i915_request_set_error_once(rq, -ENOENT);
3035 __i915_request_skip(rq);
ba38b79e 3036 err = -ENOENT; /* override any transient errors */
61231f6b
CW
3037 }
3038
544460c3
MB
3039 if (intel_context_is_parallel(eb->context)) {
3040 if (err) {
3041 __i915_request_skip(rq);
3042 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3043 &rq->fence.flags);
3044 }
3045 if (last_parallel)
3046 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3047 &rq->fence.flags);
3048 }
3049
61231f6b 3050 __i915_request_queue(rq, &attr);
61231f6b
CW
3051
3052 /* Try to clean up the client's timeline after submitting the request */
3053 if (prev)
3054 retire_requests(tl, prev);
3055
3056 mutex_unlock(&tl->mutex);
ba38b79e
CW
3057
3058 return err;
61231f6b
CW
3059}
3060
544460c3
MB
3061static int eb_requests_add(struct i915_execbuffer *eb, int err)
3062{
3063 int i;
3064
3065 /*
3066 * We iterate in reverse order of creation to release timeline mutexes in
3067 * same order.
3068 */
3069 for_each_batch_add_order(eb, i) {
3070 struct i915_request *rq = eb->requests[i];
3071
3072 if (!rq)
3073 continue;
3074 err |= eb_request_add(eb, rq, err, i == 0);
3075 }
3076
3077 return err;
3078}
3079
cda9edd0 3080static const i915_user_extension_fn execbuf_extensions[] = {
13149e8b 3081 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
cda9edd0
LL
3082};
3083
3084static int
3085parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3086 struct i915_execbuffer *eb)
3087{
cda9edd0
LL
3088 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3089 return 0;
3090
3091 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3092 * have another flag also using it at the same time.
3093 */
3094 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3095 return -EINVAL;
3096
3097 if (args->num_cliprects != 0)
3098 return -EINVAL;
3099
3100 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3101 execbuf_extensions,
3102 ARRAY_SIZE(execbuf_extensions),
3103 eb);
3104}
3105
544460c3
MB
3106static void eb_requests_get(struct i915_execbuffer *eb)
3107{
3108 unsigned int i;
3109
3110 for_each_batch_create_order(eb, i) {
3111 if (!eb->requests[i])
3112 break;
3113
3114 i915_request_get(eb->requests[i]);
3115 }
3116}
3117
3118static void eb_requests_put(struct i915_execbuffer *eb)
3119{
3120 unsigned int i;
3121
3122 for_each_batch_create_order(eb, i) {
3123 if (!eb->requests[i])
3124 break;
3125
3126 i915_request_put(eb->requests[i]);
3127 }
3128}
3129
3130static struct sync_file *
3131eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3132{
3133 struct sync_file *out_fence = NULL;
3134 struct dma_fence_array *fence_array;
3135 struct dma_fence **fences;
3136 unsigned int i;
3137
3138 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3139
3140 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3141 if (!fences)
3142 return ERR_PTR(-ENOMEM);
3143
7647f009 3144 for_each_batch_create_order(eb, i) {
544460c3 3145 fences[i] = &eb->requests[i]->fence;
7647f009
MB
3146 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3147 &eb->requests[i]->fence.flags);
3148 }
544460c3
MB
3149
3150 fence_array = dma_fence_array_create(eb->num_batches,
3151 fences,
3152 eb->context->parallel.fence_context,
d46f329a 3153 eb->context->parallel.seqno++,
544460c3
MB
3154 false);
3155 if (!fence_array) {
3156 kfree(fences);
3157 return ERR_PTR(-ENOMEM);
3158 }
3159
3160 /* Move ownership to the dma_fence_array created above */
3161 for_each_batch_create_order(eb, i)
3162 dma_fence_get(fences[i]);
3163
3164 if (out_fence_fd != -1) {
3165 out_fence = sync_file_create(&fence_array->base);
3166 /* sync_file now owns fence_arry, drop creation ref */
3167 dma_fence_put(&fence_array->base);
3168 if (!out_fence)
3169 return ERR_PTR(-ENOMEM);
3170 }
3171
3172 eb->composite_fence = &fence_array->base;
3173
3174 return out_fence;
3175}
3176
3177static struct sync_file *
3178eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3179 struct dma_fence *in_fence, int out_fence_fd)
3180{
3181 struct sync_file *out_fence = NULL;
3182 int err;
3183
3184 if (unlikely(eb->gem_context->syncobj)) {
3185 struct dma_fence *fence;
3186
3187 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3188 err = i915_request_await_dma_fence(rq, fence);
3189 dma_fence_put(fence);
3190 if (err)
3191 return ERR_PTR(err);
3192 }
3193
3194 if (in_fence) {
3195 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3196 err = i915_request_await_execution(rq, in_fence);
3197 else
3198 err = i915_request_await_dma_fence(rq, in_fence);
3199 if (err < 0)
3200 return ERR_PTR(err);
3201 }
3202
3203 if (eb->fences) {
3204 err = await_fence_array(eb, rq);
3205 if (err)
3206 return ERR_PTR(err);
3207 }
3208
3209 if (intel_context_is_parallel(eb->context)) {
3210 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3211 if (IS_ERR(out_fence))
3212 return ERR_PTR(-ENOMEM);
3213 } else if (out_fence_fd != -1) {
3214 out_fence = sync_file_create(&rq->fence);
3215 if (!out_fence)
3216 return ERR_PTR(-ENOMEM);
3217 }
3218
3219 return out_fence;
3220}
3221
3222static struct intel_context *
3223eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3224{
3225 struct intel_context *child;
3226
3227 if (likely(context_number == 0))
3228 return eb->context;
3229
3230 for_each_child(eb->context, child)
3231 if (!--context_number)
3232 return child;
3233
3234 GEM_BUG_ON("Context not found");
3235
3236 return NULL;
3237}
3238
3239static struct sync_file *
3240eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3241 int out_fence_fd)
3242{
3243 struct sync_file *out_fence = NULL;
3244 unsigned int i;
3245
3246 for_each_batch_create_order(eb, i) {
3247 /* Allocate a request for this batch buffer nice and early. */
3248 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3249 if (IS_ERR(eb->requests[i])) {
86752bd6 3250 out_fence = ERR_CAST(eb->requests[i]);
544460c3
MB
3251 eb->requests[i] = NULL;
3252 return out_fence;
3253 }
3254
3255 /*
3256 * Only the first request added (committed to backend) has to
3257 * take the in fences into account as all subsequent requests
3258 * will have fences inserted inbetween them.
3259 */
3260 if (i + 1 == eb->num_batches) {
3261 out_fence = eb_fences_add(eb, eb->requests[i],
3262 in_fence, out_fence_fd);
3263 if (IS_ERR(out_fence))
3264 return out_fence;
3265 }
3266
3267 /*
ff20afc4
TH
3268 * Not really on stack, but we don't want to call
3269 * kfree on the batch_snapshot when we put it, so use the
3270 * _onstack interface.
544460c3 3271 */
ff20afc4 3272 if (eb->batches[i]->vma)
60dc43d1
TH
3273 eb->requests[i]->batch_res =
3274 i915_vma_resource_get(eb->batches[i]->vma->resource);
544460c3
MB
3275 if (eb->batch_pool) {
3276 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3277 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3278 eb->requests[i]);
3279 }
3280 }
3281
3282 return out_fence;
3283}
3284
54cf91dc 3285static int
650bc635 3286i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
3287 struct drm_file *file,
3288 struct drm_i915_gem_execbuffer2 *args,
cda9edd0 3289 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 3290{
44157641 3291 struct drm_i915_private *i915 = to_i915(dev);
650bc635 3292 struct i915_execbuffer eb;
fec0445c
CW
3293 struct dma_fence *in_fence = NULL;
3294 struct sync_file *out_fence = NULL;
3295 int out_fence_fd = -1;
2889caa9 3296 int err;
432e58ed 3297
74c1c694 3298 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
3299 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3300 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 3301
44157641 3302 eb.i915 = i915;
650bc635
CW
3303 eb.file = file;
3304 eb.args = args;
ad5d95e4 3305 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 3306 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 3307
650bc635 3308 eb.exec = exec;
8ae275c2
ML
3309 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3310 eb.vma[0].vma = NULL;
8e02cceb 3311 eb.batch_pool = NULL;
c7c6e46f 3312
2889caa9 3313 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
3314 reloc_cache_init(&eb.reloc_cache, eb.i915);
3315
2889caa9 3316 eb.buffer_count = args->buffer_count;
650bc635 3317 eb.batch_start_offset = args->batch_start_offset;
32d94048 3318 eb.trampoline = NULL;
650bc635 3319
cda9edd0 3320 eb.fences = NULL;
13149e8b 3321 eb.num_fences = 0;
cda9edd0 3322
ff20afc4
TH
3323 eb_capture_list_clear(&eb);
3324
544460c3
MB
3325 memset(eb.requests, 0, sizeof(struct i915_request *) *
3326 ARRAY_SIZE(eb.requests));
3327 eb.composite_fence = NULL;
3328
2889caa9 3329 eb.batch_flags = 0;
d7d4eedd 3330 if (args->flags & I915_EXEC_SECURE) {
40e1956e 3331 if (GRAPHICS_VER(i915) >= 11)
44157641
JB
3332 return -ENODEV;
3333
3334 /* Return -EPERM to trigger fallback code on old binaries. */
3335 if (!HAS_SECURE_BATCHES(i915))
3336 return -EPERM;
3337
b3ac9f25 3338 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 3339 return -EPERM;
d7d4eedd 3340
2889caa9 3341 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 3342 }
b45305fc 3343 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 3344 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 3345
13149e8b
LL
3346 err = parse_execbuf2_extensions(args, &eb);
3347 if (err)
3348 goto err_ext;
3349
3350 err = add_fence_array(&eb);
3351 if (err)
3352 goto err_ext;
3353
889333c7
CW
3354#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3355 if (args->flags & IN_FENCES) {
3356 if ((args->flags & IN_FENCES) == IN_FENCES)
3357 return -EINVAL;
3358
fec0445c 3359 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
13149e8b
LL
3360 if (!in_fence) {
3361 err = -EINVAL;
3362 goto err_ext;
3363 }
fec0445c 3364 }
889333c7 3365#undef IN_FENCES
a88b6e4c 3366
fec0445c
CW
3367 if (args->flags & I915_EXEC_FENCE_OUT) {
3368 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3369 if (out_fence_fd < 0) {
2889caa9 3370 err = out_fence_fd;
889333c7 3371 goto err_in_fence;
fec0445c
CW
3372 }
3373 }
3374
cda9edd0
LL
3375 err = eb_create(&eb);
3376 if (err)
13149e8b 3377 goto err_out_fence;
cda9edd0 3378
4d470f73 3379 GEM_BUG_ON(!eb.lut_size);
2889caa9 3380
1acfc104
CW
3381 err = eb_select_context(&eb);
3382 if (unlikely(err))
3383 goto err_destroy;
3384
2bf541ff 3385 err = eb_select_engine(&eb);
d6f328bf 3386 if (unlikely(err))
e5dadff4 3387 goto err_context;
d6f328bf 3388
c43ce123
ML
3389 err = eb_lookup_vmas(&eb);
3390 if (err) {
b4b9731b 3391 eb_release_vmas(&eb, true);
c43ce123
ML
3392 goto err_engine;
3393 }
3394
3395 i915_gem_ww_ctx_init(&eb.ww, true);
3396
8e4ba491 3397 err = eb_relocate_parse(&eb);
1f727d9e 3398 if (err) {
2889caa9
CW
3399 /*
3400 * If the user expects the execobject.offset and
3401 * reloc.presumed_offset to be an exact match,
3402 * as for using NO_RELOC, then we cannot update
3403 * the execobject.offset until we have completed
3404 * relocation.
3405 */
3406 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 3407 goto err_vma;
1f727d9e 3408 }
54cf91dc 3409
c43ce123 3410 ww_acquire_done(&eb.ww.ctx);
ff20afc4 3411 eb_capture_stage(&eb);
7d6236bb 3412
544460c3
MB
3413 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3414 if (IS_ERR(out_fence)) {
3415 err = PTR_ERR(out_fence);
9cdb54be 3416 out_fence = NULL;
544460c3 3417 if (eb.requests[0])
cf6e7bac 3418 goto err_request;
544460c3
MB
3419 else
3420 goto err_vma;
cf6e7bac
JE
3421 }
3422
544460c3 3423 err = eb_submit(&eb);
ed29c269 3424
aa9b7810 3425err_request:
544460c3
MB
3426 eb_requests_get(&eb);
3427 err = eb_requests_add(&eb, err);
c8659efa 3428
13149e8b 3429 if (eb.fences)
544460c3
MB
3430 signal_fence_array(&eb, eb.composite_fence ?
3431 eb.composite_fence :
3432 &eb.requests[0]->fence);
cf6e7bac 3433
fec0445c 3434 if (out_fence) {
2889caa9 3435 if (err == 0) {
fec0445c 3436 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 3437 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
3438 args->rsvd2 |= (u64)out_fence_fd << 32;
3439 out_fence_fd = -1;
3440 } else {
3441 fput(out_fence->file);
3442 }
3443 }
00dae4d3
JE
3444
3445 if (unlikely(eb.gem_context->syncobj)) {
3446 drm_syncobj_replace_fence(eb.gem_context->syncobj,
544460c3
MB
3447 eb.composite_fence ?
3448 eb.composite_fence :
3449 &eb.requests[0]->fence);
00dae4d3
JE
3450 }
3451
544460c3
MB
3452 if (!out_fence && eb.composite_fence)
3453 dma_fence_put(eb.composite_fence);
3454
3455 eb_requests_put(&eb);
54cf91dc 3456
2889caa9 3457err_vma:
b4b9731b 3458 eb_release_vmas(&eb, true);
c43ce123
ML
3459 WARN_ON(err == -EDEADLK);
3460 i915_gem_ww_ctx_fini(&eb.ww);
3461
3462 if (eb.batch_pool)
3463 intel_gt_buffer_pool_put(eb.batch_pool);
c43ce123 3464err_engine:
2bf541ff 3465 eb_put_engine(&eb);
a4e57f90 3466err_context:
8f2a1057 3467 i915_gem_context_put(eb.gem_context);
1acfc104 3468err_destroy:
2889caa9 3469 eb_destroy(&eb);
4d470f73 3470err_out_fence:
fec0445c
CW
3471 if (out_fence_fd != -1)
3472 put_unused_fd(out_fence_fd);
4a04e371 3473err_in_fence:
fec0445c 3474 dma_fence_put(in_fence);
13149e8b
LL
3475err_ext:
3476 put_fence_array(eb.fences, eb.num_fences);
2889caa9 3477 return err;
54cf91dc
CW
3478}
3479
d710fc16
CW
3480static size_t eb_element_size(void)
3481{
8ae275c2 3482 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
3483}
3484
3485static bool check_buffer_count(size_t count)
3486{
3487 const size_t sz = eb_element_size();
3488
3489 /*
3490 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3491 * array size (see eb_create()). Otherwise, we can accept an array as
3492 * large as can be addressed (though use large arrays at your peril)!
3493 */
3494
3495 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3496}
3497
54cf91dc 3498int
6a20fe7b
VS
3499i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3500 struct drm_file *file)
54cf91dc 3501{
d0bf4582 3502 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 3503 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 3504 struct drm_i915_gem_exec_object2 *exec2_list;
d710fc16 3505 const size_t count = args->buffer_count;
2889caa9 3506 int err;
54cf91dc 3507
d710fc16 3508 if (!check_buffer_count(count)) {
d0bf4582 3509 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3510 return -EINVAL;
3511 }
3512
00aff3f6
TU
3513 err = i915_gem_check_execbuffer(args);
3514 if (err)
3515 return err;
2889caa9 3516
47b08693
ML
3517 /* Allocate extra slots for use by the command parser */
3518 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3519 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3520 if (exec2_list == NULL) {
d0bf4582
WK
3521 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3522 count);
54cf91dc
CW
3523 return -ENOMEM;
3524 }
2889caa9
CW
3525 if (copy_from_user(exec2_list,
3526 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3527 sizeof(*exec2_list) * count)) {
d0bf4582 3528 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 3529 kvfree(exec2_list);
54cf91dc
CW
3530 return -EFAULT;
3531 }
3532
cda9edd0 3533 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2889caa9
CW
3534
3535 /*
3536 * Now that we have begun execution of the batchbuffer, we ignore
3537 * any new error after this point. Also given that we have already
3538 * updated the associated relocations, we try to write out the current
3539 * object locations irrespective of any error.
3540 */
3541 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3542 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3543 u64_to_user_ptr(args->buffers_ptr);
3544 unsigned int i;
9aab8bff 3545
2889caa9 3546 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3547 /*
3548 * Note: count * sizeof(*user_exec_list) does not overflow,
3549 * because we checked 'count' in check_buffer_count().
3550 *
3551 * And this range already got effectively checked earlier
3552 * when we did the "copy_from_user()" above.
3553 */
b44f6873
CL
3554 if (!user_write_access_begin(user_exec_list,
3555 count * sizeof(*user_exec_list)))
8f4faed0 3556 goto end;
594cc251 3557
9aab8bff 3558 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3559 if (!(exec2_list[i].offset & UPDATE))
3560 continue;
3561
934acce3 3562 exec2_list[i].offset =
2889caa9
CW
3563 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3564 unsafe_put_user(exec2_list[i].offset,
3565 &user_exec_list[i].offset,
3566 end_user);
54cf91dc 3567 }
2889caa9 3568end_user:
b44f6873 3569 user_write_access_end();
8f4faed0 3570end:;
54cf91dc
CW
3571 }
3572
2889caa9 3573 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 3574 kvfree(exec2_list);
2889caa9 3575 return err;
54cf91dc 3576}