drm/i915: Fix missing docbook chapters for i915 uapi.
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
CommitLineData
54cf91dc 1/*
10be98a7 2 * SPDX-License-Identifier: MIT
54cf91dc 3 *
10be98a7 4 * Copyright © 2008,2010 Intel Corporation
54cf91dc
CW
5 */
6
daedaa33 7#include <linux/intel-iommu.h>
52791eee 8#include <linux/dma-resv.h>
fec0445c 9#include <linux/sync_file.h>
ad778f89
CW
10#include <linux/uaccess.h>
11
cf6e7bac 12#include <drm/drm_syncobj.h>
ad778f89 13
df0566a6
JN
14#include "display/intel_frontbuffer.h"
15
afa13085 16#include "gem/i915_gem_ioctls.h"
10be98a7 17#include "gt/intel_context.h"
45233ab2 18#include "gt/intel_gpu_commands.h"
baea429d 19#include "gt/intel_gt.h"
16e87459 20#include "gt/intel_gt_buffer_pool.h"
8f2a1057 21#include "gt/intel_gt_pm.h"
2871ea85 22#include "gt/intel_ring.h"
8f2a1057 23
6da4a2c4 24#include "i915_drv.h"
57822dc6 25#include "i915_gem_clflush.h"
10be98a7 26#include "i915_gem_context.h"
6da4a2c4 27#include "i915_gem_ioctls.h"
686c7c35 28#include "i915_sw_fence_work.h"
54cf91dc 29#include "i915_trace.h"
cda9edd0 30#include "i915_user_extensions.h"
0edbb9ba 31#include "i915_memcpy.h"
54cf91dc 32
7d6236bb
CW
33struct eb_vma {
34 struct i915_vma *vma;
35 unsigned int flags;
36
37 /** This vma's place in the execbuf reservation list */
38 struct drm_i915_gem_exec_object2 *exec;
39 struct list_head bind_link;
40 struct list_head reloc_link;
41
42 struct hlist_node node;
43 u32 handle;
44};
45
ad5d95e4
DA
46enum {
47 FORCE_CPU_RELOC = 1,
48 FORCE_GTT_RELOC,
49 FORCE_GPU_RELOC,
50#define DBG_FORCE_RELOC 0 /* choose one of the above! */
51};
52
bfaae47d
ML
53/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
54#define __EXEC_OBJECT_HAS_PIN BIT(30)
55#define __EXEC_OBJECT_HAS_FENCE BIT(29)
ed29c269
ML
56#define __EXEC_OBJECT_USERPTR_INIT BIT(28)
57#define __EXEC_OBJECT_NEEDS_MAP BIT(27)
58#define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
59#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
8ae275c2 60#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
2889caa9
CW
61
62#define __EXEC_HAS_RELOC BIT(31)
2bf541ff 63#define __EXEC_ENGINE_PINNED BIT(30)
ed29c269
ML
64#define __EXEC_USERPTR_USED BIT(29)
65#define __EXEC_INTERNAL_FLAGS (~0u << 29)
2889caa9 66#define UPDATE PIN_OFFSET_FIXED
d23db88c
CW
67
68#define BATCH_OFFSET_BIAS (256*1024)
a415d355 69
650bc635 70#define __I915_EXEC_ILLEGAL_FLAGS \
08e3e21a
LDM
71 (__I915_EXEC_UNKNOWN_FLAGS | \
72 I915_EXEC_CONSTANTS_MASK | \
73 I915_EXEC_RESOURCE_STREAMER)
5b043f4e 74
d20ac620
CW
75/* Catch emission of unexpected errors for CI! */
76#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
77#undef EINVAL
78#define EINVAL ({ \
79 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
80 22; \
81})
82#endif
83
2889caa9
CW
84/**
85 * DOC: User command execution
86 *
87 * Userspace submits commands to be executed on the GPU as an instruction
88 * stream within a GEM object we call a batchbuffer. This instructions may
89 * refer to other GEM objects containing auxiliary state such as kernels,
90 * samplers, render targets and even secondary batchbuffers. Userspace does
91 * not know where in the GPU memory these objects reside and so before the
92 * batchbuffer is passed to the GPU for execution, those addresses in the
93 * batchbuffer and auxiliary objects are updated. This is known as relocation,
94 * or patching. To try and avoid having to relocate each object on the next
95 * execution, userspace is told the location of those objects in this pass,
96 * but this remains just a hint as the kernel may choose a new location for
97 * any object in the future.
98 *
99d7e4ee
KR
99 * At the level of talking to the hardware, submitting a batchbuffer for the
100 * GPU to execute is to add content to a buffer from which the HW
101 * command streamer is reading.
102 *
103 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
104 * Execlists, this command is not placed on the same buffer as the
105 * remaining items.
106 *
107 * 2. Add a command to invalidate caches to the buffer.
108 *
109 * 3. Add a batchbuffer start command to the buffer; the start command is
110 * essentially a token together with the GPU address of the batchbuffer
111 * to be executed.
112 *
113 * 4. Add a pipeline flush to the buffer.
114 *
115 * 5. Add a memory write command to the buffer to record when the GPU
116 * is done executing the batchbuffer. The memory write writes the
117 * global sequence number of the request, ``i915_request::global_seqno``;
118 * the i915 driver uses the current value in the register to determine
119 * if the GPU has completed the batchbuffer.
120 *
121 * 6. Add a user interrupt command to the buffer. This command instructs
122 * the GPU to issue an interrupt when the command, pipeline flush and
123 * memory write are completed.
124 *
125 * 7. Inform the hardware of the additional commands added to the buffer
126 * (by updating the tail pointer).
127 *
2889caa9
CW
128 * Processing an execbuf ioctl is conceptually split up into a few phases.
129 *
130 * 1. Validation - Ensure all the pointers, handles and flags are valid.
131 * 2. Reservation - Assign GPU address space for every object
132 * 3. Relocation - Update any addresses to point to the final locations
133 * 4. Serialisation - Order the request with respect to its dependencies
134 * 5. Construction - Construct a request to execute the batchbuffer
135 * 6. Submission (at some point in the future execution)
136 *
137 * Reserving resources for the execbuf is the most complicated phase. We
138 * neither want to have to migrate the object in the address space, nor do
139 * we want to have to update any relocations pointing to this object. Ideally,
140 * we want to leave the object where it is and for all the existing relocations
141 * to match. If the object is given a new address, or if userspace thinks the
142 * object is elsewhere, we have to parse all the relocation entries and update
143 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
144 * all the target addresses in all of its objects match the value in the
145 * relocation entries and that they all match the presumed offsets given by the
146 * list of execbuffer objects. Using this knowledge, we know that if we haven't
147 * moved any buffers, all the relocation entries are valid and we can skip
148 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
149 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
150 *
151 * The addresses written in the objects must match the corresponding
152 * reloc.presumed_offset which in turn must match the corresponding
153 * execobject.offset.
154 *
155 * Any render targets written to in the batch must be flagged with
156 * EXEC_OBJECT_WRITE.
157 *
158 * To avoid stalling, execobject.offset should match the current
159 * address of that object within the active context.
160 *
161 * The reservation is done is multiple phases. First we try and keep any
162 * object already bound in its current location - so as long as meets the
163 * constraints imposed by the new execbuffer. Any object left unbound after the
164 * first pass is then fitted into any available idle space. If an object does
165 * not fit, all objects are removed from the reservation and the process rerun
166 * after sorting the objects into a priority order (more difficult to fit
167 * objects are tried first). Failing that, the entire VM is cleared and we try
168 * to fit the execbuf once last time before concluding that it simply will not
169 * fit.
170 *
171 * A small complication to all of this is that we allow userspace not only to
172 * specify an alignment and a size for the object in the address space, but
173 * we also allow userspace to specify the exact offset. This objects are
174 * simpler to place (the location is known a priori) all we have to do is make
175 * sure the space is available.
176 *
177 * Once all the objects are in place, patching up the buried pointers to point
178 * to the final locations is a fairly simple job of walking over the relocation
179 * entry arrays, looking up the right address and rewriting the value into
180 * the object. Simple! ... The relocation entries are stored in user memory
181 * and so to access them we have to copy them into a local buffer. That copy
182 * has to avoid taking any pagefaults as they may lead back to a GEM object
183 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
184 * the relocation into multiple passes. First we try to do everything within an
185 * atomic context (avoid the pagefaults) which requires that we never wait. If
186 * we detect that we may wait, or if we need to fault, then we have to fallback
187 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
188 * bells yet?) Dropping the mutex means that we lose all the state we have
189 * built up so far for the execbuf and we must reset any global data. However,
190 * we do leave the objects pinned in their final locations - which is a
191 * potential issue for concurrent execbufs. Once we have left the mutex, we can
192 * allocate and copy all the relocation entries into a large array at our
193 * leisure, reacquire the mutex, reclaim all the objects and other state and
194 * then proceed to update any incorrect addresses with the objects.
195 *
196 * As we process the relocation entries, we maintain a record of whether the
197 * object is being written to. Using NORELOC, we expect userspace to provide
198 * this information instead. We also check whether we can skip the relocation
199 * by comparing the expected value inside the relocation entry with the target's
200 * final address. If they differ, we have to map the current object and rewrite
201 * the 4 or 8 byte pointer within.
202 *
203 * Serialising an execbuf is quite simple according to the rules of the GEM
204 * ABI. Execution within each context is ordered by the order of submission.
205 * Writes to any GEM object are in order of submission and are exclusive. Reads
206 * from a GEM object are unordered with respect to other reads, but ordered by
207 * writes. A write submitted after a read cannot occur before the read, and
208 * similarly any read submitted after a write cannot occur before the write.
209 * Writes are ordered between engines such that only one write occurs at any
210 * time (completing any reads beforehand) - using semaphores where available
211 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
212 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
213 * reads before starting, and any read (either using set-domain or pread) must
214 * flush all GPU writes before starting. (Note we only employ a barrier before,
215 * we currently rely on userspace not concurrently starting a new execution
216 * whilst reading or writing to an object. This may be an advantage or not
217 * depending on how much you trust userspace not to shoot themselves in the
218 * foot.) Serialisation may just result in the request being inserted into
219 * a DAG awaiting its turn, but most simple is to wait on the CPU until
220 * all dependencies are resolved.
221 *
222 * After all of that, is just a matter of closing the request and handing it to
223 * the hardware (well, leaving it in a queue to be executed). However, we also
224 * offer the ability for batchbuffers to be run with elevated privileges so
225 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
226 * Before any batch is given extra privileges we first must check that it
227 * contains no nefarious instructions, we check that each instruction is from
228 * our whitelist and all registers are also from an allowed list. We first
229 * copy the user's batchbuffer to a shadow (so that the user doesn't have
230 * access to it, either by the CPU or GPU as we scan it) and then parse each
231 * instruction. If everything is ok, we set a flag telling the hardware to run
232 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
233 */
234
13149e8b
LL
235struct eb_fence {
236 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
237 struct dma_fence *dma_fence;
238 u64 value;
239 struct dma_fence_chain *chain_fence;
240};
241
650bc635 242struct i915_execbuffer {
2889caa9
CW
243 struct drm_i915_private *i915; /** i915 backpointer */
244 struct drm_file *file; /** per-file lookup tables and limits */
245 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
246 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
7d6236bb 247 struct eb_vma *vma;
2889caa9
CW
248
249 struct intel_engine_cs *engine; /** engine to queue the request to */
8f2a1057
CW
250 struct intel_context *context; /* logical state for the request */
251 struct i915_gem_context *gem_context; /** caller's context */
2889caa9 252
e61e0f51 253 struct i915_request *request; /** our request to build */
7d6236bb 254 struct eb_vma *batch; /** identity of the batch obj/vma */
32d94048 255 struct i915_vma *trampoline; /** trampoline used for chaining */
2889caa9
CW
256
257 /** actual size of execobj[] as we may extend it for the cmdparser */
258 unsigned int buffer_count;
259
260 /** list of vma not yet bound during reservation phase */
261 struct list_head unbound;
262
263 /** list of vma that have execobj.relocation_count */
264 struct list_head relocs;
265
c43ce123
ML
266 struct i915_gem_ww_ctx ww;
267
2889caa9
CW
268 /**
269 * Track the most recently used object for relocations, as we
270 * frequently have to perform multiple relocations within the same
271 * obj/page
272 */
650bc635 273 struct reloc_cache {
2889caa9 274 struct drm_mm_node node; /** temporary GTT binding */
ad5d95e4
DA
275 unsigned long vaddr; /** Current kmap address */
276 unsigned long page; /** Currently mapped page index */
8802190f 277 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
650bc635 278 bool use_64bit_reloc : 1;
2889caa9
CW
279 bool has_llc : 1;
280 bool has_fence : 1;
281 bool needs_unfenced : 1;
7dd4f672 282
e61e0f51 283 struct i915_request *rq;
7dd4f672
CW
284 u32 *rq_cmd;
285 unsigned int rq_size;
c43ce123 286 struct intel_gt_buffer_pool_node *pool;
650bc635 287 } reloc_cache;
2889caa9 288
c43ce123 289 struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
2bf541ff 290 struct intel_context *reloc_context;
c43ce123 291
2889caa9 292 u64 invalid_flags; /** Set of execobj.flags that are invalid */
2889caa9 293
d5e87821 294 u64 batch_len; /** Length of batch within object */
2889caa9 295 u32 batch_start_offset; /** Location within object of batch */
2889caa9 296 u32 batch_flags; /** Flags composed for emit_bb_start() */
c43ce123 297 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
2889caa9
CW
298
299 /**
300 * Indicate either the size of the hastable used to resolve
301 * relocation handles, or if negative that we are using a direct
302 * index into the execobj[].
303 */
304 int lut_size;
305 struct hlist_head *buckets; /** ht for relocation handles */
cda9edd0 306
13149e8b
LL
307 struct eb_fence *fences;
308 unsigned long num_fences;
67731b87
CW
309};
310
8e4ba491 311static int eb_parse(struct i915_execbuffer *eb);
2bf541ff
ML
312static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
313 bool throttle);
314static void eb_unpin_engine(struct i915_execbuffer *eb);
8e4ba491 315
3dbf26ed
CW
316static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
317{
311a50e7 318 return intel_engine_requires_cmd_parser(eb->engine) ||
435e8fc0
JB
319 (intel_engine_using_cmd_parser(eb->engine) &&
320 eb->args->batch_len);
3dbf26ed
CW
321}
322
650bc635 323static int eb_create(struct i915_execbuffer *eb)
67731b87 324{
2889caa9
CW
325 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
326 unsigned int size = 1 + ilog2(eb->buffer_count);
4ff4b44c 327
2889caa9
CW
328 /*
329 * Without a 1:1 association between relocation handles and
330 * the execobject[] index, we instead create a hashtable.
331 * We size it dynamically based on available memory, starting
332 * first with 1:1 assocative hash and scaling back until
333 * the allocation succeeds.
334 *
335 * Later on we use a positive lut_size to indicate we are
336 * using this hashtable, and a negative value to indicate a
337 * direct lookup.
338 */
4ff4b44c 339 do {
0d95c883 340 gfp_t flags;
4d470f73
CW
341
342 /* While we can still reduce the allocation size, don't
343 * raise a warning and allow the allocation to fail.
344 * On the last pass though, we want to try as hard
345 * as possible to perform the allocation and warn
346 * if it fails.
347 */
0ee931c4 348 flags = GFP_KERNEL;
4d470f73
CW
349 if (size > 1)
350 flags |= __GFP_NORETRY | __GFP_NOWARN;
351
4ff4b44c 352 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
4d470f73 353 flags);
4ff4b44c
CW
354 if (eb->buckets)
355 break;
356 } while (--size);
357
8ae275c2 358 if (unlikely(!size))
4d470f73 359 return -ENOMEM;
eef90ccb 360
2889caa9 361 eb->lut_size = size;
650bc635 362 } else {
2889caa9 363 eb->lut_size = -eb->buffer_count;
650bc635 364 }
eef90ccb 365
650bc635 366 return 0;
67731b87
CW
367}
368
2889caa9
CW
369static bool
370eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
c7c6e46f
CW
371 const struct i915_vma *vma,
372 unsigned int flags)
2889caa9 373{
2889caa9
CW
374 if (vma->node.size < entry->pad_to_size)
375 return true;
376
377 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
378 return true;
379
c7c6e46f 380 if (flags & EXEC_OBJECT_PINNED &&
2889caa9
CW
381 vma->node.start != entry->offset)
382 return true;
383
c7c6e46f 384 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
2889caa9
CW
385 vma->node.start < BATCH_OFFSET_BIAS)
386 return true;
387
c7c6e46f 388 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
5f22cc0b 389 (vma->node.start + vma->node.size + 4095) >> 32)
2889caa9
CW
390 return true;
391
1d033beb
CW
392 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
393 !i915_vma_is_map_and_fenceable(vma))
394 return true;
395
2889caa9
CW
396 return false;
397}
398
8a338f4b
CW
399static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
400 unsigned int exec_flags)
401{
402 u64 pin_flags = 0;
403
404 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
405 pin_flags |= PIN_GLOBAL;
406
407 /*
408 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
409 * limit address to the first 4GBs for unflagged objects.
410 */
411 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
412 pin_flags |= PIN_ZONE_4G;
413
414 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
415 pin_flags |= PIN_MAPPABLE;
416
417 if (exec_flags & EXEC_OBJECT_PINNED)
418 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
419 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
420 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
421
422 return pin_flags;
423}
424
237647f4 425static inline int
2889caa9 426eb_pin_vma(struct i915_execbuffer *eb,
c7c6e46f 427 const struct drm_i915_gem_exec_object2 *entry,
7d6236bb 428 struct eb_vma *ev)
2889caa9 429{
7d6236bb 430 struct i915_vma *vma = ev->vma;
c7c6e46f 431 u64 pin_flags;
237647f4 432 int err;
2889caa9 433
616d9cee 434 if (vma->node.size)
c7c6e46f 435 pin_flags = vma->node.start;
616d9cee 436 else
c7c6e46f 437 pin_flags = entry->offset & PIN_OFFSET_MASK;
616d9cee 438
c7c6e46f 439 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
7d6236bb 440 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
c7c6e46f 441 pin_flags |= PIN_GLOBAL;
616d9cee 442
8a338f4b 443 /* Attempt to reuse the current location if available */
237647f4
ML
444 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
445 if (err == -EDEADLK)
446 return err;
447
448 if (unlikely(err)) {
8a338f4b 449 if (entry->flags & EXEC_OBJECT_PINNED)
237647f4 450 return err;
8a338f4b
CW
451
452 /* Failing that pick any _free_ space if suitable */
237647f4 453 err = i915_vma_pin_ww(vma, &eb->ww,
47b08693
ML
454 entry->pad_to_size,
455 entry->alignment,
456 eb_pin_flags(entry, ev->flags) |
237647f4
ML
457 PIN_USER | PIN_NOEVICT);
458 if (unlikely(err))
459 return err;
8a338f4b 460 }
2889caa9 461
7d6236bb 462 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
237647f4
ML
463 err = i915_vma_pin_fence(vma);
464 if (unlikely(err)) {
2889caa9 465 i915_vma_unpin(vma);
237647f4 466 return err;
2889caa9
CW
467 }
468
3bd40735 469 if (vma->fence)
7d6236bb 470 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
471 }
472
7d6236bb 473 ev->flags |= __EXEC_OBJECT_HAS_PIN;
237647f4
ML
474 if (eb_vma_misplaced(entry, vma, ev->flags))
475 return -EBADSLT;
476
477 return 0;
2889caa9
CW
478}
479
8ae275c2
ML
480static inline void
481eb_unreserve_vma(struct eb_vma *ev)
482{
483 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
484 return;
485
c43ce123
ML
486 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
487 __i915_vma_unpin_fence(ev->vma);
488
489 __i915_vma_unpin(ev->vma);
8ae275c2
ML
490 ev->flags &= ~__EXEC_OBJECT_RESERVED;
491}
492
2889caa9
CW
493static int
494eb_validate_vma(struct i915_execbuffer *eb,
495 struct drm_i915_gem_exec_object2 *entry,
496 struct i915_vma *vma)
67731b87 497{
2eb8e1a6
JE
498 /* Relocations are disallowed for all platforms after TGL-LP. This
499 * also covers all platforms with local memory.
500 */
501 if (entry->relocation_count &&
40e1956e 502 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
2eb8e1a6
JE
503 return -EINVAL;
504
2889caa9
CW
505 if (unlikely(entry->flags & eb->invalid_flags))
506 return -EINVAL;
d55495b4 507
2920516b
MA
508 if (unlikely(entry->alignment &&
509 !is_power_of_2_u64(entry->alignment)))
2889caa9
CW
510 return -EINVAL;
511
512 /*
513 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
514 * any non-page-aligned or non-canonical addresses.
515 */
516 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
6fc4e48f 517 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
2889caa9
CW
518 return -EINVAL;
519
520 /* pad_to_size was once a reserved field, so sanitize it */
521 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
522 if (unlikely(offset_in_page(entry->pad_to_size)))
523 return -EINVAL;
524 } else {
525 entry->pad_to_size = 0;
d55495b4 526 }
2889caa9
CW
527 /*
528 * From drm_mm perspective address space is continuous,
529 * so from this point we're always using non-canonical
530 * form internally.
531 */
532 entry->offset = gen8_noncanonical_addr(entry->offset);
533
c7c6e46f
CW
534 if (!eb->reloc_cache.has_fence) {
535 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
536 } else {
537 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
538 eb->reloc_cache.needs_unfenced) &&
539 i915_gem_object_is_tiled(vma->obj))
540 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
541 }
542
2889caa9 543 return 0;
67731b87
CW
544}
545
003d8b91 546static void
746c8f14
CW
547eb_add_vma(struct i915_execbuffer *eb,
548 unsigned int i, unsigned batch_idx,
549 struct i915_vma *vma)
59bfa124 550{
c7c6e46f 551 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
7d6236bb 552 struct eb_vma *ev = &eb->vma[i];
2889caa9 553
93159e12 554 ev->vma = vma;
7d6236bb
CW
555 ev->exec = entry;
556 ev->flags = entry->flags;
557
4d470f73 558 if (eb->lut_size > 0) {
7d6236bb
CW
559 ev->handle = entry->handle;
560 hlist_add_head(&ev->node,
2889caa9
CW
561 &eb->buckets[hash_32(entry->handle,
562 eb->lut_size)]);
4ff4b44c 563 }
59bfa124 564
2889caa9 565 if (entry->relocation_count)
7d6236bb 566 list_add_tail(&ev->reloc_link, &eb->relocs);
2889caa9 567
746c8f14
CW
568 /*
569 * SNA is doing fancy tricks with compressing batch buffers, which leads
570 * to negative relocation deltas. Usually that works out ok since the
571 * relocate address is still positive, except when the batch is placed
572 * very low in the GTT. Ensure this doesn't happen.
573 *
574 * Note that actual hangs have only been observed on gen7, but for
575 * paranoia do it everywhere.
576 */
577 if (i == batch_idx) {
827db9d8 578 if (entry->relocation_count &&
7d6236bb
CW
579 !(ev->flags & EXEC_OBJECT_PINNED))
580 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
746c8f14 581 if (eb->reloc_cache.has_fence)
7d6236bb 582 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
746c8f14 583
7d6236bb 584 eb->batch = ev;
746c8f14 585 }
2889caa9
CW
586}
587
ad5d95e4
DA
588static inline int use_cpu_reloc(const struct reloc_cache *cache,
589 const struct drm_i915_gem_object *obj)
590{
591 if (!i915_gem_object_has_struct_page(obj))
592 return false;
593
594 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
595 return true;
596
597 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
598 return false;
599
600 return (cache->has_llc ||
601 obj->cache_dirty ||
602 obj->cache_level != I915_CACHE_NONE);
603}
604
47b08693 605static int eb_reserve_vma(struct i915_execbuffer *eb,
7d6236bb 606 struct eb_vma *ev,
2920bb94 607 u64 pin_flags)
2889caa9 608{
7d6236bb 609 struct drm_i915_gem_exec_object2 *entry = ev->exec;
7d6236bb 610 struct i915_vma *vma = ev->vma;
2889caa9
CW
611 int err;
612
003d8b91
CW
613 if (drm_mm_node_allocated(&vma->node) &&
614 eb_vma_misplaced(entry, vma, ev->flags)) {
615 err = i915_vma_unbind(vma);
616 if (err)
617 return err;
618 }
619
47b08693 620 err = i915_vma_pin_ww(vma, &eb->ww,
c7c6e46f 621 entry->pad_to_size, entry->alignment,
8a338f4b 622 eb_pin_flags(entry, ev->flags) | pin_flags);
2889caa9
CW
623 if (err)
624 return err;
625
626 if (entry->offset != vma->node.start) {
627 entry->offset = vma->node.start | UPDATE;
628 eb->args->flags |= __EXEC_HAS_RELOC;
629 }
630
8a338f4b 631 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
3bd40735 632 err = i915_vma_pin_fence(vma);
2889caa9
CW
633 if (unlikely(err)) {
634 i915_vma_unpin(vma);
635 return err;
636 }
637
3bd40735 638 if (vma->fence)
8a338f4b 639 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
2889caa9
CW
640 }
641
8a338f4b 642 ev->flags |= __EXEC_OBJECT_HAS_PIN;
7d6236bb 643 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
1da7b54c 644
2889caa9
CW
645 return 0;
646}
647
648static int eb_reserve(struct i915_execbuffer *eb)
649{
650 const unsigned int count = eb->buffer_count;
2920bb94 651 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
2889caa9 652 struct list_head last;
7d6236bb 653 struct eb_vma *ev;
2889caa9 654 unsigned int i, pass;
ef398881 655 int err = 0;
2889caa9
CW
656
657 /*
658 * Attempt to pin all of the buffers into the GTT.
659 * This is done in 3 phases:
660 *
661 * 1a. Unbind all objects that do not match the GTT constraints for
662 * the execbuffer (fenceable, mappable, alignment etc).
663 * 1b. Increment pin count for already bound objects.
664 * 2. Bind new objects.
665 * 3. Decrement pin count.
666 *
667 * This avoid unnecessary unbinding of later objects in order to make
668 * room for the earlier objects *unless* we need to defragment.
669 */
2889caa9 670 pass = 0;
2889caa9 671 do {
7d6236bb
CW
672 list_for_each_entry(ev, &eb->unbound, bind_link) {
673 err = eb_reserve_vma(eb, ev, pin_flags);
2889caa9
CW
674 if (err)
675 break;
676 }
fd1500fc 677 if (err != -ENOSPC)
c43ce123 678 return err;
2889caa9
CW
679
680 /* Resort *all* the objects into priority order */
681 INIT_LIST_HEAD(&eb->unbound);
682 INIT_LIST_HEAD(&last);
683 for (i = 0; i < count; i++) {
7d6236bb 684 unsigned int flags;
2889caa9 685
7d6236bb
CW
686 ev = &eb->vma[i];
687 flags = ev->flags;
c7c6e46f
CW
688 if (flags & EXEC_OBJECT_PINNED &&
689 flags & __EXEC_OBJECT_HAS_PIN)
2889caa9
CW
690 continue;
691
7d6236bb 692 eb_unreserve_vma(ev);
2889caa9 693
c7c6e46f 694 if (flags & EXEC_OBJECT_PINNED)
35e882a4 695 /* Pinned must have their slot */
7d6236bb 696 list_add(&ev->bind_link, &eb->unbound);
c7c6e46f 697 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
35e882a4 698 /* Map require the lowest 256MiB (aperture) */
7d6236bb 699 list_add_tail(&ev->bind_link, &eb->unbound);
35e882a4
CW
700 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
701 /* Prioritise 4GiB region for restricted bo */
7d6236bb 702 list_add(&ev->bind_link, &last);
2889caa9 703 else
7d6236bb 704 list_add_tail(&ev->bind_link, &last);
2889caa9
CW
705 }
706 list_splice_tail(&last, &eb->unbound);
707
708 switch (pass++) {
709 case 0:
710 break;
711
712 case 1:
713 /* Too fragmented, unbind everything and retry */
2850748e 714 mutex_lock(&eb->context->vm->mutex);
f5d974f9 715 err = i915_gem_evict_vm(eb->context->vm);
2850748e 716 mutex_unlock(&eb->context->vm->mutex);
2889caa9 717 if (err)
c43ce123 718 return err;
2889caa9
CW
719 break;
720
721 default:
c43ce123 722 return -ENOSPC;
2889caa9 723 }
2920bb94
CW
724
725 pin_flags = PIN_USER;
2889caa9 726 } while (1);
4ff4b44c 727}
59bfa124 728
2889caa9
CW
729static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
730{
1a71cf2f
CW
731 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
732 return 0;
733 else
734 return eb->buffer_count - 1;
2889caa9
CW
735}
736
737static int eb_select_context(struct i915_execbuffer *eb)
738{
739 struct i915_gem_context *ctx;
740
741 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
046d1660
JE
742 if (unlikely(IS_ERR(ctx)))
743 return PTR_ERR(ctx);
2889caa9 744
8f2a1057 745 eb->gem_context = ctx;
a4e7ccda 746 if (rcu_access_pointer(ctx->vm))
4f2c7337 747 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2889caa9 748
2889caa9
CW
749 return 0;
750}
751
93159e12
CW
752static int __eb_add_lut(struct i915_execbuffer *eb,
753 u32 handle, struct i915_vma *vma)
3b96eff4 754{
93159e12
CW
755 struct i915_gem_context *ctx = eb->gem_context;
756 struct i915_lut_handle *lut;
2889caa9 757 int err;
3b96eff4 758
93159e12
CW
759 lut = i915_lut_handle_alloc();
760 if (unlikely(!lut))
761 return -ENOMEM;
762
763 i915_vma_get(vma);
764 if (!atomic_fetch_inc(&vma->open_count))
765 i915_vma_reopen(vma);
766 lut->handle = handle;
767 lut->ctx = ctx;
768
769 /* Check that the context hasn't been closed in the meantime */
770 err = -EINTR;
f7ce8639
CW
771 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
772 struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
773
774 if (unlikely(vm && vma->vm != vm))
775 err = -EAGAIN; /* user racing with ctx set-vm */
776 else if (likely(!i915_gem_context_is_closed(ctx)))
93159e12 777 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
f7ce8639
CW
778 else
779 err = -ENOENT;
93159e12
CW
780 if (err == 0) { /* And nor has this handle */
781 struct drm_i915_gem_object *obj = vma->obj;
782
096a42dd 783 spin_lock(&obj->lut_lock);
93159e12
CW
784 if (idr_find(&eb->file->object_idr, handle) == obj) {
785 list_add(&lut->obj_link, &obj->lut_list);
786 } else {
787 radix_tree_delete(&ctx->handles_vma, handle);
788 err = -ENOENT;
789 }
096a42dd 790 spin_unlock(&obj->lut_lock);
93159e12 791 }
f7ce8639 792 mutex_unlock(&ctx->lut_mutex);
93159e12
CW
793 }
794 if (unlikely(err))
795 goto err;
003d8b91 796
93159e12 797 return 0;
d55495b4 798
93159e12 799err:
50689771 800 i915_vma_close(vma);
93159e12
CW
801 i915_vma_put(vma);
802 i915_lut_handle_free(lut);
803 return err;
804}
746c8f14 805
93159e12
CW
806static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
807{
f7ce8639
CW
808 struct i915_address_space *vm = eb->context->vm;
809
93159e12
CW
810 do {
811 struct drm_i915_gem_object *obj;
170fa29b 812 struct i915_vma *vma;
93159e12 813 int err;
4ff4b44c 814
93159e12
CW
815 rcu_read_lock();
816 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
f7ce8639 817 if (likely(vma && vma->vm == vm))
93159e12
CW
818 vma = i915_vma_tryget(vma);
819 rcu_read_unlock();
820 if (likely(vma))
821 return vma;
4ff4b44c 822
170fa29b 823 obj = i915_gem_object_lookup(eb->file, handle);
93159e12
CW
824 if (unlikely(!obj))
825 return ERR_PTR(-ENOENT);
3b96eff4 826
f7ce8639 827 vma = i915_vma_instance(obj, vm, NULL);
772b5408 828 if (IS_ERR(vma)) {
93159e12
CW
829 i915_gem_object_put(obj);
830 return vma;
27173f1f
BW
831 }
832
93159e12
CW
833 err = __eb_add_lut(eb, handle, vma);
834 if (likely(!err))
835 return vma;
d1b48c1e 836
93159e12
CW
837 i915_gem_object_put(obj);
838 if (err != -EEXIST)
839 return ERR_PTR(err);
840 } while (1);
841}
4ff4b44c 842
93159e12
CW
843static int eb_lookup_vmas(struct i915_execbuffer *eb)
844{
8e4ba491 845 struct drm_i915_private *i915 = eb->i915;
93159e12
CW
846 unsigned int batch = eb_batch_index(eb);
847 unsigned int i;
848 int err = 0;
155ab883 849
93159e12 850 INIT_LIST_HEAD(&eb->relocs);
93159e12
CW
851
852 for (i = 0; i < eb->buffer_count; i++) {
853 struct i915_vma *vma;
854
855 vma = eb_lookup_vma(eb, eb->exec[i].handle);
856 if (IS_ERR(vma)) {
857 err = PTR_ERR(vma);
8e4ba491 858 goto err;
93159e12 859 }
d1b48c1e 860
003d8b91 861 err = eb_validate_vma(eb, &eb->exec[i], vma);
93159e12
CW
862 if (unlikely(err)) {
863 i915_vma_put(vma);
8e4ba491 864 goto err;
93159e12 865 }
dade2a61 866
003d8b91 867 eb_add_vma(eb, i, batch, vma);
ed29c269
ML
868
869 if (i915_gem_object_is_userptr(vma->obj)) {
870 err = i915_gem_object_userptr_submit_init(vma->obj);
871 if (err) {
872 if (i + 1 < eb->buffer_count) {
873 /*
874 * Execbuffer code expects last vma entry to be NULL,
875 * since we already initialized this entry,
876 * set the next value to NULL or we mess up
877 * cleanup handling.
878 */
879 eb->vma[i + 1].vma = NULL;
880 }
881
882 return err;
883 }
884
885 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
886 eb->args->flags |= __EXEC_USERPTR_USED;
887 }
4ff4b44c
CW
888 }
889
8e4ba491
ML
890 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
891 drm_dbg(&i915->drm,
892 "Attempting to use self-modifying batch buffer\n");
893 return -EINVAL;
894 }
895
896 if (range_overflows_t(u64,
897 eb->batch_start_offset, eb->batch_len,
898 eb->batch->vma->size)) {
899 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
900 return -EINVAL;
901 }
902
903 if (eb->batch_len == 0)
904 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
d5e87821
CW
905 if (unlikely(eb->batch_len == 0)) { /* impossible! */
906 drm_dbg(&i915->drm, "Invalid batch length\n");
907 return -EINVAL;
908 }
8e4ba491
ML
909
910 return 0;
911
912err:
7d6236bb 913 eb->vma[i].vma = NULL;
2889caa9 914 return err;
3b96eff4
CW
915}
916
5cd57f67 917static int eb_lock_vmas(struct i915_execbuffer *eb)
c43ce123
ML
918{
919 unsigned int i;
920 int err;
921
c43ce123 922 for (i = 0; i < eb->buffer_count; i++) {
c43ce123
ML
923 struct eb_vma *ev = &eb->vma[i];
924 struct i915_vma *vma = ev->vma;
925
926 err = i915_gem_object_lock(vma->obj, &eb->ww);
927 if (err)
928 return err;
5cd57f67
TH
929 }
930
931 return 0;
932}
933
934static int eb_validate_vmas(struct i915_execbuffer *eb)
935{
936 unsigned int i;
937 int err;
938
939 INIT_LIST_HEAD(&eb->unbound);
940
941 err = eb_lock_vmas(eb);
942 if (err)
943 return err;
944
945 for (i = 0; i < eb->buffer_count; i++) {
946 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
947 struct eb_vma *ev = &eb->vma[i];
948 struct i915_vma *vma = ev->vma;
c43ce123 949
237647f4
ML
950 err = eb_pin_vma(eb, entry, ev);
951 if (err == -EDEADLK)
952 return err;
953
954 if (!err) {
c43ce123
ML
955 if (entry->offset != vma->node.start) {
956 entry->offset = vma->node.start | UPDATE;
957 eb->args->flags |= __EXEC_HAS_RELOC;
958 }
959 } else {
960 eb_unreserve_vma(ev);
961
962 list_add_tail(&ev->bind_link, &eb->unbound);
963 if (drm_mm_node_allocated(&vma->node)) {
964 err = i915_vma_unbind(vma);
965 if (err)
966 return err;
967 }
968 }
969
bfaae47d
ML
970 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
971 err = dma_resv_reserve_shared(vma->resv, 1);
972 if (err)
973 return err;
974 }
975
c43ce123
ML
976 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
977 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
978 }
979
980 if (!list_empty(&eb->unbound))
981 return eb_reserve(eb);
982
983 return 0;
984}
985
7d6236bb 986static struct eb_vma *
2889caa9 987eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
67731b87 988{
2889caa9
CW
989 if (eb->lut_size < 0) {
990 if (handle >= -eb->lut_size)
eef90ccb 991 return NULL;
7d6236bb 992 return &eb->vma[handle];
eef90ccb
CW
993 } else {
994 struct hlist_head *head;
7d6236bb 995 struct eb_vma *ev;
67731b87 996
2889caa9 997 head = &eb->buckets[hash_32(handle, eb->lut_size)];
7d6236bb
CW
998 hlist_for_each_entry(ev, head, node) {
999 if (ev->handle == handle)
1000 return ev;
eef90ccb
CW
1001 }
1002 return NULL;
1003 }
67731b87
CW
1004}
1005
b4b9731b 1006static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
8ae275c2
ML
1007{
1008 const unsigned int count = eb->buffer_count;
1009 unsigned int i;
1010
1011 for (i = 0; i < count; i++) {
1012 struct eb_vma *ev = &eb->vma[i];
1013 struct i915_vma *vma = ev->vma;
1014
1015 if (!vma)
1016 break;
1017
c43ce123 1018 eb_unreserve_vma(ev);
8ae275c2 1019
c43ce123
ML
1020 if (final)
1021 i915_vma_put(vma);
8ae275c2 1022 }
2bf541ff
ML
1023
1024 eb_unpin_engine(eb);
8ae275c2
ML
1025}
1026
2889caa9 1027static void eb_destroy(const struct i915_execbuffer *eb)
934acce3 1028{
7dd4f672
CW
1029 GEM_BUG_ON(eb->reloc_cache.rq);
1030
4d470f73 1031 if (eb->lut_size > 0)
2889caa9 1032 kfree(eb->buckets);
934acce3
MW
1033}
1034
2889caa9 1035static inline u64
d50415cc 1036relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
2889caa9 1037 const struct i915_vma *target)
934acce3 1038{
2889caa9 1039 return gen8_canonical_addr((int)reloc->delta + target->node.start);
934acce3
MW
1040}
1041
c43ce123
ML
1042static void reloc_cache_clear(struct reloc_cache *cache)
1043{
1044 cache->rq = NULL;
1045 cache->rq_cmd = NULL;
1046 cache->pool = NULL;
1047 cache->rq_size = 0;
1048}
1049
d50415cc
CW
1050static void reloc_cache_init(struct reloc_cache *cache,
1051 struct drm_i915_private *i915)
5032d871 1052{
ad5d95e4
DA
1053 cache->page = -1;
1054 cache->vaddr = 0;
dfc5148f 1055 /* Must be a variable in the struct to allow GCC to unroll. */
8802190f 1056 cache->graphics_ver = GRAPHICS_VER(i915);
2889caa9 1057 cache->has_llc = HAS_LLC(i915);
dfc5148f 1058 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
8802190f 1059 cache->has_fence = cache->graphics_ver < 4;
7dd4f672 1060 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
4ee92c71 1061 cache->node.flags = 0;
c43ce123 1062 reloc_cache_clear(cache);
d50415cc 1063}
5032d871 1064
20561da3
DA
1065static inline void *unmask_page(unsigned long p)
1066{
1067 return (void *)(uintptr_t)(p & PAGE_MASK);
1068}
1069
1070static inline unsigned int unmask_flags(unsigned long p)
1071{
1072 return p & ~PAGE_MASK;
1073}
1074
1075#define KMAP 0x4 /* after CLFLUSH_FLAGS */
1076
1077static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1078{
1079 struct drm_i915_private *i915 =
1080 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1081 return &i915->ggtt;
1082}
1083
c43ce123 1084static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
964a9b0f 1085{
c43ce123
ML
1086 if (!cache->pool)
1087 return;
964a9b0f 1088
c43ce123
ML
1089 /*
1090 * This is a bit nasty, normally we keep objects locked until the end
1091 * of execbuffer, but we already submit this, and have to unlock before
1092 * dropping the reference. Fortunately we can only hold 1 pool node at
1093 * a time, so this should be harmless.
1094 */
1095 i915_gem_ww_unlock_single(cache->pool->obj);
1096 intel_gt_buffer_pool_put(cache->pool);
1097 cache->pool = NULL;
964a9b0f
CW
1098}
1099
c43ce123 1100static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
7dd4f672 1101{
50ae6c61 1102 struct drm_i915_gem_object *obj = cache->rq->batch->obj;
a679f58d 1103
50ae6c61
ML
1104 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1105 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
a679f58d 1106
26ebc511 1107 i915_gem_object_flush_map(obj);
50ae6c61 1108 i915_gem_object_unpin_map(obj);
7dd4f672 1109
50ae6c61 1110 intel_gt_chipset_flush(cache->rq->engine->gt);
964a9b0f 1111
50ae6c61 1112 i915_request_add(cache->rq);
c43ce123
ML
1113 reloc_cache_put_pool(eb, cache);
1114 reloc_cache_clear(cache);
0e97fbb0 1115
c43ce123 1116 eb->reloc_pool = NULL;
7dd4f672
CW
1117}
1118
c43ce123 1119static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
ad5d95e4
DA
1120{
1121 void *vaddr;
1122
50ae6c61 1123 if (cache->rq)
c43ce123 1124 reloc_gpu_flush(eb, cache);
50ae6c61 1125
ad5d95e4
DA
1126 if (!cache->vaddr)
1127 return;
1128
1129 vaddr = unmask_page(cache->vaddr);
1130 if (cache->vaddr & KMAP) {
1af343cd
ML
1131 struct drm_i915_gem_object *obj =
1132 (struct drm_i915_gem_object *)cache->node.mm;
ad5d95e4
DA
1133 if (cache->vaddr & CLFLUSH_AFTER)
1134 mb();
1135
1136 kunmap_atomic(vaddr);
1af343cd 1137 i915_gem_object_finish_access(obj);
ad5d95e4
DA
1138 } else {
1139 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1140
1141 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1142 io_mapping_unmap_atomic((void __iomem *)vaddr);
1143
1144 if (drm_mm_node_allocated(&cache->node)) {
1145 ggtt->vm.clear_range(&ggtt->vm,
1146 cache->node.start,
1147 cache->node.size);
1148 mutex_lock(&ggtt->vm.mutex);
1149 drm_mm_remove_node(&cache->node);
1150 mutex_unlock(&ggtt->vm.mutex);
1151 } else {
1152 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1153 }
1154 }
1155
1156 cache->vaddr = 0;
1157 cache->page = -1;
1158}
1159
1160static void *reloc_kmap(struct drm_i915_gem_object *obj,
1161 struct reloc_cache *cache,
102a0a90 1162 unsigned long pageno)
ad5d95e4
DA
1163{
1164 void *vaddr;
102a0a90 1165 struct page *page;
ad5d95e4
DA
1166
1167 if (cache->vaddr) {
1168 kunmap_atomic(unmask_page(cache->vaddr));
1169 } else {
1170 unsigned int flushes;
1171 int err;
1172
1173 err = i915_gem_object_prepare_write(obj, &flushes);
1174 if (err)
1175 return ERR_PTR(err);
1176
1177 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1178 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1179
1180 cache->vaddr = flushes | KMAP;
1181 cache->node.mm = (void *)obj;
1182 if (flushes)
1183 mb();
1184 }
1185
102a0a90
ML
1186 page = i915_gem_object_get_page(obj, pageno);
1187 if (!obj->mm.dirty)
1188 set_page_dirty(page);
1189
1190 vaddr = kmap_atomic(page);
ad5d95e4 1191 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
102a0a90 1192 cache->page = pageno;
ad5d95e4
DA
1193
1194 return vaddr;
1195}
1196
1197static void *reloc_iomap(struct drm_i915_gem_object *obj,
47b08693 1198 struct i915_execbuffer *eb,
ad5d95e4
DA
1199 unsigned long page)
1200{
47b08693 1201 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1202 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1203 unsigned long offset;
1204 void *vaddr;
1205
1206 if (cache->vaddr) {
1207 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1208 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1209 } else {
1210 struct i915_vma *vma;
1211 int err;
1212
1213 if (i915_gem_object_is_tiled(obj))
1214 return ERR_PTR(-EINVAL);
1215
1216 if (use_cpu_reloc(cache, obj))
1217 return NULL;
1218
ad5d95e4 1219 err = i915_gem_object_set_to_gtt_domain(obj, true);
ad5d95e4
DA
1220 if (err)
1221 return ERR_PTR(err);
1222
47b08693
ML
1223 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1224 PIN_MAPPABLE |
1225 PIN_NONBLOCK /* NOWARN */ |
1226 PIN_NOEVICT);
1227 if (vma == ERR_PTR(-EDEADLK))
1228 return vma;
1229
ad5d95e4
DA
1230 if (IS_ERR(vma)) {
1231 memset(&cache->node, 0, sizeof(cache->node));
1232 mutex_lock(&ggtt->vm.mutex);
1233 err = drm_mm_insert_node_in_range
1234 (&ggtt->vm.mm, &cache->node,
1235 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1236 0, ggtt->mappable_end,
1237 DRM_MM_INSERT_LOW);
1238 mutex_unlock(&ggtt->vm.mutex);
1239 if (err) /* no inactive aperture space, use cpu reloc */
1240 return NULL;
1241 } else {
1242 cache->node.start = vma->node.start;
1243 cache->node.mm = (void *)vma;
1244 }
1245 }
1246
1247 offset = cache->node.start;
1248 if (drm_mm_node_allocated(&cache->node)) {
1249 ggtt->vm.insert_page(&ggtt->vm,
1250 i915_gem_object_get_dma_address(obj, page),
1251 offset, I915_CACHE_NONE, 0);
1252 } else {
1253 offset += page << PAGE_SHIFT;
1254 }
1255
1256 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1257 offset);
1258 cache->page = page;
1259 cache->vaddr = (unsigned long)vaddr;
1260
1261 return vaddr;
1262}
1263
1264static void *reloc_vaddr(struct drm_i915_gem_object *obj,
47b08693 1265 struct i915_execbuffer *eb,
ad5d95e4
DA
1266 unsigned long page)
1267{
47b08693 1268 struct reloc_cache *cache = &eb->reloc_cache;
ad5d95e4
DA
1269 void *vaddr;
1270
1271 if (cache->page == page) {
1272 vaddr = unmask_page(cache->vaddr);
1273 } else {
1274 vaddr = NULL;
1275 if ((cache->vaddr & KMAP) == 0)
47b08693 1276 vaddr = reloc_iomap(obj, eb, page);
ad5d95e4
DA
1277 if (!vaddr)
1278 vaddr = reloc_kmap(obj, cache, page);
1279 }
1280
1281 return vaddr;
1282}
1283
1284static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1285{
1286 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1287 if (flushes & CLFLUSH_BEFORE) {
1288 clflushopt(addr);
1289 mb();
1290 }
1291
1292 *addr = value;
1293
1294 /*
1295 * Writes to the same cacheline are serialised by the CPU
1296 * (including clflush). On the write path, we only require
1297 * that it hits memory in an orderly fashion and place
1298 * mb barriers at the start and end of the relocation phase
1299 * to ensure ordering of clflush wrt to the system.
1300 */
1301 if (flushes & CLFLUSH_AFTER)
1302 clflushopt(addr);
1303 } else
1304 *addr = value;
1305}
1306
6951e589
CW
1307static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1308{
1309 struct drm_i915_gem_object *obj = vma->obj;
1310 int err;
1311
c43ce123 1312 assert_vma_held(vma);
6951e589
CW
1313
1314 if (obj->cache_dirty & ~obj->cache_coherent)
1315 i915_gem_clflush_object(obj, 0);
1316 obj->write_domain = 0;
1317
1318 err = i915_request_await_object(rq, vma->obj, true);
1319 if (err == 0)
1320 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1321
6951e589
CW
1322 return err;
1323}
1324
7dd4f672 1325static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
6f576d62 1326 struct intel_engine_cs *engine,
50ae6c61 1327 struct i915_vma *vma,
7dd4f672
CW
1328 unsigned int len)
1329{
1330 struct reloc_cache *cache = &eb->reloc_cache;
c43ce123 1331 struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
e61e0f51 1332 struct i915_request *rq;
7dd4f672
CW
1333 struct i915_vma *batch;
1334 u32 *cmd;
1335 int err;
1336
c43ce123 1337 if (!pool) {
8f47c8c3
MA
1338 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1339 cache->has_llc ?
1340 I915_MAP_WB :
1341 I915_MAP_WC);
c43ce123
ML
1342 if (IS_ERR(pool))
1343 return PTR_ERR(pool);
1344 }
1345 eb->reloc_pool = NULL;
1346
1347 err = i915_gem_object_lock(pool->obj, &eb->ww);
1348 if (err)
1349 goto err_pool;
7dd4f672 1350
8f47c8c3 1351 cmd = i915_gem_object_pin_map(pool->obj, pool->type);
b40d7378
CW
1352 if (IS_ERR(cmd)) {
1353 err = PTR_ERR(cmd);
c43ce123 1354 goto err_pool;
b40d7378 1355 }
c9398775 1356 intel_gt_buffer_pool_mark_used(pool);
7dd4f672 1357
26ebc511
MA
1358 memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1359
50ae6c61 1360 batch = i915_vma_instance(pool->obj, vma->vm, NULL);
7dd4f672
CW
1361 if (IS_ERR(batch)) {
1362 err = PTR_ERR(batch);
1363 goto err_unmap;
1364 }
1365
47b08693 1366 err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
7dd4f672
CW
1367 if (err)
1368 goto err_unmap;
1369
6f576d62
CW
1370 if (engine == eb->context->engine) {
1371 rq = i915_request_create(eb->context);
1372 } else {
2bf541ff 1373 struct intel_context *ce = eb->reloc_context;
6f576d62 1374
2bf541ff
ML
1375 if (!ce) {
1376 ce = intel_context_create(engine);
1377 if (IS_ERR(ce)) {
1378 err = PTR_ERR(ce);
1379 goto err_unpin;
1380 }
1381
1382 i915_vm_put(ce->vm);
1383 ce->vm = i915_vm_get(eb->context->vm);
1384 eb->reloc_context = ce;
6f576d62
CW
1385 }
1386
47b08693 1387 err = intel_context_pin_ww(ce, &eb->ww);
2bf541ff
ML
1388 if (err)
1389 goto err_unpin;
6f576d62 1390
2bf541ff
ML
1391 rq = i915_request_create(ce);
1392 intel_context_unpin(ce);
6f576d62 1393 }
7dd4f672
CW
1394 if (IS_ERR(rq)) {
1395 err = PTR_ERR(rq);
1396 goto err_unpin;
1397 }
1398
16e87459 1399 err = intel_gt_buffer_pool_mark_active(pool, rq);
b40d7378
CW
1400 if (err)
1401 goto err_request;
1402
50ae6c61
ML
1403 err = reloc_move_to_gpu(rq, vma);
1404 if (err)
1405 goto err_request;
1406
1407 err = eb->engine->emit_bb_start(rq,
1408 batch->node.start, PAGE_SIZE,
8802190f 1409 cache->graphics_ver > 5 ? 0 : I915_DISPATCH_SECURE);
50ae6c61
ML
1410 if (err)
1411 goto skip_request;
1412
c43ce123 1413 assert_vma_held(batch);
70d6894d
CW
1414 err = i915_request_await_object(rq, batch->obj, false);
1415 if (err == 0)
1416 err = i915_vma_move_to_active(batch, rq, 0);
a5236978
CW
1417 if (err)
1418 goto skip_request;
7dd4f672
CW
1419
1420 rq->batch = batch;
a5236978 1421 i915_vma_unpin(batch);
7dd4f672
CW
1422
1423 cache->rq = rq;
1424 cache->rq_cmd = cmd;
1425 cache->rq_size = 0;
c43ce123 1426 cache->pool = pool;
7dd4f672
CW
1427
1428 /* Return with batch mapping (cmd) still pinned */
c43ce123 1429 return 0;
7dd4f672 1430
a5236978 1431skip_request:
36e191f0 1432 i915_request_set_error_once(rq, err);
7dd4f672 1433err_request:
e61e0f51 1434 i915_request_add(rq);
7dd4f672
CW
1435err_unpin:
1436 i915_vma_unpin(batch);
1437err_unmap:
b40d7378 1438 i915_gem_object_unpin_map(pool->obj);
c43ce123
ML
1439err_pool:
1440 eb->reloc_pool = pool;
7dd4f672
CW
1441 return err;
1442}
1443
e3d29130
CW
1444static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1445{
40e1956e 1446 return engine->class != VIDEO_DECODE_CLASS || GRAPHICS_VER(engine->i915) != 6;
e3d29130
CW
1447}
1448
7dd4f672
CW
1449static u32 *reloc_gpu(struct i915_execbuffer *eb,
1450 struct i915_vma *vma,
1451 unsigned int len)
1452{
1453 struct reloc_cache *cache = &eb->reloc_cache;
1454 u32 *cmd;
50ae6c61
ML
1455
1456 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
c43ce123 1457 reloc_gpu_flush(eb, cache);
7dd4f672
CW
1458
1459 if (unlikely(!cache->rq)) {
50ae6c61 1460 int err;
6f576d62
CW
1461 struct intel_engine_cs *engine = eb->engine;
1462
e3d29130 1463 if (!reloc_can_use_engine(engine)) {
6f576d62 1464 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
e3d29130 1465 if (!engine)
6f576d62
CW
1466 return ERR_PTR(-ENODEV);
1467 }
90cad095 1468
50ae6c61 1469 err = __reloc_gpu_alloc(eb, engine, vma, len);
7dd4f672
CW
1470 if (unlikely(err))
1471 return ERR_PTR(err);
1472 }
1473
1474 cmd = cache->rq_cmd + cache->rq_size;
1475 cache->rq_size += len;
1476
1477 return cmd;
1478}
1479
ad5d95e4
DA
1480static inline bool use_reloc_gpu(struct i915_vma *vma)
1481{
1482 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1483 return true;
1484
1485 if (DBG_FORCE_RELOC)
1486 return false;
1487
d3fae3b3 1488 return !dma_resv_test_signaled(vma->resv, true);
ad5d95e4
DA
1489}
1490
e3d29130 1491static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
edf4427b 1492{
e3d29130
CW
1493 struct page *page;
1494 unsigned long addr;
edf4427b 1495
e3d29130 1496 GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
7dd4f672 1497
e3d29130
CW
1498 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1499 addr = PFN_PHYS(page_to_pfn(page));
1500 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
7dd4f672 1501
e3d29130
CW
1502 return addr + offset_in_page(offset);
1503}
1504
166774a2 1505static int __reloc_entry_gpu(struct i915_execbuffer *eb,
ad5d95e4
DA
1506 struct i915_vma *vma,
1507 u64 offset,
1508 u64 target_addr)
e3d29130 1509{
8802190f 1510 const unsigned int ver = eb->reloc_cache.graphics_ver;
e3d29130
CW
1511 unsigned int len;
1512 u32 *batch;
1513 u64 addr;
1514
8802190f 1515 if (ver >= 8)
e3d29130 1516 len = offset & 7 ? 8 : 5;
8802190f 1517 else if (ver >= 4)
e3d29130
CW
1518 len = 4;
1519 else
1520 len = 3;
1521
1522 batch = reloc_gpu(eb, vma, len);
c43ce123 1523 if (batch == ERR_PTR(-EDEADLK))
166774a2 1524 return -EDEADLK;
c43ce123 1525 else if (IS_ERR(batch))
ad5d95e4 1526 return false;
e3d29130
CW
1527
1528 addr = gen8_canonical_addr(vma->node.start + offset);
8802190f 1529 if (ver >= 8) {
e3d29130
CW
1530 if (offset & 7) {
1531 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1532 *batch++ = lower_32_bits(addr);
1533 *batch++ = upper_32_bits(addr);
1534 *batch++ = lower_32_bits(target_addr);
1535
1536 addr = gen8_canonical_addr(addr + 4);
7dd4f672 1537
7dd4f672 1538 *batch++ = MI_STORE_DWORD_IMM_GEN4;
e3d29130
CW
1539 *batch++ = lower_32_bits(addr);
1540 *batch++ = upper_32_bits(addr);
1541 *batch++ = upper_32_bits(target_addr);
7dd4f672 1542 } else {
e3d29130
CW
1543 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1544 *batch++ = lower_32_bits(addr);
1545 *batch++ = upper_32_bits(addr);
1546 *batch++ = lower_32_bits(target_addr);
1547 *batch++ = upper_32_bits(target_addr);
7dd4f672 1548 }
8802190f 1549 } else if (ver >= 6) {
e3d29130
CW
1550 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1551 *batch++ = 0;
1552 *batch++ = addr;
1553 *batch++ = target_addr;
1554 } else if (IS_I965G(eb->i915)) {
1555 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1556 *batch++ = 0;
1557 *batch++ = vma_phys_addr(vma, offset);
1558 *batch++ = target_addr;
8802190f 1559 } else if (ver >= 4) {
e3d29130
CW
1560 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1561 *batch++ = 0;
1562 *batch++ = addr;
1563 *batch++ = target_addr;
8802190f 1564 } else if (ver >= 3 &&
e3d29130
CW
1565 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1566 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1567 *batch++ = addr;
1568 *batch++ = target_addr;
1569 } else {
1570 *batch++ = MI_STORE_DWORD_IMM;
1571 *batch++ = vma_phys_addr(vma, offset);
1572 *batch++ = target_addr;
7dd4f672
CW
1573 }
1574
ad5d95e4
DA
1575 return true;
1576}
1577
c43ce123 1578static int reloc_entry_gpu(struct i915_execbuffer *eb,
ad5d95e4
DA
1579 struct i915_vma *vma,
1580 u64 offset,
1581 u64 target_addr)
1582{
1583 if (eb->reloc_cache.vaddr)
1584 return false;
1585
1586 if (!use_reloc_gpu(vma))
1587 return false;
1588
1589 return __reloc_entry_gpu(eb, vma, offset, target_addr);
e3d29130
CW
1590}
1591
1592static u64
ad5d95e4 1593relocate_entry(struct i915_vma *vma,
e3d29130 1594 const struct drm_i915_gem_relocation_entry *reloc,
ad5d95e4 1595 struct i915_execbuffer *eb,
e3d29130
CW
1596 const struct i915_vma *target)
1597{
1598 u64 target_addr = relocation_target(reloc, target);
ad5d95e4 1599 u64 offset = reloc->offset;
c43ce123
ML
1600 int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1601
1602 if (reloc_gpu < 0)
1603 return reloc_gpu;
ad5d95e4 1604
c43ce123 1605 if (!reloc_gpu) {
ad5d95e4
DA
1606 bool wide = eb->reloc_cache.use_64bit_reloc;
1607 void *vaddr;
1608
1609repeat:
47b08693 1610 vaddr = reloc_vaddr(vma->obj, eb,
ad5d95e4
DA
1611 offset >> PAGE_SHIFT);
1612 if (IS_ERR(vaddr))
1613 return PTR_ERR(vaddr);
1614
1615 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1616 clflush_write32(vaddr + offset_in_page(offset),
1617 lower_32_bits(target_addr),
1618 eb->reloc_cache.vaddr);
1619
1620 if (wide) {
1621 offset += sizeof(u32);
1622 target_addr >>= 32;
1623 wide = false;
1624 goto repeat;
1625 }
1626 }
edf4427b 1627
2889caa9 1628 return target->node.start | UPDATE;
edf4427b 1629}
edf4427b 1630
2889caa9
CW
1631static u64
1632eb_relocate_entry(struct i915_execbuffer *eb,
7d6236bb 1633 struct eb_vma *ev,
2889caa9 1634 const struct drm_i915_gem_relocation_entry *reloc)
54cf91dc 1635{
baa89ba3 1636 struct drm_i915_private *i915 = eb->i915;
7d6236bb 1637 struct eb_vma *target;
2889caa9 1638 int err;
54cf91dc 1639
67731b87 1640 /* we've already hold a reference to all valid objects */
507d977f
CW
1641 target = eb_get_vma(eb, reloc->target_handle);
1642 if (unlikely(!target))
54cf91dc 1643 return -ENOENT;
e844b990 1644
54cf91dc 1645 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 1646 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
baa89ba3 1647 drm_dbg(&i915->drm, "reloc with multiple write domains: "
507d977f 1648 "target %d offset %d "
54cf91dc 1649 "read %08x write %08x",
507d977f 1650 reloc->target_handle,
54cf91dc
CW
1651 (int) reloc->offset,
1652 reloc->read_domains,
1653 reloc->write_domain);
8b78f0e5 1654 return -EINVAL;
54cf91dc 1655 }
4ca4a250
DV
1656 if (unlikely((reloc->write_domain | reloc->read_domains)
1657 & ~I915_GEM_GPU_DOMAINS)) {
baa89ba3 1658 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
507d977f 1659 "target %d offset %d "
54cf91dc 1660 "read %08x write %08x",
507d977f 1661 reloc->target_handle,
54cf91dc
CW
1662 (int) reloc->offset,
1663 reloc->read_domains,
1664 reloc->write_domain);
8b78f0e5 1665 return -EINVAL;
54cf91dc 1666 }
54cf91dc 1667
2889caa9 1668 if (reloc->write_domain) {
7d6236bb 1669 target->flags |= EXEC_OBJECT_WRITE;
507d977f 1670
2889caa9
CW
1671 /*
1672 * Sandybridge PPGTT errata: We need a global gtt mapping
1673 * for MI and pipe_control writes because the gpu doesn't
1674 * properly redirect them through the ppgtt for non_secure
1675 * batchbuffers.
1676 */
1677 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
40e1956e 1678 GRAPHICS_VER(eb->i915) == 6) {
7d6236bb
CW
1679 err = i915_vma_bind(target->vma,
1680 target->vma->obj->cache_level,
2850748e 1681 PIN_GLOBAL, NULL);
ea97c4ca 1682 if (err)
2889caa9
CW
1683 return err;
1684 }
507d977f 1685 }
54cf91dc 1686
2889caa9
CW
1687 /*
1688 * If the relocation already has the right value in it, no
54cf91dc
CW
1689 * more work needs to be done.
1690 */
ad5d95e4
DA
1691 if (!DBG_FORCE_RELOC &&
1692 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
67731b87 1693 return 0;
54cf91dc
CW
1694
1695 /* Check that the relocation address is valid... */
3c94ceee 1696 if (unlikely(reloc->offset >
7d6236bb 1697 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
baa89ba3 1698 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
507d977f
CW
1699 "target %d offset %d size %d.\n",
1700 reloc->target_handle,
1701 (int)reloc->offset,
7d6236bb 1702 (int)ev->vma->size);
8b78f0e5 1703 return -EINVAL;
54cf91dc 1704 }
b8f7ab17 1705 if (unlikely(reloc->offset & 3)) {
baa89ba3 1706 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
507d977f
CW
1707 "target %d offset %d.\n",
1708 reloc->target_handle,
1709 (int)reloc->offset);
8b78f0e5 1710 return -EINVAL;
54cf91dc
CW
1711 }
1712
071750e5
CW
1713 /*
1714 * If we write into the object, we need to force the synchronisation
1715 * barrier, either with an asynchronous clflush or if we executed the
1716 * patching using the GPU (though that should be serialised by the
1717 * timeline). To be completely sure, and since we are required to
1718 * do relocations we are already stalling, disable the user's opt
0519bcb1 1719 * out of our synchronisation.
071750e5 1720 */
7d6236bb 1721 ev->flags &= ~EXEC_OBJECT_ASYNC;
071750e5 1722
54cf91dc 1723 /* and update the user's relocation entry */
ad5d95e4 1724 return relocate_entry(ev->vma, reloc, eb, target->vma);
54cf91dc
CW
1725}
1726
7d6236bb 1727static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1728{
1d83f442 1729#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
2889caa9 1730 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
7d6236bb 1731 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
e94f7856
CW
1732 struct drm_i915_gem_relocation_entry __user *urelocs =
1733 u64_to_user_ptr(entry->relocs_ptr);
1734 unsigned long remain = entry->relocation_count;
54cf91dc 1735
e94f7856 1736 if (unlikely(remain > N_RELOC(ULONG_MAX)))
2889caa9 1737 return -EINVAL;
ebc0808f 1738
2889caa9
CW
1739 /*
1740 * We must check that the entire relocation array is safe
1741 * to read. However, if the array is not writable the user loses
1742 * the updated relocation values.
1743 */
e94f7856 1744 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
2889caa9
CW
1745 return -EFAULT;
1746
1747 do {
1748 struct drm_i915_gem_relocation_entry *r = stack;
1749 unsigned int count =
e94f7856 1750 min_t(unsigned long, remain, ARRAY_SIZE(stack));
2889caa9 1751 unsigned int copied;
1d83f442 1752
2889caa9
CW
1753 /*
1754 * This is the fast path and we cannot handle a pagefault
ebc0808f
CW
1755 * whilst holding the struct mutex lest the user pass in the
1756 * relocations contained within a mmaped bo. For in such a case
1757 * we, the page fault handler would call i915_gem_fault() and
1758 * we would try to acquire the struct mutex again. Obviously
1759 * this is bad and so lockdep complains vehemently.
1760 */
fd1500fc
ML
1761 pagefault_disable();
1762 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1763 pagefault_enable();
ad5d95e4
DA
1764 if (unlikely(copied)) {
1765 remain = -EFAULT;
1766 goto out;
1767 }
54cf91dc 1768
2889caa9 1769 remain -= count;
1d83f442 1770 do {
7d6236bb 1771 u64 offset = eb_relocate_entry(eb, ev, r);
54cf91dc 1772
2889caa9
CW
1773 if (likely(offset == 0)) {
1774 } else if ((s64)offset < 0) {
ad5d95e4
DA
1775 remain = (int)offset;
1776 goto out;
2889caa9
CW
1777 } else {
1778 /*
1779 * Note that reporting an error now
1780 * leaves everything in an inconsistent
1781 * state as we have *already* changed
1782 * the relocation value inside the
1783 * object. As we have not changed the
1784 * reloc.presumed_offset or will not
1785 * change the execobject.offset, on the
1786 * call we may not rewrite the value
1787 * inside the object, leaving it
1788 * dangling and causing a GPU hang. Unless
1789 * userspace dynamically rebuilds the
1790 * relocations on each execbuf rather than
1791 * presume a static tree.
1792 *
1793 * We did previously check if the relocations
1794 * were writable (access_ok), an error now
1795 * would be a strange race with mprotect,
1796 * having already demonstrated that we
1797 * can read from this userspace address.
1798 */
1799 offset = gen8_canonical_addr(offset & ~UPDATE);
97a37c91
CW
1800 __put_user(offset,
1801 &urelocs[r - stack].presumed_offset);
1d83f442 1802 }
2889caa9
CW
1803 } while (r++, --count);
1804 urelocs += ARRAY_SIZE(stack);
1805 } while (remain);
ad5d95e4 1806out:
c43ce123 1807 reloc_cache_reset(&eb->reloc_cache, eb);
ad5d95e4 1808 return remain;
54cf91dc
CW
1809}
1810
fd1500fc
ML
1811static int
1812eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
54cf91dc 1813{
fd1500fc
ML
1814 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1815 struct drm_i915_gem_relocation_entry *relocs =
1816 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1817 unsigned int i;
003d8b91
CW
1818 int err;
1819
fd1500fc
ML
1820 for (i = 0; i < entry->relocation_count; i++) {
1821 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
003d8b91 1822
fd1500fc
ML
1823 if ((s64)offset < 0) {
1824 err = (int)offset;
1825 goto err;
1826 }
ef398881 1827 }
fd1500fc
ML
1828 err = 0;
1829err:
c43ce123 1830 reloc_cache_reset(&eb->reloc_cache, eb);
fd1500fc
ML
1831 return err;
1832}
2889caa9 1833
fd1500fc
ML
1834static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1835{
1836 const char __user *addr, *end;
1837 unsigned long size;
1838 char __maybe_unused c;
2889caa9 1839
fd1500fc
ML
1840 size = entry->relocation_count;
1841 if (size == 0)
1842 return 0;
0e97fbb0 1843
fd1500fc
ML
1844 if (size > N_RELOC(ULONG_MAX))
1845 return -EINVAL;
2889caa9 1846
fd1500fc
ML
1847 addr = u64_to_user_ptr(entry->relocs_ptr);
1848 size *= sizeof(struct drm_i915_gem_relocation_entry);
1849 if (!access_ok(addr, size))
1850 return -EFAULT;
1851
1852 end = addr + size;
1853 for (; addr < end; addr += PAGE_SIZE) {
1854 int err = __get_user(c, addr);
1855 if (err)
1856 return err;
1857 }
1858 return __get_user(c, end - 1);
2889caa9
CW
1859}
1860
fd1500fc 1861static int eb_copy_relocations(const struct i915_execbuffer *eb)
2889caa9 1862{
fd1500fc 1863 struct drm_i915_gem_relocation_entry *relocs;
2889caa9
CW
1864 const unsigned int count = eb->buffer_count;
1865 unsigned int i;
fd1500fc 1866 int err;
54cf91dc 1867
2889caa9 1868 for (i = 0; i < count; i++) {
fd1500fc
ML
1869 const unsigned int nreloc = eb->exec[i].relocation_count;
1870 struct drm_i915_gem_relocation_entry __user *urelocs;
1871 unsigned long size;
1872 unsigned long copied;
6951e589 1873
fd1500fc
ML
1874 if (nreloc == 0)
1875 continue;
6951e589 1876
fd1500fc
ML
1877 err = check_relocations(&eb->exec[i]);
1878 if (err)
1879 goto err;
6951e589 1880
fd1500fc
ML
1881 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1882 size = nreloc * sizeof(*relocs);
6951e589 1883
fd1500fc
ML
1884 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1885 if (!relocs) {
1886 err = -ENOMEM;
1887 goto err;
6951e589 1888 }
fd1500fc
ML
1889
1890 /* copy_from_user is limited to < 4GiB */
1891 copied = 0;
1892 do {
1893 unsigned int len =
1894 min_t(u64, BIT_ULL(31), size - copied);
1895
1896 if (__copy_from_user((char *)relocs + copied,
1897 (char __user *)urelocs + copied,
1898 len))
1899 goto end;
1900
1901 copied += len;
1902 } while (copied < size);
1903
1904 /*
1905 * As we do not update the known relocation offsets after
1906 * relocating (due to the complexities in lock handling),
1907 * we need to mark them as invalid now so that we force the
1908 * relocation processing next time. Just in case the target
1909 * object is evicted and then rebound into its old
1910 * presumed_offset before the next execbuffer - if that
1911 * happened we would make the mistake of assuming that the
1912 * relocations were valid.
1913 */
1914 if (!user_access_begin(urelocs, size))
1915 goto end;
1916
1917 for (copied = 0; copied < nreloc; copied++)
1918 unsafe_put_user(-1,
1919 &urelocs[copied].presumed_offset,
1920 end_user);
1921 user_access_end();
1922
1923 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1924 }
1925
1926 return 0;
1927
1928end_user:
1929 user_access_end();
1930end:
1931 kvfree(relocs);
1932 err = -EFAULT;
1933err:
1934 while (i--) {
1935 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1936 if (eb->exec[i].relocation_count)
1937 kvfree(relocs);
1938 }
1939 return err;
1940}
1941
1942static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1943{
1944 const unsigned int count = eb->buffer_count;
1945 unsigned int i;
1946
1947 for (i = 0; i < count; i++) {
1948 int err;
1949
1950 err = check_relocations(&eb->exec[i]);
1951 if (err)
1952 return err;
1953 }
1954
1955 return 0;
1956}
1957
ed29c269
ML
1958static int eb_reinit_userptr(struct i915_execbuffer *eb)
1959{
1960 const unsigned int count = eb->buffer_count;
1961 unsigned int i;
1962 int ret;
1963
1964 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1965 return 0;
1966
1967 for (i = 0; i < count; i++) {
1968 struct eb_vma *ev = &eb->vma[i];
1969
1970 if (!i915_gem_object_is_userptr(ev->vma->obj))
1971 continue;
1972
1973 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1974 if (ret)
1975 return ret;
1976
1977 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1978 }
1979
1980 return 0;
1981}
1982
2bf541ff
ML
1983static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1984 struct i915_request *rq)
fd1500fc
ML
1985{
1986 bool have_copy = false;
1987 struct eb_vma *ev;
1988 int err = 0;
1989
1990repeat:
1991 if (signal_pending(current)) {
1992 err = -ERESTARTSYS;
1993 goto out;
6951e589 1994 }
fd1500fc 1995
c43ce123 1996 /* We may process another execbuffer during the unlock... */
b4b9731b 1997 eb_release_vmas(eb, false);
c43ce123
ML
1998 i915_gem_ww_ctx_fini(&eb->ww);
1999
2bf541ff
ML
2000 if (rq) {
2001 /* nonblocking is always false */
2002 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2003 MAX_SCHEDULE_TIMEOUT) < 0) {
2004 i915_request_put(rq);
2005 rq = NULL;
2006
2007 err = -EINTR;
2008 goto err_relock;
2009 }
2010
2011 i915_request_put(rq);
2012 rq = NULL;
2013 }
2014
fd1500fc
ML
2015 /*
2016 * We take 3 passes through the slowpatch.
2017 *
2018 * 1 - we try to just prefault all the user relocation entries and
2019 * then attempt to reuse the atomic pagefault disabled fast path again.
2020 *
2021 * 2 - we copy the user entries to a local buffer here outside of the
2022 * local and allow ourselves to wait upon any rendering before
2023 * relocations
2024 *
2025 * 3 - we already have a local copy of the relocation entries, but
2026 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
2027 */
2028 if (!err) {
2029 err = eb_prefault_relocations(eb);
2030 } else if (!have_copy) {
2031 err = eb_copy_relocations(eb);
2032 have_copy = err == 0;
2033 } else {
2034 cond_resched();
2035 err = 0;
2036 }
2037
2bf541ff 2038 if (!err)
ed29c269 2039 err = eb_reinit_userptr(eb);
fd1500fc 2040
2bf541ff 2041err_relock:
c43ce123 2042 i915_gem_ww_ctx_init(&eb->ww, true);
fd1500fc
ML
2043 if (err)
2044 goto out;
2045
c43ce123
ML
2046 /* reacquire the objects */
2047repeat_validate:
2bf541ff
ML
2048 rq = eb_pin_engine(eb, false);
2049 if (IS_ERR(rq)) {
2050 err = PTR_ERR(rq);
47b08693 2051 rq = NULL;
2bf541ff
ML
2052 goto err;
2053 }
2054
2055 /* We didn't throttle, should be NULL */
2056 GEM_WARN_ON(rq);
2057
c43ce123 2058 err = eb_validate_vmas(eb);
fd1500fc 2059 if (err)
c43ce123
ML
2060 goto err;
2061
2062 GEM_BUG_ON(!eb->batch);
fd1500fc
ML
2063
2064 list_for_each_entry(ev, &eb->relocs, reloc_link) {
2065 if (!have_copy) {
fd1500fc 2066 err = eb_relocate_vma(eb, ev);
fd1500fc
ML
2067 if (err)
2068 break;
2069 } else {
2070 err = eb_relocate_vma_slow(eb, ev);
2071 if (err)
2072 break;
2073 }
2074 }
2075
c43ce123
ML
2076 if (err == -EDEADLK)
2077 goto err;
2078
fd1500fc
ML
2079 if (err && !have_copy)
2080 goto repeat;
2081
2082 if (err)
2083 goto err;
2084
8e4ba491
ML
2085 /* as last step, parse the command buffer */
2086 err = eb_parse(eb);
2087 if (err)
2088 goto err;
2089
fd1500fc
ML
2090 /*
2091 * Leave the user relocations as are, this is the painfully slow path,
2092 * and we want to avoid the complication of dropping the lock whilst
2093 * having buffers reserved in the aperture and so causing spurious
2094 * ENOSPC for random operations.
2095 */
2096
2097err:
c43ce123 2098 if (err == -EDEADLK) {
b4b9731b 2099 eb_release_vmas(eb, false);
c43ce123
ML
2100 err = i915_gem_ww_ctx_backoff(&eb->ww);
2101 if (!err)
2102 goto repeat_validate;
2103 }
2104
fd1500fc
ML
2105 if (err == -EAGAIN)
2106 goto repeat;
2107
2108out:
2109 if (have_copy) {
2110 const unsigned int count = eb->buffer_count;
2111 unsigned int i;
2112
2113 for (i = 0; i < count; i++) {
2114 const struct drm_i915_gem_exec_object2 *entry =
2115 &eb->exec[i];
2116 struct drm_i915_gem_relocation_entry *relocs;
2117
2118 if (!entry->relocation_count)
2119 continue;
2120
2121 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2122 kvfree(relocs);
2123 }
2124 }
2125
2bf541ff
ML
2126 if (rq)
2127 i915_request_put(rq);
2128
fd1500fc
ML
2129 return err;
2130}
2131
8e4ba491 2132static int eb_relocate_parse(struct i915_execbuffer *eb)
54cf91dc 2133{
003d8b91 2134 int err;
2bf541ff
ML
2135 struct i915_request *rq = NULL;
2136 bool throttle = true;
003d8b91 2137
c43ce123 2138retry:
2bf541ff
ML
2139 rq = eb_pin_engine(eb, throttle);
2140 if (IS_ERR(rq)) {
2141 err = PTR_ERR(rq);
2142 rq = NULL;
2143 if (err != -EDEADLK)
2144 return err;
2145
2146 goto err;
2147 }
2148
2149 if (rq) {
2150 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2151
2152 /* Need to drop all locks now for throttling, take slowpath */
2153 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2154 if (err == -ETIME) {
2155 if (nonblock) {
2156 err = -EWOULDBLOCK;
2157 i915_request_put(rq);
2158 goto err;
2159 }
2160 goto slow;
2161 }
2162 i915_request_put(rq);
2163 rq = NULL;
2164 }
2165
2166 /* only throttle once, even if we didn't need to throttle */
2167 throttle = false;
2168
c43ce123
ML
2169 err = eb_validate_vmas(eb);
2170 if (err == -EAGAIN)
2171 goto slow;
2172 else if (err)
2173 goto err;
2889caa9
CW
2174
2175 /* The objects are in their final locations, apply the relocations. */
2176 if (eb->args->flags & __EXEC_HAS_RELOC) {
7d6236bb 2177 struct eb_vma *ev;
2889caa9 2178
7d6236bb 2179 list_for_each_entry(ev, &eb->relocs, reloc_link) {
7dc8f114
CW
2180 err = eb_relocate_vma(eb, ev);
2181 if (err)
fd1500fc 2182 break;
2889caa9 2183 }
fd1500fc 2184
c43ce123
ML
2185 if (err == -EDEADLK)
2186 goto err;
2187 else if (err)
2188 goto slow;
2189 }
2190
2191 if (!err)
2192 err = eb_parse(eb);
2193
2194err:
2195 if (err == -EDEADLK) {
b4b9731b 2196 eb_release_vmas(eb, false);
c43ce123
ML
2197 err = i915_gem_ww_ctx_backoff(&eb->ww);
2198 if (!err)
2199 goto retry;
2889caa9
CW
2200 }
2201
c43ce123
ML
2202 return err;
2203
2204slow:
2bf541ff 2205 err = eb_relocate_parse_slow(eb, rq);
c43ce123
ML
2206 if (err)
2207 /*
2208 * If the user expects the execobject.offset and
2209 * reloc.presumed_offset to be an exact match,
2210 * as for using NO_RELOC, then we cannot update
2211 * the execobject.offset until we have completed
2212 * relocation.
2213 */
2214 eb->args->flags &= ~__EXEC_HAS_RELOC;
2215
2216 return err;
2889caa9
CW
2217}
2218
2889caa9
CW
2219static int eb_move_to_gpu(struct i915_execbuffer *eb)
2220{
2221 const unsigned int count = eb->buffer_count;
c43ce123 2222 unsigned int i = count;
6951e589 2223 int err = 0;
6951e589
CW
2224
2225 while (i--) {
7d6236bb
CW
2226 struct eb_vma *ev = &eb->vma[i];
2227 struct i915_vma *vma = ev->vma;
2228 unsigned int flags = ev->flags;
27173f1f 2229 struct drm_i915_gem_object *obj = vma->obj;
03ade511 2230
6951e589
CW
2231 assert_vma_held(vma);
2232
c7c6e46f 2233 if (flags & EXEC_OBJECT_CAPTURE) {
e61e0f51 2234 struct i915_capture_list *capture;
b0fd47ad
CW
2235
2236 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
6951e589
CW
2237 if (capture) {
2238 capture->next = eb->request->capture_list;
2239 capture->vma = vma;
2240 eb->request->capture_list = capture;
2241 }
b0fd47ad
CW
2242 }
2243
b8f55be6
CW
2244 /*
2245 * If the GPU is not _reading_ through the CPU cache, we need
2246 * to make sure that any writes (both previous GPU writes from
2247 * before a change in snooping levels and normal CPU writes)
2248 * caught in that cache are flushed to main memory.
2249 *
2250 * We want to say
2251 * obj->cache_dirty &&
2252 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2253 * but gcc's optimiser doesn't handle that as well and emits
2254 * two jumps instead of one. Maybe one day...
2255 */
2256 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
0f46daa1 2257 if (i915_gem_clflush_object(obj, 0))
c7c6e46f 2258 flags &= ~EXEC_OBJECT_ASYNC;
0f46daa1
CW
2259 }
2260
6951e589
CW
2261 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2262 err = i915_request_await_object
2263 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2264 }
2889caa9 2265
6951e589 2266 if (err == 0)
bfaae47d
ML
2267 err = i915_vma_move_to_active(vma, eb->request,
2268 flags | __EXEC_OBJECT_NO_RESERVE);
c59a333f 2269 }
0f1dd022 2270
ed29c269
ML
2271#ifdef CONFIG_MMU_NOTIFIER
2272 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
b4b9731b 2273 read_lock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2274
2275 /*
2276 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2277 * could not have been set
2278 */
2279 for (i = 0; i < count; i++) {
2280 struct eb_vma *ev = &eb->vma[i];
2281 struct drm_i915_gem_object *obj = ev->vma->obj;
2282
2283 if (!i915_gem_object_is_userptr(obj))
2284 continue;
2285
2286 err = i915_gem_object_userptr_submit_done(obj);
2287 if (err)
2288 break;
2289 }
2290
b4b9731b 2291 read_unlock(&eb->i915->mm.notifier_lock);
ed29c269
ML
2292 }
2293#endif
2294
6951e589
CW
2295 if (unlikely(err))
2296 goto err_skip;
2297
dcd79934 2298 /* Unconditionally flush any chipset caches (for streaming writes). */
baea429d 2299 intel_gt_chipset_flush(eb->engine->gt);
2113184c 2300 return 0;
6951e589
CW
2301
2302err_skip:
36e191f0 2303 i915_request_set_error_once(eb->request, err);
6951e589 2304 return err;
54cf91dc
CW
2305}
2306
00aff3f6 2307static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 2308{
650bc635 2309 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
00aff3f6 2310 return -EINVAL;
ed5982e6 2311
2f5945bc 2312 /* Kernel clipping was a DRI1 misfeature */
cda9edd0
LL
2313 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2314 I915_EXEC_USE_EXTENSIONS))) {
cf6e7bac 2315 if (exec->num_cliprects || exec->cliprects_ptr)
00aff3f6 2316 return -EINVAL;
cf6e7bac 2317 }
2f5945bc
CW
2318
2319 if (exec->DR4 == 0xffffffff) {
2320 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2321 exec->DR4 = 0;
2322 }
2323 if (exec->DR1 || exec->DR4)
00aff3f6 2324 return -EINVAL;
2f5945bc
CW
2325
2326 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
00aff3f6 2327 return -EINVAL;
2f5945bc 2328
00aff3f6 2329 return 0;
54cf91dc
CW
2330}
2331
e61e0f51 2332static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
ae662d31 2333{
73dec95e
TU
2334 u32 *cs;
2335 int i;
ae662d31 2336
40e1956e 2337 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
5a833995 2338 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
9d662da8
DV
2339 return -EINVAL;
2340 }
ae662d31 2341
e61e0f51 2342 cs = intel_ring_begin(rq, 4 * 2 + 2);
73dec95e
TU
2343 if (IS_ERR(cs))
2344 return PTR_ERR(cs);
ae662d31 2345
2889caa9 2346 *cs++ = MI_LOAD_REGISTER_IMM(4);
ae662d31 2347 for (i = 0; i < 4; i++) {
73dec95e
TU
2348 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2349 *cs++ = 0;
ae662d31 2350 }
2889caa9 2351 *cs++ = MI_NOOP;
e61e0f51 2352 intel_ring_advance(rq, cs);
ae662d31
EA
2353
2354 return 0;
2355}
2356
4f7af194 2357static struct i915_vma *
47b08693
ML
2358shadow_batch_pin(struct i915_execbuffer *eb,
2359 struct drm_i915_gem_object *obj,
32d94048
CW
2360 struct i915_address_space *vm,
2361 unsigned int flags)
4f7af194 2362{
b291ce0a 2363 struct i915_vma *vma;
b291ce0a 2364 int err;
4f7af194 2365
b291ce0a
CW
2366 vma = i915_vma_instance(obj, vm, NULL);
2367 if (IS_ERR(vma))
2368 return vma;
2369
47b08693 2370 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
b291ce0a
CW
2371 if (err)
2372 return ERR_PTR(err);
2373
2374 return vma;
4f7af194
JB
2375}
2376
686c7c35
CW
2377struct eb_parse_work {
2378 struct dma_fence_work base;
2379 struct intel_engine_cs *engine;
2380 struct i915_vma *batch;
2381 struct i915_vma *shadow;
2382 struct i915_vma *trampoline;
c60b93cd
CW
2383 unsigned long batch_offset;
2384 unsigned long batch_length;
0edbb9ba
ML
2385 unsigned long *jump_whitelist;
2386 const void *batch_map;
2387 void *shadow_map;
686c7c35
CW
2388};
2389
2390static int __eb_parse(struct dma_fence_work *work)
2391{
2392 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
0edbb9ba
ML
2393 int ret;
2394 bool cookie;
2395
2396 cookie = dma_fence_begin_signalling();
2397 ret = intel_engine_cmd_parser(pw->engine,
2398 pw->batch,
2399 pw->batch_offset,
2400 pw->batch_length,
2401 pw->shadow,
2402 pw->jump_whitelist,
2403 pw->shadow_map,
2404 pw->batch_map);
2405 dma_fence_end_signalling(cookie);
2406
2407 return ret;
686c7c35
CW
2408}
2409
36c8e356
CW
2410static void __eb_parse_release(struct dma_fence_work *work)
2411{
2412 struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2413
0edbb9ba
ML
2414 if (!IS_ERR_OR_NULL(pw->jump_whitelist))
2415 kfree(pw->jump_whitelist);
2416
2417 if (pw->batch_map)
2418 i915_gem_object_unpin_map(pw->batch->obj);
2419 else
2420 i915_gem_object_unpin_pages(pw->batch->obj);
2421
2422 i915_gem_object_unpin_map(pw->shadow->obj);
2423
36c8e356
CW
2424 if (pw->trampoline)
2425 i915_active_release(&pw->trampoline->active);
2426 i915_active_release(&pw->shadow->active);
2427 i915_active_release(&pw->batch->active);
2428}
2429
686c7c35
CW
2430static const struct dma_fence_work_ops eb_parse_ops = {
2431 .name = "eb_parse",
2432 .work = __eb_parse,
36c8e356 2433 .release = __eb_parse_release,
686c7c35
CW
2434};
2435
57a78ca4
CW
2436static inline int
2437__parser_mark_active(struct i915_vma *vma,
2438 struct intel_timeline *tl,
2439 struct dma_fence *fence)
2440{
2441 struct intel_gt_buffer_pool_node *node = vma->private;
2442
5d934137 2443 return i915_active_ref(&node->active, tl->fence_context, fence);
57a78ca4
CW
2444}
2445
2446static int
2447parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2448{
2449 int err;
2450
2451 mutex_lock(&tl->mutex);
2452
2453 err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2454 if (err)
2455 goto unlock;
2456
2457 if (pw->trampoline) {
2458 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2459 if (err)
2460 goto unlock;
2461 }
2462
2463unlock:
2464 mutex_unlock(&tl->mutex);
2465 return err;
2466}
2467
686c7c35
CW
2468static int eb_parse_pipeline(struct i915_execbuffer *eb,
2469 struct i915_vma *shadow,
2470 struct i915_vma *trampoline)
2471{
2472 struct eb_parse_work *pw;
0edbb9ba
ML
2473 struct drm_i915_gem_object *batch = eb->batch->vma->obj;
2474 bool needs_clflush;
686c7c35
CW
2475 int err;
2476
c60b93cd
CW
2477 GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2478 GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2479
686c7c35
CW
2480 pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2481 if (!pw)
2482 return -ENOMEM;
2483
7d6236bb 2484 err = i915_active_acquire(&eb->batch->vma->active);
36c8e356
CW
2485 if (err)
2486 goto err_free;
2487
2488 err = i915_active_acquire(&shadow->active);
2489 if (err)
2490 goto err_batch;
2491
2492 if (trampoline) {
2493 err = i915_active_acquire(&trampoline->active);
2494 if (err)
2495 goto err_shadow;
2496 }
2497
0edbb9ba
ML
2498 pw->shadow_map = i915_gem_object_pin_map(shadow->obj, I915_MAP_WB);
2499 if (IS_ERR(pw->shadow_map)) {
2500 err = PTR_ERR(pw->shadow_map);
2501 goto err_trampoline;
2502 }
2503
2504 needs_clflush =
2505 !(batch->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);
2506
2507 pw->batch_map = ERR_PTR(-ENODEV);
2508 if (needs_clflush && i915_has_memcpy_from_wc())
2509 pw->batch_map = i915_gem_object_pin_map(batch, I915_MAP_WC);
2510
2511 if (IS_ERR(pw->batch_map)) {
2512 err = i915_gem_object_pin_pages(batch);
2513 if (err)
2514 goto err_unmap_shadow;
2515 pw->batch_map = NULL;
2516 }
2517
2518 pw->jump_whitelist =
2519 intel_engine_cmd_parser_alloc_jump_whitelist(eb->batch_len,
2520 trampoline);
2521 if (IS_ERR(pw->jump_whitelist)) {
2522 err = PTR_ERR(pw->jump_whitelist);
2523 goto err_unmap_batch;
2524 }
2525
686c7c35
CW
2526 dma_fence_work_init(&pw->base, &eb_parse_ops);
2527
2528 pw->engine = eb->engine;
7d6236bb 2529 pw->batch = eb->batch->vma;
686c7c35
CW
2530 pw->batch_offset = eb->batch_start_offset;
2531 pw->batch_length = eb->batch_len;
2532 pw->shadow = shadow;
2533 pw->trampoline = trampoline;
2534
57a78ca4
CW
2535 /* Mark active refs early for this worker, in case we get interrupted */
2536 err = parser_mark_active(pw, eb->context->timeline);
2537 if (err)
2538 goto err_commit;
2539
686c7c35
CW
2540 err = dma_resv_reserve_shared(pw->batch->resv, 1);
2541 if (err)
c43ce123 2542 goto err_commit;
686c7c35 2543
bfaae47d
ML
2544 err = dma_resv_reserve_shared(shadow->resv, 1);
2545 if (err)
2546 goto err_commit;
2547
686c7c35
CW
2548 /* Wait for all writes (and relocs) into the batch to complete */
2549 err = i915_sw_fence_await_reservation(&pw->base.chain,
2550 pw->batch->resv, NULL, false,
2551 0, I915_FENCE_GFP);
2552 if (err < 0)
c43ce123 2553 goto err_commit;
686c7c35
CW
2554
2555 /* Keep the batch alive and unwritten as we parse */
2556 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2557
686c7c35 2558 /* Force execution to wait for completion of the parser */
686c7c35 2559 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
686c7c35 2560
92581f9f 2561 dma_fence_work_commit_imm(&pw->base);
686c7c35
CW
2562 return 0;
2563
57a78ca4
CW
2564err_commit:
2565 i915_sw_fence_set_error_once(&pw->base.chain, err);
2566 dma_fence_work_commit_imm(&pw->base);
2567 return err;
2568
0edbb9ba
ML
2569err_unmap_batch:
2570 if (pw->batch_map)
2571 i915_gem_object_unpin_map(batch);
2572 else
2573 i915_gem_object_unpin_pages(batch);
2574err_unmap_shadow:
2575 i915_gem_object_unpin_map(shadow->obj);
2576err_trampoline:
2577 if (trampoline)
2578 i915_active_release(&trampoline->active);
36c8e356
CW
2579err_shadow:
2580 i915_active_release(&shadow->active);
2581err_batch:
7d6236bb 2582 i915_active_release(&eb->batch->vma->active);
36c8e356 2583err_free:
686c7c35
CW
2584 kfree(pw);
2585 return err;
2586}
2587
47b08693
ML
2588static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2589{
2590 /*
2591 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2592 * batch" bit. Hence we need to pin secure batches into the global gtt.
2593 * hsw should have this fixed, but bdw mucks it up again. */
2594 if (eb->batch_flags & I915_DISPATCH_SECURE)
2595 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2596
2597 return NULL;
2598}
2599
51696691 2600static int eb_parse(struct i915_execbuffer *eb)
71745376 2601{
baa89ba3 2602 struct drm_i915_private *i915 = eb->i915;
c43ce123 2603 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
47b08693 2604 struct i915_vma *shadow, *trampoline, *batch;
d5e87821 2605 unsigned long len;
2889caa9 2606 int err;
71745376 2607
47b08693
ML
2608 if (!eb_use_cmdparser(eb)) {
2609 batch = eb_dispatch_secure(eb, eb->batch->vma);
2610 if (IS_ERR(batch))
2611 return PTR_ERR(batch);
2612
2613 goto secure_batch;
2614 }
51696691 2615
32d94048
CW
2616 len = eb->batch_len;
2617 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2618 /*
2619 * ppGTT backed shadow buffers must be mapped RO, to prevent
2620 * post-scan tampering
2621 */
2622 if (!eb->context->vm->has_read_only) {
baa89ba3
WK
2623 drm_dbg(&i915->drm,
2624 "Cannot prevent post-scan tampering without RO capable vm\n");
32d94048
CW
2625 return -EINVAL;
2626 }
2627 } else {
2628 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2629 }
d5e87821
CW
2630 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2631 return -EINVAL;
32d94048 2632
c43ce123 2633 if (!pool) {
8f47c8c3
MA
2634 pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2635 I915_MAP_WB);
c43ce123
ML
2636 if (IS_ERR(pool))
2637 return PTR_ERR(pool);
2638 eb->batch_pool = pool;
2639 }
71745376 2640
c43ce123
ML
2641 err = i915_gem_object_lock(pool->obj, &eb->ww);
2642 if (err)
2643 goto err;
71745376 2644
47b08693 2645 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
32d94048
CW
2646 if (IS_ERR(shadow)) {
2647 err = PTR_ERR(shadow);
f8c08d8f 2648 goto err;
51696691 2649 }
c9398775 2650 intel_gt_buffer_pool_mark_used(pool);
32d94048 2651 i915_gem_object_set_readonly(shadow->obj);
57a78ca4 2652 shadow->private = pool;
32d94048
CW
2653
2654 trampoline = NULL;
2655 if (CMDPARSER_USES_GGTT(eb->i915)) {
2656 trampoline = shadow;
2657
47b08693 2658 shadow = shadow_batch_pin(eb, pool->obj,
32d94048
CW
2659 &eb->engine->gt->ggtt->vm,
2660 PIN_GLOBAL);
2661 if (IS_ERR(shadow)) {
2662 err = PTR_ERR(shadow);
2663 shadow = trampoline;
2664 goto err_shadow;
2665 }
57a78ca4 2666 shadow->private = pool;
32d94048
CW
2667
2668 eb->batch_flags |= I915_DISPATCH_SECURE;
2669 }
f8c08d8f 2670
47b08693
ML
2671 batch = eb_dispatch_secure(eb, shadow);
2672 if (IS_ERR(batch)) {
2673 err = PTR_ERR(batch);
2674 goto err_trampoline;
2675 }
2676
686c7c35 2677 err = eb_parse_pipeline(eb, shadow, trampoline);
32d94048 2678 if (err)
47b08693 2679 goto err_unpin_batch;
71745376 2680
7d6236bb 2681 eb->batch = &eb->vma[eb->buffer_count++];
47b08693
ML
2682 eb->batch->vma = i915_vma_get(shadow);
2683 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
71745376 2684
32d94048 2685 eb->trampoline = trampoline;
4f7af194 2686 eb->batch_start_offset = 0;
4f7af194 2687
47b08693
ML
2688secure_batch:
2689 if (batch) {
2690 eb->batch = &eb->vma[eb->buffer_count++];
2691 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2692 eb->batch->vma = i915_vma_get(batch);
2693 }
51696691 2694 return 0;
b40d7378 2695
47b08693
ML
2696err_unpin_batch:
2697 if (batch)
2698 i915_vma_unpin(batch);
32d94048
CW
2699err_trampoline:
2700 if (trampoline)
2701 i915_vma_unpin(trampoline);
2702err_shadow:
2703 i915_vma_unpin(shadow);
b40d7378 2704err:
51696691 2705 return err;
71745376 2706}
5c6c6003 2707
7d6236bb 2708static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
78382593 2709{
2889caa9 2710 int err;
78382593 2711
9b3a8f55
CW
2712 if (intel_context_nopreempt(eb->context))
2713 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2714
2889caa9
CW
2715 err = eb_move_to_gpu(eb);
2716 if (err)
2717 return err;
78382593 2718
650bc635 2719 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2889caa9
CW
2720 err = i915_reset_gen7_sol_offsets(eb->request);
2721 if (err)
2722 return err;
78382593
OM
2723 }
2724
85474441
CW
2725 /*
2726 * After we completed waiting for other engines (using HW semaphores)
2727 * then we can signal that this request/batch is ready to run. This
2728 * allows us to determine if the batch is still waiting on the GPU
2729 * or actually running by checking the breadcrumb.
2730 */
2731 if (eb->engine->emit_init_breadcrumb) {
2732 err = eb->engine->emit_init_breadcrumb(eb->request);
2733 if (err)
2734 return err;
2735 }
2736
2889caa9 2737 err = eb->engine->emit_bb_start(eb->request,
7d6236bb 2738 batch->node.start +
650bc635
CW
2739 eb->batch_start_offset,
2740 eb->batch_len,
2889caa9
CW
2741 eb->batch_flags);
2742 if (err)
2743 return err;
78382593 2744
32d94048
CW
2745 if (eb->trampoline) {
2746 GEM_BUG_ON(eb->batch_start_offset);
2747 err = eb->engine->emit_bb_start(eb->request,
2748 eb->trampoline->node.start +
2749 eb->batch_len,
2750 0, 0);
2751 if (err)
2752 return err;
2753 }
2754
2f5945bc 2755 return 0;
78382593
OM
2756}
2757
d5b2a3a4
CW
2758static int num_vcs_engines(const struct drm_i915_private *i915)
2759{
bb80d878 2760 return hweight_long(VDBOX_MASK(&i915->gt));
d5b2a3a4
CW
2761}
2762
204bcfef 2763/*
a8ebba75 2764 * Find one BSD ring to dispatch the corresponding BSD command.
c80ff16e 2765 * The engine index is returned.
a8ebba75 2766 */
de1add36 2767static unsigned int
c80ff16e
CW
2768gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2769 struct drm_file *file)
a8ebba75 2770{
a8ebba75
ZY
2771 struct drm_i915_file_private *file_priv = file->driver_priv;
2772
de1add36 2773 /* Check whether the file_priv has already selected one ring. */
6f633402 2774 if ((int)file_priv->bsd_engine < 0)
1a07e86c
CW
2775 file_priv->bsd_engine =
2776 get_random_int() % num_vcs_engines(dev_priv);
d23db88c 2777
c80ff16e 2778 return file_priv->bsd_engine;
d23db88c
CW
2779}
2780
5e2a0419 2781static const enum intel_engine_id user_ring_map[] = {
8a68d464
CW
2782 [I915_EXEC_DEFAULT] = RCS0,
2783 [I915_EXEC_RENDER] = RCS0,
2784 [I915_EXEC_BLT] = BCS0,
2785 [I915_EXEC_BSD] = VCS0,
2786 [I915_EXEC_VEBOX] = VECS0
de1add36
TU
2787};
2788
2bf541ff 2789static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
e5dadff4
CW
2790{
2791 struct intel_ring *ring = ce->ring;
2792 struct intel_timeline *tl = ce->timeline;
2793 struct i915_request *rq;
2794
2795 /*
2796 * Completely unscientific finger-in-the-air estimates for suitable
2797 * maximum user request size (to avoid blocking) and then backoff.
2798 */
2799 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2800 return NULL;
2801
2802 /*
2803 * Find a request that after waiting upon, there will be at least half
2804 * the ring available. The hysteresis allows us to compete for the
2805 * shared ring and should mean that we sleep less often prior to
2806 * claiming our resources, but not so long that the ring completely
2807 * drains before we can submit our next request.
2808 */
2809 list_for_each_entry(rq, &tl->requests, link) {
2810 if (rq->ring != ring)
2811 continue;
2812
2813 if (__intel_ring_space(rq->postfix,
2814 ring->emit, ring->size) > ring->size / 2)
2815 break;
2816 }
2817 if (&rq->link == &tl->requests)
2818 return NULL; /* weird, we will check again later for real */
2819
2820 return i915_request_get(rq);
2821}
2822
2bf541ff 2823static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
e5dadff4 2824{
2bf541ff 2825 struct intel_context *ce = eb->context;
e5dadff4 2826 struct intel_timeline *tl;
2bf541ff 2827 struct i915_request *rq = NULL;
e5dadff4
CW
2828 int err;
2829
2bf541ff 2830 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
8f2a1057 2831
9f3ccd40 2832 if (unlikely(intel_context_is_banned(ce)))
2bf541ff 2833 return ERR_PTR(-EIO);
9f3ccd40 2834
8f2a1057
CW
2835 /*
2836 * Pinning the contexts may generate requests in order to acquire
2837 * GGTT space, so do this first before we reserve a seqno for
2838 * ourselves.
2839 */
47b08693 2840 err = intel_context_pin_ww(ce, &eb->ww);
fa9f6681 2841 if (err)
2bf541ff 2842 return ERR_PTR(err);
8f2a1057 2843
a4e57f90
CW
2844 /*
2845 * Take a local wakeref for preparing to dispatch the execbuf as
2846 * we expect to access the hardware fairly frequently in the
2847 * process, and require the engine to be kept awake between accesses.
2848 * Upon dispatch, we acquire another prolonged wakeref that we hold
2849 * until the timeline is idle, which in turn releases the wakeref
2850 * taken on the engine, and the parent device.
2851 */
e5dadff4
CW
2852 tl = intel_context_timeline_lock(ce);
2853 if (IS_ERR(tl)) {
2bf541ff
ML
2854 intel_context_unpin(ce);
2855 return ERR_CAST(tl);
e5dadff4 2856 }
a4e57f90
CW
2857
2858 intel_context_enter(ce);
2bf541ff
ML
2859 if (throttle)
2860 rq = eb_throttle(eb, ce);
e5dadff4
CW
2861 intel_context_timeline_unlock(tl);
2862
2bf541ff
ML
2863 eb->args->flags |= __EXEC_ENGINE_PINNED;
2864 return rq;
8f2a1057
CW
2865}
2866
e5dadff4 2867static void eb_unpin_engine(struct i915_execbuffer *eb)
8f2a1057 2868{
a4e57f90 2869 struct intel_context *ce = eb->context;
75d0a7f3 2870 struct intel_timeline *tl = ce->timeline;
a4e57f90 2871
2bf541ff
ML
2872 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2873 return;
2874
2875 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2876
a4e57f90
CW
2877 mutex_lock(&tl->mutex);
2878 intel_context_exit(ce);
2879 mutex_unlock(&tl->mutex);
2880
2850748e 2881 intel_context_unpin(ce);
8f2a1057 2882}
de1add36 2883
5e2a0419 2884static unsigned int
b49a7d51 2885eb_select_legacy_ring(struct i915_execbuffer *eb)
de1add36 2886{
8f2a1057 2887 struct drm_i915_private *i915 = eb->i915;
b49a7d51 2888 struct drm_i915_gem_execbuffer2 *args = eb->args;
de1add36 2889 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
de1add36 2890
5e2a0419
CW
2891 if (user_ring_id != I915_EXEC_BSD &&
2892 (args->flags & I915_EXEC_BSD_MASK)) {
baa89ba3
WK
2893 drm_dbg(&i915->drm,
2894 "execbuf with non bsd ring but with invalid "
2895 "bsd dispatch flags: %d\n", (int)(args->flags));
5e2a0419 2896 return -1;
de1add36
TU
2897 }
2898
d5b2a3a4 2899 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
de1add36
TU
2900 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2901
2902 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
b49a7d51 2903 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
de1add36
TU
2904 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2905 bsd_idx <= I915_EXEC_BSD_RING2) {
d9da6aa0 2906 bsd_idx >>= I915_EXEC_BSD_SHIFT;
de1add36
TU
2907 bsd_idx--;
2908 } else {
baa89ba3
WK
2909 drm_dbg(&i915->drm,
2910 "execbuf with unknown bsd ring: %u\n",
2911 bsd_idx);
5e2a0419 2912 return -1;
de1add36
TU
2913 }
2914
5e2a0419 2915 return _VCS(bsd_idx);
de1add36
TU
2916 }
2917
5e2a0419 2918 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
baa89ba3
WK
2919 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2920 user_ring_id);
5e2a0419 2921 return -1;
de1add36
TU
2922 }
2923
5e2a0419
CW
2924 return user_ring_map[user_ring_id];
2925}
2926
2927static int
2bf541ff 2928eb_select_engine(struct i915_execbuffer *eb)
5e2a0419
CW
2929{
2930 struct intel_context *ce;
2931 unsigned int idx;
2932 int err;
2933
976b55f0 2934 if (i915_gem_context_user_engines(eb->gem_context))
b49a7d51 2935 idx = eb->args->flags & I915_EXEC_RING_MASK;
976b55f0 2936 else
b49a7d51 2937 idx = eb_select_legacy_ring(eb);
5e2a0419
CW
2938
2939 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2940 if (IS_ERR(ce))
2941 return PTR_ERR(ce);
2942
2bf541ff 2943 intel_gt_pm_get(ce->engine->gt);
5e2a0419 2944
2bf541ff
ML
2945 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2946 err = intel_context_alloc_state(ce);
2947 if (err)
2948 goto err;
2949 }
2950
2951 /*
2952 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2953 * EIO if the GPU is already wedged.
2954 */
2955 err = intel_gt_terminally_wedged(ce->engine->gt);
2956 if (err)
2957 goto err;
2958
2959 eb->context = ce;
2960 eb->engine = ce->engine;
2961
2962 /*
2963 * Make sure engine pool stays alive even if we call intel_context_put
2964 * during ww handling. The pool is destroyed when last pm reference
2965 * is dropped, which breaks our -EDEADLK handling.
2966 */
2967 return err;
2968
2969err:
2970 intel_gt_pm_put(ce->engine->gt);
2971 intel_context_put(ce);
5e2a0419 2972 return err;
de1add36
TU
2973}
2974
2bf541ff
ML
2975static void
2976eb_put_engine(struct i915_execbuffer *eb)
2977{
2978 intel_gt_pm_put(eb->engine->gt);
2979 intel_context_put(eb->context);
2980}
2981
cf6e7bac 2982static void
13149e8b 2983__free_fence_array(struct eb_fence *fences, unsigned int n)
cf6e7bac 2984{
13149e8b 2985 while (n--) {
cda9edd0 2986 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
13149e8b
LL
2987 dma_fence_put(fences[n].dma_fence);
2988 kfree(fences[n].chain_fence);
2989 }
cf6e7bac
JE
2990 kvfree(fences);
2991}
2992
cda9edd0 2993static int
13149e8b
LL
2994add_timeline_fence_array(struct i915_execbuffer *eb,
2995 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
cf6e7bac 2996{
13149e8b
LL
2997 struct drm_i915_gem_exec_fence __user *user_fences;
2998 u64 __user *user_values;
2999 struct eb_fence *f;
3000 u64 nfences;
3001 int err = 0;
cf6e7bac 3002
13149e8b
LL
3003 nfences = timeline_fences->fence_count;
3004 if (!nfences)
cda9edd0 3005 return 0;
cf6e7bac 3006
d710fc16
CW
3007 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
3008 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3009 if (nfences > min_t(unsigned long,
13149e8b
LL
3010 ULONG_MAX / sizeof(*user_fences),
3011 SIZE_MAX / sizeof(*f)) - eb->num_fences)
cda9edd0 3012 return -EINVAL;
cf6e7bac 3013
13149e8b
LL
3014 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
3015 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
3016 return -EFAULT;
3017
3018 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
3019 if (!access_ok(user_values, nfences * sizeof(*user_values)))
cda9edd0 3020 return -EFAULT;
cf6e7bac 3021
13149e8b
LL
3022 f = krealloc(eb->fences,
3023 (eb->num_fences + nfences) * sizeof(*f),
3024 __GFP_NOWARN | GFP_KERNEL);
3025 if (!f)
cda9edd0 3026 return -ENOMEM;
cf6e7bac 3027
13149e8b
LL
3028 eb->fences = f;
3029 f += eb->num_fences;
3030
3031 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3032 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3033
3034 while (nfences--) {
3035 struct drm_i915_gem_exec_fence user_fence;
cf6e7bac 3036 struct drm_syncobj *syncobj;
13149e8b
LL
3037 struct dma_fence *fence = NULL;
3038 u64 point;
3039
3040 if (__copy_from_user(&user_fence,
3041 user_fences++,
3042 sizeof(user_fence)))
3043 return -EFAULT;
3044
3045 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3046 return -EINVAL;
3047
3048 if (__get_user(point, user_values++))
3049 return -EFAULT;
3050
3051 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3052 if (!syncobj) {
3053 DRM_DEBUG("Invalid syncobj handle provided\n");
3054 return -ENOENT;
3055 }
3056
3057 fence = drm_syncobj_fence_get(syncobj);
cf6e7bac 3058
13149e8b
LL
3059 if (!fence && user_fence.flags &&
3060 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3061 DRM_DEBUG("Syncobj handle has no fence\n");
3062 drm_syncobj_put(syncobj);
3063 return -EINVAL;
cf6e7bac
JE
3064 }
3065
13149e8b
LL
3066 if (fence)
3067 err = dma_fence_chain_find_seqno(&fence, point);
3068
3069 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3070 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
da1ea128 3071 dma_fence_put(fence);
13149e8b
LL
3072 drm_syncobj_put(syncobj);
3073 return err;
3074 }
3075
3076 /*
3077 * A point might have been signaled already and
3078 * garbage collected from the timeline. In this case
3079 * just ignore the point and carry on.
3080 */
3081 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3082 drm_syncobj_put(syncobj);
3083 continue;
3084 }
3085
3086 /*
3087 * For timeline syncobjs we need to preallocate chains for
3088 * later signaling.
3089 */
3090 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
3091 /*
3092 * Waiting and signaling the same point (when point !=
3093 * 0) would break the timeline.
3094 */
3095 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3096 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
3097 dma_fence_put(fence);
3098 drm_syncobj_put(syncobj);
3099 return -EINVAL;
3100 }
3101
3102 f->chain_fence =
3103 kmalloc(sizeof(*f->chain_fence),
3104 GFP_KERNEL);
3105 if (!f->chain_fence) {
3106 drm_syncobj_put(syncobj);
3107 dma_fence_put(fence);
3108 return -ENOMEM;
3109 }
3110 } else {
3111 f->chain_fence = NULL;
ebcaa1ff
TU
3112 }
3113
13149e8b
LL
3114 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3115 f->dma_fence = fence;
3116 f->value = point;
3117 f++;
3118 eb->num_fences++;
3119 }
3120
3121 return 0;
3122}
3123
3124static int add_fence_array(struct i915_execbuffer *eb)
3125{
3126 struct drm_i915_gem_execbuffer2 *args = eb->args;
3127 struct drm_i915_gem_exec_fence __user *user;
3128 unsigned long num_fences = args->num_cliprects;
3129 struct eb_fence *f;
3130
3131 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
3132 return 0;
3133
3134 if (!num_fences)
3135 return 0;
3136
3137 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
3138 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3139 if (num_fences > min_t(unsigned long,
3140 ULONG_MAX / sizeof(*user),
3141 SIZE_MAX / sizeof(*f) - eb->num_fences))
3142 return -EINVAL;
3143
3144 user = u64_to_user_ptr(args->cliprects_ptr);
3145 if (!access_ok(user, num_fences * sizeof(*user)))
3146 return -EFAULT;
3147
3148 f = krealloc(eb->fences,
3149 (eb->num_fences + num_fences) * sizeof(*f),
3150 __GFP_NOWARN | GFP_KERNEL);
3151 if (!f)
3152 return -ENOMEM;
3153
3154 eb->fences = f;
3155 f += eb->num_fences;
3156 while (num_fences--) {
3157 struct drm_i915_gem_exec_fence user_fence;
3158 struct drm_syncobj *syncobj;
3159 struct dma_fence *fence = NULL;
3160
3161 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
3162 return -EFAULT;
3163
3164 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3165 return -EINVAL;
3166
3167 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
cf6e7bac
JE
3168 if (!syncobj) {
3169 DRM_DEBUG("Invalid syncobj handle provided\n");
13149e8b
LL
3170 return -ENOENT;
3171 }
3172
3173 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3174 fence = drm_syncobj_fence_get(syncobj);
3175 if (!fence) {
3176 DRM_DEBUG("Syncobj handle has no fence\n");
3177 drm_syncobj_put(syncobj);
3178 return -EINVAL;
3179 }
cf6e7bac
JE
3180 }
3181
ebcaa1ff
TU
3182 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3183 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3184
13149e8b
LL
3185 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3186 f->dma_fence = fence;
3187 f->value = 0;
3188 f->chain_fence = NULL;
3189 f++;
3190 eb->num_fences++;
cf6e7bac
JE
3191 }
3192
cda9edd0 3193 return 0;
13149e8b 3194}
cf6e7bac 3195
13149e8b
LL
3196static void put_fence_array(struct eb_fence *fences, int num_fences)
3197{
3198 if (fences)
3199 __free_fence_array(fences, num_fences);
cf6e7bac
JE
3200}
3201
3202static int
cda9edd0 3203await_fence_array(struct i915_execbuffer *eb)
cf6e7bac 3204{
cf6e7bac
JE
3205 unsigned int n;
3206 int err;
3207
13149e8b 3208 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac 3209 struct drm_syncobj *syncobj;
cf6e7bac
JE
3210 unsigned int flags;
3211
cda9edd0 3212 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac 3213
13149e8b
LL
3214 if (!eb->fences[n].dma_fence)
3215 continue;
cf6e7bac 3216
13149e8b
LL
3217 err = i915_request_await_dma_fence(eb->request,
3218 eb->fences[n].dma_fence);
cf6e7bac
JE
3219 if (err < 0)
3220 return err;
3221 }
3222
3223 return 0;
3224}
3225
13149e8b 3226static void signal_fence_array(const struct i915_execbuffer *eb)
cf6e7bac 3227{
cf6e7bac
JE
3228 struct dma_fence * const fence = &eb->request->fence;
3229 unsigned int n;
3230
13149e8b 3231 for (n = 0; n < eb->num_fences; n++) {
cf6e7bac
JE
3232 struct drm_syncobj *syncobj;
3233 unsigned int flags;
3234
cda9edd0 3235 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
cf6e7bac
JE
3236 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3237 continue;
3238
13149e8b
LL
3239 if (eb->fences[n].chain_fence) {
3240 drm_syncobj_add_point(syncobj,
3241 eb->fences[n].chain_fence,
3242 fence,
3243 eb->fences[n].value);
3244 /*
3245 * The chain's ownership is transferred to the
3246 * timeline.
3247 */
3248 eb->fences[n].chain_fence = NULL;
3249 } else {
3250 drm_syncobj_replace_fence(syncobj, fence);
3251 }
cf6e7bac
JE
3252 }
3253}
3254
13149e8b
LL
3255static int
3256parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3257{
3258 struct i915_execbuffer *eb = data;
3259 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3260
3261 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3262 return -EFAULT;
3263
3264 return add_timeline_fence_array(eb, &timeline_fences);
3265}
3266
61231f6b
CW
3267static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3268{
3269 struct i915_request *rq, *rn;
3270
3271 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3272 if (rq == end || !i915_request_retire(rq))
3273 break;
3274}
3275
ba38b79e 3276static int eb_request_add(struct i915_execbuffer *eb, int err)
61231f6b
CW
3277{
3278 struct i915_request *rq = eb->request;
3279 struct intel_timeline * const tl = i915_request_timeline(rq);
3280 struct i915_sched_attr attr = {};
3281 struct i915_request *prev;
3282
3283 lockdep_assert_held(&tl->mutex);
3284 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3285
3286 trace_i915_request_add(rq);
3287
3288 prev = __i915_request_commit(rq);
3289
3290 /* Check that the context wasn't destroyed before submission */
207e4a71 3291 if (likely(!intel_context_is_closed(eb->context))) {
61231f6b 3292 attr = eb->gem_context->sched;
61231f6b
CW
3293 } else {
3294 /* Serialise with context_close via the add_to_timeline */
36e191f0
CW
3295 i915_request_set_error_once(rq, -ENOENT);
3296 __i915_request_skip(rq);
ba38b79e 3297 err = -ENOENT; /* override any transient errors */
61231f6b
CW
3298 }
3299
61231f6b 3300 __i915_request_queue(rq, &attr);
61231f6b
CW
3301
3302 /* Try to clean up the client's timeline after submitting the request */
3303 if (prev)
3304 retire_requests(tl, prev);
3305
3306 mutex_unlock(&tl->mutex);
ba38b79e
CW
3307
3308 return err;
61231f6b
CW
3309}
3310
cda9edd0 3311static const i915_user_extension_fn execbuf_extensions[] = {
13149e8b 3312 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
cda9edd0
LL
3313};
3314
3315static int
3316parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3317 struct i915_execbuffer *eb)
3318{
cda9edd0
LL
3319 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3320 return 0;
3321
3322 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3323 * have another flag also using it at the same time.
3324 */
3325 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3326 return -EINVAL;
3327
3328 if (args->num_cliprects != 0)
3329 return -EINVAL;
3330
3331 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3332 execbuf_extensions,
3333 ARRAY_SIZE(execbuf_extensions),
3334 eb);
3335}
3336
54cf91dc 3337static int
650bc635 3338i915_gem_do_execbuffer(struct drm_device *dev,
54cf91dc
CW
3339 struct drm_file *file,
3340 struct drm_i915_gem_execbuffer2 *args,
cda9edd0 3341 struct drm_i915_gem_exec_object2 *exec)
54cf91dc 3342{
44157641 3343 struct drm_i915_private *i915 = to_i915(dev);
650bc635 3344 struct i915_execbuffer eb;
fec0445c
CW
3345 struct dma_fence *in_fence = NULL;
3346 struct sync_file *out_fence = NULL;
7d6236bb 3347 struct i915_vma *batch;
fec0445c 3348 int out_fence_fd = -1;
2889caa9 3349 int err;
432e58ed 3350
74c1c694 3351 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2889caa9
CW
3352 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3353 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
54cf91dc 3354
44157641 3355 eb.i915 = i915;
650bc635
CW
3356 eb.file = file;
3357 eb.args = args;
ad5d95e4 3358 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2889caa9 3359 args->flags |= __EXEC_HAS_RELOC;
c7c6e46f 3360
650bc635 3361 eb.exec = exec;
8ae275c2
ML
3362 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3363 eb.vma[0].vma = NULL;
c43ce123 3364 eb.reloc_pool = eb.batch_pool = NULL;
2bf541ff 3365 eb.reloc_context = NULL;
c7c6e46f 3366
2889caa9 3367 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
650bc635
CW
3368 reloc_cache_init(&eb.reloc_cache, eb.i915);
3369
2889caa9 3370 eb.buffer_count = args->buffer_count;
650bc635
CW
3371 eb.batch_start_offset = args->batch_start_offset;
3372 eb.batch_len = args->batch_len;
32d94048 3373 eb.trampoline = NULL;
650bc635 3374
cda9edd0 3375 eb.fences = NULL;
13149e8b 3376 eb.num_fences = 0;
cda9edd0 3377
2889caa9 3378 eb.batch_flags = 0;
d7d4eedd 3379 if (args->flags & I915_EXEC_SECURE) {
40e1956e 3380 if (GRAPHICS_VER(i915) >= 11)
44157641
JB
3381 return -ENODEV;
3382
3383 /* Return -EPERM to trigger fallback code on old binaries. */
3384 if (!HAS_SECURE_BATCHES(i915))
3385 return -EPERM;
3386
b3ac9f25 3387 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
44157641 3388 return -EPERM;
d7d4eedd 3389
2889caa9 3390 eb.batch_flags |= I915_DISPATCH_SECURE;
d7d4eedd 3391 }
b45305fc 3392 if (args->flags & I915_EXEC_IS_PINNED)
2889caa9 3393 eb.batch_flags |= I915_DISPATCH_PINNED;
54cf91dc 3394
13149e8b
LL
3395 err = parse_execbuf2_extensions(args, &eb);
3396 if (err)
3397 goto err_ext;
3398
3399 err = add_fence_array(&eb);
3400 if (err)
3401 goto err_ext;
3402
889333c7
CW
3403#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3404 if (args->flags & IN_FENCES) {
3405 if ((args->flags & IN_FENCES) == IN_FENCES)
3406 return -EINVAL;
3407
fec0445c 3408 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
13149e8b
LL
3409 if (!in_fence) {
3410 err = -EINVAL;
3411 goto err_ext;
3412 }
fec0445c 3413 }
889333c7 3414#undef IN_FENCES
a88b6e4c 3415
fec0445c
CW
3416 if (args->flags & I915_EXEC_FENCE_OUT) {
3417 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3418 if (out_fence_fd < 0) {
2889caa9 3419 err = out_fence_fd;
889333c7 3420 goto err_in_fence;
fec0445c
CW
3421 }
3422 }
3423
cda9edd0
LL
3424 err = eb_create(&eb);
3425 if (err)
13149e8b 3426 goto err_out_fence;
cda9edd0 3427
4d470f73 3428 GEM_BUG_ON(!eb.lut_size);
2889caa9 3429
1acfc104
CW
3430 err = eb_select_context(&eb);
3431 if (unlikely(err))
3432 goto err_destroy;
3433
2bf541ff 3434 err = eb_select_engine(&eb);
d6f328bf 3435 if (unlikely(err))
e5dadff4 3436 goto err_context;
d6f328bf 3437
c43ce123
ML
3438 err = eb_lookup_vmas(&eb);
3439 if (err) {
b4b9731b 3440 eb_release_vmas(&eb, true);
c43ce123
ML
3441 goto err_engine;
3442 }
3443
3444 i915_gem_ww_ctx_init(&eb.ww, true);
3445
8e4ba491 3446 err = eb_relocate_parse(&eb);
1f727d9e 3447 if (err) {
2889caa9
CW
3448 /*
3449 * If the user expects the execobject.offset and
3450 * reloc.presumed_offset to be an exact match,
3451 * as for using NO_RELOC, then we cannot update
3452 * the execobject.offset until we have completed
3453 * relocation.
3454 */
3455 args->flags &= ~__EXEC_HAS_RELOC;
2889caa9 3456 goto err_vma;
1f727d9e 3457 }
54cf91dc 3458
c43ce123 3459 ww_acquire_done(&eb.ww.ctx);
7d6236bb 3460
7d6236bb 3461 batch = eb.batch->vma;
d7d4eedd 3462
7dd4f672
CW
3463 /* All GPU relocation batches must be submitted prior to the user rq */
3464 GEM_BUG_ON(eb.reloc_cache.rq);
3465
0c8dac88 3466 /* Allocate a request for this batch buffer nice and early. */
8f2a1057 3467 eb.request = i915_request_create(eb.context);
650bc635 3468 if (IS_ERR(eb.request)) {
2889caa9 3469 err = PTR_ERR(eb.request);
47b08693 3470 goto err_vma;
26827088 3471 }
0c8dac88 3472
00dae4d3
JE
3473 if (unlikely(eb.gem_context->syncobj)) {
3474 struct dma_fence *fence;
3475
3476 fence = drm_syncobj_fence_get(eb.gem_context->syncobj);
3477 err = i915_request_await_dma_fence(eb.request, fence);
3478 dma_fence_put(fence);
3479 if (err)
3480 goto err_ext;
3481 }
3482
fec0445c 3483 if (in_fence) {
889333c7
CW
3484 if (args->flags & I915_EXEC_FENCE_SUBMIT)
3485 err = i915_request_await_execution(eb.request,
5ac545b8 3486 in_fence);
889333c7
CW
3487 else
3488 err = i915_request_await_dma_fence(eb.request,
3489 in_fence);
a88b6e4c
CW
3490 if (err < 0)
3491 goto err_request;
3492 }
3493
13149e8b 3494 if (eb.fences) {
cda9edd0 3495 err = await_fence_array(&eb);
cf6e7bac
JE
3496 if (err)
3497 goto err_request;
3498 }
3499
fec0445c 3500 if (out_fence_fd != -1) {
650bc635 3501 out_fence = sync_file_create(&eb.request->fence);
fec0445c 3502 if (!out_fence) {
2889caa9 3503 err = -ENOMEM;
fec0445c
CW
3504 goto err_request;
3505 }
3506 }
3507
2889caa9
CW
3508 /*
3509 * Whilst this request exists, batch_obj will be on the
17f298cf
CW
3510 * active_list, and so will hold the active reference. Only when this
3511 * request is retired will the the batch_obj be moved onto the
3512 * inactive_list and lose its active reference. Hence we do not need
3513 * to explicitly hold another reference here.
3514 */
7d6236bb 3515 eb.request->batch = batch;
c43ce123
ML
3516 if (eb.batch_pool)
3517 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
5f19e2bf 3518
e61e0f51 3519 trace_i915_request_queue(eb.request, eb.batch_flags);
7d6236bb 3520 err = eb_submit(&eb, batch);
ed29c269 3521
aa9b7810 3522err_request:
e14177f1 3523 i915_request_get(eb.request);
ba38b79e 3524 err = eb_request_add(&eb, err);
c8659efa 3525
13149e8b 3526 if (eb.fences)
cda9edd0 3527 signal_fence_array(&eb);
cf6e7bac 3528
fec0445c 3529 if (out_fence) {
2889caa9 3530 if (err == 0) {
fec0445c 3531 fd_install(out_fence_fd, out_fence->file);
b6a88e4a 3532 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
fec0445c
CW
3533 args->rsvd2 |= (u64)out_fence_fd << 32;
3534 out_fence_fd = -1;
3535 } else {
3536 fput(out_fence->file);
3537 }
3538 }
00dae4d3
JE
3539
3540 if (unlikely(eb.gem_context->syncobj)) {
3541 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3542 &eb.request->fence);
3543 }
3544
e14177f1 3545 i915_request_put(eb.request);
54cf91dc 3546
2889caa9 3547err_vma:
b4b9731b 3548 eb_release_vmas(&eb, true);
32d94048
CW
3549 if (eb.trampoline)
3550 i915_vma_unpin(eb.trampoline);
c43ce123
ML
3551 WARN_ON(err == -EDEADLK);
3552 i915_gem_ww_ctx_fini(&eb.ww);
3553
3554 if (eb.batch_pool)
3555 intel_gt_buffer_pool_put(eb.batch_pool);
3556 if (eb.reloc_pool)
3557 intel_gt_buffer_pool_put(eb.reloc_pool);
2bf541ff
ML
3558 if (eb.reloc_context)
3559 intel_context_put(eb.reloc_context);
c43ce123 3560err_engine:
2bf541ff 3561 eb_put_engine(&eb);
a4e57f90 3562err_context:
8f2a1057 3563 i915_gem_context_put(eb.gem_context);
1acfc104 3564err_destroy:
2889caa9 3565 eb_destroy(&eb);
4d470f73 3566err_out_fence:
fec0445c
CW
3567 if (out_fence_fd != -1)
3568 put_unused_fd(out_fence_fd);
4a04e371 3569err_in_fence:
fec0445c 3570 dma_fence_put(in_fence);
13149e8b
LL
3571err_ext:
3572 put_fence_array(eb.fences, eb.num_fences);
2889caa9 3573 return err;
54cf91dc
CW
3574}
3575
d710fc16
CW
3576static size_t eb_element_size(void)
3577{
8ae275c2 3578 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
d710fc16
CW
3579}
3580
3581static bool check_buffer_count(size_t count)
3582{
3583 const size_t sz = eb_element_size();
3584
3585 /*
3586 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3587 * array size (see eb_create()). Otherwise, we can accept an array as
3588 * large as can be addressed (though use large arrays at your peril)!
3589 */
3590
3591 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3592}
3593
54cf91dc 3594int
6a20fe7b
VS
3595i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3596 struct drm_file *file)
54cf91dc 3597{
d0bf4582 3598 struct drm_i915_private *i915 = to_i915(dev);
54cf91dc 3599 struct drm_i915_gem_execbuffer2 *args = data;
2889caa9 3600 struct drm_i915_gem_exec_object2 *exec2_list;
d710fc16 3601 const size_t count = args->buffer_count;
2889caa9 3602 int err;
54cf91dc 3603
d710fc16 3604 if (!check_buffer_count(count)) {
d0bf4582 3605 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
54cf91dc
CW
3606 return -EINVAL;
3607 }
3608
00aff3f6
TU
3609 err = i915_gem_check_execbuffer(args);
3610 if (err)
3611 return err;
2889caa9 3612
47b08693
ML
3613 /* Allocate extra slots for use by the command parser */
3614 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
0ee931c4 3615 __GFP_NOWARN | GFP_KERNEL);
54cf91dc 3616 if (exec2_list == NULL) {
d0bf4582
WK
3617 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3618 count);
54cf91dc
CW
3619 return -ENOMEM;
3620 }
2889caa9
CW
3621 if (copy_from_user(exec2_list,
3622 u64_to_user_ptr(args->buffers_ptr),
d710fc16 3623 sizeof(*exec2_list) * count)) {
d0bf4582 3624 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2098105e 3625 kvfree(exec2_list);
54cf91dc
CW
3626 return -EFAULT;
3627 }
3628
cda9edd0 3629 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2889caa9
CW
3630
3631 /*
3632 * Now that we have begun execution of the batchbuffer, we ignore
3633 * any new error after this point. Also given that we have already
3634 * updated the associated relocations, we try to write out the current
3635 * object locations irrespective of any error.
3636 */
3637 if (args->flags & __EXEC_HAS_RELOC) {
d593d992 3638 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2889caa9
CW
3639 u64_to_user_ptr(args->buffers_ptr);
3640 unsigned int i;
9aab8bff 3641
2889caa9 3642 /* Copy the new buffer offsets back to the user's exec list. */
594cc251
LT
3643 /*
3644 * Note: count * sizeof(*user_exec_list) does not overflow,
3645 * because we checked 'count' in check_buffer_count().
3646 *
3647 * And this range already got effectively checked earlier
3648 * when we did the "copy_from_user()" above.
3649 */
b44f6873
CL
3650 if (!user_write_access_begin(user_exec_list,
3651 count * sizeof(*user_exec_list)))
8f4faed0 3652 goto end;
594cc251 3653
9aab8bff 3654 for (i = 0; i < args->buffer_count; i++) {
2889caa9
CW
3655 if (!(exec2_list[i].offset & UPDATE))
3656 continue;
3657
934acce3 3658 exec2_list[i].offset =
2889caa9
CW
3659 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3660 unsafe_put_user(exec2_list[i].offset,
3661 &user_exec_list[i].offset,
3662 end_user);
54cf91dc 3663 }
2889caa9 3664end_user:
b44f6873 3665 user_write_access_end();
8f4faed0 3666end:;
54cf91dc
CW
3667 }
3668
2889caa9 3669 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2098105e 3670 kvfree(exec2_list);
2889caa9 3671 return err;
54cf91dc 3672}
e3d29130
CW
3673
3674#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3675#include "selftests/i915_gem_execbuffer.c"
3676#endif