drm/gpuvm: convert WARN() to drm_WARN() variants
[linux-block.git] / drivers / gpu / drm / drm_gpuvm.c
CommitLineData
f7749a54 1// SPDX-License-Identifier: GPL-2.0 OR MIT
e6303f32
DK
2/*
3 * Copyright (c) 2022 Red Hat.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Danilo Krummrich <dakr@redhat.com>
25 *
26 */
27
f72c2db4 28#include <drm/drm_gpuvm.h>
e6303f32
DK
29
30#include <linux/interval_tree_generic.h>
31#include <linux/mm.h>
32
33/**
34 * DOC: Overview
35 *
f72c2db4
DK
36 * The DRM GPU VA Manager, represented by struct drm_gpuvm keeps track of a
37 * GPU's virtual address (VA) space and manages the corresponding virtual
e6303f32
DK
38 * mappings represented by &drm_gpuva objects. It also keeps track of the
39 * mapping's backing &drm_gem_object buffers.
40 *
41 * &drm_gem_object buffers maintain a list of &drm_gpuva objects representing
42 * all existent GPU VA mappings using this &drm_gem_object as backing buffer.
43 *
44 * GPU VAs can be flagged as sparse, such that drivers may use GPU VAs to also
45 * keep track of sparse PTEs in order to support Vulkan 'Sparse Resources'.
46 *
47 * The GPU VA manager internally uses a rb-tree to manage the
48 * &drm_gpuva mappings within a GPU's virtual address space.
49 *
f72c2db4 50 * The &drm_gpuvm structure contains a special &drm_gpuva representing the
e6303f32
DK
51 * portion of VA space reserved by the kernel. This node is initialized together
52 * with the GPU VA manager instance and removed when the GPU VA manager is
53 * destroyed.
54 *
f72c2db4 55 * In a typical application drivers would embed struct drm_gpuvm and
e6303f32
DK
56 * struct drm_gpuva within their own driver specific structures, there won't be
57 * any memory allocations of its own nor memory allocations of &drm_gpuva
58 * entries.
59 *
f72c2db4
DK
60 * The data structures needed to store &drm_gpuvas within the &drm_gpuvm are
61 * contained within struct drm_gpuva already. Hence, for inserting &drm_gpuva
62 * entries from within dma-fence signalling critical sections it is enough to
63 * pre-allocate the &drm_gpuva structures.
e6303f32
DK
64 */
65
66/**
67 * DOC: Split and Merge
68 *
69 * Besides its capability to manage and represent a GPU VA space, the
f72c2db4
DK
70 * GPU VA manager also provides functions to let the &drm_gpuvm calculate a
71 * sequence of operations to satisfy a given map or unmap request.
e6303f32
DK
72 *
73 * Therefore the DRM GPU VA manager provides an algorithm implementing splitting
74 * and merging of existent GPU VA mappings with the ones that are requested to
75 * be mapped or unmapped. This feature is required by the Vulkan API to
76 * implement Vulkan 'Sparse Memory Bindings' - drivers UAPIs often refer to this
77 * as VM BIND.
78 *
f72c2db4 79 * Drivers can call drm_gpuvm_sm_map() to receive a sequence of callbacks
e6303f32
DK
80 * containing map, unmap and remap operations for a given newly requested
81 * mapping. The sequence of callbacks represents the set of operations to
82 * execute in order to integrate the new mapping cleanly into the current state
83 * of the GPU VA space.
84 *
85 * Depending on how the new GPU VA mapping intersects with the existent mappings
f72c2db4
DK
86 * of the GPU VA space the &drm_gpuvm_ops callbacks contain an arbitrary amount
87 * of unmap operations, a maximum of two remap operations and a single map
88 * operation. The caller might receive no callback at all if no operation is
e6303f32
DK
89 * required, e.g. if the requested mapping already exists in the exact same way.
90 *
91 * The single map operation represents the original map operation requested by
92 * the caller.
93 *
94 * &drm_gpuva_op_unmap contains a 'keep' field, which indicates whether the
95 * &drm_gpuva to unmap is physically contiguous with the original mapping
96 * request. Optionally, if 'keep' is set, drivers may keep the actual page table
97 * entries for this &drm_gpuva, adding the missing page table entries only and
f72c2db4 98 * update the &drm_gpuvm's view of things accordingly.
e6303f32
DK
99 *
100 * Drivers may do the same optimization, namely delta page table updates, also
101 * for remap operations. This is possible since &drm_gpuva_op_remap consists of
102 * one unmap operation and one or two map operations, such that drivers can
103 * derive the page table update delta accordingly.
104 *
105 * Note that there can't be more than two existent mappings to split up, one at
106 * the beginning and one at the end of the new mapping, hence there is a
107 * maximum of two remap operations.
108 *
f72c2db4
DK
109 * Analogous to drm_gpuvm_sm_map() drm_gpuvm_sm_unmap() uses &drm_gpuvm_ops to
110 * call back into the driver in order to unmap a range of GPU VA space. The
e6303f32
DK
111 * logic behind this function is way simpler though: For all existent mappings
112 * enclosed by the given range unmap operations are created. For mappings which
113 * are only partically located within the given range, remap operations are
114 * created such that those mappings are split up and re-mapped partically.
115 *
f72c2db4
DK
116 * As an alternative to drm_gpuvm_sm_map() and drm_gpuvm_sm_unmap(),
117 * drm_gpuvm_sm_map_ops_create() and drm_gpuvm_sm_unmap_ops_create() can be used
e6303f32
DK
118 * to directly obtain an instance of struct drm_gpuva_ops containing a list of
119 * &drm_gpuva_op, which can be iterated with drm_gpuva_for_each_op(). This list
120 * contains the &drm_gpuva_ops analogous to the callbacks one would receive when
f72c2db4 121 * calling drm_gpuvm_sm_map() or drm_gpuvm_sm_unmap(). While this way requires
e6303f32
DK
122 * more memory (to allocate the &drm_gpuva_ops), it provides drivers a way to
123 * iterate the &drm_gpuva_op multiple times, e.g. once in a context where memory
124 * allocations are possible (e.g. to allocate GPU page tables) and once in the
125 * dma-fence signalling critical path.
126 *
f72c2db4
DK
127 * To update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert() and
128 * drm_gpuva_remove() may be used. These functions can safely be used from
129 * &drm_gpuvm_ops callbacks originating from drm_gpuvm_sm_map() or
130 * drm_gpuvm_sm_unmap(). However, it might be more convenient to use the
131 * provided helper functions drm_gpuva_map(), drm_gpuva_remap() and
132 * drm_gpuva_unmap() instead.
e6303f32
DK
133 *
134 * The following diagram depicts the basic relationships of existent GPU VA
135 * mappings, a newly requested mapping and the resulting mappings as implemented
f72c2db4 136 * by drm_gpuvm_sm_map() - it doesn't cover any arbitrary combinations of these.
e6303f32
DK
137 *
138 * 1) Requested mapping is identical. Replace it, but indicate the backing PTEs
139 * could be kept.
140 *
141 * ::
142 *
143 * 0 a 1
144 * old: |-----------| (bo_offset=n)
145 *
146 * 0 a 1
147 * req: |-----------| (bo_offset=n)
148 *
149 * 0 a 1
150 * new: |-----------| (bo_offset=n)
151 *
152 *
153 * 2) Requested mapping is identical, except for the BO offset, hence replace
154 * the mapping.
155 *
156 * ::
157 *
158 * 0 a 1
159 * old: |-----------| (bo_offset=n)
160 *
161 * 0 a 1
162 * req: |-----------| (bo_offset=m)
163 *
164 * 0 a 1
165 * new: |-----------| (bo_offset=m)
166 *
167 *
168 * 3) Requested mapping is identical, except for the backing BO, hence replace
169 * the mapping.
170 *
171 * ::
172 *
173 * 0 a 1
174 * old: |-----------| (bo_offset=n)
175 *
176 * 0 b 1
177 * req: |-----------| (bo_offset=n)
178 *
179 * 0 b 1
180 * new: |-----------| (bo_offset=n)
181 *
182 *
183 * 4) Existent mapping is a left aligned subset of the requested one, hence
184 * replace the existent one.
185 *
186 * ::
187 *
188 * 0 a 1
189 * old: |-----| (bo_offset=n)
190 *
191 * 0 a 2
192 * req: |-----------| (bo_offset=n)
193 *
194 * 0 a 2
195 * new: |-----------| (bo_offset=n)
196 *
197 * .. note::
198 * We expect to see the same result for a request with a different BO
199 * and/or non-contiguous BO offset.
200 *
201 *
202 * 5) Requested mapping's range is a left aligned subset of the existent one,
203 * but backed by a different BO. Hence, map the requested mapping and split
204 * the existent one adjusting its BO offset.
205 *
206 * ::
207 *
208 * 0 a 2
209 * old: |-----------| (bo_offset=n)
210 *
211 * 0 b 1
212 * req: |-----| (bo_offset=n)
213 *
214 * 0 b 1 a' 2
215 * new: |-----|-----| (b.bo_offset=n, a.bo_offset=n+1)
216 *
217 * .. note::
218 * We expect to see the same result for a request with a different BO
219 * and/or non-contiguous BO offset.
220 *
221 *
222 * 6) Existent mapping is a superset of the requested mapping. Split it up, but
223 * indicate that the backing PTEs could be kept.
224 *
225 * ::
226 *
227 * 0 a 2
228 * old: |-----------| (bo_offset=n)
229 *
230 * 0 a 1
231 * req: |-----| (bo_offset=n)
232 *
233 * 0 a 1 a' 2
234 * new: |-----|-----| (a.bo_offset=n, a'.bo_offset=n+1)
235 *
236 *
237 * 7) Requested mapping's range is a right aligned subset of the existent one,
238 * but backed by a different BO. Hence, map the requested mapping and split
239 * the existent one, without adjusting the BO offset.
240 *
241 * ::
242 *
243 * 0 a 2
244 * old: |-----------| (bo_offset=n)
245 *
246 * 1 b 2
247 * req: |-----| (bo_offset=m)
248 *
249 * 0 a 1 b 2
250 * new: |-----|-----| (a.bo_offset=n,b.bo_offset=m)
251 *
252 *
253 * 8) Existent mapping is a superset of the requested mapping. Split it up, but
254 * indicate that the backing PTEs could be kept.
255 *
256 * ::
257 *
258 * 0 a 2
259 * old: |-----------| (bo_offset=n)
260 *
261 * 1 a 2
262 * req: |-----| (bo_offset=n+1)
263 *
264 * 0 a' 1 a 2
265 * new: |-----|-----| (a'.bo_offset=n, a.bo_offset=n+1)
266 *
267 *
268 * 9) Existent mapping is overlapped at the end by the requested mapping backed
269 * by a different BO. Hence, map the requested mapping and split up the
270 * existent one, without adjusting the BO offset.
271 *
272 * ::
273 *
274 * 0 a 2
275 * old: |-----------| (bo_offset=n)
276 *
277 * 1 b 3
278 * req: |-----------| (bo_offset=m)
279 *
280 * 0 a 1 b 3
281 * new: |-----|-----------| (a.bo_offset=n,b.bo_offset=m)
282 *
283 *
284 * 10) Existent mapping is overlapped by the requested mapping, both having the
285 * same backing BO with a contiguous offset. Indicate the backing PTEs of
286 * the old mapping could be kept.
287 *
288 * ::
289 *
290 * 0 a 2
291 * old: |-----------| (bo_offset=n)
292 *
293 * 1 a 3
294 * req: |-----------| (bo_offset=n+1)
295 *
296 * 0 a' 1 a 3
297 * new: |-----|-----------| (a'.bo_offset=n, a.bo_offset=n+1)
298 *
299 *
300 * 11) Requested mapping's range is a centered subset of the existent one
301 * having a different backing BO. Hence, map the requested mapping and split
302 * up the existent one in two mappings, adjusting the BO offset of the right
303 * one accordingly.
304 *
305 * ::
306 *
307 * 0 a 3
308 * old: |-----------------| (bo_offset=n)
309 *
310 * 1 b 2
311 * req: |-----| (bo_offset=m)
312 *
313 * 0 a 1 b 2 a' 3
314 * new: |-----|-----|-----| (a.bo_offset=n,b.bo_offset=m,a'.bo_offset=n+2)
315 *
316 *
317 * 12) Requested mapping is a contiguous subset of the existent one. Split it
318 * up, but indicate that the backing PTEs could be kept.
319 *
320 * ::
321 *
322 * 0 a 3
323 * old: |-----------------| (bo_offset=n)
324 *
325 * 1 a 2
326 * req: |-----| (bo_offset=n+1)
327 *
328 * 0 a' 1 a 2 a'' 3
329 * old: |-----|-----|-----| (a'.bo_offset=n, a.bo_offset=n+1, a''.bo_offset=n+2)
330 *
331 *
332 * 13) Existent mapping is a right aligned subset of the requested one, hence
333 * replace the existent one.
334 *
335 * ::
336 *
337 * 1 a 2
338 * old: |-----| (bo_offset=n+1)
339 *
340 * 0 a 2
341 * req: |-----------| (bo_offset=n)
342 *
343 * 0 a 2
344 * new: |-----------| (bo_offset=n)
345 *
346 * .. note::
347 * We expect to see the same result for a request with a different bo
348 * and/or non-contiguous bo_offset.
349 *
350 *
351 * 14) Existent mapping is a centered subset of the requested one, hence
352 * replace the existent one.
353 *
354 * ::
355 *
356 * 1 a 2
357 * old: |-----| (bo_offset=n+1)
358 *
359 * 0 a 3
360 * req: |----------------| (bo_offset=n)
361 *
362 * 0 a 3
363 * new: |----------------| (bo_offset=n)
364 *
365 * .. note::
366 * We expect to see the same result for a request with a different bo
367 * and/or non-contiguous bo_offset.
368 *
369 *
370 * 15) Existent mappings is overlapped at the beginning by the requested mapping
371 * backed by a different BO. Hence, map the requested mapping and split up
372 * the existent one, adjusting its BO offset accordingly.
373 *
374 * ::
375 *
376 * 1 a 3
377 * old: |-----------| (bo_offset=n)
378 *
379 * 0 b 2
380 * req: |-----------| (bo_offset=m)
381 *
382 * 0 b 2 a' 3
383 * new: |-----------|-----| (b.bo_offset=m,a.bo_offset=n+2)
384 */
385
386/**
387 * DOC: Locking
388 *
389 * Generally, the GPU VA manager does not take care of locking itself, it is
390 * the drivers responsibility to take care about locking. Drivers might want to
391 * protect the following operations: inserting, removing and iterating
392 * &drm_gpuva objects as well as generating all kinds of operations, such as
393 * split / merge or prefetch.
394 *
395 * The GPU VA manager also does not take care of the locking of the backing
396 * &drm_gem_object buffers GPU VA lists by itself; drivers are responsible to
397 * enforce mutual exclusion using either the GEMs dma_resv lock or alternatively
398 * a driver specific external lock. For the latter see also
399 * drm_gem_gpuva_set_lock().
400 *
401 * However, the GPU VA manager contains lockdep checks to ensure callers of its
402 * API hold the corresponding lock whenever the &drm_gem_objects GPU VA list is
403 * accessed by functions such as drm_gpuva_link() or drm_gpuva_unlink().
404 */
405
406/**
407 * DOC: Examples
408 *
409 * This section gives two examples on how to let the DRM GPUVA Manager generate
410 * &drm_gpuva_op in order to satisfy a given map or unmap request and how to
411 * make use of them.
412 *
413 * The below code is strictly limited to illustrate the generic usage pattern.
414 * To maintain simplicitly, it doesn't make use of any abstractions for common
415 * code, different (asyncronous) stages with fence signalling critical paths,
416 * any other helpers or error handling in terms of freeing memory and dropping
417 * previously taken locks.
418 *
419 * 1) Obtain a list of &drm_gpuva_op to create a new mapping::
420 *
421 * // Allocates a new &drm_gpuva.
422 * struct drm_gpuva * driver_gpuva_alloc(void);
423 *
f72c2db4 424 * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
e6303f32
DK
425 * // structure in individual driver structures and lock the dma-resv with
426 * // drm_exec or similar helpers.
f72c2db4 427 * int driver_mapping_create(struct drm_gpuvm *gpuvm,
e6303f32
DK
428 * u64 addr, u64 range,
429 * struct drm_gem_object *obj, u64 offset)
430 * {
431 * struct drm_gpuva_ops *ops;
432 * struct drm_gpuva_op *op
433 *
434 * driver_lock_va_space();
f72c2db4 435 * ops = drm_gpuvm_sm_map_ops_create(gpuvm, addr, range,
e6303f32
DK
436 * obj, offset);
437 * if (IS_ERR(ops))
438 * return PTR_ERR(ops);
439 *
440 * drm_gpuva_for_each_op(op, ops) {
441 * struct drm_gpuva *va;
442 *
443 * switch (op->op) {
444 * case DRM_GPUVA_OP_MAP:
445 * va = driver_gpuva_alloc();
446 * if (!va)
447 * ; // unwind previous VA space updates,
448 * // free memory and unlock
449 *
450 * driver_vm_map();
f72c2db4 451 * drm_gpuva_map(gpuvm, va, &op->map);
e6303f32
DK
452 * drm_gpuva_link(va);
453 *
454 * break;
455 * case DRM_GPUVA_OP_REMAP: {
456 * struct drm_gpuva *prev = NULL, *next = NULL;
457 *
458 * va = op->remap.unmap->va;
459 *
460 * if (op->remap.prev) {
461 * prev = driver_gpuva_alloc();
462 * if (!prev)
463 * ; // unwind previous VA space
464 * // updates, free memory and
465 * // unlock
466 * }
467 *
468 * if (op->remap.next) {
469 * next = driver_gpuva_alloc();
470 * if (!next)
471 * ; // unwind previous VA space
472 * // updates, free memory and
473 * // unlock
474 * }
475 *
476 * driver_vm_remap();
477 * drm_gpuva_remap(prev, next, &op->remap);
478 *
479 * drm_gpuva_unlink(va);
480 * if (prev)
481 * drm_gpuva_link(prev);
482 * if (next)
483 * drm_gpuva_link(next);
484 *
485 * break;
486 * }
487 * case DRM_GPUVA_OP_UNMAP:
488 * va = op->unmap->va;
489 *
490 * driver_vm_unmap();
491 * drm_gpuva_unlink(va);
492 * drm_gpuva_unmap(&op->unmap);
493 *
494 * break;
495 * default:
496 * break;
497 * }
498 * }
499 * driver_unlock_va_space();
500 *
501 * return 0;
502 * }
503 *
504 * 2) Receive a callback for each &drm_gpuva_op to create a new mapping::
505 *
506 * struct driver_context {
f72c2db4 507 * struct drm_gpuvm *gpuvm;
e6303f32
DK
508 * struct drm_gpuva *new_va;
509 * struct drm_gpuva *prev_va;
510 * struct drm_gpuva *next_va;
511 * };
512 *
f72c2db4
DK
513 * // ops to pass to drm_gpuvm_init()
514 * static const struct drm_gpuvm_ops driver_gpuvm_ops = {
e6303f32
DK
515 * .sm_step_map = driver_gpuva_map,
516 * .sm_step_remap = driver_gpuva_remap,
517 * .sm_step_unmap = driver_gpuva_unmap,
518 * };
519 *
f72c2db4 520 * // Typically drivers would embedd the &drm_gpuvm and &drm_gpuva
e6303f32
DK
521 * // structure in individual driver structures and lock the dma-resv with
522 * // drm_exec or similar helpers.
f72c2db4 523 * int driver_mapping_create(struct drm_gpuvm *gpuvm,
e6303f32
DK
524 * u64 addr, u64 range,
525 * struct drm_gem_object *obj, u64 offset)
526 * {
527 * struct driver_context ctx;
528 * struct drm_gpuva_ops *ops;
529 * struct drm_gpuva_op *op;
530 * int ret = 0;
531 *
f72c2db4 532 * ctx.gpuvm = gpuvm;
e6303f32
DK
533 *
534 * ctx.new_va = kzalloc(sizeof(*ctx.new_va), GFP_KERNEL);
535 * ctx.prev_va = kzalloc(sizeof(*ctx.prev_va), GFP_KERNEL);
536 * ctx.next_va = kzalloc(sizeof(*ctx.next_va), GFP_KERNEL);
537 * if (!ctx.new_va || !ctx.prev_va || !ctx.next_va) {
538 * ret = -ENOMEM;
539 * goto out;
540 * }
541 *
542 * driver_lock_va_space();
f72c2db4 543 * ret = drm_gpuvm_sm_map(gpuvm, &ctx, addr, range, obj, offset);
e6303f32
DK
544 * driver_unlock_va_space();
545 *
546 * out:
547 * kfree(ctx.new_va);
548 * kfree(ctx.prev_va);
549 * kfree(ctx.next_va);
550 * return ret;
551 * }
552 *
553 * int driver_gpuva_map(struct drm_gpuva_op *op, void *__ctx)
554 * {
555 * struct driver_context *ctx = __ctx;
556 *
f72c2db4 557 * drm_gpuva_map(ctx->vm, ctx->new_va, &op->map);
e6303f32
DK
558 *
559 * drm_gpuva_link(ctx->new_va);
560 *
561 * // prevent the new GPUVA from being freed in
562 * // driver_mapping_create()
563 * ctx->new_va = NULL;
564 *
565 * return 0;
566 * }
567 *
568 * int driver_gpuva_remap(struct drm_gpuva_op *op, void *__ctx)
569 * {
570 * struct driver_context *ctx = __ctx;
571 *
572 * drm_gpuva_remap(ctx->prev_va, ctx->next_va, &op->remap);
573 *
574 * drm_gpuva_unlink(op->remap.unmap->va);
575 * kfree(op->remap.unmap->va);
576 *
577 * if (op->remap.prev) {
578 * drm_gpuva_link(ctx->prev_va);
579 * ctx->prev_va = NULL;
580 * }
581 *
582 * if (op->remap.next) {
583 * drm_gpuva_link(ctx->next_va);
584 * ctx->next_va = NULL;
585 * }
586 *
587 * return 0;
588 * }
589 *
590 * int driver_gpuva_unmap(struct drm_gpuva_op *op, void *__ctx)
591 * {
592 * drm_gpuva_unlink(op->unmap.va);
593 * drm_gpuva_unmap(&op->unmap);
594 * kfree(op->unmap.va);
595 *
596 * return 0;
597 * }
598 */
599
600#define to_drm_gpuva(__node) container_of((__node), struct drm_gpuva, rb.node)
601
602#define GPUVA_START(node) ((node)->va.addr)
603#define GPUVA_LAST(node) ((node)->va.addr + (node)->va.range - 1)
604
605/* We do not actually use drm_gpuva_it_next(), tell the compiler to not complain
606 * about this.
607 */
608INTERVAL_TREE_DEFINE(struct drm_gpuva, rb.node, u64, rb.__subtree_last,
609 GPUVA_START, GPUVA_LAST, static __maybe_unused,
610 drm_gpuva_it)
611
f72c2db4 612static int __drm_gpuva_insert(struct drm_gpuvm *gpuvm,
e6303f32
DK
613 struct drm_gpuva *va);
614static void __drm_gpuva_remove(struct drm_gpuva *va);
615
616static bool
546ca4d3 617drm_gpuvm_check_overflow(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
e6303f32
DK
618{
619 u64 end;
620
546ca4d3
DK
621 return drm_WARN(gpuvm->drm, check_add_overflow(addr, range, &end),
622 "GPUVA address limited to %zu bytes.\n", sizeof(end));
e6303f32
DK
623}
624
625static bool
f72c2db4 626drm_gpuvm_in_mm_range(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
e6303f32
DK
627{
628 u64 end = addr + range;
f72c2db4
DK
629 u64 mm_start = gpuvm->mm_start;
630 u64 mm_end = mm_start + gpuvm->mm_range;
e6303f32
DK
631
632 return addr >= mm_start && end <= mm_end;
633}
634
635static bool
f72c2db4 636drm_gpuvm_in_kernel_node(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
e6303f32
DK
637{
638 u64 end = addr + range;
f72c2db4
DK
639 u64 kstart = gpuvm->kernel_alloc_node.va.addr;
640 u64 krange = gpuvm->kernel_alloc_node.va.range;
e6303f32
DK
641 u64 kend = kstart + krange;
642
643 return krange && addr < kend && kstart < end;
644}
645
646static bool
f72c2db4 647drm_gpuvm_range_valid(struct drm_gpuvm *gpuvm,
e6303f32
DK
648 u64 addr, u64 range)
649{
546ca4d3 650 return !drm_gpuvm_check_overflow(gpuvm, addr, range) &&
f72c2db4
DK
651 drm_gpuvm_in_mm_range(gpuvm, addr, range) &&
652 !drm_gpuvm_in_kernel_node(gpuvm, addr, range);
e6303f32
DK
653}
654
655/**
f72c2db4
DK
656 * drm_gpuvm_init() - initialize a &drm_gpuvm
657 * @gpuvm: pointer to the &drm_gpuvm to initialize
e6303f32 658 * @name: the name of the GPU VA space
546ca4d3 659 * @drm: the &drm_device this VM resides in
e6303f32
DK
660 * @start_offset: the start offset of the GPU VA space
661 * @range: the size of the GPU VA space
662 * @reserve_offset: the start of the kernel reserved GPU VA area
663 * @reserve_range: the size of the kernel reserved GPU VA area
f72c2db4 664 * @ops: &drm_gpuvm_ops called on &drm_gpuvm_sm_map / &drm_gpuvm_sm_unmap
e6303f32 665 *
f72c2db4 666 * The &drm_gpuvm must be initialized with this function before use.
e6303f32 667 *
f72c2db4 668 * Note that @gpuvm must be cleared to 0 before calling this function. The given
e6303f32
DK
669 * &name is expected to be managed by the surrounding driver structures.
670 */
671void
546ca4d3
DK
672drm_gpuvm_init(struct drm_gpuvm *gpuvm, const char *name,
673 struct drm_device *drm,
f72c2db4
DK
674 u64 start_offset, u64 range,
675 u64 reserve_offset, u64 reserve_range,
676 const struct drm_gpuvm_ops *ops)
e6303f32 677{
f72c2db4
DK
678 gpuvm->rb.tree = RB_ROOT_CACHED;
679 INIT_LIST_HEAD(&gpuvm->rb.list);
e6303f32 680
f72c2db4
DK
681 gpuvm->name = name ? name : "unknown";
682 gpuvm->ops = ops;
546ca4d3 683 gpuvm->drm = drm;
e6303f32 684
546ca4d3
DK
685 drm_gpuvm_check_overflow(gpuvm, start_offset, range);
686 gpuvm->mm_start = start_offset;
687 gpuvm->mm_range = range;
e6303f32 688
546ca4d3 689 memset(&gpuvm->kernel_alloc_node, 0, sizeof(struct drm_gpuva));
e6303f32 690 if (reserve_range) {
f72c2db4
DK
691 gpuvm->kernel_alloc_node.va.addr = reserve_offset;
692 gpuvm->kernel_alloc_node.va.range = reserve_range;
e6303f32 693
546ca4d3 694 if (likely(!drm_gpuvm_check_overflow(gpuvm, reserve_offset,
e6303f32 695 reserve_range)))
f72c2db4 696 __drm_gpuva_insert(gpuvm, &gpuvm->kernel_alloc_node);
e6303f32
DK
697 }
698}
f72c2db4 699EXPORT_SYMBOL_GPL(drm_gpuvm_init);
e6303f32
DK
700
701/**
f72c2db4
DK
702 * drm_gpuvm_destroy() - cleanup a &drm_gpuvm
703 * @gpuvm: pointer to the &drm_gpuvm to clean up
e6303f32
DK
704 *
705 * Note that it is a bug to call this function on a manager that still
706 * holds GPU VA mappings.
707 */
708void
f72c2db4 709drm_gpuvm_destroy(struct drm_gpuvm *gpuvm)
e6303f32 710{
f72c2db4 711 gpuvm->name = NULL;
e6303f32 712
f72c2db4
DK
713 if (gpuvm->kernel_alloc_node.va.range)
714 __drm_gpuva_remove(&gpuvm->kernel_alloc_node);
e6303f32 715
546ca4d3
DK
716 drm_WARN(gpuvm->drm, !RB_EMPTY_ROOT(&gpuvm->rb.tree.rb_root),
717 "GPUVA tree is not empty, potentially leaking memory.\n");
e6303f32 718}
f72c2db4 719EXPORT_SYMBOL_GPL(drm_gpuvm_destroy);
e6303f32
DK
720
721static int
f72c2db4 722__drm_gpuva_insert(struct drm_gpuvm *gpuvm,
e6303f32
DK
723 struct drm_gpuva *va)
724{
725 struct rb_node *node;
726 struct list_head *head;
727
f72c2db4 728 if (drm_gpuva_it_iter_first(&gpuvm->rb.tree,
e6303f32
DK
729 GPUVA_START(va),
730 GPUVA_LAST(va)))
731 return -EEXIST;
732
f72c2db4 733 va->vm = gpuvm;
e6303f32 734
f72c2db4 735 drm_gpuva_it_insert(va, &gpuvm->rb.tree);
e6303f32
DK
736
737 node = rb_prev(&va->rb.node);
738 if (node)
739 head = &(to_drm_gpuva(node))->rb.entry;
740 else
f72c2db4 741 head = &gpuvm->rb.list;
e6303f32
DK
742
743 list_add(&va->rb.entry, head);
744
745 return 0;
746}
747
748/**
749 * drm_gpuva_insert() - insert a &drm_gpuva
f72c2db4 750 * @gpuvm: the &drm_gpuvm to insert the &drm_gpuva in
e6303f32
DK
751 * @va: the &drm_gpuva to insert
752 *
753 * Insert a &drm_gpuva with a given address and range into a
f72c2db4 754 * &drm_gpuvm.
e6303f32
DK
755 *
756 * It is safe to use this function using the safe versions of iterating the GPU
f72c2db4
DK
757 * VA space, such as drm_gpuvm_for_each_va_safe() and
758 * drm_gpuvm_for_each_va_range_safe().
e6303f32
DK
759 *
760 * Returns: 0 on success, negative error code on failure.
761 */
762int
f72c2db4 763drm_gpuva_insert(struct drm_gpuvm *gpuvm,
e6303f32
DK
764 struct drm_gpuva *va)
765{
766 u64 addr = va->va.addr;
767 u64 range = va->va.range;
768
f72c2db4 769 if (unlikely(!drm_gpuvm_range_valid(gpuvm, addr, range)))
e6303f32
DK
770 return -EINVAL;
771
f72c2db4 772 return __drm_gpuva_insert(gpuvm, va);
e6303f32
DK
773}
774EXPORT_SYMBOL_GPL(drm_gpuva_insert);
775
776static void
777__drm_gpuva_remove(struct drm_gpuva *va)
778{
f72c2db4 779 drm_gpuva_it_remove(va, &va->vm->rb.tree);
e6303f32
DK
780 list_del_init(&va->rb.entry);
781}
782
783/**
784 * drm_gpuva_remove() - remove a &drm_gpuva
785 * @va: the &drm_gpuva to remove
786 *
787 * This removes the given &va from the underlaying tree.
788 *
789 * It is safe to use this function using the safe versions of iterating the GPU
f72c2db4
DK
790 * VA space, such as drm_gpuvm_for_each_va_safe() and
791 * drm_gpuvm_for_each_va_range_safe().
e6303f32
DK
792 */
793void
794drm_gpuva_remove(struct drm_gpuva *va)
795{
f72c2db4 796 struct drm_gpuvm *gpuvm = va->vm;
e6303f32 797
f72c2db4 798 if (unlikely(va == &gpuvm->kernel_alloc_node)) {
546ca4d3
DK
799 drm_WARN(gpuvm->drm, 1,
800 "Can't destroy kernel reserved node.\n");
e6303f32
DK
801 return;
802 }
803
804 __drm_gpuva_remove(va);
805}
806EXPORT_SYMBOL_GPL(drm_gpuva_remove);
807
808/**
809 * drm_gpuva_link() - link a &drm_gpuva
810 * @va: the &drm_gpuva to link
811 *
812 * This adds the given &va to the GPU VA list of the &drm_gem_object it is
813 * associated with.
814 *
815 * This function expects the caller to protect the GEM's GPUVA list against
816 * concurrent access using the GEMs dma_resv lock.
817 */
818void
819drm_gpuva_link(struct drm_gpuva *va)
820{
821 struct drm_gem_object *obj = va->gem.obj;
822
823 if (unlikely(!obj))
824 return;
825
826 drm_gem_gpuva_assert_lock_held(obj);
827
828 list_add_tail(&va->gem.entry, &obj->gpuva.list);
829}
830EXPORT_SYMBOL_GPL(drm_gpuva_link);
831
832/**
833 * drm_gpuva_unlink() - unlink a &drm_gpuva
834 * @va: the &drm_gpuva to unlink
835 *
836 * This removes the given &va from the GPU VA list of the &drm_gem_object it is
837 * associated with.
838 *
839 * This function expects the caller to protect the GEM's GPUVA list against
840 * concurrent access using the GEMs dma_resv lock.
841 */
842void
843drm_gpuva_unlink(struct drm_gpuva *va)
844{
845 struct drm_gem_object *obj = va->gem.obj;
846
847 if (unlikely(!obj))
848 return;
849
850 drm_gem_gpuva_assert_lock_held(obj);
851
852 list_del_init(&va->gem.entry);
853}
854EXPORT_SYMBOL_GPL(drm_gpuva_unlink);
855
856/**
857 * drm_gpuva_find_first() - find the first &drm_gpuva in the given range
f72c2db4 858 * @gpuvm: the &drm_gpuvm to search in
e6303f32
DK
859 * @addr: the &drm_gpuvas address
860 * @range: the &drm_gpuvas range
861 *
862 * Returns: the first &drm_gpuva within the given range
863 */
864struct drm_gpuva *
f72c2db4 865drm_gpuva_find_first(struct drm_gpuvm *gpuvm,
e6303f32
DK
866 u64 addr, u64 range)
867{
868 u64 last = addr + range - 1;
869
f72c2db4 870 return drm_gpuva_it_iter_first(&gpuvm->rb.tree, addr, last);
e6303f32
DK
871}
872EXPORT_SYMBOL_GPL(drm_gpuva_find_first);
873
874/**
875 * drm_gpuva_find() - find a &drm_gpuva
f72c2db4 876 * @gpuvm: the &drm_gpuvm to search in
e6303f32
DK
877 * @addr: the &drm_gpuvas address
878 * @range: the &drm_gpuvas range
879 *
880 * Returns: the &drm_gpuva at a given &addr and with a given &range
881 */
882struct drm_gpuva *
f72c2db4 883drm_gpuva_find(struct drm_gpuvm *gpuvm,
e6303f32
DK
884 u64 addr, u64 range)
885{
886 struct drm_gpuva *va;
887
f72c2db4 888 va = drm_gpuva_find_first(gpuvm, addr, range);
e6303f32
DK
889 if (!va)
890 goto out;
891
892 if (va->va.addr != addr ||
893 va->va.range != range)
894 goto out;
895
896 return va;
897
898out:
899 return NULL;
900}
901EXPORT_SYMBOL_GPL(drm_gpuva_find);
902
903/**
904 * drm_gpuva_find_prev() - find the &drm_gpuva before the given address
f72c2db4 905 * @gpuvm: the &drm_gpuvm to search in
e6303f32
DK
906 * @start: the given GPU VA's start address
907 *
908 * Find the adjacent &drm_gpuva before the GPU VA with given &start address.
909 *
910 * Note that if there is any free space between the GPU VA mappings no mapping
911 * is returned.
912 *
913 * Returns: a pointer to the found &drm_gpuva or NULL if none was found
914 */
915struct drm_gpuva *
f72c2db4 916drm_gpuva_find_prev(struct drm_gpuvm *gpuvm, u64 start)
e6303f32 917{
f72c2db4 918 if (!drm_gpuvm_range_valid(gpuvm, start - 1, 1))
e6303f32
DK
919 return NULL;
920
f72c2db4 921 return drm_gpuva_it_iter_first(&gpuvm->rb.tree, start - 1, start);
e6303f32
DK
922}
923EXPORT_SYMBOL_GPL(drm_gpuva_find_prev);
924
925/**
926 * drm_gpuva_find_next() - find the &drm_gpuva after the given address
f72c2db4 927 * @gpuvm: the &drm_gpuvm to search in
e6303f32
DK
928 * @end: the given GPU VA's end address
929 *
930 * Find the adjacent &drm_gpuva after the GPU VA with given &end address.
931 *
932 * Note that if there is any free space between the GPU VA mappings no mapping
933 * is returned.
934 *
935 * Returns: a pointer to the found &drm_gpuva or NULL if none was found
936 */
937struct drm_gpuva *
f72c2db4 938drm_gpuva_find_next(struct drm_gpuvm *gpuvm, u64 end)
e6303f32 939{
f72c2db4 940 if (!drm_gpuvm_range_valid(gpuvm, end, 1))
e6303f32
DK
941 return NULL;
942
f72c2db4 943 return drm_gpuva_it_iter_first(&gpuvm->rb.tree, end, end + 1);
e6303f32
DK
944}
945EXPORT_SYMBOL_GPL(drm_gpuva_find_next);
946
947/**
f72c2db4 948 * drm_gpuvm_interval_empty() - indicate whether a given interval of the VA space
e6303f32 949 * is empty
f72c2db4 950 * @gpuvm: the &drm_gpuvm to check the range for
e6303f32
DK
951 * @addr: the start address of the range
952 * @range: the range of the interval
953 *
954 * Returns: true if the interval is empty, false otherwise
955 */
956bool
f72c2db4 957drm_gpuvm_interval_empty(struct drm_gpuvm *gpuvm, u64 addr, u64 range)
e6303f32 958{
f72c2db4 959 return !drm_gpuva_find_first(gpuvm, addr, range);
e6303f32 960}
f72c2db4 961EXPORT_SYMBOL_GPL(drm_gpuvm_interval_empty);
e6303f32
DK
962
963/**
964 * drm_gpuva_map() - helper to insert a &drm_gpuva according to a
965 * &drm_gpuva_op_map
f72c2db4 966 * @gpuvm: the &drm_gpuvm
e6303f32
DK
967 * @va: the &drm_gpuva to insert
968 * @op: the &drm_gpuva_op_map to initialize @va with
969 *
f72c2db4 970 * Initializes the @va from the @op and inserts it into the given @gpuvm.
e6303f32
DK
971 */
972void
f72c2db4 973drm_gpuva_map(struct drm_gpuvm *gpuvm,
e6303f32
DK
974 struct drm_gpuva *va,
975 struct drm_gpuva_op_map *op)
976{
977 drm_gpuva_init_from_op(va, op);
f72c2db4 978 drm_gpuva_insert(gpuvm, va);
e6303f32
DK
979}
980EXPORT_SYMBOL_GPL(drm_gpuva_map);
981
982/**
983 * drm_gpuva_remap() - helper to remap a &drm_gpuva according to a
984 * &drm_gpuva_op_remap
985 * @prev: the &drm_gpuva to remap when keeping the start of a mapping
986 * @next: the &drm_gpuva to remap when keeping the end of a mapping
987 * @op: the &drm_gpuva_op_remap to initialize @prev and @next with
988 *
989 * Removes the currently mapped &drm_gpuva and remaps it using @prev and/or
990 * @next.
991 */
992void
993drm_gpuva_remap(struct drm_gpuva *prev,
994 struct drm_gpuva *next,
995 struct drm_gpuva_op_remap *op)
996{
997 struct drm_gpuva *curr = op->unmap->va;
f72c2db4 998 struct drm_gpuvm *gpuvm = curr->vm;
e6303f32
DK
999
1000 drm_gpuva_remove(curr);
1001
1002 if (op->prev) {
1003 drm_gpuva_init_from_op(prev, op->prev);
f72c2db4 1004 drm_gpuva_insert(gpuvm, prev);
e6303f32
DK
1005 }
1006
1007 if (op->next) {
1008 drm_gpuva_init_from_op(next, op->next);
f72c2db4 1009 drm_gpuva_insert(gpuvm, next);
e6303f32
DK
1010 }
1011}
1012EXPORT_SYMBOL_GPL(drm_gpuva_remap);
1013
1014/**
1015 * drm_gpuva_unmap() - helper to remove a &drm_gpuva according to a
1016 * &drm_gpuva_op_unmap
1017 * @op: the &drm_gpuva_op_unmap specifying the &drm_gpuva to remove
1018 *
1019 * Removes the &drm_gpuva associated with the &drm_gpuva_op_unmap.
1020 */
1021void
1022drm_gpuva_unmap(struct drm_gpuva_op_unmap *op)
1023{
1024 drm_gpuva_remove(op->va);
1025}
1026EXPORT_SYMBOL_GPL(drm_gpuva_unmap);
1027
1028static int
f72c2db4 1029op_map_cb(const struct drm_gpuvm_ops *fn, void *priv,
e6303f32
DK
1030 u64 addr, u64 range,
1031 struct drm_gem_object *obj, u64 offset)
1032{
1033 struct drm_gpuva_op op = {};
1034
1035 op.op = DRM_GPUVA_OP_MAP;
1036 op.map.va.addr = addr;
1037 op.map.va.range = range;
1038 op.map.gem.obj = obj;
1039 op.map.gem.offset = offset;
1040
1041 return fn->sm_step_map(&op, priv);
1042}
1043
1044static int
f72c2db4 1045op_remap_cb(const struct drm_gpuvm_ops *fn, void *priv,
e6303f32
DK
1046 struct drm_gpuva_op_map *prev,
1047 struct drm_gpuva_op_map *next,
1048 struct drm_gpuva_op_unmap *unmap)
1049{
1050 struct drm_gpuva_op op = {};
1051 struct drm_gpuva_op_remap *r;
1052
1053 op.op = DRM_GPUVA_OP_REMAP;
1054 r = &op.remap;
1055 r->prev = prev;
1056 r->next = next;
1057 r->unmap = unmap;
1058
1059 return fn->sm_step_remap(&op, priv);
1060}
1061
1062static int
f72c2db4 1063op_unmap_cb(const struct drm_gpuvm_ops *fn, void *priv,
e6303f32
DK
1064 struct drm_gpuva *va, bool merge)
1065{
1066 struct drm_gpuva_op op = {};
1067
1068 op.op = DRM_GPUVA_OP_UNMAP;
1069 op.unmap.va = va;
1070 op.unmap.keep = merge;
1071
1072 return fn->sm_step_unmap(&op, priv);
1073}
1074
1075static int
f72c2db4
DK
1076__drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm,
1077 const struct drm_gpuvm_ops *ops, void *priv,
e6303f32
DK
1078 u64 req_addr, u64 req_range,
1079 struct drm_gem_object *req_obj, u64 req_offset)
1080{
cdf4100e 1081 struct drm_gpuva *va, *next;
e6303f32
DK
1082 u64 req_end = req_addr + req_range;
1083 int ret;
1084
f72c2db4 1085 if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
e6303f32
DK
1086 return -EINVAL;
1087
f72c2db4 1088 drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
e6303f32
DK
1089 struct drm_gem_object *obj = va->gem.obj;
1090 u64 offset = va->gem.offset;
1091 u64 addr = va->va.addr;
1092 u64 range = va->va.range;
1093 u64 end = addr + range;
1094 bool merge = !!va->gem.obj;
1095
1096 if (addr == req_addr) {
1097 merge &= obj == req_obj &&
1098 offset == req_offset;
1099
1100 if (end == req_end) {
1101 ret = op_unmap_cb(ops, priv, va, merge);
1102 if (ret)
1103 return ret;
1104 break;
1105 }
1106
1107 if (end < req_end) {
1108 ret = op_unmap_cb(ops, priv, va, merge);
1109 if (ret)
1110 return ret;
cdf4100e 1111 continue;
e6303f32
DK
1112 }
1113
1114 if (end > req_end) {
1115 struct drm_gpuva_op_map n = {
1116 .va.addr = req_end,
1117 .va.range = range - req_range,
1118 .gem.obj = obj,
1119 .gem.offset = offset + req_range,
1120 };
1121 struct drm_gpuva_op_unmap u = {
1122 .va = va,
1123 .keep = merge,
1124 };
1125
1126 ret = op_remap_cb(ops, priv, NULL, &n, &u);
1127 if (ret)
1128 return ret;
1129 break;
1130 }
1131 } else if (addr < req_addr) {
1132 u64 ls_range = req_addr - addr;
1133 struct drm_gpuva_op_map p = {
1134 .va.addr = addr,
1135 .va.range = ls_range,
1136 .gem.obj = obj,
1137 .gem.offset = offset,
1138 };
1139 struct drm_gpuva_op_unmap u = { .va = va };
1140
1141 merge &= obj == req_obj &&
1142 offset + ls_range == req_offset;
1143 u.keep = merge;
1144
1145 if (end == req_end) {
1146 ret = op_remap_cb(ops, priv, &p, NULL, &u);
1147 if (ret)
1148 return ret;
1149 break;
1150 }
1151
1152 if (end < req_end) {
1153 ret = op_remap_cb(ops, priv, &p, NULL, &u);
1154 if (ret)
1155 return ret;
cdf4100e 1156 continue;
e6303f32
DK
1157 }
1158
1159 if (end > req_end) {
1160 struct drm_gpuva_op_map n = {
1161 .va.addr = req_end,
1162 .va.range = end - req_end,
1163 .gem.obj = obj,
1164 .gem.offset = offset + ls_range +
1165 req_range,
1166 };
1167
1168 ret = op_remap_cb(ops, priv, &p, &n, &u);
1169 if (ret)
1170 return ret;
1171 break;
1172 }
1173 } else if (addr > req_addr) {
1174 merge &= obj == req_obj &&
1175 offset == req_offset +
1176 (addr - req_addr);
1177
1178 if (end == req_end) {
1179 ret = op_unmap_cb(ops, priv, va, merge);
1180 if (ret)
1181 return ret;
1182 break;
1183 }
1184
1185 if (end < req_end) {
1186 ret = op_unmap_cb(ops, priv, va, merge);
1187 if (ret)
1188 return ret;
cdf4100e 1189 continue;
e6303f32
DK
1190 }
1191
1192 if (end > req_end) {
1193 struct drm_gpuva_op_map n = {
1194 .va.addr = req_end,
1195 .va.range = end - req_end,
1196 .gem.obj = obj,
1197 .gem.offset = offset + req_end - addr,
1198 };
1199 struct drm_gpuva_op_unmap u = {
1200 .va = va,
1201 .keep = merge,
1202 };
1203
1204 ret = op_remap_cb(ops, priv, NULL, &n, &u);
1205 if (ret)
1206 return ret;
1207 break;
1208 }
1209 }
e6303f32
DK
1210 }
1211
1212 return op_map_cb(ops, priv,
1213 req_addr, req_range,
1214 req_obj, req_offset);
1215}
1216
1217static int
f72c2db4
DK
1218__drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm,
1219 const struct drm_gpuvm_ops *ops, void *priv,
e6303f32
DK
1220 u64 req_addr, u64 req_range)
1221{
1222 struct drm_gpuva *va, *next;
1223 u64 req_end = req_addr + req_range;
1224 int ret;
1225
f72c2db4 1226 if (unlikely(!drm_gpuvm_range_valid(gpuvm, req_addr, req_range)))
e6303f32
DK
1227 return -EINVAL;
1228
f72c2db4 1229 drm_gpuvm_for_each_va_range_safe(va, next, gpuvm, req_addr, req_end) {
e6303f32
DK
1230 struct drm_gpuva_op_map prev = {}, next = {};
1231 bool prev_split = false, next_split = false;
1232 struct drm_gem_object *obj = va->gem.obj;
1233 u64 offset = va->gem.offset;
1234 u64 addr = va->va.addr;
1235 u64 range = va->va.range;
1236 u64 end = addr + range;
1237
1238 if (addr < req_addr) {
1239 prev.va.addr = addr;
1240 prev.va.range = req_addr - addr;
1241 prev.gem.obj = obj;
1242 prev.gem.offset = offset;
1243
1244 prev_split = true;
1245 }
1246
1247 if (end > req_end) {
1248 next.va.addr = req_end;
1249 next.va.range = end - req_end;
1250 next.gem.obj = obj;
1251 next.gem.offset = offset + (req_end - addr);
1252
1253 next_split = true;
1254 }
1255
1256 if (prev_split || next_split) {
1257 struct drm_gpuva_op_unmap unmap = { .va = va };
1258
1259 ret = op_remap_cb(ops, priv,
1260 prev_split ? &prev : NULL,
1261 next_split ? &next : NULL,
1262 &unmap);
1263 if (ret)
1264 return ret;
1265 } else {
1266 ret = op_unmap_cb(ops, priv, va, false);
1267 if (ret)
1268 return ret;
1269 }
1270 }
1271
1272 return 0;
1273}
1274
1275/**
f72c2db4
DK
1276 * drm_gpuvm_sm_map() - creates the &drm_gpuva_op split/merge steps
1277 * @gpuvm: the &drm_gpuvm representing the GPU VA space
e6303f32
DK
1278 * @req_addr: the start address of the new mapping
1279 * @req_range: the range of the new mapping
1280 * @req_obj: the &drm_gem_object to map
1281 * @req_offset: the offset within the &drm_gem_object
1282 * @priv: pointer to a driver private data structure
1283 *
1284 * This function iterates the given range of the GPU VA space. It utilizes the
f72c2db4 1285 * &drm_gpuvm_ops to call back into the driver providing the split and merge
e6303f32
DK
1286 * steps.
1287 *
1288 * Drivers may use these callbacks to update the GPU VA space right away within
1289 * the callback. In case the driver decides to copy and store the operations for
f72c2db4
DK
1290 * later processing neither this function nor &drm_gpuvm_sm_unmap is allowed to
1291 * be called before the &drm_gpuvm's view of the GPU VA space was
e6303f32 1292 * updated with the previous set of operations. To update the
f72c2db4 1293 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
e6303f32
DK
1294 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
1295 * used.
1296 *
1297 * A sequence of callbacks can contain map, unmap and remap operations, but
1298 * the sequence of callbacks might also be empty if no operation is required,
1299 * e.g. if the requested mapping already exists in the exact same way.
1300 *
1301 * There can be an arbitrary amount of unmap operations, a maximum of two remap
1302 * operations and a single map operation. The latter one represents the original
1303 * map operation requested by the caller.
1304 *
1305 * Returns: 0 on success or a negative error code
1306 */
1307int
f72c2db4 1308drm_gpuvm_sm_map(struct drm_gpuvm *gpuvm, void *priv,
e6303f32
DK
1309 u64 req_addr, u64 req_range,
1310 struct drm_gem_object *req_obj, u64 req_offset)
1311{
f72c2db4 1312 const struct drm_gpuvm_ops *ops = gpuvm->ops;
e6303f32
DK
1313
1314 if (unlikely(!(ops && ops->sm_step_map &&
1315 ops->sm_step_remap &&
1316 ops->sm_step_unmap)))
1317 return -EINVAL;
1318
f72c2db4 1319 return __drm_gpuvm_sm_map(gpuvm, ops, priv,
e6303f32
DK
1320 req_addr, req_range,
1321 req_obj, req_offset);
1322}
f72c2db4 1323EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map);
e6303f32
DK
1324
1325/**
f72c2db4
DK
1326 * drm_gpuvm_sm_unmap() - creates the &drm_gpuva_ops to split on unmap
1327 * @gpuvm: the &drm_gpuvm representing the GPU VA space
e6303f32
DK
1328 * @priv: pointer to a driver private data structure
1329 * @req_addr: the start address of the range to unmap
1330 * @req_range: the range of the mappings to unmap
1331 *
1332 * This function iterates the given range of the GPU VA space. It utilizes the
f72c2db4 1333 * &drm_gpuvm_ops to call back into the driver providing the operations to
e6303f32
DK
1334 * unmap and, if required, split existent mappings.
1335 *
1336 * Drivers may use these callbacks to update the GPU VA space right away within
1337 * the callback. In case the driver decides to copy and store the operations for
f72c2db4
DK
1338 * later processing neither this function nor &drm_gpuvm_sm_map is allowed to be
1339 * called before the &drm_gpuvm's view of the GPU VA space was updated
1340 * with the previous set of operations. To update the &drm_gpuvm's view
e6303f32
DK
1341 * of the GPU VA space drm_gpuva_insert(), drm_gpuva_destroy_locked() and/or
1342 * drm_gpuva_destroy_unlocked() should be used.
1343 *
1344 * A sequence of callbacks can contain unmap and remap operations, depending on
1345 * whether there are actual overlapping mappings to split.
1346 *
1347 * There can be an arbitrary amount of unmap operations and a maximum of two
1348 * remap operations.
1349 *
1350 * Returns: 0 on success or a negative error code
1351 */
1352int
f72c2db4 1353drm_gpuvm_sm_unmap(struct drm_gpuvm *gpuvm, void *priv,
e6303f32
DK
1354 u64 req_addr, u64 req_range)
1355{
f72c2db4 1356 const struct drm_gpuvm_ops *ops = gpuvm->ops;
e6303f32
DK
1357
1358 if (unlikely(!(ops && ops->sm_step_remap &&
1359 ops->sm_step_unmap)))
1360 return -EINVAL;
1361
f72c2db4 1362 return __drm_gpuvm_sm_unmap(gpuvm, ops, priv,
e6303f32
DK
1363 req_addr, req_range);
1364}
f72c2db4 1365EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap);
e6303f32
DK
1366
1367static struct drm_gpuva_op *
f72c2db4 1368gpuva_op_alloc(struct drm_gpuvm *gpuvm)
e6303f32 1369{
f72c2db4 1370 const struct drm_gpuvm_ops *fn = gpuvm->ops;
e6303f32
DK
1371 struct drm_gpuva_op *op;
1372
1373 if (fn && fn->op_alloc)
1374 op = fn->op_alloc();
1375 else
1376 op = kzalloc(sizeof(*op), GFP_KERNEL);
1377
1378 if (unlikely(!op))
1379 return NULL;
1380
1381 return op;
1382}
1383
1384static void
f72c2db4 1385gpuva_op_free(struct drm_gpuvm *gpuvm,
e6303f32
DK
1386 struct drm_gpuva_op *op)
1387{
f72c2db4 1388 const struct drm_gpuvm_ops *fn = gpuvm->ops;
e6303f32
DK
1389
1390 if (fn && fn->op_free)
1391 fn->op_free(op);
1392 else
1393 kfree(op);
1394}
1395
1396static int
1397drm_gpuva_sm_step(struct drm_gpuva_op *__op,
1398 void *priv)
1399{
1400 struct {
f72c2db4 1401 struct drm_gpuvm *vm;
e6303f32
DK
1402 struct drm_gpuva_ops *ops;
1403 } *args = priv;
f72c2db4 1404 struct drm_gpuvm *gpuvm = args->vm;
e6303f32
DK
1405 struct drm_gpuva_ops *ops = args->ops;
1406 struct drm_gpuva_op *op;
1407
f72c2db4 1408 op = gpuva_op_alloc(gpuvm);
e6303f32
DK
1409 if (unlikely(!op))
1410 goto err;
1411
1412 memcpy(op, __op, sizeof(*op));
1413
1414 if (op->op == DRM_GPUVA_OP_REMAP) {
1415 struct drm_gpuva_op_remap *__r = &__op->remap;
1416 struct drm_gpuva_op_remap *r = &op->remap;
1417
1418 r->unmap = kmemdup(__r->unmap, sizeof(*r->unmap),
1419 GFP_KERNEL);
1420 if (unlikely(!r->unmap))
1421 goto err_free_op;
1422
1423 if (__r->prev) {
1424 r->prev = kmemdup(__r->prev, sizeof(*r->prev),
1425 GFP_KERNEL);
1426 if (unlikely(!r->prev))
1427 goto err_free_unmap;
1428 }
1429
1430 if (__r->next) {
1431 r->next = kmemdup(__r->next, sizeof(*r->next),
1432 GFP_KERNEL);
1433 if (unlikely(!r->next))
1434 goto err_free_prev;
1435 }
1436 }
1437
1438 list_add_tail(&op->entry, &ops->list);
1439
1440 return 0;
1441
1442err_free_unmap:
1443 kfree(op->remap.unmap);
1444err_free_prev:
1445 kfree(op->remap.prev);
1446err_free_op:
f72c2db4 1447 gpuva_op_free(gpuvm, op);
e6303f32
DK
1448err:
1449 return -ENOMEM;
1450}
1451
f72c2db4 1452static const struct drm_gpuvm_ops gpuvm_list_ops = {
e6303f32
DK
1453 .sm_step_map = drm_gpuva_sm_step,
1454 .sm_step_remap = drm_gpuva_sm_step,
1455 .sm_step_unmap = drm_gpuva_sm_step,
1456};
1457
1458/**
f72c2db4
DK
1459 * drm_gpuvm_sm_map_ops_create() - creates the &drm_gpuva_ops to split and merge
1460 * @gpuvm: the &drm_gpuvm representing the GPU VA space
e6303f32
DK
1461 * @req_addr: the start address of the new mapping
1462 * @req_range: the range of the new mapping
1463 * @req_obj: the &drm_gem_object to map
1464 * @req_offset: the offset within the &drm_gem_object
1465 *
1466 * This function creates a list of operations to perform splitting and merging
1467 * of existent mapping(s) with the newly requested one.
1468 *
1469 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
1470 * in the given order. It can contain map, unmap and remap operations, but it
1471 * also can be empty if no operation is required, e.g. if the requested mapping
1472 * already exists is the exact same way.
1473 *
1474 * There can be an arbitrary amount of unmap operations, a maximum of two remap
1475 * operations and a single map operation. The latter one represents the original
1476 * map operation requested by the caller.
1477 *
1478 * Note that before calling this function again with another mapping request it
f72c2db4 1479 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
e6303f32 1480 * previously obtained operations must be either processed or abandoned. To
f72c2db4 1481 * update the &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
e6303f32
DK
1482 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
1483 * used.
1484 *
1485 * After the caller finished processing the returned &drm_gpuva_ops, they must
1486 * be freed with &drm_gpuva_ops_free.
1487 *
1488 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1489 */
1490struct drm_gpuva_ops *
f72c2db4 1491drm_gpuvm_sm_map_ops_create(struct drm_gpuvm *gpuvm,
e6303f32
DK
1492 u64 req_addr, u64 req_range,
1493 struct drm_gem_object *req_obj, u64 req_offset)
1494{
1495 struct drm_gpuva_ops *ops;
1496 struct {
f72c2db4 1497 struct drm_gpuvm *vm;
e6303f32
DK
1498 struct drm_gpuva_ops *ops;
1499 } args;
1500 int ret;
1501
1502 ops = kzalloc(sizeof(*ops), GFP_KERNEL);
1503 if (unlikely(!ops))
1504 return ERR_PTR(-ENOMEM);
1505
1506 INIT_LIST_HEAD(&ops->list);
1507
f72c2db4 1508 args.vm = gpuvm;
e6303f32
DK
1509 args.ops = ops;
1510
f72c2db4 1511 ret = __drm_gpuvm_sm_map(gpuvm, &gpuvm_list_ops, &args,
e6303f32
DK
1512 req_addr, req_range,
1513 req_obj, req_offset);
1514 if (ret)
1515 goto err_free_ops;
1516
1517 return ops;
1518
1519err_free_ops:
f72c2db4 1520 drm_gpuva_ops_free(gpuvm, ops);
e6303f32
DK
1521 return ERR_PTR(ret);
1522}
f72c2db4 1523EXPORT_SYMBOL_GPL(drm_gpuvm_sm_map_ops_create);
e6303f32
DK
1524
1525/**
f72c2db4 1526 * drm_gpuvm_sm_unmap_ops_create() - creates the &drm_gpuva_ops to split on
e6303f32 1527 * unmap
f72c2db4 1528 * @gpuvm: the &drm_gpuvm representing the GPU VA space
e6303f32
DK
1529 * @req_addr: the start address of the range to unmap
1530 * @req_range: the range of the mappings to unmap
1531 *
1532 * This function creates a list of operations to perform unmapping and, if
1533 * required, splitting of the mappings overlapping the unmap range.
1534 *
1535 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
1536 * in the given order. It can contain unmap and remap operations, depending on
1537 * whether there are actual overlapping mappings to split.
1538 *
1539 * There can be an arbitrary amount of unmap operations and a maximum of two
1540 * remap operations.
1541 *
1542 * Note that before calling this function again with another range to unmap it
f72c2db4 1543 * is necessary to update the &drm_gpuvm's view of the GPU VA space. The
e6303f32 1544 * previously obtained operations must be processed or abandoned. To update the
f72c2db4 1545 * &drm_gpuvm's view of the GPU VA space drm_gpuva_insert(),
e6303f32
DK
1546 * drm_gpuva_destroy_locked() and/or drm_gpuva_destroy_unlocked() should be
1547 * used.
1548 *
1549 * After the caller finished processing the returned &drm_gpuva_ops, they must
1550 * be freed with &drm_gpuva_ops_free.
1551 *
1552 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1553 */
1554struct drm_gpuva_ops *
f72c2db4 1555drm_gpuvm_sm_unmap_ops_create(struct drm_gpuvm *gpuvm,
e6303f32
DK
1556 u64 req_addr, u64 req_range)
1557{
1558 struct drm_gpuva_ops *ops;
1559 struct {
f72c2db4 1560 struct drm_gpuvm *vm;
e6303f32
DK
1561 struct drm_gpuva_ops *ops;
1562 } args;
1563 int ret;
1564
1565 ops = kzalloc(sizeof(*ops), GFP_KERNEL);
1566 if (unlikely(!ops))
1567 return ERR_PTR(-ENOMEM);
1568
1569 INIT_LIST_HEAD(&ops->list);
1570
f72c2db4 1571 args.vm = gpuvm;
e6303f32
DK
1572 args.ops = ops;
1573
f72c2db4 1574 ret = __drm_gpuvm_sm_unmap(gpuvm, &gpuvm_list_ops, &args,
e6303f32
DK
1575 req_addr, req_range);
1576 if (ret)
1577 goto err_free_ops;
1578
1579 return ops;
1580
1581err_free_ops:
f72c2db4 1582 drm_gpuva_ops_free(gpuvm, ops);
e6303f32
DK
1583 return ERR_PTR(ret);
1584}
f72c2db4 1585EXPORT_SYMBOL_GPL(drm_gpuvm_sm_unmap_ops_create);
e6303f32
DK
1586
1587/**
f72c2db4
DK
1588 * drm_gpuvm_prefetch_ops_create() - creates the &drm_gpuva_ops to prefetch
1589 * @gpuvm: the &drm_gpuvm representing the GPU VA space
e6303f32
DK
1590 * @addr: the start address of the range to prefetch
1591 * @range: the range of the mappings to prefetch
1592 *
1593 * This function creates a list of operations to perform prefetching.
1594 *
1595 * The list can be iterated with &drm_gpuva_for_each_op and must be processed
1596 * in the given order. It can contain prefetch operations.
1597 *
1598 * There can be an arbitrary amount of prefetch operations.
1599 *
1600 * After the caller finished processing the returned &drm_gpuva_ops, they must
1601 * be freed with &drm_gpuva_ops_free.
1602 *
1603 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1604 */
1605struct drm_gpuva_ops *
f72c2db4 1606drm_gpuvm_prefetch_ops_create(struct drm_gpuvm *gpuvm,
e6303f32
DK
1607 u64 addr, u64 range)
1608{
1609 struct drm_gpuva_ops *ops;
1610 struct drm_gpuva_op *op;
1611 struct drm_gpuva *va;
1612 u64 end = addr + range;
1613 int ret;
1614
1615 ops = kzalloc(sizeof(*ops), GFP_KERNEL);
1616 if (!ops)
1617 return ERR_PTR(-ENOMEM);
1618
1619 INIT_LIST_HEAD(&ops->list);
1620
f72c2db4
DK
1621 drm_gpuvm_for_each_va_range(va, gpuvm, addr, end) {
1622 op = gpuva_op_alloc(gpuvm);
e6303f32
DK
1623 if (!op) {
1624 ret = -ENOMEM;
1625 goto err_free_ops;
1626 }
1627
1628 op->op = DRM_GPUVA_OP_PREFETCH;
1629 op->prefetch.va = va;
1630 list_add_tail(&op->entry, &ops->list);
1631 }
1632
1633 return ops;
1634
1635err_free_ops:
f72c2db4 1636 drm_gpuva_ops_free(gpuvm, ops);
e6303f32
DK
1637 return ERR_PTR(ret);
1638}
f72c2db4 1639EXPORT_SYMBOL_GPL(drm_gpuvm_prefetch_ops_create);
e6303f32
DK
1640
1641/**
f72c2db4
DK
1642 * drm_gpuvm_gem_unmap_ops_create() - creates the &drm_gpuva_ops to unmap a GEM
1643 * @gpuvm: the &drm_gpuvm representing the GPU VA space
e6303f32
DK
1644 * @obj: the &drm_gem_object to unmap
1645 *
1646 * This function creates a list of operations to perform unmapping for every
1647 * GPUVA attached to a GEM.
1648 *
1649 * The list can be iterated with &drm_gpuva_for_each_op and consists out of an
1650 * arbitrary amount of unmap operations.
1651 *
1652 * After the caller finished processing the returned &drm_gpuva_ops, they must
1653 * be freed with &drm_gpuva_ops_free.
1654 *
1655 * It is the callers responsibility to protect the GEMs GPUVA list against
1656 * concurrent access using the GEMs dma_resv lock.
1657 *
1658 * Returns: a pointer to the &drm_gpuva_ops on success, an ERR_PTR on failure
1659 */
1660struct drm_gpuva_ops *
f72c2db4 1661drm_gpuvm_gem_unmap_ops_create(struct drm_gpuvm *gpuvm,
e6303f32
DK
1662 struct drm_gem_object *obj)
1663{
1664 struct drm_gpuva_ops *ops;
1665 struct drm_gpuva_op *op;
1666 struct drm_gpuva *va;
1667 int ret;
1668
1669 drm_gem_gpuva_assert_lock_held(obj);
1670
1671 ops = kzalloc(sizeof(*ops), GFP_KERNEL);
1672 if (!ops)
1673 return ERR_PTR(-ENOMEM);
1674
1675 INIT_LIST_HEAD(&ops->list);
1676
1677 drm_gem_for_each_gpuva(va, obj) {
f72c2db4 1678 op = gpuva_op_alloc(gpuvm);
e6303f32
DK
1679 if (!op) {
1680 ret = -ENOMEM;
1681 goto err_free_ops;
1682 }
1683
1684 op->op = DRM_GPUVA_OP_UNMAP;
1685 op->unmap.va = va;
1686 list_add_tail(&op->entry, &ops->list);
1687 }
1688
1689 return ops;
1690
1691err_free_ops:
f72c2db4 1692 drm_gpuva_ops_free(gpuvm, ops);
e6303f32
DK
1693 return ERR_PTR(ret);
1694}
f72c2db4 1695EXPORT_SYMBOL_GPL(drm_gpuvm_gem_unmap_ops_create);
e6303f32
DK
1696
1697/**
1698 * drm_gpuva_ops_free() - free the given &drm_gpuva_ops
f72c2db4 1699 * @gpuvm: the &drm_gpuvm the ops were created for
e6303f32
DK
1700 * @ops: the &drm_gpuva_ops to free
1701 *
1702 * Frees the given &drm_gpuva_ops structure including all the ops associated
1703 * with it.
1704 */
1705void
f72c2db4 1706drm_gpuva_ops_free(struct drm_gpuvm *gpuvm,
e6303f32
DK
1707 struct drm_gpuva_ops *ops)
1708{
1709 struct drm_gpuva_op *op, *next;
1710
1711 drm_gpuva_for_each_op_safe(op, next, ops) {
1712 list_del(&op->entry);
1713
1714 if (op->op == DRM_GPUVA_OP_REMAP) {
1715 kfree(op->remap.prev);
1716 kfree(op->remap.next);
1717 kfree(op->remap.unmap);
1718 }
1719
f72c2db4 1720 gpuva_op_free(gpuvm, op);
e6303f32
DK
1721 }
1722
1723 kfree(ops);
1724}
1725EXPORT_SYMBOL_GPL(drm_gpuva_ops_free);
fe7acaa7
DK
1726
1727MODULE_DESCRIPTION("DRM GPUVM");
1728MODULE_LICENSE("GPL");