drm/amd/powerplay: drop unneeded newline
[linux-2.6-block.git] / drivers / gpu / drm / amd / powerplay / smumgr / iceland_smumgr.c
CommitLineData
2435b054
HR
1/*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Author: Huang Rui <ray.huang@amd.com>
23 *
24 */
7bd55429 25#include "pp_debug.h"
2435b054
HR
26#include <linux/types.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/gfp.h>
30
31#include "smumgr.h"
32#include "iceland_smumgr.h"
907bfec7 33
2435b054 34#include "ppsmc.h"
907bfec7
RZ
35
36#include "cgs_common.h"
37
38#include "smu7_dyn_defaults.h"
39#include "smu7_hwmgr.h"
40#include "hardwaremanager.h"
41#include "ppatomctrl.h"
42#include "atombios.h"
43#include "pppcielanes.h"
44#include "pp_endian.h"
45#include "processpptables.h"
46
47
2435b054
HR
48#include "smu/smu_7_1_1_d.h"
49#include "smu/smu_7_1_1_sh_mask.h"
907bfec7
RZ
50#include "smu71_discrete.h"
51
52#include "smu_ucode_xfer_vi.h"
53#include "gmc/gmc_8_1_d.h"
54#include "gmc/gmc_8_1_sh_mask.h"
55#include "bif/bif_5_0_d.h"
56#include "bif/bif_5_0_sh_mask.h"
57#include "dce/dce_10_0_d.h"
58#include "dce/dce_10_0_sh_mask.h"
59
2435b054 60
9c6d4956 61#define ICELAND_SMC_SIZE 0x20000
2435b054 62
907bfec7
RZ
63#define VOLTAGE_SCALE 4
64#define POWERTUNE_DEFAULT_SET_MAX 1
65#define VOLTAGE_VID_OFFSET_SCALE1 625
66#define VOLTAGE_VID_OFFSET_SCALE2 100
67#define MC_CG_ARB_FREQ_F1 0x0b
68#define VDDC_VDDCI_DELTA 200
69
70#define DEVICE_ID_VI_ICELAND_M_6900 0x6900
71#define DEVICE_ID_VI_ICELAND_M_6901 0x6901
72#define DEVICE_ID_VI_ICELAND_M_6902 0x6902
73#define DEVICE_ID_VI_ICELAND_M_6903 0x6903
74
75static const struct iceland_pt_defaults defaults_iceland = {
76 /*
77 * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
78 * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
79 */
80 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
81 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
82 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
83};
84
85/* 35W - XT, XTL */
86static const struct iceland_pt_defaults defaults_icelandxt = {
87 /*
88 * sviLoadLIneEn, SviLoadLineVddC,
89 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
90 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
91 * BAPM_TEMP_GRADIENT
92 */
93 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
94 { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0},
95 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
96};
97
98/* 25W - PRO, LE */
99static const struct iceland_pt_defaults defaults_icelandpro = {
100 /*
101 * sviLoadLIneEn, SviLoadLineVddC,
102 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
103 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
104 * BAPM_TEMP_GRADIENT
105 */
106 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
107 { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0},
108 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
109};
110
d3f8c0ab 111static int iceland_start_smc(struct pp_hwmgr *hwmgr)
2435b054 112{
fbabae46 113 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2435b054
HR
114 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
115
116 return 0;
117}
118
d3f8c0ab 119static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
2435b054 120{
fbabae46 121 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2435b054
HR
122 SMC_SYSCON_RESET_CNTL,
123 rst_reg, 1);
124}
125
2435b054 126
d3f8c0ab 127static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
2435b054 128{
fbabae46 129 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2435b054
HR
130 SMC_SYSCON_CLOCK_CNTL_0,
131 ck_disable, 1);
132}
133
d3f8c0ab 134static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
2435b054 135{
fbabae46 136 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2435b054
HR
137 SMC_SYSCON_CLOCK_CNTL_0,
138 ck_disable, 0);
139}
140
d3f8c0ab 141static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
2435b054
HR
142{
143 /* set smc instruct start point at 0x0 */
d3f8c0ab 144 smu7_program_jump_on_start(hwmgr);
2435b054
HR
145
146 /* enable smc clock */
d3f8c0ab 147 iceland_start_smc_clock(hwmgr);
2435b054
HR
148
149 /* de-assert reset */
d3f8c0ab 150 iceland_start_smc(hwmgr);
2435b054 151
0041e600 152 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
2435b054
HR
153 INTERRUPTS_ENABLED, 1);
154
155 return 0;
156}
157
9c6d4956 158
d3f8c0ab 159static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
9c6d4956
RZ
160 uint32_t length, const uint8_t *src,
161 uint32_t limit, uint32_t start_addr)
2435b054 162{
9c6d4956 163 uint32_t byte_count = length;
2435b054 164 uint32_t data;
9c6d4956
RZ
165
166 PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
167
d3f8c0ab 168 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
a9eca3a6 169 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
9c6d4956
RZ
170
171 while (byte_count >= 4) {
172 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
d3f8c0ab 173 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
9c6d4956
RZ
174 src += 4;
175 byte_count -= 4;
176 }
177
a9eca3a6 178 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
9c6d4956 179
45b19706 180 PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
9c6d4956
RZ
181
182 return 0;
183}
184
185
d3f8c0ab 186static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
9c6d4956
RZ
187{
188 uint32_t val;
2435b054
HR
189 struct cgs_firmware_info info = {0};
190
d3f8c0ab 191 if (hwmgr == NULL || hwmgr->device == NULL)
2435b054
HR
192 return -EINVAL;
193
194 /* load SMC firmware */
d3f8c0ab 195 cgs_get_firmware_info(hwmgr->device,
9c6d4956 196 smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
2435b054
HR
197
198 if (info.image_size & 3) {
199 pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
200 return -EINVAL;
201 }
202
203 if (info.image_size > ICELAND_SMC_SIZE) {
204 pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
205 return -EINVAL;
206 }
82eb0f30 207 hwmgr->smu_version = info.version;
2435b054 208 /* wait for smc boot up */
b05720cb 209 PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
2435b054
HR
210 RCU_UC_EVENTS, boot_seq_done, 0);
211
212 /* clear firmware interrupt enable flag */
d3f8c0ab 213 val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2435b054 214 ixSMC_SYSCON_MISC_CNTL);
d3f8c0ab 215 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2435b054
HR
216 ixSMC_SYSCON_MISC_CNTL, val | 1);
217
218 /* stop smc clock */
d3f8c0ab 219 iceland_stop_smc_clock(hwmgr);
2435b054
HR
220
221 /* reset smc */
d3f8c0ab
RZ
222 iceland_reset_smc(hwmgr);
223 iceland_upload_smc_firmware_data(hwmgr, info.image_size,
9c6d4956
RZ
224 (uint8_t *)info.kptr, ICELAND_SMC_SIZE,
225 info.ucode_start_address);
2435b054
HR
226
227 return 0;
228}
229
d3f8c0ab 230static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
2435b054
HR
231 uint32_t firmwareType)
232{
233 return 0;
234}
235
d3f8c0ab 236static int iceland_start_smu(struct pp_hwmgr *hwmgr)
2435b054
HR
237{
238 int result;
239
d3f8c0ab 240 result = iceland_smu_upload_firmware_image(hwmgr);
2435b054
HR
241 if (result)
242 return result;
d3f8c0ab 243 result = iceland_smu_start_smc(hwmgr);
2435b054
HR
244 if (result)
245 return result;
246
d3f8c0ab 247 if (!smu7_is_smc_ram_running(hwmgr)) {
634a24d8 248 pr_info("smu not running, upload firmware again \n");
d3f8c0ab 249 result = iceland_smu_upload_firmware_image(hwmgr);
9c6d4956
RZ
250 if (result)
251 return result;
252
d3f8c0ab 253 result = iceland_smu_start_smc(hwmgr);
9c6d4956
RZ
254 if (result)
255 return result;
256 }
257
d3f8c0ab 258 result = smu7_request_smu_load_fw(hwmgr);
2435b054
HR
259
260 return result;
261}
262
d3f8c0ab 263static int iceland_smu_init(struct pp_hwmgr *hwmgr)
2435b054 264{
18aafc59 265 int i;
63b55943
RZ
266 struct iceland_smumgr *iceland_priv = NULL;
267
268 iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
269
270 if (iceland_priv == NULL)
271 return -ENOMEM;
272
b3b03052 273 hwmgr->smu_backend = iceland_priv;
63b55943 274
d3f8c0ab 275 if (smu7_init(hwmgr))
18aafc59
RZ
276 return -EINVAL;
277
278 for (i = 0; i < SMU71_MAX_LEVELS_GRAPHICS; i++)
63b55943 279 iceland_priv->activity_target[i] = 30;
18aafc59
RZ
280
281 return 0;
2435b054
HR
282}
283
907bfec7
RZ
284
285static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
286{
287 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
288 struct cgs_system_info sys_info = {0};
289 uint32_t dev_id;
290
291 sys_info.size = sizeof(struct cgs_system_info);
292 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
293 cgs_query_system_info(hwmgr->device, &sys_info);
294 dev_id = (uint32_t)sys_info.value;
295
296 switch (dev_id) {
297 case DEVICE_ID_VI_ICELAND_M_6900:
298 case DEVICE_ID_VI_ICELAND_M_6903:
299 smu_data->power_tune_defaults = &defaults_icelandxt;
300 break;
301
302 case DEVICE_ID_VI_ICELAND_M_6901:
303 case DEVICE_ID_VI_ICELAND_M_6902:
304 smu_data->power_tune_defaults = &defaults_icelandpro;
305 break;
306 default:
307 smu_data->power_tune_defaults = &defaults_iceland;
308 pr_warn("Unknown V.I. Device ID.\n");
309 break;
310 }
311 return;
312}
313
314static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
315{
316 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
317 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
318
319 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
320 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
321 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
322 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
323
324 return 0;
325}
326
327static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
328{
329 uint16_t tdc_limit;
330 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
331 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
332
333 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
334 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
335 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
336 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
337 defaults->tdc_vddc_throttle_release_limit_perc;
338 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
339
340 return 0;
341}
342
343static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
344{
345 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
346 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
347 uint32_t temp;
348
349 if (smu7_read_smc_sram_dword(hwmgr,
350 fuse_table_offset +
351 offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
352 (uint32_t *)&temp, SMC_RAM_END))
353 PP_ASSERT_WITH_CODE(false,
354 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
355 return -EINVAL);
356 else
357 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
358
359 return 0;
360}
361
362static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
363{
364 return 0;
365}
366
367static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
368{
369 int i;
370 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
371
372 /* Currently not used. Set all to zero. */
373 for (i = 0; i < 8; i++)
374 smu_data->power_tune_table.GnbLPML[i] = 0;
375
376 return 0;
377}
378
379static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
380{
381 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
382 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
383 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
384 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
385
386 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
387 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
388
389 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
390 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
391 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
392 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
393
394 return 0;
395}
396
397static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
398{
399 int i;
400 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
401 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
402 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
403
404 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
405 "The CAC Leakage table does not exist!", return -EINVAL);
406 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
407 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
408 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
409 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
410
411 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
412 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
413 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
414 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
415 }
416 } else {
417 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
418 }
419
420 return 0;
421}
422
423static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
424{
425 int i;
426 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
427 uint8_t *vid = smu_data->power_tune_table.VddCVid;
428 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
429
430 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
431 "There should never be more than 8 entries for VddcVid!!!",
432 return -EINVAL);
433
434 for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
435 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
436 }
437
438 return 0;
439}
440
441
442
443static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
444{
445 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
446 uint32_t pm_fuse_table_offset;
447
448 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
449 PHM_PlatformCaps_PowerContainment)) {
450 if (smu7_read_smc_sram_dword(hwmgr,
451 SMU71_FIRMWARE_HEADER_LOCATION +
452 offsetof(SMU71_Firmware_Header, PmFuseTable),
453 &pm_fuse_table_offset, SMC_RAM_END))
454 PP_ASSERT_WITH_CODE(false,
455 "Attempt to get pm_fuse_table_offset Failed!",
456 return -EINVAL);
457
458 /* DW0 - DW3 */
459 if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
460 PP_ASSERT_WITH_CODE(false,
461 "Attempt to populate bapm vddc vid Failed!",
462 return -EINVAL);
463
464 /* DW4 - DW5 */
465 if (iceland_populate_vddc_vid(hwmgr))
466 PP_ASSERT_WITH_CODE(false,
467 "Attempt to populate vddc vid Failed!",
468 return -EINVAL);
469
470 /* DW6 */
471 if (iceland_populate_svi_load_line(hwmgr))
472 PP_ASSERT_WITH_CODE(false,
473 "Attempt to populate SviLoadLine Failed!",
474 return -EINVAL);
475 /* DW7 */
476 if (iceland_populate_tdc_limit(hwmgr))
477 PP_ASSERT_WITH_CODE(false,
478 "Attempt to populate TDCLimit Failed!", return -EINVAL);
479 /* DW8 */
480 if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
481 PP_ASSERT_WITH_CODE(false,
482 "Attempt to populate TdcWaterfallCtl, "
483 "LPMLTemperature Min and Max Failed!",
484 return -EINVAL);
485
486 /* DW9-DW12 */
487 if (0 != iceland_populate_temperature_scaler(hwmgr))
488 PP_ASSERT_WITH_CODE(false,
489 "Attempt to populate LPMLTemperatureScaler Failed!",
490 return -EINVAL);
491
492 /* DW13-DW16 */
493 if (iceland_populate_gnb_lpml(hwmgr))
494 PP_ASSERT_WITH_CODE(false,
495 "Attempt to populate GnbLPML Failed!",
496 return -EINVAL);
497
498 /* DW18 */
499 if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
500 PP_ASSERT_WITH_CODE(false,
501 "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
502 return -EINVAL);
503
504 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
505 (uint8_t *)&smu_data->power_tune_table,
506 sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
507 PP_ASSERT_WITH_CODE(false,
508 "Attempt to download PmFuseTable Failed!",
509 return -EINVAL);
510 }
511 return 0;
512}
513
514static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
515 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
516 uint32_t clock, uint32_t *vol)
517{
518 uint32_t i = 0;
519
520 /* clock - voltage dependency table is empty table */
521 if (allowed_clock_voltage_table->count == 0)
522 return -EINVAL;
523
524 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
525 /* find first sclk bigger than request */
526 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
527 *vol = allowed_clock_voltage_table->entries[i].v;
528 return 0;
529 }
530 }
531
532 /* sclk is bigger than max sclk in the dependence table */
533 *vol = allowed_clock_voltage_table->entries[i - 1].v;
534
535 return 0;
536}
537
538static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
539 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
540 uint16_t *lo)
541{
542 uint16_t v_index;
543 bool vol_found = false;
544 *hi = tab->value * VOLTAGE_SCALE;
545 *lo = tab->value * VOLTAGE_SCALE;
546
547 /* SCLK/VDDC Dependency Table has to exist. */
548 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
1446413f 549 "The SCLK/VDDC Dependency Table does not exist.",
907bfec7
RZ
550 return -EINVAL);
551
552 if (NULL == hwmgr->dyn_state.cac_leakage_table) {
553 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
554 return 0;
555 }
556
557 /*
558 * Since voltage in the sclk/vddc dependency table is not
559 * necessarily in ascending order because of ELB voltage
560 * patching, loop through entire list to find exact voltage.
561 */
562 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
563 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
564 vol_found = true;
565 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
566 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
567 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
568 } else {
569 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
570 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
571 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
572 }
573 break;
574 }
575 }
576
577 /*
578 * If voltage is not found in the first pass, loop again to
579 * find the best match, equal or higher value.
580 */
581 if (!vol_found) {
582 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
583 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
584 vol_found = true;
585 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
586 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
587 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
588 } else {
589 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
590 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
591 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
592 }
593 break;
594 }
595 }
596
597 if (!vol_found)
598 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
599 }
600
601 return 0;
602}
603
604static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
605 pp_atomctrl_voltage_table_entry *tab,
606 SMU71_Discrete_VoltageLevel *smc_voltage_tab)
607{
608 int result;
609
610 result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
611 &smc_voltage_tab->StdVoltageHiSidd,
612 &smc_voltage_tab->StdVoltageLoSidd);
613 if (0 != result) {
614 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
615 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
616 }
617
618 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
619 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
620 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
621
622 return 0;
623}
624
625static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
626 SMU71_Discrete_DpmTable *table)
627{
628 unsigned int count;
629 int result;
630 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
631
632 table->VddcLevelCount = data->vddc_voltage_table.count;
633 for (count = 0; count < table->VddcLevelCount; count++) {
634 result = iceland_populate_smc_voltage_table(hwmgr,
635 &(data->vddc_voltage_table.entries[count]),
636 &(table->VddcLevel[count]));
637 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
638
639 /* GPIO voltage control */
640 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
641 table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
642 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
643 table->VddcLevel[count].Smio = 0;
644 }
645
646 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
647
648 return 0;
649}
650
651static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
652 SMU71_Discrete_DpmTable *table)
653{
654 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
655 uint32_t count;
656 int result;
657
658 table->VddciLevelCount = data->vddci_voltage_table.count;
659
660 for (count = 0; count < table->VddciLevelCount; count++) {
661 result = iceland_populate_smc_voltage_table(hwmgr,
662 &(data->vddci_voltage_table.entries[count]),
663 &(table->VddciLevel[count]));
664 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
665 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
666 table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
667 else
668 table->VddciLevel[count].Smio |= 0;
669 }
670
671 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
672
673 return 0;
674}
675
676static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
677 SMU71_Discrete_DpmTable *table)
678{
679 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
680 uint32_t count;
681 int result;
682
683 table->MvddLevelCount = data->mvdd_voltage_table.count;
684
685 for (count = 0; count < table->VddciLevelCount; count++) {
686 result = iceland_populate_smc_voltage_table(hwmgr,
687 &(data->mvdd_voltage_table.entries[count]),
688 &table->MvddLevel[count]);
689 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
690 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
691 table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
692 else
693 table->MvddLevel[count].Smio |= 0;
694 }
695
696 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
697
698 return 0;
699}
700
701
702static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
703 SMU71_Discrete_DpmTable *table)
704{
705 int result;
706
707 result = iceland_populate_smc_vddc_table(hwmgr, table);
708 PP_ASSERT_WITH_CODE(0 == result,
709 "can not populate VDDC voltage table to SMC", return -EINVAL);
710
711 result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
712 PP_ASSERT_WITH_CODE(0 == result,
713 "can not populate VDDCI voltage table to SMC", return -EINVAL);
714
715 result = iceland_populate_smc_mvdd_table(hwmgr, table);
716 PP_ASSERT_WITH_CODE(0 == result,
717 "can not populate MVDD voltage table to SMC", return -EINVAL);
718
719 return 0;
720}
721
722static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
723 struct SMU71_Discrete_Ulv *state)
724{
725 uint32_t voltage_response_time, ulv_voltage;
726 int result;
727 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
728
729 state->CcPwrDynRm = 0;
730 state->CcPwrDynRm1 = 0;
731
732 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
733 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
734
735 if (ulv_voltage == 0) {
736 data->ulv_supported = false;
737 return 0;
738 }
739
740 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
741 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
742 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
743 state->VddcOffset = 0;
744 else
745 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
746 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
747 } else {
748 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
749 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
750 state->VddcOffsetVid = 0;
751 else /* used in SVI2 Mode */
752 state->VddcOffsetVid = (uint8_t)(
753 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
754 * VOLTAGE_VID_OFFSET_SCALE2
755 / VOLTAGE_VID_OFFSET_SCALE1);
756 }
757 state->VddcPhase = 1;
758
759 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
760 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
761 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
762
763 return 0;
764}
765
766static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
767 SMU71_Discrete_Ulv *ulv_level)
768{
769 return iceland_populate_ulv_level(hwmgr, ulv_level);
770}
771
772static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
773{
774 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
775 struct smu7_dpm_table *dpm_table = &data->dpm_table;
776 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
777 uint32_t i;
778
779 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
780 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
781 table->LinkLevel[i].PcieGenSpeed =
782 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
783 table->LinkLevel[i].PcieLaneCount =
784 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
785 table->LinkLevel[i].EnabledForActivity =
786 1;
787 table->LinkLevel[i].SPC =
788 (uint8_t)(data->pcie_spc_cap & 0xff);
789 table->LinkLevel[i].DownThreshold =
790 PP_HOST_TO_SMC_UL(5);
791 table->LinkLevel[i].UpThreshold =
792 PP_HOST_TO_SMC_UL(30);
793 }
794
795 smu_data->smc_state_table.LinkLevelCount =
796 (uint8_t)dpm_table->pcie_speed_table.count;
797 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
798 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
799
800 return 0;
801}
802
803static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
804 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
805{
806 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
807 pp_atomctrl_clock_dividers_vi dividers;
808 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
809 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
810 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
811 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
812 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
813 uint32_t reference_clock;
814 uint32_t reference_divider;
815 uint32_t fbdiv;
816 int result;
817
818 /* get the engine clock dividers for this clock value*/
819 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
820
821 PP_ASSERT_WITH_CODE(result == 0,
822 "Error retrieving Engine Clock dividers from VBIOS.", return result);
823
824 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
825 reference_clock = atomctrl_get_reference_clock(hwmgr);
826
827 reference_divider = 1 + dividers.uc_pll_ref_div;
828
829 /* low 14 bits is fraction and high 12 bits is divider*/
830 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
831
832 /* SPLL_FUNC_CNTL setup*/
833 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
834 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
835 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
836 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
837
838 /* SPLL_FUNC_CNTL_3 setup*/
839 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
840 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
841
842 /* set to use fractional accumulation*/
843 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
844 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
845
846 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
847 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
848 pp_atomctrl_internal_ss_info ss_info;
849
850 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
851 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
852 /*
853 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
854 * ss_info.speed_spectrum_rate -- in unit of khz
855 */
856 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
857 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
858
859 /* clkv = 2 * D * fbdiv / NS */
860 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
861
862 cg_spll_spread_spectrum =
863 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
864 cg_spll_spread_spectrum =
865 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
866 cg_spll_spread_spectrum_2 =
867 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
868 }
869 }
870
871 sclk->SclkFrequency = engine_clock;
872 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
873 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
874 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
875 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
876 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
877
878 return 0;
879}
880
881static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
882 const struct phm_phase_shedding_limits_table *pl,
883 uint32_t sclk, uint32_t *p_shed)
884{
885 unsigned int i;
886
887 /* use the minimum phase shedding */
888 *p_shed = 1;
889
890 for (i = 0; i < pl->count; i++) {
891 if (sclk < pl->entries[i].Sclk) {
892 *p_shed = i;
893 break;
894 }
895 }
896 return 0;
897}
898
899static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
900 uint32_t engine_clock,
901 uint16_t sclk_activity_level_threshold,
902 SMU71_Discrete_GraphicsLevel *graphic_level)
903{
904 int result;
905 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
906
907 result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
908
909 /* populate graphics levels*/
910 result = iceland_get_dependency_volt_by_clk(hwmgr,
911 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
912 &graphic_level->MinVddc);
913 PP_ASSERT_WITH_CODE((0 == result),
4f42a2dd 914 "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
907bfec7
RZ
915
916 /* SCLK frequency in units of 10KHz*/
917 graphic_level->SclkFrequency = engine_clock;
918 graphic_level->MinVddcPhases = 1;
919
920 if (data->vddc_phase_shed_control)
921 iceland_populate_phase_value_based_on_sclk(hwmgr,
922 hwmgr->dyn_state.vddc_phase_shed_limits_table,
923 engine_clock,
924 &graphic_level->MinVddcPhases);
925
926 /* Indicates maximum activity level for this performance level. 50% for now*/
927 graphic_level->ActivityLevel = sclk_activity_level_threshold;
928
929 graphic_level->CcPwrDynRm = 0;
930 graphic_level->CcPwrDynRm1 = 0;
931 /* this level can be used if activity is high enough.*/
932 graphic_level->EnabledForActivity = 0;
933 /* this level can be used for throttling.*/
934 graphic_level->EnabledForThrottle = 1;
935 graphic_level->UpHyst = 0;
936 graphic_level->DownHyst = 100;
937 graphic_level->VoltageDownHyst = 0;
938 graphic_level->PowerThrottle = 0;
939
940 data->display_timing.min_clock_in_sr =
941 hwmgr->display_config.min_core_set_clock_in_sr;
942
943 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
944 PHM_PlatformCaps_SclkDeepSleep))
945 graphic_level->DeepSleepDivId =
946 smu7_get_sleep_divider_id_from_clock(engine_clock,
947 data->display_timing.min_clock_in_sr);
948
949 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
950 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
951
952 if (0 == result) {
953 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
954 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
955 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
956 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
957 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
958 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
959 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
960 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
961 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
962 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
963 }
964
965 return result;
966}
967
968static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
969{
970 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
971 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
972 struct smu7_dpm_table *dpm_table = &data->dpm_table;
973 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
974 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
975
976 uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
977 SMU71_MAX_LEVELS_GRAPHICS;
978
979 SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
980
981 uint32_t i;
982 uint8_t highest_pcie_level_enabled = 0;
983 uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
984 uint8_t count = 0;
985 int result = 0;
986
987 memset(levels, 0x00, level_array_size);
988
989 for (i = 0; i < dpm_table->sclk_table.count; i++) {
990 result = iceland_populate_single_graphic_level(hwmgr,
991 dpm_table->sclk_table.dpm_levels[i].value,
992 (uint16_t)smu_data->activity_target[i],
993 &(smu_data->smc_state_table.GraphicsLevel[i]));
994 if (result != 0)
995 return result;
996
997 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
998 if (i > 1)
999 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
1000 }
1001
1002 /* Only enable level 0 for now. */
1003 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
1004
1005 /* set highest level watermark to high */
1006 if (dpm_table->sclk_table.count > 1)
1007 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
1008 PPSMC_DISPLAY_WATERMARK_HIGH;
1009
1010 smu_data->smc_state_table.GraphicsDpmLevelCount =
1011 (uint8_t)dpm_table->sclk_table.count;
1012 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1013 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1014
1015 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1016 (1 << (highest_pcie_level_enabled + 1))) != 0) {
1017 highest_pcie_level_enabled++;
1018 }
1019
1020 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1021 (1 << lowest_pcie_level_enabled)) == 0) {
1022 lowest_pcie_level_enabled++;
1023 }
1024
1025 while ((count < highest_pcie_level_enabled) &&
1026 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1027 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1028 count++;
1029 }
1030
1031 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1032 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1033
1034
1035 /* set pcieDpmLevel to highest_pcie_level_enabled*/
1036 for (i = 2; i < dpm_table->sclk_table.count; i++) {
1037 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1038 }
1039
1040 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
1041 smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1042
1043 /* set pcieDpmLevel to mid_pcie_level_enabled*/
1044 smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1045
1046 /* level count will send to smc once at init smc table and never change*/
1047 result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1048 (uint8_t *)levels, (uint32_t)level_array_size,
1049 SMC_RAM_END);
1050
1051 return result;
1052}
1053
1054static int iceland_calculate_mclk_params(
1055 struct pp_hwmgr *hwmgr,
1056 uint32_t memory_clock,
1057 SMU71_Discrete_MemoryLevel *mclk,
1058 bool strobe_mode,
1059 bool dllStateOn
1060 )
1061{
1062 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1063
1064 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1065 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1066 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1067 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1068 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1069 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1070 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1071 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1072 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1073
1074 pp_atomctrl_memory_clock_param mpll_param;
1075 int result;
1076
1077 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1078 memory_clock, &mpll_param, strobe_mode);
1079 PP_ASSERT_WITH_CODE(0 == result,
1080 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1081
1082 /* MPLL_FUNC_CNTL setup*/
1083 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1084
1085 /* MPLL_FUNC_CNTL_1 setup*/
1086 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1087 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1088 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1089 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1090 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1091 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1092
1093 /* MPLL_AD_FUNC_CNTL setup*/
1094 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1095 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1096
1097 if (data->is_memory_gddr5) {
1098 /* MPLL_DQ_FUNC_CNTL setup*/
1099 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1100 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1101 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1102 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1103 }
1104
1105 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1106 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1107 /*
1108 ************************************
1109 Fref = Reference Frequency
1110 NF = Feedback divider ratio
1111 NR = Reference divider ratio
1112 Fnom = Nominal VCO output frequency = Fref * NF / NR
1113 Fs = Spreading Rate
1114 D = Percentage down-spread / 2
1115 Fint = Reference input frequency to PFD = Fref / NR
1116 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1117 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1118 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1119 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1120 *************************************
1121 */
1122 pp_atomctrl_internal_ss_info ss_info;
1123 uint32_t freq_nom;
1124 uint32_t tmp;
1125 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1126
1127 /* for GDDR5 for all modes and DDR3 */
1128 if (1 == mpll_param.qdr)
1129 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1130 else
1131 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1132
1133 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1134 tmp = (freq_nom / reference_clock);
1135 tmp = tmp * tmp;
1136
1137 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1138 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1139 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1140 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1141 /* = reference_clock * 5 / speed_spectrum_rate */
1142 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1143
1144 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1145 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1146 uint32_t clkv =
1147 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1148 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1149
1150 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1151 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1152 }
1153 }
1154
1155 /* MCLK_PWRMGT_CNTL setup */
1156 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1157 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1158 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1159 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1160 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1161 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1162
1163
1164 /* Save the result data to outpupt memory level structure */
1165 mclk->MclkFrequency = memory_clock;
1166 mclk->MpllFuncCntl = mpll_func_cntl;
1167 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1168 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1169 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1170 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1171 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1172 mclk->DllCntl = dll_cntl;
1173 mclk->MpllSs1 = mpll_ss1;
1174 mclk->MpllSs2 = mpll_ss2;
1175
1176 return 0;
1177}
1178
1179static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1180 bool strobe_mode)
1181{
1182 uint8_t mc_para_index;
1183
1184 if (strobe_mode) {
1185 if (memory_clock < 12500) {
1186 mc_para_index = 0x00;
1187 } else if (memory_clock > 47500) {
1188 mc_para_index = 0x0f;
1189 } else {
1190 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1191 }
1192 } else {
1193 if (memory_clock < 65000) {
1194 mc_para_index = 0x00;
1195 } else if (memory_clock > 135000) {
1196 mc_para_index = 0x0f;
1197 } else {
1198 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1199 }
1200 }
1201
1202 return mc_para_index;
1203}
1204
1205static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1206{
1207 uint8_t mc_para_index;
1208
1209 if (memory_clock < 10000) {
1210 mc_para_index = 0;
1211 } else if (memory_clock >= 80000) {
1212 mc_para_index = 0x0f;
1213 } else {
1214 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1215 }
1216
1217 return mc_para_index;
1218}
1219
1220static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1221 uint32_t memory_clock, uint32_t *p_shed)
1222{
1223 unsigned int i;
1224
1225 *p_shed = 1;
1226
1227 for (i = 0; i < pl->count; i++) {
1228 if (memory_clock < pl->entries[i].Mclk) {
1229 *p_shed = i;
1230 break;
1231 }
1232 }
1233
1234 return 0;
1235}
1236
1237static int iceland_populate_single_memory_level(
1238 struct pp_hwmgr *hwmgr,
1239 uint32_t memory_clock,
1240 SMU71_Discrete_MemoryLevel *memory_level
1241 )
1242{
1243 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1244 int result = 0;
1245 bool dll_state_on;
1246 struct cgs_display_info info = {0};
1247 uint32_t mclk_edc_wr_enable_threshold = 40000;
1248 uint32_t mclk_edc_enable_threshold = 40000;
1249 uint32_t mclk_strobe_mode_threshold = 40000;
1250
1251 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1252 result = iceland_get_dependency_volt_by_clk(hwmgr,
1253 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1254 PP_ASSERT_WITH_CODE((0 == result),
1255 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1256 }
1257
1258 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1259 memory_level->MinVddci = memory_level->MinVddc;
1260 } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1261 result = iceland_get_dependency_volt_by_clk(hwmgr,
1262 hwmgr->dyn_state.vddci_dependency_on_mclk,
1263 memory_clock,
1264 &memory_level->MinVddci);
1265 PP_ASSERT_WITH_CODE((0 == result),
1266 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1267 }
1268
1269 memory_level->MinVddcPhases = 1;
1270
1271 if (data->vddc_phase_shed_control) {
1272 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1273 memory_clock, &memory_level->MinVddcPhases);
1274 }
1275
1276 memory_level->EnabledForThrottle = 1;
1277 memory_level->EnabledForActivity = 0;
1278 memory_level->UpHyst = 0;
1279 memory_level->DownHyst = 100;
1280 memory_level->VoltageDownHyst = 0;
1281
1282 /* Indicates maximum activity level for this performance level.*/
1283 memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
1284 memory_level->StutterEnable = 0;
1285 memory_level->StrobeEnable = 0;
1286 memory_level->EdcReadEnable = 0;
1287 memory_level->EdcWriteEnable = 0;
1288 memory_level->RttEnable = 0;
1289
1290 /* default set to low watermark. Highest level will be set to high later.*/
1291 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1292
1293 cgs_get_active_displays_info(hwmgr->device, &info);
1294 data->display_timing.num_existing_displays = info.display_count;
1295
1296 /* stutter mode not support on iceland */
1297
1298 /* decide strobe mode*/
1299 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1300 (memory_clock <= mclk_strobe_mode_threshold);
1301
1302 /* decide EDC mode and memory clock ratio*/
1303 if (data->is_memory_gddr5) {
1304 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1305 memory_level->StrobeEnable);
1306
1307 if ((mclk_edc_enable_threshold != 0) &&
1308 (memory_clock > mclk_edc_enable_threshold)) {
1309 memory_level->EdcReadEnable = 1;
1310 }
1311
1312 if ((mclk_edc_wr_enable_threshold != 0) &&
1313 (memory_clock > mclk_edc_wr_enable_threshold)) {
1314 memory_level->EdcWriteEnable = 1;
1315 }
1316
1317 if (memory_level->StrobeEnable) {
1318 if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1319 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1320 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1321 else
1322 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1323 } else
1324 dll_state_on = data->dll_default_on;
1325 } else {
1326 memory_level->StrobeRatio =
1327 iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1328 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1329 }
1330
1331 result = iceland_calculate_mclk_params(hwmgr,
1332 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1333
1334 if (0 == result) {
1335 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1336 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1337 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1338 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1339 /* MCLK frequency in units of 10KHz*/
1340 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1341 /* Indicates maximum activity level for this performance level.*/
1342 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1343 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1344 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1345 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1346 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1347 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1348 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1349 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1350 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1351 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1352 }
1353
1354 return result;
1355}
1356
1357static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1358{
1359 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1360 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1361 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1362 int result;
1363
1364 /* populate MCLK dpm table to SMU7 */
1365 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1366 uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1367 SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1368 uint32_t i;
1369
1370 memset(levels, 0x00, level_array_size);
1371
1372 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1373 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1374 "can not populate memory level as memory clock is zero", return -EINVAL);
1375 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1376 &(smu_data->smc_state_table.MemoryLevel[i]));
1377 if (0 != result) {
1378 return result;
1379 }
1380 }
1381
1382 /* Only enable level 0 for now.*/
1383 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1384
1385 /*
1386 * in order to prevent MC activity from stutter mode to push DPM up.
1387 * the UVD change complements this by putting the MCLK in a higher state
1388 * by default such that we are not effected by up threshold or and MCLK DPM latency.
1389 */
1390 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1391 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1392
1393 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1394 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1395 /* set highest level watermark to high*/
1396 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1397
1398 /* level count will send to smc once at init smc table and never change*/
1399 result = smu7_copy_bytes_to_smc(hwmgr,
1400 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1401 SMC_RAM_END);
1402
1403 return result;
1404}
1405
1406static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1407 SMU71_Discrete_VoltageLevel *voltage)
1408{
1409 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1410
1411 uint32_t i = 0;
1412
1413 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1414 /* find mvdd value which clock is more than request */
1415 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1416 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1417 /* Always round to higher voltage. */
1418 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1419 break;
1420 }
1421 }
1422
1423 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1424 "MVDD Voltage is outside the supported range.", return -EINVAL);
1425
1426 } else {
1427 return -EINVAL;
1428 }
1429
1430 return 0;
1431}
1432
1433static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1434 SMU71_Discrete_DpmTable *table)
1435{
1436 int result = 0;
1437 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1438 struct pp_atomctrl_clock_dividers_vi dividers;
1439 uint32_t vddc_phase_shed_control = 0;
1440
1441 SMU71_Discrete_VoltageLevel voltage_level;
1442 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1443 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1444 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1445 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1446
1447
1448 /* The ACPI state should not do DPM on DC (or ever).*/
1449 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1450
1451 if (data->acpi_vddc)
1452 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1453 else
1454 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1455
1456 table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1457 /* assign zero for now*/
1458 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1459
1460 /* get the engine clock dividers for this clock value*/
1461 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1462 table->ACPILevel.SclkFrequency, &dividers);
1463
1464 PP_ASSERT_WITH_CODE(result == 0,
1465 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1466
1467 /* divider ID for required SCLK*/
1468 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1469 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1470 table->ACPILevel.DeepSleepDivId = 0;
1471
1472 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1473 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
1474 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1475 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
1476 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
1477 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
1478
1479 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1480 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1481 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1482 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1483 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1484 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1485 table->ACPILevel.CcPwrDynRm = 0;
1486 table->ACPILevel.CcPwrDynRm1 = 0;
1487
1488
1489 /* For various features to be enabled/disabled while this level is active.*/
1490 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1491 /* SCLK frequency in units of 10KHz*/
1492 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1493 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1494 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1495 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1496 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1497 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1498 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1499 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1500 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1501
1502 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1503 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1504 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1505
1506 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1507 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1508 else {
1509 if (data->acpi_vddci != 0)
1510 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1511 else
1512 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1513 }
1514
1515 if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1516 table->MemoryACPILevel.MinMvdd =
1517 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1518 else
1519 table->MemoryACPILevel.MinMvdd = 0;
1520
1521 /* Force reset on DLL*/
1522 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1523 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1524 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1525 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1526
1527 /* Disable DLL in ACPIState*/
1528 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1529 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1530 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1531 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1532
1533 /* Enable DLL bypass signal*/
1534 dll_cntl = PHM_SET_FIELD(dll_cntl,
1535 DLL_CNTL, MRDCK0_BYPASS, 0);
1536 dll_cntl = PHM_SET_FIELD(dll_cntl,
1537 DLL_CNTL, MRDCK1_BYPASS, 0);
1538
1539 table->MemoryACPILevel.DllCntl =
1540 PP_HOST_TO_SMC_UL(dll_cntl);
1541 table->MemoryACPILevel.MclkPwrmgtCntl =
1542 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1543 table->MemoryACPILevel.MpllAdFuncCntl =
1544 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1545 table->MemoryACPILevel.MpllDqFuncCntl =
1546 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1547 table->MemoryACPILevel.MpllFuncCntl =
1548 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1549 table->MemoryACPILevel.MpllFuncCntl_1 =
1550 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1551 table->MemoryACPILevel.MpllFuncCntl_2 =
1552 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1553 table->MemoryACPILevel.MpllSs1 =
1554 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1555 table->MemoryACPILevel.MpllSs2 =
1556 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1557
1558 table->MemoryACPILevel.EnabledForThrottle = 0;
1559 table->MemoryACPILevel.EnabledForActivity = 0;
1560 table->MemoryACPILevel.UpHyst = 0;
1561 table->MemoryACPILevel.DownHyst = 100;
1562 table->MemoryACPILevel.VoltageDownHyst = 0;
1563 /* Indicates maximum activity level for this performance level.*/
1564 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
1565
1566 table->MemoryACPILevel.StutterEnable = 0;
1567 table->MemoryACPILevel.StrobeEnable = 0;
1568 table->MemoryACPILevel.EdcReadEnable = 0;
1569 table->MemoryACPILevel.EdcWriteEnable = 0;
1570 table->MemoryACPILevel.RttEnable = 0;
1571
1572 return result;
1573}
1574
1575static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1576 SMU71_Discrete_DpmTable *table)
1577{
1578 return 0;
1579}
1580
1581static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1582 SMU71_Discrete_DpmTable *table)
1583{
1584 return 0;
1585}
1586
1587static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1588 SMU71_Discrete_DpmTable *table)
1589{
1590 return 0;
1591}
1592
1593static int iceland_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1594 SMU71_Discrete_DpmTable *table)
1595{
1596 return 0;
1597}
1598
1599static int iceland_populate_memory_timing_parameters(
1600 struct pp_hwmgr *hwmgr,
1601 uint32_t engine_clock,
1602 uint32_t memory_clock,
1603 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1604 )
1605{
1606 uint32_t dramTiming;
1607 uint32_t dramTiming2;
1608 uint32_t burstTime;
1609 int result;
1610
1611 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1612 engine_clock, memory_clock);
1613
1614 PP_ASSERT_WITH_CODE(result == 0,
1615 "Error calling VBIOS to set DRAM_TIMING.", return result);
1616
1617 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1618 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1619 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1620
1621 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1622 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1623 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1624
1625 return 0;
1626}
1627
1628static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1629{
1630 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1631 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1632 int result = 0;
1633 SMU71_Discrete_MCArbDramTimingTable arb_regs;
1634 uint32_t i, j;
1635
1636 memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1637
1638 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1639 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1640 result = iceland_populate_memory_timing_parameters
1641 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1642 data->dpm_table.mclk_table.dpm_levels[j].value,
1643 &arb_regs.entries[i][j]);
1644
1645 if (0 != result) {
1646 break;
1647 }
1648 }
1649 }
1650
1651 if (0 == result) {
1652 result = smu7_copy_bytes_to_smc(
1653 hwmgr,
1654 smu_data->smu7_data.arb_table_start,
1655 (uint8_t *)&arb_regs,
1656 sizeof(SMU71_Discrete_MCArbDramTimingTable),
1657 SMC_RAM_END
1658 );
1659 }
1660
1661 return result;
1662}
1663
1664static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1665 SMU71_Discrete_DpmTable *table)
1666{
1667 int result = 0;
1668 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1669 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1670 table->GraphicsBootLevel = 0;
1671 table->MemoryBootLevel = 0;
1672
1673 /* find boot level from dpm table*/
1674 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1675 data->vbios_boot_state.sclk_bootup_value,
1676 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1677
1678 if (0 != result) {
1679 smu_data->smc_state_table.GraphicsBootLevel = 0;
4f42a2dd 1680 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
907bfec7
RZ
1681 result = 0;
1682 }
1683
1684 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1685 data->vbios_boot_state.mclk_bootup_value,
1686 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1687
1688 if (0 != result) {
1689 smu_data->smc_state_table.MemoryBootLevel = 0;
4f42a2dd 1690 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
907bfec7
RZ
1691 result = 0;
1692 }
1693
1694 table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1695 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1696 table->BootVddci = table->BootVddc;
1697 else
1698 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1699
1700 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1701
1702 return result;
1703}
1704
1705static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1706 SMU71_Discrete_MCRegisters *mc_reg_table)
1707{
1708 const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1709
1710 uint32_t i, j;
1711
1712 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1713 if (smu_data->mc_reg_table.validflag & 1<<j) {
1714 PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1715 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1716 mc_reg_table->address[i].s0 =
1717 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1718 mc_reg_table->address[i].s1 =
1719 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1720 i++;
1721 }
1722 }
1723
1724 mc_reg_table->last = (uint8_t)i;
1725
1726 return 0;
1727}
1728
1729/*convert register values from driver to SMC format */
1730static void iceland_convert_mc_registers(
1731 const struct iceland_mc_reg_entry *entry,
1732 SMU71_Discrete_MCRegisterSet *data,
1733 uint32_t num_entries, uint32_t valid_flag)
1734{
1735 uint32_t i, j;
1736
1737 for (i = 0, j = 0; j < num_entries; j++) {
1738 if (valid_flag & 1<<j) {
1739 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1740 i++;
1741 }
1742 }
1743}
1744
1745static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1746 const uint32_t memory_clock,
1747 SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1748 )
1749{
1750 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1751 uint32_t i = 0;
1752
1753 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1754 if (memory_clock <=
1755 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1756 break;
1757 }
1758 }
1759
1760 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1761 --i;
1762
1763 iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1764 mc_reg_table_data, smu_data->mc_reg_table.last,
1765 smu_data->mc_reg_table.validflag);
1766
1767 return 0;
1768}
1769
1770static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1771 SMU71_Discrete_MCRegisters *mc_regs)
1772{
1773 int result = 0;
1774 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1775 int res;
1776 uint32_t i;
1777
1778 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1779 res = iceland_convert_mc_reg_table_entry_to_smc(
1780 hwmgr,
1781 data->dpm_table.mclk_table.dpm_levels[i].value,
1782 &mc_regs->data[i]
1783 );
1784
1785 if (0 != res)
1786 result = res;
1787 }
1788
1789 return result;
1790}
1791
1792static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1793{
1794 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1795 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1796 uint32_t address;
1797 int32_t result;
1798
1799 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1800 return 0;
1801
1802
1803 memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1804
1805 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1806
1807 if (result != 0)
1808 return result;
1809
1810
1811 address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1812
1813 return smu7_copy_bytes_to_smc(hwmgr, address,
1814 (uint8_t *)&smu_data->mc_regs.data[0],
1815 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1816 SMC_RAM_END);
1817}
1818
1819static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1820{
1821 int result;
1822 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1823
1824 memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1825 result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1826 PP_ASSERT_WITH_CODE(0 == result,
1827 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1828
1829 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1830 PP_ASSERT_WITH_CODE(0 == result,
1831 "Failed to initialize MCRegTable for driver state!", return result;);
1832
1833 return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1834 (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1835}
1836
1837static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1838{
1839 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1840 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1841 uint8_t count, level;
1842
1843 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1844
1845 for (level = 0; level < count; level++) {
1846 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1847 >= data->vbios_boot_state.sclk_bootup_value) {
1848 smu_data->smc_state_table.GraphicsBootLevel = level;
1849 break;
1850 }
1851 }
1852
1853 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1854
1855 for (level = 0; level < count; level++) {
1856 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1857 >= data->vbios_boot_state.mclk_bootup_value) {
1858 smu_data->smc_state_table.MemoryBootLevel = level;
1859 break;
1860 }
1861 }
1862
1863 return 0;
1864}
1865
1866static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1867{
1868 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1869 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1870 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1871 SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
1872 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1873 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1874 const uint16_t *def1, *def2;
1875 int i, j, k;
1876
1877
1878 /*
1879 * TDP number of fraction bits are changed from 8 to 7 for Iceland
1880 * as requested by SMC team
1881 */
1882
1883 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1884 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1885
1886
1887 dpm_table->DTETjOffset = 0;
1888
1889 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1890 dpm_table->GpuTjHyst = 8;
1891
1892 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1893
1894 /* The following are for new Iceland Multi-input fan/thermal control */
1895 if (NULL != ppm) {
1896 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1897 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1898 } else {
1899 dpm_table->PPM_PkgPwrLimit = 0;
1900 dpm_table->PPM_TemperatureLimit = 0;
1901 }
1902
1903 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1904 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1905
1906 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1907 def1 = defaults->bapmti_r;
1908 def2 = defaults->bapmti_rc;
1909
1910 for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1911 for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1912 for (k = 0; k < SMU71_DTE_SINKS; k++) {
1913 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1914 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1915 def1++;
1916 def2++;
1917 }
1918 }
1919 }
1920
1921 return 0;
1922}
1923
1924static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1925 SMU71_Discrete_DpmTable *tab)
1926{
1927 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1928
1929 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1930 tab->SVI2Enable |= VDDC_ON_SVI2;
1931
1932 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1933 tab->SVI2Enable |= VDDCI_ON_SVI2;
1934 else
1935 tab->MergedVddci = 1;
1936
1937 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1938 tab->SVI2Enable |= MVDD_ON_SVI2;
1939
1940 PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1941 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1942
1943 return 0;
1944}
1945
1946static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1947{
1948 int result;
1949 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1950 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1951 SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1952
1953
1954 iceland_initialize_power_tune_defaults(hwmgr);
1955 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1956
1957 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1958 iceland_populate_smc_voltage_tables(hwmgr, table);
1959 }
1960
1961 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1962 PHM_PlatformCaps_AutomaticDCTransition))
1963 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1964
1965
1966 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1967 PHM_PlatformCaps_StepVddc))
1968 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1969
1970 if (data->is_memory_gddr5)
1971 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1972
1973
1974 if (data->ulv_supported) {
1975 result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1976 PP_ASSERT_WITH_CODE(0 == result,
1977 "Failed to initialize ULV state!", return result;);
1978
1979 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1980 ixCG_ULV_PARAMETER, 0x40035);
1981 }
1982
1983 result = iceland_populate_smc_link_level(hwmgr, table);
1984 PP_ASSERT_WITH_CODE(0 == result,
1985 "Failed to initialize Link Level!", return result;);
1986
1987 result = iceland_populate_all_graphic_levels(hwmgr);
1988 PP_ASSERT_WITH_CODE(0 == result,
1989 "Failed to initialize Graphics Level!", return result;);
1990
1991 result = iceland_populate_all_memory_levels(hwmgr);
1992 PP_ASSERT_WITH_CODE(0 == result,
1993 "Failed to initialize Memory Level!", return result;);
1994
1995 result = iceland_populate_smc_acpi_level(hwmgr, table);
1996 PP_ASSERT_WITH_CODE(0 == result,
1997 "Failed to initialize ACPI Level!", return result;);
1998
1999 result = iceland_populate_smc_vce_level(hwmgr, table);
2000 PP_ASSERT_WITH_CODE(0 == result,
2001 "Failed to initialize VCE Level!", return result;);
2002
2003 result = iceland_populate_smc_acp_level(hwmgr, table);
2004 PP_ASSERT_WITH_CODE(0 == result,
2005 "Failed to initialize ACP Level!", return result;);
2006
2007 result = iceland_populate_smc_samu_level(hwmgr, table);
2008 PP_ASSERT_WITH_CODE(0 == result,
2009 "Failed to initialize SAMU Level!", return result;);
2010
2011 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2012 /* need to populate the ARB settings for the initial state. */
2013 result = iceland_program_memory_timing_parameters(hwmgr);
2014 PP_ASSERT_WITH_CODE(0 == result,
2015 "Failed to Write ARB settings for the initial state.", return result;);
2016
2017 result = iceland_populate_smc_uvd_level(hwmgr, table);
2018 PP_ASSERT_WITH_CODE(0 == result,
2019 "Failed to initialize UVD Level!", return result;);
2020
2021 table->GraphicsBootLevel = 0;
2022 table->MemoryBootLevel = 0;
2023
2024 result = iceland_populate_smc_boot_level(hwmgr, table);
2025 PP_ASSERT_WITH_CODE(0 == result,
2026 "Failed to initialize Boot Level!", return result;);
2027
2028 result = iceland_populate_smc_initial_state(hwmgr);
2029 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2030
2031 result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2032 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2033
2034 table->GraphicsVoltageChangeEnable = 1;
2035 table->GraphicsThermThrottleEnable = 1;
2036 table->GraphicsInterval = 1;
2037 table->VoltageInterval = 1;
2038 table->ThermalInterval = 1;
2039
2040 table->TemperatureLimitHigh =
2041 (data->thermal_temp_setting.temperature_high *
2042 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2043 table->TemperatureLimitLow =
2044 (data->thermal_temp_setting.temperature_low *
2045 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2046
2047 table->MemoryVoltageChangeEnable = 1;
2048 table->MemoryInterval = 1;
2049 table->VoltageResponseTime = 0;
2050 table->PhaseResponseTime = 0;
2051 table->MemoryThermThrottleEnable = 1;
2052 table->PCIeBootLinkLevel = 0;
2053 table->PCIeGenInterval = 1;
2054
2055 result = iceland_populate_smc_svi2_config(hwmgr, table);
2056 PP_ASSERT_WITH_CODE(0 == result,
2057 "Failed to populate SVI2 setting!", return result);
2058
2059 table->ThermGpio = 17;
2060 table->SclkStepSize = 0x4000;
2061
2062 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2063 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2064 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2065 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2066 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2067 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2068 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2069 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2070 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2071 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2072
2073 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2074 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2075 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2076
2077 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2078 result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2079 offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2080 (uint8_t *)&(table->SystemFlags),
2081 sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2082 SMC_RAM_END);
2083
2084 PP_ASSERT_WITH_CODE(0 == result,
2085 "Failed to upload dpm data to SMC memory!", return result;);
2086
2087 /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2088 result = smu7_copy_bytes_to_smc(hwmgr,
2089 smu_data->smu7_data.ulv_setting_starts,
2090 (uint8_t *)&(smu_data->ulv_setting),
2091 sizeof(SMU71_Discrete_Ulv),
2092 SMC_RAM_END);
2093
2094
2095 result = iceland_populate_initial_mc_reg_table(hwmgr);
2096 PP_ASSERT_WITH_CODE((0 == result),
2097 "Failed to populate initialize MC Reg table!", return result);
2098
2099 result = iceland_populate_pm_fuses(hwmgr);
2100 PP_ASSERT_WITH_CODE(0 == result,
2101 "Failed to populate PM fuses to SMC memory!", return result);
2102
2103 return 0;
2104}
2105
2106int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2107{
2108 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2109 SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2110 uint32_t duty100;
2111 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2112 uint16_t fdo_min, slope1, slope2;
2113 uint32_t reference_clock;
2114 int res;
2115 uint64_t tmp64;
2116
2117 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2118 return 0;
2119
2120 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2121 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2122 PHM_PlatformCaps_MicrocodeFanControl);
2123 return 0;
2124 }
2125
2126 if (0 == smu7_data->fan_table_start) {
2127 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2128 return 0;
2129 }
2130
2131 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2132
2133 if (0 == duty100) {
2134 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2135 return 0;
2136 }
2137
2138 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2139 do_div(tmp64, 10000);
2140 fdo_min = (uint16_t)tmp64;
2141
2142 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2143 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2144
2145 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2146 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2147
2148 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2149 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2150
2151 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2152 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2153 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2154
2155 fan_table.Slope1 = cpu_to_be16(slope1);
2156 fan_table.Slope2 = cpu_to_be16(slope2);
2157
2158 fan_table.FdoMin = cpu_to_be16(fdo_min);
2159
2160 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2161
2162 fan_table.HystUp = cpu_to_be16(1);
2163
2164 fan_table.HystSlope = cpu_to_be16(1);
2165
2166 fan_table.TempRespLim = cpu_to_be16(5);
2167
2168 reference_clock = smu7_get_xclk(hwmgr);
2169
2170 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2171
2172 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2173
2174 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2175
2176 /* fan_table.FanControl_GL_Flag = 1; */
2177
2178 res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2179
2180 return 0;
2181}
2182
2183
2184static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2185{
2186 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2187
2188 if (data->need_update_smu7_dpm_table &
2189 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2190 return iceland_program_memory_timing_parameters(hwmgr);
2191
2192 return 0;
2193}
2194
2195static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2196{
2197 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2198 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2199
2200 int result = 0;
2201 uint32_t low_sclk_interrupt_threshold = 0;
2202
2203 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2204 PHM_PlatformCaps_SclkThrottleLowNotification)
29411f05 2205 && (data->low_sclk_interrupt_threshold != 0)) {
907bfec7
RZ
2206 low_sclk_interrupt_threshold =
2207 data->low_sclk_interrupt_threshold;
2208
2209 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2210
2211 result = smu7_copy_bytes_to_smc(
2212 hwmgr,
2213 smu_data->smu7_data.dpm_table_start +
2214 offsetof(SMU71_Discrete_DpmTable,
2215 LowSclkInterruptThreshold),
2216 (uint8_t *)&low_sclk_interrupt_threshold,
2217 sizeof(uint32_t),
2218 SMC_RAM_END);
2219 }
2220
2221 result = iceland_update_and_upload_mc_reg_table(hwmgr);
2222
2223 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2224
2225 result = iceland_program_mem_timing_parameters(hwmgr);
2226 PP_ASSERT_WITH_CODE((result == 0),
2227 "Failed to program memory timing parameters!",
2228 );
2229
2230 return result;
2231}
2232
2233static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2234{
2235 switch (type) {
2236 case SMU_SoftRegisters:
2237 switch (member) {
2238 case HandshakeDisables:
2239 return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2240 case VoltageChangeTimeout:
2241 return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2242 case AverageGraphicsActivity:
2243 return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2244 case PreVBlankGap:
2245 return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2246 case VBlankTimeout:
2247 return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2248 case UcodeLoadStatus:
2249 return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2250 case DRAM_LOG_ADDR_H:
2251 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2252 case DRAM_LOG_ADDR_L:
2253 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2254 case DRAM_LOG_PHY_ADDR_H:
2255 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2256 case DRAM_LOG_PHY_ADDR_L:
2257 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2258 case DRAM_LOG_BUFF_SIZE:
2259 return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2260 }
2261 case SMU_Discrete_DpmTable:
2262 switch (member) {
2263 case LowSclkInterruptThreshold:
2264 return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2265 }
2266 }
2267 pr_warn("can't get the offset of type %x member %x\n", type, member);
2268 return 0;
2269}
2270
2271static uint32_t iceland_get_mac_definition(uint32_t value)
2272{
2273 switch (value) {
2274 case SMU_MAX_LEVELS_GRAPHICS:
2275 return SMU71_MAX_LEVELS_GRAPHICS;
2276 case SMU_MAX_LEVELS_MEMORY:
2277 return SMU71_MAX_LEVELS_MEMORY;
2278 case SMU_MAX_LEVELS_LINK:
2279 return SMU71_MAX_LEVELS_LINK;
2280 case SMU_MAX_ENTRIES_SMIO:
2281 return SMU71_MAX_ENTRIES_SMIO;
2282 case SMU_MAX_LEVELS_VDDC:
2283 return SMU71_MAX_LEVELS_VDDC;
2284 case SMU_MAX_LEVELS_VDDCI:
2285 return SMU71_MAX_LEVELS_VDDCI;
2286 case SMU_MAX_LEVELS_MVDD:
2287 return SMU71_MAX_LEVELS_MVDD;
2288 }
2289
2290 pr_warn("can't get the mac of %x\n", value);
2291 return 0;
2292}
2293
2294static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2295{
2296 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2297 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2298
2299 uint32_t tmp;
2300 int result;
2301 bool error = false;
2302
2303 result = smu7_read_smc_sram_dword(hwmgr,
2304 SMU71_FIRMWARE_HEADER_LOCATION +
2305 offsetof(SMU71_Firmware_Header, DpmTable),
2306 &tmp, SMC_RAM_END);
2307
2308 if (0 == result) {
2309 smu7_data->dpm_table_start = tmp;
2310 }
2311
2312 error |= (0 != result);
2313
2314 result = smu7_read_smc_sram_dword(hwmgr,
2315 SMU71_FIRMWARE_HEADER_LOCATION +
2316 offsetof(SMU71_Firmware_Header, SoftRegisters),
2317 &tmp, SMC_RAM_END);
2318
2319 if (0 == result) {
2320 data->soft_regs_start = tmp;
2321 smu7_data->soft_regs_start = tmp;
2322 }
2323
2324 error |= (0 != result);
2325
2326
2327 result = smu7_read_smc_sram_dword(hwmgr,
2328 SMU71_FIRMWARE_HEADER_LOCATION +
2329 offsetof(SMU71_Firmware_Header, mcRegisterTable),
2330 &tmp, SMC_RAM_END);
2331
2332 if (0 == result) {
2333 smu7_data->mc_reg_table_start = tmp;
2334 }
2335
2336 result = smu7_read_smc_sram_dword(hwmgr,
2337 SMU71_FIRMWARE_HEADER_LOCATION +
2338 offsetof(SMU71_Firmware_Header, FanTable),
2339 &tmp, SMC_RAM_END);
2340
2341 if (0 == result) {
2342 smu7_data->fan_table_start = tmp;
2343 }
2344
2345 error |= (0 != result);
2346
2347 result = smu7_read_smc_sram_dword(hwmgr,
2348 SMU71_FIRMWARE_HEADER_LOCATION +
2349 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2350 &tmp, SMC_RAM_END);
2351
2352 if (0 == result) {
2353 smu7_data->arb_table_start = tmp;
2354 }
2355
2356 error |= (0 != result);
2357
2358
2359 result = smu7_read_smc_sram_dword(hwmgr,
2360 SMU71_FIRMWARE_HEADER_LOCATION +
2361 offsetof(SMU71_Firmware_Header, Version),
2362 &tmp, SMC_RAM_END);
2363
2364 if (0 == result) {
2365 hwmgr->microcode_version_info.SMC = tmp;
2366 }
2367
2368 error |= (0 != result);
2369
2370 result = smu7_read_smc_sram_dword(hwmgr,
2371 SMU71_FIRMWARE_HEADER_LOCATION +
2372 offsetof(SMU71_Firmware_Header, UlvSettings),
2373 &tmp, SMC_RAM_END);
2374
2375 if (0 == result) {
2376 smu7_data->ulv_setting_starts = tmp;
2377 }
2378
2379 error |= (0 != result);
2380
2381 return error ? 1 : 0;
2382}
2383
2384/*---------------------------MC----------------------------*/
2385
2386static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2387{
2388 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2389}
2390
2391static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2392{
2393 bool result = true;
2394
2395 switch (in_reg) {
2396 case mmMC_SEQ_RAS_TIMING:
2397 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2398 break;
2399
2400 case mmMC_SEQ_DLL_STBY:
2401 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2402 break;
2403
2404 case mmMC_SEQ_G5PDX_CMD0:
2405 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2406 break;
2407
2408 case mmMC_SEQ_G5PDX_CMD1:
2409 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2410 break;
2411
2412 case mmMC_SEQ_G5PDX_CTRL:
2413 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2414 break;
2415
2416 case mmMC_SEQ_CAS_TIMING:
2417 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2418 break;
2419
2420 case mmMC_SEQ_MISC_TIMING:
2421 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2422 break;
2423
2424 case mmMC_SEQ_MISC_TIMING2:
2425 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2426 break;
2427
2428 case mmMC_SEQ_PMG_DVS_CMD:
2429 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2430 break;
2431
2432 case mmMC_SEQ_PMG_DVS_CTL:
2433 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2434 break;
2435
2436 case mmMC_SEQ_RD_CTL_D0:
2437 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2438 break;
2439
2440 case mmMC_SEQ_RD_CTL_D1:
2441 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2442 break;
2443
2444 case mmMC_SEQ_WR_CTL_D0:
2445 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2446 break;
2447
2448 case mmMC_SEQ_WR_CTL_D1:
2449 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2450 break;
2451
2452 case mmMC_PMG_CMD_EMRS:
2453 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2454 break;
2455
2456 case mmMC_PMG_CMD_MRS:
2457 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2458 break;
2459
2460 case mmMC_PMG_CMD_MRS1:
2461 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2462 break;
2463
2464 case mmMC_SEQ_PMG_TIMING:
2465 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2466 break;
2467
2468 case mmMC_PMG_CMD_MRS2:
2469 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2470 break;
2471
2472 case mmMC_SEQ_WR_CTL_2:
2473 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2474 break;
2475
2476 default:
2477 result = false;
2478 break;
2479 }
2480
2481 return result;
2482}
2483
2484static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2485{
2486 uint32_t i;
2487 uint16_t address;
2488
2489 for (i = 0; i < table->last; i++) {
2490 table->mc_reg_address[i].s0 =
2491 iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2492 ? address : table->mc_reg_address[i].s1;
2493 }
2494 return 0;
2495}
2496
2497static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2498 struct iceland_mc_reg_table *ni_table)
2499{
2500 uint8_t i, j;
2501
2502 PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2503 "Invalid VramInfo table.", return -EINVAL);
2504 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2505 "Invalid VramInfo table.", return -EINVAL);
2506
2507 for (i = 0; i < table->last; i++) {
2508 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2509 }
2510 ni_table->last = table->last;
2511
2512 for (i = 0; i < table->num_entries; i++) {
2513 ni_table->mc_reg_table_entry[i].mclk_max =
2514 table->mc_reg_table_entry[i].mclk_max;
2515 for (j = 0; j < table->last; j++) {
2516 ni_table->mc_reg_table_entry[i].mc_data[j] =
2517 table->mc_reg_table_entry[i].mc_data[j];
2518 }
2519 }
2520
2521 ni_table->num_entries = table->num_entries;
2522
2523 return 0;
2524}
2525
2526static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2527 struct iceland_mc_reg_table *table)
2528{
2529 uint8_t i, j, k;
2530 uint32_t temp_reg;
2531 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2532
2533 for (i = 0, j = table->last; i < table->last; i++) {
2534 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2535 "Invalid VramInfo table.", return -EINVAL);
2536
2537 switch (table->mc_reg_address[i].s1) {
2538
2539 case mmMC_SEQ_MISC1:
2540 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2541 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2542 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2543 for (k = 0; k < table->num_entries; k++) {
2544 table->mc_reg_table_entry[k].mc_data[j] =
2545 ((temp_reg & 0xffff0000)) |
2546 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2547 }
2548 j++;
8cdbad98 2549
907bfec7
RZ
2550 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2551 "Invalid VramInfo table.", return -EINVAL);
907bfec7
RZ
2552 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2553 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2554 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2555 for (k = 0; k < table->num_entries; k++) {
2556 table->mc_reg_table_entry[k].mc_data[j] =
2557 (temp_reg & 0xffff0000) |
2558 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2559
2560 if (!data->is_memory_gddr5) {
2561 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2562 }
2563 }
2564 j++;
907bfec7 2565
8cdbad98
ES
2566 if (!data->is_memory_gddr5) {
2567 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2568 "Invalid VramInfo table.", return -EINVAL);
907bfec7
RZ
2569 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2570 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2571 for (k = 0; k < table->num_entries; k++) {
2572 table->mc_reg_table_entry[k].mc_data[j] =
2573 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2574 }
2575 j++;
907bfec7
RZ
2576 }
2577
2578 break;
2579
2580 case mmMC_SEQ_RESERVE_M:
2581 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2582 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2583 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2584 for (k = 0; k < table->num_entries; k++) {
2585 table->mc_reg_table_entry[k].mc_data[j] =
2586 (temp_reg & 0xffff0000) |
2587 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2588 }
2589 j++;
907bfec7
RZ
2590 break;
2591
2592 default:
2593 break;
2594 }
2595
2596 }
2597
2598 table->last = j;
2599
2600 return 0;
2601}
2602
2603static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2604{
2605 uint8_t i, j;
2606 for (i = 0; i < table->last; i++) {
2607 for (j = 1; j < table->num_entries; j++) {
2608 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2609 table->mc_reg_table_entry[j].mc_data[i]) {
2610 table->validflag |= (1<<i);
2611 break;
2612 }
2613 }
2614 }
2615
2616 return 0;
2617}
2618
2619static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2620{
2621 int result;
2622 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2623 pp_atomctrl_mc_reg_table *table;
2624 struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2625 uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2626
2627 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2628
2629 if (NULL == table)
2630 return -ENOMEM;
2631
2632 /* Program additional LP registers that are no longer programmed by VBIOS */
2633 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2634 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2635 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2636 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2637 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2638 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2639 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2640 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2641 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2642 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2643 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2644 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2645 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2646 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2647 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2648 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2649 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2650 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2651 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2652 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2653
2654 memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
2655
2656 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2657
2658 if (0 == result)
2659 result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2660
2661 if (0 == result) {
2662 iceland_set_s0_mc_reg_index(ni_table);
2663 result = iceland_set_mc_special_registers(hwmgr, ni_table);
2664 }
2665
2666 if (0 == result)
2667 iceland_set_valid_flag(ni_table);
2668
2669 kfree(table);
2670
2671 return result;
2672}
2673
2674static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2675{
2676 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2677 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2678 ? true : false;
2679}
2680
63b55943 2681const struct pp_smumgr_func iceland_smu_funcs = {
2435b054 2682 .smu_init = &iceland_smu_init,
9c6d4956 2683 .smu_fini = &smu7_smu_fini,
2435b054 2684 .start_smu = &iceland_start_smu,
9c6d4956
RZ
2685 .check_fw_load_finish = &smu7_check_fw_load_finish,
2686 .request_smu_load_fw = &smu7_reload_firmware,
2435b054 2687 .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
9c6d4956
RZ
2688 .send_msg_to_smc = &smu7_send_msg_to_smc,
2689 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2435b054
HR
2690 .download_pptable_settings = NULL,
2691 .upload_pptable_settings = NULL,
18aafc59
RZ
2692 .get_offsetof = iceland_get_offsetof,
2693 .process_firmware_header = iceland_process_firmware_header,
2694 .init_smc_table = iceland_init_smc_table,
2695 .update_sclk_threshold = iceland_update_sclk_threshold,
2696 .thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2697 .populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2698 .populate_all_memory_levels = iceland_populate_all_memory_levels,
2699 .get_mac_definition = iceland_get_mac_definition,
2700 .initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2701 .is_dpm_running = iceland_is_dpm_running,
2435b054
HR
2702};
2703