drm/powerplay/hwmgr: log errors in tonga_hwmgr_backend_init
[linux-2.6-block.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_hwmgr.c
CommitLineData
c82baa28 1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
26#include "linux/delay.h"
27#include "pp_acpi.h"
28#include "hwmgr.h"
29#include <atombios.h>
30#include "tonga_hwmgr.h"
31#include "pptable.h"
32#include "processpptables.h"
33#include "tonga_processpptables.h"
34#include "tonga_pptable.h"
35#include "pp_debug.h"
36#include "tonga_ppsmc.h"
37#include "cgs_common.h"
38#include "pppcielanes.h"
39#include "tonga_dyn_defaults.h"
40#include "smumgr.h"
41#include "tonga_smumgr.h"
0859ed3d 42#include "tonga_clockpowergating.h"
1e4854e9 43#include "tonga_thermal.h"
c82baa28 44
45#include "smu/smu_7_1_2_d.h"
46#include "smu/smu_7_1_2_sh_mask.h"
47
48#include "gmc/gmc_8_1_d.h"
49#include "gmc/gmc_8_1_sh_mask.h"
50
51#include "bif/bif_5_0_d.h"
52#include "bif/bif_5_0_sh_mask.h"
53
1e4854e9
RZ
54#include "cgs_linux.h"
55#include "eventmgr.h"
16881da6 56#include "amd_pcie_helpers.h"
1e4854e9 57
c82baa28 58#define MC_CG_ARB_FREQ_F0 0x0a
59#define MC_CG_ARB_FREQ_F1 0x0b
60#define MC_CG_ARB_FREQ_F2 0x0c
61#define MC_CG_ARB_FREQ_F3 0x0d
62
63#define MC_CG_SEQ_DRAMCONF_S0 0x05
64#define MC_CG_SEQ_DRAMCONF_S1 0x06
65#define MC_CG_SEQ_YCLK_SUSPEND 0x04
66#define MC_CG_SEQ_YCLK_RESUME 0x0a
67
68#define PCIE_BUS_CLK 10000
69#define TCLK (PCIE_BUS_CLK / 10)
70
71#define SMC_RAM_END 0x40000
72#define SMC_CG_IND_START 0xc0030000
73#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/
74
75#define VOLTAGE_SCALE 4
76#define VOLTAGE_VID_OFFSET_SCALE1 625
77#define VOLTAGE_VID_OFFSET_SCALE2 100
78
79#define VDDC_VDDCI_DELTA 200
80#define VDDC_VDDGFX_DELTA 300
81
82#define MC_SEQ_MISC0_GDDR5_SHIFT 28
83#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
84#define MC_SEQ_MISC0_GDDR5_VALUE 5
85
86typedef uint32_t PECI_RegistryValue;
87
88/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
89uint16_t PP_ClockStretcherLookupTable[2][4] = {
90 {600, 1050, 3, 0},
91 {600, 1050, 6, 1} };
92
93/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
94uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
95 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
96 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
97
98/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
99uint8_t PP_ClockStretchAmountConversion[2][6] = {
100 {0, 1, 3, 2, 4, 5},
101 {0, 2, 4, 5, 6, 5} };
102
103/* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
104enum DPM_EVENT_SRC {
105 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
106 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
107 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
108 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
109 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
110};
111typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
112
c82baa28 113const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
114
115struct tonga_power_state *cast_phw_tonga_power_state(
116 struct pp_hw_power_state *hw_ps)
117{
118 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
119 "Invalid Powerstate Type!",
120 return NULL;);
121
122 return (struct tonga_power_state *)hw_ps;
123}
124
125const struct tonga_power_state *cast_const_phw_tonga_power_state(
126 const struct pp_hw_power_state *hw_ps)
127{
128 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
129 "Invalid Powerstate Type!",
130 return NULL;);
131
132 return (const struct tonga_power_state *)hw_ps;
133}
134
135int tonga_add_voltage(struct pp_hwmgr *hwmgr,
136 phm_ppt_v1_voltage_lookup_table *look_up_table,
137 phm_ppt_v1_voltage_lookup_record *record)
138{
139 uint32_t i;
140 PP_ASSERT_WITH_CODE((NULL != look_up_table),
141 "Lookup Table empty.", return -1;);
142 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
143 "Lookup Table empty.", return -1;);
144 PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
145 "Lookup Table is full.", return -1;);
146
147 /* This is to avoid entering duplicate calculated records. */
148 for (i = 0; i < look_up_table->count; i++) {
149 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
150 if (look_up_table->entries[i].us_calculated == 1)
151 return 0;
152 else
153 break;
154 }
155 }
156
157 look_up_table->entries[i].us_calculated = 1;
158 look_up_table->entries[i].us_vdd = record->us_vdd;
159 look_up_table->entries[i].us_cac_low = record->us_cac_low;
160 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
161 look_up_table->entries[i].us_cac_high = record->us_cac_high;
162 /* Only increment the count when we're appending, not replacing duplicate entry. */
163 if (i == look_up_table->count)
164 look_up_table->count++;
165
166 return 0;
167}
168
bbb207f3
RZ
169int tonga_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
170{
171 PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
172
173 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
174}
175
c82baa28 176uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
177 uint32_t voltage)
178{
179 uint8_t count = (uint8_t) (voltage_table->count);
180 uint8_t i = 0;
181
182 PP_ASSERT_WITH_CODE((NULL != voltage_table),
183 "Voltage Table empty.", return 0;);
184 PP_ASSERT_WITH_CODE((0 != count),
185 "Voltage Table empty.", return 0;);
186
187 for (i = 0; i < count; i++) {
188 /* find first voltage bigger than requested */
189 if (voltage_table->entries[i].value >= voltage)
190 return i;
191 }
192
193 /* voltage is bigger than max voltage in the table */
194 return i - 1;
195}
196
197/**
198 * @brief PhwTonga_GetVoltageOrder
199 * Returns index of requested voltage record in lookup(table)
200 * @param hwmgr - pointer to hardware manager
201 * @param lookupTable - lookup list to search in
202 * @param voltage - voltage to look for
203 * @return 0 on success
204 */
205uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
206 uint16_t voltage)
207{
208 uint8_t count = (uint8_t) (look_up_table->count);
209 uint8_t i;
210
211 PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
212 PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
213
214 for (i = 0; i < count; i++) {
215 /* find first voltage equal or bigger than requested */
216 if (look_up_table->entries[i].us_vdd >= voltage)
217 return i;
218 }
219
220 /* voltage is bigger than max voltage in the table */
221 return i-1;
222}
223
224bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
225{
226 /*
227 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
228 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
229 * whereas voltage control is a fundemental change that will not be disabled
230 */
231
232 return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
233 FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
234}
235
236/**
237 * Re-generate the DPM level mask value
238 * @param hwmgr the address of the hardware manager
239 */
240static uint32_t tonga_get_dpm_level_enable_mask_value(
241 struct tonga_single_dpm_table * dpm_table)
242{
243 uint32_t i;
244 uint32_t mask_value = 0;
245
246 for (i = dpm_table->count; i > 0; i--) {
247 mask_value = mask_value << 1;
248
249 if (dpm_table->dpm_levels[i-1].enabled)
250 mask_value |= 0x1;
251 else
252 mask_value &= 0xFFFFFFFE;
253 }
254 return mask_value;
255}
256
257/**
258 * Retrieve DPM default values from registry (if available)
259 *
260 * @param hwmgr the address of the powerplay hardware manager.
261 */
262void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
263{
264 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
265 phw_tonga_ulv_parm *ulv = &(data->ulv);
266 uint32_t tmp;
267
268 ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
269 data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
270 data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
271 data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
272 data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
273 data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
274 data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
275 data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
276 data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
277
278 data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
279 data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
280
281 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
282 PHM_PlatformCaps_ABM);
283 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
284 PHM_PlatformCaps_NonABMSupportInPPLib);
285
286 tmp = 0;
287 if (tmp == 0)
288 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
289 PHM_PlatformCaps_DynamicACTiming);
290
291 tmp = 0;
292 if (0 != tmp)
293 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
294 PHM_PlatformCaps_DisableMemoryTransition);
295
296 data->mclk_strobe_mode_threshold = 40000;
297 data->mclk_stutter_mode_threshold = 30000;
298 data->mclk_edc_enable_threshold = 40000;
299 data->mclk_edc_wr_enable_threshold = 40000;
300
301 tmp = 0;
302 if (tmp != 0)
303 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
304 PHM_PlatformCaps_DisableMCLS);
305
306 data->pcie_gen_performance.max = PP_PCIEGen1;
307 data->pcie_gen_performance.min = PP_PCIEGen3;
308 data->pcie_gen_power_saving.max = PP_PCIEGen1;
309 data->pcie_gen_power_saving.min = PP_PCIEGen3;
310
311 data->pcie_lane_performance.max = 0;
312 data->pcie_lane_performance.min = 16;
313 data->pcie_lane_power_saving.max = 0;
314 data->pcie_lane_power_saving.min = 16;
315
316 tmp = 0;
317
318 if (tmp)
319 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
320 PHM_PlatformCaps_SclkThrottleLowNotification);
321
322 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
323 PHM_PlatformCaps_DynamicUVDState);
324
325}
326
327int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
328{
329 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
330
331 int result = 0;
332 uint32_t low_sclk_interrupt_threshold = 0;
333
334 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
335 PHM_PlatformCaps_SclkThrottleLowNotification)
336 && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
337 data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
338 low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
339
340 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
341
342 result = tonga_copy_bytes_to_smc(
343 hwmgr->smumgr,
344 data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
345 LowSclkInterruptThreshold),
346 (uint8_t *)&low_sclk_interrupt_threshold,
347 sizeof(uint32_t),
348 data->sram_end
349 );
350 }
351
352 return result;
353}
354
355/**
356 * Find SCLK value that is associated with specified virtual_voltage_Id.
357 *
358 * @param hwmgr the address of the powerplay hardware manager.
359 * @param virtual_voltage_Id voltageId to look for.
360 * @param sclk output value .
361 * @return always 0 if success and 2 if association not found
362 */
363static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
364 phm_ppt_v1_voltage_lookup_table *lookup_table,
365 uint16_t virtual_voltage_id, uint32_t *sclk)
366{
367 uint8_t entryId;
368 uint8_t voltageId;
369 struct phm_ppt_v1_information *pptable_info =
370 (struct phm_ppt_v1_information *)(hwmgr->pptable);
371
372 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
373
374 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
375 for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
376 voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
377 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
378 break;
379 }
380
381 PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
382 "Can't find requested voltage id in vdd_dep_on_sclk table!",
383 return -1;
384 );
385
386 *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
387
388 return 0;
389}
390
391/**
392 * Get Leakage VDDC based on leakage ID.
393 *
394 * @param hwmgr the address of the powerplay hardware manager.
395 * @return 2 if vddgfx returned is greater than 2V or if BIOS
396 */
397int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
398{
399 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
400 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
401 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
402 uint16_t virtual_voltage_id;
403 uint16_t vddc = 0;
404 uint16_t vddgfx = 0;
405 uint16_t i, j;
406 uint32_t sclk = 0;
407
408 /* retrieve voltage for leakage ID (0xff01 + i) */
409 for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
410 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
411
412 /* in split mode we should have only vddgfx EVV leakages */
413 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
414 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
415 pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
416 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
417 PHM_PlatformCaps_ClockStretcher)) {
418 for (j = 1; j < sclk_table->count; j++) {
419 if (sclk_table->entries[j].clk == sclk &&
420 sclk_table->entries[j].cks_enable == 0) {
421 sclk += 5000;
422 break;
423 }
424 }
425 }
426 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
427 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
428 virtual_voltage_id, &vddgfx),
429 "Error retrieving EVV voltage value!", continue);
430
431 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
432 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
433
434 /* the voltage should not be zero nor equal to leakage ID */
435 if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
436 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
437 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
438 data->vddcgfx_leakage.count++;
439 }
440 }
441 } else {
442 /* in merged mode we have only vddc EVV leakages */
443 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
444 pptable_info->vddc_lookup_table,
445 virtual_voltage_id, &sclk)) {
446 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
447 (hwmgr, VOLTAGE_TYPE_VDDC, sclk,
448 virtual_voltage_id, &vddc),
449 "Error retrieving EVV voltage value!", continue);
450
451 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
452 if (vddc > 2000)
453 printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n");
454
455 /* the voltage should not be zero nor equal to leakage ID */
456 if (vddc != 0 && vddc != virtual_voltage_id) {
457 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
458 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
459 data->vddc_leakage.count++;
460 }
461 }
462 }
463 }
464
465 return 0;
466}
467
468int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
469{
470 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
471
472 /* enable SCLK dpm */
473 if (0 == data->sclk_dpm_key_disabled) {
474 PP_ASSERT_WITH_CODE(
475 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
476 PPSMC_MSG_DPM_Enable)),
477 "Failed to enable SCLK DPM during DPM Start Function!",
478 return -1);
479 }
480
481 /* enable MCLK dpm */
482 if (0 == data->mclk_dpm_key_disabled) {
483 PP_ASSERT_WITH_CODE(
484 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
485 PPSMC_MSG_MCLKDPM_Enable)),
486 "Failed to enable MCLK DPM during DPM Start Function!",
487 return -1);
488
489 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
490
491 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
492 ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
493 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
494 ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
495 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
496 ixLCAC_CPL_CNTL, 0x100005);/*Read */
497
498 udelay(10);
499
500 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
501 ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
502 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
503 ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
504 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
505 ixLCAC_CPL_CNTL, 0x500005);/* write */
506
507 }
508
509 return 0;
510}
511
512int tonga_start_dpm(struct pp_hwmgr *hwmgr)
513{
514 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
515
516 /* enable general power management */
517 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
518 /* enable sclk deep sleep */
519 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
520
521 /* prepare for PCIE DPM */
522 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
523 offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
524
525 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
526
527 PP_ASSERT_WITH_CODE(
528 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
529 PPSMC_MSG_Voltage_Cntl_Enable)),
530 "Failed to enable voltage DPM during DPM Start Function!",
531 return -1);
532
533 if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
534 PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
535 }
536
537 /* enable PCIE dpm */
538 if (0 == data->pcie_dpm_key_disabled) {
539 PP_ASSERT_WITH_CODE(
540 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
541 PPSMC_MSG_PCIeDPM_Enable)),
542 "Failed to enable pcie DPM during DPM Start Function!",
543 return -1
544 );
545 }
546
547 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
548 PHM_PlatformCaps_Falcon_QuickTransition)) {
549 smum_send_msg_to_smc(hwmgr->smumgr,
550 PPSMC_MSG_EnableACDCGPIOInterrupt);
551 }
552
553 return 0;
554}
555
556int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
557{
558 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
559
560 /* disable SCLK dpm */
561 if (0 == data->sclk_dpm_key_disabled) {
562 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
563 PP_ASSERT_WITH_CODE(
564 (0 == tonga_is_dpm_running(hwmgr)),
565 "Trying to Disable SCLK DPM when DPM is disabled",
566 return -1
567 );
568
569 PP_ASSERT_WITH_CODE(
570 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
571 PPSMC_MSG_DPM_Disable)),
572 "Failed to disable SCLK DPM during DPM stop Function!",
573 return -1);
574 }
575
576 /* disable MCLK dpm */
577 if (0 == data->mclk_dpm_key_disabled) {
578 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
579 PP_ASSERT_WITH_CODE(
580 (0 == tonga_is_dpm_running(hwmgr)),
581 "Trying to Disable MCLK DPM when DPM is disabled",
582 return -1
583 );
584
585 PP_ASSERT_WITH_CODE(
586 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
587 PPSMC_MSG_MCLKDPM_Disable)),
588 "Failed to Disable MCLK DPM during DPM stop Function!",
589 return -1);
590 }
591
592 return 0;
593}
594
595int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
596{
597 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
598
599 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
600 /* disable sclk deep sleep*/
601 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
602
603 /* disable PCIE dpm */
604 if (0 == data->pcie_dpm_key_disabled) {
605 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
606 PP_ASSERT_WITH_CODE(
607 (0 == tonga_is_dpm_running(hwmgr)),
608 "Trying to Disable PCIE DPM when DPM is disabled",
609 return -1
610 );
611 PP_ASSERT_WITH_CODE(
612 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
613 PPSMC_MSG_PCIeDPM_Disable)),
614 "Failed to disable pcie DPM during DPM stop Function!",
615 return -1);
616 }
617
618 if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
619 PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
620
621 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
622 PP_ASSERT_WITH_CODE(
623 (0 == tonga_is_dpm_running(hwmgr)),
624 "Trying to Disable Voltage CNTL when DPM is disabled",
625 return -1
626 );
627
628 PP_ASSERT_WITH_CODE(
629 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
630 PPSMC_MSG_Voltage_Cntl_Disable)),
631 "Failed to disable voltage DPM during DPM stop Function!",
632 return -1);
633
634 return 0;
635}
636
637int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
638{
639 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
640
641 return 0;
642}
643
644/**
645 * Send a message to the SMC and return a parameter
646 *
647 * @param hwmgr: the address of the powerplay hardware manager.
648 * @param msg: the message to send.
649 * @param parameter: pointer to the received parameter
650 * @return The response that came from the SMC.
651 */
652PPSMC_Result tonga_send_msg_to_smc_return_parameter(
653 struct pp_hwmgr *hwmgr,
654 PPSMC_Msg msg,
655 uint32_t *parameter)
656{
657 int result;
658
659 result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
660
661 if ((0 == result) && parameter) {
662 *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
663 }
664
665 return result;
666}
667
668/**
669 * force DPM power State
670 *
671 * @param hwmgr: the address of the powerplay hardware manager.
672 * @param n : DPM level
673 * @return The response that came from the SMC.
674 */
675int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
676{
677 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
678 uint32_t level_mask = 1 << n;
679
680 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
681 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
682 "Trying to force SCLK when DPM is disabled", return -1;);
683 if (0 == data->sclk_dpm_key_disabled)
684 return (0 == smum_send_msg_to_smc_with_parameter(
685 hwmgr->smumgr,
686 (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
687 level_mask) ? 0 : 1);
688
689 return 0;
690}
691
692/**
693 * force DPM power State
694 *
695 * @param hwmgr: the address of the powerplay hardware manager.
696 * @param n : DPM level
697 * @return The response that came from the SMC.
698 */
699int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
700{
701 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
702 uint32_t level_mask = 1 << n;
703
704 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
705 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
706 "Trying to Force MCLK when DPM is disabled", return -1;);
707 if (0 == data->mclk_dpm_key_disabled)
708 return (0 == smum_send_msg_to_smc_with_parameter(
709 hwmgr->smumgr,
710 (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
711 level_mask) ? 0 : 1);
712
713 return 0;
714}
715
716/**
717 * force DPM power State
718 *
719 * @param hwmgr: the address of the powerplay hardware manager.
720 * @param n : DPM level
721 * @return The response that came from the SMC.
722 */
723int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
724{
725 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
726
727 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
728 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
729 "Trying to Force PCIE level when DPM is disabled", return -1;);
730 if (0 == data->pcie_dpm_key_disabled)
731 return (0 == smum_send_msg_to_smc_with_parameter(
732 hwmgr->smumgr,
733 (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
734 n) ? 0 : 1);
735
736 return 0;
737}
738
739/**
740 * Set the initial state by calling SMC to switch to this state directly
741 *
742 * @param hwmgr the address of the powerplay hardware manager.
743 * @return always 0
744 */
745int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
746{
747 /*
748 * SMC only stores one state that SW will ask to switch too,
749 * so we switch the the just uploaded one
750 */
751 return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
752}
753
754/**
755 * Get the location of various tables inside the FW image.
756 *
757 * @param hwmgr the address of the powerplay hardware manager.
758 * @return always 0
759 */
760int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
761{
762 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
763 struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
764
765 uint32_t tmp;
766 int result;
767 bool error = 0;
768
769 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
770 SMU72_FIRMWARE_HEADER_LOCATION +
771 offsetof(SMU72_Firmware_Header, DpmTable),
772 &tmp, data->sram_end);
773
774 if (0 == result) {
775 data->dpm_table_start = tmp;
776 }
777
778 error |= (0 != result);
779
780 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
781 SMU72_FIRMWARE_HEADER_LOCATION +
782 offsetof(SMU72_Firmware_Header, SoftRegisters),
783 &tmp, data->sram_end);
784
785 if (0 == result) {
786 data->soft_regs_start = tmp;
787 tonga_smu->ulSoftRegsStart = tmp;
788 }
789
790 error |= (0 != result);
791
792
793 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
794 SMU72_FIRMWARE_HEADER_LOCATION +
795 offsetof(SMU72_Firmware_Header, mcRegisterTable),
796 &tmp, data->sram_end);
797
798 if (0 == result) {
799 data->mc_reg_table_start = tmp;
800 }
801
802 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
803 SMU72_FIRMWARE_HEADER_LOCATION +
804 offsetof(SMU72_Firmware_Header, FanTable),
805 &tmp, data->sram_end);
806
807 if (0 == result) {
808 data->fan_table_start = tmp;
809 }
810
811 error |= (0 != result);
812
813 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
814 SMU72_FIRMWARE_HEADER_LOCATION +
815 offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
816 &tmp, data->sram_end);
817
818 if (0 == result) {
819 data->arb_table_start = tmp;
820 }
821
822 error |= (0 != result);
823
824
825 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
826 SMU72_FIRMWARE_HEADER_LOCATION +
827 offsetof(SMU72_Firmware_Header, Version),
828 &tmp, data->sram_end);
829
830 if (0 == result) {
831 hwmgr->microcode_version_info.SMC = tmp;
832 }
833
834 error |= (0 != result);
835
836 return error ? 1 : 0;
837}
838
839/**
840 * Read clock related registers.
841 *
842 * @param hwmgr the address of the powerplay hardware manager.
843 * @return always 0
844 */
845int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
846{
847 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
848
849 data->clock_registers.vCG_SPLL_FUNC_CNTL =
850 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
851 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
852 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
853 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
854 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
855 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
856 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
857 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
858 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
859 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
860 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
861 data->clock_registers.vDLL_CNTL =
862 cgs_read_register(hwmgr->device, mmDLL_CNTL);
863 data->clock_registers.vMCLK_PWRMGT_CNTL =
864 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
865 data->clock_registers.vMPLL_AD_FUNC_CNTL =
866 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
867 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
868 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
869 data->clock_registers.vMPLL_FUNC_CNTL =
870 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
871 data->clock_registers.vMPLL_FUNC_CNTL_1 =
872 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
873 data->clock_registers.vMPLL_FUNC_CNTL_2 =
874 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
875 data->clock_registers.vMPLL_SS1 =
876 cgs_read_register(hwmgr->device, mmMPLL_SS1);
877 data->clock_registers.vMPLL_SS2 =
878 cgs_read_register(hwmgr->device, mmMPLL_SS2);
879
880 return 0;
881}
882
883/**
884 * Find out if memory is GDDR5.
885 *
886 * @param hwmgr the address of the powerplay hardware manager.
887 * @return always 0
888 */
889int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
890{
891 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
892 uint32_t temp;
893
894 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
895
896 data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
897 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
898 MC_SEQ_MISC0_GDDR5_SHIFT));
899
900 return 0;
901}
902
903/**
904 * Enables Dynamic Power Management by SMC
905 *
906 * @param hwmgr the address of the powerplay hardware manager.
907 * @return always 0
908 */
909int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
910{
911 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
912
913 return 0;
914}
915
916/**
917 * Initialize PowerGating States for different engines
918 *
919 * @param hwmgr the address of the powerplay hardware manager.
920 * @return always 0
921 */
922int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
923{
924 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
925
926 data->uvd_power_gated = 0;
927 data->vce_power_gated = 0;
928 data->samu_power_gated = 0;
929 data->acp_power_gated = 0;
930 data->pg_acp_init = 1;
931
932 return 0;
933}
934
935/**
936 * Checks if DPM is enabled
937 *
938 * @param hwmgr the address of the powerplay hardware manager.
939 * @return always 0
940 */
941int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
942{
943 /*
944 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
945 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
946 * whereas voltage control is a fundemental change that will not be disabled
947 */
948 return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
949}
950
951/**
952 * Checks if DPM is stopped
953 *
954 * @param hwmgr the address of the powerplay hardware manager.
955 * @return always 0
956 */
957int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
958{
959 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
960
961 if (0 != tonga_is_dpm_running(hwmgr)) {
962 /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
963 if (!data->dpm_table_start) {
964 return 1;
965 }
966 }
967
968 return 0;
969}
970
971/**
972 * Remove repeated voltage values and create table with unique values.
973 *
974 * @param hwmgr the address of the powerplay hardware manager.
975 * @param voltage_table the pointer to changing voltage table
976 * @return 1 in success
977 */
978
979static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
980 pp_atomctrl_voltage_table *voltage_table)
981{
982 uint32_t table_size, i, j;
983 uint16_t vvalue;
984 bool bVoltageFound = 0;
985 pp_atomctrl_voltage_table *table;
986
987 PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
988 table_size = sizeof(pp_atomctrl_voltage_table);
989 table = kzalloc(table_size, GFP_KERNEL);
990
991 if (NULL == table)
992 return -ENOMEM;
993
994 memset(table, 0x00, table_size);
995 table->mask_low = voltage_table->mask_low;
996 table->phase_delay = voltage_table->phase_delay;
997
998 for (i = 0; i < voltage_table->count; i++) {
999 vvalue = voltage_table->entries[i].value;
1000 bVoltageFound = 0;
1001
1002 for (j = 0; j < table->count; j++) {
1003 if (vvalue == table->entries[j].value) {
1004 bVoltageFound = 1;
1005 break;
1006 }
1007 }
1008
1009 if (!bVoltageFound) {
1010 table->entries[table->count].value = vvalue;
1011 table->entries[table->count].smio_low =
1012 voltage_table->entries[i].smio_low;
1013 table->count++;
1014 }
1015 }
1016
1017 memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
1018
1019 kfree(table);
1020
1021 return 0;
1022}
1023
1024static int tonga_get_svi2_vdd_ci_voltage_table(
1025 struct pp_hwmgr *hwmgr,
1026 phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
1027{
1028 uint32_t i;
1029 int result;
1030 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1031 pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
1032
1033 PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
1034 "Voltage Dependency Table empty.", return -1;);
1035
1036 vddci_voltage_table->mask_low = 0;
1037 vddci_voltage_table->phase_delay = 0;
1038 vddci_voltage_table->count = voltage_dependency_table->count;
1039
1040 for (i = 0; i < voltage_dependency_table->count; i++) {
1041 vddci_voltage_table->entries[i].value =
1042 voltage_dependency_table->entries[i].vddci;
1043 vddci_voltage_table->entries[i].smio_low = 0;
1044 }
1045
1046 result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
1047 PP_ASSERT_WITH_CODE((0 == result),
1048 "Failed to trim VDDCI table.", return result;);
1049
1050 return 0;
1051}
1052
1053
1054
1055static int tonga_get_svi2_vdd_voltage_table(
1056 struct pp_hwmgr *hwmgr,
1057 phm_ppt_v1_voltage_lookup_table *look_up_table,
1058 pp_atomctrl_voltage_table *voltage_table)
1059{
1060 uint8_t i = 0;
1061
1062 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1063 "Voltage Lookup Table empty.", return -1;);
1064
1065 voltage_table->mask_low = 0;
1066 voltage_table->phase_delay = 0;
1067
1068 voltage_table->count = look_up_table->count;
1069
1070 for (i = 0; i < voltage_table->count; i++) {
1071 voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
1072 voltage_table->entries[i].smio_low = 0;
1073 }
1074
1075 return 0;
1076}
1077
1078/*
1079 * -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
1080 * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
1081 */
1082
1083static void tonga_trim_voltage_table_to_fit_state_table(
1084 struct pp_hwmgr *hwmgr,
1085 uint32_t max_voltage_steps,
1086 pp_atomctrl_voltage_table *voltage_table)
1087{
1088 unsigned int i, diff;
1089
1090 if (voltage_table->count <= max_voltage_steps) {
1091 return;
1092 }
1093
1094 diff = voltage_table->count - max_voltage_steps;
1095
1096 for (i = 0; i < max_voltage_steps; i++) {
1097 voltage_table->entries[i] = voltage_table->entries[i + diff];
1098 }
1099
1100 voltage_table->count = max_voltage_steps;
1101
1102 return;
1103}
1104
1105/**
1106 * Create Voltage Tables.
1107 *
1108 * @param hwmgr the address of the powerplay hardware manager.
1109 * @return always 0
1110 */
1111int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1112{
1113 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1114 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1115 int result;
1116
1117 /* MVDD has only GPIO voltage control */
1118 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1119 result = atomctrl_get_voltage_table_v3(hwmgr,
1120 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
1121 PP_ASSERT_WITH_CODE((0 == result),
1122 "Failed to retrieve MVDD table.", return result;);
1123 }
1124
1125 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1126 /* GPIO voltage */
1127 result = atomctrl_get_voltage_table_v3(hwmgr,
1128 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
1129 PP_ASSERT_WITH_CODE((0 == result),
1130 "Failed to retrieve VDDCI table.", return result;);
1131 } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1132 /* SVI2 voltage */
1133 result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
1134 pptable_info->vdd_dep_on_mclk);
1135 PP_ASSERT_WITH_CODE((0 == result),
1136 "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
1137 }
1138
1139 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1140 /* VDDGFX has only SVI2 voltage control */
1141 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1142 pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
1143 PP_ASSERT_WITH_CODE((0 == result),
1144 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
1145 }
1146
1147 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1148 /* VDDC has only SVI2 voltage control */
1149 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1150 pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
1151 PP_ASSERT_WITH_CODE((0 == result),
1152 "Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
1153 }
1154
1155 PP_ASSERT_WITH_CODE(
1156 (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
1157 "Too many voltage values for VDDC. Trimming to fit state table.",
1158 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1159 SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
1160 );
1161
1162 PP_ASSERT_WITH_CODE(
1163 (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
1164 "Too many voltage values for VDDGFX. Trimming to fit state table.",
1165 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1166 SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
1167 );
1168
1169 PP_ASSERT_WITH_CODE(
1170 (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
1171 "Too many voltage values for VDDCI. Trimming to fit state table.",
1172 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1173 SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
1174 );
1175
1176 PP_ASSERT_WITH_CODE(
1177 (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
1178 "Too many voltage values for MVDD. Trimming to fit state table.",
1179 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1180 SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
1181 );
1182
1183 return 0;
1184}
1185
1186/**
1187 * Vddc table preparation for SMC.
1188 *
1189 * @param hwmgr the address of the hardware manager
1190 * @param table the SMC DPM table structure to be populated
1191 * @return always 0
1192 */
1193static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
1194 SMU72_Discrete_DpmTable *table)
1195{
1196 unsigned int count;
1197 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1198
1199 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1200 table->VddcLevelCount = data->vddc_voltage_table.count;
1201 for (count = 0; count < table->VddcLevelCount; count++) {
1202 table->VddcTable[count] =
1203 PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
1204 }
1205 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
1206 }
1207 return 0;
1208}
1209
1210/**
1211 * VddGfx table preparation for SMC.
1212 *
1213 * @param hwmgr the address of the hardware manager
1214 * @param table the SMC DPM table structure to be populated
1215 * @return always 0
1216 */
1217static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
1218 SMU72_Discrete_DpmTable *table)
1219{
1220 unsigned int count;
1221 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1222
1223 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1224 table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
1225 for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
1226 table->VddGfxTable[count] =
1227 PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
1228 }
1229 CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
1230 }
1231 return 0;
1232}
1233
1234/**
1235 * Vddci table preparation for SMC.
1236 *
1237 * @param *hwmgr The address of the hardware manager.
1238 * @param *table The SMC DPM table structure to be populated.
1239 * @return 0
1240 */
1241static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
1242 SMU72_Discrete_DpmTable *table)
1243{
1244 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1245 uint32_t count;
1246
1247 table->VddciLevelCount = data->vddci_voltage_table.count;
1248 for (count = 0; count < table->VddciLevelCount; count++) {
1249 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1250 table->VddciTable[count] =
1251 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1252 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1253 table->SmioTable1.Pattern[count].Voltage =
1254 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1255 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
1256 table->SmioTable1.Pattern[count].Smio =
1257 (uint8_t) count;
1258 table->Smio[count] |=
1259 data->vddci_voltage_table.entries[count].smio_low;
1260 table->VddciTable[count] =
1261 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1262 }
1263 }
1264
1265 table->SmioMask1 = data->vddci_voltage_table.mask_low;
1266 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
1267
1268 return 0;
1269}
1270
1271/**
1272 * Mvdd table preparation for SMC.
1273 *
1274 * @param *hwmgr The address of the hardware manager.
1275 * @param *table The SMC DPM table structure to be populated.
1276 * @return 0
1277 */
1278static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
1279 SMU72_Discrete_DpmTable *table)
1280{
1281 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1282 uint32_t count;
1283
1284 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1285 table->MvddLevelCount = data->mvdd_voltage_table.count;
1286 for (count = 0; count < table->MvddLevelCount; count++) {
1287 table->SmioTable2.Pattern[count].Voltage =
1288 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
1289 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
1290 table->SmioTable2.Pattern[count].Smio =
1291 (uint8_t) count;
1292 table->Smio[count] |=
1293 data->mvdd_voltage_table.entries[count].smio_low;
1294 }
1295 table->SmioMask2 = data->vddci_voltage_table.mask_low;
1296
1297 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
1298 }
1299
1300 return 0;
1301}
1302
1303/**
1304 * Convert a voltage value in mv unit to VID number required by SMU firmware
1305 */
1306static uint8_t convert_to_vid(uint16_t vddc)
1307{
1308 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
1309}
1310
1311
1312/**
1313 * Preparation of vddc and vddgfx CAC tables for SMC.
1314 *
1315 * @param hwmgr the address of the hardware manager
1316 * @param table the SMC DPM table structure to be populated
1317 * @return always 0
1318 */
1319static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
1320 SMU72_Discrete_DpmTable *table)
1321{
1322 uint32_t count;
1323 uint8_t index;
1324 int result = 0;
1325 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1326 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1327 struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
1328 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
1329
1330 /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
1331 uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
1332 uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
1333
1334 for (count = 0; count < vddcLevelCount; count++) {
1335 /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
1336 index = tonga_get_voltage_index(vddc_lookup_table,
1337 data->vddc_voltage_table.entries[count].value);
1338 table->BapmVddcVidLoSidd[count] =
1339 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1340 table->BapmVddcVidHiSidd[count] =
1341 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1342 table->BapmVddcVidHiSidd2[count] =
1343 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1344 }
1345
1346 if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
1347 /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
1348 for (count = 0; count < vddgfxLevelCount; count++) {
1349 index = tonga_get_voltage_index(vddgfx_lookup_table,
1350 data->vddgfx_voltage_table.entries[count].value);
1351 table->BapmVddGfxVidLoSidd[count] =
1352 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
1353 table->BapmVddGfxVidHiSidd[count] =
1354 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
1355 table->BapmVddGfxVidHiSidd2[count] =
1356 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
1357 }
1358 } else {
1359 for (count = 0; count < vddcLevelCount; count++) {
1360 index = tonga_get_voltage_index(vddc_lookup_table,
1361 data->vddc_voltage_table.entries[count].value);
1362 table->BapmVddGfxVidLoSidd[count] =
1363 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1364 table->BapmVddGfxVidHiSidd[count] =
1365 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1366 table->BapmVddGfxVidHiSidd2[count] =
1367 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1368 }
1369 }
1370
1371 return result;
1372}
1373
1374
1375/**
1376 * Preparation of voltage tables for SMC.
1377 *
1378 * @param hwmgr the address of the hardware manager
1379 * @param table the SMC DPM table structure to be populated
1380 * @return always 0
1381 */
1382
1383int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1384 SMU72_Discrete_DpmTable *table)
1385{
1386 int result;
1387
1388 result = tonga_populate_smc_vddc_table(hwmgr, table);
1389 PP_ASSERT_WITH_CODE(0 == result,
1390 "can not populate VDDC voltage table to SMC", return -1);
1391
1392 result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
1393 PP_ASSERT_WITH_CODE(0 == result,
1394 "can not populate VDDCI voltage table to SMC", return -1);
1395
1396 result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
1397 PP_ASSERT_WITH_CODE(0 == result,
1398 "can not populate VDDGFX voltage table to SMC", return -1);
1399
1400 result = tonga_populate_smc_mvdd_table(hwmgr, table);
1401 PP_ASSERT_WITH_CODE(0 == result,
1402 "can not populate MVDD voltage table to SMC", return -1);
1403
1404 result = tonga_populate_cac_tables(hwmgr, table);
1405 PP_ASSERT_WITH_CODE(0 == result,
1406 "can not populate CAC voltage tables to SMC", return -1);
1407
1408 return 0;
1409}
1410
1411/**
1412 * Populates the SMC VRConfig field in DPM table.
1413 *
1414 * @param hwmgr the address of the hardware manager
1415 * @param table the SMC DPM table structure to be populated
1416 * @return always 0
1417 */
1418static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1419 SMU72_Discrete_DpmTable *table)
1420{
1421 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1422 uint16_t config;
1423
1424 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1425 /* Splitted mode */
1426 config = VR_SVI2_PLANE_1;
1427 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1428
1429 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1430 config = VR_SVI2_PLANE_2;
1431 table->VRConfig |= config;
1432 } else {
1433 printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
1434 }
1435 } else {
1436 /* Merged mode */
1437 config = VR_MERGED_WITH_VDDC;
1438 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1439
1440 /* Set Vddc Voltage Controller */
1441 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1442 config = VR_SVI2_PLANE_1;
1443 table->VRConfig |= config;
1444 } else {
1445 printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
1446 }
1447 }
1448
1449 /* Set Vddci Voltage Controller */
1450 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1451 config = VR_SVI2_PLANE_2; /* only in merged mode */
1452 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1453 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1454 config = VR_SMIO_PATTERN_1;
1455 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1456 }
1457
1458 /* Set Mvdd Voltage Controller */
1459 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1460 config = VR_SMIO_PATTERN_2;
1461 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1462 }
1463
1464 return 0;
1465}
1466
1467static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
1468 phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
1469 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1470{
1471 uint32_t i = 0;
1472 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1473 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1474
1475 /* clock - voltage dependency table is empty table */
1476 if (allowed_clock_voltage_table->count == 0)
1477 return -1;
1478
1479 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
1480 /* find first sclk bigger than request */
1481 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
1482 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1483 allowed_clock_voltage_table->entries[i].vddgfx);
1484
1485 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1486 allowed_clock_voltage_table->entries[i].vddc);
1487
1488 if (allowed_clock_voltage_table->entries[i].vddci) {
1489 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1490 allowed_clock_voltage_table->entries[i].vddci);
1491 } else {
1492 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1493 allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
1494 }
1495
1496 if (allowed_clock_voltage_table->entries[i].mvdd) {
1497 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
1498 }
1499
1500 voltage->Phases = 1;
1501 return 0;
1502 }
1503 }
1504
1505 /* sclk is bigger than max sclk in the dependence table */
1506 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1507 allowed_clock_voltage_table->entries[i-1].vddgfx);
1508 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1509 allowed_clock_voltage_table->entries[i-1].vddc);
1510
1511 if (allowed_clock_voltage_table->entries[i-1].vddci) {
1512 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1513 allowed_clock_voltage_table->entries[i-1].vddci);
1514 }
1515 if (allowed_clock_voltage_table->entries[i-1].mvdd) {
1516 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
1517 }
1518
1519 return 0;
1520}
1521
1522/**
1523 * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1524 *
1525 * @param hwmgr the address of the powerplay hardware manager.
1526 * @return always 0
1527 */
1528int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
1529{
1530 return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
1531}
1532
1533int tonga_populate_memory_timing_parameters(
1534 struct pp_hwmgr *hwmgr,
1535 uint32_t engine_clock,
1536 uint32_t memory_clock,
1537 struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1538 )
1539{
1540 uint32_t dramTiming;
1541 uint32_t dramTiming2;
1542 uint32_t burstTime;
1543 int result;
1544
1545 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1546 engine_clock, memory_clock);
1547
1548 PP_ASSERT_WITH_CODE(result == 0,
1549 "Error calling VBIOS to set DRAM_TIMING.", return result);
1550
1551 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1552 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1553 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1554
1555 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1556 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1557 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1558
1559 return 0;
1560}
1561
1562/**
1563 * Setup parameters for the MC ARB.
1564 *
1565 * @param hwmgr the address of the powerplay hardware manager.
1566 * @return always 0
1567 * This function is to be called from the SetPowerState table.
1568 */
1569int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1570{
1571 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1572 int result = 0;
1573 SMU72_Discrete_MCArbDramTimingTable arb_regs;
1574 uint32_t i, j;
1575
1576 memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1577
1578 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1579 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1580 result = tonga_populate_memory_timing_parameters
1581 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1582 data->dpm_table.mclk_table.dpm_levels[j].value,
1583 &arb_regs.entries[i][j]);
1584
1585 if (0 != result) {
1586 break;
1587 }
1588 }
1589 }
1590
1591 if (0 == result) {
1592 result = tonga_copy_bytes_to_smc(
1593 hwmgr->smumgr,
1594 data->arb_table_start,
1595 (uint8_t *)&arb_regs,
1596 sizeof(SMU72_Discrete_MCArbDramTimingTable),
1597 data->sram_end
1598 );
1599 }
1600
1601 return result;
1602}
1603
1604static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
1605{
1606 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1607 struct tonga_dpm_table *dpm_table = &data->dpm_table;
1608 uint32_t i;
1609
1610 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
1611 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1612 table->LinkLevel[i].PcieGenSpeed =
1613 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1614 table->LinkLevel[i].PcieLaneCount =
1615 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1616 table->LinkLevel[i].EnabledForActivity =
1617 1;
1618 table->LinkLevel[i].SPC =
1619 (uint8_t)(data->pcie_spc_cap & 0xff);
1620 table->LinkLevel[i].DownThreshold =
1621 PP_HOST_TO_SMC_UL(5);
1622 table->LinkLevel[i].UpThreshold =
1623 PP_HOST_TO_SMC_UL(30);
1624 }
1625
1626 data->smc_state_table.LinkLevelCount =
1627 (uint8_t)dpm_table->pcie_speed_table.count;
1628 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1629 tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1630
1631 return 0;
1632}
1633
0104aa21
AD
1634static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1635 SMU72_Discrete_DpmTable *table)
1636{
1637 int result = 0;
1638
1639 uint8_t count;
1640 pp_atomctrl_clock_dividers_vi dividers;
1641 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1642 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1643 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1644
1645 table->UvdLevelCount = (uint8_t) (mm_table->count);
1646 table->UvdBootLevel = 0;
1647
1648 for (count = 0; count < table->UvdLevelCount; count++) {
1649 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1650 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1651 table->UvdLevel[count].MinVoltage.Vddc =
1652 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1653 mm_table->entries[count].vddc);
1654 table->UvdLevel[count].MinVoltage.VddGfx =
1655 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1656 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1657 mm_table->entries[count].vddgfx) : 0;
1658 table->UvdLevel[count].MinVoltage.Vddci =
1659 tonga_get_voltage_id(&data->vddci_voltage_table,
1660 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1661 table->UvdLevel[count].MinVoltage.Phases = 1;
1662
1663 /* retrieve divider value for VBIOS */
1664 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1665 table->UvdLevel[count].VclkFrequency, &dividers);
1666 PP_ASSERT_WITH_CODE((0 == result),
1667 "can not find divide id for Vclk clock", return result);
1668
1669 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1670
1671 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1672 table->UvdLevel[count].DclkFrequency, &dividers);
1673 PP_ASSERT_WITH_CODE((0 == result),
1674 "can not find divide id for Dclk clock", return result);
1675
1676 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1677
1678 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1679 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1680 //CONVERT_FROM_HOST_TO_SMC_UL((uint32_t)table->UvdLevel[count].MinVoltage);
1681 }
1682
1683 return result;
1684
1685}
c82baa28 1686
1687static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1688 SMU72_Discrete_DpmTable *table)
1689{
1690 int result = 0;
1691
1692 uint8_t count;
1693 pp_atomctrl_clock_dividers_vi dividers;
1694 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1695 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1696 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1697
1698 table->VceLevelCount = (uint8_t) (mm_table->count);
1699 table->VceBootLevel = 0;
1700
1701 for (count = 0; count < table->VceLevelCount; count++) {
1702 table->VceLevel[count].Frequency =
1703 mm_table->entries[count].eclk;
1704 table->VceLevel[count].MinVoltage.Vddc =
1705 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1706 mm_table->entries[count].vddc);
1707 table->VceLevel[count].MinVoltage.VddGfx =
1708 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1709 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1710 mm_table->entries[count].vddgfx) : 0;
1711 table->VceLevel[count].MinVoltage.Vddci =
1712 tonga_get_voltage_id(&data->vddci_voltage_table,
1713 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1714 table->VceLevel[count].MinVoltage.Phases = 1;
1715
1716 /* retrieve divider value for VBIOS */
1717 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1718 table->VceLevel[count].Frequency, &dividers);
1719 PP_ASSERT_WITH_CODE((0 == result),
1720 "can not find divide id for VCE engine clock", return result);
1721
1722 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1723
1724 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1725 }
1726
1727 return result;
1728}
1729
1730static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1731 SMU72_Discrete_DpmTable *table)
1732{
1733 int result = 0;
1734 uint8_t count;
1735 pp_atomctrl_clock_dividers_vi dividers;
1736 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1737 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1738 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1739
1740 table->AcpLevelCount = (uint8_t) (mm_table->count);
1741 table->AcpBootLevel = 0;
1742
1743 for (count = 0; count < table->AcpLevelCount; count++) {
1744 table->AcpLevel[count].Frequency =
1745 pptable_info->mm_dep_table->entries[count].aclk;
1746 table->AcpLevel[count].MinVoltage.Vddc =
1747 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1748 mm_table->entries[count].vddc);
1749 table->AcpLevel[count].MinVoltage.VddGfx =
1750 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1751 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1752 mm_table->entries[count].vddgfx) : 0;
1753 table->AcpLevel[count].MinVoltage.Vddci =
1754 tonga_get_voltage_id(&data->vddci_voltage_table,
1755 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1756 table->AcpLevel[count].MinVoltage.Phases = 1;
1757
1758 /* retrieve divider value for VBIOS */
1759 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1760 table->AcpLevel[count].Frequency, &dividers);
1761 PP_ASSERT_WITH_CODE((0 == result),
1762 "can not find divide id for engine clock", return result);
1763
1764 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1765
1766 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1767 }
1768
1769 return result;
1770}
1771
1772static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1773 SMU72_Discrete_DpmTable *table)
1774{
1775 int result = 0;
1776 uint8_t count;
1777 pp_atomctrl_clock_dividers_vi dividers;
1778 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1779 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1780 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1781
1782 table->SamuBootLevel = 0;
1783 table->SamuLevelCount = (uint8_t) (mm_table->count);
1784
1785 for (count = 0; count < table->SamuLevelCount; count++) {
1786 /* not sure whether we need evclk or not */
1787 table->SamuLevel[count].Frequency =
1788 pptable_info->mm_dep_table->entries[count].samclock;
1789 table->SamuLevel[count].MinVoltage.Vddc =
1790 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1791 mm_table->entries[count].vddc);
1792 table->SamuLevel[count].MinVoltage.VddGfx =
1793 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1794 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1795 mm_table->entries[count].vddgfx) : 0;
1796 table->SamuLevel[count].MinVoltage.Vddci =
1797 tonga_get_voltage_id(&data->vddci_voltage_table,
1798 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1799 table->SamuLevel[count].MinVoltage.Phases = 1;
1800
1801 /* retrieve divider value for VBIOS */
1802 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1803 table->SamuLevel[count].Frequency, &dividers);
1804 PP_ASSERT_WITH_CODE((0 == result),
1805 "can not find divide id for samu clock", return result);
1806
1807 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1808
1809 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1810 }
1811
1812 return result;
1813}
1814
1815/**
1816 * Populates the SMC MCLK structure using the provided memory clock
1817 *
1818 * @param hwmgr the address of the hardware manager
1819 * @param memory_clock the memory clock to use to populate the structure
1820 * @param sclk the SMC SCLK structure to be populated
1821 */
1822static int tonga_calculate_mclk_params(
1823 struct pp_hwmgr *hwmgr,
1824 uint32_t memory_clock,
1825 SMU72_Discrete_MemoryLevel *mclk,
1826 bool strobe_mode,
1827 bool dllStateOn
1828 )
1829{
1830 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1831 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1832 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1833 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1834 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1835 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1836 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1837 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1838 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1839 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1840
1841 pp_atomctrl_memory_clock_param mpll_param;
1842 int result;
1843
1844 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1845 memory_clock, &mpll_param, strobe_mode);
1846 PP_ASSERT_WITH_CODE(0 == result,
1847 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1848
1849 /* MPLL_FUNC_CNTL setup*/
1850 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1851
1852 /* MPLL_FUNC_CNTL_1 setup*/
1853 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1854 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1855 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1856 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1857 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1858 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1859
1860 /* MPLL_AD_FUNC_CNTL setup*/
1861 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1862 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1863
1864 if (data->is_memory_GDDR5) {
1865 /* MPLL_DQ_FUNC_CNTL setup*/
1866 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1867 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1868 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1869 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1870 }
1871
1872 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1873 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1874 /*
1875 ************************************
1876 Fref = Reference Frequency
1877 NF = Feedback divider ratio
1878 NR = Reference divider ratio
1879 Fnom = Nominal VCO output frequency = Fref * NF / NR
1880 Fs = Spreading Rate
1881 D = Percentage down-spread / 2
1882 Fint = Reference input frequency to PFD = Fref / NR
1883 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1884 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1885 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1886 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1887 *************************************
1888 */
1889 pp_atomctrl_internal_ss_info ss_info;
1890 uint32_t freq_nom;
1891 uint32_t tmp;
1892 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1893
1894 /* for GDDR5 for all modes and DDR3 */
1895 if (1 == mpll_param.qdr)
1896 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1897 else
1898 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1899
1900 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1901 tmp = (freq_nom / reference_clock);
1902 tmp = tmp * tmp;
1903
1904 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1905 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1906 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1907 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1908 /* = reference_clock * 5 / speed_spectrum_rate */
1909 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1910
1911 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1912 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1913 uint32_t clkv =
1914 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1915 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1916
1917 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1918 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1919 }
1920 }
1921
1922 /* MCLK_PWRMGT_CNTL setup */
1923 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1924 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1925 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1926 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1927 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1928 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1929
1930
1931 /* Save the result data to outpupt memory level structure */
1932 mclk->MclkFrequency = memory_clock;
1933 mclk->MpllFuncCntl = mpll_func_cntl;
1934 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1935 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1936 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1937 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1938 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1939 mclk->DllCntl = dll_cntl;
1940 mclk->MpllSs1 = mpll_ss1;
1941 mclk->MpllSs2 = mpll_ss2;
1942
1943 return 0;
1944}
1945
1946static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
1947 bool strobe_mode)
1948{
1949 uint8_t mc_para_index;
1950
1951 if (strobe_mode) {
1952 if (memory_clock < 12500) {
1953 mc_para_index = 0x00;
1954 } else if (memory_clock > 47500) {
1955 mc_para_index = 0x0f;
1956 } else {
1957 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1958 }
1959 } else {
1960 if (memory_clock < 65000) {
1961 mc_para_index = 0x00;
1962 } else if (memory_clock > 135000) {
1963 mc_para_index = 0x0f;
1964 } else {
1965 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1966 }
1967 }
1968
1969 return mc_para_index;
1970}
1971
1972static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1973{
1974 uint8_t mc_para_index;
1975
1976 if (memory_clock < 10000) {
1977 mc_para_index = 0;
1978 } else if (memory_clock >= 80000) {
1979 mc_para_index = 0x0f;
1980 } else {
1981 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1982 }
1983
1984 return mc_para_index;
1985}
1986
1987static int tonga_populate_single_memory_level(
1988 struct pp_hwmgr *hwmgr,
1989 uint32_t memory_clock,
1990 SMU72_Discrete_MemoryLevel *memory_level
1991 )
1992{
1993 uint32_t minMvdd = 0;
1994 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1995 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1996 int result = 0;
1997 bool dllStateOn;
1998 struct cgs_display_info info = {0};
1999
2000
2001 if (NULL != pptable_info->vdd_dep_on_mclk) {
2002 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2003 pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
2004 PP_ASSERT_WITH_CODE((0 == result),
2005 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
2006 }
2007
2008 if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
2009 memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
2010 } else {
2011 memory_level->MinMvdd = minMvdd;
2012 }
2013 memory_level->EnabledForThrottle = 1;
2014 memory_level->EnabledForActivity = 0;
2015 memory_level->UpHyst = 0;
2016 memory_level->DownHyst = 100;
2017 memory_level->VoltageDownHyst = 0;
2018
2019 /* Indicates maximum activity level for this performance level.*/
2020 memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2021 memory_level->StutterEnable = 0;
2022 memory_level->StrobeEnable = 0;
2023 memory_level->EdcReadEnable = 0;
2024 memory_level->EdcWriteEnable = 0;
2025 memory_level->RttEnable = 0;
2026
2027 /* default set to low watermark. Highest level will be set to high later.*/
2028 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2029
2030 cgs_get_active_displays_info(hwmgr->device, &info);
2031 data->display_timing.num_existing_displays = info.display_count;
2032
2033 if ((data->mclk_stutter_mode_threshold != 0) &&
2034 (memory_clock <= data->mclk_stutter_mode_threshold) &&
2035 (data->is_uvd_enabled == 0)
2036#if defined(LINUX)
2037 && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
2038 && (data->display_timing.num_existing_displays <= 2)
2039 && (data->display_timing.num_existing_displays != 0)
2040#endif
2041 )
2042 memory_level->StutterEnable = 1;
2043
2044 /* decide strobe mode*/
2045 memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
2046 (memory_clock <= data->mclk_strobe_mode_threshold);
2047
2048 /* decide EDC mode and memory clock ratio*/
2049 if (data->is_memory_GDDR5) {
2050 memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
2051 memory_level->StrobeEnable);
2052
2053 if ((data->mclk_edc_enable_threshold != 0) &&
2054 (memory_clock > data->mclk_edc_enable_threshold)) {
2055 memory_level->EdcReadEnable = 1;
2056 }
2057
2058 if ((data->mclk_edc_wr_enable_threshold != 0) &&
2059 (memory_clock > data->mclk_edc_wr_enable_threshold)) {
2060 memory_level->EdcWriteEnable = 1;
2061 }
2062
2063 if (memory_level->StrobeEnable) {
2064 if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
2065 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
2066 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2067 } else {
2068 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
2069 }
2070
2071 } else {
2072 dllStateOn = data->dll_defaule_on;
2073 }
2074 } else {
2075 memory_level->StrobeRatio =
2076 tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
2077 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2078 }
2079
2080 result = tonga_calculate_mclk_params(hwmgr,
2081 memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
2082
2083 if (0 == result) {
2084 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
2085 /* MCLK frequency in units of 10KHz*/
2086 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
2087 /* Indicates maximum activity level for this performance level.*/
2088 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
2089 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
2090 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
2091 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
2092 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
2093 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
2094 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
2095 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
2096 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
2097 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
2098 }
2099
2100 return result;
2101}
2102
2103/**
2104 * Populates the SMC MVDD structure using the provided memory clock.
2105 *
2106 * @param hwmgr the address of the hardware manager
2107 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2108 * @param voltage the SMC VOLTAGE structure to be populated
2109 */
2110int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
2111{
2112 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2113 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2114 uint32_t i = 0;
2115
2116 if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2117 /* find mvdd value which clock is more than request */
2118 for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
2119 if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
2120 /* Always round to higher voltage. */
2121 smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
2122 break;
2123 }
2124 }
2125
2126 PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
2127 "MVDD Voltage is outside the supported range.", return -1);
2128
2129 } else {
2130 return -1;
2131 }
2132
2133 return 0;
2134}
2135
2136
2137static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
2138 SMU72_Discrete_DpmTable *table)
2139{
2140 int result = 0;
2141 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2142 pp_atomctrl_clock_dividers_vi dividers;
2143 SMIO_Pattern voltage_level;
2144 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2145 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2146 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
2147 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
2148
2149 /* The ACPI state should not do DPM on DC (or ever).*/
2150 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2151
2152 table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
2153
2154 /* assign zero for now*/
2155 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
2156
2157 /* get the engine clock dividers for this clock value*/
2158 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2159 table->ACPILevel.SclkFrequency, &dividers);
2160
2161 PP_ASSERT_WITH_CODE(result == 0,
2162 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2163
2164 /* divider ID for required SCLK*/
2165 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2166 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2167 table->ACPILevel.DeepSleepDivId = 0;
2168
2169 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2170 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
2171 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2172 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
2173 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
2174 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
2175
2176 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2177 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2178 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2179 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2180 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2181 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2182 table->ACPILevel.CcPwrDynRm = 0;
2183 table->ACPILevel.CcPwrDynRm1 = 0;
2184
2185
2186 /* For various features to be enabled/disabled while this level is active.*/
2187 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2188 /* SCLK frequency in units of 10KHz*/
2189 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2190 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2191 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2192 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2193 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2194 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2195 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2196 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2197 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2198
2199 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
2200 table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
2201
2202 /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
2203
2204 if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
2205 table->MemoryACPILevel.MinMvdd =
2206 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
2207 else
2208 table->MemoryACPILevel.MinMvdd = 0;
2209
2210 /* Force reset on DLL*/
2211 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2212 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
2213 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2214 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
2215
2216 /* Disable DLL in ACPIState*/
2217 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2218 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
2219 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2220 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
2221
2222 /* Enable DLL bypass signal*/
2223 dll_cntl = PHM_SET_FIELD(dll_cntl,
2224 DLL_CNTL, MRDCK0_BYPASS, 0);
2225 dll_cntl = PHM_SET_FIELD(dll_cntl,
2226 DLL_CNTL, MRDCK1_BYPASS, 0);
2227
2228 table->MemoryACPILevel.DllCntl =
2229 PP_HOST_TO_SMC_UL(dll_cntl);
2230 table->MemoryACPILevel.MclkPwrmgtCntl =
2231 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
2232 table->MemoryACPILevel.MpllAdFuncCntl =
2233 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
2234 table->MemoryACPILevel.MpllDqFuncCntl =
2235 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
2236 table->MemoryACPILevel.MpllFuncCntl =
2237 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
2238 table->MemoryACPILevel.MpllFuncCntl_1 =
2239 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
2240 table->MemoryACPILevel.MpllFuncCntl_2 =
2241 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
2242 table->MemoryACPILevel.MpllSs1 =
2243 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
2244 table->MemoryACPILevel.MpllSs2 =
2245 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
2246
2247 table->MemoryACPILevel.EnabledForThrottle = 0;
2248 table->MemoryACPILevel.EnabledForActivity = 0;
2249 table->MemoryACPILevel.UpHyst = 0;
2250 table->MemoryACPILevel.DownHyst = 100;
2251 table->MemoryACPILevel.VoltageDownHyst = 0;
2252 /* Indicates maximum activity level for this performance level.*/
2253 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2254
2255 table->MemoryACPILevel.StutterEnable = 0;
2256 table->MemoryACPILevel.StrobeEnable = 0;
2257 table->MemoryACPILevel.EdcReadEnable = 0;
2258 table->MemoryACPILevel.EdcWriteEnable = 0;
2259 table->MemoryACPILevel.RttEnable = 0;
2260
2261 return result;
2262}
2263
2264static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
2265{
2266 int result = 0;
2267 uint32_t i;
2268
2269 for (i = 0; i < table->count; i++) {
2270 if (value == table->dpm_levels[i].value) {
2271 *boot_level = i;
2272 result = 0;
2273 }
2274 }
2275 return result;
2276}
2277
2278static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2279 SMU72_Discrete_DpmTable *table)
2280{
2281 int result = 0;
2282 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2283
2284 table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2285 table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2286
2287 /* find boot level from dpm table*/
2288 result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
2289 data->vbios_boot_state.sclk_bootup_value,
2290 (uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
2291
2292 if (0 != result) {
2293 data->smc_state_table.GraphicsBootLevel = 0;
2294 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2295 in dependency table. Using Graphics DPM level 0!");
2296 result = 0;
2297 }
2298
2299 result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
2300 data->vbios_boot_state.mclk_bootup_value,
2301 (uint32_t *)&(data->smc_state_table.MemoryBootLevel));
2302
2303 if (0 != result) {
2304 data->smc_state_table.MemoryBootLevel = 0;
2305 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2306 in dependency table. Using Memory DPM level 0!");
2307 result = 0;
2308 }
2309
2310 table->BootVoltage.Vddc =
2311 tonga_get_voltage_id(&(data->vddc_voltage_table),
2312 data->vbios_boot_state.vddc_bootup_value);
2313 table->BootVoltage.VddGfx =
2314 tonga_get_voltage_id(&(data->vddgfx_voltage_table),
2315 data->vbios_boot_state.vddgfx_bootup_value);
2316 table->BootVoltage.Vddci =
2317 tonga_get_voltage_id(&(data->vddci_voltage_table),
2318 data->vbios_boot_state.vddci_bootup_value);
2319 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
2320
2321 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2322
2323 return result;
2324}
2325
2326
2327/**
2328 * Calculates the SCLK dividers using the provided engine clock
2329 *
2330 * @param hwmgr the address of the hardware manager
2331 * @param engine_clock the engine clock to use to populate the structure
2332 * @param sclk the SMC SCLK structure to be populated
2333 */
2334int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
2335 uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
2336{
2337 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2338 pp_atomctrl_clock_dividers_vi dividers;
2339 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2340 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2341 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2342 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2343 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2344 uint32_t reference_clock;
2345 uint32_t reference_divider;
2346 uint32_t fbdiv;
2347 int result;
2348
2349 /* get the engine clock dividers for this clock value*/
2350 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
2351
2352 PP_ASSERT_WITH_CODE(result == 0,
2353 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2354
2355 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
2356 reference_clock = atomctrl_get_reference_clock(hwmgr);
2357
2358 reference_divider = 1 + dividers.uc_pll_ref_div;
2359
2360 /* low 14 bits is fraction and high 12 bits is divider*/
2361 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
2362
2363 /* SPLL_FUNC_CNTL setup*/
2364 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2365 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
2366 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2367 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
2368
2369 /* SPLL_FUNC_CNTL_3 setup*/
2370 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2371 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
2372
2373 /* set to use fractional accumulation*/
2374 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2375 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
2376
2377 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2378 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
2379 pp_atomctrl_internal_ss_info ss_info;
2380
2381 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
2382 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
2383 /*
2384 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
2385 * ss_info.speed_spectrum_rate -- in unit of khz
2386 */
2387 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
2388 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
2389
2390 /* clkv = 2 * D * fbdiv / NS */
2391 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
2392
2393 cg_spll_spread_spectrum =
2394 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
2395 cg_spll_spread_spectrum =
2396 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
2397 cg_spll_spread_spectrum_2 =
2398 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
2399 }
2400 }
2401
2402 sclk->SclkFrequency = engine_clock;
2403 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
2404 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
2405 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
2406 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
2407 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
2408
2409 return 0;
2410}
2411
2412/**
2413 * Populates single SMC SCLK structure using the provided engine clock
2414 *
2415 * @param hwmgr the address of the hardware manager
2416 * @param engine_clock the engine clock to use to populate the structure
2417 * @param sclk the SMC SCLK structure to be populated
2418 */
2419static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
2420{
2421 int result;
2422 uint32_t threshold;
2423 uint32_t mvdd;
2424 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2425 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2426
2427 result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
2428
2429
2430 /* populate graphics levels*/
2431 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2432 pptable_info->vdd_dep_on_sclk, engine_clock,
2433 &graphic_level->MinVoltage, &mvdd);
2434 PP_ASSERT_WITH_CODE((0 == result),
2435 "can not find VDDC voltage value for VDDC \
2436 engine clock dependency table", return result);
2437
2438 /* SCLK frequency in units of 10KHz*/
2439 graphic_level->SclkFrequency = engine_clock;
2440
2441 /* Indicates maximum activity level for this performance level. 50% for now*/
2442 graphic_level->ActivityLevel = sclk_activity_level_threshold;
2443
2444 graphic_level->CcPwrDynRm = 0;
2445 graphic_level->CcPwrDynRm1 = 0;
2446 /* this level can be used if activity is high enough.*/
2447 graphic_level->EnabledForActivity = 0;
2448 /* this level can be used for throttling.*/
2449 graphic_level->EnabledForThrottle = 1;
2450 graphic_level->UpHyst = 0;
2451 graphic_level->DownHyst = 0;
2452 graphic_level->VoltageDownHyst = 0;
2453 graphic_level->PowerThrottle = 0;
2454
2455 threshold = engine_clock * data->fast_watemark_threshold / 100;
2456/*
2457 *get the DAL clock. do it in funture.
2458 PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
2459 data->display_timing.min_clock_insr = minClocks.engineClockInSR;
2460
2461 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
2462 {
2463 graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR);
2464 }
2465*/
2466
2467 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
2468 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2469
2470 if (0 == result) {
2471 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
2472 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
2473 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
2474 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
2475 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
2476 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
2477 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
2478 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
2479 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
2480 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
2481 }
2482
2483 return result;
2484}
2485
2486/**
2487 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2488 *
2489 * @param hwmgr the address of the hardware manager
2490 */
2491static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2492{
2493 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2494 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2495 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2496 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2497 uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
2498 int result = 0;
2499 uint32_t level_array_adress = data->dpm_table_start +
2500 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
2501 uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
2502 SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/
2503 SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
2504 uint32_t i, maxEntry;
2505 uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
2506 PECI_RegistryValue reg_value;
2507 memset(levels, 0x00, level_array_size);
2508
2509 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2510 result = tonga_populate_single_graphic_level(hwmgr,
2511 dpm_table->sclk_table.dpm_levels[i].value,
2512 (uint16_t)data->activity_target[i],
2513 &(data->smc_state_table.GraphicsLevel[i]));
2514
2515 if (0 != result)
2516 return result;
2517
2518 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2519 if (i > 1)
2520 data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
2521
2522 if (0 == i) {
2523 reg_value = 0;
2524 if (reg_value != 0)
2525 data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
2526 }
2527
2528 if (1 == i) {
2529 reg_value = 0;
2530 if (reg_value != 0)
2531 data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
2532 }
2533 }
2534
2535 /* Only enable level 0 for now. */
2536 data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
2537
2538 /* set highest level watermark to high */
2539 if (dpm_table->sclk_table.count > 1)
2540 data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
2541 PPSMC_DISPLAY_WATERMARK_HIGH;
2542
2543 data->smc_state_table.GraphicsDpmLevelCount =
2544 (uint8_t)dpm_table->sclk_table.count;
2545 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2546 tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2547
2548 if (pcie_table != NULL) {
2549 PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
2550 "There must be 1 or more PCIE levels defined in PPTable.", return -1);
2551 maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
2552 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2553 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
2554 (uint8_t) ((i < maxEntry) ? i : maxEntry);
2555 }
2556 } else {
2557 if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
2558 printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
2559
2560 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2561 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2562 (1<<(highest_pcie_level_enabled+1))) != 0)) {
2563 highest_pcie_level_enabled++;
2564 }
2565
2566 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2567 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2568 (1<<lowest_pcie_level_enabled)) == 0)) {
2569 lowest_pcie_level_enabled++;
2570 }
2571
2572 while ((count < highest_pcie_level_enabled) &&
2573 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2574 (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
2575 count++;
2576 }
2577 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
2578 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
2579
2580
2581 /* set pcieDpmLevel to highest_pcie_level_enabled*/
2582 for (i = 2; i < dpm_table->sclk_table.count; i++) {
2583 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
2584 }
2585
2586 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
2587 data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
2588
2589 /* set pcieDpmLevel to mid_pcie_level_enabled*/
2590 data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
2591 }
2592 /* level count will send to smc once at init smc table and never change*/
2593 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2594
2595 if (0 != result)
2596 return result;
2597
2598 return 0;
2599}
2600
2601/**
2602 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2603 *
2604 * @param hwmgr the address of the hardware manager
2605 */
2606
2607static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2608{
2609 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2610 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2611 int result;
2612 /* populate MCLK dpm table to SMU7 */
2613 uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
2614 uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
2615 SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
2616 uint32_t i;
2617
2618 memset(levels, 0x00, level_array_size);
2619
2620 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2621 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2622 "can not populate memory level as memory clock is zero", return -1);
2623 result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
2624 &(data->smc_state_table.MemoryLevel[i]));
2625 if (0 != result) {
2626 return result;
2627 }
2628 }
2629
2630 /* Only enable level 0 for now.*/
2631 data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
2632
2633 /*
2634 * in order to prevent MC activity from stutter mode to push DPM up.
2635 * the UVD change complements this by putting the MCLK in a higher state
2636 * by default such that we are not effected by up threshold or and MCLK DPM latency.
2637 */
2638 data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
2639 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
2640
2641 data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
2642 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2643 /* set highest level watermark to high*/
2644 data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
2645
2646 /* level count will send to smc once at init smc table and never change*/
2647 result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
2648 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2649
2650 if (0 != result) {
2651 return result;
2652 }
2653
2654 return 0;
2655}
2656
2657struct TONGA_DLL_SPEED_SETTING {
2658 uint16_t Min; /* Minimum Data Rate*/
2659 uint16_t Max; /* Maximum Data Rate*/
2660 uint32_t dll_speed; /* The desired DLL_SPEED setting*/
2661};
2662
2663static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2664{
2665 return 0;
2666}
2667
2668/* ---------------------------------------- ULV related functions ----------------------------------------------------*/
2669
2670
2671static int tonga_reset_single_dpm_table(
2672 struct pp_hwmgr *hwmgr,
2673 struct tonga_single_dpm_table *dpm_table,
2674 uint32_t count)
2675{
2676 uint32_t i;
2677 if (!(count <= MAX_REGULAR_DPM_NUMBER))
2678 printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
2679 table entries to exceed max number! \n");
2680
2681 dpm_table->count = count;
2682 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
2683 dpm_table->dpm_levels[i].enabled = 0;
2684 }
2685
2686 return 0;
2687}
2688
2689static void tonga_setup_pcie_table_entry(
2690 struct tonga_single_dpm_table *dpm_table,
2691 uint32_t index, uint32_t pcie_gen,
2692 uint32_t pcie_lanes)
2693{
2694 dpm_table->dpm_levels[index].value = pcie_gen;
2695 dpm_table->dpm_levels[index].param1 = pcie_lanes;
2696 dpm_table->dpm_levels[index].enabled = 1;
2697}
2698
c82baa28 2699static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
2700{
2701 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2702 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2703 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2704 uint32_t i, maxEntry;
2705
2706 if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
2707 data->pcie_gen_power_saving = data->pcie_gen_performance;
2708 data->pcie_lane_power_saving = data->pcie_lane_performance;
2709 } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
2710 data->pcie_gen_performance = data->pcie_gen_power_saving;
2711 data->pcie_lane_performance = data->pcie_lane_power_saving;
2712 }
2713
2714 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
2715
2716 if (pcie_table != NULL) {
2717 /*
2718 * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
2719 * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
2720 */
2721 maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
2722 SMU72_MAX_LEVELS_LINK : pcie_table->count;
2723 for (i = 1; i < maxEntry; i++) {
2724 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
2725 get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
2726 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2727 }
2728 data->dpm_table.pcie_speed_table.count = maxEntry - 1;
2729 } else {
2730 /* Hardcode Pcie Table */
2731 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
2732 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2733 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2734 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
2735 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2736 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2737 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
2738 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2739 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2740 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
2741 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2742 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2743 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
2744 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2745 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2746 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
2747 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2748 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2749 data->dpm_table.pcie_speed_table.count = 6;
2750 }
2751 /* Populate last level for boot PCIE level, but do not increment count. */
2752 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
2753 data->dpm_table.pcie_speed_table.count,
2754 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2755 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2756
2757 return 0;
2758
2759}
2760
2761/*
2762 * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
2763 * Dynamic state patching function will then trim these state tables to the allowed range based
2764 * on the power policy or external client requests, such as UVD request, etc.
2765 */
2766static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
2767{
2768 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2769 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2770 uint32_t i;
2771
2772 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
2773 pptable_info->vdd_dep_on_sclk;
2774 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
2775 pptable_info->vdd_dep_on_mclk;
2776
2777 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2778 "SCLK dependency table is missing. This table is mandatory", return -1);
2779 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
2780 "SCLK dependency table has to have is missing. This table is mandatory", return -1);
2781
2782 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2783 "MCLK dependency table is missing. This table is mandatory", return -1);
2784 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
2785 "VMCLK dependency table has to have is missing. This table is mandatory", return -1);
2786
2787 /* clear the state table to reset everything to default */
2788 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
2789 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
2790 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
2791 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
2792 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
2793 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
2794 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
2795
2796 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2797 "SCLK dependency table is missing. This table is mandatory", return -1);
2798 /* Initialize Sclk DPM table based on allow Sclk values*/
2799 data->dpm_table.sclk_table.count = 0;
2800
2801 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2802 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
2803 allowed_vdd_sclk_table->entries[i].clk) {
2804 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
2805 allowed_vdd_sclk_table->entries[i].clk;
2806 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
2807 data->dpm_table.sclk_table.count++;
2808 }
2809 }
2810
2811 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2812 "MCLK dependency table is missing. This table is mandatory", return -1);
2813 /* Initialize Mclk DPM table based on allow Mclk values */
2814 data->dpm_table.mclk_table.count = 0;
2815 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2816 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
2817 allowed_vdd_mclk_table->entries[i].clk) {
2818 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
2819 allowed_vdd_mclk_table->entries[i].clk;
2820 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
2821 data->dpm_table.mclk_table.count++;
2822 }
2823 }
2824
2825 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
2826 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2827 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
2828 /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
2829 /* param1 is for corresponding std voltage */
2830 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
2831 }
2832 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
2833
2834 if (NULL != allowed_vdd_mclk_table) {
2835 /* Initialize Vddci DPM table based on allow Mclk values */
2836 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2837 data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
2838 data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
2839 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
2840 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
2841 }
2842 data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
2843 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
2844 }
2845
2846 /* setup PCIE gen speed levels*/
2847 tonga_setup_default_pcie_tables(hwmgr);
2848
2849 /* save a copy of the default DPM table*/
2850 memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
2851
2852 return 0;
2853}
2854
2855int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
2856 const struct tonga_power_state *bootState)
2857{
2858 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2859 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2860 uint8_t count, level;
2861
2862 count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
2863 for (level = 0; level < count; level++) {
2864 if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
2865 bootState->performance_levels[0].engine_clock) {
2866 data->smc_state_table.GraphicsBootLevel = level;
2867 break;
2868 }
2869 }
2870
2871 count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
2872 for (level = 0; level < count; level++) {
2873 if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
2874 bootState->performance_levels[0].memory_clock) {
2875 data->smc_state_table.MemoryBootLevel = level;
2876 break;
2877 }
2878 }
2879
2880 return 0;
2881}
2882
2883/**
2884 * Initializes the SMC table and uploads it
2885 *
2886 * @param hwmgr the address of the powerplay hardware manager.
2887 * @param pInput the pointer to input data (PowerState)
2888 * @return always 0
2889 */
2890int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2891{
2892 int result;
2893 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2894 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2895 SMU72_Discrete_DpmTable *table = &(data->smc_state_table);
2896 const phw_tonga_ulv_parm *ulv = &(data->ulv);
2897 uint8_t i;
2898 PECI_RegistryValue reg_value;
2899 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2900
2901 result = tonga_setup_default_dpm_tables(hwmgr);
2902 PP_ASSERT_WITH_CODE(0 == result,
2903 "Failed to setup default DPM tables!", return result;);
2904 memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
2905 if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
2906 tonga_populate_smc_voltage_tables(hwmgr, table);
2907 }
2908
2909 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2910 PHM_PlatformCaps_AutomaticDCTransition)) {
2911 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2912 }
2913
2914 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2915 PHM_PlatformCaps_StepVddc)) {
2916 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2917 }
2918
2919 if (data->is_memory_GDDR5) {
2920 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2921 }
2922
2923 i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2924
2925 if (i == 1 || i == 0) {
2926 table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
2927 }
2928
2929 if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
2930 PP_ASSERT_WITH_CODE(0 == result,
2931 "Failed to initialize ULV state!", return result;);
2932
2933 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2934 ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
2935 }
2936
2937 result = tonga_populate_smc_link_level(hwmgr, table);
2938 PP_ASSERT_WITH_CODE(0 == result,
2939 "Failed to initialize Link Level!", return result;);
2940
2941 result = tonga_populate_all_graphic_levels(hwmgr);
2942 PP_ASSERT_WITH_CODE(0 == result,
2943 "Failed to initialize Graphics Level!", return result;);
2944
2945 result = tonga_populate_all_memory_levels(hwmgr);
2946 PP_ASSERT_WITH_CODE(0 == result,
2947 "Failed to initialize Memory Level!", return result;);
2948
2949 result = tonga_populate_smv_acpi_level(hwmgr, table);
2950 PP_ASSERT_WITH_CODE(0 == result,
2951 "Failed to initialize ACPI Level!", return result;);
2952
2953 result = tonga_populate_smc_vce_level(hwmgr, table);
2954 PP_ASSERT_WITH_CODE(0 == result,
2955 "Failed to initialize VCE Level!", return result;);
2956
2957 result = tonga_populate_smc_acp_level(hwmgr, table);
2958 PP_ASSERT_WITH_CODE(0 == result,
2959 "Failed to initialize ACP Level!", return result;);
2960
2961 result = tonga_populate_smc_samu_level(hwmgr, table);
2962 PP_ASSERT_WITH_CODE(0 == result,
2963 "Failed to initialize SAMU Level!", return result;);
2964
2965 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2966 /* need to populate the ARB settings for the initial state. */
2967 result = tonga_program_memory_timing_parameters(hwmgr);
2968 PP_ASSERT_WITH_CODE(0 == result,
2969 "Failed to Write ARB settings for the initial state.", return result;);
2970
0104aa21
AD
2971 result = tonga_populate_smc_uvd_level(hwmgr, table);
2972 PP_ASSERT_WITH_CODE(0 == result,
2973 "Failed to initialize UVD Level!", return result;);
2974
c82baa28 2975 result = tonga_populate_smc_boot_level(hwmgr, table);
2976 PP_ASSERT_WITH_CODE(0 == result,
2977 "Failed to initialize Boot Level!", return result;);
2978
2979 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2980 PHM_PlatformCaps_ClockStretcher)) {
2981 result = tonga_populate_clock_stretcher_data_table(hwmgr);
2982 PP_ASSERT_WITH_CODE(0 == result,
2983 "Failed to populate Clock Stretcher Data Table!", return result;);
2984 }
2985 table->GraphicsVoltageChangeEnable = 1;
2986 table->GraphicsThermThrottleEnable = 1;
2987 table->GraphicsInterval = 1;
2988 table->VoltageInterval = 1;
2989 table->ThermalInterval = 1;
2990 table->TemperatureLimitHigh =
2991 pptable_info->cac_dtp_table->usTargetOperatingTemp *
2992 TONGA_Q88_FORMAT_CONVERSION_UNIT;
2993 table->TemperatureLimitLow =
2994 (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2995 TONGA_Q88_FORMAT_CONVERSION_UNIT;
2996 table->MemoryVoltageChangeEnable = 1;
2997 table->MemoryInterval = 1;
2998 table->VoltageResponseTime = 0;
2999 table->PhaseResponseTime = 0;
3000 table->MemoryThermThrottleEnable = 1;
3001
3002 /*
3003 * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
3004 * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
3005 * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
3006 * To avoid it, we set PCIeBootLinkLevel to highest dpm level
3007 */
3008 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
3009 "There must be 1 or more PCIE levels defined in PPTable.",
3010 return -1);
3011
3012 table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
3013
3014 table->PCIeGenInterval = 1;
3015
3016 result = tonga_populate_vr_config(hwmgr, table);
3017 PP_ASSERT_WITH_CODE(0 == result,
3018 "Failed to populate VRConfig setting!", return result);
3019
3020 table->ThermGpio = 17;
3021 table->SclkStepSize = 0x4000;
3022
3023 reg_value = 0;
3024 if ((0 == reg_value) &&
3025 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3026 VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
3027 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3028 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3029 PHM_PlatformCaps_RegulatorHot);
3030 } else {
3031 table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
3032 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3033 PHM_PlatformCaps_RegulatorHot);
3034 }
3035
3036 /* ACDC Switch GPIO */
3037 reg_value = 0;
3038 if ((0 == reg_value) &&
3039 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3040 PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
3041 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3042 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3043 PHM_PlatformCaps_AutomaticDCTransition);
3044 } else {
3045 table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
3046 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3047 PHM_PlatformCaps_AutomaticDCTransition);
3048 }
3049
3050 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3051 PHM_PlatformCaps_Falcon_QuickTransition);
3052
3053 reg_value = 0;
3054 if (1 == reg_value) {
3055 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3056 PHM_PlatformCaps_AutomaticDCTransition);
3057 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3058 PHM_PlatformCaps_Falcon_QuickTransition);
3059 }
3060
3061 reg_value = 0;
3062 if ((0 == reg_value) &&
3063 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3064 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
3065 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3066 PHM_PlatformCaps_ThermalOutGPIO);
3067
3068 table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3069
3070 table->ThermOutPolarity =
3071 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3072 (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
3073
3074 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3075
3076 /* if required, combine VRHot/PCC with thermal out GPIO*/
3077 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3078 PHM_PlatformCaps_RegulatorHot) &&
3079 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3080 PHM_PlatformCaps_CombinePCCWithThermalSignal)){
3081 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3082 }
3083 } else {
3084 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3085 PHM_PlatformCaps_ThermalOutGPIO);
3086
3087 table->ThermOutGpio = 17;
3088 table->ThermOutPolarity = 1;
3089 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3090 }
3091
3092 for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
3093 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3094 }
3095 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3096 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3097 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3098 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3099 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3100 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3101 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3102 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3103 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3104
3105 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3106 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
3107 offsetof(SMU72_Discrete_DpmTable, SystemFlags),
3108 (uint8_t *)&(table->SystemFlags),
3109 sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
3110 data->sram_end);
3111
3112 PP_ASSERT_WITH_CODE(0 == result,
3113 "Failed to upload dpm data to SMC memory!", return result;);
3114
3115 return result;
3116}
3117
3118/* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
3119static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
3120{
3121 return;
3122}
3123
3124int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3125{
3126 PPSMC_Result result;
3127 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3128
3129 /* Apply minimum voltage based on DAL's request level */
3130 tonga_apply_dal_minimum_voltage_request(hwmgr);
3131
3132 if (0 == data->sclk_dpm_key_disabled) {
3133 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3134 if (0 != tonga_is_dpm_running(hwmgr))
3135 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3136
3137 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3138 result = smum_send_msg_to_smc_with_parameter(
3139 hwmgr->smumgr,
3140 (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
3141 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3142 PP_ASSERT_WITH_CODE((0 == result),
3143 "Set Sclk Dpm enable Mask failed", return -1);
3144 }
3145 }
3146
3147 if (0 == data->mclk_dpm_key_disabled) {
3148 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3149 if (0 != tonga_is_dpm_running(hwmgr))
3150 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3151
3152 if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3153 result = smum_send_msg_to_smc_with_parameter(
3154 hwmgr->smumgr,
3155 (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
3156 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3157 PP_ASSERT_WITH_CODE((0 == result),
3158 "Set Mclk Dpm enable Mask failed", return -1);
3159 }
3160 }
3161
3162 return 0;
3163}
3164
3165
3166int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
3167{
3168 uint32_t level, tmp;
3169 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3170
3171 if (0 == data->pcie_dpm_key_disabled) {
3172 /* PCIE */
3173 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3174 level = 0;
3175 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3176 while (tmp >>= 1)
3177 level++ ;
3178
3179 if (0 != level) {
3180 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3181 "force highest pcie dpm state failed!", return -1);
3182 }
3183 }
3184 }
3185
3186 if (0 == data->sclk_dpm_key_disabled) {
3187 /* SCLK */
3188 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
3189 level = 0;
3190 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3191 while (tmp >>= 1)
3192 level++ ;
3193
3194 if (0 != level) {
3195 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3196 "force highest sclk dpm state failed!", return -1);
3197 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3198 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3199 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3200 Curr_Sclk_Index does not match the level \n");
3201
3202 }
3203 }
3204 }
3205
3206 if (0 == data->mclk_dpm_key_disabled) {
3207 /* MCLK */
3208 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3209 level = 0;
3210 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3211 while (tmp >>= 1)
3212 level++ ;
3213
3214 if (0 != level) {
3215 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3216 "force highest mclk dpm state failed!", return -1);
3217 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3218 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3219 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
9fe1837d 3220 Curr_Mclk_Index does not match the level \n");
c82baa28 3221 }
3222 }
3223 }
3224
3225 return 0;
3226}
3227
3228/**
3229 * Find the MC microcode version and store it in the HwMgr struct
3230 *
3231 * @param hwmgr the address of the powerplay hardware manager.
3232 * @return always 0
3233 */
3234int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
3235{
3236 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
3237
3238 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
3239
3240 return 0;
3241}
3242
3243/**
3244 * Initialize Dynamic State Adjustment Rule Settings
3245 *
3246 * @param hwmgr the address of the powerplay hardware manager.
3247 */
3248int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
3249{
3250 uint32_t table_size;
3251 struct phm_clock_voltage_dependency_table *table_clk_vlt;
3252 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3253
3254 hwmgr->dyn_state.mclk_sclk_ratio = 4;
3255 hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */
3256 hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */
3257
3258 /* initialize vddc_dep_on_dal_pwrl table */
3259 table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
3260 table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
3261
3262 if (NULL == table_clk_vlt) {
3263 printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
3264 return -ENOMEM;
3265 } else {
3266 table_clk_vlt->count = 4;
3267 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
3268 table_clk_vlt->entries[0].v = 0;
3269 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
3270 table_clk_vlt->entries[1].v = 720;
3271 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
3272 table_clk_vlt->entries[2].v = 810;
3273 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
3274 table_clk_vlt->entries[3].v = 900;
3275 pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
3276 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
3277 }
3278
3279 return 0;
3280}
3281
3282static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
3283{
3284 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3285 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3286
3287 phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
3288 pptable_info->vdd_dep_on_sclk;
3289 phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
3290 pptable_info->vdd_dep_on_mclk;
3291
3292 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
3293 "VDD dependency on SCLK table is missing. \
3294 This table is mandatory", return -1);
3295 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
3296 "VDD dependency on SCLK table has to have is missing. \
3297 This table is mandatory", return -1);
3298
3299 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
3300 "VDD dependency on MCLK table is missing. \
3301 This table is mandatory", return -1);
3302 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
3303 "VDD dependency on MCLK table has to have is missing. \
3304 This table is mandatory", return -1);
3305
3306 data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
3307 data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3308
3309 pptable_info->max_clock_voltage_on_ac.sclk =
3310 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
3311 pptable_info->max_clock_voltage_on_ac.mclk =
3312 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
3313 pptable_info->max_clock_voltage_on_ac.vddc =
3314 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3315 pptable_info->max_clock_voltage_on_ac.vddci =
3316 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
3317
3318 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
3319 pptable_info->max_clock_voltage_on_ac.sclk;
3320 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
3321 pptable_info->max_clock_voltage_on_ac.mclk;
3322 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
3323 pptable_info->max_clock_voltage_on_ac.vddc;
3324 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
3325 pptable_info->max_clock_voltage_on_ac.vddci;
3326
3327 return 0;
3328}
3329
3330int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3331{
3332 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3333 int result = 1;
3334
3335 PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
3336 "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
3337 return result);
3338
3339 if (0 == data->pcie_dpm_key_disabled) {
3340 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
3341 hwmgr->smumgr,
3342 PPSMC_MSG_PCIeDPM_UnForceLevel)),
3343 "unforce pcie level failed!",
3344 return -1);
3345 }
3346
3347 result = tonga_upload_dpm_level_enable_mask(hwmgr);
3348
3349 return result;
3350}
3351
3352static uint32_t tonga_get_lowest_enable_level(
3353 struct pp_hwmgr *hwmgr, uint32_t level_mask)
3354{
3355 uint32_t level = 0;
3356
3357 while (0 == (level_mask & (1 << level)))
3358 level++;
3359
3360 return level;
3361}
3362
3363static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3364{
9fe1837d 3365 uint32_t level;
c82baa28 3366 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3367
9fe1837d
AD
3368 if (0 == data->pcie_dpm_key_disabled) {
3369 /* PCIE */
3370 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3371 level = tonga_get_lowest_enable_level(hwmgr,
3372 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3373 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3374 "force lowest pcie dpm state failed!", return -1);
3375 }
3376 }
3377
3378 if (0 == data->sclk_dpm_key_disabled) {
3379 /* SCLK */
3380 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3381 level = tonga_get_lowest_enable_level(hwmgr,
3382 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
c82baa28 3383
9fe1837d
AD
3384 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3385 "force sclk dpm state failed!", return -1);
c82baa28 3386
9fe1837d
AD
3387 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3388 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3389 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
c82baa28 3390 Curr_Sclk_Index does not match the level \n");
9fe1837d
AD
3391 }
3392 }
3393
3394 if (0 == data->mclk_dpm_key_disabled) {
3395 /* MCLK */
3396 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3397 level = tonga_get_lowest_enable_level(hwmgr,
3398 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3399 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3400 "force lowest mclk dpm state failed!", return -1);
3401 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3402 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3403 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3404 Curr_Mclk_Index does not match the level \n");
3405 }
c82baa28 3406 }
3407
3408 return 0;
3409}
3410
3411static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
3412{
3413 uint8_t entryId;
3414 uint8_t voltageId;
3415 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3416 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3417
3418 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3419 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3420 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3421
3422 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3423 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3424 voltageId = sclk_table->entries[entryId].vddInd;
3425 sclk_table->entries[entryId].vddgfx =
3426 pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
3427 }
3428 } else {
3429 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3430 voltageId = sclk_table->entries[entryId].vddInd;
3431 sclk_table->entries[entryId].vddc =
3432 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3433 }
3434 }
3435
3436 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3437 voltageId = mclk_table->entries[entryId].vddInd;
3438 mclk_table->entries[entryId].vddc =
3439 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3440 }
3441
3442 for (entryId = 0; entryId < mm_table->count; ++entryId) {
3443 voltageId = mm_table->entries[entryId].vddcInd;
3444 mm_table->entries[entryId].vddc =
3445 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3446 }
3447
3448 return 0;
3449
3450}
3451
3452static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
3453{
3454 uint8_t entryId;
3455 phm_ppt_v1_voltage_lookup_record v_record;
3456 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3457 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3458
3459 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3460 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3461
3462 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3463 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3464 if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
3465 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3466 sclk_table->entries[entryId].vdd_offset - 0xFFFF;
3467 else
3468 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3469 sclk_table->entries[entryId].vdd_offset;
3470
3471 sclk_table->entries[entryId].vddc =
3472 v_record.us_cac_low = v_record.us_cac_mid =
3473 v_record.us_cac_high = v_record.us_vdd;
3474
3475 tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
3476 }
3477
3478 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3479 if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
3480 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3481 mclk_table->entries[entryId].vdd_offset - 0xFFFF;
3482 else
3483 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3484 mclk_table->entries[entryId].vdd_offset;
3485
3486 mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
3487 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3488 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3489 }
3490 }
3491
3492 return 0;
3493
3494}
3495
3496static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
3497{
3498 uint32_t entryId;
3499 phm_ppt_v1_voltage_lookup_record v_record;
3500 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3501 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3502 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3503
3504 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3505 for (entryId = 0; entryId < mm_table->count; entryId++) {
3506 if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
3507 v_record.us_vdd = mm_table->entries[entryId].vddc +
3508 mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
3509 else
3510 v_record.us_vdd = mm_table->entries[entryId].vddc +
3511 mm_table->entries[entryId].vddgfx_offset;
3512
3513 /* Add the calculated VDDGFX to the VDDGFX lookup table */
3514 mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
3515 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3516 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3517 }
3518 }
3519 return 0;
3520}
3521
3522
3523/**
3524 * Change virtual leakage voltage to actual value.
3525 *
3526 * @param hwmgr the address of the powerplay hardware manager.
3527 * @param pointer to changing voltage
3528 * @param pointer to leakage table
3529 */
3530static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
3531 uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
3532{
3533 uint32_t leakage_index;
3534
3535 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
3536 for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
3537 /* if this voltage matches a leakage voltage ID */
3538 /* patch with actual leakage voltage */
3539 if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
3540 *voltage = pLeakageTable->actual_voltage[leakage_index];
3541 break;
3542 }
3543 }
3544
3545 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
3546 printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
3547}
3548
3549/**
3550 * Patch voltage lookup table by EVV leakages.
3551 *
3552 * @param hwmgr the address of the powerplay hardware manager.
3553 * @param pointer to voltage lookup table
3554 * @param pointer to leakage table
3555 * @return always 0
3556 */
3557static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
3558 phm_ppt_v1_voltage_lookup_table *lookup_table,
3559 phw_tonga_leakage_voltage *pLeakageTable)
3560{
3561 uint32_t i;
3562
3563 for (i = 0; i < lookup_table->count; i++) {
3564 tonga_patch_with_vdd_leakage(hwmgr,
3565 &lookup_table->entries[i].us_vdd, pLeakageTable);
3566 }
3567
3568 return 0;
3569}
3570
3571static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
3572 phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
3573{
3574 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3575
3576 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
3577 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
3578 pptable_info->max_clock_voltage_on_dc.vddc;
3579
3580 return 0;
3581}
3582
3583static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
3584 struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
3585 uint16_t *Vddgfx)
3586{
3587 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
3588 return 0;
3589}
3590
3591int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
3592 phm_ppt_v1_voltage_lookup_table *lookup_table)
3593{
3594 uint32_t table_size, i, j;
3595 phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
3596 table_size = lookup_table->count;
3597
3598 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
3599 "Lookup table is empty", return -1);
3600
3601 /* Sorting voltages */
3602 for (i = 0; i < table_size - 1; i++) {
3603 for (j = i + 1; j > 0; j--) {
3604 if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
3605 tmp_voltage_lookup_record = lookup_table->entries[j-1];
3606 lookup_table->entries[j-1] = lookup_table->entries[j];
3607 lookup_table->entries[j] = tmp_voltage_lookup_record;
3608 }
3609 }
3610 }
3611
3612 return 0;
3613}
3614
3615static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
3616{
3617 int result = 0;
3618 int tmp_result;
3619 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3620 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3621
3622 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3623 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3624 pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
3625 if (tmp_result != 0)
3626 result = tmp_result;
3627
3628 tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
3629 &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
3630 if (tmp_result != 0)
3631 result = tmp_result;
3632 } else {
3633 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3634 pptable_info->vddc_lookup_table, &(data->vddc_leakage));
3635 if (tmp_result != 0)
3636 result = tmp_result;
3637
3638 tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
3639 &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
3640 if (tmp_result != 0)
3641 result = tmp_result;
3642 }
3643
3644 tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
3645 if (tmp_result != 0)
3646 result = tmp_result;
3647
3648 tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
3649 if (tmp_result != 0)
3650 result = tmp_result;
3651
3652 tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
3653 if (tmp_result != 0)
3654 result = tmp_result;
3655
3656 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
3657 if (tmp_result != 0)
3658 result = tmp_result;
3659
3660 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
3661 if (tmp_result != 0)
3662 result = tmp_result;
3663
3664 return result;
3665}
3666
3667int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
3668{
3669 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3670 data->low_sclk_interrupt_threshold = 0;
3671
3672 return 0;
3673}
3674
3675int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
3676{
3677 int tmp_result, result = 0;
3678
3679 tmp_result = tonga_read_clock_registers(hwmgr);
3680 PP_ASSERT_WITH_CODE((0 == tmp_result),
3681 "Failed to read clock registers!", result = tmp_result);
3682
3683 tmp_result = tonga_get_memory_type(hwmgr);
3684 PP_ASSERT_WITH_CODE((0 == tmp_result),
3685 "Failed to get memory type!", result = tmp_result);
3686
3687 tmp_result = tonga_enable_acpi_power_management(hwmgr);
3688 PP_ASSERT_WITH_CODE((0 == tmp_result),
3689 "Failed to enable ACPI power management!", result = tmp_result);
3690
3691 tmp_result = tonga_init_power_gate_state(hwmgr);
3692 PP_ASSERT_WITH_CODE((0 == tmp_result),
3693 "Failed to init power gate state!", result = tmp_result);
3694
3695 tmp_result = tonga_get_mc_microcode_version(hwmgr);
3696 PP_ASSERT_WITH_CODE((0 == tmp_result),
3697 "Failed to get MC microcode version!", result = tmp_result);
3698
3699 tmp_result = tonga_init_sclk_threshold(hwmgr);
3700 PP_ASSERT_WITH_CODE((0 == tmp_result),
3701 "Failed to init sclk threshold!", result = tmp_result);
3702
3703 return result;
3704}
3705
3706/**
3707 * Enable voltage control
3708 *
3709 * @param hwmgr the address of the powerplay hardware manager.
3710 * @return always 0
3711 */
3712int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
3713{
3714 /* enable voltage control */
3715 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
3716
3717 return 0;
3718}
3719
3720/**
3721 * Checks if we want to support voltage control
3722 *
3723 * @param hwmgr the address of the powerplay hardware manager.
3724 */
3725bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
3726{
3727 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3728
3729 return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
3730}
3731
3732/*---------------------------MC----------------------------*/
3733
3734uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
3735{
3736 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
3737}
3738
3739bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
3740{
3741 bool result = 1;
3742
3743 switch (inReg) {
3744 case mmMC_SEQ_RAS_TIMING:
3745 *outReg = mmMC_SEQ_RAS_TIMING_LP;
3746 break;
3747
3748 case mmMC_SEQ_DLL_STBY:
3749 *outReg = mmMC_SEQ_DLL_STBY_LP;
3750 break;
3751
3752 case mmMC_SEQ_G5PDX_CMD0:
3753 *outReg = mmMC_SEQ_G5PDX_CMD0_LP;
3754 break;
3755
3756 case mmMC_SEQ_G5PDX_CMD1:
3757 *outReg = mmMC_SEQ_G5PDX_CMD1_LP;
3758 break;
3759
3760 case mmMC_SEQ_G5PDX_CTRL:
3761 *outReg = mmMC_SEQ_G5PDX_CTRL_LP;
3762 break;
3763
3764 case mmMC_SEQ_CAS_TIMING:
3765 *outReg = mmMC_SEQ_CAS_TIMING_LP;
3766 break;
3767
3768 case mmMC_SEQ_MISC_TIMING:
3769 *outReg = mmMC_SEQ_MISC_TIMING_LP;
3770 break;
3771
3772 case mmMC_SEQ_MISC_TIMING2:
3773 *outReg = mmMC_SEQ_MISC_TIMING2_LP;
3774 break;
3775
3776 case mmMC_SEQ_PMG_DVS_CMD:
3777 *outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
3778 break;
3779
3780 case mmMC_SEQ_PMG_DVS_CTL:
3781 *outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
3782 break;
3783
3784 case mmMC_SEQ_RD_CTL_D0:
3785 *outReg = mmMC_SEQ_RD_CTL_D0_LP;
3786 break;
3787
3788 case mmMC_SEQ_RD_CTL_D1:
3789 *outReg = mmMC_SEQ_RD_CTL_D1_LP;
3790 break;
3791
3792 case mmMC_SEQ_WR_CTL_D0:
3793 *outReg = mmMC_SEQ_WR_CTL_D0_LP;
3794 break;
3795
3796 case mmMC_SEQ_WR_CTL_D1:
3797 *outReg = mmMC_SEQ_WR_CTL_D1_LP;
3798 break;
3799
3800 case mmMC_PMG_CMD_EMRS:
3801 *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
3802 break;
3803
3804 case mmMC_PMG_CMD_MRS:
3805 *outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
3806 break;
3807
3808 case mmMC_PMG_CMD_MRS1:
3809 *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
3810 break;
3811
3812 case mmMC_SEQ_PMG_TIMING:
3813 *outReg = mmMC_SEQ_PMG_TIMING_LP;
3814 break;
3815
3816 case mmMC_PMG_CMD_MRS2:
3817 *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
3818 break;
3819
3820 case mmMC_SEQ_WR_CTL_2:
3821 *outReg = mmMC_SEQ_WR_CTL_2_LP;
3822 break;
3823
3824 default:
3825 result = 0;
3826 break;
3827 }
3828
3829 return result;
3830}
3831
3832int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
3833{
3834 uint32_t i;
3835 uint16_t address;
3836
3837 for (i = 0; i < table->last; i++) {
3838 table->mc_reg_address[i].s0 =
3839 tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
3840 ? address : table->mc_reg_address[i].s1;
3841 }
3842 return 0;
3843}
3844
3845int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
3846{
3847 uint8_t i, j;
3848
3849 PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3850 "Invalid VramInfo table.", return -1);
3851 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
3852 "Invalid VramInfo table.", return -1);
3853
3854 for (i = 0; i < table->last; i++) {
3855 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
3856 }
3857 ni_table->last = table->last;
3858
3859 for (i = 0; i < table->num_entries; i++) {
3860 ni_table->mc_reg_table_entry[i].mclk_max =
3861 table->mc_reg_table_entry[i].mclk_max;
3862 for (j = 0; j < table->last; j++) {
3863 ni_table->mc_reg_table_entry[i].mc_data[j] =
3864 table->mc_reg_table_entry[i].mc_data[j];
3865 }
3866 }
3867 ni_table->num_entries = table->num_entries;
3868
3869 return 0;
3870}
3871
3872/**
3873 * VBIOS omits some information to reduce size, we need to recover them here.
3874 * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3875 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3876 * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
3877 * 3. need to set these data for each clock range
3878 *
3879 * @param hwmgr the address of the powerplay hardware manager.
3880 * @param table the address of MCRegTable
3881 * @return always 0
3882 */
3883int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
3884{
3885 uint8_t i, j, k;
3886 uint32_t temp_reg;
3887 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3888
3889 for (i = 0, j = table->last; i < table->last; i++) {
3890 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3891 "Invalid VramInfo table.", return -1);
3892 switch (table->mc_reg_address[i].s1) {
3893 /*
3894 * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3895 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3896 */
3897 case mmMC_SEQ_MISC1:
3898 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
3899 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
3900 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
3901 for (k = 0; k < table->num_entries; k++) {
3902 table->mc_reg_table_entry[k].mc_data[j] =
3903 ((temp_reg & 0xffff0000)) |
3904 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
3905 }
3906 j++;
3907 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3908 "Invalid VramInfo table.", return -1);
3909
3910 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3911 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3912 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3913 for (k = 0; k < table->num_entries; k++) {
3914 table->mc_reg_table_entry[k].mc_data[j] =
3915 (temp_reg & 0xffff0000) |
3916 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3917
3918 if (!data->is_memory_GDDR5) {
3919 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3920 }
3921 }
3922 j++;
3923 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3924 "Invalid VramInfo table.", return -1);
3925
3926 if (!data->is_memory_GDDR5) {
3927 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3928 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3929 for (k = 0; k < table->num_entries; k++) {
3930 table->mc_reg_table_entry[k].mc_data[j] =
3931 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3932 }
3933 j++;
3934 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3935 "Invalid VramInfo table.", return -1);
3936 }
3937
3938 break;
3939
3940 case mmMC_SEQ_RESERVE_M:
3941 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3942 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3943 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3944 for (k = 0; k < table->num_entries; k++) {
3945 table->mc_reg_table_entry[k].mc_data[j] =
3946 (temp_reg & 0xffff0000) |
3947 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3948 }
3949 j++;
3950 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3951 "Invalid VramInfo table.", return -1);
3952 break;
3953
3954 default:
3955 break;
3956 }
3957
3958 }
3959
3960 table->last = j;
3961
3962 return 0;
3963}
3964
3965int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
3966{
3967 uint8_t i, j;
3968 for (i = 0; i < table->last; i++) {
3969 for (j = 1; j < table->num_entries; j++) {
3970 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3971 table->mc_reg_table_entry[j].mc_data[i]) {
3972 table->validflag |= (1<<i);
3973 break;
3974 }
3975 }
3976 }
3977
3978 return 0;
3979}
3980
3981int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
3982{
3983 int result;
3984 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3985 pp_atomctrl_mc_reg_table *table;
3986 phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
3987 uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
3988
3989 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
3990
3991 if (NULL == table)
3992 return -1;
3993
3994 /* Program additional LP registers that are no longer programmed by VBIOS */
3995 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
3996 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
3997 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
3998 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
3999 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
4000 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
4001 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
4002 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
4003 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
4004 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
4005 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
4006 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
4007 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
4008 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
4009 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
4010 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
4011 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
4012 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
4013 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
4014 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
4015
4016 memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
4017
4018 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
4019
4020 if (0 == result)
4021 result = tonga_copy_vbios_smc_reg_table(table, ni_table);
4022
4023 if (0 == result) {
4024 tonga_set_s0_mc_reg_index(ni_table);
4025 result = tonga_set_mc_special_registers(hwmgr, ni_table);
4026 }
4027
4028 if (0 == result)
4029 tonga_set_valid_flag(ni_table);
4030
4031 kfree(table);
4032 return result;
4033}
4034
4035/*
4036* Copy one arb setting to another and then switch the active set.
4037* arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
4038*/
4039int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
4040 uint32_t arbFreqSrc, uint32_t arbFreqDest)
4041{
4042 uint32_t mc_arb_dram_timing;
4043 uint32_t mc_arb_dram_timing2;
4044 uint32_t burst_time;
4045 uint32_t mc_cg_config;
4046
4047 switch (arbFreqSrc) {
4048 case MC_CG_ARB_FREQ_F0:
4049 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
4050 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
4051 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
4052 break;
4053
4054 case MC_CG_ARB_FREQ_F1:
4055 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
4056 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
4057 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
4058 break;
4059
4060 default:
4061 return -1;
4062 }
4063
4064 switch (arbFreqDest) {
4065 case MC_CG_ARB_FREQ_F0:
4066 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
4067 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
4068 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
4069 break;
4070
4071 case MC_CG_ARB_FREQ_F1:
4072 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
4073 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
4074 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
4075 break;
4076
4077 default:
4078 return -1;
4079 }
4080
4081 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
4082 mc_cg_config |= 0x0000000F;
4083 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
4084 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
4085
4086 return 0;
4087}
4088
4089/**
4090 * Initial switch from ARB F0->F1
4091 *
4092 * @param hwmgr the address of the powerplay hardware manager.
4093 * @return always 0
4094 * This function is to be called from the SetPowerState table.
4095 */
4096int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
4097{
4098 return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
4099}
4100
4101/**
4102 * Initialize the ARB DRAM timing table's index field.
4103 *
4104 * @param hwmgr the address of the powerplay hardware manager.
4105 * @return always 0
4106 */
4107int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
4108{
4109 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4110 uint32_t tmp;
4111 int result;
4112
4113 /*
4114 * This is a read-modify-write on the first byte of the ARB table.
4115 * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
4116 * This solution is ugly, but we never write the whole table only individual fields in it.
4117 * In reality this field should not be in that structure but in a soft register.
4118 */
4119 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
4120 data->arb_table_start, &tmp, data->sram_end);
4121
4122 if (0 != result)
4123 return result;
4124
4125 tmp &= 0x00FFFFFF;
4126 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
4127
4128 return tonga_write_smc_sram_dword(hwmgr->smumgr,
4129 data->arb_table_start, tmp, data->sram_end);
4130}
4131
4132int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
4133{
4134 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4135
4136 uint32_t i, j;
4137
4138 for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
4139 if (data->tonga_mc_reg_table.validflag & 1<<j) {
4140 PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
4141 "Index of mc_reg_table->address[] array out of boundary", return -1);
4142 mc_reg_table->address[i].s0 =
4143 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
4144 mc_reg_table->address[i].s1 =
4145 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
4146 i++;
4147 }
4148 }
4149
4150 mc_reg_table->last = (uint8_t)i;
4151
4152 return 0;
4153}
4154
4155/*convert register values from driver to SMC format */
4156void tonga_convert_mc_registers(
4157 const phw_tonga_mc_reg_entry * pEntry,
4158 SMU72_Discrete_MCRegisterSet *pData,
4159 uint32_t numEntries, uint32_t validflag)
4160{
4161 uint32_t i, j;
4162
4163 for (i = 0, j = 0; j < numEntries; j++) {
4164 if (validflag & 1<<j) {
4165 pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
4166 i++;
4167 }
4168 }
4169}
4170
4171/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
4172int tonga_convert_mc_reg_table_entry_to_smc(
4173 struct pp_hwmgr *hwmgr,
4174 const uint32_t memory_clock,
4175 SMU72_Discrete_MCRegisterSet *mc_reg_table_data
4176 )
4177{
4178 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4179 uint32_t i = 0;
4180
4181 for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
4182 if (memory_clock <=
4183 data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
4184 break;
4185 }
4186 }
4187
4188 if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
4189 --i;
4190
4191 tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
4192 mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
4193
4194 return 0;
4195}
4196
4197int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
4198 SMU72_Discrete_MCRegisters *mc_reg_table)
4199{
4200 int result = 0;
4201 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4202 int res;
4203 uint32_t i;
4204
4205 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
4206 res = tonga_convert_mc_reg_table_entry_to_smc(
4207 hwmgr,
4208 data->dpm_table.mclk_table.dpm_levels[i].value,
4209 &mc_reg_table->data[i]
4210 );
4211
4212 if (0 != res)
4213 result = res;
4214 }
4215
4216 return result;
4217}
4218
4219int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
4220{
4221 int result;
4222 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4223
4224 memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
4225 result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
4226 PP_ASSERT_WITH_CODE(0 == result,
4227 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
4228
4229 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
4230 PP_ASSERT_WITH_CODE(0 == result,
4231 "Failed to initialize MCRegTable for driver state!", return result;);
4232
4233 return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
4234 (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
4235}
4236
4237/**
4238 * Programs static screed detection parameters
4239 *
4240 * @param hwmgr the address of the powerplay hardware manager.
4241 * @return always 0
4242 */
4243int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
4244{
4245 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4246
4247 /* Set static screen threshold unit*/
4248 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4249 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
4250 data->static_screen_threshold_unit);
4251 /* Set static screen threshold*/
4252 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4253 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
4254 data->static_screen_threshold);
4255
4256 return 0;
4257}
4258
4259/**
4260 * Setup display gap for glitch free memory clock switching.
4261 *
4262 * @param hwmgr the address of the powerplay hardware manager.
4263 * @return always 0
4264 */
4265int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
4266{
4267 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4268 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4269
4270 display_gap = PHM_SET_FIELD(display_gap,
4271 CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
4272
4273 display_gap = PHM_SET_FIELD(display_gap,
4274 CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
4275
4276 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4277 ixCG_DISPLAY_GAP_CNTL, display_gap);
4278
4279 return 0;
4280}
4281
4282/**
4283 * Programs activity state transition voting clients
4284 *
4285 * @param hwmgr the address of the powerplay hardware manager.
4286 * @return always 0
4287 */
4288int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
4289{
4290 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4291
4292 /* Clear reset for voting clients before enabling DPM */
4293 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4294 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
4295 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4296 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
4297
4298 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4299 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
4300 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4301 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
4302 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4303 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
4304 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4305 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
4306 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4307 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
4308 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4309 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
4310 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4311 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
4312 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4313 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
4314
4315 return 0;
4316}
4317
4318
4319int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
4320{
4321 int tmp_result, result = 0;
4322
4323 tmp_result = tonga_check_for_dpm_stopped(hwmgr);
4324
4325 if (cf_tonga_voltage_control(hwmgr)) {
4326 tmp_result = tonga_enable_voltage_control(hwmgr);
4327 PP_ASSERT_WITH_CODE((0 == tmp_result),
4328 "Failed to enable voltage control!", result = tmp_result);
4329
4330 tmp_result = tonga_construct_voltage_tables(hwmgr);
4331 PP_ASSERT_WITH_CODE((0 == tmp_result),
4332 "Failed to contruct voltage tables!", result = tmp_result);
4333 }
4334
4335 tmp_result = tonga_initialize_mc_reg_table(hwmgr);
4336 PP_ASSERT_WITH_CODE((0 == tmp_result),
4337 "Failed to initialize MC reg table!", result = tmp_result);
4338
4339 tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
4340 PP_ASSERT_WITH_CODE((0 == tmp_result),
4341 "Failed to program static screen threshold parameters!", result = tmp_result);
4342
4343 tmp_result = tonga_enable_display_gap(hwmgr);
4344 PP_ASSERT_WITH_CODE((0 == tmp_result),
4345 "Failed to enable display gap!", result = tmp_result);
4346
4347 tmp_result = tonga_program_voting_clients(hwmgr);
4348 PP_ASSERT_WITH_CODE((0 == tmp_result),
4349 "Failed to program voting clients!", result = tmp_result);
4350
4351 tmp_result = tonga_process_firmware_header(hwmgr);
4352 PP_ASSERT_WITH_CODE((0 == tmp_result),
4353 "Failed to process firmware header!", result = tmp_result);
4354
4355 tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
4356 PP_ASSERT_WITH_CODE((0 == tmp_result),
4357 "Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
4358
4359 tmp_result = tonga_init_smc_table(hwmgr);
4360 PP_ASSERT_WITH_CODE((0 == tmp_result),
4361 "Failed to initialize SMC table!", result = tmp_result);
4362
4363 tmp_result = tonga_init_arb_table_index(hwmgr);
4364 PP_ASSERT_WITH_CODE((0 == tmp_result),
4365 "Failed to initialize ARB table index!", result = tmp_result);
4366
4367 tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
4368 PP_ASSERT_WITH_CODE((0 == tmp_result),
4369 "Failed to populate initialize MC Reg table!", result = tmp_result);
4370
bbb207f3
RZ
4371 tmp_result = tonga_notify_smc_display_change(hwmgr, false);
4372 PP_ASSERT_WITH_CODE((0 == tmp_result),
4373 "Failed to notify no display!", result = tmp_result);
4374
c82baa28 4375 /* enable SCLK control */
4376 tmp_result = tonga_enable_sclk_control(hwmgr);
4377 PP_ASSERT_WITH_CODE((0 == tmp_result),
4378 "Failed to enable SCLK control!", result = tmp_result);
4379
4380 /* enable DPM */
4381 tmp_result = tonga_start_dpm(hwmgr);
4382 PP_ASSERT_WITH_CODE((0 == tmp_result),
4383 "Failed to start DPM!", result = tmp_result);
4384
4385 return result;
4386}
4387
4388int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4389{
4390 int tmp_result, result = 0;
4391
4392 tmp_result = tonga_check_for_dpm_running(hwmgr);
4393 PP_ASSERT_WITH_CODE((0 == tmp_result),
4394 "SMC is still running!", return 0);
4395
4396 tmp_result = tonga_stop_dpm(hwmgr);
4397 PP_ASSERT_WITH_CODE((0 == tmp_result),
4398 "Failed to stop DPM!", result = tmp_result);
4399
4400 tmp_result = tonga_reset_to_default(hwmgr);
4401 PP_ASSERT_WITH_CODE((0 == tmp_result),
4402 "Failed to reset to default!", result = tmp_result);
4403
4404 return result;
4405}
4406
4407int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
4408{
4409 int result;
4410
4411 result = tonga_set_boot_state(hwmgr);
4412 if (0 != result)
4413 printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
4414
4415 return result;
4416}
4417
4418int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
4419{
4420 if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
4421 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
4422 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
4423 }
4424
4425 if (NULL != hwmgr->backend) {
4426 kfree(hwmgr->backend);
4427 hwmgr->backend = NULL;
4428 }
4429
4430 return 0;
4431}
4432
4433/**
4434 * Initializes the Volcanic Islands Hardware Manager
4435 *
4436 * @param hwmgr the address of the powerplay hardware manager.
4437 * @return 1 if success; otherwise appropriate error code.
4438 */
4439int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
4440{
4441 int result = 0;
4442 SMU72_Discrete_DpmTable *table = NULL;
4443 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4444 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
4445 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4446 phw_tonga_ulv_parm *ulv;
4447
4448 PP_ASSERT_WITH_CODE((NULL != hwmgr),
4449 "Invalid Parameter!", return -1;);
4450
4451 data->dll_defaule_on = 0;
4452 data->sram_end = SMC_RAM_END;
4453
4454 data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
4455 data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
4456 data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
4457 data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
4458 data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
4459 data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
4460 data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
4461 data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
4462
4463 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
4464 data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
4465 data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
4466
4467 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4468 PHM_PlatformCaps_DisableVoltageIsland);
4469
4470 data->sclk_dpm_key_disabled = 0;
4471 data->mclk_dpm_key_disabled = 0;
4472 data->pcie_dpm_key_disabled = 0;
4473 data->pcc_monitor_enabled = 0;
4474
4475 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4476 PHM_PlatformCaps_UnTabledHardwareInterface);
4477
4478 data->gpio_debug = 0;
4479 data->engine_clock_data = 0;
4480 data->memory_clock_data = 0;
4481 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4482 PHM_PlatformCaps_DynamicPatchPowerState);
4483
4484 /* need to set voltage control types before EVV patching*/
4485 data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
4486 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
4487 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
4488 data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
4489
3ec2cdb8 4490 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4491 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
4492 data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4493 }
4494
4495 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4496 PHM_PlatformCaps_ControlVDDGFX)) {
3ec2cdb8 4497 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4498 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
4499 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4500 }
4501 }
4502
4503 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
4504 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4505 PHM_PlatformCaps_ControlVDDGFX);
4506 }
4507
4508 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4509 PHM_PlatformCaps_EnableMVDDControl)) {
3ec2cdb8 4510 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4511 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
4512 data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4513 }
4514 }
4515
4516 if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
4517 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4518 PHM_PlatformCaps_EnableMVDDControl);
4519 }
4520
4521 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4522 PHM_PlatformCaps_ControlVDDCI)) {
3ec2cdb8 4523 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4524 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
4525 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
3ec2cdb8 4526 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4527 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
4528 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4529 }
4530
4531 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
4532 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4533 PHM_PlatformCaps_ControlVDDCI);
4534
4535 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4536 PHM_PlatformCaps_TablelessHardwareInterface);
4537
4538 if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
4539 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4540 PHM_PlatformCaps_ClockStretcher);
4541
4542 /* Initializes DPM default values*/
4543 tonga_initialize_dpm_defaults(hwmgr);
4544
4545 /* Get leakage voltage based on leakage ID.*/
4546 PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
4547 "Get EVV Voltage Failed. Abort Driver loading!", return -1);
4548
4549 tonga_complete_dependency_tables(hwmgr);
4550
4551 /* Parse pptable data read from VBIOS*/
4552 tonga_set_private_var_based_on_pptale(hwmgr);
4553
4554 /* ULV Support*/
4555 ulv = &(data->ulv);
4556 ulv->ulv_supported = 0;
4557
4558 /* Initalize Dynamic State Adjustment Rule Settings*/
4559 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
aa22ae4b
AD
4560 if (result)
4561 printk(KERN_ERR "[ powerplay ] tonga_initializa_dynamic_state_adjustment_rule_settings failed!\n");
c82baa28 4562 data->uvd_enabled = 0;
4563
4564 table = &(data->smc_state_table);
4565
4566 /*
4567 * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
4568 * Peak Current Control feature is enabled and we should program PCC HW register
4569 */
4570 if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
4571 uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
4572 CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
4573
4574 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
4575 case 0:
4576 temp_reg = PHM_SET_FIELD(temp_reg,
4577 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
4578 break;
4579 case 1:
4580 temp_reg = PHM_SET_FIELD(temp_reg,
4581 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
4582 break;
4583 case 2:
4584 temp_reg = PHM_SET_FIELD(temp_reg,
4585 CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
4586 break;
4587 case 3:
4588 temp_reg = PHM_SET_FIELD(temp_reg,
4589 CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
4590 break;
4591 case 4:
4592 temp_reg = PHM_SET_FIELD(temp_reg,
4593 CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
4594 break;
4595 default:
4596 printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \
4597 Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
4598 break;
4599 }
4600 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4601 ixCNB_PWRMGT_CNTL, temp_reg);
4602 }
4603
4604 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4605 PHM_PlatformCaps_EnableSMU7ThermalManagement);
4606 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4607 PHM_PlatformCaps_SMU7);
4608
4609 data->vddc_phase_shed_control = 0;
4610
4611 if (0 == result) {
834b694c
AD
4612 struct cgs_system_info sys_info = {0};
4613
c82baa28 4614 data->is_tlu_enabled = 0;
4615 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
4616 TONGA_MAX_HARDWARE_POWERLEVELS;
4617 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
4618 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
4619
834b694c
AD
4620 sys_info.size = sizeof(struct cgs_system_info);
4621 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
4622 result = cgs_query_system_info(hwmgr->device, &sys_info);
4623 if (result)
4624 data->pcie_gen_cap = 0x30007;
4625 else
4626 data->pcie_gen_cap = (uint32_t)sys_info.value;
4627 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
4628 data->pcie_spc_cap = 20;
4629 sys_info.size = sizeof(struct cgs_system_info);
4630 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
4631 result = cgs_query_system_info(hwmgr->device, &sys_info);
4632 if (result)
4633 data->pcie_lane_cap = 0x2f0000;
4634 else
4635 data->pcie_lane_cap = (uint32_t)sys_info.value;
c82baa28 4636 } else {
4637 /* Ignore return value in here, we are cleaning up a mess. */
4638 tonga_hwmgr_backend_fini(hwmgr);
4639 }
4640
4641 return result;
4642}
4643
4644static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
4645 enum amd_dpm_forced_level level)
4646{
4647 int ret = 0;
4648
4649 switch (level) {
4650 case AMD_DPM_FORCED_LEVEL_HIGH:
4651 ret = tonga_force_dpm_highest(hwmgr);
4652 if (ret)
4653 return ret;
4654 break;
4655 case AMD_DPM_FORCED_LEVEL_LOW:
4656 ret = tonga_force_dpm_lowest(hwmgr);
4657 if (ret)
4658 return ret;
4659 break;
4660 case AMD_DPM_FORCED_LEVEL_AUTO:
4661 ret = tonga_unforce_dpm_levels(hwmgr);
4662 if (ret)
4663 return ret;
4664 break;
4665 default:
4666 break;
4667 }
4668
4669 hwmgr->dpm_level = level;
4670 return ret;
4671}
4672
4673static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4674 struct pp_power_state *prequest_ps,
4675 const struct pp_power_state *pcurrent_ps)
4676{
4677 struct tonga_power_state *tonga_ps =
4678 cast_phw_tonga_power_state(&prequest_ps->hardware);
4679
4680 uint32_t sclk;
4681 uint32_t mclk;
4682 struct PP_Clocks minimum_clocks = {0};
4683 bool disable_mclk_switching;
4684 bool disable_mclk_switching_for_frame_lock;
4685 struct cgs_display_info info = {0};
4686 const struct phm_clock_and_voltage_limits *max_limits;
4687 uint32_t i;
4688 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4689 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4690
4691 int32_t count;
4692 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4693
4694 data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
4695
4696 PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
4697 "VI should always have 2 performance levels",
4698 );
4699
4700 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4701 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4702 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4703
4704 if (PP_PowerSource_DC == hwmgr->power_source) {
4705 for (i = 0; i < tonga_ps->performance_level_count; i++) {
4706 if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
4707 tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
4708 if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
4709 tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
4710 }
4711 }
4712
4713 tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
4714 tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
4715
4716 tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4717
4718 cgs_get_active_displays_info(hwmgr->device, &info);
4719
4720 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4721
4722 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4723
4724 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4725
4726 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4727 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4728
4729 for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
4730 if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
4731 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
4732 break;
4733 }
4734 }
4735
4736 if (count < 0)
4737 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
4738
4739 stable_pstate_mclk = max_limits->mclk;
4740
4741 minimum_clocks.engineClock = stable_pstate_sclk;
4742 minimum_clocks.memoryClock = stable_pstate_mclk;
4743 }
4744
4745 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4746 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4747
4748 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4749 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4750
4751 tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4752
4753 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4754 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
4755 "Overdrive sclk exceeds limit",
4756 hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
4757
4758 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4759 tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
4760 }
4761
4762 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4763 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4764 "Overdrive mclk exceeds limit",
4765 hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4766
4767 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4768 tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
4769 }
4770
4771 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4772 hwmgr->platform_descriptor.platformCaps,
4773 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4774
4775 disable_mclk_switching = (1 < info.display_count) ||
4776 disable_mclk_switching_for_frame_lock;
4777
4778 sclk = tonga_ps->performance_levels[0].engine_clock;
4779 mclk = tonga_ps->performance_levels[0].memory_clock;
4780
4781 if (disable_mclk_switching)
4782 mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
4783
4784 if (sclk < minimum_clocks.engineClock)
4785 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
4786
4787 if (mclk < minimum_clocks.memoryClock)
4788 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
4789
4790 tonga_ps->performance_levels[0].engine_clock = sclk;
4791 tonga_ps->performance_levels[0].memory_clock = mclk;
4792
4793 tonga_ps->performance_levels[1].engine_clock =
4794 (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
4795 tonga_ps->performance_levels[1].engine_clock :
4796 tonga_ps->performance_levels[0].engine_clock;
4797
4798 if (disable_mclk_switching) {
4799 if (mclk < tonga_ps->performance_levels[1].memory_clock)
4800 mclk = tonga_ps->performance_levels[1].memory_clock;
4801
4802 tonga_ps->performance_levels[0].memory_clock = mclk;
4803 tonga_ps->performance_levels[1].memory_clock = mclk;
4804 } else {
4805 if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
4806 tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
4807 }
4808
4809 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4810 for (i=0; i < tonga_ps->performance_level_count; i++) {
4811 tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4812 tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4813 tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4814 tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4815 }
4816 }
4817
4818 return 0;
4819}
4820
4821int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
4822{
4823 return sizeof(struct tonga_power_state);
4824}
4825
4826static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4827{
4828 struct pp_power_state *ps;
4829 struct tonga_power_state *tonga_ps;
4830
4831 if (hwmgr == NULL)
4832 return -EINVAL;
4833
4834 ps = hwmgr->request_ps;
4835
4836 if (ps == NULL)
4837 return -EINVAL;
4838
4839 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4840
4841 if (low)
4842 return tonga_ps->performance_levels[0].memory_clock;
4843 else
4844 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
4845}
4846
4847static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4848{
4849 struct pp_power_state *ps;
4850 struct tonga_power_state *tonga_ps;
4851
4852 if (hwmgr == NULL)
4853 return -EINVAL;
4854
4855 ps = hwmgr->request_ps;
4856
4857 if (ps == NULL)
4858 return -EINVAL;
4859
4860 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4861
4862 if (low)
4863 return tonga_ps->performance_levels[0].engine_clock;
4864 else
4865 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
4866}
4867
4868static uint16_t tonga_get_current_pcie_speed(
4869 struct pp_hwmgr *hwmgr)
4870{
4871 uint32_t speed_cntl = 0;
4872
4873 speed_cntl = cgs_read_ind_register(hwmgr->device,
4874 CGS_IND_REG__PCIE,
4875 ixPCIE_LC_SPEED_CNTL);
4876 return((uint16_t)PHM_GET_FIELD(speed_cntl,
4877 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4878}
4879
4880static int tonga_get_current_pcie_lane_number(
4881 struct pp_hwmgr *hwmgr)
4882{
4883 uint32_t link_width;
4884
4885 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4886 CGS_IND_REG__PCIE,
4887 PCIE_LC_LINK_WIDTH_CNTL,
4888 LC_LINK_WIDTH_RD);
4889
4890 PP_ASSERT_WITH_CODE((7 >= link_width),
4891 "Invalid PCIe lane width!", return 0);
4892
4893 return decode_pcie_lane_width(link_width);
4894}
4895
4896static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
4897 struct pp_hw_power_state *hw_ps)
4898{
4899 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4900 struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
4901 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
4902 uint16_t size;
4903 uint8_t frev, crev;
4904 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
4905
4906 /* First retrieve the Boot clocks and VDDC from the firmware info table.
4907 * We assume here that fw_info is unchanged if this call fails.
4908 */
4909 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
4910 hwmgr->device, index,
4911 &size, &frev, &crev);
4912 if (!fw_info)
4913 /* During a test, there is no firmware info table. */
4914 return 0;
4915
4916 /* Patch the state. */
4917 data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock);
4918 data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock);
4919 data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
4920 data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
4921 data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
4922 data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
4923 data->vbios_boot_state.pcie_lane_bootup_value =
4924 (uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
4925
4926 /* set boot power state */
4927 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
4928 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
4929 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
4930 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
4931
4932 return 0;
4933}
4934
4935static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
4936 void *state, struct pp_power_state *power_state,
4937 void *pp_table, uint32_t classification_flag)
4938{
4939 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4940
4941 struct tonga_power_state *tonga_ps =
4942 (struct tonga_power_state *)(&(power_state->hardware));
4943
4944 struct tonga_performance_level *performance_level;
4945
4946 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
4947
4948 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
4949 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
4950
4951 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
4952 (ATOM_Tonga_SCLK_Dependency_Table *)
c9fe74e6 4953 (((unsigned long)powerplay_table) +
c82baa28 4954 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
4955
4956 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
4957 (ATOM_Tonga_MCLK_Dependency_Table *)
c9fe74e6 4958 (((unsigned long)powerplay_table) +
c82baa28 4959 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
4960
4961 /* The following fields are not initialized here: id orderedList allStatesList */
4962 power_state->classification.ui_label =
4963 (le16_to_cpu(state_entry->usClassification) &
4964 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
4965 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
4966 power_state->classification.flags = classification_flag;
4967 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
4968
4969 power_state->classification.temporary_state = false;
4970 power_state->classification.to_be_deleted = false;
4971
4972 power_state->validation.disallowOnDC =
4973 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
4974
4975 power_state->pcie.lanes = 0;
4976
4977 power_state->display.disableFrameModulation = false;
4978 power_state->display.limitRefreshrate = false;
4979 power_state->display.enableVariBright =
4980 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
4981
4982 power_state->validation.supportedPowerLevels = 0;
4983 power_state->uvd_clocks.VCLK = 0;
4984 power_state->uvd_clocks.DCLK = 0;
4985 power_state->temperatures.min = 0;
4986 power_state->temperatures.max = 0;
4987
4988 performance_level = &(tonga_ps->performance_levels
4989 [tonga_ps->performance_level_count++]);
4990
4991 PP_ASSERT_WITH_CODE(
4992 (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
4993 "Performance levels exceeds SMC limit!",
4994 return -1);
4995
4996 PP_ASSERT_WITH_CODE(
4997 (tonga_ps->performance_level_count <=
4998 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
4999 "Performance levels exceeds Driver limit!",
5000 return -1);
5001
5002 /* Performance levels are arranged from low to high. */
5003 performance_level->memory_clock =
5004 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
5005
5006 performance_level->engine_clock =
5007 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
5008
5009 performance_level->pcie_gen = get_pcie_gen_support(
5010 data->pcie_gen_cap,
5011 state_entry->ucPCIEGenLow);
5012
5013 performance_level->pcie_lane = get_pcie_lane_support(
5014 data->pcie_lane_cap,
5015 state_entry->ucPCIELaneHigh);
5016
5017 performance_level =
5018 &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
5019
5020 performance_level->memory_clock =
5021 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
5022
5023 performance_level->engine_clock =
5024 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
5025
5026 performance_level->pcie_gen = get_pcie_gen_support(
5027 data->pcie_gen_cap,
5028 state_entry->ucPCIEGenHigh);
5029
5030 performance_level->pcie_lane = get_pcie_lane_support(
5031 data->pcie_lane_cap,
5032 state_entry->ucPCIELaneHigh);
5033
5034 return 0;
5035}
5036
5037static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
5038 unsigned long entry_index, struct pp_power_state *ps)
5039{
5040 int result;
5041 struct tonga_power_state *tonga_ps;
5042 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5043
5044 struct phm_ppt_v1_information *table_info =
5045 (struct phm_ppt_v1_information *)(hwmgr->pptable);
5046
5047 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5048 table_info->vdd_dep_on_mclk;
5049
5050 ps->hardware.magic = PhwTonga_Magic;
5051
5052 tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
5053
5054 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
5055 tonga_get_pp_table_entry_callback_func);
5056
5057 /* This is the earliest time we have all the dependency table and the VBIOS boot state
5058 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
5059 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
5060 */
5061 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
5062 if (dep_mclk_table->entries[0].clk !=
5063 data->vbios_boot_state.mclk_bootup_value)
5064 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
5065 "does not match VBIOS boot MCLK level");
5066 if (dep_mclk_table->entries[0].vddci !=
5067 data->vbios_boot_state.vddci_bootup_value)
5068 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
5069 "does not match VBIOS boot VDDCI level");
5070 }
5071
5072 /* set DC compatible flag if this state supports DC */
5073 if (!ps->validation.disallowOnDC)
5074 tonga_ps->dc_compatible = true;
5075
5076 if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
5077 data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
5078 else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
5079 if (data->bacos.best_match == 0xffff) {
5080 /* For V.I. use boot state as base BACO state */
5081 data->bacos.best_match = PP_StateClassificationFlag_Boot;
5082 data->bacos.performance_level = tonga_ps->performance_levels[0];
5083 }
5084 }
5085
5086 tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
5087 tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
5088
5089 if (!result) {
5090 uint32_t i;
5091
5092 switch (ps->classification.ui_label) {
5093 case PP_StateUILabel_Performance:
5094 data->use_pcie_performance_levels = true;
5095
5096 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5097 if (data->pcie_gen_performance.max <
5098 tonga_ps->performance_levels[i].pcie_gen)
5099 data->pcie_gen_performance.max =
5100 tonga_ps->performance_levels[i].pcie_gen;
5101
5102 if (data->pcie_gen_performance.min >
5103 tonga_ps->performance_levels[i].pcie_gen)
5104 data->pcie_gen_performance.min =
5105 tonga_ps->performance_levels[i].pcie_gen;
5106
5107 if (data->pcie_lane_performance.max <
5108 tonga_ps->performance_levels[i].pcie_lane)
5109 data->pcie_lane_performance.max =
5110 tonga_ps->performance_levels[i].pcie_lane;
5111
5112 if (data->pcie_lane_performance.min >
5113 tonga_ps->performance_levels[i].pcie_lane)
5114 data->pcie_lane_performance.min =
5115 tonga_ps->performance_levels[i].pcie_lane;
5116 }
5117 break;
5118 case PP_StateUILabel_Battery:
5119 data->use_pcie_power_saving_levels = true;
5120
5121 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5122 if (data->pcie_gen_power_saving.max <
5123 tonga_ps->performance_levels[i].pcie_gen)
5124 data->pcie_gen_power_saving.max =
5125 tonga_ps->performance_levels[i].pcie_gen;
5126
5127 if (data->pcie_gen_power_saving.min >
5128 tonga_ps->performance_levels[i].pcie_gen)
5129 data->pcie_gen_power_saving.min =
5130 tonga_ps->performance_levels[i].pcie_gen;
5131
5132 if (data->pcie_lane_power_saving.max <
5133 tonga_ps->performance_levels[i].pcie_lane)
5134 data->pcie_lane_power_saving.max =
5135 tonga_ps->performance_levels[i].pcie_lane;
5136
5137 if (data->pcie_lane_power_saving.min >
5138 tonga_ps->performance_levels[i].pcie_lane)
5139 data->pcie_lane_power_saving.min =
5140 tonga_ps->performance_levels[i].pcie_lane;
5141 }
5142 break;
5143 default:
5144 break;
5145 }
5146 }
5147 return 0;
5148}
5149
5150static void
5151tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
5152{
9c5f8de6
RZ
5153 uint32_t sclk, mclk, active_percent;
5154 uint32_t offset;
5155 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
c82baa28 5156
5157 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
5158
5159 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5160
5161 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
5162
5163 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5164 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100);
9c5f8de6
RZ
5165
5166
5167 offset = data->soft_regs_start + offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
5168 active_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
5169 active_percent += 80;
5170 active_percent >>= 8;
5171
5172 seq_printf(m, "\n [GPU load]: %u%%\n\n", active_percent > 100 ? 100 : active_percent);
5173
c82baa28 5174}
5175
5176static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
5177{
5178 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5179 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5180 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5181 struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
5182 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5183 struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
5184 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5185 struct PP_Clocks min_clocks = {0};
5186 uint32_t i;
5187 struct cgs_display_info info = {0};
5188
5189 data->need_update_smu7_dpm_table = 0;
5190
5191 for (i = 0; i < psclk_table->count; i++) {
5192 if (sclk == psclk_table->dpm_levels[i].value)
5193 break;
5194 }
5195
5196 if (i >= psclk_table->count)
5197 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5198 else {
5199 /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
5200 if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
5201 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
5202 }
5203
5204 for (i=0; i < pmclk_table->count; i++) {
5205 if (mclk == pmclk_table->dpm_levels[i].value)
5206 break;
5207 }
5208
5209 if (i >= pmclk_table->count)
5210 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5211
5212 cgs_get_active_displays_info(hwmgr->device, &info);
5213
5214 if (data->display_timing.num_existing_displays != info.display_count)
5215 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
5216
5217 return 0;
5218}
5219
5220static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
5221{
5222 uint32_t i;
5223 uint32_t sclk, max_sclk = 0;
5224 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5225 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5226
5227 for (i = 0; i < hw_ps->performance_level_count; i++) {
5228 sclk = hw_ps->performance_levels[i].engine_clock;
5229 if (max_sclk < sclk)
5230 max_sclk = sclk;
5231 }
5232
5233 for (i = 0; i < pdpm_table->sclk_table.count; i++) {
5234 if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
5235 return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
5236 pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
5237 pdpm_table->pcie_speed_table.dpm_levels[i].value);
5238 }
5239
5240 return 0;
5241}
5242
5243static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
5244{
5245 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5246 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5247 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5248 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5249
5250 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
5251 uint16_t current_link_speed;
5252
5253 if (data->force_pcie_gen == PP_PCIEGenInvalid)
5254 current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
5255 else
5256 current_link_speed = data->force_pcie_gen;
5257
5258 data->force_pcie_gen = PP_PCIEGenInvalid;
5259 data->pspp_notify_required = false;
5260 if (target_link_speed > current_link_speed) {
5261 switch(target_link_speed) {
5262 case PP_PCIEGen3:
5263 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
5264 break;
5265 data->force_pcie_gen = PP_PCIEGen2;
5266 if (current_link_speed == PP_PCIEGen2)
5267 break;
5268 case PP_PCIEGen2:
5269 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
5270 break;
5271 default:
5272 data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
5273 break;
5274 }
5275 } else {
5276 if (target_link_speed < current_link_speed)
5277 data->pspp_notify_required = true;
5278 }
5279
5280 return 0;
5281}
5282
5283static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5284{
5285 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5286
5287 if (0 == data->need_update_smu7_dpm_table)
5288 return 0;
5289
5290 if ((0 == data->sclk_dpm_key_disabled) &&
5291 (data->need_update_smu7_dpm_table &
5292 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5293 PP_ASSERT_WITH_CODE(
5294 true == tonga_is_dpm_running(hwmgr),
5295 "Trying to freeze SCLK DPM when DPM is disabled",
5296 );
5297 PP_ASSERT_WITH_CODE(
5298 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5299 PPSMC_MSG_SCLKDPM_FreezeLevel),
5300 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
5301 return -1);
5302 }
5303
5304 if ((0 == data->mclk_dpm_key_disabled) &&
5305 (data->need_update_smu7_dpm_table &
5306 DPMTABLE_OD_UPDATE_MCLK)) {
5307 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5308 "Trying to freeze MCLK DPM when DPM is disabled",
5309 );
5310 PP_ASSERT_WITH_CODE(
5311 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5312 PPSMC_MSG_MCLKDPM_FreezeLevel),
5313 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
5314 return -1);
5315 }
5316
5317 return 0;
5318}
5319
5320static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
5321{
5322 int result = 0;
5323
5324 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5325 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5326 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5327 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5328 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5329 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5330
5331 struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
5332 uint32_t dpm_count, clock_percent;
5333 uint32_t i;
5334
5335 if (0 == data->need_update_smu7_dpm_table)
5336 return 0;
5337
5338 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
5339 pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
5340
5341 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5342 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5343 /* Need to do calculation based on the golden DPM table
5344 * as the Heatmap GPU Clock axis is also based on the default values
5345 */
5346 PP_ASSERT_WITH_CODE(
5347 (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
5348 "Divide by 0!",
5349 return -1);
5350 dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
5351 for (i = dpm_count; i > 1; i--) {
5352 if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
5353 clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
5354 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5355
5356 pdpm_table->sclk_table.dpm_levels[i].value =
5357 pgolden_dpm_table->sclk_table.dpm_levels[i].value +
5358 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5359
5360 } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
5361 clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
5362 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5363
5364 pdpm_table->sclk_table.dpm_levels[i].value =
5365 pgolden_dpm_table->sclk_table.dpm_levels[i].value -
5366 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5367 } else
5368 pdpm_table->sclk_table.dpm_levels[i].value =
5369 pgolden_dpm_table->sclk_table.dpm_levels[i].value;
5370 }
5371 }
5372 }
5373
5374 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
5375 pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
5376
5377 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5378 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5379
5380 PP_ASSERT_WITH_CODE(
5381 (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
5382 "Divide by 0!",
5383 return -1);
5384 dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
5385 for (i = dpm_count; i > 1; i--) {
5386 if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
5387 clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
5388 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5389
5390 pdpm_table->mclk_table.dpm_levels[i].value =
5391 pgolden_dpm_table->mclk_table.dpm_levels[i].value +
5392 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5393
5394 } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
5395 clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
5396 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5397
5398 pdpm_table->mclk_table.dpm_levels[i].value =
5399 pgolden_dpm_table->mclk_table.dpm_levels[i].value -
5400 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5401 } else
5402 pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
5403 }
5404 }
5405 }
5406
5407 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
5408 result = tonga_populate_all_memory_levels(hwmgr);
5409 PP_ASSERT_WITH_CODE((0 == result),
5410 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
5411 return result);
5412 }
5413
5414 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
5415 /*populate MCLK dpm table to SMU7 */
5416 result = tonga_populate_all_memory_levels(hwmgr);
5417 PP_ASSERT_WITH_CODE((0 == result),
5418 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
5419 return result);
5420 }
5421
5422 return result;
5423}
5424
5425static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
5426 struct tonga_single_dpm_table * pdpm_table,
5427 uint32_t low_limit, uint32_t high_limit)
5428{
5429 uint32_t i;
5430
5431 for (i = 0; i < pdpm_table->count; i++) {
5432 if ((pdpm_table->dpm_levels[i].value < low_limit) ||
5433 (pdpm_table->dpm_levels[i].value > high_limit))
5434 pdpm_table->dpm_levels[i].enabled = false;
5435 else
5436 pdpm_table->dpm_levels[i].enabled = true;
5437 }
5438 return 0;
5439}
5440
5441static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
5442{
5443 int result = 0;
5444 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5445 uint32_t high_limit_count;
5446
5447 PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
5448 "power state did not have any performance level",
5449 return -1);
5450
5451 high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
5452
5453 tonga_trim_single_dpm_states(hwmgr,
5454 &(data->dpm_table.sclk_table),
5455 hw_state->performance_levels[0].engine_clock,
5456 hw_state->performance_levels[high_limit_count].engine_clock);
5457
5458 tonga_trim_single_dpm_states(hwmgr,
5459 &(data->dpm_table.mclk_table),
5460 hw_state->performance_levels[0].memory_clock,
5461 hw_state->performance_levels[high_limit_count].memory_clock);
5462
5463 return result;
5464}
5465
5466static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
5467{
5468 int result;
5469 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5470 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5471 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5472
5473
5474 result = tonga_trim_dpm_states(hwmgr, tonga_ps);
5475 if (0 != result)
5476 return result;
5477
5478 data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
5479 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
5480 data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
5481 if (data->uvd_enabled)
5482 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
5483
5484 data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
5485
5486 return 0;
5487}
5488
0859ed3d 5489int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
c82baa28 5490{
0859ed3d 5491 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
c82baa28 5492 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
5493 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
5494}
5495
0859ed3d
RZ
5496int tonga_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
5497{
5498 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
5499 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
5500 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
5501}
5502
5503int tonga_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
5504{
5505 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5506 uint32_t mm_boot_level_offset, mm_boot_level_value;
5507 struct phm_ppt_v1_information *ptable_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5508
5509 if (!bgate) {
5510 data->smc_state_table.UvdBootLevel = (uint8_t) (ptable_information->mm_dep_table->count - 1);
5511 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
5512 mm_boot_level_offset /= 4;
5513 mm_boot_level_offset *= 4;
5514 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5515 mm_boot_level_value &= 0x00FFFFFF;
5516 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
5517 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5518
5519 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) ||
5520 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5521 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5522 PPSMC_MSG_UVDDPM_SetEnabledMask,
5523 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
5524 }
5525
5526 return tonga_enable_disable_uvd_dpm(hwmgr, !bgate);
5527}
5528
5529int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
c82baa28 5530{
5531 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5532 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5533 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5534 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5535
5536 uint32_t mm_boot_level_offset, mm_boot_level_value;
5537 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5538
0859ed3d 5539 if (tonga_nps->vce_clocks.EVCLK > 0 && (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
c82baa28 5540 data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
5541
5542 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
5543 mm_boot_level_offset /= 4;
5544 mm_boot_level_offset *= 4;
5545 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5546 mm_boot_level_value &= 0xFF00FFFF;
5547 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
5548 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5549
0859ed3d
RZ
5550 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5551 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5552 PPSMC_MSG_VCEDPM_SetEnabledMask,
5553 (uint32_t)(1 << data->smc_state_table.VceBootLevel));
c82baa28 5554
0859ed3d
RZ
5555 tonga_enable_disable_vce_dpm(hwmgr, true);
5556 } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
5557 tonga_enable_disable_vce_dpm(hwmgr, false);
c82baa28 5558
5559 return 0;
5560}
5561
5562static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
5563{
5564 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5565
5566 uint32_t address;
5567 int32_t result;
5568
5569 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
5570 return 0;
5571
5572
5573 memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
5574
5575 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
5576
5577 if(result != 0)
5578 return result;
5579
5580
5581 address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
5582
5583 return tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
5584 (uint8_t *)&data->mc_reg_table.data[0],
5585 sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
5586 data->sram_end);
5587}
5588
5589static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
5590{
5591 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5592
5593 if (data->need_update_smu7_dpm_table &
5594 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
5595 return tonga_program_memory_timing_parameters(hwmgr);
5596
5597 return 0;
5598}
5599
5600static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5601{
5602 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5603
5604 if (0 == data->need_update_smu7_dpm_table)
5605 return 0;
5606
5607 if ((0 == data->sclk_dpm_key_disabled) &&
5608 (data->need_update_smu7_dpm_table &
5609 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5610
5611 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5612 "Trying to Unfreeze SCLK DPM when DPM is disabled",
5613 );
5614 PP_ASSERT_WITH_CODE(
5615 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5616 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5617 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
5618 return -1);
5619 }
5620
5621 if ((0 == data->mclk_dpm_key_disabled) &&
5622 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
5623
5624 PP_ASSERT_WITH_CODE(
5625 true == tonga_is_dpm_running(hwmgr),
5626 "Trying to Unfreeze MCLK DPM when DPM is disabled",
5627 );
5628 PP_ASSERT_WITH_CODE(
5629 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5630 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5631 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
5632 return -1);
5633 }
5634
5635 data->need_update_smu7_dpm_table = 0;
5636
5637 return 0;
5638}
5639
5640static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
5641{
5642 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5643 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5644 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5645 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
5646 uint8_t request;
5647
5648 if (data->pspp_notify_required ||
5649 data->pcie_performance_request) {
5650 if (target_link_speed == PP_PCIEGen3)
5651 request = PCIE_PERF_REQ_GEN3;
5652 else if (target_link_speed == PP_PCIEGen2)
5653 request = PCIE_PERF_REQ_GEN2;
5654 else
5655 request = PCIE_PERF_REQ_GEN1;
5656
5657 if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
5658 data->pcie_performance_request = false;
5659 return 0;
5660 }
5661
5662 if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
5663 if (PP_PCIEGen2 == target_link_speed)
5664 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
5665 else
5666 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
5667 }
5668 }
5669
5670 data->pcie_performance_request = false;
5671 return 0;
5672}
5673
5674static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
5675{
5676 int tmp_result, result = 0;
5677
5678 tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
5679 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
5680
5681 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5682 tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
5683 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
5684 }
5685
5686 tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
5687 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
5688
5689 tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
5690 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
5691
5692 tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
5693 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
5694
5695 tmp_result = tonga_update_vce_dpm(hwmgr, input);
5696 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
5697
5698 tmp_result = tonga_update_sclk_threshold(hwmgr);
5699 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
5700
5701 tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
5702 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
5703
5704 tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
5705 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
5706
5707 tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
5708 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
5709
5710 tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
5711 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
5712
5713 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5714 tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
5715 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
5716 }
5717
5718 return result;
5719}
5720
1e4854e9
RZ
5721/**
5722* Set maximum target operating fan output PWM
5723*
5724* @param pHwMgr: the address of the powerplay hardware manager.
5725* @param usMaxFanPwm: max operating fan PWM in percents
5726* @return The response that came from the SMC.
5727*/
5728static int tonga_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5729{
5730 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5731
5732 if (phm_is_hw_access_blocked(hwmgr))
5733 return 0;
5734
5735 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -EINVAL);
5736}
bbb207f3
RZ
5737
5738int tonga_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
5739{
5740 uint32_t num_active_displays = 0;
5741 struct cgs_display_info info = {0};
5742 info.mode_info = NULL;
5743
5744 cgs_get_active_displays_info(hwmgr->device, &info);
5745
5746 num_active_displays = info.display_count;
5747
5748 if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
5749 tonga_notify_smc_display_change(hwmgr, false);
5750 else
5751 tonga_notify_smc_display_change(hwmgr, true);
5752
5753 return 0;
5754}
5755
5756/**
5757* Programs the display gap
5758*
5759* @param hwmgr the address of the powerplay hardware manager.
5760* @return always OK
5761*/
5762int tonga_program_display_gap(struct pp_hwmgr *hwmgr)
5763{
5764 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5765 uint32_t num_active_displays = 0;
5766 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5767 uint32_t display_gap2;
5768 uint32_t pre_vbi_time_in_us;
5769 uint32_t frame_time_in_us;
5770 uint32_t ref_clock;
5771 uint32_t refresh_rate = 0;
5772 struct cgs_display_info info = {0};
5773 struct cgs_mode_info mode_info;
5774
5775 info.mode_info = &mode_info;
5776
5777 cgs_get_active_displays_info(hwmgr->device, &info);
5778 num_active_displays = info.display_count;
5779
5780 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5781 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
5782
5783 ref_clock = mode_info.ref_clock;
5784 refresh_rate = mode_info.refresh_rate;
5785
5786 if(0 == refresh_rate)
5787 refresh_rate = 60;
5788
5789 frame_time_in_us = 1000000 / refresh_rate;
5790
5791 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5792 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5793
5794 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5795
5796 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, PreVBlankGap), 0x64);
5797
5798 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
5799
5800 if (num_active_displays == 1)
5801 tonga_notify_smc_display_change(hwmgr, true);
5802
5803 return 0;
5804}
5805
5806int tonga_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5807{
5808
5809 tonga_program_display_gap(hwmgr);
5810
5811 /* to do PhwTonga_CacUpdateDisplayConfiguration(pHwMgr); */
5812 return 0;
5813}
5814
1e4854e9
RZ
5815/**
5816* Set maximum target operating fan output RPM
5817*
5818* @param pHwMgr: the address of the powerplay hardware manager.
5819* @param usMaxFanRpm: max operating fan RPM value.
5820* @return The response that came from the SMC.
5821*/
5822static int tonga_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5823{
5824 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm;
5825
5826 if (phm_is_hw_access_blocked(hwmgr))
5827 return 0;
5828
5829 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -EINVAL);
5830}
5831
5832uint32_t tonga_get_xclk(struct pp_hwmgr *hwmgr)
5833{
5834 uint32_t reference_clock;
5835 uint32_t tc;
5836 uint32_t divide;
5837
5838 ATOM_FIRMWARE_INFO *fw_info;
5839 uint16_t size;
5840 uint8_t frev, crev;
5841 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
5842
5843 tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
5844
5845 if (tc)
5846 return TCLK;
5847
5848 fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index,
5849 &size, &frev, &crev);
5850
5851 if (!fw_info)
5852 return 0;
5853
5854 reference_clock = le16_to_cpu(fw_info->usMinPixelClockPLL_Output);
5855
5856 divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
5857
5858 if (0 != divide)
5859 return reference_clock / 4;
5860
5861 return reference_clock;
5862}
5863
5864int tonga_dpm_set_interrupt_state(void *private_data,
5865 unsigned src_id, unsigned type,
5866 int enabled)
5867{
5868 uint32_t cg_thermal_int;
5869 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5870
5871 if (hwmgr == NULL)
5872 return -EINVAL;
5873
5874 switch (type) {
5875 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5876 if (enabled) {
5877 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5878 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5879 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5880 } else {
5881 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5882 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5883 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5884 }
5885 break;
5886
5887 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5888 if (enabled) {
5889 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5890 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5891 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5892 } else {
5893 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5894 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5895 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5896 }
5897 break;
5898 default:
5899 break;
5900 }
5901 return 0;
5902}
5903
5904int tonga_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5905 const void *thermal_interrupt_info)
5906{
5907 int result;
5908 const struct pp_interrupt_registration_info *info =
5909 (const struct pp_interrupt_registration_info *)thermal_interrupt_info;
5910
5911 if (info == NULL)
5912 return -EINVAL;
5913
5914 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5915 tonga_dpm_set_interrupt_state,
5916 info->call_back, info->context);
5917
5918 if (result)
5919 return -EINVAL;
5920
5921 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5922 tonga_dpm_set_interrupt_state,
5923 info->call_back, info->context);
5924
5925 if (result)
5926 return -EINVAL;
5927
5928 return 0;
5929}
5930
e829ecdb
RZ
5931bool tonga_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5932{
5933 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5934 bool is_update_required = false;
5935 struct cgs_display_info info = {0,0,NULL};
5936
5937 cgs_get_active_displays_info(hwmgr->device, &info);
5938
5939 if (data->display_timing.num_existing_displays != info.display_count)
5940 is_update_required = true;
5941/* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
5942 if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5943 cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
5944 if(min_clocks.engineClockInSR != data->display_timing.minClockInSR)
5945 is_update_required = true;
5946*/
5947 return is_update_required;
5948}
5949
5950static inline bool tonga_are_power_levels_equal(const struct tonga_performance_level *pl1,
5951 const struct tonga_performance_level *pl2)
5952{
5953 return ((pl1->memory_clock == pl2->memory_clock) &&
5954 (pl1->engine_clock == pl2->engine_clock) &&
5955 (pl1->pcie_gen == pl2->pcie_gen) &&
5956 (pl1->pcie_lane == pl2->pcie_lane));
5957}
5958
5959int tonga_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5960{
5961 const struct tonga_power_state *psa = cast_const_phw_tonga_power_state(pstate1);
5962 const struct tonga_power_state *psb = cast_const_phw_tonga_power_state(pstate2);
5963 int i;
5964
5965 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
5966 return -EINVAL;
5967
5968 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5969 if (psa->performance_level_count != psb->performance_level_count) {
5970 *equal = false;
5971 return 0;
5972 }
5973
5974 for (i = 0; i < psa->performance_level_count; i++) {
5975 if (!tonga_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5976 /* If we have found even one performance level pair that is different the states are different. */
5977 *equal = false;
5978 return 0;
5979 }
5980 }
5981
5982 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5983 *equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK));
5984 *equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK));
5985 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5986 *equal &= (psa->acp_clk == psb->acp_clk);
5987
5988 return 0;
5989}
5990
9dcfc193
EH
5991static int tonga_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5992{
5993 if (mode) {
5994 /* stop auto-manage */
5995 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5996 PHM_PlatformCaps_MicrocodeFanControl))
5997 tonga_fan_ctrl_stop_smc_fan_control(hwmgr);
5998 tonga_fan_ctrl_set_static_mode(hwmgr, mode);
5999 } else
6000 /* restart auto-manage */
6001 tonga_fan_ctrl_reset_fan_speed_to_default(hwmgr);
6002
6003 return 0;
6004}
6005
6006static int tonga_get_fan_control_mode(struct pp_hwmgr *hwmgr)
6007{
6008 if (hwmgr->fan_ctrl_is_in_default_mode)
6009 return hwmgr->fan_ctrl_default_mode;
6010 else
6011 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
6012 CG_FDO_CTRL2, FDO_PWM_MODE);
6013}
6014
c82baa28 6015static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
6016 .backend_init = &tonga_hwmgr_backend_init,
6017 .backend_fini = &tonga_hwmgr_backend_fini,
6018 .asic_setup = &tonga_setup_asic_task,
6019 .dynamic_state_management_enable = &tonga_enable_dpm_tasks,
6020 .apply_state_adjust_rules = tonga_apply_state_adjust_rules,
6021 .force_dpm_level = &tonga_force_dpm_level,
6022 .power_state_set = tonga_set_power_state_tasks,
6023 .get_power_state_size = tonga_get_power_state_size,
6024 .get_mclk = tonga_dpm_get_mclk,
6025 .get_sclk = tonga_dpm_get_sclk,
6026 .patch_boot_state = tonga_dpm_patch_boot_state,
6027 .get_pp_table_entry = tonga_get_pp_table_entry,
6028 .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
6029 .print_current_perforce_level = tonga_print_current_perforce_level,
0859ed3d
RZ
6030 .powerdown_uvd = tonga_phm_powerdown_uvd,
6031 .powergate_uvd = tonga_phm_powergate_uvd,
6032 .powergate_vce = tonga_phm_powergate_vce,
6033 .disable_clock_power_gating = tonga_phm_disable_clock_power_gating,
bbb207f3
RZ
6034 .notify_smc_display_config_after_ps_adjustment = tonga_notify_smc_display_config_after_ps_adjustment,
6035 .display_config_changed = tonga_display_configuration_changed_task,
1e4854e9
RZ
6036 .set_max_fan_pwm_output = tonga_set_max_fan_pwm_output,
6037 .set_max_fan_rpm_output = tonga_set_max_fan_rpm_output,
6038 .get_temperature = tonga_thermal_get_temperature,
6039 .stop_thermal_controller = tonga_thermal_stop_thermal_controller,
6040 .get_fan_speed_info = tonga_fan_ctrl_get_fan_speed_info,
6041 .get_fan_speed_percent = tonga_fan_ctrl_get_fan_speed_percent,
6042 .set_fan_speed_percent = tonga_fan_ctrl_set_fan_speed_percent,
6043 .reset_fan_speed_to_default = tonga_fan_ctrl_reset_fan_speed_to_default,
6044 .get_fan_speed_rpm = tonga_fan_ctrl_get_fan_speed_rpm,
6045 .set_fan_speed_rpm = tonga_fan_ctrl_set_fan_speed_rpm,
6046 .uninitialize_thermal_controller = tonga_thermal_ctrl_uninitialize_thermal_controller,
6047 .register_internal_thermal_interrupt = tonga_register_internal_thermal_interrupt,
e829ecdb
RZ
6048 .check_smc_update_required_for_display_configuration = tonga_check_smc_update_required_for_display_configuration,
6049 .check_states_equal = tonga_check_states_equal,
9dcfc193
EH
6050 .set_fan_control_mode = tonga_set_fan_control_mode,
6051 .get_fan_control_mode = tonga_get_fan_control_mode,
c82baa28 6052};
6053
6054int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
6055{
6056 tonga_hwmgr *data;
6057
6058 data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
6059 if (data == NULL)
6060 return -ENOMEM;
6061 memset(data, 0x00, sizeof(tonga_hwmgr));
6062
6063 hwmgr->backend = data;
6064 hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
6065 hwmgr->pptable_func = &tonga_pptable_funcs;
1e4854e9 6066 pp_tonga_thermal_initialize(hwmgr);
c82baa28 6067 return 0;
6068}
6069