drm/amd/powerplay: Fix a bug in fan control setting default mode for Tonga and Fiji.
[linux-block.git] / drivers / gpu / drm / amd / powerplay / hwmgr / tonga_hwmgr.c
CommitLineData
c82baa28 1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
26#include "linux/delay.h"
27#include "pp_acpi.h"
28#include "hwmgr.h"
29#include <atombios.h>
30#include "tonga_hwmgr.h"
31#include "pptable.h"
32#include "processpptables.h"
33#include "tonga_processpptables.h"
34#include "tonga_pptable.h"
35#include "pp_debug.h"
36#include "tonga_ppsmc.h"
37#include "cgs_common.h"
38#include "pppcielanes.h"
39#include "tonga_dyn_defaults.h"
40#include "smumgr.h"
41#include "tonga_smumgr.h"
0859ed3d 42#include "tonga_clockpowergating.h"
1e4854e9 43#include "tonga_thermal.h"
c82baa28 44
45#include "smu/smu_7_1_2_d.h"
46#include "smu/smu_7_1_2_sh_mask.h"
47
48#include "gmc/gmc_8_1_d.h"
49#include "gmc/gmc_8_1_sh_mask.h"
50
51#include "bif/bif_5_0_d.h"
52#include "bif/bif_5_0_sh_mask.h"
53
1e4854e9
RZ
54#include "cgs_linux.h"
55#include "eventmgr.h"
16881da6 56#include "amd_pcie_helpers.h"
1e4854e9 57
c82baa28 58#define MC_CG_ARB_FREQ_F0 0x0a
59#define MC_CG_ARB_FREQ_F1 0x0b
60#define MC_CG_ARB_FREQ_F2 0x0c
61#define MC_CG_ARB_FREQ_F3 0x0d
62
63#define MC_CG_SEQ_DRAMCONF_S0 0x05
64#define MC_CG_SEQ_DRAMCONF_S1 0x06
65#define MC_CG_SEQ_YCLK_SUSPEND 0x04
66#define MC_CG_SEQ_YCLK_RESUME 0x0a
67
68#define PCIE_BUS_CLK 10000
69#define TCLK (PCIE_BUS_CLK / 10)
70
71#define SMC_RAM_END 0x40000
72#define SMC_CG_IND_START 0xc0030000
73#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/
74
75#define VOLTAGE_SCALE 4
76#define VOLTAGE_VID_OFFSET_SCALE1 625
77#define VOLTAGE_VID_OFFSET_SCALE2 100
78
79#define VDDC_VDDCI_DELTA 200
80#define VDDC_VDDGFX_DELTA 300
81
82#define MC_SEQ_MISC0_GDDR5_SHIFT 28
83#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
84#define MC_SEQ_MISC0_GDDR5_VALUE 5
85
86typedef uint32_t PECI_RegistryValue;
87
88/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
89uint16_t PP_ClockStretcherLookupTable[2][4] = {
90 {600, 1050, 3, 0},
91 {600, 1050, 6, 1} };
92
93/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
94uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
95 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
96 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
97
98/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
99uint8_t PP_ClockStretchAmountConversion[2][6] = {
100 {0, 1, 3, 2, 4, 5},
101 {0, 2, 4, 5, 6, 5} };
102
103/* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
104enum DPM_EVENT_SRC {
105 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
106 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
107 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
108 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
109 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
110};
111typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
112
113enum DISPLAY_GAP {
114 DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */
115 DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */
116 DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. (Note that HW may deassert WM in VBI depending on DC_STUTTER_CNTL.) */
117 DISPLAY_GAP_IGNORE = 3 /* Do not wait. */
118};
119typedef enum DISPLAY_GAP DISPLAY_GAP;
120
121const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
122
123struct tonga_power_state *cast_phw_tonga_power_state(
124 struct pp_hw_power_state *hw_ps)
125{
126 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
127 "Invalid Powerstate Type!",
128 return NULL;);
129
130 return (struct tonga_power_state *)hw_ps;
131}
132
133const struct tonga_power_state *cast_const_phw_tonga_power_state(
134 const struct pp_hw_power_state *hw_ps)
135{
136 PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
137 "Invalid Powerstate Type!",
138 return NULL;);
139
140 return (const struct tonga_power_state *)hw_ps;
141}
142
143int tonga_add_voltage(struct pp_hwmgr *hwmgr,
144 phm_ppt_v1_voltage_lookup_table *look_up_table,
145 phm_ppt_v1_voltage_lookup_record *record)
146{
147 uint32_t i;
148 PP_ASSERT_WITH_CODE((NULL != look_up_table),
149 "Lookup Table empty.", return -1;);
150 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
151 "Lookup Table empty.", return -1;);
152 PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
153 "Lookup Table is full.", return -1;);
154
155 /* This is to avoid entering duplicate calculated records. */
156 for (i = 0; i < look_up_table->count; i++) {
157 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
158 if (look_up_table->entries[i].us_calculated == 1)
159 return 0;
160 else
161 break;
162 }
163 }
164
165 look_up_table->entries[i].us_calculated = 1;
166 look_up_table->entries[i].us_vdd = record->us_vdd;
167 look_up_table->entries[i].us_cac_low = record->us_cac_low;
168 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
169 look_up_table->entries[i].us_cac_high = record->us_cac_high;
170 /* Only increment the count when we're appending, not replacing duplicate entry. */
171 if (i == look_up_table->count)
172 look_up_table->count++;
173
174 return 0;
175}
176
bbb207f3
RZ
177int tonga_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
178{
179 PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
180
181 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
182}
183
c82baa28 184uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
185 uint32_t voltage)
186{
187 uint8_t count = (uint8_t) (voltage_table->count);
188 uint8_t i = 0;
189
190 PP_ASSERT_WITH_CODE((NULL != voltage_table),
191 "Voltage Table empty.", return 0;);
192 PP_ASSERT_WITH_CODE((0 != count),
193 "Voltage Table empty.", return 0;);
194
195 for (i = 0; i < count; i++) {
196 /* find first voltage bigger than requested */
197 if (voltage_table->entries[i].value >= voltage)
198 return i;
199 }
200
201 /* voltage is bigger than max voltage in the table */
202 return i - 1;
203}
204
205/**
206 * @brief PhwTonga_GetVoltageOrder
207 * Returns index of requested voltage record in lookup(table)
208 * @param hwmgr - pointer to hardware manager
209 * @param lookupTable - lookup list to search in
210 * @param voltage - voltage to look for
211 * @return 0 on success
212 */
213uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
214 uint16_t voltage)
215{
216 uint8_t count = (uint8_t) (look_up_table->count);
217 uint8_t i;
218
219 PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
220 PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
221
222 for (i = 0; i < count; i++) {
223 /* find first voltage equal or bigger than requested */
224 if (look_up_table->entries[i].us_vdd >= voltage)
225 return i;
226 }
227
228 /* voltage is bigger than max voltage in the table */
229 return i-1;
230}
231
232bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
233{
234 /*
235 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
236 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
237 * whereas voltage control is a fundemental change that will not be disabled
238 */
239
240 return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
241 FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
242}
243
244/**
245 * Re-generate the DPM level mask value
246 * @param hwmgr the address of the hardware manager
247 */
248static uint32_t tonga_get_dpm_level_enable_mask_value(
249 struct tonga_single_dpm_table * dpm_table)
250{
251 uint32_t i;
252 uint32_t mask_value = 0;
253
254 for (i = dpm_table->count; i > 0; i--) {
255 mask_value = mask_value << 1;
256
257 if (dpm_table->dpm_levels[i-1].enabled)
258 mask_value |= 0x1;
259 else
260 mask_value &= 0xFFFFFFFE;
261 }
262 return mask_value;
263}
264
265/**
266 * Retrieve DPM default values from registry (if available)
267 *
268 * @param hwmgr the address of the powerplay hardware manager.
269 */
270void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
271{
272 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
273 phw_tonga_ulv_parm *ulv = &(data->ulv);
274 uint32_t tmp;
275
276 ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
277 data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
278 data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
279 data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
280 data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
281 data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
282 data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
283 data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
284 data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
285
286 data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
287 data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
288
289 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
290 PHM_PlatformCaps_ABM);
291 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
292 PHM_PlatformCaps_NonABMSupportInPPLib);
293
294 tmp = 0;
295 if (tmp == 0)
296 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
297 PHM_PlatformCaps_DynamicACTiming);
298
299 tmp = 0;
300 if (0 != tmp)
301 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
302 PHM_PlatformCaps_DisableMemoryTransition);
303
304 data->mclk_strobe_mode_threshold = 40000;
305 data->mclk_stutter_mode_threshold = 30000;
306 data->mclk_edc_enable_threshold = 40000;
307 data->mclk_edc_wr_enable_threshold = 40000;
308
309 tmp = 0;
310 if (tmp != 0)
311 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
312 PHM_PlatformCaps_DisableMCLS);
313
314 data->pcie_gen_performance.max = PP_PCIEGen1;
315 data->pcie_gen_performance.min = PP_PCIEGen3;
316 data->pcie_gen_power_saving.max = PP_PCIEGen1;
317 data->pcie_gen_power_saving.min = PP_PCIEGen3;
318
319 data->pcie_lane_performance.max = 0;
320 data->pcie_lane_performance.min = 16;
321 data->pcie_lane_power_saving.max = 0;
322 data->pcie_lane_power_saving.min = 16;
323
324 tmp = 0;
325
326 if (tmp)
327 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
328 PHM_PlatformCaps_SclkThrottleLowNotification);
329
330 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
331 PHM_PlatformCaps_DynamicUVDState);
332
333}
334
335int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
336{
337 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
338
339 int result = 0;
340 uint32_t low_sclk_interrupt_threshold = 0;
341
342 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
343 PHM_PlatformCaps_SclkThrottleLowNotification)
344 && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
345 data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
346 low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
347
348 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
349
350 result = tonga_copy_bytes_to_smc(
351 hwmgr->smumgr,
352 data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
353 LowSclkInterruptThreshold),
354 (uint8_t *)&low_sclk_interrupt_threshold,
355 sizeof(uint32_t),
356 data->sram_end
357 );
358 }
359
360 return result;
361}
362
363/**
364 * Find SCLK value that is associated with specified virtual_voltage_Id.
365 *
366 * @param hwmgr the address of the powerplay hardware manager.
367 * @param virtual_voltage_Id voltageId to look for.
368 * @param sclk output value .
369 * @return always 0 if success and 2 if association not found
370 */
371static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
372 phm_ppt_v1_voltage_lookup_table *lookup_table,
373 uint16_t virtual_voltage_id, uint32_t *sclk)
374{
375 uint8_t entryId;
376 uint8_t voltageId;
377 struct phm_ppt_v1_information *pptable_info =
378 (struct phm_ppt_v1_information *)(hwmgr->pptable);
379
380 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
381
382 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
383 for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
384 voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
385 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
386 break;
387 }
388
389 PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
390 "Can't find requested voltage id in vdd_dep_on_sclk table!",
391 return -1;
392 );
393
394 *sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
395
396 return 0;
397}
398
399/**
400 * Get Leakage VDDC based on leakage ID.
401 *
402 * @param hwmgr the address of the powerplay hardware manager.
403 * @return 2 if vddgfx returned is greater than 2V or if BIOS
404 */
405int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
406{
407 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
408 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
409 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
410 uint16_t virtual_voltage_id;
411 uint16_t vddc = 0;
412 uint16_t vddgfx = 0;
413 uint16_t i, j;
414 uint32_t sclk = 0;
415
416 /* retrieve voltage for leakage ID (0xff01 + i) */
417 for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
418 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
419
420 /* in split mode we should have only vddgfx EVV leakages */
421 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
422 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
423 pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
424 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
425 PHM_PlatformCaps_ClockStretcher)) {
426 for (j = 1; j < sclk_table->count; j++) {
427 if (sclk_table->entries[j].clk == sclk &&
428 sclk_table->entries[j].cks_enable == 0) {
429 sclk += 5000;
430 break;
431 }
432 }
433 }
434 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
435 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
436 virtual_voltage_id, &vddgfx),
437 "Error retrieving EVV voltage value!", continue);
438
439 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
440 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
441
442 /* the voltage should not be zero nor equal to leakage ID */
443 if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
444 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
445 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
446 data->vddcgfx_leakage.count++;
447 }
448 }
449 } else {
450 /* in merged mode we have only vddc EVV leakages */
451 if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
452 pptable_info->vddc_lookup_table,
453 virtual_voltage_id, &sclk)) {
454 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
455 (hwmgr, VOLTAGE_TYPE_VDDC, sclk,
456 virtual_voltage_id, &vddc),
457 "Error retrieving EVV voltage value!", continue);
458
459 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
460 if (vddc > 2000)
461 printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n");
462
463 /* the voltage should not be zero nor equal to leakage ID */
464 if (vddc != 0 && vddc != virtual_voltage_id) {
465 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
466 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
467 data->vddc_leakage.count++;
468 }
469 }
470 }
471 }
472
473 return 0;
474}
475
476int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
477{
478 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
479
480 /* enable SCLK dpm */
481 if (0 == data->sclk_dpm_key_disabled) {
482 PP_ASSERT_WITH_CODE(
483 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
484 PPSMC_MSG_DPM_Enable)),
485 "Failed to enable SCLK DPM during DPM Start Function!",
486 return -1);
487 }
488
489 /* enable MCLK dpm */
490 if (0 == data->mclk_dpm_key_disabled) {
491 PP_ASSERT_WITH_CODE(
492 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
493 PPSMC_MSG_MCLKDPM_Enable)),
494 "Failed to enable MCLK DPM during DPM Start Function!",
495 return -1);
496
497 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
498
499 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
500 ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
501 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
502 ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
503 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
504 ixLCAC_CPL_CNTL, 0x100005);/*Read */
505
506 udelay(10);
507
508 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
509 ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
510 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
511 ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
512 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
513 ixLCAC_CPL_CNTL, 0x500005);/* write */
514
515 }
516
517 return 0;
518}
519
520int tonga_start_dpm(struct pp_hwmgr *hwmgr)
521{
522 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
523
524 /* enable general power management */
525 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
526 /* enable sclk deep sleep */
527 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
528
529 /* prepare for PCIE DPM */
530 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
531 offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
532
533 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
534
535 PP_ASSERT_WITH_CODE(
536 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
537 PPSMC_MSG_Voltage_Cntl_Enable)),
538 "Failed to enable voltage DPM during DPM Start Function!",
539 return -1);
540
541 if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
542 PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
543 }
544
545 /* enable PCIE dpm */
546 if (0 == data->pcie_dpm_key_disabled) {
547 PP_ASSERT_WITH_CODE(
548 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
549 PPSMC_MSG_PCIeDPM_Enable)),
550 "Failed to enable pcie DPM during DPM Start Function!",
551 return -1
552 );
553 }
554
555 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
556 PHM_PlatformCaps_Falcon_QuickTransition)) {
557 smum_send_msg_to_smc(hwmgr->smumgr,
558 PPSMC_MSG_EnableACDCGPIOInterrupt);
559 }
560
561 return 0;
562}
563
564int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
565{
566 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
567
568 /* disable SCLK dpm */
569 if (0 == data->sclk_dpm_key_disabled) {
570 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
571 PP_ASSERT_WITH_CODE(
572 (0 == tonga_is_dpm_running(hwmgr)),
573 "Trying to Disable SCLK DPM when DPM is disabled",
574 return -1
575 );
576
577 PP_ASSERT_WITH_CODE(
578 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
579 PPSMC_MSG_DPM_Disable)),
580 "Failed to disable SCLK DPM during DPM stop Function!",
581 return -1);
582 }
583
584 /* disable MCLK dpm */
585 if (0 == data->mclk_dpm_key_disabled) {
586 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
587 PP_ASSERT_WITH_CODE(
588 (0 == tonga_is_dpm_running(hwmgr)),
589 "Trying to Disable MCLK DPM when DPM is disabled",
590 return -1
591 );
592
593 PP_ASSERT_WITH_CODE(
594 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
595 PPSMC_MSG_MCLKDPM_Disable)),
596 "Failed to Disable MCLK DPM during DPM stop Function!",
597 return -1);
598 }
599
600 return 0;
601}
602
603int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
604{
605 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
606
607 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
608 /* disable sclk deep sleep*/
609 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
610
611 /* disable PCIE dpm */
612 if (0 == data->pcie_dpm_key_disabled) {
613 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
614 PP_ASSERT_WITH_CODE(
615 (0 == tonga_is_dpm_running(hwmgr)),
616 "Trying to Disable PCIE DPM when DPM is disabled",
617 return -1
618 );
619 PP_ASSERT_WITH_CODE(
620 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
621 PPSMC_MSG_PCIeDPM_Disable)),
622 "Failed to disable pcie DPM during DPM stop Function!",
623 return -1);
624 }
625
626 if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
627 PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
628
629 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
630 PP_ASSERT_WITH_CODE(
631 (0 == tonga_is_dpm_running(hwmgr)),
632 "Trying to Disable Voltage CNTL when DPM is disabled",
633 return -1
634 );
635
636 PP_ASSERT_WITH_CODE(
637 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
638 PPSMC_MSG_Voltage_Cntl_Disable)),
639 "Failed to disable voltage DPM during DPM stop Function!",
640 return -1);
641
642 return 0;
643}
644
645int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
646{
647 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
648
649 return 0;
650}
651
652/**
653 * Send a message to the SMC and return a parameter
654 *
655 * @param hwmgr: the address of the powerplay hardware manager.
656 * @param msg: the message to send.
657 * @param parameter: pointer to the received parameter
658 * @return The response that came from the SMC.
659 */
660PPSMC_Result tonga_send_msg_to_smc_return_parameter(
661 struct pp_hwmgr *hwmgr,
662 PPSMC_Msg msg,
663 uint32_t *parameter)
664{
665 int result;
666
667 result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
668
669 if ((0 == result) && parameter) {
670 *parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
671 }
672
673 return result;
674}
675
676/**
677 * force DPM power State
678 *
679 * @param hwmgr: the address of the powerplay hardware manager.
680 * @param n : DPM level
681 * @return The response that came from the SMC.
682 */
683int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
684{
685 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
686 uint32_t level_mask = 1 << n;
687
688 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
689 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
690 "Trying to force SCLK when DPM is disabled", return -1;);
691 if (0 == data->sclk_dpm_key_disabled)
692 return (0 == smum_send_msg_to_smc_with_parameter(
693 hwmgr->smumgr,
694 (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
695 level_mask) ? 0 : 1);
696
697 return 0;
698}
699
700/**
701 * force DPM power State
702 *
703 * @param hwmgr: the address of the powerplay hardware manager.
704 * @param n : DPM level
705 * @return The response that came from the SMC.
706 */
707int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
708{
709 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
710 uint32_t level_mask = 1 << n;
711
712 /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
713 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
714 "Trying to Force MCLK when DPM is disabled", return -1;);
715 if (0 == data->mclk_dpm_key_disabled)
716 return (0 == smum_send_msg_to_smc_with_parameter(
717 hwmgr->smumgr,
718 (PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
719 level_mask) ? 0 : 1);
720
721 return 0;
722}
723
724/**
725 * force DPM power State
726 *
727 * @param hwmgr: the address of the powerplay hardware manager.
728 * @param n : DPM level
729 * @return The response that came from the SMC.
730 */
731int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
732{
733 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
734
735 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
736 PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
737 "Trying to Force PCIE level when DPM is disabled", return -1;);
738 if (0 == data->pcie_dpm_key_disabled)
739 return (0 == smum_send_msg_to_smc_with_parameter(
740 hwmgr->smumgr,
741 (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
742 n) ? 0 : 1);
743
744 return 0;
745}
746
747/**
748 * Set the initial state by calling SMC to switch to this state directly
749 *
750 * @param hwmgr the address of the powerplay hardware manager.
751 * @return always 0
752 */
753int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
754{
755 /*
756 * SMC only stores one state that SW will ask to switch too,
757 * so we switch the the just uploaded one
758 */
759 return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
760}
761
762/**
763 * Get the location of various tables inside the FW image.
764 *
765 * @param hwmgr the address of the powerplay hardware manager.
766 * @return always 0
767 */
768int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
769{
770 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
771 struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
772
773 uint32_t tmp;
774 int result;
775 bool error = 0;
776
777 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
778 SMU72_FIRMWARE_HEADER_LOCATION +
779 offsetof(SMU72_Firmware_Header, DpmTable),
780 &tmp, data->sram_end);
781
782 if (0 == result) {
783 data->dpm_table_start = tmp;
784 }
785
786 error |= (0 != result);
787
788 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
789 SMU72_FIRMWARE_HEADER_LOCATION +
790 offsetof(SMU72_Firmware_Header, SoftRegisters),
791 &tmp, data->sram_end);
792
793 if (0 == result) {
794 data->soft_regs_start = tmp;
795 tonga_smu->ulSoftRegsStart = tmp;
796 }
797
798 error |= (0 != result);
799
800
801 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
802 SMU72_FIRMWARE_HEADER_LOCATION +
803 offsetof(SMU72_Firmware_Header, mcRegisterTable),
804 &tmp, data->sram_end);
805
806 if (0 == result) {
807 data->mc_reg_table_start = tmp;
808 }
809
810 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
811 SMU72_FIRMWARE_HEADER_LOCATION +
812 offsetof(SMU72_Firmware_Header, FanTable),
813 &tmp, data->sram_end);
814
815 if (0 == result) {
816 data->fan_table_start = tmp;
817 }
818
819 error |= (0 != result);
820
821 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
822 SMU72_FIRMWARE_HEADER_LOCATION +
823 offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
824 &tmp, data->sram_end);
825
826 if (0 == result) {
827 data->arb_table_start = tmp;
828 }
829
830 error |= (0 != result);
831
832
833 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
834 SMU72_FIRMWARE_HEADER_LOCATION +
835 offsetof(SMU72_Firmware_Header, Version),
836 &tmp, data->sram_end);
837
838 if (0 == result) {
839 hwmgr->microcode_version_info.SMC = tmp;
840 }
841
842 error |= (0 != result);
843
844 return error ? 1 : 0;
845}
846
847/**
848 * Read clock related registers.
849 *
850 * @param hwmgr the address of the powerplay hardware manager.
851 * @return always 0
852 */
853int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
854{
855 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
856
857 data->clock_registers.vCG_SPLL_FUNC_CNTL =
858 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
859 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
860 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
861 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
862 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
863 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
864 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
865 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
866 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
867 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
868 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
869 data->clock_registers.vDLL_CNTL =
870 cgs_read_register(hwmgr->device, mmDLL_CNTL);
871 data->clock_registers.vMCLK_PWRMGT_CNTL =
872 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
873 data->clock_registers.vMPLL_AD_FUNC_CNTL =
874 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
875 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
876 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
877 data->clock_registers.vMPLL_FUNC_CNTL =
878 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
879 data->clock_registers.vMPLL_FUNC_CNTL_1 =
880 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
881 data->clock_registers.vMPLL_FUNC_CNTL_2 =
882 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
883 data->clock_registers.vMPLL_SS1 =
884 cgs_read_register(hwmgr->device, mmMPLL_SS1);
885 data->clock_registers.vMPLL_SS2 =
886 cgs_read_register(hwmgr->device, mmMPLL_SS2);
887
888 return 0;
889}
890
891/**
892 * Find out if memory is GDDR5.
893 *
894 * @param hwmgr the address of the powerplay hardware manager.
895 * @return always 0
896 */
897int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
898{
899 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
900 uint32_t temp;
901
902 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
903
904 data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
905 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
906 MC_SEQ_MISC0_GDDR5_SHIFT));
907
908 return 0;
909}
910
911/**
912 * Enables Dynamic Power Management by SMC
913 *
914 * @param hwmgr the address of the powerplay hardware manager.
915 * @return always 0
916 */
917int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
918{
919 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
920
921 return 0;
922}
923
924/**
925 * Initialize PowerGating States for different engines
926 *
927 * @param hwmgr the address of the powerplay hardware manager.
928 * @return always 0
929 */
930int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
931{
932 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
933
934 data->uvd_power_gated = 0;
935 data->vce_power_gated = 0;
936 data->samu_power_gated = 0;
937 data->acp_power_gated = 0;
938 data->pg_acp_init = 1;
939
940 return 0;
941}
942
943/**
944 * Checks if DPM is enabled
945 *
946 * @param hwmgr the address of the powerplay hardware manager.
947 * @return always 0
948 */
949int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
950{
951 /*
952 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
953 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
954 * whereas voltage control is a fundemental change that will not be disabled
955 */
956 return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
957}
958
959/**
960 * Checks if DPM is stopped
961 *
962 * @param hwmgr the address of the powerplay hardware manager.
963 * @return always 0
964 */
965int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
966{
967 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
968
969 if (0 != tonga_is_dpm_running(hwmgr)) {
970 /* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
971 if (!data->dpm_table_start) {
972 return 1;
973 }
974 }
975
976 return 0;
977}
978
979/**
980 * Remove repeated voltage values and create table with unique values.
981 *
982 * @param hwmgr the address of the powerplay hardware manager.
983 * @param voltage_table the pointer to changing voltage table
984 * @return 1 in success
985 */
986
987static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
988 pp_atomctrl_voltage_table *voltage_table)
989{
990 uint32_t table_size, i, j;
991 uint16_t vvalue;
992 bool bVoltageFound = 0;
993 pp_atomctrl_voltage_table *table;
994
995 PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
996 table_size = sizeof(pp_atomctrl_voltage_table);
997 table = kzalloc(table_size, GFP_KERNEL);
998
999 if (NULL == table)
1000 return -ENOMEM;
1001
1002 memset(table, 0x00, table_size);
1003 table->mask_low = voltage_table->mask_low;
1004 table->phase_delay = voltage_table->phase_delay;
1005
1006 for (i = 0; i < voltage_table->count; i++) {
1007 vvalue = voltage_table->entries[i].value;
1008 bVoltageFound = 0;
1009
1010 for (j = 0; j < table->count; j++) {
1011 if (vvalue == table->entries[j].value) {
1012 bVoltageFound = 1;
1013 break;
1014 }
1015 }
1016
1017 if (!bVoltageFound) {
1018 table->entries[table->count].value = vvalue;
1019 table->entries[table->count].smio_low =
1020 voltage_table->entries[i].smio_low;
1021 table->count++;
1022 }
1023 }
1024
1025 memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
1026
1027 kfree(table);
1028
1029 return 0;
1030}
1031
1032static int tonga_get_svi2_vdd_ci_voltage_table(
1033 struct pp_hwmgr *hwmgr,
1034 phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
1035{
1036 uint32_t i;
1037 int result;
1038 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1039 pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
1040
1041 PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
1042 "Voltage Dependency Table empty.", return -1;);
1043
1044 vddci_voltage_table->mask_low = 0;
1045 vddci_voltage_table->phase_delay = 0;
1046 vddci_voltage_table->count = voltage_dependency_table->count;
1047
1048 for (i = 0; i < voltage_dependency_table->count; i++) {
1049 vddci_voltage_table->entries[i].value =
1050 voltage_dependency_table->entries[i].vddci;
1051 vddci_voltage_table->entries[i].smio_low = 0;
1052 }
1053
1054 result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
1055 PP_ASSERT_WITH_CODE((0 == result),
1056 "Failed to trim VDDCI table.", return result;);
1057
1058 return 0;
1059}
1060
1061
1062
1063static int tonga_get_svi2_vdd_voltage_table(
1064 struct pp_hwmgr *hwmgr,
1065 phm_ppt_v1_voltage_lookup_table *look_up_table,
1066 pp_atomctrl_voltage_table *voltage_table)
1067{
1068 uint8_t i = 0;
1069
1070 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1071 "Voltage Lookup Table empty.", return -1;);
1072
1073 voltage_table->mask_low = 0;
1074 voltage_table->phase_delay = 0;
1075
1076 voltage_table->count = look_up_table->count;
1077
1078 for (i = 0; i < voltage_table->count; i++) {
1079 voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
1080 voltage_table->entries[i].smio_low = 0;
1081 }
1082
1083 return 0;
1084}
1085
1086/*
1087 * -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
1088 * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
1089 */
1090
1091static void tonga_trim_voltage_table_to_fit_state_table(
1092 struct pp_hwmgr *hwmgr,
1093 uint32_t max_voltage_steps,
1094 pp_atomctrl_voltage_table *voltage_table)
1095{
1096 unsigned int i, diff;
1097
1098 if (voltage_table->count <= max_voltage_steps) {
1099 return;
1100 }
1101
1102 diff = voltage_table->count - max_voltage_steps;
1103
1104 for (i = 0; i < max_voltage_steps; i++) {
1105 voltage_table->entries[i] = voltage_table->entries[i + diff];
1106 }
1107
1108 voltage_table->count = max_voltage_steps;
1109
1110 return;
1111}
1112
1113/**
1114 * Create Voltage Tables.
1115 *
1116 * @param hwmgr the address of the powerplay hardware manager.
1117 * @return always 0
1118 */
1119int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1120{
1121 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1122 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1123 int result;
1124
1125 /* MVDD has only GPIO voltage control */
1126 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1127 result = atomctrl_get_voltage_table_v3(hwmgr,
1128 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
1129 PP_ASSERT_WITH_CODE((0 == result),
1130 "Failed to retrieve MVDD table.", return result;);
1131 }
1132
1133 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1134 /* GPIO voltage */
1135 result = atomctrl_get_voltage_table_v3(hwmgr,
1136 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
1137 PP_ASSERT_WITH_CODE((0 == result),
1138 "Failed to retrieve VDDCI table.", return result;);
1139 } else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1140 /* SVI2 voltage */
1141 result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
1142 pptable_info->vdd_dep_on_mclk);
1143 PP_ASSERT_WITH_CODE((0 == result),
1144 "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
1145 }
1146
1147 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1148 /* VDDGFX has only SVI2 voltage control */
1149 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1150 pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
1151 PP_ASSERT_WITH_CODE((0 == result),
1152 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
1153 }
1154
1155 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1156 /* VDDC has only SVI2 voltage control */
1157 result = tonga_get_svi2_vdd_voltage_table(hwmgr,
1158 pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
1159 PP_ASSERT_WITH_CODE((0 == result),
1160 "Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
1161 }
1162
1163 PP_ASSERT_WITH_CODE(
1164 (data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
1165 "Too many voltage values for VDDC. Trimming to fit state table.",
1166 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1167 SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
1168 );
1169
1170 PP_ASSERT_WITH_CODE(
1171 (data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
1172 "Too many voltage values for VDDGFX. Trimming to fit state table.",
1173 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1174 SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
1175 );
1176
1177 PP_ASSERT_WITH_CODE(
1178 (data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
1179 "Too many voltage values for VDDCI. Trimming to fit state table.",
1180 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1181 SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
1182 );
1183
1184 PP_ASSERT_WITH_CODE(
1185 (data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
1186 "Too many voltage values for MVDD. Trimming to fit state table.",
1187 tonga_trim_voltage_table_to_fit_state_table(hwmgr,
1188 SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
1189 );
1190
1191 return 0;
1192}
1193
1194/**
1195 * Vddc table preparation for SMC.
1196 *
1197 * @param hwmgr the address of the hardware manager
1198 * @param table the SMC DPM table structure to be populated
1199 * @return always 0
1200 */
1201static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
1202 SMU72_Discrete_DpmTable *table)
1203{
1204 unsigned int count;
1205 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1206
1207 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1208 table->VddcLevelCount = data->vddc_voltage_table.count;
1209 for (count = 0; count < table->VddcLevelCount; count++) {
1210 table->VddcTable[count] =
1211 PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
1212 }
1213 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
1214 }
1215 return 0;
1216}
1217
1218/**
1219 * VddGfx table preparation for SMC.
1220 *
1221 * @param hwmgr the address of the hardware manager
1222 * @param table the SMC DPM table structure to be populated
1223 * @return always 0
1224 */
1225static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
1226 SMU72_Discrete_DpmTable *table)
1227{
1228 unsigned int count;
1229 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1230
1231 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1232 table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
1233 for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
1234 table->VddGfxTable[count] =
1235 PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
1236 }
1237 CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
1238 }
1239 return 0;
1240}
1241
1242/**
1243 * Vddci table preparation for SMC.
1244 *
1245 * @param *hwmgr The address of the hardware manager.
1246 * @param *table The SMC DPM table structure to be populated.
1247 * @return 0
1248 */
1249static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
1250 SMU72_Discrete_DpmTable *table)
1251{
1252 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1253 uint32_t count;
1254
1255 table->VddciLevelCount = data->vddci_voltage_table.count;
1256 for (count = 0; count < table->VddciLevelCount; count++) {
1257 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1258 table->VddciTable[count] =
1259 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1260 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1261 table->SmioTable1.Pattern[count].Voltage =
1262 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1263 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
1264 table->SmioTable1.Pattern[count].Smio =
1265 (uint8_t) count;
1266 table->Smio[count] |=
1267 data->vddci_voltage_table.entries[count].smio_low;
1268 table->VddciTable[count] =
1269 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
1270 }
1271 }
1272
1273 table->SmioMask1 = data->vddci_voltage_table.mask_low;
1274 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
1275
1276 return 0;
1277}
1278
1279/**
1280 * Mvdd table preparation for SMC.
1281 *
1282 * @param *hwmgr The address of the hardware manager.
1283 * @param *table The SMC DPM table structure to be populated.
1284 * @return 0
1285 */
1286static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
1287 SMU72_Discrete_DpmTable *table)
1288{
1289 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1290 uint32_t count;
1291
1292 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1293 table->MvddLevelCount = data->mvdd_voltage_table.count;
1294 for (count = 0; count < table->MvddLevelCount; count++) {
1295 table->SmioTable2.Pattern[count].Voltage =
1296 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
1297 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
1298 table->SmioTable2.Pattern[count].Smio =
1299 (uint8_t) count;
1300 table->Smio[count] |=
1301 data->mvdd_voltage_table.entries[count].smio_low;
1302 }
1303 table->SmioMask2 = data->vddci_voltage_table.mask_low;
1304
1305 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
1306 }
1307
1308 return 0;
1309}
1310
1311/**
1312 * Convert a voltage value in mv unit to VID number required by SMU firmware
1313 */
1314static uint8_t convert_to_vid(uint16_t vddc)
1315{
1316 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
1317}
1318
1319
1320/**
1321 * Preparation of vddc and vddgfx CAC tables for SMC.
1322 *
1323 * @param hwmgr the address of the hardware manager
1324 * @param table the SMC DPM table structure to be populated
1325 * @return always 0
1326 */
1327static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
1328 SMU72_Discrete_DpmTable *table)
1329{
1330 uint32_t count;
1331 uint8_t index;
1332 int result = 0;
1333 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1334 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1335 struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
1336 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
1337
1338 /* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
1339 uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
1340 uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
1341
1342 for (count = 0; count < vddcLevelCount; count++) {
1343 /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
1344 index = tonga_get_voltage_index(vddc_lookup_table,
1345 data->vddc_voltage_table.entries[count].value);
1346 table->BapmVddcVidLoSidd[count] =
1347 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1348 table->BapmVddcVidHiSidd[count] =
1349 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1350 table->BapmVddcVidHiSidd2[count] =
1351 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1352 }
1353
1354 if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
1355 /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
1356 for (count = 0; count < vddgfxLevelCount; count++) {
1357 index = tonga_get_voltage_index(vddgfx_lookup_table,
1358 data->vddgfx_voltage_table.entries[count].value);
1359 table->BapmVddGfxVidLoSidd[count] =
1360 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
1361 table->BapmVddGfxVidHiSidd[count] =
1362 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
1363 table->BapmVddGfxVidHiSidd2[count] =
1364 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
1365 }
1366 } else {
1367 for (count = 0; count < vddcLevelCount; count++) {
1368 index = tonga_get_voltage_index(vddc_lookup_table,
1369 data->vddc_voltage_table.entries[count].value);
1370 table->BapmVddGfxVidLoSidd[count] =
1371 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
1372 table->BapmVddGfxVidHiSidd[count] =
1373 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
1374 table->BapmVddGfxVidHiSidd2[count] =
1375 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
1376 }
1377 }
1378
1379 return result;
1380}
1381
1382
1383/**
1384 * Preparation of voltage tables for SMC.
1385 *
1386 * @param hwmgr the address of the hardware manager
1387 * @param table the SMC DPM table structure to be populated
1388 * @return always 0
1389 */
1390
1391int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1392 SMU72_Discrete_DpmTable *table)
1393{
1394 int result;
1395
1396 result = tonga_populate_smc_vddc_table(hwmgr, table);
1397 PP_ASSERT_WITH_CODE(0 == result,
1398 "can not populate VDDC voltage table to SMC", return -1);
1399
1400 result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
1401 PP_ASSERT_WITH_CODE(0 == result,
1402 "can not populate VDDCI voltage table to SMC", return -1);
1403
1404 result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
1405 PP_ASSERT_WITH_CODE(0 == result,
1406 "can not populate VDDGFX voltage table to SMC", return -1);
1407
1408 result = tonga_populate_smc_mvdd_table(hwmgr, table);
1409 PP_ASSERT_WITH_CODE(0 == result,
1410 "can not populate MVDD voltage table to SMC", return -1);
1411
1412 result = tonga_populate_cac_tables(hwmgr, table);
1413 PP_ASSERT_WITH_CODE(0 == result,
1414 "can not populate CAC voltage tables to SMC", return -1);
1415
1416 return 0;
1417}
1418
1419/**
1420 * Populates the SMC VRConfig field in DPM table.
1421 *
1422 * @param hwmgr the address of the hardware manager
1423 * @param table the SMC DPM table structure to be populated
1424 * @return always 0
1425 */
1426static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1427 SMU72_Discrete_DpmTable *table)
1428{
1429 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1430 uint16_t config;
1431
1432 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1433 /* Splitted mode */
1434 config = VR_SVI2_PLANE_1;
1435 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1436
1437 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1438 config = VR_SVI2_PLANE_2;
1439 table->VRConfig |= config;
1440 } else {
1441 printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
1442 }
1443 } else {
1444 /* Merged mode */
1445 config = VR_MERGED_WITH_VDDC;
1446 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1447
1448 /* Set Vddc Voltage Controller */
1449 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1450 config = VR_SVI2_PLANE_1;
1451 table->VRConfig |= config;
1452 } else {
1453 printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
1454 }
1455 }
1456
1457 /* Set Vddci Voltage Controller */
1458 if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
1459 config = VR_SVI2_PLANE_2; /* only in merged mode */
1460 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1461 } else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
1462 config = VR_SMIO_PATTERN_1;
1463 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1464 }
1465
1466 /* Set Mvdd Voltage Controller */
1467 if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1468 config = VR_SMIO_PATTERN_2;
1469 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1470 }
1471
1472 return 0;
1473}
1474
1475static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
1476 phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
1477 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1478{
1479 uint32_t i = 0;
1480 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1481 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1482
1483 /* clock - voltage dependency table is empty table */
1484 if (allowed_clock_voltage_table->count == 0)
1485 return -1;
1486
1487 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
1488 /* find first sclk bigger than request */
1489 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
1490 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1491 allowed_clock_voltage_table->entries[i].vddgfx);
1492
1493 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1494 allowed_clock_voltage_table->entries[i].vddc);
1495
1496 if (allowed_clock_voltage_table->entries[i].vddci) {
1497 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1498 allowed_clock_voltage_table->entries[i].vddci);
1499 } else {
1500 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1501 allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
1502 }
1503
1504 if (allowed_clock_voltage_table->entries[i].mvdd) {
1505 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
1506 }
1507
1508 voltage->Phases = 1;
1509 return 0;
1510 }
1511 }
1512
1513 /* sclk is bigger than max sclk in the dependence table */
1514 voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1515 allowed_clock_voltage_table->entries[i-1].vddgfx);
1516 voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1517 allowed_clock_voltage_table->entries[i-1].vddc);
1518
1519 if (allowed_clock_voltage_table->entries[i-1].vddci) {
1520 voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
1521 allowed_clock_voltage_table->entries[i-1].vddci);
1522 }
1523 if (allowed_clock_voltage_table->entries[i-1].mvdd) {
1524 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
1525 }
1526
1527 return 0;
1528}
1529
1530/**
1531 * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
1532 *
1533 * @param hwmgr the address of the powerplay hardware manager.
1534 * @return always 0
1535 */
1536int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
1537{
1538 return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
1539}
1540
1541int tonga_populate_memory_timing_parameters(
1542 struct pp_hwmgr *hwmgr,
1543 uint32_t engine_clock,
1544 uint32_t memory_clock,
1545 struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1546 )
1547{
1548 uint32_t dramTiming;
1549 uint32_t dramTiming2;
1550 uint32_t burstTime;
1551 int result;
1552
1553 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1554 engine_clock, memory_clock);
1555
1556 PP_ASSERT_WITH_CODE(result == 0,
1557 "Error calling VBIOS to set DRAM_TIMING.", return result);
1558
1559 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1560 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1561 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1562
1563 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1564 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1565 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1566
1567 return 0;
1568}
1569
1570/**
1571 * Setup parameters for the MC ARB.
1572 *
1573 * @param hwmgr the address of the powerplay hardware manager.
1574 * @return always 0
1575 * This function is to be called from the SetPowerState table.
1576 */
1577int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1578{
1579 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1580 int result = 0;
1581 SMU72_Discrete_MCArbDramTimingTable arb_regs;
1582 uint32_t i, j;
1583
1584 memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1585
1586 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1587 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1588 result = tonga_populate_memory_timing_parameters
1589 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1590 data->dpm_table.mclk_table.dpm_levels[j].value,
1591 &arb_regs.entries[i][j]);
1592
1593 if (0 != result) {
1594 break;
1595 }
1596 }
1597 }
1598
1599 if (0 == result) {
1600 result = tonga_copy_bytes_to_smc(
1601 hwmgr->smumgr,
1602 data->arb_table_start,
1603 (uint8_t *)&arb_regs,
1604 sizeof(SMU72_Discrete_MCArbDramTimingTable),
1605 data->sram_end
1606 );
1607 }
1608
1609 return result;
1610}
1611
1612static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
1613{
1614 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1615 struct tonga_dpm_table *dpm_table = &data->dpm_table;
1616 uint32_t i;
1617
1618 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
1619 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1620 table->LinkLevel[i].PcieGenSpeed =
1621 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1622 table->LinkLevel[i].PcieLaneCount =
1623 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1624 table->LinkLevel[i].EnabledForActivity =
1625 1;
1626 table->LinkLevel[i].SPC =
1627 (uint8_t)(data->pcie_spc_cap & 0xff);
1628 table->LinkLevel[i].DownThreshold =
1629 PP_HOST_TO_SMC_UL(5);
1630 table->LinkLevel[i].UpThreshold =
1631 PP_HOST_TO_SMC_UL(30);
1632 }
1633
1634 data->smc_state_table.LinkLevelCount =
1635 (uint8_t)dpm_table->pcie_speed_table.count;
1636 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1637 tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1638
1639 return 0;
1640}
1641
0104aa21
AD
1642static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1643 SMU72_Discrete_DpmTable *table)
1644{
1645 int result = 0;
1646
1647 uint8_t count;
1648 pp_atomctrl_clock_dividers_vi dividers;
1649 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1650 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1651 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1652
1653 table->UvdLevelCount = (uint8_t) (mm_table->count);
1654 table->UvdBootLevel = 0;
1655
1656 for (count = 0; count < table->UvdLevelCount; count++) {
1657 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1658 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1659 table->UvdLevel[count].MinVoltage.Vddc =
1660 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1661 mm_table->entries[count].vddc);
1662 table->UvdLevel[count].MinVoltage.VddGfx =
1663 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1664 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1665 mm_table->entries[count].vddgfx) : 0;
1666 table->UvdLevel[count].MinVoltage.Vddci =
1667 tonga_get_voltage_id(&data->vddci_voltage_table,
1668 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1669 table->UvdLevel[count].MinVoltage.Phases = 1;
1670
1671 /* retrieve divider value for VBIOS */
1672 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1673 table->UvdLevel[count].VclkFrequency, &dividers);
1674 PP_ASSERT_WITH_CODE((0 == result),
1675 "can not find divide id for Vclk clock", return result);
1676
1677 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1678
1679 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1680 table->UvdLevel[count].DclkFrequency, &dividers);
1681 PP_ASSERT_WITH_CODE((0 == result),
1682 "can not find divide id for Dclk clock", return result);
1683
1684 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1685
1686 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1687 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1688 //CONVERT_FROM_HOST_TO_SMC_UL((uint32_t)table->UvdLevel[count].MinVoltage);
1689 }
1690
1691 return result;
1692
1693}
c82baa28 1694
1695static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1696 SMU72_Discrete_DpmTable *table)
1697{
1698 int result = 0;
1699
1700 uint8_t count;
1701 pp_atomctrl_clock_dividers_vi dividers;
1702 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1703 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1704 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1705
1706 table->VceLevelCount = (uint8_t) (mm_table->count);
1707 table->VceBootLevel = 0;
1708
1709 for (count = 0; count < table->VceLevelCount; count++) {
1710 table->VceLevel[count].Frequency =
1711 mm_table->entries[count].eclk;
1712 table->VceLevel[count].MinVoltage.Vddc =
1713 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1714 mm_table->entries[count].vddc);
1715 table->VceLevel[count].MinVoltage.VddGfx =
1716 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1717 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1718 mm_table->entries[count].vddgfx) : 0;
1719 table->VceLevel[count].MinVoltage.Vddci =
1720 tonga_get_voltage_id(&data->vddci_voltage_table,
1721 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1722 table->VceLevel[count].MinVoltage.Phases = 1;
1723
1724 /* retrieve divider value for VBIOS */
1725 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1726 table->VceLevel[count].Frequency, &dividers);
1727 PP_ASSERT_WITH_CODE((0 == result),
1728 "can not find divide id for VCE engine clock", return result);
1729
1730 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1731
1732 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1733 }
1734
1735 return result;
1736}
1737
1738static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1739 SMU72_Discrete_DpmTable *table)
1740{
1741 int result = 0;
1742 uint8_t count;
1743 pp_atomctrl_clock_dividers_vi dividers;
1744 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1745 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1746 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1747
1748 table->AcpLevelCount = (uint8_t) (mm_table->count);
1749 table->AcpBootLevel = 0;
1750
1751 for (count = 0; count < table->AcpLevelCount; count++) {
1752 table->AcpLevel[count].Frequency =
1753 pptable_info->mm_dep_table->entries[count].aclk;
1754 table->AcpLevel[count].MinVoltage.Vddc =
1755 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1756 mm_table->entries[count].vddc);
1757 table->AcpLevel[count].MinVoltage.VddGfx =
1758 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1759 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1760 mm_table->entries[count].vddgfx) : 0;
1761 table->AcpLevel[count].MinVoltage.Vddci =
1762 tonga_get_voltage_id(&data->vddci_voltage_table,
1763 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1764 table->AcpLevel[count].MinVoltage.Phases = 1;
1765
1766 /* retrieve divider value for VBIOS */
1767 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1768 table->AcpLevel[count].Frequency, &dividers);
1769 PP_ASSERT_WITH_CODE((0 == result),
1770 "can not find divide id for engine clock", return result);
1771
1772 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1773
1774 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1775 }
1776
1777 return result;
1778}
1779
1780static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1781 SMU72_Discrete_DpmTable *table)
1782{
1783 int result = 0;
1784 uint8_t count;
1785 pp_atomctrl_clock_dividers_vi dividers;
1786 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1787 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1788 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1789
1790 table->SamuBootLevel = 0;
1791 table->SamuLevelCount = (uint8_t) (mm_table->count);
1792
1793 for (count = 0; count < table->SamuLevelCount; count++) {
1794 /* not sure whether we need evclk or not */
1795 table->SamuLevel[count].Frequency =
1796 pptable_info->mm_dep_table->entries[count].samclock;
1797 table->SamuLevel[count].MinVoltage.Vddc =
1798 tonga_get_voltage_index(pptable_info->vddc_lookup_table,
1799 mm_table->entries[count].vddc);
1800 table->SamuLevel[count].MinVoltage.VddGfx =
1801 (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
1802 tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
1803 mm_table->entries[count].vddgfx) : 0;
1804 table->SamuLevel[count].MinVoltage.Vddci =
1805 tonga_get_voltage_id(&data->vddci_voltage_table,
1806 mm_table->entries[count].vddc - data->vddc_vddci_delta);
1807 table->SamuLevel[count].MinVoltage.Phases = 1;
1808
1809 /* retrieve divider value for VBIOS */
1810 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1811 table->SamuLevel[count].Frequency, &dividers);
1812 PP_ASSERT_WITH_CODE((0 == result),
1813 "can not find divide id for samu clock", return result);
1814
1815 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1816
1817 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1818 }
1819
1820 return result;
1821}
1822
1823/**
1824 * Populates the SMC MCLK structure using the provided memory clock
1825 *
1826 * @param hwmgr the address of the hardware manager
1827 * @param memory_clock the memory clock to use to populate the structure
1828 * @param sclk the SMC SCLK structure to be populated
1829 */
1830static int tonga_calculate_mclk_params(
1831 struct pp_hwmgr *hwmgr,
1832 uint32_t memory_clock,
1833 SMU72_Discrete_MemoryLevel *mclk,
1834 bool strobe_mode,
1835 bool dllStateOn
1836 )
1837{
1838 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
1839 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1840 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1841 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1842 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1843 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1844 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1845 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1846 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1847 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1848
1849 pp_atomctrl_memory_clock_param mpll_param;
1850 int result;
1851
1852 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1853 memory_clock, &mpll_param, strobe_mode);
1854 PP_ASSERT_WITH_CODE(0 == result,
1855 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1856
1857 /* MPLL_FUNC_CNTL setup*/
1858 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1859
1860 /* MPLL_FUNC_CNTL_1 setup*/
1861 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1862 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1863 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1864 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1865 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1866 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1867
1868 /* MPLL_AD_FUNC_CNTL setup*/
1869 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1870 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1871
1872 if (data->is_memory_GDDR5) {
1873 /* MPLL_DQ_FUNC_CNTL setup*/
1874 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1875 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1876 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1877 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1878 }
1879
1880 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1881 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1882 /*
1883 ************************************
1884 Fref = Reference Frequency
1885 NF = Feedback divider ratio
1886 NR = Reference divider ratio
1887 Fnom = Nominal VCO output frequency = Fref * NF / NR
1888 Fs = Spreading Rate
1889 D = Percentage down-spread / 2
1890 Fint = Reference input frequency to PFD = Fref / NR
1891 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1892 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1893 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1894 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1895 *************************************
1896 */
1897 pp_atomctrl_internal_ss_info ss_info;
1898 uint32_t freq_nom;
1899 uint32_t tmp;
1900 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1901
1902 /* for GDDR5 for all modes and DDR3 */
1903 if (1 == mpll_param.qdr)
1904 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1905 else
1906 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1907
1908 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1909 tmp = (freq_nom / reference_clock);
1910 tmp = tmp * tmp;
1911
1912 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1913 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1914 /* ss.Info.speed_spectrum_rate -- in unit of khz */
1915 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1916 /* = reference_clock * 5 / speed_spectrum_rate */
1917 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1918
1919 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1920 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1921 uint32_t clkv =
1922 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1923 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1924
1925 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1926 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1927 }
1928 }
1929
1930 /* MCLK_PWRMGT_CNTL setup */
1931 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1932 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1933 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1934 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1935 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1936 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1937
1938
1939 /* Save the result data to outpupt memory level structure */
1940 mclk->MclkFrequency = memory_clock;
1941 mclk->MpllFuncCntl = mpll_func_cntl;
1942 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1943 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1944 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1945 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1946 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1947 mclk->DllCntl = dll_cntl;
1948 mclk->MpllSs1 = mpll_ss1;
1949 mclk->MpllSs2 = mpll_ss2;
1950
1951 return 0;
1952}
1953
1954static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
1955 bool strobe_mode)
1956{
1957 uint8_t mc_para_index;
1958
1959 if (strobe_mode) {
1960 if (memory_clock < 12500) {
1961 mc_para_index = 0x00;
1962 } else if (memory_clock > 47500) {
1963 mc_para_index = 0x0f;
1964 } else {
1965 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1966 }
1967 } else {
1968 if (memory_clock < 65000) {
1969 mc_para_index = 0x00;
1970 } else if (memory_clock > 135000) {
1971 mc_para_index = 0x0f;
1972 } else {
1973 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1974 }
1975 }
1976
1977 return mc_para_index;
1978}
1979
1980static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1981{
1982 uint8_t mc_para_index;
1983
1984 if (memory_clock < 10000) {
1985 mc_para_index = 0;
1986 } else if (memory_clock >= 80000) {
1987 mc_para_index = 0x0f;
1988 } else {
1989 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1990 }
1991
1992 return mc_para_index;
1993}
1994
1995static int tonga_populate_single_memory_level(
1996 struct pp_hwmgr *hwmgr,
1997 uint32_t memory_clock,
1998 SMU72_Discrete_MemoryLevel *memory_level
1999 )
2000{
2001 uint32_t minMvdd = 0;
2002 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2003 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2004 int result = 0;
2005 bool dllStateOn;
2006 struct cgs_display_info info = {0};
2007
2008
2009 if (NULL != pptable_info->vdd_dep_on_mclk) {
2010 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2011 pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
2012 PP_ASSERT_WITH_CODE((0 == result),
2013 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
2014 }
2015
2016 if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
2017 memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
2018 } else {
2019 memory_level->MinMvdd = minMvdd;
2020 }
2021 memory_level->EnabledForThrottle = 1;
2022 memory_level->EnabledForActivity = 0;
2023 memory_level->UpHyst = 0;
2024 memory_level->DownHyst = 100;
2025 memory_level->VoltageDownHyst = 0;
2026
2027 /* Indicates maximum activity level for this performance level.*/
2028 memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2029 memory_level->StutterEnable = 0;
2030 memory_level->StrobeEnable = 0;
2031 memory_level->EdcReadEnable = 0;
2032 memory_level->EdcWriteEnable = 0;
2033 memory_level->RttEnable = 0;
2034
2035 /* default set to low watermark. Highest level will be set to high later.*/
2036 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2037
2038 cgs_get_active_displays_info(hwmgr->device, &info);
2039 data->display_timing.num_existing_displays = info.display_count;
2040
2041 if ((data->mclk_stutter_mode_threshold != 0) &&
2042 (memory_clock <= data->mclk_stutter_mode_threshold) &&
2043 (data->is_uvd_enabled == 0)
2044#if defined(LINUX)
2045 && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
2046 && (data->display_timing.num_existing_displays <= 2)
2047 && (data->display_timing.num_existing_displays != 0)
2048#endif
2049 )
2050 memory_level->StutterEnable = 1;
2051
2052 /* decide strobe mode*/
2053 memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
2054 (memory_clock <= data->mclk_strobe_mode_threshold);
2055
2056 /* decide EDC mode and memory clock ratio*/
2057 if (data->is_memory_GDDR5) {
2058 memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
2059 memory_level->StrobeEnable);
2060
2061 if ((data->mclk_edc_enable_threshold != 0) &&
2062 (memory_clock > data->mclk_edc_enable_threshold)) {
2063 memory_level->EdcReadEnable = 1;
2064 }
2065
2066 if ((data->mclk_edc_wr_enable_threshold != 0) &&
2067 (memory_clock > data->mclk_edc_wr_enable_threshold)) {
2068 memory_level->EdcWriteEnable = 1;
2069 }
2070
2071 if (memory_level->StrobeEnable) {
2072 if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
2073 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
2074 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2075 } else {
2076 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
2077 }
2078
2079 } else {
2080 dllStateOn = data->dll_defaule_on;
2081 }
2082 } else {
2083 memory_level->StrobeRatio =
2084 tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
2085 dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
2086 }
2087
2088 result = tonga_calculate_mclk_params(hwmgr,
2089 memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
2090
2091 if (0 == result) {
2092 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
2093 /* MCLK frequency in units of 10KHz*/
2094 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
2095 /* Indicates maximum activity level for this performance level.*/
2096 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
2097 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
2098 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
2099 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
2100 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
2101 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
2102 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
2103 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
2104 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
2105 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
2106 }
2107
2108 return result;
2109}
2110
2111/**
2112 * Populates the SMC MVDD structure using the provided memory clock.
2113 *
2114 * @param hwmgr the address of the hardware manager
2115 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2116 * @param voltage the SMC VOLTAGE structure to be populated
2117 */
2118int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
2119{
2120 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2121 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2122 uint32_t i = 0;
2123
2124 if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2125 /* find mvdd value which clock is more than request */
2126 for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
2127 if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
2128 /* Always round to higher voltage. */
2129 smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
2130 break;
2131 }
2132 }
2133
2134 PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
2135 "MVDD Voltage is outside the supported range.", return -1);
2136
2137 } else {
2138 return -1;
2139 }
2140
2141 return 0;
2142}
2143
2144
2145static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
2146 SMU72_Discrete_DpmTable *table)
2147{
2148 int result = 0;
2149 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2150 pp_atomctrl_clock_dividers_vi dividers;
2151 SMIO_Pattern voltage_level;
2152 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2153 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2154 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
2155 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
2156
2157 /* The ACPI state should not do DPM on DC (or ever).*/
2158 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2159
2160 table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
2161
2162 /* assign zero for now*/
2163 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
2164
2165 /* get the engine clock dividers for this clock value*/
2166 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2167 table->ACPILevel.SclkFrequency, &dividers);
2168
2169 PP_ASSERT_WITH_CODE(result == 0,
2170 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2171
2172 /* divider ID for required SCLK*/
2173 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2174 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2175 table->ACPILevel.DeepSleepDivId = 0;
2176
2177 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2178 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
2179 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2180 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
2181 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
2182 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
2183
2184 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2185 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2186 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2187 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2188 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2189 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2190 table->ACPILevel.CcPwrDynRm = 0;
2191 table->ACPILevel.CcPwrDynRm1 = 0;
2192
2193
2194 /* For various features to be enabled/disabled while this level is active.*/
2195 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2196 /* SCLK frequency in units of 10KHz*/
2197 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2198 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2199 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2200 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2201 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2202 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2203 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2204 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2205 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2206
2207 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
2208 table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
2209
2210 /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
2211
2212 if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
2213 table->MemoryACPILevel.MinMvdd =
2214 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
2215 else
2216 table->MemoryACPILevel.MinMvdd = 0;
2217
2218 /* Force reset on DLL*/
2219 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2220 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
2221 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2222 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
2223
2224 /* Disable DLL in ACPIState*/
2225 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2226 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
2227 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
2228 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
2229
2230 /* Enable DLL bypass signal*/
2231 dll_cntl = PHM_SET_FIELD(dll_cntl,
2232 DLL_CNTL, MRDCK0_BYPASS, 0);
2233 dll_cntl = PHM_SET_FIELD(dll_cntl,
2234 DLL_CNTL, MRDCK1_BYPASS, 0);
2235
2236 table->MemoryACPILevel.DllCntl =
2237 PP_HOST_TO_SMC_UL(dll_cntl);
2238 table->MemoryACPILevel.MclkPwrmgtCntl =
2239 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
2240 table->MemoryACPILevel.MpllAdFuncCntl =
2241 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
2242 table->MemoryACPILevel.MpllDqFuncCntl =
2243 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
2244 table->MemoryACPILevel.MpllFuncCntl =
2245 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
2246 table->MemoryACPILevel.MpllFuncCntl_1 =
2247 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
2248 table->MemoryACPILevel.MpllFuncCntl_2 =
2249 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
2250 table->MemoryACPILevel.MpllSs1 =
2251 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
2252 table->MemoryACPILevel.MpllSs2 =
2253 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
2254
2255 table->MemoryACPILevel.EnabledForThrottle = 0;
2256 table->MemoryACPILevel.EnabledForActivity = 0;
2257 table->MemoryACPILevel.UpHyst = 0;
2258 table->MemoryACPILevel.DownHyst = 100;
2259 table->MemoryACPILevel.VoltageDownHyst = 0;
2260 /* Indicates maximum activity level for this performance level.*/
2261 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2262
2263 table->MemoryACPILevel.StutterEnable = 0;
2264 table->MemoryACPILevel.StrobeEnable = 0;
2265 table->MemoryACPILevel.EdcReadEnable = 0;
2266 table->MemoryACPILevel.EdcWriteEnable = 0;
2267 table->MemoryACPILevel.RttEnable = 0;
2268
2269 return result;
2270}
2271
2272static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
2273{
2274 int result = 0;
2275 uint32_t i;
2276
2277 for (i = 0; i < table->count; i++) {
2278 if (value == table->dpm_levels[i].value) {
2279 *boot_level = i;
2280 result = 0;
2281 }
2282 }
2283 return result;
2284}
2285
2286static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2287 SMU72_Discrete_DpmTable *table)
2288{
2289 int result = 0;
2290 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2291
2292 table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2293 table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */
2294
2295 /* find boot level from dpm table*/
2296 result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
2297 data->vbios_boot_state.sclk_bootup_value,
2298 (uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
2299
2300 if (0 != result) {
2301 data->smc_state_table.GraphicsBootLevel = 0;
2302 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2303 in dependency table. Using Graphics DPM level 0!");
2304 result = 0;
2305 }
2306
2307 result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
2308 data->vbios_boot_state.mclk_bootup_value,
2309 (uint32_t *)&(data->smc_state_table.MemoryBootLevel));
2310
2311 if (0 != result) {
2312 data->smc_state_table.MemoryBootLevel = 0;
2313 printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
2314 in dependency table. Using Memory DPM level 0!");
2315 result = 0;
2316 }
2317
2318 table->BootVoltage.Vddc =
2319 tonga_get_voltage_id(&(data->vddc_voltage_table),
2320 data->vbios_boot_state.vddc_bootup_value);
2321 table->BootVoltage.VddGfx =
2322 tonga_get_voltage_id(&(data->vddgfx_voltage_table),
2323 data->vbios_boot_state.vddgfx_bootup_value);
2324 table->BootVoltage.Vddci =
2325 tonga_get_voltage_id(&(data->vddci_voltage_table),
2326 data->vbios_boot_state.vddci_bootup_value);
2327 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
2328
2329 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2330
2331 return result;
2332}
2333
2334
2335/**
2336 * Calculates the SCLK dividers using the provided engine clock
2337 *
2338 * @param hwmgr the address of the hardware manager
2339 * @param engine_clock the engine clock to use to populate the structure
2340 * @param sclk the SMC SCLK structure to be populated
2341 */
2342int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
2343 uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
2344{
2345 const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2346 pp_atomctrl_clock_dividers_vi dividers;
2347 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2348 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2349 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2350 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2351 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2352 uint32_t reference_clock;
2353 uint32_t reference_divider;
2354 uint32_t fbdiv;
2355 int result;
2356
2357 /* get the engine clock dividers for this clock value*/
2358 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
2359
2360 PP_ASSERT_WITH_CODE(result == 0,
2361 "Error retrieving Engine Clock dividers from VBIOS.", return result);
2362
2363 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
2364 reference_clock = atomctrl_get_reference_clock(hwmgr);
2365
2366 reference_divider = 1 + dividers.uc_pll_ref_div;
2367
2368 /* low 14 bits is fraction and high 12 bits is divider*/
2369 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
2370
2371 /* SPLL_FUNC_CNTL setup*/
2372 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2373 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
2374 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
2375 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
2376
2377 /* SPLL_FUNC_CNTL_3 setup*/
2378 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2379 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
2380
2381 /* set to use fractional accumulation*/
2382 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
2383 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
2384
2385 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2386 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
2387 pp_atomctrl_internal_ss_info ss_info;
2388
2389 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
2390 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
2391 /*
2392 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
2393 * ss_info.speed_spectrum_rate -- in unit of khz
2394 */
2395 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
2396 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
2397
2398 /* clkv = 2 * D * fbdiv / NS */
2399 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
2400
2401 cg_spll_spread_spectrum =
2402 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
2403 cg_spll_spread_spectrum =
2404 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
2405 cg_spll_spread_spectrum_2 =
2406 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
2407 }
2408 }
2409
2410 sclk->SclkFrequency = engine_clock;
2411 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
2412 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
2413 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
2414 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
2415 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
2416
2417 return 0;
2418}
2419
2420/**
2421 * Populates single SMC SCLK structure using the provided engine clock
2422 *
2423 * @param hwmgr the address of the hardware manager
2424 * @param engine_clock the engine clock to use to populate the structure
2425 * @param sclk the SMC SCLK structure to be populated
2426 */
2427static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
2428{
2429 int result;
2430 uint32_t threshold;
2431 uint32_t mvdd;
2432 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2433 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2434
2435 result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
2436
2437
2438 /* populate graphics levels*/
2439 result = tonga_get_dependecy_volt_by_clk(hwmgr,
2440 pptable_info->vdd_dep_on_sclk, engine_clock,
2441 &graphic_level->MinVoltage, &mvdd);
2442 PP_ASSERT_WITH_CODE((0 == result),
2443 "can not find VDDC voltage value for VDDC \
2444 engine clock dependency table", return result);
2445
2446 /* SCLK frequency in units of 10KHz*/
2447 graphic_level->SclkFrequency = engine_clock;
2448
2449 /* Indicates maximum activity level for this performance level. 50% for now*/
2450 graphic_level->ActivityLevel = sclk_activity_level_threshold;
2451
2452 graphic_level->CcPwrDynRm = 0;
2453 graphic_level->CcPwrDynRm1 = 0;
2454 /* this level can be used if activity is high enough.*/
2455 graphic_level->EnabledForActivity = 0;
2456 /* this level can be used for throttling.*/
2457 graphic_level->EnabledForThrottle = 1;
2458 graphic_level->UpHyst = 0;
2459 graphic_level->DownHyst = 0;
2460 graphic_level->VoltageDownHyst = 0;
2461 graphic_level->PowerThrottle = 0;
2462
2463 threshold = engine_clock * data->fast_watemark_threshold / 100;
2464/*
2465 *get the DAL clock. do it in funture.
2466 PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
2467 data->display_timing.min_clock_insr = minClocks.engineClockInSR;
2468
2469 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
2470 {
2471 graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR);
2472 }
2473*/
2474
2475 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
2476 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2477
2478 if (0 == result) {
2479 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
2480 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
2481 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
2482 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
2483 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
2484 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
2485 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
2486 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
2487 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
2488 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
2489 }
2490
2491 return result;
2492}
2493
2494/**
2495 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
2496 *
2497 * @param hwmgr the address of the hardware manager
2498 */
2499static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
2500{
2501 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2502 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2503 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2504 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2505 uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
2506 int result = 0;
2507 uint32_t level_array_adress = data->dpm_table_start +
2508 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
2509 uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
2510 SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/
2511 SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
2512 uint32_t i, maxEntry;
2513 uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
2514 PECI_RegistryValue reg_value;
2515 memset(levels, 0x00, level_array_size);
2516
2517 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2518 result = tonga_populate_single_graphic_level(hwmgr,
2519 dpm_table->sclk_table.dpm_levels[i].value,
2520 (uint16_t)data->activity_target[i],
2521 &(data->smc_state_table.GraphicsLevel[i]));
2522
2523 if (0 != result)
2524 return result;
2525
2526 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2527 if (i > 1)
2528 data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
2529
2530 if (0 == i) {
2531 reg_value = 0;
2532 if (reg_value != 0)
2533 data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
2534 }
2535
2536 if (1 == i) {
2537 reg_value = 0;
2538 if (reg_value != 0)
2539 data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
2540 }
2541 }
2542
2543 /* Only enable level 0 for now. */
2544 data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
2545
2546 /* set highest level watermark to high */
2547 if (dpm_table->sclk_table.count > 1)
2548 data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
2549 PPSMC_DISPLAY_WATERMARK_HIGH;
2550
2551 data->smc_state_table.GraphicsDpmLevelCount =
2552 (uint8_t)dpm_table->sclk_table.count;
2553 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2554 tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2555
2556 if (pcie_table != NULL) {
2557 PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
2558 "There must be 1 or more PCIE levels defined in PPTable.", return -1);
2559 maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
2560 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2561 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
2562 (uint8_t) ((i < maxEntry) ? i : maxEntry);
2563 }
2564 } else {
2565 if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
2566 printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
2567
2568 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2569 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2570 (1<<(highest_pcie_level_enabled+1))) != 0)) {
2571 highest_pcie_level_enabled++;
2572 }
2573
2574 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2575 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2576 (1<<lowest_pcie_level_enabled)) == 0)) {
2577 lowest_pcie_level_enabled++;
2578 }
2579
2580 while ((count < highest_pcie_level_enabled) &&
2581 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2582 (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
2583 count++;
2584 }
2585 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
2586 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
2587
2588
2589 /* set pcieDpmLevel to highest_pcie_level_enabled*/
2590 for (i = 2; i < dpm_table->sclk_table.count; i++) {
2591 data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
2592 }
2593
2594 /* set pcieDpmLevel to lowest_pcie_level_enabled*/
2595 data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
2596
2597 /* set pcieDpmLevel to mid_pcie_level_enabled*/
2598 data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
2599 }
2600 /* level count will send to smc once at init smc table and never change*/
2601 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2602
2603 if (0 != result)
2604 return result;
2605
2606 return 0;
2607}
2608
2609/**
2610 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2611 *
2612 * @param hwmgr the address of the hardware manager
2613 */
2614
2615static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2616{
2617 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2618 struct tonga_dpm_table *dpm_table = &data->dpm_table;
2619 int result;
2620 /* populate MCLK dpm table to SMU7 */
2621 uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
2622 uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
2623 SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
2624 uint32_t i;
2625
2626 memset(levels, 0x00, level_array_size);
2627
2628 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2629 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2630 "can not populate memory level as memory clock is zero", return -1);
2631 result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
2632 &(data->smc_state_table.MemoryLevel[i]));
2633 if (0 != result) {
2634 return result;
2635 }
2636 }
2637
2638 /* Only enable level 0 for now.*/
2639 data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
2640
2641 /*
2642 * in order to prevent MC activity from stutter mode to push DPM up.
2643 * the UVD change complements this by putting the MCLK in a higher state
2644 * by default such that we are not effected by up threshold or and MCLK DPM latency.
2645 */
2646 data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
2647 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
2648
2649 data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
2650 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2651 /* set highest level watermark to high*/
2652 data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
2653
2654 /* level count will send to smc once at init smc table and never change*/
2655 result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
2656 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
2657
2658 if (0 != result) {
2659 return result;
2660 }
2661
2662 return 0;
2663}
2664
2665struct TONGA_DLL_SPEED_SETTING {
2666 uint16_t Min; /* Minimum Data Rate*/
2667 uint16_t Max; /* Maximum Data Rate*/
2668 uint32_t dll_speed; /* The desired DLL_SPEED setting*/
2669};
2670
2671static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2672{
2673 return 0;
2674}
2675
2676/* ---------------------------------------- ULV related functions ----------------------------------------------------*/
2677
2678
2679static int tonga_reset_single_dpm_table(
2680 struct pp_hwmgr *hwmgr,
2681 struct tonga_single_dpm_table *dpm_table,
2682 uint32_t count)
2683{
2684 uint32_t i;
2685 if (!(count <= MAX_REGULAR_DPM_NUMBER))
2686 printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
2687 table entries to exceed max number! \n");
2688
2689 dpm_table->count = count;
2690 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
2691 dpm_table->dpm_levels[i].enabled = 0;
2692 }
2693
2694 return 0;
2695}
2696
2697static void tonga_setup_pcie_table_entry(
2698 struct tonga_single_dpm_table *dpm_table,
2699 uint32_t index, uint32_t pcie_gen,
2700 uint32_t pcie_lanes)
2701{
2702 dpm_table->dpm_levels[index].value = pcie_gen;
2703 dpm_table->dpm_levels[index].param1 = pcie_lanes;
2704 dpm_table->dpm_levels[index].enabled = 1;
2705}
2706
c82baa28 2707static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
2708{
2709 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2710 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2711 phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
2712 uint32_t i, maxEntry;
2713
2714 if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
2715 data->pcie_gen_power_saving = data->pcie_gen_performance;
2716 data->pcie_lane_power_saving = data->pcie_lane_performance;
2717 } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
2718 data->pcie_gen_performance = data->pcie_gen_power_saving;
2719 data->pcie_lane_performance = data->pcie_lane_power_saving;
2720 }
2721
2722 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
2723
2724 if (pcie_table != NULL) {
2725 /*
2726 * maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
2727 * If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
2728 */
2729 maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
2730 SMU72_MAX_LEVELS_LINK : pcie_table->count;
2731 for (i = 1; i < maxEntry; i++) {
2732 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
2733 get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
2734 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2735 }
2736 data->dpm_table.pcie_speed_table.count = maxEntry - 1;
2737 } else {
2738 /* Hardcode Pcie Table */
2739 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
2740 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2741 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2742 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
2743 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2744 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2745 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
2746 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2747 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2748 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
2749 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2750 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2751 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
2752 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2753 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2754 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
2755 get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
2756 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2757 data->dpm_table.pcie_speed_table.count = 6;
2758 }
2759 /* Populate last level for boot PCIE level, but do not increment count. */
2760 tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
2761 data->dpm_table.pcie_speed_table.count,
2762 get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
2763 get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
2764
2765 return 0;
2766
2767}
2768
2769/*
2770 * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
2771 * Dynamic state patching function will then trim these state tables to the allowed range based
2772 * on the power policy or external client requests, such as UVD request, etc.
2773 */
2774static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
2775{
2776 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2777 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2778 uint32_t i;
2779
2780 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
2781 pptable_info->vdd_dep_on_sclk;
2782 phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
2783 pptable_info->vdd_dep_on_mclk;
2784
2785 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2786 "SCLK dependency table is missing. This table is mandatory", return -1);
2787 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
2788 "SCLK dependency table has to have is missing. This table is mandatory", return -1);
2789
2790 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2791 "MCLK dependency table is missing. This table is mandatory", return -1);
2792 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
2793 "VMCLK dependency table has to have is missing. This table is mandatory", return -1);
2794
2795 /* clear the state table to reset everything to default */
2796 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
2797 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
2798 tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
2799 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
2800 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
2801 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
2802 /* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
2803
2804 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
2805 "SCLK dependency table is missing. This table is mandatory", return -1);
2806 /* Initialize Sclk DPM table based on allow Sclk values*/
2807 data->dpm_table.sclk_table.count = 0;
2808
2809 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2810 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
2811 allowed_vdd_sclk_table->entries[i].clk) {
2812 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
2813 allowed_vdd_sclk_table->entries[i].clk;
2814 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
2815 data->dpm_table.sclk_table.count++;
2816 }
2817 }
2818
2819 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
2820 "MCLK dependency table is missing. This table is mandatory", return -1);
2821 /* Initialize Mclk DPM table based on allow Mclk values */
2822 data->dpm_table.mclk_table.count = 0;
2823 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2824 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
2825 allowed_vdd_mclk_table->entries[i].clk) {
2826 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
2827 allowed_vdd_mclk_table->entries[i].clk;
2828 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
2829 data->dpm_table.mclk_table.count++;
2830 }
2831 }
2832
2833 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
2834 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
2835 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
2836 /* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
2837 /* param1 is for corresponding std voltage */
2838 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
2839 }
2840 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
2841
2842 if (NULL != allowed_vdd_mclk_table) {
2843 /* Initialize Vddci DPM table based on allow Mclk values */
2844 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
2845 data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
2846 data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
2847 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
2848 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
2849 }
2850 data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
2851 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
2852 }
2853
2854 /* setup PCIE gen speed levels*/
2855 tonga_setup_default_pcie_tables(hwmgr);
2856
2857 /* save a copy of the default DPM table*/
2858 memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
2859
2860 return 0;
2861}
2862
2863int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
2864 const struct tonga_power_state *bootState)
2865{
2866 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2867 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2868 uint8_t count, level;
2869
2870 count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
2871 for (level = 0; level < count; level++) {
2872 if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
2873 bootState->performance_levels[0].engine_clock) {
2874 data->smc_state_table.GraphicsBootLevel = level;
2875 break;
2876 }
2877 }
2878
2879 count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
2880 for (level = 0; level < count; level++) {
2881 if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
2882 bootState->performance_levels[0].memory_clock) {
2883 data->smc_state_table.MemoryBootLevel = level;
2884 break;
2885 }
2886 }
2887
2888 return 0;
2889}
2890
2891/**
2892 * Initializes the SMC table and uploads it
2893 *
2894 * @param hwmgr the address of the powerplay hardware manager.
2895 * @param pInput the pointer to input data (PowerState)
2896 * @return always 0
2897 */
2898int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2899{
2900 int result;
2901 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
2902 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2903 SMU72_Discrete_DpmTable *table = &(data->smc_state_table);
2904 const phw_tonga_ulv_parm *ulv = &(data->ulv);
2905 uint8_t i;
2906 PECI_RegistryValue reg_value;
2907 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2908
2909 result = tonga_setup_default_dpm_tables(hwmgr);
2910 PP_ASSERT_WITH_CODE(0 == result,
2911 "Failed to setup default DPM tables!", return result;);
2912 memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
2913 if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
2914 tonga_populate_smc_voltage_tables(hwmgr, table);
2915 }
2916
2917 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2918 PHM_PlatformCaps_AutomaticDCTransition)) {
2919 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2920 }
2921
2922 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2923 PHM_PlatformCaps_StepVddc)) {
2924 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2925 }
2926
2927 if (data->is_memory_GDDR5) {
2928 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2929 }
2930
2931 i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2932
2933 if (i == 1 || i == 0) {
2934 table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
2935 }
2936
2937 if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
2938 PP_ASSERT_WITH_CODE(0 == result,
2939 "Failed to initialize ULV state!", return result;);
2940
2941 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2942 ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
2943 }
2944
2945 result = tonga_populate_smc_link_level(hwmgr, table);
2946 PP_ASSERT_WITH_CODE(0 == result,
2947 "Failed to initialize Link Level!", return result;);
2948
2949 result = tonga_populate_all_graphic_levels(hwmgr);
2950 PP_ASSERT_WITH_CODE(0 == result,
2951 "Failed to initialize Graphics Level!", return result;);
2952
2953 result = tonga_populate_all_memory_levels(hwmgr);
2954 PP_ASSERT_WITH_CODE(0 == result,
2955 "Failed to initialize Memory Level!", return result;);
2956
2957 result = tonga_populate_smv_acpi_level(hwmgr, table);
2958 PP_ASSERT_WITH_CODE(0 == result,
2959 "Failed to initialize ACPI Level!", return result;);
2960
2961 result = tonga_populate_smc_vce_level(hwmgr, table);
2962 PP_ASSERT_WITH_CODE(0 == result,
2963 "Failed to initialize VCE Level!", return result;);
2964
2965 result = tonga_populate_smc_acp_level(hwmgr, table);
2966 PP_ASSERT_WITH_CODE(0 == result,
2967 "Failed to initialize ACP Level!", return result;);
2968
2969 result = tonga_populate_smc_samu_level(hwmgr, table);
2970 PP_ASSERT_WITH_CODE(0 == result,
2971 "Failed to initialize SAMU Level!", return result;);
2972
2973 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2974 /* need to populate the ARB settings for the initial state. */
2975 result = tonga_program_memory_timing_parameters(hwmgr);
2976 PP_ASSERT_WITH_CODE(0 == result,
2977 "Failed to Write ARB settings for the initial state.", return result;);
2978
0104aa21
AD
2979 result = tonga_populate_smc_uvd_level(hwmgr, table);
2980 PP_ASSERT_WITH_CODE(0 == result,
2981 "Failed to initialize UVD Level!", return result;);
2982
c82baa28 2983 result = tonga_populate_smc_boot_level(hwmgr, table);
2984 PP_ASSERT_WITH_CODE(0 == result,
2985 "Failed to initialize Boot Level!", return result;);
2986
2987 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2988 PHM_PlatformCaps_ClockStretcher)) {
2989 result = tonga_populate_clock_stretcher_data_table(hwmgr);
2990 PP_ASSERT_WITH_CODE(0 == result,
2991 "Failed to populate Clock Stretcher Data Table!", return result;);
2992 }
2993 table->GraphicsVoltageChangeEnable = 1;
2994 table->GraphicsThermThrottleEnable = 1;
2995 table->GraphicsInterval = 1;
2996 table->VoltageInterval = 1;
2997 table->ThermalInterval = 1;
2998 table->TemperatureLimitHigh =
2999 pptable_info->cac_dtp_table->usTargetOperatingTemp *
3000 TONGA_Q88_FORMAT_CONVERSION_UNIT;
3001 table->TemperatureLimitLow =
3002 (pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3003 TONGA_Q88_FORMAT_CONVERSION_UNIT;
3004 table->MemoryVoltageChangeEnable = 1;
3005 table->MemoryInterval = 1;
3006 table->VoltageResponseTime = 0;
3007 table->PhaseResponseTime = 0;
3008 table->MemoryThermThrottleEnable = 1;
3009
3010 /*
3011 * Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
3012 * SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
3013 * but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
3014 * To avoid it, we set PCIeBootLinkLevel to highest dpm level
3015 */
3016 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
3017 "There must be 1 or more PCIE levels defined in PPTable.",
3018 return -1);
3019
3020 table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
3021
3022 table->PCIeGenInterval = 1;
3023
3024 result = tonga_populate_vr_config(hwmgr, table);
3025 PP_ASSERT_WITH_CODE(0 == result,
3026 "Failed to populate VRConfig setting!", return result);
3027
3028 table->ThermGpio = 17;
3029 table->SclkStepSize = 0x4000;
3030
3031 reg_value = 0;
3032 if ((0 == reg_value) &&
3033 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3034 VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
3035 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3036 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3037 PHM_PlatformCaps_RegulatorHot);
3038 } else {
3039 table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
3040 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3041 PHM_PlatformCaps_RegulatorHot);
3042 }
3043
3044 /* ACDC Switch GPIO */
3045 reg_value = 0;
3046 if ((0 == reg_value) &&
3047 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3048 PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
3049 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3050 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3051 PHM_PlatformCaps_AutomaticDCTransition);
3052 } else {
3053 table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
3054 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3055 PHM_PlatformCaps_AutomaticDCTransition);
3056 }
3057
3058 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3059 PHM_PlatformCaps_Falcon_QuickTransition);
3060
3061 reg_value = 0;
3062 if (1 == reg_value) {
3063 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3064 PHM_PlatformCaps_AutomaticDCTransition);
3065 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3066 PHM_PlatformCaps_Falcon_QuickTransition);
3067 }
3068
3069 reg_value = 0;
3070 if ((0 == reg_value) &&
3071 (0 == atomctrl_get_pp_assign_pin(hwmgr,
3072 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
3073 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3074 PHM_PlatformCaps_ThermalOutGPIO);
3075
3076 table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
3077
3078 table->ThermOutPolarity =
3079 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3080 (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
3081
3082 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3083
3084 /* if required, combine VRHot/PCC with thermal out GPIO*/
3085 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3086 PHM_PlatformCaps_RegulatorHot) &&
3087 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3088 PHM_PlatformCaps_CombinePCCWithThermalSignal)){
3089 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3090 }
3091 } else {
3092 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3093 PHM_PlatformCaps_ThermalOutGPIO);
3094
3095 table->ThermOutGpio = 17;
3096 table->ThermOutPolarity = 1;
3097 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3098 }
3099
3100 for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
3101 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3102 }
3103 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3104 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3105 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3106 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3107 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3108 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3109 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3110 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3111 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3112
3113 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3114 result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
3115 offsetof(SMU72_Discrete_DpmTable, SystemFlags),
3116 (uint8_t *)&(table->SystemFlags),
3117 sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
3118 data->sram_end);
3119
3120 PP_ASSERT_WITH_CODE(0 == result,
3121 "Failed to upload dpm data to SMC memory!", return result;);
3122
3123 return result;
3124}
3125
3126/* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
3127static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
3128{
3129 return;
3130}
3131
3132int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3133{
3134 PPSMC_Result result;
3135 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3136
3137 /* Apply minimum voltage based on DAL's request level */
3138 tonga_apply_dal_minimum_voltage_request(hwmgr);
3139
3140 if (0 == data->sclk_dpm_key_disabled) {
3141 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3142 if (0 != tonga_is_dpm_running(hwmgr))
3143 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3144
3145 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3146 result = smum_send_msg_to_smc_with_parameter(
3147 hwmgr->smumgr,
3148 (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
3149 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3150 PP_ASSERT_WITH_CODE((0 == result),
3151 "Set Sclk Dpm enable Mask failed", return -1);
3152 }
3153 }
3154
3155 if (0 == data->mclk_dpm_key_disabled) {
3156 /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
3157 if (0 != tonga_is_dpm_running(hwmgr))
3158 printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
3159
3160 if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3161 result = smum_send_msg_to_smc_with_parameter(
3162 hwmgr->smumgr,
3163 (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
3164 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3165 PP_ASSERT_WITH_CODE((0 == result),
3166 "Set Mclk Dpm enable Mask failed", return -1);
3167 }
3168 }
3169
3170 return 0;
3171}
3172
3173
3174int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
3175{
3176 uint32_t level, tmp;
3177 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3178
3179 if (0 == data->pcie_dpm_key_disabled) {
3180 /* PCIE */
3181 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3182 level = 0;
3183 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3184 while (tmp >>= 1)
3185 level++ ;
3186
3187 if (0 != level) {
3188 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3189 "force highest pcie dpm state failed!", return -1);
3190 }
3191 }
3192 }
3193
3194 if (0 == data->sclk_dpm_key_disabled) {
3195 /* SCLK */
3196 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
3197 level = 0;
3198 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3199 while (tmp >>= 1)
3200 level++ ;
3201
3202 if (0 != level) {
3203 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3204 "force highest sclk dpm state failed!", return -1);
3205 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3206 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3207 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3208 Curr_Sclk_Index does not match the level \n");
3209
3210 }
3211 }
3212 }
3213
3214 if (0 == data->mclk_dpm_key_disabled) {
3215 /* MCLK */
3216 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3217 level = 0;
3218 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3219 while (tmp >>= 1)
3220 level++ ;
3221
3222 if (0 != level) {
3223 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3224 "force highest mclk dpm state failed!", return -1);
3225 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3226 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3227 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
9fe1837d 3228 Curr_Mclk_Index does not match the level \n");
c82baa28 3229 }
3230 }
3231 }
3232
3233 return 0;
3234}
3235
3236/**
3237 * Find the MC microcode version and store it in the HwMgr struct
3238 *
3239 * @param hwmgr the address of the powerplay hardware manager.
3240 * @return always 0
3241 */
3242int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
3243{
3244 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
3245
3246 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
3247
3248 return 0;
3249}
3250
3251/**
3252 * Initialize Dynamic State Adjustment Rule Settings
3253 *
3254 * @param hwmgr the address of the powerplay hardware manager.
3255 */
3256int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
3257{
3258 uint32_t table_size;
3259 struct phm_clock_voltage_dependency_table *table_clk_vlt;
3260 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3261
3262 hwmgr->dyn_state.mclk_sclk_ratio = 4;
3263 hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */
3264 hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */
3265
3266 /* initialize vddc_dep_on_dal_pwrl table */
3267 table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
3268 table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
3269
3270 if (NULL == table_clk_vlt) {
3271 printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
3272 return -ENOMEM;
3273 } else {
3274 table_clk_vlt->count = 4;
3275 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
3276 table_clk_vlt->entries[0].v = 0;
3277 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
3278 table_clk_vlt->entries[1].v = 720;
3279 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
3280 table_clk_vlt->entries[2].v = 810;
3281 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
3282 table_clk_vlt->entries[3].v = 900;
3283 pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
3284 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
3285 }
3286
3287 return 0;
3288}
3289
3290static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
3291{
3292 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3293 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3294
3295 phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
3296 pptable_info->vdd_dep_on_sclk;
3297 phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
3298 pptable_info->vdd_dep_on_mclk;
3299
3300 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
3301 "VDD dependency on SCLK table is missing. \
3302 This table is mandatory", return -1);
3303 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
3304 "VDD dependency on SCLK table has to have is missing. \
3305 This table is mandatory", return -1);
3306
3307 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
3308 "VDD dependency on MCLK table is missing. \
3309 This table is mandatory", return -1);
3310 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
3311 "VDD dependency on MCLK table has to have is missing. \
3312 This table is mandatory", return -1);
3313
3314 data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
3315 data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3316
3317 pptable_info->max_clock_voltage_on_ac.sclk =
3318 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
3319 pptable_info->max_clock_voltage_on_ac.mclk =
3320 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
3321 pptable_info->max_clock_voltage_on_ac.vddc =
3322 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
3323 pptable_info->max_clock_voltage_on_ac.vddci =
3324 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
3325
3326 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
3327 pptable_info->max_clock_voltage_on_ac.sclk;
3328 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
3329 pptable_info->max_clock_voltage_on_ac.mclk;
3330 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
3331 pptable_info->max_clock_voltage_on_ac.vddc;
3332 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
3333 pptable_info->max_clock_voltage_on_ac.vddci;
3334
3335 return 0;
3336}
3337
3338int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3339{
3340 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3341 int result = 1;
3342
3343 PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
3344 "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
3345 return result);
3346
3347 if (0 == data->pcie_dpm_key_disabled) {
3348 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
3349 hwmgr->smumgr,
3350 PPSMC_MSG_PCIeDPM_UnForceLevel)),
3351 "unforce pcie level failed!",
3352 return -1);
3353 }
3354
3355 result = tonga_upload_dpm_level_enable_mask(hwmgr);
3356
3357 return result;
3358}
3359
3360static uint32_t tonga_get_lowest_enable_level(
3361 struct pp_hwmgr *hwmgr, uint32_t level_mask)
3362{
3363 uint32_t level = 0;
3364
3365 while (0 == (level_mask & (1 << level)))
3366 level++;
3367
3368 return level;
3369}
3370
3371static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3372{
9fe1837d 3373 uint32_t level;
c82baa28 3374 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3375
9fe1837d
AD
3376 if (0 == data->pcie_dpm_key_disabled) {
3377 /* PCIE */
3378 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
3379 level = tonga_get_lowest_enable_level(hwmgr,
3380 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3381 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
3382 "force lowest pcie dpm state failed!", return -1);
3383 }
3384 }
3385
3386 if (0 == data->sclk_dpm_key_disabled) {
3387 /* SCLK */
3388 if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3389 level = tonga_get_lowest_enable_level(hwmgr,
3390 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
c82baa28 3391
9fe1837d
AD
3392 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
3393 "force sclk dpm state failed!", return -1);
c82baa28 3394
9fe1837d
AD
3395 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
3396 CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
3397 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
c82baa28 3398 Curr_Sclk_Index does not match the level \n");
9fe1837d
AD
3399 }
3400 }
3401
3402 if (0 == data->mclk_dpm_key_disabled) {
3403 /* MCLK */
3404 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
3405 level = tonga_get_lowest_enable_level(hwmgr,
3406 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3407 PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
3408 "force lowest mclk dpm state failed!", return -1);
3409 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3410 TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
3411 printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
3412 Curr_Mclk_Index does not match the level \n");
3413 }
c82baa28 3414 }
3415
3416 return 0;
3417}
3418
3419static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
3420{
3421 uint8_t entryId;
3422 uint8_t voltageId;
3423 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3424 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3425
3426 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3427 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3428 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3429
3430 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3431 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3432 voltageId = sclk_table->entries[entryId].vddInd;
3433 sclk_table->entries[entryId].vddgfx =
3434 pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
3435 }
3436 } else {
3437 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3438 voltageId = sclk_table->entries[entryId].vddInd;
3439 sclk_table->entries[entryId].vddc =
3440 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3441 }
3442 }
3443
3444 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3445 voltageId = mclk_table->entries[entryId].vddInd;
3446 mclk_table->entries[entryId].vddc =
3447 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3448 }
3449
3450 for (entryId = 0; entryId < mm_table->count; ++entryId) {
3451 voltageId = mm_table->entries[entryId].vddcInd;
3452 mm_table->entries[entryId].vddc =
3453 pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
3454 }
3455
3456 return 0;
3457
3458}
3459
3460static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
3461{
3462 uint8_t entryId;
3463 phm_ppt_v1_voltage_lookup_record v_record;
3464 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3465 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3466
3467 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
3468 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
3469
3470 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3471 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
3472 if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
3473 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3474 sclk_table->entries[entryId].vdd_offset - 0xFFFF;
3475 else
3476 v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
3477 sclk_table->entries[entryId].vdd_offset;
3478
3479 sclk_table->entries[entryId].vddc =
3480 v_record.us_cac_low = v_record.us_cac_mid =
3481 v_record.us_cac_high = v_record.us_vdd;
3482
3483 tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
3484 }
3485
3486 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
3487 if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
3488 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3489 mclk_table->entries[entryId].vdd_offset - 0xFFFF;
3490 else
3491 v_record.us_vdd = mclk_table->entries[entryId].vddc +
3492 mclk_table->entries[entryId].vdd_offset;
3493
3494 mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
3495 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3496 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3497 }
3498 }
3499
3500 return 0;
3501
3502}
3503
3504static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
3505{
3506 uint32_t entryId;
3507 phm_ppt_v1_voltage_lookup_record v_record;
3508 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3509 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3510 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
3511
3512 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3513 for (entryId = 0; entryId < mm_table->count; entryId++) {
3514 if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
3515 v_record.us_vdd = mm_table->entries[entryId].vddc +
3516 mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
3517 else
3518 v_record.us_vdd = mm_table->entries[entryId].vddc +
3519 mm_table->entries[entryId].vddgfx_offset;
3520
3521 /* Add the calculated VDDGFX to the VDDGFX lookup table */
3522 mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
3523 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
3524 tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
3525 }
3526 }
3527 return 0;
3528}
3529
3530
3531/**
3532 * Change virtual leakage voltage to actual value.
3533 *
3534 * @param hwmgr the address of the powerplay hardware manager.
3535 * @param pointer to changing voltage
3536 * @param pointer to leakage table
3537 */
3538static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
3539 uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
3540{
3541 uint32_t leakage_index;
3542
3543 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
3544 for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
3545 /* if this voltage matches a leakage voltage ID */
3546 /* patch with actual leakage voltage */
3547 if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
3548 *voltage = pLeakageTable->actual_voltage[leakage_index];
3549 break;
3550 }
3551 }
3552
3553 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
3554 printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
3555}
3556
3557/**
3558 * Patch voltage lookup table by EVV leakages.
3559 *
3560 * @param hwmgr the address of the powerplay hardware manager.
3561 * @param pointer to voltage lookup table
3562 * @param pointer to leakage table
3563 * @return always 0
3564 */
3565static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
3566 phm_ppt_v1_voltage_lookup_table *lookup_table,
3567 phw_tonga_leakage_voltage *pLeakageTable)
3568{
3569 uint32_t i;
3570
3571 for (i = 0; i < lookup_table->count; i++) {
3572 tonga_patch_with_vdd_leakage(hwmgr,
3573 &lookup_table->entries[i].us_vdd, pLeakageTable);
3574 }
3575
3576 return 0;
3577}
3578
3579static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
3580 phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
3581{
3582 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3583
3584 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
3585 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
3586 pptable_info->max_clock_voltage_on_dc.vddc;
3587
3588 return 0;
3589}
3590
3591static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
3592 struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
3593 uint16_t *Vddgfx)
3594{
3595 tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
3596 return 0;
3597}
3598
3599int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
3600 phm_ppt_v1_voltage_lookup_table *lookup_table)
3601{
3602 uint32_t table_size, i, j;
3603 phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
3604 table_size = lookup_table->count;
3605
3606 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
3607 "Lookup table is empty", return -1);
3608
3609 /* Sorting voltages */
3610 for (i = 0; i < table_size - 1; i++) {
3611 for (j = i + 1; j > 0; j--) {
3612 if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
3613 tmp_voltage_lookup_record = lookup_table->entries[j-1];
3614 lookup_table->entries[j-1] = lookup_table->entries[j];
3615 lookup_table->entries[j] = tmp_voltage_lookup_record;
3616 }
3617 }
3618 }
3619
3620 return 0;
3621}
3622
3623static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
3624{
3625 int result = 0;
3626 int tmp_result;
3627 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3628 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
3629
3630 if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
3631 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3632 pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
3633 if (tmp_result != 0)
3634 result = tmp_result;
3635
3636 tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
3637 &(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
3638 if (tmp_result != 0)
3639 result = tmp_result;
3640 } else {
3641 tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
3642 pptable_info->vddc_lookup_table, &(data->vddc_leakage));
3643 if (tmp_result != 0)
3644 result = tmp_result;
3645
3646 tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
3647 &(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
3648 if (tmp_result != 0)
3649 result = tmp_result;
3650 }
3651
3652 tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
3653 if (tmp_result != 0)
3654 result = tmp_result;
3655
3656 tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
3657 if (tmp_result != 0)
3658 result = tmp_result;
3659
3660 tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
3661 if (tmp_result != 0)
3662 result = tmp_result;
3663
3664 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
3665 if (tmp_result != 0)
3666 result = tmp_result;
3667
3668 tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
3669 if (tmp_result != 0)
3670 result = tmp_result;
3671
3672 return result;
3673}
3674
3675int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
3676{
3677 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3678 data->low_sclk_interrupt_threshold = 0;
3679
3680 return 0;
3681}
3682
3683int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
3684{
3685 int tmp_result, result = 0;
3686
3687 tmp_result = tonga_read_clock_registers(hwmgr);
3688 PP_ASSERT_WITH_CODE((0 == tmp_result),
3689 "Failed to read clock registers!", result = tmp_result);
3690
3691 tmp_result = tonga_get_memory_type(hwmgr);
3692 PP_ASSERT_WITH_CODE((0 == tmp_result),
3693 "Failed to get memory type!", result = tmp_result);
3694
3695 tmp_result = tonga_enable_acpi_power_management(hwmgr);
3696 PP_ASSERT_WITH_CODE((0 == tmp_result),
3697 "Failed to enable ACPI power management!", result = tmp_result);
3698
3699 tmp_result = tonga_init_power_gate_state(hwmgr);
3700 PP_ASSERT_WITH_CODE((0 == tmp_result),
3701 "Failed to init power gate state!", result = tmp_result);
3702
3703 tmp_result = tonga_get_mc_microcode_version(hwmgr);
3704 PP_ASSERT_WITH_CODE((0 == tmp_result),
3705 "Failed to get MC microcode version!", result = tmp_result);
3706
3707 tmp_result = tonga_init_sclk_threshold(hwmgr);
3708 PP_ASSERT_WITH_CODE((0 == tmp_result),
3709 "Failed to init sclk threshold!", result = tmp_result);
3710
3711 return result;
3712}
3713
3714/**
3715 * Enable voltage control
3716 *
3717 * @param hwmgr the address of the powerplay hardware manager.
3718 * @return always 0
3719 */
3720int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
3721{
3722 /* enable voltage control */
3723 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
3724
3725 return 0;
3726}
3727
3728/**
3729 * Checks if we want to support voltage control
3730 *
3731 * @param hwmgr the address of the powerplay hardware manager.
3732 */
3733bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
3734{
3735 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3736
3737 return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
3738}
3739
3740/*---------------------------MC----------------------------*/
3741
3742uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
3743{
3744 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
3745}
3746
3747bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
3748{
3749 bool result = 1;
3750
3751 switch (inReg) {
3752 case mmMC_SEQ_RAS_TIMING:
3753 *outReg = mmMC_SEQ_RAS_TIMING_LP;
3754 break;
3755
3756 case mmMC_SEQ_DLL_STBY:
3757 *outReg = mmMC_SEQ_DLL_STBY_LP;
3758 break;
3759
3760 case mmMC_SEQ_G5PDX_CMD0:
3761 *outReg = mmMC_SEQ_G5PDX_CMD0_LP;
3762 break;
3763
3764 case mmMC_SEQ_G5PDX_CMD1:
3765 *outReg = mmMC_SEQ_G5PDX_CMD1_LP;
3766 break;
3767
3768 case mmMC_SEQ_G5PDX_CTRL:
3769 *outReg = mmMC_SEQ_G5PDX_CTRL_LP;
3770 break;
3771
3772 case mmMC_SEQ_CAS_TIMING:
3773 *outReg = mmMC_SEQ_CAS_TIMING_LP;
3774 break;
3775
3776 case mmMC_SEQ_MISC_TIMING:
3777 *outReg = mmMC_SEQ_MISC_TIMING_LP;
3778 break;
3779
3780 case mmMC_SEQ_MISC_TIMING2:
3781 *outReg = mmMC_SEQ_MISC_TIMING2_LP;
3782 break;
3783
3784 case mmMC_SEQ_PMG_DVS_CMD:
3785 *outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
3786 break;
3787
3788 case mmMC_SEQ_PMG_DVS_CTL:
3789 *outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
3790 break;
3791
3792 case mmMC_SEQ_RD_CTL_D0:
3793 *outReg = mmMC_SEQ_RD_CTL_D0_LP;
3794 break;
3795
3796 case mmMC_SEQ_RD_CTL_D1:
3797 *outReg = mmMC_SEQ_RD_CTL_D1_LP;
3798 break;
3799
3800 case mmMC_SEQ_WR_CTL_D0:
3801 *outReg = mmMC_SEQ_WR_CTL_D0_LP;
3802 break;
3803
3804 case mmMC_SEQ_WR_CTL_D1:
3805 *outReg = mmMC_SEQ_WR_CTL_D1_LP;
3806 break;
3807
3808 case mmMC_PMG_CMD_EMRS:
3809 *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
3810 break;
3811
3812 case mmMC_PMG_CMD_MRS:
3813 *outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
3814 break;
3815
3816 case mmMC_PMG_CMD_MRS1:
3817 *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
3818 break;
3819
3820 case mmMC_SEQ_PMG_TIMING:
3821 *outReg = mmMC_SEQ_PMG_TIMING_LP;
3822 break;
3823
3824 case mmMC_PMG_CMD_MRS2:
3825 *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
3826 break;
3827
3828 case mmMC_SEQ_WR_CTL_2:
3829 *outReg = mmMC_SEQ_WR_CTL_2_LP;
3830 break;
3831
3832 default:
3833 result = 0;
3834 break;
3835 }
3836
3837 return result;
3838}
3839
3840int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
3841{
3842 uint32_t i;
3843 uint16_t address;
3844
3845 for (i = 0; i < table->last; i++) {
3846 table->mc_reg_address[i].s0 =
3847 tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
3848 ? address : table->mc_reg_address[i].s1;
3849 }
3850 return 0;
3851}
3852
3853int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
3854{
3855 uint8_t i, j;
3856
3857 PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3858 "Invalid VramInfo table.", return -1);
3859 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
3860 "Invalid VramInfo table.", return -1);
3861
3862 for (i = 0; i < table->last; i++) {
3863 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
3864 }
3865 ni_table->last = table->last;
3866
3867 for (i = 0; i < table->num_entries; i++) {
3868 ni_table->mc_reg_table_entry[i].mclk_max =
3869 table->mc_reg_table_entry[i].mclk_max;
3870 for (j = 0; j < table->last; j++) {
3871 ni_table->mc_reg_table_entry[i].mc_data[j] =
3872 table->mc_reg_table_entry[i].mc_data[j];
3873 }
3874 }
3875 ni_table->num_entries = table->num_entries;
3876
3877 return 0;
3878}
3879
3880/**
3881 * VBIOS omits some information to reduce size, we need to recover them here.
3882 * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3883 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3884 * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
3885 * 3. need to set these data for each clock range
3886 *
3887 * @param hwmgr the address of the powerplay hardware manager.
3888 * @param table the address of MCRegTable
3889 * @return always 0
3890 */
3891int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
3892{
3893 uint8_t i, j, k;
3894 uint32_t temp_reg;
3895 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
3896
3897 for (i = 0, j = table->last; i < table->last; i++) {
3898 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3899 "Invalid VramInfo table.", return -1);
3900 switch (table->mc_reg_address[i].s1) {
3901 /*
3902 * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
3903 * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
3904 */
3905 case mmMC_SEQ_MISC1:
3906 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
3907 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
3908 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
3909 for (k = 0; k < table->num_entries; k++) {
3910 table->mc_reg_table_entry[k].mc_data[j] =
3911 ((temp_reg & 0xffff0000)) |
3912 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
3913 }
3914 j++;
3915 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3916 "Invalid VramInfo table.", return -1);
3917
3918 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3919 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3920 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3921 for (k = 0; k < table->num_entries; k++) {
3922 table->mc_reg_table_entry[k].mc_data[j] =
3923 (temp_reg & 0xffff0000) |
3924 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3925
3926 if (!data->is_memory_GDDR5) {
3927 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3928 }
3929 }
3930 j++;
3931 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3932 "Invalid VramInfo table.", return -1);
3933
3934 if (!data->is_memory_GDDR5) {
3935 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3936 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3937 for (k = 0; k < table->num_entries; k++) {
3938 table->mc_reg_table_entry[k].mc_data[j] =
3939 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3940 }
3941 j++;
3942 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3943 "Invalid VramInfo table.", return -1);
3944 }
3945
3946 break;
3947
3948 case mmMC_SEQ_RESERVE_M:
3949 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3950 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3951 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3952 for (k = 0; k < table->num_entries; k++) {
3953 table->mc_reg_table_entry[k].mc_data[j] =
3954 (temp_reg & 0xffff0000) |
3955 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3956 }
3957 j++;
3958 PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3959 "Invalid VramInfo table.", return -1);
3960 break;
3961
3962 default:
3963 break;
3964 }
3965
3966 }
3967
3968 table->last = j;
3969
3970 return 0;
3971}
3972
3973int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
3974{
3975 uint8_t i, j;
3976 for (i = 0; i < table->last; i++) {
3977 for (j = 1; j < table->num_entries; j++) {
3978 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3979 table->mc_reg_table_entry[j].mc_data[i]) {
3980 table->validflag |= (1<<i);
3981 break;
3982 }
3983 }
3984 }
3985
3986 return 0;
3987}
3988
3989int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
3990{
3991 int result;
3992 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
3993 pp_atomctrl_mc_reg_table *table;
3994 phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
3995 uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
3996
3997 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
3998
3999 if (NULL == table)
4000 return -1;
4001
4002 /* Program additional LP registers that are no longer programmed by VBIOS */
4003 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
4004 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
4005 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
4006 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
4007 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
4008 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
4009 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
4010 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
4011 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
4012 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
4013 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
4014 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
4015 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
4016 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
4017 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
4018 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
4019 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
4020 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
4021 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
4022 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
4023
4024 memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
4025
4026 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
4027
4028 if (0 == result)
4029 result = tonga_copy_vbios_smc_reg_table(table, ni_table);
4030
4031 if (0 == result) {
4032 tonga_set_s0_mc_reg_index(ni_table);
4033 result = tonga_set_mc_special_registers(hwmgr, ni_table);
4034 }
4035
4036 if (0 == result)
4037 tonga_set_valid_flag(ni_table);
4038
4039 kfree(table);
4040 return result;
4041}
4042
4043/*
4044* Copy one arb setting to another and then switch the active set.
4045* arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
4046*/
4047int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
4048 uint32_t arbFreqSrc, uint32_t arbFreqDest)
4049{
4050 uint32_t mc_arb_dram_timing;
4051 uint32_t mc_arb_dram_timing2;
4052 uint32_t burst_time;
4053 uint32_t mc_cg_config;
4054
4055 switch (arbFreqSrc) {
4056 case MC_CG_ARB_FREQ_F0:
4057 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
4058 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
4059 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
4060 break;
4061
4062 case MC_CG_ARB_FREQ_F1:
4063 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
4064 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
4065 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
4066 break;
4067
4068 default:
4069 return -1;
4070 }
4071
4072 switch (arbFreqDest) {
4073 case MC_CG_ARB_FREQ_F0:
4074 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
4075 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
4076 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
4077 break;
4078
4079 case MC_CG_ARB_FREQ_F1:
4080 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
4081 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
4082 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
4083 break;
4084
4085 default:
4086 return -1;
4087 }
4088
4089 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
4090 mc_cg_config |= 0x0000000F;
4091 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
4092 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
4093
4094 return 0;
4095}
4096
4097/**
4098 * Initial switch from ARB F0->F1
4099 *
4100 * @param hwmgr the address of the powerplay hardware manager.
4101 * @return always 0
4102 * This function is to be called from the SetPowerState table.
4103 */
4104int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
4105{
4106 return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
4107}
4108
4109/**
4110 * Initialize the ARB DRAM timing table's index field.
4111 *
4112 * @param hwmgr the address of the powerplay hardware manager.
4113 * @return always 0
4114 */
4115int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
4116{
4117 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4118 uint32_t tmp;
4119 int result;
4120
4121 /*
4122 * This is a read-modify-write on the first byte of the ARB table.
4123 * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
4124 * This solution is ugly, but we never write the whole table only individual fields in it.
4125 * In reality this field should not be in that structure but in a soft register.
4126 */
4127 result = tonga_read_smc_sram_dword(hwmgr->smumgr,
4128 data->arb_table_start, &tmp, data->sram_end);
4129
4130 if (0 != result)
4131 return result;
4132
4133 tmp &= 0x00FFFFFF;
4134 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
4135
4136 return tonga_write_smc_sram_dword(hwmgr->smumgr,
4137 data->arb_table_start, tmp, data->sram_end);
4138}
4139
4140int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
4141{
4142 const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4143
4144 uint32_t i, j;
4145
4146 for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
4147 if (data->tonga_mc_reg_table.validflag & 1<<j) {
4148 PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
4149 "Index of mc_reg_table->address[] array out of boundary", return -1);
4150 mc_reg_table->address[i].s0 =
4151 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
4152 mc_reg_table->address[i].s1 =
4153 PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
4154 i++;
4155 }
4156 }
4157
4158 mc_reg_table->last = (uint8_t)i;
4159
4160 return 0;
4161}
4162
4163/*convert register values from driver to SMC format */
4164void tonga_convert_mc_registers(
4165 const phw_tonga_mc_reg_entry * pEntry,
4166 SMU72_Discrete_MCRegisterSet *pData,
4167 uint32_t numEntries, uint32_t validflag)
4168{
4169 uint32_t i, j;
4170
4171 for (i = 0, j = 0; j < numEntries; j++) {
4172 if (validflag & 1<<j) {
4173 pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
4174 i++;
4175 }
4176 }
4177}
4178
4179/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
4180int tonga_convert_mc_reg_table_entry_to_smc(
4181 struct pp_hwmgr *hwmgr,
4182 const uint32_t memory_clock,
4183 SMU72_Discrete_MCRegisterSet *mc_reg_table_data
4184 )
4185{
4186 const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4187 uint32_t i = 0;
4188
4189 for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
4190 if (memory_clock <=
4191 data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
4192 break;
4193 }
4194 }
4195
4196 if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
4197 --i;
4198
4199 tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
4200 mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
4201
4202 return 0;
4203}
4204
4205int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
4206 SMU72_Discrete_MCRegisters *mc_reg_table)
4207{
4208 int result = 0;
4209 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4210 int res;
4211 uint32_t i;
4212
4213 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
4214 res = tonga_convert_mc_reg_table_entry_to_smc(
4215 hwmgr,
4216 data->dpm_table.mclk_table.dpm_levels[i].value,
4217 &mc_reg_table->data[i]
4218 );
4219
4220 if (0 != res)
4221 result = res;
4222 }
4223
4224 return result;
4225}
4226
4227int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
4228{
4229 int result;
4230 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4231
4232 memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
4233 result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
4234 PP_ASSERT_WITH_CODE(0 == result,
4235 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
4236
4237 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
4238 PP_ASSERT_WITH_CODE(0 == result,
4239 "Failed to initialize MCRegTable for driver state!", return result;);
4240
4241 return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
4242 (uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
4243}
4244
4245/**
4246 * Programs static screed detection parameters
4247 *
4248 * @param hwmgr the address of the powerplay hardware manager.
4249 * @return always 0
4250 */
4251int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
4252{
4253 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4254
4255 /* Set static screen threshold unit*/
4256 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4257 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
4258 data->static_screen_threshold_unit);
4259 /* Set static screen threshold*/
4260 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
4261 CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
4262 data->static_screen_threshold);
4263
4264 return 0;
4265}
4266
4267/**
4268 * Setup display gap for glitch free memory clock switching.
4269 *
4270 * @param hwmgr the address of the powerplay hardware manager.
4271 * @return always 0
4272 */
4273int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
4274{
4275 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4276 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4277
4278 display_gap = PHM_SET_FIELD(display_gap,
4279 CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
4280
4281 display_gap = PHM_SET_FIELD(display_gap,
4282 CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
4283
4284 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4285 ixCG_DISPLAY_GAP_CNTL, display_gap);
4286
4287 return 0;
4288}
4289
4290/**
4291 * Programs activity state transition voting clients
4292 *
4293 * @param hwmgr the address of the powerplay hardware manager.
4294 * @return always 0
4295 */
4296int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
4297{
4298 tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
4299
4300 /* Clear reset for voting clients before enabling DPM */
4301 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4302 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
4303 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4304 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
4305
4306 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4307 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
4308 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4309 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
4310 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4311 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
4312 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4313 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
4314 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4315 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
4316 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4317 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
4318 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4319 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
4320 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4321 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
4322
4323 return 0;
4324}
4325
4326
4327int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
4328{
4329 int tmp_result, result = 0;
4330
4331 tmp_result = tonga_check_for_dpm_stopped(hwmgr);
4332
4333 if (cf_tonga_voltage_control(hwmgr)) {
4334 tmp_result = tonga_enable_voltage_control(hwmgr);
4335 PP_ASSERT_WITH_CODE((0 == tmp_result),
4336 "Failed to enable voltage control!", result = tmp_result);
4337
4338 tmp_result = tonga_construct_voltage_tables(hwmgr);
4339 PP_ASSERT_WITH_CODE((0 == tmp_result),
4340 "Failed to contruct voltage tables!", result = tmp_result);
4341 }
4342
4343 tmp_result = tonga_initialize_mc_reg_table(hwmgr);
4344 PP_ASSERT_WITH_CODE((0 == tmp_result),
4345 "Failed to initialize MC reg table!", result = tmp_result);
4346
4347 tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
4348 PP_ASSERT_WITH_CODE((0 == tmp_result),
4349 "Failed to program static screen threshold parameters!", result = tmp_result);
4350
4351 tmp_result = tonga_enable_display_gap(hwmgr);
4352 PP_ASSERT_WITH_CODE((0 == tmp_result),
4353 "Failed to enable display gap!", result = tmp_result);
4354
4355 tmp_result = tonga_program_voting_clients(hwmgr);
4356 PP_ASSERT_WITH_CODE((0 == tmp_result),
4357 "Failed to program voting clients!", result = tmp_result);
4358
4359 tmp_result = tonga_process_firmware_header(hwmgr);
4360 PP_ASSERT_WITH_CODE((0 == tmp_result),
4361 "Failed to process firmware header!", result = tmp_result);
4362
4363 tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
4364 PP_ASSERT_WITH_CODE((0 == tmp_result),
4365 "Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
4366
4367 tmp_result = tonga_init_smc_table(hwmgr);
4368 PP_ASSERT_WITH_CODE((0 == tmp_result),
4369 "Failed to initialize SMC table!", result = tmp_result);
4370
4371 tmp_result = tonga_init_arb_table_index(hwmgr);
4372 PP_ASSERT_WITH_CODE((0 == tmp_result),
4373 "Failed to initialize ARB table index!", result = tmp_result);
4374
4375 tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
4376 PP_ASSERT_WITH_CODE((0 == tmp_result),
4377 "Failed to populate initialize MC Reg table!", result = tmp_result);
4378
bbb207f3
RZ
4379 tmp_result = tonga_notify_smc_display_change(hwmgr, false);
4380 PP_ASSERT_WITH_CODE((0 == tmp_result),
4381 "Failed to notify no display!", result = tmp_result);
4382
c82baa28 4383 /* enable SCLK control */
4384 tmp_result = tonga_enable_sclk_control(hwmgr);
4385 PP_ASSERT_WITH_CODE((0 == tmp_result),
4386 "Failed to enable SCLK control!", result = tmp_result);
4387
4388 /* enable DPM */
4389 tmp_result = tonga_start_dpm(hwmgr);
4390 PP_ASSERT_WITH_CODE((0 == tmp_result),
4391 "Failed to start DPM!", result = tmp_result);
4392
4393 return result;
4394}
4395
4396int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4397{
4398 int tmp_result, result = 0;
4399
4400 tmp_result = tonga_check_for_dpm_running(hwmgr);
4401 PP_ASSERT_WITH_CODE((0 == tmp_result),
4402 "SMC is still running!", return 0);
4403
4404 tmp_result = tonga_stop_dpm(hwmgr);
4405 PP_ASSERT_WITH_CODE((0 == tmp_result),
4406 "Failed to stop DPM!", result = tmp_result);
4407
4408 tmp_result = tonga_reset_to_default(hwmgr);
4409 PP_ASSERT_WITH_CODE((0 == tmp_result),
4410 "Failed to reset to default!", result = tmp_result);
4411
4412 return result;
4413}
4414
4415int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
4416{
4417 int result;
4418
4419 result = tonga_set_boot_state(hwmgr);
4420 if (0 != result)
4421 printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
4422
4423 return result;
4424}
4425
4426int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
4427{
4428 if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
4429 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
4430 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
4431 }
4432
4433 if (NULL != hwmgr->backend) {
4434 kfree(hwmgr->backend);
4435 hwmgr->backend = NULL;
4436 }
4437
4438 return 0;
4439}
4440
4441/**
4442 * Initializes the Volcanic Islands Hardware Manager
4443 *
4444 * @param hwmgr the address of the powerplay hardware manager.
4445 * @return 1 if success; otherwise appropriate error code.
4446 */
4447int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
4448{
4449 int result = 0;
4450 SMU72_Discrete_DpmTable *table = NULL;
4451 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4452 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
4453 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4454 phw_tonga_ulv_parm *ulv;
4455
4456 PP_ASSERT_WITH_CODE((NULL != hwmgr),
4457 "Invalid Parameter!", return -1;);
4458
4459 data->dll_defaule_on = 0;
4460 data->sram_end = SMC_RAM_END;
4461
4462 data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
4463 data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
4464 data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
4465 data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
4466 data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
4467 data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
4468 data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
4469 data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
4470
4471 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
4472 data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
4473 data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
4474
4475 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4476 PHM_PlatformCaps_DisableVoltageIsland);
4477
4478 data->sclk_dpm_key_disabled = 0;
4479 data->mclk_dpm_key_disabled = 0;
4480 data->pcie_dpm_key_disabled = 0;
4481 data->pcc_monitor_enabled = 0;
4482
4483 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4484 PHM_PlatformCaps_UnTabledHardwareInterface);
4485
4486 data->gpio_debug = 0;
4487 data->engine_clock_data = 0;
4488 data->memory_clock_data = 0;
4489 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4490 PHM_PlatformCaps_DynamicPatchPowerState);
4491
4492 /* need to set voltage control types before EVV patching*/
4493 data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
4494 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
4495 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
4496 data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
4497
3ec2cdb8 4498 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4499 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
4500 data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4501 }
4502
4503 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4504 PHM_PlatformCaps_ControlVDDGFX)) {
3ec2cdb8 4505 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4506 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
4507 data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4508 }
4509 }
4510
4511 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
4512 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4513 PHM_PlatformCaps_ControlVDDGFX);
4514 }
4515
4516 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4517 PHM_PlatformCaps_EnableMVDDControl)) {
3ec2cdb8 4518 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4519 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
4520 data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
4521 }
4522 }
4523
4524 if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
4525 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4526 PHM_PlatformCaps_EnableMVDDControl);
4527 }
4528
4529 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4530 PHM_PlatformCaps_ControlVDDCI)) {
3ec2cdb8 4531 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4532 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
4533 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
3ec2cdb8 4534 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
c82baa28 4535 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
4536 data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
4537 }
4538
4539 if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
4540 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
4541 PHM_PlatformCaps_ControlVDDCI);
4542
4543 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4544 PHM_PlatformCaps_TablelessHardwareInterface);
4545
4546 if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
4547 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4548 PHM_PlatformCaps_ClockStretcher);
4549
4550 /* Initializes DPM default values*/
4551 tonga_initialize_dpm_defaults(hwmgr);
4552
4553 /* Get leakage voltage based on leakage ID.*/
4554 PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
4555 "Get EVV Voltage Failed. Abort Driver loading!", return -1);
4556
4557 tonga_complete_dependency_tables(hwmgr);
4558
4559 /* Parse pptable data read from VBIOS*/
4560 tonga_set_private_var_based_on_pptale(hwmgr);
4561
4562 /* ULV Support*/
4563 ulv = &(data->ulv);
4564 ulv->ulv_supported = 0;
4565
4566 /* Initalize Dynamic State Adjustment Rule Settings*/
4567 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
4568 data->uvd_enabled = 0;
4569
4570 table = &(data->smc_state_table);
4571
4572 /*
4573 * if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
4574 * Peak Current Control feature is enabled and we should program PCC HW register
4575 */
4576 if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
4577 uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
4578 CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
4579
4580 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
4581 case 0:
4582 temp_reg = PHM_SET_FIELD(temp_reg,
4583 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
4584 break;
4585 case 1:
4586 temp_reg = PHM_SET_FIELD(temp_reg,
4587 CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
4588 break;
4589 case 2:
4590 temp_reg = PHM_SET_FIELD(temp_reg,
4591 CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
4592 break;
4593 case 3:
4594 temp_reg = PHM_SET_FIELD(temp_reg,
4595 CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
4596 break;
4597 case 4:
4598 temp_reg = PHM_SET_FIELD(temp_reg,
4599 CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
4600 break;
4601 default:
4602 printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \
4603 Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
4604 break;
4605 }
4606 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4607 ixCNB_PWRMGT_CNTL, temp_reg);
4608 }
4609
4610 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4611 PHM_PlatformCaps_EnableSMU7ThermalManagement);
4612 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
4613 PHM_PlatformCaps_SMU7);
4614
4615 data->vddc_phase_shed_control = 0;
4616
4617 if (0 == result) {
834b694c
AD
4618 struct cgs_system_info sys_info = {0};
4619
c82baa28 4620 data->is_tlu_enabled = 0;
4621 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
4622 TONGA_MAX_HARDWARE_POWERLEVELS;
4623 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
4624 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
4625
834b694c
AD
4626 sys_info.size = sizeof(struct cgs_system_info);
4627 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
4628 result = cgs_query_system_info(hwmgr->device, &sys_info);
4629 if (result)
4630 data->pcie_gen_cap = 0x30007;
4631 else
4632 data->pcie_gen_cap = (uint32_t)sys_info.value;
4633 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
4634 data->pcie_spc_cap = 20;
4635 sys_info.size = sizeof(struct cgs_system_info);
4636 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
4637 result = cgs_query_system_info(hwmgr->device, &sys_info);
4638 if (result)
4639 data->pcie_lane_cap = 0x2f0000;
4640 else
4641 data->pcie_lane_cap = (uint32_t)sys_info.value;
c82baa28 4642 } else {
4643 /* Ignore return value in here, we are cleaning up a mess. */
4644 tonga_hwmgr_backend_fini(hwmgr);
4645 }
4646
4647 return result;
4648}
4649
4650static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
4651 enum amd_dpm_forced_level level)
4652{
4653 int ret = 0;
4654
4655 switch (level) {
4656 case AMD_DPM_FORCED_LEVEL_HIGH:
4657 ret = tonga_force_dpm_highest(hwmgr);
4658 if (ret)
4659 return ret;
4660 break;
4661 case AMD_DPM_FORCED_LEVEL_LOW:
4662 ret = tonga_force_dpm_lowest(hwmgr);
4663 if (ret)
4664 return ret;
4665 break;
4666 case AMD_DPM_FORCED_LEVEL_AUTO:
4667 ret = tonga_unforce_dpm_levels(hwmgr);
4668 if (ret)
4669 return ret;
4670 break;
4671 default:
4672 break;
4673 }
4674
4675 hwmgr->dpm_level = level;
4676 return ret;
4677}
4678
4679static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
4680 struct pp_power_state *prequest_ps,
4681 const struct pp_power_state *pcurrent_ps)
4682{
4683 struct tonga_power_state *tonga_ps =
4684 cast_phw_tonga_power_state(&prequest_ps->hardware);
4685
4686 uint32_t sclk;
4687 uint32_t mclk;
4688 struct PP_Clocks minimum_clocks = {0};
4689 bool disable_mclk_switching;
4690 bool disable_mclk_switching_for_frame_lock;
4691 struct cgs_display_info info = {0};
4692 const struct phm_clock_and_voltage_limits *max_limits;
4693 uint32_t i;
4694 tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4695 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
4696
4697 int32_t count;
4698 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
4699
4700 data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
4701
4702 PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
4703 "VI should always have 2 performance levels",
4704 );
4705
4706 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
4707 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
4708 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
4709
4710 if (PP_PowerSource_DC == hwmgr->power_source) {
4711 for (i = 0; i < tonga_ps->performance_level_count; i++) {
4712 if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
4713 tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
4714 if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
4715 tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
4716 }
4717 }
4718
4719 tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
4720 tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
4721
4722 tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
4723
4724 cgs_get_active_displays_info(hwmgr->device, &info);
4725
4726 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
4727
4728 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
4729
4730 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4731
4732 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
4733 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
4734
4735 for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
4736 if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
4737 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
4738 break;
4739 }
4740 }
4741
4742 if (count < 0)
4743 stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
4744
4745 stable_pstate_mclk = max_limits->mclk;
4746
4747 minimum_clocks.engineClock = stable_pstate_sclk;
4748 minimum_clocks.memoryClock = stable_pstate_mclk;
4749 }
4750
4751 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
4752 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
4753
4754 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
4755 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
4756
4757 tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
4758
4759 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
4760 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
4761 "Overdrive sclk exceeds limit",
4762 hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
4763
4764 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
4765 tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
4766 }
4767
4768 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
4769 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
4770 "Overdrive mclk exceeds limit",
4771 hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4772
4773 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
4774 tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
4775 }
4776
4777 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
4778 hwmgr->platform_descriptor.platformCaps,
4779 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
4780
4781 disable_mclk_switching = (1 < info.display_count) ||
4782 disable_mclk_switching_for_frame_lock;
4783
4784 sclk = tonga_ps->performance_levels[0].engine_clock;
4785 mclk = tonga_ps->performance_levels[0].memory_clock;
4786
4787 if (disable_mclk_switching)
4788 mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
4789
4790 if (sclk < minimum_clocks.engineClock)
4791 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
4792
4793 if (mclk < minimum_clocks.memoryClock)
4794 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
4795
4796 tonga_ps->performance_levels[0].engine_clock = sclk;
4797 tonga_ps->performance_levels[0].memory_clock = mclk;
4798
4799 tonga_ps->performance_levels[1].engine_clock =
4800 (tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
4801 tonga_ps->performance_levels[1].engine_clock :
4802 tonga_ps->performance_levels[0].engine_clock;
4803
4804 if (disable_mclk_switching) {
4805 if (mclk < tonga_ps->performance_levels[1].memory_clock)
4806 mclk = tonga_ps->performance_levels[1].memory_clock;
4807
4808 tonga_ps->performance_levels[0].memory_clock = mclk;
4809 tonga_ps->performance_levels[1].memory_clock = mclk;
4810 } else {
4811 if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
4812 tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
4813 }
4814
4815 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4816 for (i=0; i < tonga_ps->performance_level_count; i++) {
4817 tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4818 tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4819 tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4820 tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4821 }
4822 }
4823
4824 return 0;
4825}
4826
4827int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
4828{
4829 return sizeof(struct tonga_power_state);
4830}
4831
4832static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4833{
4834 struct pp_power_state *ps;
4835 struct tonga_power_state *tonga_ps;
4836
4837 if (hwmgr == NULL)
4838 return -EINVAL;
4839
4840 ps = hwmgr->request_ps;
4841
4842 if (ps == NULL)
4843 return -EINVAL;
4844
4845 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4846
4847 if (low)
4848 return tonga_ps->performance_levels[0].memory_clock;
4849 else
4850 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
4851}
4852
4853static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4854{
4855 struct pp_power_state *ps;
4856 struct tonga_power_state *tonga_ps;
4857
4858 if (hwmgr == NULL)
4859 return -EINVAL;
4860
4861 ps = hwmgr->request_ps;
4862
4863 if (ps == NULL)
4864 return -EINVAL;
4865
4866 tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
4867
4868 if (low)
4869 return tonga_ps->performance_levels[0].engine_clock;
4870 else
4871 return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
4872}
4873
4874static uint16_t tonga_get_current_pcie_speed(
4875 struct pp_hwmgr *hwmgr)
4876{
4877 uint32_t speed_cntl = 0;
4878
4879 speed_cntl = cgs_read_ind_register(hwmgr->device,
4880 CGS_IND_REG__PCIE,
4881 ixPCIE_LC_SPEED_CNTL);
4882 return((uint16_t)PHM_GET_FIELD(speed_cntl,
4883 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4884}
4885
4886static int tonga_get_current_pcie_lane_number(
4887 struct pp_hwmgr *hwmgr)
4888{
4889 uint32_t link_width;
4890
4891 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4892 CGS_IND_REG__PCIE,
4893 PCIE_LC_LINK_WIDTH_CNTL,
4894 LC_LINK_WIDTH_RD);
4895
4896 PP_ASSERT_WITH_CODE((7 >= link_width),
4897 "Invalid PCIe lane width!", return 0);
4898
4899 return decode_pcie_lane_width(link_width);
4900}
4901
4902static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
4903 struct pp_hw_power_state *hw_ps)
4904{
4905 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4906 struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
4907 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
4908 uint16_t size;
4909 uint8_t frev, crev;
4910 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
4911
4912 /* First retrieve the Boot clocks and VDDC from the firmware info table.
4913 * We assume here that fw_info is unchanged if this call fails.
4914 */
4915 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
4916 hwmgr->device, index,
4917 &size, &frev, &crev);
4918 if (!fw_info)
4919 /* During a test, there is no firmware info table. */
4920 return 0;
4921
4922 /* Patch the state. */
4923 data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock);
4924 data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock);
4925 data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
4926 data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
4927 data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
4928 data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
4929 data->vbios_boot_state.pcie_lane_bootup_value =
4930 (uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
4931
4932 /* set boot power state */
4933 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
4934 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
4935 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
4936 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
4937
4938 return 0;
4939}
4940
4941static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
4942 void *state, struct pp_power_state *power_state,
4943 void *pp_table, uint32_t classification_flag)
4944{
4945 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
4946
4947 struct tonga_power_state *tonga_ps =
4948 (struct tonga_power_state *)(&(power_state->hardware));
4949
4950 struct tonga_performance_level *performance_level;
4951
4952 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
4953
4954 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
4955 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
4956
4957 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
4958 (ATOM_Tonga_SCLK_Dependency_Table *)
c9fe74e6 4959 (((unsigned long)powerplay_table) +
c82baa28 4960 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
4961
4962 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
4963 (ATOM_Tonga_MCLK_Dependency_Table *)
c9fe74e6 4964 (((unsigned long)powerplay_table) +
c82baa28 4965 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
4966
4967 /* The following fields are not initialized here: id orderedList allStatesList */
4968 power_state->classification.ui_label =
4969 (le16_to_cpu(state_entry->usClassification) &
4970 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
4971 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
4972 power_state->classification.flags = classification_flag;
4973 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
4974
4975 power_state->classification.temporary_state = false;
4976 power_state->classification.to_be_deleted = false;
4977
4978 power_state->validation.disallowOnDC =
4979 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
4980
4981 power_state->pcie.lanes = 0;
4982
4983 power_state->display.disableFrameModulation = false;
4984 power_state->display.limitRefreshrate = false;
4985 power_state->display.enableVariBright =
4986 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
4987
4988 power_state->validation.supportedPowerLevels = 0;
4989 power_state->uvd_clocks.VCLK = 0;
4990 power_state->uvd_clocks.DCLK = 0;
4991 power_state->temperatures.min = 0;
4992 power_state->temperatures.max = 0;
4993
4994 performance_level = &(tonga_ps->performance_levels
4995 [tonga_ps->performance_level_count++]);
4996
4997 PP_ASSERT_WITH_CODE(
4998 (tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
4999 "Performance levels exceeds SMC limit!",
5000 return -1);
5001
5002 PP_ASSERT_WITH_CODE(
5003 (tonga_ps->performance_level_count <=
5004 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
5005 "Performance levels exceeds Driver limit!",
5006 return -1);
5007
5008 /* Performance levels are arranged from low to high. */
5009 performance_level->memory_clock =
5010 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
5011
5012 performance_level->engine_clock =
5013 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
5014
5015 performance_level->pcie_gen = get_pcie_gen_support(
5016 data->pcie_gen_cap,
5017 state_entry->ucPCIEGenLow);
5018
5019 performance_level->pcie_lane = get_pcie_lane_support(
5020 data->pcie_lane_cap,
5021 state_entry->ucPCIELaneHigh);
5022
5023 performance_level =
5024 &(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
5025
5026 performance_level->memory_clock =
5027 le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
5028
5029 performance_level->engine_clock =
5030 le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
5031
5032 performance_level->pcie_gen = get_pcie_gen_support(
5033 data->pcie_gen_cap,
5034 state_entry->ucPCIEGenHigh);
5035
5036 performance_level->pcie_lane = get_pcie_lane_support(
5037 data->pcie_lane_cap,
5038 state_entry->ucPCIELaneHigh);
5039
5040 return 0;
5041}
5042
5043static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
5044 unsigned long entry_index, struct pp_power_state *ps)
5045{
5046 int result;
5047 struct tonga_power_state *tonga_ps;
5048 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5049
5050 struct phm_ppt_v1_information *table_info =
5051 (struct phm_ppt_v1_information *)(hwmgr->pptable);
5052
5053 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5054 table_info->vdd_dep_on_mclk;
5055
5056 ps->hardware.magic = PhwTonga_Magic;
5057
5058 tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
5059
5060 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
5061 tonga_get_pp_table_entry_callback_func);
5062
5063 /* This is the earliest time we have all the dependency table and the VBIOS boot state
5064 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
5065 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
5066 */
5067 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
5068 if (dep_mclk_table->entries[0].clk !=
5069 data->vbios_boot_state.mclk_bootup_value)
5070 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
5071 "does not match VBIOS boot MCLK level");
5072 if (dep_mclk_table->entries[0].vddci !=
5073 data->vbios_boot_state.vddci_bootup_value)
5074 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
5075 "does not match VBIOS boot VDDCI level");
5076 }
5077
5078 /* set DC compatible flag if this state supports DC */
5079 if (!ps->validation.disallowOnDC)
5080 tonga_ps->dc_compatible = true;
5081
5082 if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
5083 data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
5084 else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
5085 if (data->bacos.best_match == 0xffff) {
5086 /* For V.I. use boot state as base BACO state */
5087 data->bacos.best_match = PP_StateClassificationFlag_Boot;
5088 data->bacos.performance_level = tonga_ps->performance_levels[0];
5089 }
5090 }
5091
5092 tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
5093 tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
5094
5095 if (!result) {
5096 uint32_t i;
5097
5098 switch (ps->classification.ui_label) {
5099 case PP_StateUILabel_Performance:
5100 data->use_pcie_performance_levels = true;
5101
5102 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5103 if (data->pcie_gen_performance.max <
5104 tonga_ps->performance_levels[i].pcie_gen)
5105 data->pcie_gen_performance.max =
5106 tonga_ps->performance_levels[i].pcie_gen;
5107
5108 if (data->pcie_gen_performance.min >
5109 tonga_ps->performance_levels[i].pcie_gen)
5110 data->pcie_gen_performance.min =
5111 tonga_ps->performance_levels[i].pcie_gen;
5112
5113 if (data->pcie_lane_performance.max <
5114 tonga_ps->performance_levels[i].pcie_lane)
5115 data->pcie_lane_performance.max =
5116 tonga_ps->performance_levels[i].pcie_lane;
5117
5118 if (data->pcie_lane_performance.min >
5119 tonga_ps->performance_levels[i].pcie_lane)
5120 data->pcie_lane_performance.min =
5121 tonga_ps->performance_levels[i].pcie_lane;
5122 }
5123 break;
5124 case PP_StateUILabel_Battery:
5125 data->use_pcie_power_saving_levels = true;
5126
5127 for (i = 0; i < tonga_ps->performance_level_count; i++) {
5128 if (data->pcie_gen_power_saving.max <
5129 tonga_ps->performance_levels[i].pcie_gen)
5130 data->pcie_gen_power_saving.max =
5131 tonga_ps->performance_levels[i].pcie_gen;
5132
5133 if (data->pcie_gen_power_saving.min >
5134 tonga_ps->performance_levels[i].pcie_gen)
5135 data->pcie_gen_power_saving.min =
5136 tonga_ps->performance_levels[i].pcie_gen;
5137
5138 if (data->pcie_lane_power_saving.max <
5139 tonga_ps->performance_levels[i].pcie_lane)
5140 data->pcie_lane_power_saving.max =
5141 tonga_ps->performance_levels[i].pcie_lane;
5142
5143 if (data->pcie_lane_power_saving.min >
5144 tonga_ps->performance_levels[i].pcie_lane)
5145 data->pcie_lane_power_saving.min =
5146 tonga_ps->performance_levels[i].pcie_lane;
5147 }
5148 break;
5149 default:
5150 break;
5151 }
5152 }
5153 return 0;
5154}
5155
5156static void
5157tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
5158{
5159 uint32_t sclk, mclk;
5160
5161 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
5162
5163 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5164
5165 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
5166
5167 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5168 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100);
5169}
5170
5171static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
5172{
5173 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5174 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5175 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5176 struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
5177 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5178 struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
5179 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5180 struct PP_Clocks min_clocks = {0};
5181 uint32_t i;
5182 struct cgs_display_info info = {0};
5183
5184 data->need_update_smu7_dpm_table = 0;
5185
5186 for (i = 0; i < psclk_table->count; i++) {
5187 if (sclk == psclk_table->dpm_levels[i].value)
5188 break;
5189 }
5190
5191 if (i >= psclk_table->count)
5192 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5193 else {
5194 /* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
5195 if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
5196 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
5197 }
5198
5199 for (i=0; i < pmclk_table->count; i++) {
5200 if (mclk == pmclk_table->dpm_levels[i].value)
5201 break;
5202 }
5203
5204 if (i >= pmclk_table->count)
5205 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5206
5207 cgs_get_active_displays_info(hwmgr->device, &info);
5208
5209 if (data->display_timing.num_existing_displays != info.display_count)
5210 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
5211
5212 return 0;
5213}
5214
5215static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
5216{
5217 uint32_t i;
5218 uint32_t sclk, max_sclk = 0;
5219 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5220 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5221
5222 for (i = 0; i < hw_ps->performance_level_count; i++) {
5223 sclk = hw_ps->performance_levels[i].engine_clock;
5224 if (max_sclk < sclk)
5225 max_sclk = sclk;
5226 }
5227
5228 for (i = 0; i < pdpm_table->sclk_table.count; i++) {
5229 if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
5230 return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
5231 pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
5232 pdpm_table->pcie_speed_table.dpm_levels[i].value);
5233 }
5234
5235 return 0;
5236}
5237
5238static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
5239{
5240 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5241 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5242 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5243 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5244
5245 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
5246 uint16_t current_link_speed;
5247
5248 if (data->force_pcie_gen == PP_PCIEGenInvalid)
5249 current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
5250 else
5251 current_link_speed = data->force_pcie_gen;
5252
5253 data->force_pcie_gen = PP_PCIEGenInvalid;
5254 data->pspp_notify_required = false;
5255 if (target_link_speed > current_link_speed) {
5256 switch(target_link_speed) {
5257 case PP_PCIEGen3:
5258 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
5259 break;
5260 data->force_pcie_gen = PP_PCIEGen2;
5261 if (current_link_speed == PP_PCIEGen2)
5262 break;
5263 case PP_PCIEGen2:
5264 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
5265 break;
5266 default:
5267 data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
5268 break;
5269 }
5270 } else {
5271 if (target_link_speed < current_link_speed)
5272 data->pspp_notify_required = true;
5273 }
5274
5275 return 0;
5276}
5277
5278static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5279{
5280 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5281
5282 if (0 == data->need_update_smu7_dpm_table)
5283 return 0;
5284
5285 if ((0 == data->sclk_dpm_key_disabled) &&
5286 (data->need_update_smu7_dpm_table &
5287 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5288 PP_ASSERT_WITH_CODE(
5289 true == tonga_is_dpm_running(hwmgr),
5290 "Trying to freeze SCLK DPM when DPM is disabled",
5291 );
5292 PP_ASSERT_WITH_CODE(
5293 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5294 PPSMC_MSG_SCLKDPM_FreezeLevel),
5295 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
5296 return -1);
5297 }
5298
5299 if ((0 == data->mclk_dpm_key_disabled) &&
5300 (data->need_update_smu7_dpm_table &
5301 DPMTABLE_OD_UPDATE_MCLK)) {
5302 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5303 "Trying to freeze MCLK DPM when DPM is disabled",
5304 );
5305 PP_ASSERT_WITH_CODE(
5306 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5307 PPSMC_MSG_MCLKDPM_FreezeLevel),
5308 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
5309 return -1);
5310 }
5311
5312 return 0;
5313}
5314
5315static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
5316{
5317 int result = 0;
5318
5319 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5320 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5321 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5322 uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
5323 uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
5324 struct tonga_dpm_table *pdpm_table = &data->dpm_table;
5325
5326 struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
5327 uint32_t dpm_count, clock_percent;
5328 uint32_t i;
5329
5330 if (0 == data->need_update_smu7_dpm_table)
5331 return 0;
5332
5333 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
5334 pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
5335
5336 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5337 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5338 /* Need to do calculation based on the golden DPM table
5339 * as the Heatmap GPU Clock axis is also based on the default values
5340 */
5341 PP_ASSERT_WITH_CODE(
5342 (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
5343 "Divide by 0!",
5344 return -1);
5345 dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
5346 for (i = dpm_count; i > 1; i--) {
5347 if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
5348 clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
5349 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5350
5351 pdpm_table->sclk_table.dpm_levels[i].value =
5352 pgolden_dpm_table->sclk_table.dpm_levels[i].value +
5353 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5354
5355 } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
5356 clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
5357 pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
5358
5359 pdpm_table->sclk_table.dpm_levels[i].value =
5360 pgolden_dpm_table->sclk_table.dpm_levels[i].value -
5361 (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
5362 } else
5363 pdpm_table->sclk_table.dpm_levels[i].value =
5364 pgolden_dpm_table->sclk_table.dpm_levels[i].value;
5365 }
5366 }
5367 }
5368
5369 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
5370 pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
5371
5372 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
5373 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
5374
5375 PP_ASSERT_WITH_CODE(
5376 (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
5377 "Divide by 0!",
5378 return -1);
5379 dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
5380 for (i = dpm_count; i > 1; i--) {
5381 if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
5382 clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
5383 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5384
5385 pdpm_table->mclk_table.dpm_levels[i].value =
5386 pgolden_dpm_table->mclk_table.dpm_levels[i].value +
5387 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5388
5389 } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
5390 clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
5391 pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
5392
5393 pdpm_table->mclk_table.dpm_levels[i].value =
5394 pgolden_dpm_table->mclk_table.dpm_levels[i].value -
5395 (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
5396 } else
5397 pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
5398 }
5399 }
5400 }
5401
5402 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
5403 result = tonga_populate_all_memory_levels(hwmgr);
5404 PP_ASSERT_WITH_CODE((0 == result),
5405 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
5406 return result);
5407 }
5408
5409 if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
5410 /*populate MCLK dpm table to SMU7 */
5411 result = tonga_populate_all_memory_levels(hwmgr);
5412 PP_ASSERT_WITH_CODE((0 == result),
5413 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
5414 return result);
5415 }
5416
5417 return result;
5418}
5419
5420static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
5421 struct tonga_single_dpm_table * pdpm_table,
5422 uint32_t low_limit, uint32_t high_limit)
5423{
5424 uint32_t i;
5425
5426 for (i = 0; i < pdpm_table->count; i++) {
5427 if ((pdpm_table->dpm_levels[i].value < low_limit) ||
5428 (pdpm_table->dpm_levels[i].value > high_limit))
5429 pdpm_table->dpm_levels[i].enabled = false;
5430 else
5431 pdpm_table->dpm_levels[i].enabled = true;
5432 }
5433 return 0;
5434}
5435
5436static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
5437{
5438 int result = 0;
5439 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5440 uint32_t high_limit_count;
5441
5442 PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
5443 "power state did not have any performance level",
5444 return -1);
5445
5446 high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
5447
5448 tonga_trim_single_dpm_states(hwmgr,
5449 &(data->dpm_table.sclk_table),
5450 hw_state->performance_levels[0].engine_clock,
5451 hw_state->performance_levels[high_limit_count].engine_clock);
5452
5453 tonga_trim_single_dpm_states(hwmgr,
5454 &(data->dpm_table.mclk_table),
5455 hw_state->performance_levels[0].memory_clock,
5456 hw_state->performance_levels[high_limit_count].memory_clock);
5457
5458 return result;
5459}
5460
5461static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
5462{
5463 int result;
5464 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5465 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5466 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5467
5468
5469 result = tonga_trim_dpm_states(hwmgr, tonga_ps);
5470 if (0 != result)
5471 return result;
5472
5473 data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
5474 data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
5475 data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
5476 if (data->uvd_enabled)
5477 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
5478
5479 data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
5480
5481 return 0;
5482}
5483
0859ed3d 5484int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
c82baa28 5485{
0859ed3d 5486 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
c82baa28 5487 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
5488 (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
5489}
5490
0859ed3d
RZ
5491int tonga_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
5492{
5493 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
5494 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
5495 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
5496}
5497
5498int tonga_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
5499{
5500 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5501 uint32_t mm_boot_level_offset, mm_boot_level_value;
5502 struct phm_ppt_v1_information *ptable_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5503
5504 if (!bgate) {
5505 data->smc_state_table.UvdBootLevel = (uint8_t) (ptable_information->mm_dep_table->count - 1);
5506 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
5507 mm_boot_level_offset /= 4;
5508 mm_boot_level_offset *= 4;
5509 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5510 mm_boot_level_value &= 0x00FFFFFF;
5511 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
5512 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5513
5514 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) ||
5515 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5516 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5517 PPSMC_MSG_UVDDPM_SetEnabledMask,
5518 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
5519 }
5520
5521 return tonga_enable_disable_uvd_dpm(hwmgr, !bgate);
5522}
5523
5524int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
c82baa28 5525{
5526 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5527 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5528 const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
5529 const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
5530
5531 uint32_t mm_boot_level_offset, mm_boot_level_value;
5532 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
5533
0859ed3d 5534 if (tonga_nps->vce_clocks.EVCLK > 0 && (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
c82baa28 5535 data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
5536
5537 mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
5538 mm_boot_level_offset /= 4;
5539 mm_boot_level_offset *= 4;
5540 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
5541 mm_boot_level_value &= 0xFF00FFFF;
5542 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
5543 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
5544
0859ed3d
RZ
5545 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
5546 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5547 PPSMC_MSG_VCEDPM_SetEnabledMask,
5548 (uint32_t)(1 << data->smc_state_table.VceBootLevel));
c82baa28 5549
0859ed3d
RZ
5550 tonga_enable_disable_vce_dpm(hwmgr, true);
5551 } else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
5552 tonga_enable_disable_vce_dpm(hwmgr, false);
c82baa28 5553
5554 return 0;
5555}
5556
5557static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
5558{
5559 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5560
5561 uint32_t address;
5562 int32_t result;
5563
5564 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
5565 return 0;
5566
5567
5568 memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
5569
5570 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
5571
5572 if(result != 0)
5573 return result;
5574
5575
5576 address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
5577
5578 return tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
5579 (uint8_t *)&data->mc_reg_table.data[0],
5580 sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
5581 data->sram_end);
5582}
5583
5584static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
5585{
5586 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5587
5588 if (data->need_update_smu7_dpm_table &
5589 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
5590 return tonga_program_memory_timing_parameters(hwmgr);
5591
5592 return 0;
5593}
5594
5595static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
5596{
5597 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5598
5599 if (0 == data->need_update_smu7_dpm_table)
5600 return 0;
5601
5602 if ((0 == data->sclk_dpm_key_disabled) &&
5603 (data->need_update_smu7_dpm_table &
5604 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
5605
5606 PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
5607 "Trying to Unfreeze SCLK DPM when DPM is disabled",
5608 );
5609 PP_ASSERT_WITH_CODE(
5610 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5611 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5612 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
5613 return -1);
5614 }
5615
5616 if ((0 == data->mclk_dpm_key_disabled) &&
5617 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
5618
5619 PP_ASSERT_WITH_CODE(
5620 true == tonga_is_dpm_running(hwmgr),
5621 "Trying to Unfreeze MCLK DPM when DPM is disabled",
5622 );
5623 PP_ASSERT_WITH_CODE(
5624 0 == smum_send_msg_to_smc(hwmgr->smumgr,
5625 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
5626 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
5627 return -1);
5628 }
5629
5630 data->need_update_smu7_dpm_table = 0;
5631
5632 return 0;
5633}
5634
5635static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
5636{
5637 const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
5638 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5639 const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
5640 uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
5641 uint8_t request;
5642
5643 if (data->pspp_notify_required ||
5644 data->pcie_performance_request) {
5645 if (target_link_speed == PP_PCIEGen3)
5646 request = PCIE_PERF_REQ_GEN3;
5647 else if (target_link_speed == PP_PCIEGen2)
5648 request = PCIE_PERF_REQ_GEN2;
5649 else
5650 request = PCIE_PERF_REQ_GEN1;
5651
5652 if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
5653 data->pcie_performance_request = false;
5654 return 0;
5655 }
5656
5657 if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
5658 if (PP_PCIEGen2 == target_link_speed)
5659 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
5660 else
5661 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
5662 }
5663 }
5664
5665 data->pcie_performance_request = false;
5666 return 0;
5667}
5668
5669static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
5670{
5671 int tmp_result, result = 0;
5672
5673 tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
5674 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
5675
5676 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5677 tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
5678 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
5679 }
5680
5681 tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
5682 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
5683
5684 tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
5685 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
5686
5687 tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
5688 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
5689
5690 tmp_result = tonga_update_vce_dpm(hwmgr, input);
5691 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
5692
5693 tmp_result = tonga_update_sclk_threshold(hwmgr);
5694 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
5695
5696 tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
5697 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
5698
5699 tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
5700 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
5701
5702 tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
5703 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
5704
5705 tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
5706 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
5707
5708 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
5709 tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
5710 PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
5711 }
5712
5713 return result;
5714}
5715
1e4854e9
RZ
5716/**
5717* Set maximum target operating fan output PWM
5718*
5719* @param pHwMgr: the address of the powerplay hardware manager.
5720* @param usMaxFanPwm: max operating fan PWM in percents
5721* @return The response that came from the SMC.
5722*/
5723static int tonga_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5724{
5725 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
5726
5727 if (phm_is_hw_access_blocked(hwmgr))
5728 return 0;
5729
5730 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -EINVAL);
5731}
bbb207f3
RZ
5732
5733int tonga_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
5734{
5735 uint32_t num_active_displays = 0;
5736 struct cgs_display_info info = {0};
5737 info.mode_info = NULL;
5738
5739 cgs_get_active_displays_info(hwmgr->device, &info);
5740
5741 num_active_displays = info.display_count;
5742
5743 if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
5744 tonga_notify_smc_display_change(hwmgr, false);
5745 else
5746 tonga_notify_smc_display_change(hwmgr, true);
5747
5748 return 0;
5749}
5750
5751/**
5752* Programs the display gap
5753*
5754* @param hwmgr the address of the powerplay hardware manager.
5755* @return always OK
5756*/
5757int tonga_program_display_gap(struct pp_hwmgr *hwmgr)
5758{
5759 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5760 uint32_t num_active_displays = 0;
5761 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
5762 uint32_t display_gap2;
5763 uint32_t pre_vbi_time_in_us;
5764 uint32_t frame_time_in_us;
5765 uint32_t ref_clock;
5766 uint32_t refresh_rate = 0;
5767 struct cgs_display_info info = {0};
5768 struct cgs_mode_info mode_info;
5769
5770 info.mode_info = &mode_info;
5771
5772 cgs_get_active_displays_info(hwmgr->device, &info);
5773 num_active_displays = info.display_count;
5774
5775 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
5776 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
5777
5778 ref_clock = mode_info.ref_clock;
5779 refresh_rate = mode_info.refresh_rate;
5780
5781 if(0 == refresh_rate)
5782 refresh_rate = 60;
5783
5784 frame_time_in_us = 1000000 / refresh_rate;
5785
5786 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
5787 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
5788
5789 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
5790
5791 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, PreVBlankGap), 0x64);
5792
5793 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
5794
5795 if (num_active_displays == 1)
5796 tonga_notify_smc_display_change(hwmgr, true);
5797
5798 return 0;
5799}
5800
5801int tonga_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
5802{
5803
5804 tonga_program_display_gap(hwmgr);
5805
5806 /* to do PhwTonga_CacUpdateDisplayConfiguration(pHwMgr); */
5807 return 0;
5808}
5809
1e4854e9
RZ
5810/**
5811* Set maximum target operating fan output RPM
5812*
5813* @param pHwMgr: the address of the powerplay hardware manager.
5814* @param usMaxFanRpm: max operating fan RPM value.
5815* @return The response that came from the SMC.
5816*/
5817static int tonga_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
5818{
5819 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm;
5820
5821 if (phm_is_hw_access_blocked(hwmgr))
5822 return 0;
5823
5824 return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -EINVAL);
5825}
5826
5827uint32_t tonga_get_xclk(struct pp_hwmgr *hwmgr)
5828{
5829 uint32_t reference_clock;
5830 uint32_t tc;
5831 uint32_t divide;
5832
5833 ATOM_FIRMWARE_INFO *fw_info;
5834 uint16_t size;
5835 uint8_t frev, crev;
5836 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
5837
5838 tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
5839
5840 if (tc)
5841 return TCLK;
5842
5843 fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index,
5844 &size, &frev, &crev);
5845
5846 if (!fw_info)
5847 return 0;
5848
5849 reference_clock = le16_to_cpu(fw_info->usMinPixelClockPLL_Output);
5850
5851 divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
5852
5853 if (0 != divide)
5854 return reference_clock / 4;
5855
5856 return reference_clock;
5857}
5858
5859int tonga_dpm_set_interrupt_state(void *private_data,
5860 unsigned src_id, unsigned type,
5861 int enabled)
5862{
5863 uint32_t cg_thermal_int;
5864 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
5865
5866 if (hwmgr == NULL)
5867 return -EINVAL;
5868
5869 switch (type) {
5870 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
5871 if (enabled) {
5872 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5873 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5874 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5875 } else {
5876 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5877 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
5878 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5879 }
5880 break;
5881
5882 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5883 if (enabled) {
5884 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5885 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5886 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5887 } else {
5888 cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5889 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5890 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5891 }
5892 break;
5893 default:
5894 break;
5895 }
5896 return 0;
5897}
5898
5899int tonga_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5900 const void *thermal_interrupt_info)
5901{
5902 int result;
5903 const struct pp_interrupt_registration_info *info =
5904 (const struct pp_interrupt_registration_info *)thermal_interrupt_info;
5905
5906 if (info == NULL)
5907 return -EINVAL;
5908
5909 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5910 tonga_dpm_set_interrupt_state,
5911 info->call_back, info->context);
5912
5913 if (result)
5914 return -EINVAL;
5915
5916 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5917 tonga_dpm_set_interrupt_state,
5918 info->call_back, info->context);
5919
5920 if (result)
5921 return -EINVAL;
5922
5923 return 0;
5924}
5925
e829ecdb
RZ
5926bool tonga_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5927{
5928 struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
5929 bool is_update_required = false;
5930 struct cgs_display_info info = {0,0,NULL};
5931
5932 cgs_get_active_displays_info(hwmgr->device, &info);
5933
5934 if (data->display_timing.num_existing_displays != info.display_count)
5935 is_update_required = true;
5936/* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
5937 if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5938 cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
5939 if(min_clocks.engineClockInSR != data->display_timing.minClockInSR)
5940 is_update_required = true;
5941*/
5942 return is_update_required;
5943}
5944
5945static inline bool tonga_are_power_levels_equal(const struct tonga_performance_level *pl1,
5946 const struct tonga_performance_level *pl2)
5947{
5948 return ((pl1->memory_clock == pl2->memory_clock) &&
5949 (pl1->engine_clock == pl2->engine_clock) &&
5950 (pl1->pcie_gen == pl2->pcie_gen) &&
5951 (pl1->pcie_lane == pl2->pcie_lane));
5952}
5953
5954int tonga_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5955{
5956 const struct tonga_power_state *psa = cast_const_phw_tonga_power_state(pstate1);
5957 const struct tonga_power_state *psb = cast_const_phw_tonga_power_state(pstate2);
5958 int i;
5959
5960 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
5961 return -EINVAL;
5962
5963 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5964 if (psa->performance_level_count != psb->performance_level_count) {
5965 *equal = false;
5966 return 0;
5967 }
5968
5969 for (i = 0; i < psa->performance_level_count; i++) {
5970 if (!tonga_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5971 /* If we have found even one performance level pair that is different the states are different. */
5972 *equal = false;
5973 return 0;
5974 }
5975 }
5976
5977 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5978 *equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK));
5979 *equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK));
5980 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5981 *equal &= (psa->acp_clk == psb->acp_clk);
5982
5983 return 0;
5984}
5985
c82baa28 5986static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
5987 .backend_init = &tonga_hwmgr_backend_init,
5988 .backend_fini = &tonga_hwmgr_backend_fini,
5989 .asic_setup = &tonga_setup_asic_task,
5990 .dynamic_state_management_enable = &tonga_enable_dpm_tasks,
5991 .apply_state_adjust_rules = tonga_apply_state_adjust_rules,
5992 .force_dpm_level = &tonga_force_dpm_level,
5993 .power_state_set = tonga_set_power_state_tasks,
5994 .get_power_state_size = tonga_get_power_state_size,
5995 .get_mclk = tonga_dpm_get_mclk,
5996 .get_sclk = tonga_dpm_get_sclk,
5997 .patch_boot_state = tonga_dpm_patch_boot_state,
5998 .get_pp_table_entry = tonga_get_pp_table_entry,
5999 .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
6000 .print_current_perforce_level = tonga_print_current_perforce_level,
0859ed3d
RZ
6001 .powerdown_uvd = tonga_phm_powerdown_uvd,
6002 .powergate_uvd = tonga_phm_powergate_uvd,
6003 .powergate_vce = tonga_phm_powergate_vce,
6004 .disable_clock_power_gating = tonga_phm_disable_clock_power_gating,
bbb207f3
RZ
6005 .notify_smc_display_config_after_ps_adjustment = tonga_notify_smc_display_config_after_ps_adjustment,
6006 .display_config_changed = tonga_display_configuration_changed_task,
1e4854e9
RZ
6007 .set_max_fan_pwm_output = tonga_set_max_fan_pwm_output,
6008 .set_max_fan_rpm_output = tonga_set_max_fan_rpm_output,
6009 .get_temperature = tonga_thermal_get_temperature,
6010 .stop_thermal_controller = tonga_thermal_stop_thermal_controller,
6011 .get_fan_speed_info = tonga_fan_ctrl_get_fan_speed_info,
6012 .get_fan_speed_percent = tonga_fan_ctrl_get_fan_speed_percent,
6013 .set_fan_speed_percent = tonga_fan_ctrl_set_fan_speed_percent,
6014 .reset_fan_speed_to_default = tonga_fan_ctrl_reset_fan_speed_to_default,
6015 .get_fan_speed_rpm = tonga_fan_ctrl_get_fan_speed_rpm,
6016 .set_fan_speed_rpm = tonga_fan_ctrl_set_fan_speed_rpm,
6017 .uninitialize_thermal_controller = tonga_thermal_ctrl_uninitialize_thermal_controller,
6018 .register_internal_thermal_interrupt = tonga_register_internal_thermal_interrupt,
e829ecdb
RZ
6019 .check_smc_update_required_for_display_configuration = tonga_check_smc_update_required_for_display_configuration,
6020 .check_states_equal = tonga_check_states_equal,
c82baa28 6021};
6022
6023int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
6024{
6025 tonga_hwmgr *data;
6026
6027 data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
6028 if (data == NULL)
6029 return -ENOMEM;
6030 memset(data, 0x00, sizeof(tonga_hwmgr));
6031
6032 hwmgr->backend = data;
6033 hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
6034 hwmgr->pptable_func = &tonga_pptable_funcs;
1e4854e9 6035 pp_tonga_thermal_initialize(hwmgr);
c82baa28 6036 return 0;
6037}
6038