drm/amd/display: remove a duplicated declaration
[linux-2.6-block.git] / drivers / gpu / drm / amd / display / dc / dml / dcn32 / dcn32_fpu.c
CommitLineData
041a1109
RS
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26#include "dcn32_fpu.h"
5b4ee987 27#include "dc_link_dp.h"
4cef2269
RS
28#include "dcn32/dcn32_resource.h"
29#include "dcn20/dcn20_resource.h"
25e75164 30#include "display_mode_vba_util_32.h"
041a1109
RS
31// We need this includes for WATERMARKS_* defines
32#include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
6290ba4c 33#include "dcn30/dcn30_resource.h"
041a1109 34
5b4ee987
RS
35#define DC_LOGGER_INIT(logger)
36
34a1b0f9
RS
37struct _vcs_dpi_ip_params_st dcn3_2_ip = {
38 .gpuvm_enable = 0,
39 .gpuvm_max_page_table_levels = 4,
40 .hostvm_enable = 0,
41 .rob_buffer_size_kbytes = 128,
42 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
43 .config_return_buffer_size_in_kbytes = 1280,
44 .compressed_buffer_segment_size_in_kbytes = 64,
45 .meta_fifo_size_in_kentries = 22,
46 .zero_size_buffer_entries = 512,
47 .compbuf_reserved_space_64b = 256,
48 .compbuf_reserved_space_zs = 64,
49 .dpp_output_buffer_pixels = 2560,
50 .opp_output_buffer_lines = 1,
51 .pixel_chunk_size_kbytes = 8,
52 .alpha_pixel_chunk_size_kbytes = 4,
53 .min_pixel_chunk_size_bytes = 1024,
54 .dcc_meta_buffer_size_bytes = 6272,
55 .meta_chunk_size_kbytes = 2,
56 .min_meta_chunk_size_bytes = 256,
57 .writeback_chunk_size_kbytes = 8,
58 .ptoi_supported = false,
59 .num_dsc = 4,
60 .maximum_dsc_bits_per_component = 12,
61 .maximum_pixels_per_line_per_dsc_unit = 6016,
62 .dsc422_native_support = true,
63 .is_line_buffer_bpp_fixed = true,
64 .line_buffer_fixed_bpp = 57,
65 .line_buffer_size_bits = 1171920,
66 .max_line_buffer_lines = 32,
67 .writeback_interface_buffer_size_kbytes = 90,
68 .max_num_dpp = 4,
69 .max_num_otg = 4,
70 .max_num_hdmi_frl_outputs = 1,
71 .max_num_wb = 1,
72 .max_dchub_pscl_bw_pix_per_clk = 4,
73 .max_pscl_lb_bw_pix_per_clk = 2,
74 .max_lb_vscl_bw_pix_per_clk = 4,
75 .max_vscl_hscl_bw_pix_per_clk = 4,
76 .max_hscl_ratio = 6,
77 .max_vscl_ratio = 6,
78 .max_hscl_taps = 8,
79 .max_vscl_taps = 8,
80 .dpte_buffer_size_in_pte_reqs_luma = 64,
81 .dpte_buffer_size_in_pte_reqs_chroma = 34,
82 .dispclk_ramp_margin_percent = 1,
83 .max_inter_dcn_tile_repeaters = 8,
84 .cursor_buffer_size = 16,
85 .cursor_chunk_size = 2,
86 .writeback_line_buffer_buffer_size = 0,
87 .writeback_min_hscl_ratio = 1,
88 .writeback_min_vscl_ratio = 1,
89 .writeback_max_hscl_ratio = 1,
90 .writeback_max_vscl_ratio = 1,
91 .writeback_max_hscl_taps = 1,
92 .writeback_max_vscl_taps = 1,
93 .dppclk_delay_subtotal = 47,
94 .dppclk_delay_scl = 50,
95 .dppclk_delay_scl_lb_only = 16,
96 .dppclk_delay_cnvc_formatter = 28,
97 .dppclk_delay_cnvc_cursor = 6,
98 .dispclk_delay_subtotal = 125,
99 .dynamic_metadata_vm_enabled = false,
100 .odm_combine_4to1_supported = false,
101 .dcc_supported = true,
102 .max_num_dp2p0_outputs = 2,
103 .max_num_dp2p0_streams = 4,
104};
105
106struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
107 .clock_limits = {
108 {
109 .state = 0,
110 .dcfclk_mhz = 1564.0,
111 .fabricclk_mhz = 400.0,
112 .dispclk_mhz = 2150.0,
113 .dppclk_mhz = 2150.0,
114 .phyclk_mhz = 810.0,
115 .phyclk_d18_mhz = 667.0,
116 .phyclk_d32_mhz = 625.0,
117 .socclk_mhz = 1200.0,
118 .dscclk_mhz = 716.667,
119 .dram_speed_mts = 16000.0,
120 .dtbclk_mhz = 1564.0,
121 },
122 },
123 .num_states = 1,
493af96d
AL
124 .sr_exit_time_us = 20.16,
125 .sr_enter_plus_exit_time_us = 27.13,
34a1b0f9
RS
126 .sr_exit_z8_time_us = 285.0,
127 .sr_enter_plus_exit_z8_time_us = 320,
128 .writeback_latency_us = 12.0,
129 .round_trip_ping_latency_dcfclk_cycles = 263,
130 .urgent_latency_pixel_data_only_us = 4.0,
131 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
132 .urgent_latency_vm_data_only_us = 4.0,
133 .fclk_change_latency_us = 20,
134 .usr_retraining_latency_us = 2,
135 .smn_latency_us = 2,
136 .mall_allocated_for_dcn_mbytes = 64,
137 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
138 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
139 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
140 .pct_ideal_sdp_bw_after_urgent = 100.0,
141 .pct_ideal_fabric_bw_after_urgent = 67.0,
142 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
143 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
144 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
145 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
146 .max_avg_sdp_bw_use_normal_percent = 80.0,
147 .max_avg_fabric_bw_use_normal_percent = 60.0,
148 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
149 .max_avg_dram_bw_use_normal_percent = 15.0,
150 .num_chans = 8,
151 .dram_channel_width_bytes = 2,
152 .fabric_datapath_to_dcn_data_return_bytes = 64,
153 .return_bus_width_bytes = 64,
154 .downspread_percent = 0.38,
155 .dcn_downspread_percent = 0.5,
156 .dram_clock_change_latency_us = 400,
157 .dispclk_dppclk_vco_speed_mhz = 4300.0,
158 .do_urgent_latency_adjustment = true,
159 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
160 .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
161};
162
041a1109
RS
163void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
164{
165 /* defaults */
166 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
167 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
168 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
169 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
170 /* For min clocks use as reported by PM FW and report those as min */
171 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
172 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
173 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
174 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
175
176 dc_assert_fp_enabled();
177
178 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
179 if (dcfclk_mhz_for_the_second_state)
180 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
181 else
182 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183
184 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
185 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
186
187 /* Set A - Normal - default values */
188 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
189 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
190 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
191 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
192 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
193 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
194 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
195 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
196 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
197 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
198
199 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
200 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
201 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
202 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
204 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
206 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
207 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
208 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
209
210 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
211 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
212 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 38;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
221 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
222 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
223 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
224 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 38;
225 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
226 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
227 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
228 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
229 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
230 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
231 }
232 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
233 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
234 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
235 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
244}
245
f7bacd97
RS
246/**
247 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
248 * and populate pipe_ctx with those params.
249 *
250 * This function must be called AFTER the phantom pipes are added to context
251 * and run through DML (so that the DLG params for the phantom pipes can be
252 * populated), and BEFORE we program the timing for the phantom pipes.
253 *
254 * @dc: [in] current dc state
255 * @context: [in] new dc state
256 * @pipes: [in] DML pipe params array
257 * @pipe_cnt: [in] DML pipe count
258 */
259void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
260 struct dc_state *context,
261 display_e2e_pipe_params_st *pipes,
262 int pipe_cnt)
263{
264 uint32_t i, pipe_idx;
265
266 dc_assert_fp_enabled();
267
268 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
269 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
270
271 if (!pipe->stream)
272 continue;
273
274 if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
275 pipes[pipe_idx].pipe.dest.vstartup_start =
276 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
277 pipes[pipe_idx].pipe.dest.vupdate_offset =
278 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
279 pipes[pipe_idx].pipe.dest.vupdate_width =
280 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
281 pipes[pipe_idx].pipe.dest.vready_offset =
282 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
283 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
284 }
285 pipe_idx++;
286 }
287}
288
25e75164
RS
289bool dcn32_predict_pipe_split(struct dc_state *context, display_pipe_params_st pipe, int index)
290{
291 double pscl_throughput;
292 double pscl_throughput_chroma;
293 double dpp_clk_single_dpp, clock;
294 double clk_frequency = 0.0;
295 double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
296
297 dc_assert_fp_enabled();
298
299 dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe.scale_ratio_depth.hscl_ratio,
300 pipe.scale_ratio_depth.hscl_ratio_c,
301 pipe.scale_ratio_depth.vscl_ratio,
302 pipe.scale_ratio_depth.vscl_ratio_c,
303 context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
304 context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
305 pipe.dest.pixel_rate_mhz,
306 pipe.src.source_format,
307 pipe.scale_taps.htaps,
308 pipe.scale_taps.htaps_c,
309 pipe.scale_taps.vtaps,
310 pipe.scale_taps.vtaps_c,
311 /* Output */
312 &pscl_throughput, &pscl_throughput_chroma,
313 &dpp_clk_single_dpp);
314
315 clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
316
317 if (clock > 0)
318 clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0));
319
320 if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[index].dppclk_mhz)
321 return true;
322 else
323 return false;
324}
325
34a1b0f9
RS
326static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
327{
328 float memory_bw_kbytes_sec;
329 float fabric_bw_kbytes_sec;
330 float sdp_bw_kbytes_sec;
331 float limiting_bw_kbytes_sec;
332
333 memory_bw_kbytes_sec = entry->dram_speed_mts *
334 dcn3_2_soc.num_chans *
335 dcn3_2_soc.dram_channel_width_bytes *
336 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
337
338 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
339 dcn3_2_soc.return_bus_width_bytes *
340 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
341
342 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
343 dcn3_2_soc.return_bus_width_bytes *
344 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
345
346 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
347
348 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
349 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
350
351 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
352 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
353
354 return limiting_bw_kbytes_sec;
355}
356
a4f8f294
RS
357static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
358{
359 if (entry->dcfclk_mhz > 0) {
360 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
361
362 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
363 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
364 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
365 } else if (entry->fabricclk_mhz > 0) {
366 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
367
368 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
369 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
370 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
371 } else if (entry->dram_speed_mts > 0) {
372 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
373 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374
375 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
376 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
377 }
378}
379
34a1b0f9
RS
380void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
381 unsigned int *num_entries,
382 struct _vcs_dpi_voltage_scaling_st *entry)
383{
384 int i = 0;
385 int index = 0;
386 float net_bw_of_new_state = 0;
387
388 dc_assert_fp_enabled();
389
a4f8f294
RS
390 get_optimal_ntuple(entry);
391
34a1b0f9
RS
392 if (*num_entries == 0) {
393 table[0] = *entry;
394 (*num_entries)++;
395 } else {
396 net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
397 while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
398 index++;
399 if (index >= *num_entries)
400 break;
401 }
402
403 for (i = *num_entries; i > index; i--)
404 table[i] = table[i - 1];
405
406 table[index] = *entry;
407 (*num_entries)++;
408 }
409}
410
8f5bb69d
RS
411/**
412 * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream
413 *
414 * Set timing params of the phantom stream based on calculated output from DML.
415 * This function first gets the DML pipe index using the DC pipe index, then
416 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
417 * lines required for SubVP MCLK switching and assigns to the phantom stream
418 * accordingly.
419 *
420 * - The number of SubVP lines calculated in DML does not take into account
421 * FW processing delays and required pstate allow width, so we must include
422 * that separately.
423 *
424 * - Set phantom backporch = vstartup of main pipe
425 *
426 * @dc: current dc state
427 * @context: new dc state
428 * @ref_pipe: Main pipe for the phantom stream
429 * @pipes: DML pipe params
430 * @pipe_cnt: number of DML pipes
431 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
432 */
433void dcn32_set_phantom_stream_timing(struct dc *dc,
434 struct dc_state *context,
435 struct pipe_ctx *ref_pipe,
436 struct dc_stream_state *phantom_stream,
437 display_e2e_pipe_params_st *pipes,
438 unsigned int pipe_cnt,
439 unsigned int dc_pipe_idx)
440{
441 unsigned int i, pipe_idx;
442 struct pipe_ctx *pipe;
443 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
444 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
445 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
446 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
447
448 dc_assert_fp_enabled();
449
450 // Find DML pipe index (pipe_idx) using dc_pipe_idx
451 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
452 pipe = &context->res_ctx.pipe_ctx[i];
453
454 if (!pipe->stream)
455 continue;
456
457 if (i == dc_pipe_idx)
458 break;
459
460 pipe_idx++;
461 }
462
463 // Calculate lines required for pstate allow width and FW processing delays
464 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
465 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
466 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
467 (double)ref_pipe->stream->timing.h_total;
468
469 // Update clks_cfg for calling into recalculate
470 pipes[0].clks_cfg.voltage = vlevel;
471 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
472 pipes[0].clks_cfg.socclk_mhz = socclk;
473
474 // DML calculation for MALL region doesn't take into account FW delay
475 // and required pstate allow width for multi-display cases
9f5171ce
AL
476 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
477 * to 2 swaths (i.e. 16 lines)
478 */
8f5bb69d 479 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
9f5171ce 480 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
8f5bb69d
RS
481
482 // For backporch of phantom pipe, use vstartup of the main pipe
483 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
484
485 phantom_stream->dst.y = 0;
486 phantom_stream->dst.height = phantom_vactive;
487 phantom_stream->src.y = 0;
488 phantom_stream->src.height = phantom_vactive;
489
490 phantom_stream->timing.v_addressable = phantom_vactive;
491 phantom_stream->timing.v_front_porch = 1;
492 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
493 phantom_stream->timing.v_front_porch +
494 phantom_stream->timing.v_sync_width +
495 phantom_bp;
31ec699a 496 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
8f5bb69d
RS
497}
498
4cef2269
RS
499/**
500 * dcn32_get_num_free_pipes: Calculate number of free pipes
501 *
502 * This function assumes that a "used" pipe is a pipe that has
503 * both a stream and a plane assigned to it.
504 *
505 * @dc: current dc state
506 * @context: new dc state
507 *
508 * Return:
509 * Number of free pipes available in the context
510 */
511static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
512{
513 unsigned int i;
514 unsigned int free_pipes = 0;
515 unsigned int num_pipes = 0;
516
517 for (i = 0; i < dc->res_pool->pipe_count; i++) {
518 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
519
520 if (pipe->stream && !pipe->top_pipe) {
521 while (pipe) {
522 num_pipes++;
523 pipe = pipe->bottom_pipe;
524 }
525 }
526 }
527
528 free_pipes = dc->res_pool->pipe_count - num_pipes;
529 return free_pipes;
530}
531
532/**
533 * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP.
534 *
535 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
536 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
537 * we are forcing SubVP P-State switching on the current config.
538 *
539 * The number of pipes used for the chosen surface must be less than or equal to the
540 * number of free pipes available.
541 *
542 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
543 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
544 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
545 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
546 *
547 * @param dc: current dc state
548 * @param context: new dc state
549 * @param index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
550 *
551 * Return:
552 * True if a valid pipe assignment was found for Sub-VP. Otherwise false.
553 */
554static bool dcn32_assign_subvp_pipe(struct dc *dc,
555 struct dc_state *context,
556 unsigned int *index)
557{
558 unsigned int i, pipe_idx;
559 unsigned int max_frame_time = 0;
560 bool valid_assignment_found = false;
561 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
562 bool current_assignment_freesync = false;
a3c9b4c7 563 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
4cef2269
RS
564
565 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
566 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
567 unsigned int num_pipes = 0;
568 unsigned int refresh_rate = 0;
569
570 if (!pipe->stream)
571 continue;
572
573 // Round up
574 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
575 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
576 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
a3c9b4c7
AL
577 /* SubVP pipe candidate requirements:
578 * - Refresh rate < 120hz
579 * - Not able to switch in vactive naturally (switching in active means the
580 * DET provides enough buffer to hide the P-State switch latency -- trying
581 * to combine this with SubVP can cause issues with the scheduling).
582 */
4cef2269 583 if (pipe->plane_state && !pipe->top_pipe &&
a3c9b4c7
AL
584 pipe->stream->mall_stream_config.type == SUBVP_NONE && refresh_rate < 120 &&
585 vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
4cef2269
RS
586 while (pipe) {
587 num_pipes++;
588 pipe = pipe->bottom_pipe;
589 }
590
591 pipe = &context->res_ctx.pipe_ctx[i];
592 if (num_pipes <= free_pipes) {
593 struct dc_stream_state *stream = pipe->stream;
594 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
595 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
596 if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) {
597 *index = i;
598 max_frame_time = frame_us;
599 valid_assignment_found = true;
600 current_assignment_freesync = false;
601 /* For the 2-Freesync display case, still choose the one with the
602 * longest frame time
603 */
604 } else if (stream->ignore_msa_timing_param && (!valid_assignment_found ||
605 (current_assignment_freesync && frame_us > max_frame_time))) {
606 *index = i;
607 valid_assignment_found = true;
608 current_assignment_freesync = true;
609 }
610 }
611 }
612 pipe_idx++;
613 }
614 return valid_assignment_found;
615}
616
617/**
618 * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP.
619 *
620 * This function returns true if there are enough free pipes
621 * to create the required phantom pipes for any given stream
622 * (that does not already have phantom pipe assigned).
623 *
624 * e.g. For a 2 stream config where the first stream uses one
625 * pipe and the second stream uses 2 pipes (i.e. pipe split),
626 * this function will return true because there is 1 remaining
627 * pipe which can be used as the phantom pipe for the non pipe
628 * split pipe.
629 *
630 * @dc: current dc state
631 * @context: new dc state
632 *
633 * Return:
634 * True if there are enough free pipes to assign phantom pipes to at least one
635 * stream that does not already have phantom pipes assigned. Otherwise false.
636 */
637static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
638{
639 unsigned int i, split_cnt, free_pipes;
640 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
641 bool subvp_possible = false;
642
643 for (i = 0; i < dc->res_pool->pipe_count; i++) {
644 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
645
646 // Find the minimum pipe split count for non SubVP pipes
647 if (pipe->stream && !pipe->top_pipe &&
648 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
649 split_cnt = 0;
650 while (pipe) {
651 split_cnt++;
652 pipe = pipe->bottom_pipe;
653 }
654
655 if (split_cnt < min_pipe_split)
656 min_pipe_split = split_cnt;
657 }
658 }
659
660 free_pipes = dcn32_get_num_free_pipes(dc, context);
661
662 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
663 // should not equal to the pipe_count)
664 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
665 subvp_possible = true;
666
667 return subvp_possible;
668}
669
670/**
671 * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable
672 *
673 * High level algorithm:
674 * 1. Find longest microschedule length (in us) between the two SubVP pipes
675 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
676 * pipes still allows for the maximum microschedule to fit in the active
677 * region for both pipes.
678 *
679 * @dc: current dc state
680 * @context: new dc state
681 *
682 * Return:
683 * bool - True if the SubVP + SubVP config is schedulable, false otherwise
684 */
685static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
686{
687 struct pipe_ctx *subvp_pipes[2];
688 struct dc_stream_state *phantom = NULL;
689 uint32_t microschedule_lines = 0;
690 uint32_t index = 0;
691 uint32_t i;
692 uint32_t max_microschedule_us = 0;
693 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
694
695 for (i = 0; i < dc->res_pool->pipe_count; i++) {
696 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
697 uint32_t time_us = 0;
698
699 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
700 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
701 */
702 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
703 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
704 phantom = pipe->stream->mall_stream_config.paired_stream;
705 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
706 phantom->timing.v_addressable;
707
708 // Round up when calculating microschedule time (+ 1 at the end)
709 time_us = (microschedule_lines * phantom->timing.h_total) /
710 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
711 dc->caps.subvp_prefetch_end_to_mall_start_us +
712 dc->caps.subvp_fw_processing_delay_us + 1;
713 if (time_us > max_microschedule_us)
714 max_microschedule_us = time_us;
715
716 subvp_pipes[index] = pipe;
717 index++;
718
719 // Maximum 2 SubVP pipes
720 if (index == 2)
721 break;
722 }
723 }
724 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
725 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
726 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
727 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
728 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
729 subvp_pipes[0]->stream->timing.h_total) /
730 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
731 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
732 subvp_pipes[1]->stream->timing.h_total) /
733 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
734
735 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
736 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
737 return true;
738
739 return false;
740}
741
742/**
743 * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable
744 *
745 * High level algorithm:
746 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
747 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
748 * (the margin is equal to the MALL region + DRR margin (500us))
749 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
750 * then report the configuration as supported
751 *
752 * @dc: current dc state
753 * @context: new dc state
754 * @drr_pipe: DRR pipe_ctx for the SubVP + DRR config
755 *
756 * Return:
757 * bool - True if the SubVP + DRR config is schedulable, false otherwise
758 */
759static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
760{
761 bool schedulable = false;
762 uint32_t i;
763 struct pipe_ctx *pipe = NULL;
764 struct dc_crtc_timing *main_timing = NULL;
765 struct dc_crtc_timing *phantom_timing = NULL;
766 struct dc_crtc_timing *drr_timing = NULL;
767 int16_t prefetch_us = 0;
768 int16_t mall_region_us = 0;
769 int16_t drr_frame_us = 0; // nominal frame time
770 int16_t subvp_active_us = 0;
771 int16_t stretched_drr_us = 0;
772 int16_t drr_stretched_vblank_us = 0;
773 int16_t max_vblank_mallregion = 0;
774
775 // Find SubVP pipe
776 for (i = 0; i < dc->res_pool->pipe_count; i++) {
777 pipe = &context->res_ctx.pipe_ctx[i];
778
779 // We check for master pipe, but it shouldn't matter since we only need
780 // the pipe for timing info (stream should be same for any pipe splits)
781 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
782 continue;
783
784 // Find the SubVP pipe
785 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
786 break;
787 }
788
789 main_timing = &pipe->stream->timing;
790 phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
791 drr_timing = &drr_pipe->stream->timing;
792 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
793 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
794 dc->caps.subvp_prefetch_end_to_mall_start_us;
795 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
796 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
797 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
798 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
799 // P-State allow width and FW delays already included phantom_timing->v_addressable
800 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
801 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
802 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
803 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
804 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
805 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
806
807 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
808 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
809 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
810 * and the max of (VBLANK blanking time, MALL region)).
811 */
812 if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
813 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
814 schedulable = true;
815
816 return schedulable;
817}
818
819
820/**
821 * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable
822 *
823 * High level algorithm:
824 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
825 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
826 * then report the configuration as supported
827 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
828 *
829 * @dc: current dc state
830 * @context: new dc state
831 *
832 * Return:
833 * bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
834 */
835static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
836{
837 struct pipe_ctx *pipe = NULL;
838 struct pipe_ctx *subvp_pipe = NULL;
839 bool found = false;
840 bool schedulable = false;
841 uint32_t i = 0;
842 uint8_t vblank_index = 0;
843 uint16_t prefetch_us = 0;
844 uint16_t mall_region_us = 0;
845 uint16_t vblank_frame_us = 0;
846 uint16_t subvp_active_us = 0;
847 uint16_t vblank_blank_us = 0;
848 uint16_t max_vblank_mallregion = 0;
849 struct dc_crtc_timing *main_timing = NULL;
850 struct dc_crtc_timing *phantom_timing = NULL;
851 struct dc_crtc_timing *vblank_timing = NULL;
852
853 /* For SubVP + VBLANK/DRR cases, we assume there can only be
854 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
855 * is supported, it is either a single VBLANK case or two VBLANK
856 * displays which are synchronized (in which case they have identical
857 * timings).
858 */
859 for (i = 0; i < dc->res_pool->pipe_count; i++) {
860 pipe = &context->res_ctx.pipe_ctx[i];
861
862 // We check for master pipe, but it shouldn't matter since we only need
863 // the pipe for timing info (stream should be same for any pipe splits)
864 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
865 continue;
866
867 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
868 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
869 vblank_index = i;
870 found = true;
871 }
872
873 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
874 subvp_pipe = pipe;
875 }
876 // Use ignore_msa_timing_param flag to identify as DRR
877 if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) {
878 // SUBVP + DRR case
879 schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]);
880 } else if (found) {
881 main_timing = &subvp_pipe->stream->timing;
882 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
883 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
884 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
885 // Also include the prefetch end to mallstart delay time
886 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
887 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
888 dc->caps.subvp_prefetch_end_to_mall_start_us;
889 // P-State allow width and FW delays already included phantom_timing->v_addressable
890 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
891 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
892 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
893 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
894 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
895 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
896 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
897 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
898 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
899
900 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
901 // and the max of (VBLANK blanking time, MALL region)
902 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
903 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
904 schedulable = true;
905 }
906 return schedulable;
907}
908
909/**
910 * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle
911 * static analysis based on the case.
912 *
913 * Three cases:
914 * 1. SubVP + SubVP
915 * 2. SubVP + VBLANK (DRR checked internally)
916 * 3. SubVP + VACTIVE (currently unsupported)
917 *
918 * @dc: current dc state
919 * @context: new dc state
920 * @vlevel: Voltage level calculated by DML
921 *
922 * Return:
923 * bool - True if statically schedulable, false otherwise
924 */
925static bool subvp_validate_static_schedulability(struct dc *dc,
926 struct dc_state *context,
927 int vlevel)
928{
929 bool schedulable = true; // true by default for single display case
930 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
931 uint32_t i, pipe_idx;
932 uint8_t subvp_count = 0;
933 uint8_t vactive_count = 0;
934
935 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
936 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
937
938 if (!pipe->stream)
939 continue;
940
941 if (pipe->plane_state && !pipe->top_pipe &&
942 pipe->stream->mall_stream_config.type == SUBVP_MAIN)
943 subvp_count++;
944
945 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
946 // switching (SubVP + VACTIVE unsupported). In situations where we force
947 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
948 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 &&
949 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
950 vactive_count++;
951 }
952 pipe_idx++;
953 }
954
955 if (subvp_count == 2) {
956 // Static schedulability check for SubVP + SubVP case
957 schedulable = subvp_subvp_schedulable(dc, context);
958 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
959 // Static schedulability check for SubVP + VBLANK case. Also handle the case where
960 // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
961 if (vactive_count > 0)
962 schedulable = false;
963 else
964 schedulable = subvp_vblank_schedulable(dc, context);
965 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
966 vactive_count > 0) {
967 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
968 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
969 // SubVP + VACTIVE currently unsupported
970 schedulable = false;
971 }
972 return schedulable;
973}
974
5b4ee987 975static void dcn32_full_validate_bw_helper(struct dc *dc,
4cef2269
RS
976 struct dc_state *context,
977 display_e2e_pipe_params_st *pipes,
978 int *vlevel,
979 int *split,
980 bool *merge,
981 int *pipe_cnt)
982{
983 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
984 unsigned int dc_pipe_idx = 0;
985 bool found_supported_config = false;
986 struct pipe_ctx *pipe = NULL;
987 uint32_t non_subvp_pipes = 0;
988 bool drr_pipe_found = false;
989 uint32_t drr_pipe_index = 0;
990 uint32_t i = 0;
991
992 dc_assert_fp_enabled();
993
994 /*
995 * DML favors voltage over p-state, but we're more interested in
996 * supporting p-state over voltage. We can't support p-state in
997 * prefetch mode > 0 so try capping the prefetch mode to start.
86678d46 998 * Override present for testing.
4cef2269 999 */
86678d46
DG
1000 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1001 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
4cef2269 1002 dm_prefetch_support_uclk_fclk_and_stutter;
86678d46
DG
1003 else
1004 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1005 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1006
4cef2269
RS
1007 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1008 /* This may adjust vlevel and maxMpcComb */
a3c9b4c7 1009 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
4cef2269 1010 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
a3c9b4c7
AL
1011 vba->VoltageLevel = *vlevel;
1012 }
4cef2269
RS
1013
1014 /* Conditions for setting up phantom pipes for SubVP:
1015 * 1. Not force disable SubVP
1016 * 2. Full update (i.e. !fast_validate)
1017 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1018 * 4. Display configuration passes validation
1019 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1020 */
1021 if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1022 !dcn32_mpo_in_use(context) && (*vlevel == context->bw_ctx.dml.soc.num_states ||
1023 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1024 dc->debug.force_subvp_mclk_switch)) {
1025
1026 dcn32_merge_pipes_for_subvp(dc, context);
e0b859cf 1027 // to re-initialize viewport after the pipe merge
922710a8 1028 for (i = 0; i < dc->res_pool->pipe_count; i++) {
e0b859cf
EW
1029 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1030
1031 if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1032 continue;
1033
1034 resource_build_scaling_params(pipe_ctx);
1035 }
4cef2269
RS
1036
1037 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1038 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1039 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1040 * Adding phantom pipes won't change the validation result, so change the DML input param
1041 * for P-State support before adding phantom pipes and recalculating the DML result.
1042 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1043 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1044 * enough to support MCLK switching.
1045 */
86678d46
DG
1046 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1047 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1048 dm_prefetch_support_uclk_fclk_and_stutter) {
4cef2269
RS
1049 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1050 dm_prefetch_support_stutter;
1051 /* There are params (such as FabricClock) that need to be recalculated
1052 * after validation fails (otherwise it will be 0). Calculation for
1053 * phantom vactive requires call into DML, so we must ensure all the
1054 * vba params are valid otherwise we'll get incorrect phantom vactive.
1055 */
1056 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1057 }
1058
1059 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1060
1061 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1062 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1063 // so the phantom pipe DLG params can be assigned correctly.
1064 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1065 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1066
1067 if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1068 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
1069 && subvp_validate_static_schedulability(dc, context, *vlevel)) {
1070 found_supported_config = true;
1071 } else if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1072 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1073 /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles
1074 * the case for SubVP + DRR, where the DRR display does not support MCLK switch
1075 * at it's native refresh rate / timing.
1076 */
1077 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1078 pipe = &context->res_ctx.pipe_ctx[i];
1079 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
1080 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1081 non_subvp_pipes++;
1082 // Use ignore_msa_timing_param flag to identify as DRR
1083 if (pipe->stream->ignore_msa_timing_param) {
1084 drr_pipe_found = true;
1085 drr_pipe_index = i;
1086 }
1087 }
1088 }
1089 // If there is only 1 remaining non SubVP pipe that is DRR, check static
1090 // schedulability for SubVP + DRR.
1091 if (non_subvp_pipes == 1 && drr_pipe_found) {
1092 found_supported_config = subvp_drr_schedulable(dc, context,
1093 &context->res_ctx.pipe_ctx[drr_pipe_index]);
1094 }
1095 }
1096 }
1097
1098 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1099 // remove phantom pipes and repopulate dml pipes
1100 if (!found_supported_config) {
1101 dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1102 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1103 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
f577c7c7
ST
1104
1105 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1106 /* This may adjust vlevel and maxMpcComb */
a3c9b4c7 1107 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
f577c7c7 1108 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
a3c9b4c7
AL
1109 vba->VoltageLevel = *vlevel;
1110 }
4cef2269
RS
1111 } else {
1112 // only call dcn20_validate_apply_pipe_split_flags if we found a supported config
1113 memset(split, 0, MAX_PIPES * sizeof(int));
1114 memset(merge, 0, MAX_PIPES * sizeof(bool));
1115 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
a3c9b4c7 1116 vba->VoltageLevel = *vlevel;
4cef2269
RS
1117
1118 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1119 DC_FP_START();
1120 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1121 DC_FP_END();
1122
1123 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1124 // until driver has acquired the DMCUB lock to do it safely.
1125 }
1126 }
1127}
1128
5b4ee987
RS
1129static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1130{
1131 int i;
1132
1133 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1134 if (!context->res_ctx.pipe_ctx[i].stream)
1135 continue;
1136 if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1137 return true;
1138 }
1139 return false;
1140}
1141
1142static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1143 display_e2e_pipe_params_st *pipes,
1144 int pipe_cnt, int vlevel)
1145{
1146 int i, pipe_idx;
1147 bool usr_retraining_support = false;
1148 bool unbounded_req_enabled = false;
1149
1150 dc_assert_fp_enabled();
1151
1152 /* Writeback MCIF_WB arbitration parameters */
1153 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1154
1155 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1156 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1157 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1158 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1159 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1160 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1161 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1162 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1163 != dm_dram_clock_change_unsupported;
1164 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1165
1166 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1167 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1168 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1169 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1170 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1171 else
1172 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1173
1174 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1175 ASSERT(usr_retraining_support);
1176
1177 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1178 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1179
1180 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1181
1182 if (unbounded_req_enabled && pipe_cnt > 1) {
1183 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1184 ASSERT(false);
1185 unbounded_req_enabled = false;
1186 }
1187
1188 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1189 if (!context->res_ctx.pipe_ctx[i].stream)
1190 continue;
1191 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1192 pipe_idx);
1193 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1194 pipe_idx);
1195 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1196 pipe_idx);
1197 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1198 pipe_idx);
1199
1200 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1201 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1202 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1203 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1204 } else {
1205 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1206 pipe_idx);
1207 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1208 }
1209
1210 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1211 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1212 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1213 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1214 pipe_idx++;
1215 }
1216 /*save a original dppclock copy*/
1217 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1218 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1219 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1220 * 1000;
1221 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1222 * 1000;
1223
1224 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1225
1226 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1227 if (context->res_ctx.pipe_ctx[i].stream)
1228 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1229 }
1230
1231 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1232
1233 if (!context->res_ctx.pipe_ctx[i].stream)
1234 continue;
1235
1236 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1237 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1238 pipe_cnt, pipe_idx);
1239
1240 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1241 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1242 pipe_idx++;
1243 }
1244}
1245
1246static struct pipe_ctx *dcn32_find_split_pipe(
1247 struct dc *dc,
1248 struct dc_state *context,
1249 int old_index)
1250{
1251 struct pipe_ctx *pipe = NULL;
1252 int i;
1253
1254 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1255 pipe = &context->res_ctx.pipe_ctx[old_index];
1256 pipe->pipe_idx = old_index;
1257 }
1258
1259 if (!pipe)
1260 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1261 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1262 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1263 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1264 pipe = &context->res_ctx.pipe_ctx[i];
1265 pipe->pipe_idx = i;
1266 break;
1267 }
1268 }
1269 }
1270
1271 /*
1272 * May need to fix pipes getting tossed from 1 opp to another on flip
1273 * Add for debugging transient underflow during topology updates:
1274 * ASSERT(pipe);
1275 */
1276 if (!pipe)
1277 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1278 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1279 pipe = &context->res_ctx.pipe_ctx[i];
1280 pipe->pipe_idx = i;
1281 break;
1282 }
1283 }
1284
1285 return pipe;
1286}
1287
1288static bool dcn32_split_stream_for_mpc_or_odm(
1289 const struct dc *dc,
1290 struct resource_context *res_ctx,
1291 struct pipe_ctx *pri_pipe,
1292 struct pipe_ctx *sec_pipe,
1293 bool odm)
1294{
1295 int pipe_idx = sec_pipe->pipe_idx;
1296 const struct resource_pool *pool = dc->res_pool;
1297
1298 DC_LOGGER_INIT(dc->ctx->logger);
1299
1300 if (odm && pri_pipe->plane_state) {
1301 /* ODM + window MPO, where MPO window is on left half only */
1302 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1303 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1304
1305 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1306 __func__,
1307 pri_pipe->pipe_idx);
1308 return true;
1309 }
1310
1311 /* ODM + window MPO, where MPO window is on right half only */
1312 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1313
1314 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1315 __func__,
1316 pri_pipe->pipe_idx);
1317 return true;
1318 }
1319 }
1320
1321 *sec_pipe = *pri_pipe;
1322
1323 sec_pipe->pipe_idx = pipe_idx;
1324 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1325 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1326 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1327 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1328 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1329 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1330 sec_pipe->stream_res.dsc = NULL;
1331 if (odm) {
1332 if (pri_pipe->next_odm_pipe) {
1333 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1334 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1335 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1336 }
1337 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1338 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1339 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1340 }
1341 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1342 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1343 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1344 }
1345 pri_pipe->next_odm_pipe = sec_pipe;
1346 sec_pipe->prev_odm_pipe = pri_pipe;
1347 ASSERT(sec_pipe->top_pipe == NULL);
1348
1349 if (!sec_pipe->top_pipe)
1350 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1351 else
1352 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1353 if (sec_pipe->stream->timing.flags.DSC == 1) {
1354 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1355 ASSERT(sec_pipe->stream_res.dsc);
1356 if (sec_pipe->stream_res.dsc == NULL)
1357 return false;
1358 }
1359 } else {
1360 if (pri_pipe->bottom_pipe) {
1361 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1362 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1363 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1364 }
1365 pri_pipe->bottom_pipe = sec_pipe;
1366 sec_pipe->top_pipe = pri_pipe;
1367
1368 ASSERT(pri_pipe->plane_state);
1369 }
1370
1371 return true;
1372}
1373
1374bool dcn32_internal_validate_bw(struct dc *dc,
1375 struct dc_state *context,
1376 display_e2e_pipe_params_st *pipes,
1377 int *pipe_cnt_out,
1378 int *vlevel_out,
1379 bool fast_validate)
1380{
1381 bool out = false;
1382 bool repopulate_pipes = false;
1383 int split[MAX_PIPES] = { 0 };
1384 bool merge[MAX_PIPES] = { false };
1385 bool newly_split[MAX_PIPES] = { false };
86678d46
DG
1386 int pipe_cnt, i, pipe_idx;
1387 int vlevel = context->bw_ctx.dml.soc.num_states;
5b4ee987
RS
1388 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1389
1390 dc_assert_fp_enabled();
1391
1392 ASSERT(pipes);
1393 if (!pipes)
1394 return false;
1395
1396 // For each full update, remove all existing phantom pipes first
1397 dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1398
1399 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1400
1401 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1402
1403 if (!pipe_cnt) {
1404 out = true;
1405 goto validate_out;
1406 }
1407
1408 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1409
1410 if (!fast_validate) {
1411 DC_FP_START();
1412 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1413 DC_FP_END();
1414 }
1415
86678d46 1416 if (fast_validate ||
dd075563 1417 (dc->debug.dml_disallow_alternate_prefetch_modes &&
86678d46 1418 (vlevel == context->bw_ctx.dml.soc.num_states ||
dd075563 1419 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
5b4ee987 1420 /*
86678d46
DG
1421 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1422 * tried alternate prefetch modes during full validation.
1423 *
1424 * If mode is unsupported or there is no p-state support, then
1425 * fall back to favouring voltage.
5b4ee987 1426 *
86678d46
DG
1427 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1428 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
5b4ee987
RS
1429 */
1430 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
86678d46 1431 dm_prefetch_support_fclk_and_stutter;
5b4ee987
RS
1432
1433 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1434
1435 /* Last attempt with Prefetch mode 2 (dm_prefetch_support_stutter == 3) */
1436 if (vlevel == context->bw_ctx.dml.soc.num_states) {
1437 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1438 dm_prefetch_support_stutter;
1439 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1440 }
1441
1442 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1443 memset(split, 0, sizeof(split));
1444 memset(merge, 0, sizeof(merge));
1445 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
a3c9b4c7
AL
1446 // dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1447 vba->VoltageLevel = vlevel;
5b4ee987
RS
1448 }
1449 }
1450
1451 dml_log_mode_support_params(&context->bw_ctx.dml);
1452
1453 if (vlevel == context->bw_ctx.dml.soc.num_states)
1454 goto validate_fail;
1455
1456 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1457 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1458 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1459
1460 if (!pipe->stream)
1461 continue;
1462
1463 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1464 && !dc->config.enable_windowed_mpo_odm
1465 && pipe->plane_state && mpo_pipe
1466 && memcmp(&mpo_pipe->plane_res.scl_data.recout,
1467 &pipe->plane_res.scl_data.recout,
1468 sizeof(struct rect)) != 0) {
1469 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1470 goto validate_fail;
1471 }
1472 pipe_idx++;
1473 }
1474
1475 /* merge pipes if necessary */
1476 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1477 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1478
1479 /*skip pipes that don't need merging*/
1480 if (!merge[i])
1481 continue;
1482
1483 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1484 if (pipe->prev_odm_pipe) {
1485 /*split off odm pipe*/
1486 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1487 if (pipe->next_odm_pipe)
1488 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1489
1490 pipe->bottom_pipe = NULL;
1491 pipe->next_odm_pipe = NULL;
1492 pipe->plane_state = NULL;
1493 pipe->stream = NULL;
1494 pipe->top_pipe = NULL;
1495 pipe->prev_odm_pipe = NULL;
1496 if (pipe->stream_res.dsc)
1497 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1498 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1499 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1500 repopulate_pipes = true;
1501 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1502 struct pipe_ctx *top_pipe = pipe->top_pipe;
1503 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1504
1505 top_pipe->bottom_pipe = bottom_pipe;
1506 if (bottom_pipe)
1507 bottom_pipe->top_pipe = top_pipe;
1508
1509 pipe->top_pipe = NULL;
1510 pipe->bottom_pipe = NULL;
1511 pipe->plane_state = NULL;
1512 pipe->stream = NULL;
1513 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1514 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1515 repopulate_pipes = true;
1516 } else
1517 ASSERT(0); /* Should never try to merge master pipe */
1518
1519 }
1520
1521 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1522 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1523 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1524 struct pipe_ctx *hsplit_pipe = NULL;
1525 bool odm;
1526 int old_index = -1;
1527
1528 if (!pipe->stream || newly_split[i])
1529 continue;
1530
1531 pipe_idx++;
1532 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1533
1534 if (!pipe->plane_state && !odm)
1535 continue;
1536
1537 if (split[i]) {
1538 if (odm) {
1539 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1540 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1541 else if (old_pipe->next_odm_pipe)
1542 old_index = old_pipe->next_odm_pipe->pipe_idx;
1543 } else {
1544 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1545 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1546 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1547 else if (old_pipe->bottom_pipe &&
1548 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1549 old_index = old_pipe->bottom_pipe->pipe_idx;
1550 }
1551 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1552 ASSERT(hsplit_pipe);
1553 if (!hsplit_pipe)
1554 goto validate_fail;
1555
1556 if (!dcn32_split_stream_for_mpc_or_odm(
1557 dc, &context->res_ctx,
1558 pipe, hsplit_pipe, odm))
1559 goto validate_fail;
1560
1561 newly_split[hsplit_pipe->pipe_idx] = true;
1562 repopulate_pipes = true;
1563 }
1564 if (split[i] == 4) {
1565 struct pipe_ctx *pipe_4to1;
1566
1567 if (odm && old_pipe->next_odm_pipe)
1568 old_index = old_pipe->next_odm_pipe->pipe_idx;
1569 else if (!odm && old_pipe->bottom_pipe &&
1570 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1571 old_index = old_pipe->bottom_pipe->pipe_idx;
1572 else
1573 old_index = -1;
1574 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1575 ASSERT(pipe_4to1);
1576 if (!pipe_4to1)
1577 goto validate_fail;
1578 if (!dcn32_split_stream_for_mpc_or_odm(
1579 dc, &context->res_ctx,
1580 pipe, pipe_4to1, odm))
1581 goto validate_fail;
1582 newly_split[pipe_4to1->pipe_idx] = true;
1583
1584 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1585 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1586 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1587 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1588 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1589 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1590 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1591 else
1592 old_index = -1;
1593 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1594 ASSERT(pipe_4to1);
1595 if (!pipe_4to1)
1596 goto validate_fail;
1597 if (!dcn32_split_stream_for_mpc_or_odm(
1598 dc, &context->res_ctx,
1599 hsplit_pipe, pipe_4to1, odm))
1600 goto validate_fail;
1601 newly_split[pipe_4to1->pipe_idx] = true;
1602 }
1603 if (odm)
1604 dcn20_build_mapped_resource(dc, context, pipe->stream);
1605 }
1606
1607 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1608 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1609
1610 if (pipe->plane_state) {
1611 if (!resource_build_scaling_params(pipe))
1612 goto validate_fail;
1613 }
1614 }
1615
1616 /* Actual dsc count per stream dsc validation*/
1617 if (!dcn20_validate_dsc(dc, context)) {
1618 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1619 goto validate_fail;
1620 }
1621
1622 if (repopulate_pipes)
1623 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1624 *vlevel_out = vlevel;
1625 *pipe_cnt_out = pipe_cnt;
1626
1627 out = true;
1628 goto validate_out;
1629
1630validate_fail:
1631 out = false;
1632
1633validate_out:
1634 return out;
1635}
1636
1637
0339530d
RS
1638void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1639 display_e2e_pipe_params_st *pipes,
1640 int pipe_cnt,
1641 int vlevel)
1642{
1643 int i, pipe_idx, vlevel_temp = 0;
1644 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1645 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1646 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1647 dm_dram_clock_change_unsupported;
6290ba4c
RS
1648 unsigned int dummy_latency_index = 0;
1649 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1650 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1651 unsigned int min_dram_speed_mts_margin;
0339530d
RS
1652
1653 dc_assert_fp_enabled();
1654
1655 // Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK
1656 if (!pstate_en && dcn32_subvp_in_use(dc, context)) {
1657 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1658 pstate_en = true;
1659 }
1660
6290ba4c
RS
1661 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1662
1663 if (!pstate_en) {
1664 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
1665 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching =
1666 dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
1667
1668 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1669 dummy_latency_index = dcn30_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1670 context, pipes, pipe_cnt, vlevel);
1671
1672 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
1673 * we reinstate the original dram_clock_change_latency_us on the context
1674 * and all variables that may have changed up to this point, except the
1675 * newly found dummy_latency_index
1676 */
1677 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1678 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1679 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
1680 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1681 dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1682 pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] !=
1683 dm_dram_clock_change_unsupported;
1684 }
1685 }
1686
0339530d
RS
1687 /* Set B:
1688 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
1689 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
1690 * calculations to cover bootup clocks.
1691 * DCFCLK: soc.clock_limits[2] when available
1692 * UCLK: soc.clock_limits[2] when available
1693 */
1694 if (dcn3_2_soc.num_states > 2) {
1695 vlevel_temp = 2;
1696 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
1697 } else
1698 dcfclk = 615; //DCFCLK Vmin_lv
1699
1700 pipes[0].clks_cfg.voltage = vlevel_temp;
1701 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1702 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1703
1704 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
1705 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
1706 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
1707 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
1708 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
1709 }
1710 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1711 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1712 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1713 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1714 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1715 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1716 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1717 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1718 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1719 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1720
1721 /* Set D:
1722 * All clocks min.
1723 * DCFCLK: Min, as reported by PM FW when available
1724 * UCLK : Min, as reported by PM FW when available
1725 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
1726 */
1727
1728 if (dcn3_2_soc.num_states > 2) {
1729 vlevel_temp = 0;
1730 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
1731 } else
1732 dcfclk = 615; //DCFCLK Vmin_lv
1733
1734 pipes[0].clks_cfg.voltage = vlevel_temp;
1735 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1736 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1737
1738 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
1739 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
1740 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
1741 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
1742 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
1743 }
1744 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1745 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1746 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1747 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1748 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1749 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1750 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1751 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1752 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1753 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1754
1755 /* Set C, for Dummy P-State:
1756 * All clocks min.
1757 * DCFCLK: Min, as reported by PM FW, when available
1758 * UCLK : Min, as reported by PM FW, when available
1759 * pstate latency as per UCLK state dummy pstate latency
1760 */
1761
1762 // For Set A and Set C use values from validation
1763 pipes[0].clks_cfg.voltage = vlevel;
1764 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
1765 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
1766
1767 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
6290ba4c
RS
1768 min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1769 min_dram_speed_mts_margin = 160;
0339530d 1770
6290ba4c
RS
1771 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1772 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
0339530d 1773
6290ba4c
RS
1774 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
1775 dm_dram_clock_change_unsupported) {
1776 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries - 1;
1777
1778 min_dram_speed_mts =
1779 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
1780 }
1781
1782 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1783 /* find largest table entry that is lower than dram speed,
1784 * but lower than DPM0 still uses DPM0
1785 */
1786 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
1787 if (min_dram_speed_mts + min_dram_speed_mts_margin >
1788 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
1789 break;
1790 }
1791
1792 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1793 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
0339530d 1794
0339530d
RS
1795 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
1796 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
1797 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
1798 }
1799
1800 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1801 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1802 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1803 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1804 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1805 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1806 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1807 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
7857825b
AL
1808 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
1809 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
1810 * value.
1811 */
1812 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
0339530d
RS
1813 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1814
1815 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
1816 /* The only difference between A and C is p-state latency, if p-state is not supported
1817 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
1818 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
1819 */
1820 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
1821 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
1822 } else {
1823 /* Set A:
1824 * All clocks min.
1825 * DCFCLK: Min, as reported by PM FW, when available
1826 * UCLK: Min, as reported by PM FW, when available
1827 */
1828 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1829 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1830 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1831 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1832 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1833 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1834 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1835 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1836 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1837 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1838 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1839 }
1840
1841 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1842 if (!context->res_ctx.pipe_ctx[i].stream)
1843 continue;
1844
1845 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
1846 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1847
1848 if (dc->config.forced_clocks) {
1849 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
1850 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
1851 }
1852 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
1853 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
1854 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1855 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
1856
1857 pipe_idx++;
1858 }
1859
1860 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
1861
1862 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
1863
1864 if (!pstate_en)
1865 /* Restore full p-state latency */
1866 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1867 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1868
6290ba4c
RS
1869 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching)
1870 dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(dc, context);
0339530d
RS
1871}
1872
4e14e0fc
RS
1873static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
1874 unsigned int *optimal_dcfclk,
1875 unsigned int *optimal_fclk)
1876{
1877 double bw_from_dram, bw_from_dram1, bw_from_dram2;
1878
1879 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
1880 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
1881 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
1882 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
1883
1884 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
1885
1886 if (optimal_fclk)
1887 *optimal_fclk = bw_from_dram /
1888 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
1889
1890 if (optimal_dcfclk)
1891 *optimal_dcfclk = bw_from_dram /
1892 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
1893}
1894
1895static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
1896 unsigned int index)
1897{
1898 int i;
1899
1900 if (*num_entries == 0)
1901 return;
1902
1903 for (i = index; i < *num_entries - 1; i++) {
1904 table[i] = table[i + 1];
1905 }
1906 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
1907}
1908
1909static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
1910 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
1911{
1912 int i, j;
1913 struct _vcs_dpi_voltage_scaling_st entry = {0};
1914
1915 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
1916 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
1917
1918 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
1919
1920 static const unsigned int num_dcfclk_stas = 5;
1921 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
1922
1923 unsigned int num_uclk_dpms = 0;
1924 unsigned int num_fclk_dpms = 0;
1925 unsigned int num_dcfclk_dpms = 0;
1926
1927 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
1928 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
1929 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
1930 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
1931 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
1932 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
1933 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
1934 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
1935 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
1936 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
1937 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
1938 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
1939 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
1940 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
1941 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
1942
1943 if (bw_params->clk_table.entries[i].memclk_mhz > 0)
1944 num_uclk_dpms++;
1945 if (bw_params->clk_table.entries[i].fclk_mhz > 0)
1946 num_fclk_dpms++;
1947 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
1948 num_dcfclk_dpms++;
1949 }
1950
1951 if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
1952 return -1;
1953
1954 if (max_dppclk_mhz == 0)
1955 max_dppclk_mhz = max_dispclk_mhz;
1956
1957 if (max_fclk_mhz == 0)
1958 max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
1959
1960 if (max_phyclk_mhz == 0)
1961 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
1962
1963 *num_entries = 0;
1964 entry.dispclk_mhz = max_dispclk_mhz;
1965 entry.dscclk_mhz = max_dispclk_mhz / 3;
1966 entry.dppclk_mhz = max_dppclk_mhz;
1967 entry.dtbclk_mhz = max_dtbclk_mhz;
1968 entry.phyclk_mhz = max_phyclk_mhz;
1969 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
1970 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
1971
1972 // Insert all the DCFCLK STAs
1973 for (i = 0; i < num_dcfclk_stas; i++) {
1974 entry.dcfclk_mhz = dcfclk_sta_targets[i];
1975 entry.fabricclk_mhz = 0;
1976 entry.dram_speed_mts = 0;
1977
1978 DC_FP_START();
1979 insert_entry_into_table_sorted(table, num_entries, &entry);
1980 DC_FP_END();
1981 }
1982
1983 // Insert the max DCFCLK
1984 entry.dcfclk_mhz = max_dcfclk_mhz;
1985 entry.fabricclk_mhz = 0;
1986 entry.dram_speed_mts = 0;
1987
1988 DC_FP_START();
1989 insert_entry_into_table_sorted(table, num_entries, &entry);
1990 DC_FP_END();
1991
1992 // Insert the UCLK DPMS
1993 for (i = 0; i < num_uclk_dpms; i++) {
1994 entry.dcfclk_mhz = 0;
1995 entry.fabricclk_mhz = 0;
1996 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
1997
1998 DC_FP_START();
1999 insert_entry_into_table_sorted(table, num_entries, &entry);
2000 DC_FP_END();
2001 }
2002
2003 // If FCLK is coarse grained, insert individual DPMs.
2004 if (num_fclk_dpms > 2) {
2005 for (i = 0; i < num_fclk_dpms; i++) {
2006 entry.dcfclk_mhz = 0;
2007 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2008 entry.dram_speed_mts = 0;
2009
2010 DC_FP_START();
2011 insert_entry_into_table_sorted(table, num_entries, &entry);
2012 DC_FP_END();
2013 }
2014 }
2015 // If FCLK fine grained, only insert max
2016 else {
2017 entry.dcfclk_mhz = 0;
2018 entry.fabricclk_mhz = max_fclk_mhz;
2019 entry.dram_speed_mts = 0;
2020
2021 DC_FP_START();
2022 insert_entry_into_table_sorted(table, num_entries, &entry);
2023 DC_FP_END();
2024 }
2025
2026 // At this point, the table contains all "points of interest" based on
2027 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2028 // ratios (by derate, are exact).
2029
2030 // Remove states that require higher clocks than are supported
2031 for (i = *num_entries - 1; i >= 0 ; i--) {
2032 if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
2033 table[i].fabricclk_mhz > max_fclk_mhz ||
2034 table[i].dram_speed_mts > max_uclk_mhz * 16)
2035 remove_entry_from_table_at_index(table, num_entries, i);
2036 }
2037
2038 // At this point, the table only contains supported points of interest
2039 // it could be used as is, but some states may be redundant due to
2040 // coarse grained nature of some clocks, so we want to round up to
2041 // coarse grained DPMs and remove duplicates.
2042
2043 // Round up UCLKs
2044 for (i = *num_entries - 1; i >= 0 ; i--) {
2045 for (j = 0; j < num_uclk_dpms; j++) {
2046 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2047 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2048 break;
2049 }
2050 }
2051 }
2052
2053 // If FCLK is coarse grained, round up to next DPMs
2054 if (num_fclk_dpms > 2) {
2055 for (i = *num_entries - 1; i >= 0 ; i--) {
2056 for (j = 0; j < num_fclk_dpms; j++) {
2057 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2058 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2059 break;
2060 }
2061 }
2062 }
2063 }
2064 // Otherwise, round up to minimum.
2065 else {
2066 for (i = *num_entries - 1; i >= 0 ; i--) {
2067 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2068 table[i].fabricclk_mhz = min_fclk_mhz;
2069 break;
2070 }
2071 }
2072 }
2073
2074 // Round DCFCLKs up to minimum
2075 for (i = *num_entries - 1; i >= 0 ; i--) {
2076 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2077 table[i].dcfclk_mhz = min_dcfclk_mhz;
2078 break;
2079 }
2080 }
2081
2082 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2083 i = 0;
2084 while (i < *num_entries - 1) {
2085 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2086 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2087 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2088 remove_entry_from_table_at_index(table, num_entries, i + 1);
2089 else
2090 i++;
2091 }
2092
2093 // Fix up the state indicies
2094 for (i = *num_entries - 1; i >= 0 ; i--) {
2095 table[i].state = i;
2096 }
2097
2098 return 0;
2099}
2100
2101/**
2102 * dcn32_update_bw_bounding_box
2103 *
2104 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2105 * spreadsheet with actual values as per dGPU SKU:
2106 * - with passed few options from dc->config
2107 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2108 * need to get it from PM FW)
2109 * - with passed latency values (passed in ns units) in dc-> bb override for
2110 * debugging purposes
2111 * - with passed latencies from VBIOS (in 100_ns units) if available for
2112 * certain dGPU SKU
2113 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2114 * of the same ASIC)
2115 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2116 * FW for different clocks (which might differ for certain dGPU SKU of the
2117 * same ASIC)
2118 */
2119void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2120{
2121 dc_assert_fp_enabled();
2122
2123 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2124 /* Overrides from dc->config options */
2125 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2126
2127 /* Override from passed dc->bb_overrides if available*/
2128 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2129 && dc->bb_overrides.sr_exit_time_ns) {
2130 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2131 }
2132
2133 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2134 != dc->bb_overrides.sr_enter_plus_exit_time_ns
2135 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2136 dcn3_2_soc.sr_enter_plus_exit_time_us =
2137 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2138 }
2139
2140 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2141 && dc->bb_overrides.urgent_latency_ns) {
2142 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2143 }
2144
2145 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2146 != dc->bb_overrides.dram_clock_change_latency_ns
2147 && dc->bb_overrides.dram_clock_change_latency_ns) {
2148 dcn3_2_soc.dram_clock_change_latency_us =
2149 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2150 }
2151
0cd34ce8
AL
2152 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2153 != dc->bb_overrides.fclk_clock_change_latency_ns
2154 && dc->bb_overrides.fclk_clock_change_latency_ns) {
2155 dcn3_2_soc.fclk_change_latency_us =
2156 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2157 }
2158
4e14e0fc
RS
2159 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2160 != dc->bb_overrides.dummy_clock_change_latency_ns
2161 && dc->bb_overrides.dummy_clock_change_latency_ns) {
2162 dcn3_2_soc.dummy_pstate_latency_us =
2163 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2164 }
2165
2166 /* Override from VBIOS if VBIOS bb_info available */
2167 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2168 struct bp_soc_bb_info bb_info = {0};
2169
2170 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2171 if (bb_info.dram_clock_change_latency_100ns > 0)
bbc9f072
YL
2172 dcn3_2_soc.dram_clock_change_latency_us =
2173 bb_info.dram_clock_change_latency_100ns * 10;
4e14e0fc 2174
bbc9f072
YL
2175 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2176 dcn3_2_soc.sr_enter_plus_exit_time_us =
2177 bb_info.dram_sr_enter_exit_latency_100ns * 10;
4e14e0fc 2178
bbc9f072
YL
2179 if (bb_info.dram_sr_exit_latency_100ns > 0)
2180 dcn3_2_soc.sr_exit_time_us =
2181 bb_info.dram_sr_exit_latency_100ns * 10;
4e14e0fc
RS
2182 }
2183 }
2184
2185 /* Override from VBIOS for num_chan */
2186 if (dc->ctx->dc_bios->vram_info.num_chans)
2187 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2188
2189 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2190 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2191
2192 }
2193
2194 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2195 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2196 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2197
2198 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2199 if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
2200 if (dc->debug.use_legacy_soc_bb_mechanism) {
2201 unsigned int i = 0, j = 0, num_states = 0;
2202
2203 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2204 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2205 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2206 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2207 unsigned int min_dcfclk = UINT_MAX;
2208 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2209 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2210 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2211 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2212 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2213
2214 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2215 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2216 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2217 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2218 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2219 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2220 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2221 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2222 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2223 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2224 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2225 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2226 }
2227 if (min_dcfclk > dcfclk_sta_targets[0])
2228 dcfclk_sta_targets[0] = min_dcfclk;
2229 if (!max_dcfclk_mhz)
2230 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2231 if (!max_dispclk_mhz)
2232 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2233 if (!max_dppclk_mhz)
2234 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2235 if (!max_phyclk_mhz)
2236 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2237
2238 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2239 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2240 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2241 num_dcfclk_sta_targets++;
2242 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2243 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2244 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2245 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2246 dcfclk_sta_targets[i] = max_dcfclk_mhz;
2247 break;
2248 }
2249 }
2250 // Update size of array since we "removed" duplicates
2251 num_dcfclk_sta_targets = i + 1;
2252 }
2253
2254 num_uclk_states = bw_params->clk_table.num_entries;
2255
2256 // Calculate optimal dcfclk for each uclk
2257 for (i = 0; i < num_uclk_states; i++) {
2258 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2259 &optimal_dcfclk_for_uclk[i], NULL);
2260 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2261 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2262 }
2263 }
2264
2265 // Calculate optimal uclk for each dcfclk sta target
2266 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2267 for (j = 0; j < num_uclk_states; j++) {
2268 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2269 optimal_uclk_for_dcfclk_sta_targets[i] =
2270 bw_params->clk_table.entries[j].memclk_mhz * 16;
2271 break;
2272 }
2273 }
2274 }
2275
2276 i = 0;
2277 j = 0;
2278 // create the final dcfclk and uclk table
2279 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2280 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2281 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2282 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2283 } else {
2284 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2285 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2286 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2287 } else {
2288 j = num_uclk_states;
2289 }
2290 }
2291 }
2292
2293 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2294 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2295 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2296 }
2297
2298 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2299 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2300 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2301 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2302 }
2303
2304 dcn3_2_soc.num_states = num_states;
2305 for (i = 0; i < dcn3_2_soc.num_states; i++) {
2306 dcn3_2_soc.clock_limits[i].state = i;
2307 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2308 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2309
2310 /* Fill all states with max values of all these clocks */
2311 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2312 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
2313 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
2314 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
2315
2316 /* Populate from bw_params for DTBCLK, SOCCLK */
2317 if (i > 0) {
2318 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2319 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2320 } else {
2321 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2322 }
2323 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2324 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2325 }
2326
2327 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2328 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2329 else
2330 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2331
2332 if (!dram_speed_mts[i] && i > 0)
2333 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2334 else
2335 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2336
2337 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2338 /* PHYCLK_D18, PHYCLK_D32 */
2339 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2340 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2341 }
2342 } else {
2343 build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2344 }
2345
2346 /* Re-init DML with updated bb */
2347 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2348 if (dc->current_state)
2349 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2350 }
2351}
2352