drm/amd/display: fix CAB allocation for multiple displays
[linux-2.6-block.git] / drivers / gpu / drm / amd / display / dc / dml / dcn32 / dcn32_fpu.c
CommitLineData
041a1109
RS
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26#include "dcn32_fpu.h"
5b4ee987 27#include "dc_link_dp.h"
4cef2269
RS
28#include "dcn32/dcn32_resource.h"
29#include "dcn20/dcn20_resource.h"
25e75164 30#include "display_mode_vba_util_32.h"
041a1109
RS
31// We need this includes for WATERMARKS_* defines
32#include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
6290ba4c 33#include "dcn30/dcn30_resource.h"
041a1109 34
5b4ee987
RS
35#define DC_LOGGER_INIT(logger)
36
34a1b0f9
RS
37struct _vcs_dpi_ip_params_st dcn3_2_ip = {
38 .gpuvm_enable = 0,
39 .gpuvm_max_page_table_levels = 4,
40 .hostvm_enable = 0,
41 .rob_buffer_size_kbytes = 128,
42 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
43 .config_return_buffer_size_in_kbytes = 1280,
44 .compressed_buffer_segment_size_in_kbytes = 64,
45 .meta_fifo_size_in_kentries = 22,
46 .zero_size_buffer_entries = 512,
47 .compbuf_reserved_space_64b = 256,
48 .compbuf_reserved_space_zs = 64,
49 .dpp_output_buffer_pixels = 2560,
50 .opp_output_buffer_lines = 1,
51 .pixel_chunk_size_kbytes = 8,
52 .alpha_pixel_chunk_size_kbytes = 4,
53 .min_pixel_chunk_size_bytes = 1024,
54 .dcc_meta_buffer_size_bytes = 6272,
55 .meta_chunk_size_kbytes = 2,
56 .min_meta_chunk_size_bytes = 256,
57 .writeback_chunk_size_kbytes = 8,
58 .ptoi_supported = false,
59 .num_dsc = 4,
60 .maximum_dsc_bits_per_component = 12,
61 .maximum_pixels_per_line_per_dsc_unit = 6016,
62 .dsc422_native_support = true,
63 .is_line_buffer_bpp_fixed = true,
64 .line_buffer_fixed_bpp = 57,
65 .line_buffer_size_bits = 1171920,
66 .max_line_buffer_lines = 32,
67 .writeback_interface_buffer_size_kbytes = 90,
68 .max_num_dpp = 4,
69 .max_num_otg = 4,
70 .max_num_hdmi_frl_outputs = 1,
71 .max_num_wb = 1,
72 .max_dchub_pscl_bw_pix_per_clk = 4,
73 .max_pscl_lb_bw_pix_per_clk = 2,
74 .max_lb_vscl_bw_pix_per_clk = 4,
75 .max_vscl_hscl_bw_pix_per_clk = 4,
76 .max_hscl_ratio = 6,
77 .max_vscl_ratio = 6,
78 .max_hscl_taps = 8,
79 .max_vscl_taps = 8,
80 .dpte_buffer_size_in_pte_reqs_luma = 64,
81 .dpte_buffer_size_in_pte_reqs_chroma = 34,
82 .dispclk_ramp_margin_percent = 1,
83 .max_inter_dcn_tile_repeaters = 8,
84 .cursor_buffer_size = 16,
85 .cursor_chunk_size = 2,
86 .writeback_line_buffer_buffer_size = 0,
87 .writeback_min_hscl_ratio = 1,
88 .writeback_min_vscl_ratio = 1,
89 .writeback_max_hscl_ratio = 1,
90 .writeback_max_vscl_ratio = 1,
91 .writeback_max_hscl_taps = 1,
92 .writeback_max_vscl_taps = 1,
93 .dppclk_delay_subtotal = 47,
94 .dppclk_delay_scl = 50,
95 .dppclk_delay_scl_lb_only = 16,
96 .dppclk_delay_cnvc_formatter = 28,
97 .dppclk_delay_cnvc_cursor = 6,
98 .dispclk_delay_subtotal = 125,
99 .dynamic_metadata_vm_enabled = false,
100 .odm_combine_4to1_supported = false,
101 .dcc_supported = true,
102 .max_num_dp2p0_outputs = 2,
103 .max_num_dp2p0_streams = 4,
104};
105
106struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
107 .clock_limits = {
108 {
109 .state = 0,
110 .dcfclk_mhz = 1564.0,
111 .fabricclk_mhz = 400.0,
112 .dispclk_mhz = 2150.0,
113 .dppclk_mhz = 2150.0,
114 .phyclk_mhz = 810.0,
115 .phyclk_d18_mhz = 667.0,
116 .phyclk_d32_mhz = 625.0,
117 .socclk_mhz = 1200.0,
118 .dscclk_mhz = 716.667,
119 .dram_speed_mts = 16000.0,
120 .dtbclk_mhz = 1564.0,
121 },
122 },
123 .num_states = 1,
493af96d
AL
124 .sr_exit_time_us = 20.16,
125 .sr_enter_plus_exit_time_us = 27.13,
34a1b0f9
RS
126 .sr_exit_z8_time_us = 285.0,
127 .sr_enter_plus_exit_z8_time_us = 320,
128 .writeback_latency_us = 12.0,
129 .round_trip_ping_latency_dcfclk_cycles = 263,
130 .urgent_latency_pixel_data_only_us = 4.0,
131 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
132 .urgent_latency_vm_data_only_us = 4.0,
133 .fclk_change_latency_us = 20,
134 .usr_retraining_latency_us = 2,
135 .smn_latency_us = 2,
136 .mall_allocated_for_dcn_mbytes = 64,
137 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
138 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
139 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
140 .pct_ideal_sdp_bw_after_urgent = 100.0,
141 .pct_ideal_fabric_bw_after_urgent = 67.0,
142 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
143 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
144 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
145 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
146 .max_avg_sdp_bw_use_normal_percent = 80.0,
147 .max_avg_fabric_bw_use_normal_percent = 60.0,
148 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
149 .max_avg_dram_bw_use_normal_percent = 15.0,
150 .num_chans = 8,
151 .dram_channel_width_bytes = 2,
152 .fabric_datapath_to_dcn_data_return_bytes = 64,
153 .return_bus_width_bytes = 64,
154 .downspread_percent = 0.38,
155 .dcn_downspread_percent = 0.5,
156 .dram_clock_change_latency_us = 400,
157 .dispclk_dppclk_vco_speed_mhz = 4300.0,
158 .do_urgent_latency_adjustment = true,
159 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
160 .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
161};
162
041a1109
RS
163void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
164{
165 /* defaults */
166 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
167 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
168 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
169 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
170 /* For min clocks use as reported by PM FW and report those as min */
171 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
172 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
173 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
174 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
175
176 dc_assert_fp_enabled();
177
178 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
179 if (dcfclk_mhz_for_the_second_state)
180 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
181 else
182 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183
184 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
185 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
186
187 /* Set A - Normal - default values */
188 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
189 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
190 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
191 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
192 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
193 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
194 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
195 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
196 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
197 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
198
199 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
200 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
201 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
202 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
204 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
206 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
207 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
208 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
209
210 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
211 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
212 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 38;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
221 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
222 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
223 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
224 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 38;
225 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
226 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
227 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
228 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
229 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
230 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
231 }
232 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
233 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
234 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
235 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
244}
245
f7bacd97
RS
246/**
247 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
248 * and populate pipe_ctx with those params.
249 *
250 * This function must be called AFTER the phantom pipes are added to context
251 * and run through DML (so that the DLG params for the phantom pipes can be
252 * populated), and BEFORE we program the timing for the phantom pipes.
253 *
254 * @dc: [in] current dc state
255 * @context: [in] new dc state
256 * @pipes: [in] DML pipe params array
257 * @pipe_cnt: [in] DML pipe count
258 */
259void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
260 struct dc_state *context,
261 display_e2e_pipe_params_st *pipes,
262 int pipe_cnt)
263{
264 uint32_t i, pipe_idx;
265
266 dc_assert_fp_enabled();
267
268 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
269 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
270
271 if (!pipe->stream)
272 continue;
273
274 if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
275 pipes[pipe_idx].pipe.dest.vstartup_start =
276 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
277 pipes[pipe_idx].pipe.dest.vupdate_offset =
278 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
279 pipes[pipe_idx].pipe.dest.vupdate_width =
280 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
281 pipes[pipe_idx].pipe.dest.vready_offset =
282 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
283 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
284 }
285 pipe_idx++;
286 }
287}
288
25e75164
RS
289bool dcn32_predict_pipe_split(struct dc_state *context, display_pipe_params_st pipe, int index)
290{
291 double pscl_throughput;
292 double pscl_throughput_chroma;
293 double dpp_clk_single_dpp, clock;
294 double clk_frequency = 0.0;
295 double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
296
297 dc_assert_fp_enabled();
298
299 dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe.scale_ratio_depth.hscl_ratio,
300 pipe.scale_ratio_depth.hscl_ratio_c,
301 pipe.scale_ratio_depth.vscl_ratio,
302 pipe.scale_ratio_depth.vscl_ratio_c,
303 context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
304 context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
305 pipe.dest.pixel_rate_mhz,
306 pipe.src.source_format,
307 pipe.scale_taps.htaps,
308 pipe.scale_taps.htaps_c,
309 pipe.scale_taps.vtaps,
310 pipe.scale_taps.vtaps_c,
311 /* Output */
312 &pscl_throughput, &pscl_throughput_chroma,
313 &dpp_clk_single_dpp);
314
315 clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
316
317 if (clock > 0)
318 clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0));
319
320 if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[index].dppclk_mhz)
321 return true;
322 else
323 return false;
324}
325
34a1b0f9
RS
326static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
327{
328 float memory_bw_kbytes_sec;
329 float fabric_bw_kbytes_sec;
330 float sdp_bw_kbytes_sec;
331 float limiting_bw_kbytes_sec;
332
333 memory_bw_kbytes_sec = entry->dram_speed_mts *
334 dcn3_2_soc.num_chans *
335 dcn3_2_soc.dram_channel_width_bytes *
336 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
337
338 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
339 dcn3_2_soc.return_bus_width_bytes *
340 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
341
342 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
343 dcn3_2_soc.return_bus_width_bytes *
344 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
345
346 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
347
348 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
349 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
350
351 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
352 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
353
354 return limiting_bw_kbytes_sec;
355}
356
a4f8f294
RS
357static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
358{
359 if (entry->dcfclk_mhz > 0) {
360 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
361
362 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
363 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
364 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
365 } else if (entry->fabricclk_mhz > 0) {
366 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
367
368 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
369 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
370 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
371 } else if (entry->dram_speed_mts > 0) {
372 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
373 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374
375 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
376 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
377 }
378}
379
34a1b0f9
RS
380void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
381 unsigned int *num_entries,
382 struct _vcs_dpi_voltage_scaling_st *entry)
383{
384 int i = 0;
385 int index = 0;
386 float net_bw_of_new_state = 0;
387
388 dc_assert_fp_enabled();
389
a4f8f294
RS
390 get_optimal_ntuple(entry);
391
34a1b0f9
RS
392 if (*num_entries == 0) {
393 table[0] = *entry;
394 (*num_entries)++;
395 } else {
396 net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
397 while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
398 index++;
399 if (index >= *num_entries)
400 break;
401 }
402
403 for (i = *num_entries; i > index; i--)
404 table[i] = table[i - 1];
405
406 table[index] = *entry;
407 (*num_entries)++;
408 }
409}
410
8f5bb69d
RS
411/**
412 * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream
413 *
414 * Set timing params of the phantom stream based on calculated output from DML.
415 * This function first gets the DML pipe index using the DC pipe index, then
416 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
417 * lines required for SubVP MCLK switching and assigns to the phantom stream
418 * accordingly.
419 *
420 * - The number of SubVP lines calculated in DML does not take into account
421 * FW processing delays and required pstate allow width, so we must include
422 * that separately.
423 *
424 * - Set phantom backporch = vstartup of main pipe
425 *
426 * @dc: current dc state
427 * @context: new dc state
428 * @ref_pipe: Main pipe for the phantom stream
429 * @pipes: DML pipe params
430 * @pipe_cnt: number of DML pipes
431 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
432 */
433void dcn32_set_phantom_stream_timing(struct dc *dc,
434 struct dc_state *context,
435 struct pipe_ctx *ref_pipe,
436 struct dc_stream_state *phantom_stream,
437 display_e2e_pipe_params_st *pipes,
438 unsigned int pipe_cnt,
439 unsigned int dc_pipe_idx)
440{
441 unsigned int i, pipe_idx;
442 struct pipe_ctx *pipe;
443 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
444 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
445 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
446 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
447
448 dc_assert_fp_enabled();
449
450 // Find DML pipe index (pipe_idx) using dc_pipe_idx
451 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
452 pipe = &context->res_ctx.pipe_ctx[i];
453
454 if (!pipe->stream)
455 continue;
456
457 if (i == dc_pipe_idx)
458 break;
459
460 pipe_idx++;
461 }
462
463 // Calculate lines required for pstate allow width and FW processing delays
464 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
465 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
466 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
467 (double)ref_pipe->stream->timing.h_total;
468
469 // Update clks_cfg for calling into recalculate
470 pipes[0].clks_cfg.voltage = vlevel;
471 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
472 pipes[0].clks_cfg.socclk_mhz = socclk;
473
474 // DML calculation for MALL region doesn't take into account FW delay
475 // and required pstate allow width for multi-display cases
476 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
477 pstate_width_fw_delay_lines;
478
479 // For backporch of phantom pipe, use vstartup of the main pipe
480 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
481
482 phantom_stream->dst.y = 0;
483 phantom_stream->dst.height = phantom_vactive;
484 phantom_stream->src.y = 0;
485 phantom_stream->src.height = phantom_vactive;
486
487 phantom_stream->timing.v_addressable = phantom_vactive;
488 phantom_stream->timing.v_front_porch = 1;
489 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
490 phantom_stream->timing.v_front_porch +
491 phantom_stream->timing.v_sync_width +
492 phantom_bp;
493}
494
4cef2269
RS
495/**
496 * dcn32_get_num_free_pipes: Calculate number of free pipes
497 *
498 * This function assumes that a "used" pipe is a pipe that has
499 * both a stream and a plane assigned to it.
500 *
501 * @dc: current dc state
502 * @context: new dc state
503 *
504 * Return:
505 * Number of free pipes available in the context
506 */
507static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
508{
509 unsigned int i;
510 unsigned int free_pipes = 0;
511 unsigned int num_pipes = 0;
512
513 for (i = 0; i < dc->res_pool->pipe_count; i++) {
514 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
515
516 if (pipe->stream && !pipe->top_pipe) {
517 while (pipe) {
518 num_pipes++;
519 pipe = pipe->bottom_pipe;
520 }
521 }
522 }
523
524 free_pipes = dc->res_pool->pipe_count - num_pipes;
525 return free_pipes;
526}
527
528/**
529 * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP.
530 *
531 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
532 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
533 * we are forcing SubVP P-State switching on the current config.
534 *
535 * The number of pipes used for the chosen surface must be less than or equal to the
536 * number of free pipes available.
537 *
538 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
539 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
540 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
541 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
542 *
543 * @param dc: current dc state
544 * @param context: new dc state
545 * @param index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
546 *
547 * Return:
548 * True if a valid pipe assignment was found for Sub-VP. Otherwise false.
549 */
550static bool dcn32_assign_subvp_pipe(struct dc *dc,
551 struct dc_state *context,
552 unsigned int *index)
553{
554 unsigned int i, pipe_idx;
555 unsigned int max_frame_time = 0;
556 bool valid_assignment_found = false;
557 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
558 bool current_assignment_freesync = false;
559
560 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
561 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
562 unsigned int num_pipes = 0;
563 unsigned int refresh_rate = 0;
564
565 if (!pipe->stream)
566 continue;
567
568 // Round up
569 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
570 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
571 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
572 if (pipe->plane_state && !pipe->top_pipe &&
573 pipe->stream->mall_stream_config.type == SUBVP_NONE && refresh_rate < 120) {
574 while (pipe) {
575 num_pipes++;
576 pipe = pipe->bottom_pipe;
577 }
578
579 pipe = &context->res_ctx.pipe_ctx[i];
580 if (num_pipes <= free_pipes) {
581 struct dc_stream_state *stream = pipe->stream;
582 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
583 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
584 if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) {
585 *index = i;
586 max_frame_time = frame_us;
587 valid_assignment_found = true;
588 current_assignment_freesync = false;
589 /* For the 2-Freesync display case, still choose the one with the
590 * longest frame time
591 */
592 } else if (stream->ignore_msa_timing_param && (!valid_assignment_found ||
593 (current_assignment_freesync && frame_us > max_frame_time))) {
594 *index = i;
595 valid_assignment_found = true;
596 current_assignment_freesync = true;
597 }
598 }
599 }
600 pipe_idx++;
601 }
602 return valid_assignment_found;
603}
604
605/**
606 * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP.
607 *
608 * This function returns true if there are enough free pipes
609 * to create the required phantom pipes for any given stream
610 * (that does not already have phantom pipe assigned).
611 *
612 * e.g. For a 2 stream config where the first stream uses one
613 * pipe and the second stream uses 2 pipes (i.e. pipe split),
614 * this function will return true because there is 1 remaining
615 * pipe which can be used as the phantom pipe for the non pipe
616 * split pipe.
617 *
618 * @dc: current dc state
619 * @context: new dc state
620 *
621 * Return:
622 * True if there are enough free pipes to assign phantom pipes to at least one
623 * stream that does not already have phantom pipes assigned. Otherwise false.
624 */
625static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
626{
627 unsigned int i, split_cnt, free_pipes;
628 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
629 bool subvp_possible = false;
630
631 for (i = 0; i < dc->res_pool->pipe_count; i++) {
632 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
633
634 // Find the minimum pipe split count for non SubVP pipes
635 if (pipe->stream && !pipe->top_pipe &&
636 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
637 split_cnt = 0;
638 while (pipe) {
639 split_cnt++;
640 pipe = pipe->bottom_pipe;
641 }
642
643 if (split_cnt < min_pipe_split)
644 min_pipe_split = split_cnt;
645 }
646 }
647
648 free_pipes = dcn32_get_num_free_pipes(dc, context);
649
650 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
651 // should not equal to the pipe_count)
652 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
653 subvp_possible = true;
654
655 return subvp_possible;
656}
657
658/**
659 * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable
660 *
661 * High level algorithm:
662 * 1. Find longest microschedule length (in us) between the two SubVP pipes
663 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
664 * pipes still allows for the maximum microschedule to fit in the active
665 * region for both pipes.
666 *
667 * @dc: current dc state
668 * @context: new dc state
669 *
670 * Return:
671 * bool - True if the SubVP + SubVP config is schedulable, false otherwise
672 */
673static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
674{
675 struct pipe_ctx *subvp_pipes[2];
676 struct dc_stream_state *phantom = NULL;
677 uint32_t microschedule_lines = 0;
678 uint32_t index = 0;
679 uint32_t i;
680 uint32_t max_microschedule_us = 0;
681 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
682
683 for (i = 0; i < dc->res_pool->pipe_count; i++) {
684 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
685 uint32_t time_us = 0;
686
687 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
688 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
689 */
690 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
691 pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
692 phantom = pipe->stream->mall_stream_config.paired_stream;
693 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
694 phantom->timing.v_addressable;
695
696 // Round up when calculating microschedule time (+ 1 at the end)
697 time_us = (microschedule_lines * phantom->timing.h_total) /
698 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
699 dc->caps.subvp_prefetch_end_to_mall_start_us +
700 dc->caps.subvp_fw_processing_delay_us + 1;
701 if (time_us > max_microschedule_us)
702 max_microschedule_us = time_us;
703
704 subvp_pipes[index] = pipe;
705 index++;
706
707 // Maximum 2 SubVP pipes
708 if (index == 2)
709 break;
710 }
711 }
712 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
713 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
714 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
715 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
716 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
717 subvp_pipes[0]->stream->timing.h_total) /
718 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
719 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
720 subvp_pipes[1]->stream->timing.h_total) /
721 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
722
723 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
724 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
725 return true;
726
727 return false;
728}
729
730/**
731 * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable
732 *
733 * High level algorithm:
734 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
735 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
736 * (the margin is equal to the MALL region + DRR margin (500us))
737 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
738 * then report the configuration as supported
739 *
740 * @dc: current dc state
741 * @context: new dc state
742 * @drr_pipe: DRR pipe_ctx for the SubVP + DRR config
743 *
744 * Return:
745 * bool - True if the SubVP + DRR config is schedulable, false otherwise
746 */
747static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
748{
749 bool schedulable = false;
750 uint32_t i;
751 struct pipe_ctx *pipe = NULL;
752 struct dc_crtc_timing *main_timing = NULL;
753 struct dc_crtc_timing *phantom_timing = NULL;
754 struct dc_crtc_timing *drr_timing = NULL;
755 int16_t prefetch_us = 0;
756 int16_t mall_region_us = 0;
757 int16_t drr_frame_us = 0; // nominal frame time
758 int16_t subvp_active_us = 0;
759 int16_t stretched_drr_us = 0;
760 int16_t drr_stretched_vblank_us = 0;
761 int16_t max_vblank_mallregion = 0;
762
763 // Find SubVP pipe
764 for (i = 0; i < dc->res_pool->pipe_count; i++) {
765 pipe = &context->res_ctx.pipe_ctx[i];
766
767 // We check for master pipe, but it shouldn't matter since we only need
768 // the pipe for timing info (stream should be same for any pipe splits)
769 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
770 continue;
771
772 // Find the SubVP pipe
773 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
774 break;
775 }
776
777 main_timing = &pipe->stream->timing;
778 phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
779 drr_timing = &drr_pipe->stream->timing;
780 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
781 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
782 dc->caps.subvp_prefetch_end_to_mall_start_us;
783 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
784 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
785 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
786 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
787 // P-State allow width and FW delays already included phantom_timing->v_addressable
788 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
789 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
790 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
791 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
792 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
793 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
794
795 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
796 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
797 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
798 * and the max of (VBLANK blanking time, MALL region)).
799 */
800 if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
801 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
802 schedulable = true;
803
804 return schedulable;
805}
806
807
808/**
809 * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable
810 *
811 * High level algorithm:
812 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
813 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
814 * then report the configuration as supported
815 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
816 *
817 * @dc: current dc state
818 * @context: new dc state
819 *
820 * Return:
821 * bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
822 */
823static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
824{
825 struct pipe_ctx *pipe = NULL;
826 struct pipe_ctx *subvp_pipe = NULL;
827 bool found = false;
828 bool schedulable = false;
829 uint32_t i = 0;
830 uint8_t vblank_index = 0;
831 uint16_t prefetch_us = 0;
832 uint16_t mall_region_us = 0;
833 uint16_t vblank_frame_us = 0;
834 uint16_t subvp_active_us = 0;
835 uint16_t vblank_blank_us = 0;
836 uint16_t max_vblank_mallregion = 0;
837 struct dc_crtc_timing *main_timing = NULL;
838 struct dc_crtc_timing *phantom_timing = NULL;
839 struct dc_crtc_timing *vblank_timing = NULL;
840
841 /* For SubVP + VBLANK/DRR cases, we assume there can only be
842 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
843 * is supported, it is either a single VBLANK case or two VBLANK
844 * displays which are synchronized (in which case they have identical
845 * timings).
846 */
847 for (i = 0; i < dc->res_pool->pipe_count; i++) {
848 pipe = &context->res_ctx.pipe_ctx[i];
849
850 // We check for master pipe, but it shouldn't matter since we only need
851 // the pipe for timing info (stream should be same for any pipe splits)
852 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
853 continue;
854
855 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
856 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
857 vblank_index = i;
858 found = true;
859 }
860
861 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
862 subvp_pipe = pipe;
863 }
864 // Use ignore_msa_timing_param flag to identify as DRR
865 if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) {
866 // SUBVP + DRR case
867 schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]);
868 } else if (found) {
869 main_timing = &subvp_pipe->stream->timing;
870 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
871 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
872 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
873 // Also include the prefetch end to mallstart delay time
874 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
875 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
876 dc->caps.subvp_prefetch_end_to_mall_start_us;
877 // P-State allow width and FW delays already included phantom_timing->v_addressable
878 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
879 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
880 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
881 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
882 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
883 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
884 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
885 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
886 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
887
888 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
889 // and the max of (VBLANK blanking time, MALL region)
890 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
891 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
892 schedulable = true;
893 }
894 return schedulable;
895}
896
897/**
898 * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle
899 * static analysis based on the case.
900 *
901 * Three cases:
902 * 1. SubVP + SubVP
903 * 2. SubVP + VBLANK (DRR checked internally)
904 * 3. SubVP + VACTIVE (currently unsupported)
905 *
906 * @dc: current dc state
907 * @context: new dc state
908 * @vlevel: Voltage level calculated by DML
909 *
910 * Return:
911 * bool - True if statically schedulable, false otherwise
912 */
913static bool subvp_validate_static_schedulability(struct dc *dc,
914 struct dc_state *context,
915 int vlevel)
916{
917 bool schedulable = true; // true by default for single display case
918 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
919 uint32_t i, pipe_idx;
920 uint8_t subvp_count = 0;
921 uint8_t vactive_count = 0;
922
923 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
924 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
925
926 if (!pipe->stream)
927 continue;
928
929 if (pipe->plane_state && !pipe->top_pipe &&
930 pipe->stream->mall_stream_config.type == SUBVP_MAIN)
931 subvp_count++;
932
933 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
934 // switching (SubVP + VACTIVE unsupported). In situations where we force
935 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
936 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 &&
937 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
938 vactive_count++;
939 }
940 pipe_idx++;
941 }
942
943 if (subvp_count == 2) {
944 // Static schedulability check for SubVP + SubVP case
945 schedulable = subvp_subvp_schedulable(dc, context);
946 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
947 // Static schedulability check for SubVP + VBLANK case. Also handle the case where
948 // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
949 if (vactive_count > 0)
950 schedulable = false;
951 else
952 schedulable = subvp_vblank_schedulable(dc, context);
953 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
954 vactive_count > 0) {
955 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
956 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
957 // SubVP + VACTIVE currently unsupported
958 schedulable = false;
959 }
960 return schedulable;
961}
962
5b4ee987 963static void dcn32_full_validate_bw_helper(struct dc *dc,
4cef2269
RS
964 struct dc_state *context,
965 display_e2e_pipe_params_st *pipes,
966 int *vlevel,
967 int *split,
968 bool *merge,
969 int *pipe_cnt)
970{
971 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
972 unsigned int dc_pipe_idx = 0;
973 bool found_supported_config = false;
974 struct pipe_ctx *pipe = NULL;
975 uint32_t non_subvp_pipes = 0;
976 bool drr_pipe_found = false;
977 uint32_t drr_pipe_index = 0;
978 uint32_t i = 0;
979
980 dc_assert_fp_enabled();
981
982 /*
983 * DML favors voltage over p-state, but we're more interested in
984 * supporting p-state over voltage. We can't support p-state in
985 * prefetch mode > 0 so try capping the prefetch mode to start.
986 */
987 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
988 dm_prefetch_support_uclk_fclk_and_stutter;
989 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
990 /* This may adjust vlevel and maxMpcComb */
991 if (*vlevel < context->bw_ctx.dml.soc.num_states)
992 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
993
994 /* Conditions for setting up phantom pipes for SubVP:
995 * 1. Not force disable SubVP
996 * 2. Full update (i.e. !fast_validate)
997 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
998 * 4. Display configuration passes validation
999 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1000 */
1001 if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1002 !dcn32_mpo_in_use(context) && (*vlevel == context->bw_ctx.dml.soc.num_states ||
1003 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1004 dc->debug.force_subvp_mclk_switch)) {
1005
1006 dcn32_merge_pipes_for_subvp(dc, context);
1007
1008 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1009 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1010 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1011 * Adding phantom pipes won't change the validation result, so change the DML input param
1012 * for P-State support before adding phantom pipes and recalculating the DML result.
1013 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1014 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1015 * enough to support MCLK switching.
1016 */
1017 if (*vlevel == context->bw_ctx.dml.soc.num_states) {
1018 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1019 dm_prefetch_support_stutter;
1020 /* There are params (such as FabricClock) that need to be recalculated
1021 * after validation fails (otherwise it will be 0). Calculation for
1022 * phantom vactive requires call into DML, so we must ensure all the
1023 * vba params are valid otherwise we'll get incorrect phantom vactive.
1024 */
1025 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1026 }
1027
1028 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1029
1030 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1031 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1032 // so the phantom pipe DLG params can be assigned correctly.
1033 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1034 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1035
1036 if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1037 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
1038 && subvp_validate_static_schedulability(dc, context, *vlevel)) {
1039 found_supported_config = true;
1040 } else if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1041 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1042 /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles
1043 * the case for SubVP + DRR, where the DRR display does not support MCLK switch
1044 * at it's native refresh rate / timing.
1045 */
1046 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1047 pipe = &context->res_ctx.pipe_ctx[i];
1048 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
1049 pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1050 non_subvp_pipes++;
1051 // Use ignore_msa_timing_param flag to identify as DRR
1052 if (pipe->stream->ignore_msa_timing_param) {
1053 drr_pipe_found = true;
1054 drr_pipe_index = i;
1055 }
1056 }
1057 }
1058 // If there is only 1 remaining non SubVP pipe that is DRR, check static
1059 // schedulability for SubVP + DRR.
1060 if (non_subvp_pipes == 1 && drr_pipe_found) {
1061 found_supported_config = subvp_drr_schedulable(dc, context,
1062 &context->res_ctx.pipe_ctx[drr_pipe_index]);
1063 }
1064 }
1065 }
1066
1067 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1068 // remove phantom pipes and repopulate dml pipes
1069 if (!found_supported_config) {
1070 dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1071 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1072 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1073 } else {
1074 // only call dcn20_validate_apply_pipe_split_flags if we found a supported config
1075 memset(split, 0, MAX_PIPES * sizeof(int));
1076 memset(merge, 0, MAX_PIPES * sizeof(bool));
1077 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1078
1079 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1080 DC_FP_START();
1081 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1082 DC_FP_END();
1083
1084 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1085 // until driver has acquired the DMCUB lock to do it safely.
1086 }
1087 }
1088}
1089
5b4ee987
RS
1090static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1091{
1092 int i;
1093
1094 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1095 if (!context->res_ctx.pipe_ctx[i].stream)
1096 continue;
1097 if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1098 return true;
1099 }
1100 return false;
1101}
1102
1103static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1104 display_e2e_pipe_params_st *pipes,
1105 int pipe_cnt, int vlevel)
1106{
1107 int i, pipe_idx;
1108 bool usr_retraining_support = false;
1109 bool unbounded_req_enabled = false;
1110
1111 dc_assert_fp_enabled();
1112
1113 /* Writeback MCIF_WB arbitration parameters */
1114 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1115
1116 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1117 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1118 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1119 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1120 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1121 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1122 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1123 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1124 != dm_dram_clock_change_unsupported;
1125 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1126
1127 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1128 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1129 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1130 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1131 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1132 else
1133 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1134
1135 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1136 ASSERT(usr_retraining_support);
1137
1138 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1139 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1140
1141 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1142
1143 if (unbounded_req_enabled && pipe_cnt > 1) {
1144 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1145 ASSERT(false);
1146 unbounded_req_enabled = false;
1147 }
1148
1149 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1150 if (!context->res_ctx.pipe_ctx[i].stream)
1151 continue;
1152 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1153 pipe_idx);
1154 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1155 pipe_idx);
1156 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1157 pipe_idx);
1158 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1159 pipe_idx);
1160
1161 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1162 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1163 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1164 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1165 } else {
1166 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1167 pipe_idx);
1168 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1169 }
1170
1171 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1172 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1173 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1174 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1175 pipe_idx++;
1176 }
1177 /*save a original dppclock copy*/
1178 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1179 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1180 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1181 * 1000;
1182 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1183 * 1000;
1184
1185 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1186
1187 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1188 if (context->res_ctx.pipe_ctx[i].stream)
1189 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1190 }
1191
1192 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1193
1194 if (!context->res_ctx.pipe_ctx[i].stream)
1195 continue;
1196
1197 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1198 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1199 pipe_cnt, pipe_idx);
1200
1201 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1202 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1203 pipe_idx++;
1204 }
1205}
1206
1207static struct pipe_ctx *dcn32_find_split_pipe(
1208 struct dc *dc,
1209 struct dc_state *context,
1210 int old_index)
1211{
1212 struct pipe_ctx *pipe = NULL;
1213 int i;
1214
1215 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1216 pipe = &context->res_ctx.pipe_ctx[old_index];
1217 pipe->pipe_idx = old_index;
1218 }
1219
1220 if (!pipe)
1221 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1222 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1223 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1224 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1225 pipe = &context->res_ctx.pipe_ctx[i];
1226 pipe->pipe_idx = i;
1227 break;
1228 }
1229 }
1230 }
1231
1232 /*
1233 * May need to fix pipes getting tossed from 1 opp to another on flip
1234 * Add for debugging transient underflow during topology updates:
1235 * ASSERT(pipe);
1236 */
1237 if (!pipe)
1238 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1239 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1240 pipe = &context->res_ctx.pipe_ctx[i];
1241 pipe->pipe_idx = i;
1242 break;
1243 }
1244 }
1245
1246 return pipe;
1247}
1248
1249static bool dcn32_split_stream_for_mpc_or_odm(
1250 const struct dc *dc,
1251 struct resource_context *res_ctx,
1252 struct pipe_ctx *pri_pipe,
1253 struct pipe_ctx *sec_pipe,
1254 bool odm)
1255{
1256 int pipe_idx = sec_pipe->pipe_idx;
1257 const struct resource_pool *pool = dc->res_pool;
1258
1259 DC_LOGGER_INIT(dc->ctx->logger);
1260
1261 if (odm && pri_pipe->plane_state) {
1262 /* ODM + window MPO, where MPO window is on left half only */
1263 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1264 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1265
1266 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1267 __func__,
1268 pri_pipe->pipe_idx);
1269 return true;
1270 }
1271
1272 /* ODM + window MPO, where MPO window is on right half only */
1273 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1274
1275 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1276 __func__,
1277 pri_pipe->pipe_idx);
1278 return true;
1279 }
1280 }
1281
1282 *sec_pipe = *pri_pipe;
1283
1284 sec_pipe->pipe_idx = pipe_idx;
1285 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1286 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1287 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1288 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1289 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1290 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1291 sec_pipe->stream_res.dsc = NULL;
1292 if (odm) {
1293 if (pri_pipe->next_odm_pipe) {
1294 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1295 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1296 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1297 }
1298 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1299 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1300 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1301 }
1302 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1303 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1304 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1305 }
1306 pri_pipe->next_odm_pipe = sec_pipe;
1307 sec_pipe->prev_odm_pipe = pri_pipe;
1308 ASSERT(sec_pipe->top_pipe == NULL);
1309
1310 if (!sec_pipe->top_pipe)
1311 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1312 else
1313 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1314 if (sec_pipe->stream->timing.flags.DSC == 1) {
1315 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1316 ASSERT(sec_pipe->stream_res.dsc);
1317 if (sec_pipe->stream_res.dsc == NULL)
1318 return false;
1319 }
1320 } else {
1321 if (pri_pipe->bottom_pipe) {
1322 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1323 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1324 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1325 }
1326 pri_pipe->bottom_pipe = sec_pipe;
1327 sec_pipe->top_pipe = pri_pipe;
1328
1329 ASSERT(pri_pipe->plane_state);
1330 }
1331
1332 return true;
1333}
1334
1335bool dcn32_internal_validate_bw(struct dc *dc,
1336 struct dc_state *context,
1337 display_e2e_pipe_params_st *pipes,
1338 int *pipe_cnt_out,
1339 int *vlevel_out,
1340 bool fast_validate)
1341{
1342 bool out = false;
1343 bool repopulate_pipes = false;
1344 int split[MAX_PIPES] = { 0 };
1345 bool merge[MAX_PIPES] = { false };
1346 bool newly_split[MAX_PIPES] = { false };
1347 int pipe_cnt, i, pipe_idx, vlevel;
1348 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1349
1350 dc_assert_fp_enabled();
1351
1352 ASSERT(pipes);
1353 if (!pipes)
1354 return false;
1355
1356 // For each full update, remove all existing phantom pipes first
1357 dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1358
1359 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1360
1361 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1362
1363 if (!pipe_cnt) {
1364 out = true;
1365 goto validate_out;
1366 }
1367
1368 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1369
1370 if (!fast_validate) {
1371 DC_FP_START();
1372 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1373 DC_FP_END();
1374 }
1375
1376 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1377 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1378 /*
1379 * If mode is unsupported or there's still no p-state support then
1380 * fall back to favoring voltage.
1381 *
1382 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, try if
1383 * supported with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1384 */
1385 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1386 dm_prefetch_support_fclk_and_stutter;
1387
1388 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1389
1390 /* Last attempt with Prefetch mode 2 (dm_prefetch_support_stutter == 3) */
1391 if (vlevel == context->bw_ctx.dml.soc.num_states) {
1392 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1393 dm_prefetch_support_stutter;
1394 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1395 }
1396
1397 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1398 memset(split, 0, sizeof(split));
1399 memset(merge, 0, sizeof(merge));
1400 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1401 }
1402 }
1403
1404 dml_log_mode_support_params(&context->bw_ctx.dml);
1405
1406 if (vlevel == context->bw_ctx.dml.soc.num_states)
1407 goto validate_fail;
1408
1409 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1410 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1411 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1412
1413 if (!pipe->stream)
1414 continue;
1415
1416 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1417 && !dc->config.enable_windowed_mpo_odm
1418 && pipe->plane_state && mpo_pipe
1419 && memcmp(&mpo_pipe->plane_res.scl_data.recout,
1420 &pipe->plane_res.scl_data.recout,
1421 sizeof(struct rect)) != 0) {
1422 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1423 goto validate_fail;
1424 }
1425 pipe_idx++;
1426 }
1427
1428 /* merge pipes if necessary */
1429 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1430 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1431
1432 /*skip pipes that don't need merging*/
1433 if (!merge[i])
1434 continue;
1435
1436 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1437 if (pipe->prev_odm_pipe) {
1438 /*split off odm pipe*/
1439 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1440 if (pipe->next_odm_pipe)
1441 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1442
1443 pipe->bottom_pipe = NULL;
1444 pipe->next_odm_pipe = NULL;
1445 pipe->plane_state = NULL;
1446 pipe->stream = NULL;
1447 pipe->top_pipe = NULL;
1448 pipe->prev_odm_pipe = NULL;
1449 if (pipe->stream_res.dsc)
1450 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1451 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1452 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1453 repopulate_pipes = true;
1454 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1455 struct pipe_ctx *top_pipe = pipe->top_pipe;
1456 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1457
1458 top_pipe->bottom_pipe = bottom_pipe;
1459 if (bottom_pipe)
1460 bottom_pipe->top_pipe = top_pipe;
1461
1462 pipe->top_pipe = NULL;
1463 pipe->bottom_pipe = NULL;
1464 pipe->plane_state = NULL;
1465 pipe->stream = NULL;
1466 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1467 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1468 repopulate_pipes = true;
1469 } else
1470 ASSERT(0); /* Should never try to merge master pipe */
1471
1472 }
1473
1474 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1475 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1476 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1477 struct pipe_ctx *hsplit_pipe = NULL;
1478 bool odm;
1479 int old_index = -1;
1480
1481 if (!pipe->stream || newly_split[i])
1482 continue;
1483
1484 pipe_idx++;
1485 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1486
1487 if (!pipe->plane_state && !odm)
1488 continue;
1489
1490 if (split[i]) {
1491 if (odm) {
1492 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1493 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1494 else if (old_pipe->next_odm_pipe)
1495 old_index = old_pipe->next_odm_pipe->pipe_idx;
1496 } else {
1497 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1498 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1499 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1500 else if (old_pipe->bottom_pipe &&
1501 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1502 old_index = old_pipe->bottom_pipe->pipe_idx;
1503 }
1504 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1505 ASSERT(hsplit_pipe);
1506 if (!hsplit_pipe)
1507 goto validate_fail;
1508
1509 if (!dcn32_split_stream_for_mpc_or_odm(
1510 dc, &context->res_ctx,
1511 pipe, hsplit_pipe, odm))
1512 goto validate_fail;
1513
1514 newly_split[hsplit_pipe->pipe_idx] = true;
1515 repopulate_pipes = true;
1516 }
1517 if (split[i] == 4) {
1518 struct pipe_ctx *pipe_4to1;
1519
1520 if (odm && old_pipe->next_odm_pipe)
1521 old_index = old_pipe->next_odm_pipe->pipe_idx;
1522 else if (!odm && old_pipe->bottom_pipe &&
1523 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1524 old_index = old_pipe->bottom_pipe->pipe_idx;
1525 else
1526 old_index = -1;
1527 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1528 ASSERT(pipe_4to1);
1529 if (!pipe_4to1)
1530 goto validate_fail;
1531 if (!dcn32_split_stream_for_mpc_or_odm(
1532 dc, &context->res_ctx,
1533 pipe, pipe_4to1, odm))
1534 goto validate_fail;
1535 newly_split[pipe_4to1->pipe_idx] = true;
1536
1537 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1538 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1539 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1540 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1541 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1542 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1543 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1544 else
1545 old_index = -1;
1546 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1547 ASSERT(pipe_4to1);
1548 if (!pipe_4to1)
1549 goto validate_fail;
1550 if (!dcn32_split_stream_for_mpc_or_odm(
1551 dc, &context->res_ctx,
1552 hsplit_pipe, pipe_4to1, odm))
1553 goto validate_fail;
1554 newly_split[pipe_4to1->pipe_idx] = true;
1555 }
1556 if (odm)
1557 dcn20_build_mapped_resource(dc, context, pipe->stream);
1558 }
1559
1560 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1561 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1562
1563 if (pipe->plane_state) {
1564 if (!resource_build_scaling_params(pipe))
1565 goto validate_fail;
1566 }
1567 }
1568
1569 /* Actual dsc count per stream dsc validation*/
1570 if (!dcn20_validate_dsc(dc, context)) {
1571 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1572 goto validate_fail;
1573 }
1574
1575 if (repopulate_pipes)
1576 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1577 *vlevel_out = vlevel;
1578 *pipe_cnt_out = pipe_cnt;
1579
1580 out = true;
1581 goto validate_out;
1582
1583validate_fail:
1584 out = false;
1585
1586validate_out:
1587 return out;
1588}
1589
1590
0339530d
RS
1591void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1592 display_e2e_pipe_params_st *pipes,
1593 int pipe_cnt,
1594 int vlevel)
1595{
1596 int i, pipe_idx, vlevel_temp = 0;
1597 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1598 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1599 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1600 dm_dram_clock_change_unsupported;
6290ba4c
RS
1601 unsigned int dummy_latency_index = 0;
1602 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1603 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1604 unsigned int min_dram_speed_mts_margin;
0339530d
RS
1605
1606 dc_assert_fp_enabled();
1607
1608 // Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK
1609 if (!pstate_en && dcn32_subvp_in_use(dc, context)) {
1610 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1611 pstate_en = true;
1612 }
1613
6290ba4c
RS
1614 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1615
1616 if (!pstate_en) {
1617 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
1618 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching =
1619 dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
1620
1621 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1622 dummy_latency_index = dcn30_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1623 context, pipes, pipe_cnt, vlevel);
1624
1625 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
1626 * we reinstate the original dram_clock_change_latency_us on the context
1627 * and all variables that may have changed up to this point, except the
1628 * newly found dummy_latency_index
1629 */
1630 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1631 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1632 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
1633 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1634 dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1635 pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] !=
1636 dm_dram_clock_change_unsupported;
1637 }
1638 }
1639
0339530d
RS
1640 /* Set B:
1641 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
1642 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
1643 * calculations to cover bootup clocks.
1644 * DCFCLK: soc.clock_limits[2] when available
1645 * UCLK: soc.clock_limits[2] when available
1646 */
1647 if (dcn3_2_soc.num_states > 2) {
1648 vlevel_temp = 2;
1649 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
1650 } else
1651 dcfclk = 615; //DCFCLK Vmin_lv
1652
1653 pipes[0].clks_cfg.voltage = vlevel_temp;
1654 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1655 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1656
1657 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
1658 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
1659 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
1660 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
1661 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
1662 }
1663 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1664 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1665 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1666 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1667 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1668 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1669 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1670 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1671 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1672 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1673
1674 /* Set D:
1675 * All clocks min.
1676 * DCFCLK: Min, as reported by PM FW when available
1677 * UCLK : Min, as reported by PM FW when available
1678 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
1679 */
1680
1681 if (dcn3_2_soc.num_states > 2) {
1682 vlevel_temp = 0;
1683 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
1684 } else
1685 dcfclk = 615; //DCFCLK Vmin_lv
1686
1687 pipes[0].clks_cfg.voltage = vlevel_temp;
1688 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1689 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1690
1691 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
1692 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
1693 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
1694 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
1695 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
1696 }
1697 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1698 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1699 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1700 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1701 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1702 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1703 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1704 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1705 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1706 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1707
1708 /* Set C, for Dummy P-State:
1709 * All clocks min.
1710 * DCFCLK: Min, as reported by PM FW, when available
1711 * UCLK : Min, as reported by PM FW, when available
1712 * pstate latency as per UCLK state dummy pstate latency
1713 */
1714
1715 // For Set A and Set C use values from validation
1716 pipes[0].clks_cfg.voltage = vlevel;
1717 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
1718 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
1719
1720 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
6290ba4c
RS
1721 min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1722 min_dram_speed_mts_margin = 160;
0339530d 1723
6290ba4c
RS
1724 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1725 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
0339530d 1726
6290ba4c
RS
1727 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
1728 dm_dram_clock_change_unsupported) {
1729 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries - 1;
1730
1731 min_dram_speed_mts =
1732 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
1733 }
1734
1735 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1736 /* find largest table entry that is lower than dram speed,
1737 * but lower than DPM0 still uses DPM0
1738 */
1739 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
1740 if (min_dram_speed_mts + min_dram_speed_mts_margin >
1741 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
1742 break;
1743 }
1744
1745 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1746 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
0339530d 1747
0339530d
RS
1748 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
1749 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
1750 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
1751 }
1752
1753 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1754 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1755 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1756 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1757 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1758 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1759 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1760 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1761 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1762 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1763
1764 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
1765 /* The only difference between A and C is p-state latency, if p-state is not supported
1766 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
1767 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
1768 */
1769 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
1770 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
1771 } else {
1772 /* Set A:
1773 * All clocks min.
1774 * DCFCLK: Min, as reported by PM FW, when available
1775 * UCLK: Min, as reported by PM FW, when available
1776 */
1777 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1778 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1779 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1780 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1781 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1782 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1783 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1784 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1785 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1786 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1787 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1788 }
1789
1790 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1791 if (!context->res_ctx.pipe_ctx[i].stream)
1792 continue;
1793
1794 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
1795 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1796
1797 if (dc->config.forced_clocks) {
1798 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
1799 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
1800 }
1801 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
1802 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
1803 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1804 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
1805
1806 pipe_idx++;
1807 }
1808
1809 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
1810
1811 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
1812
1813 if (!pstate_en)
1814 /* Restore full p-state latency */
1815 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1816 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1817
6290ba4c
RS
1818 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching)
1819 dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(dc, context);
0339530d
RS
1820}
1821
4e14e0fc
RS
1822static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
1823 unsigned int *optimal_dcfclk,
1824 unsigned int *optimal_fclk)
1825{
1826 double bw_from_dram, bw_from_dram1, bw_from_dram2;
1827
1828 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
1829 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
1830 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
1831 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
1832
1833 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
1834
1835 if (optimal_fclk)
1836 *optimal_fclk = bw_from_dram /
1837 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
1838
1839 if (optimal_dcfclk)
1840 *optimal_dcfclk = bw_from_dram /
1841 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
1842}
1843
1844static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
1845 unsigned int index)
1846{
1847 int i;
1848
1849 if (*num_entries == 0)
1850 return;
1851
1852 for (i = index; i < *num_entries - 1; i++) {
1853 table[i] = table[i + 1];
1854 }
1855 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
1856}
1857
1858static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
1859 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
1860{
1861 int i, j;
1862 struct _vcs_dpi_voltage_scaling_st entry = {0};
1863
1864 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
1865 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
1866
1867 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
1868
1869 static const unsigned int num_dcfclk_stas = 5;
1870 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
1871
1872 unsigned int num_uclk_dpms = 0;
1873 unsigned int num_fclk_dpms = 0;
1874 unsigned int num_dcfclk_dpms = 0;
1875
1876 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
1877 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
1878 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
1879 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
1880 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
1881 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
1882 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
1883 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
1884 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
1885 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
1886 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
1887 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
1888 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
1889 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
1890 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
1891
1892 if (bw_params->clk_table.entries[i].memclk_mhz > 0)
1893 num_uclk_dpms++;
1894 if (bw_params->clk_table.entries[i].fclk_mhz > 0)
1895 num_fclk_dpms++;
1896 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
1897 num_dcfclk_dpms++;
1898 }
1899
1900 if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
1901 return -1;
1902
1903 if (max_dppclk_mhz == 0)
1904 max_dppclk_mhz = max_dispclk_mhz;
1905
1906 if (max_fclk_mhz == 0)
1907 max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
1908
1909 if (max_phyclk_mhz == 0)
1910 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
1911
1912 *num_entries = 0;
1913 entry.dispclk_mhz = max_dispclk_mhz;
1914 entry.dscclk_mhz = max_dispclk_mhz / 3;
1915 entry.dppclk_mhz = max_dppclk_mhz;
1916 entry.dtbclk_mhz = max_dtbclk_mhz;
1917 entry.phyclk_mhz = max_phyclk_mhz;
1918 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
1919 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
1920
1921 // Insert all the DCFCLK STAs
1922 for (i = 0; i < num_dcfclk_stas; i++) {
1923 entry.dcfclk_mhz = dcfclk_sta_targets[i];
1924 entry.fabricclk_mhz = 0;
1925 entry.dram_speed_mts = 0;
1926
1927 DC_FP_START();
1928 insert_entry_into_table_sorted(table, num_entries, &entry);
1929 DC_FP_END();
1930 }
1931
1932 // Insert the max DCFCLK
1933 entry.dcfclk_mhz = max_dcfclk_mhz;
1934 entry.fabricclk_mhz = 0;
1935 entry.dram_speed_mts = 0;
1936
1937 DC_FP_START();
1938 insert_entry_into_table_sorted(table, num_entries, &entry);
1939 DC_FP_END();
1940
1941 // Insert the UCLK DPMS
1942 for (i = 0; i < num_uclk_dpms; i++) {
1943 entry.dcfclk_mhz = 0;
1944 entry.fabricclk_mhz = 0;
1945 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
1946
1947 DC_FP_START();
1948 insert_entry_into_table_sorted(table, num_entries, &entry);
1949 DC_FP_END();
1950 }
1951
1952 // If FCLK is coarse grained, insert individual DPMs.
1953 if (num_fclk_dpms > 2) {
1954 for (i = 0; i < num_fclk_dpms; i++) {
1955 entry.dcfclk_mhz = 0;
1956 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
1957 entry.dram_speed_mts = 0;
1958
1959 DC_FP_START();
1960 insert_entry_into_table_sorted(table, num_entries, &entry);
1961 DC_FP_END();
1962 }
1963 }
1964 // If FCLK fine grained, only insert max
1965 else {
1966 entry.dcfclk_mhz = 0;
1967 entry.fabricclk_mhz = max_fclk_mhz;
1968 entry.dram_speed_mts = 0;
1969
1970 DC_FP_START();
1971 insert_entry_into_table_sorted(table, num_entries, &entry);
1972 DC_FP_END();
1973 }
1974
1975 // At this point, the table contains all "points of interest" based on
1976 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
1977 // ratios (by derate, are exact).
1978
1979 // Remove states that require higher clocks than are supported
1980 for (i = *num_entries - 1; i >= 0 ; i--) {
1981 if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
1982 table[i].fabricclk_mhz > max_fclk_mhz ||
1983 table[i].dram_speed_mts > max_uclk_mhz * 16)
1984 remove_entry_from_table_at_index(table, num_entries, i);
1985 }
1986
1987 // At this point, the table only contains supported points of interest
1988 // it could be used as is, but some states may be redundant due to
1989 // coarse grained nature of some clocks, so we want to round up to
1990 // coarse grained DPMs and remove duplicates.
1991
1992 // Round up UCLKs
1993 for (i = *num_entries - 1; i >= 0 ; i--) {
1994 for (j = 0; j < num_uclk_dpms; j++) {
1995 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
1996 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
1997 break;
1998 }
1999 }
2000 }
2001
2002 // If FCLK is coarse grained, round up to next DPMs
2003 if (num_fclk_dpms > 2) {
2004 for (i = *num_entries - 1; i >= 0 ; i--) {
2005 for (j = 0; j < num_fclk_dpms; j++) {
2006 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2007 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2008 break;
2009 }
2010 }
2011 }
2012 }
2013 // Otherwise, round up to minimum.
2014 else {
2015 for (i = *num_entries - 1; i >= 0 ; i--) {
2016 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2017 table[i].fabricclk_mhz = min_fclk_mhz;
2018 break;
2019 }
2020 }
2021 }
2022
2023 // Round DCFCLKs up to minimum
2024 for (i = *num_entries - 1; i >= 0 ; i--) {
2025 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2026 table[i].dcfclk_mhz = min_dcfclk_mhz;
2027 break;
2028 }
2029 }
2030
2031 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2032 i = 0;
2033 while (i < *num_entries - 1) {
2034 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2035 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2036 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2037 remove_entry_from_table_at_index(table, num_entries, i + 1);
2038 else
2039 i++;
2040 }
2041
2042 // Fix up the state indicies
2043 for (i = *num_entries - 1; i >= 0 ; i--) {
2044 table[i].state = i;
2045 }
2046
2047 return 0;
2048}
2049
2050/**
2051 * dcn32_update_bw_bounding_box
2052 *
2053 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2054 * spreadsheet with actual values as per dGPU SKU:
2055 * - with passed few options from dc->config
2056 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2057 * need to get it from PM FW)
2058 * - with passed latency values (passed in ns units) in dc-> bb override for
2059 * debugging purposes
2060 * - with passed latencies from VBIOS (in 100_ns units) if available for
2061 * certain dGPU SKU
2062 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2063 * of the same ASIC)
2064 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2065 * FW for different clocks (which might differ for certain dGPU SKU of the
2066 * same ASIC)
2067 */
2068void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2069{
2070 dc_assert_fp_enabled();
2071
2072 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2073 /* Overrides from dc->config options */
2074 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2075
2076 /* Override from passed dc->bb_overrides if available*/
2077 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2078 && dc->bb_overrides.sr_exit_time_ns) {
2079 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2080 }
2081
2082 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2083 != dc->bb_overrides.sr_enter_plus_exit_time_ns
2084 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2085 dcn3_2_soc.sr_enter_plus_exit_time_us =
2086 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2087 }
2088
2089 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2090 && dc->bb_overrides.urgent_latency_ns) {
2091 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2092 }
2093
2094 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2095 != dc->bb_overrides.dram_clock_change_latency_ns
2096 && dc->bb_overrides.dram_clock_change_latency_ns) {
2097 dcn3_2_soc.dram_clock_change_latency_us =
2098 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2099 }
2100
2101 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2102 != dc->bb_overrides.dummy_clock_change_latency_ns
2103 && dc->bb_overrides.dummy_clock_change_latency_ns) {
2104 dcn3_2_soc.dummy_pstate_latency_us =
2105 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2106 }
2107
2108 /* Override from VBIOS if VBIOS bb_info available */
2109 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2110 struct bp_soc_bb_info bb_info = {0};
2111
2112 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2113 if (bb_info.dram_clock_change_latency_100ns > 0)
2114 dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
2115
2116 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2117 dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
2118
2119 if (bb_info.dram_sr_exit_latency_100ns > 0)
2120 dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
2121 }
2122 }
2123
2124 /* Override from VBIOS for num_chan */
2125 if (dc->ctx->dc_bios->vram_info.num_chans)
2126 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2127
2128 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2129 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2130
2131 }
2132
2133 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2134 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2135 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2136
2137 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2138 if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
2139 if (dc->debug.use_legacy_soc_bb_mechanism) {
2140 unsigned int i = 0, j = 0, num_states = 0;
2141
2142 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2143 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2144 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2145 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2146 unsigned int min_dcfclk = UINT_MAX;
2147 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2148 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2149 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2150 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2151 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2152
2153 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2154 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2155 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2156 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2157 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2158 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2159 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2160 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2161 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2162 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2163 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2164 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2165 }
2166 if (min_dcfclk > dcfclk_sta_targets[0])
2167 dcfclk_sta_targets[0] = min_dcfclk;
2168 if (!max_dcfclk_mhz)
2169 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2170 if (!max_dispclk_mhz)
2171 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2172 if (!max_dppclk_mhz)
2173 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2174 if (!max_phyclk_mhz)
2175 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2176
2177 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2178 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2179 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2180 num_dcfclk_sta_targets++;
2181 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2182 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2183 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2184 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2185 dcfclk_sta_targets[i] = max_dcfclk_mhz;
2186 break;
2187 }
2188 }
2189 // Update size of array since we "removed" duplicates
2190 num_dcfclk_sta_targets = i + 1;
2191 }
2192
2193 num_uclk_states = bw_params->clk_table.num_entries;
2194
2195 // Calculate optimal dcfclk for each uclk
2196 for (i = 0; i < num_uclk_states; i++) {
2197 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2198 &optimal_dcfclk_for_uclk[i], NULL);
2199 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2200 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2201 }
2202 }
2203
2204 // Calculate optimal uclk for each dcfclk sta target
2205 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2206 for (j = 0; j < num_uclk_states; j++) {
2207 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2208 optimal_uclk_for_dcfclk_sta_targets[i] =
2209 bw_params->clk_table.entries[j].memclk_mhz * 16;
2210 break;
2211 }
2212 }
2213 }
2214
2215 i = 0;
2216 j = 0;
2217 // create the final dcfclk and uclk table
2218 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2219 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2220 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2221 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2222 } else {
2223 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2224 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2225 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2226 } else {
2227 j = num_uclk_states;
2228 }
2229 }
2230 }
2231
2232 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2233 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2234 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2235 }
2236
2237 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2238 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2239 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2240 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2241 }
2242
2243 dcn3_2_soc.num_states = num_states;
2244 for (i = 0; i < dcn3_2_soc.num_states; i++) {
2245 dcn3_2_soc.clock_limits[i].state = i;
2246 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2247 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2248
2249 /* Fill all states with max values of all these clocks */
2250 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2251 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
2252 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
2253 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
2254
2255 /* Populate from bw_params for DTBCLK, SOCCLK */
2256 if (i > 0) {
2257 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2258 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2259 } else {
2260 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2261 }
2262 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2263 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2264 }
2265
2266 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2267 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2268 else
2269 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2270
2271 if (!dram_speed_mts[i] && i > 0)
2272 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2273 else
2274 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2275
2276 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2277 /* PHYCLK_D18, PHYCLK_D32 */
2278 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2279 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2280 }
2281 } else {
2282 build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2283 }
2284
2285 /* Re-init DML with updated bb */
2286 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2287 if (dc->current_state)
2288 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2289 }
2290}
2291