mm: replace vma->vm_flags direct modifications with modifier calls
[linux-block.git] / drivers / gpu / drm / amd / amdkfd / kfd_events.c
CommitLineData
d87f36a0 1// SPDX-License-Identifier: GPL-2.0 OR MIT
f3a39818 2/*
d87f36a0 3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
f3a39818
AL
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mm_types.h>
25#include <linux/slab.h>
26#include <linux/types.h>
3f07c014 27#include <linux/sched/signal.h>
9b56bb11 28#include <linux/sched/mm.h>
f3a39818 29#include <linux/uaccess.h>
f3a39818
AL
30#include <linux/mman.h>
31#include <linux/memory.h>
32#include "kfd_priv.h"
33#include "kfd_events.h"
64d1c3a4 34#include "kfd_iommu.h"
59d3e8be 35#include <linux/device.h>
f3a39818
AL
36
37/*
74e40716 38 * Wrapper around wait_queue_entry_t
f3a39818
AL
39 */
40struct kfd_event_waiter {
74e40716
FK
41 wait_queue_entry_t wait;
42 struct kfd_event *event; /* Event to wait for */
43 bool activated; /* Becomes true when event is signaled */
f3a39818
AL
44};
45
46/*
f3a39818 47 * Each signal event needs a 64-bit signal slot where the signaler will write
482f0777 48 * a 1 before sending an interrupt. (This is needed because some interrupts
f3a39818 49 * do not contain enough spare data bits to identify an event.)
482f0777
FK
50 * We get whole pages and map them to the process VA.
51 * Individual signal events use their event_id as slot index.
f3a39818 52 */
50cb7dd9 53struct kfd_signal_page {
f3a39818
AL
54 uint64_t *kernel_address;
55 uint64_t __user *user_address;
0fc8011f 56 bool need_to_free_pages;
f3a39818
AL
57};
58
50cb7dd9 59static uint64_t *page_slots(struct kfd_signal_page *page)
f3a39818
AL
60{
61 return page->kernel_address;
62}
63
50cb7dd9 64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
f3a39818
AL
65{
66 void *backing_store;
50cb7dd9 67 struct kfd_signal_page *page;
f3a39818 68
50cb7dd9 69 page = kzalloc(sizeof(*page), GFP_KERNEL);
f3a39818 70 if (!page)
50cb7dd9 71 return NULL;
f3a39818 72
50cb7dd9 73 backing_store = (void *) __get_free_pages(GFP_KERNEL,
f3a39818
AL
74 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
75 if (!backing_store)
76 goto fail_alloc_signal_store;
77
50cb7dd9 78 /* Initialize all events to unsignaled */
f3a39818 79 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
50cb7dd9 80 KFD_SIGNAL_EVENT_LIMIT * 8);
f3a39818
AL
81
82 page->kernel_address = backing_store;
0fc8011f 83 page->need_to_free_pages = true;
79775b62 84 pr_debug("Allocated new event signal page at %p, for process %p\n",
f3a39818 85 page, p);
f3a39818 86
50cb7dd9 87 return page;
f3a39818
AL
88
89fail_alloc_signal_store:
90 kfree(page);
50cb7dd9 91 return NULL;
f3a39818
AL
92}
93
482f0777 94static int allocate_event_notification_slot(struct kfd_process *p,
40e8a766
DYS
95 struct kfd_event *ev,
96 const int *restore_id)
f3a39818 97{
482f0777
FK
98 int id;
99
50cb7dd9
FK
100 if (!p->signal_page) {
101 p->signal_page = allocate_signal_page(p);
102 if (!p->signal_page)
482f0777 103 return -ENOMEM;
b9a5d0a5
FK
104 /* Oldest user mode expects 256 event slots */
105 p->signal_mapped_size = 256*8;
f3a39818
AL
106 }
107
40e8a766
DYS
108 if (restore_id) {
109 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
110 GFP_KERNEL);
111 } else {
112 /*
113 * Compatibility with old user mode: Only use signal slots
114 * user mode has mapped, may be less than
115 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
116 * of the event limit without breaking user mode.
117 */
118 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
119 GFP_KERNEL);
120 }
482f0777
FK
121 if (id < 0)
122 return id;
f3a39818 123
482f0777
FK
124 ev->event_id = id;
125 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
f3a39818 126
482f0777 127 return 0;
f3a39818
AL
128}
129
f3a39818 130/*
5273e82c
FK
131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
132 * not going away.
f3a39818
AL
133 */
134static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
135{
482f0777 136 return idr_find(&p->event_idr, id);
f3a39818
AL
137}
138
3f04f961
FK
139/**
140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
141 * @p: Pointer to struct kfd_process
142 * @id: ID to look up
143 * @bits: Number of valid bits in @id
144 *
145 * Finds the first signaled event with a matching partial ID. If no
146 * matching signaled event is found, returns NULL. In that case the
147 * caller should assume that the partial ID is invalid and do an
148 * exhaustive search of all siglaned events.
149 *
150 * If multiple events with the same partial ID signal at the same
151 * time, they will be found one interrupt at a time, not necessarily
152 * in the same order the interrupts occurred. As long as the number of
153 * interrupts is correct, all signaled events will be seen by the
154 * driver.
155 */
156static struct kfd_event *lookup_signaled_event_by_partial_id(
157 struct kfd_process *p, uint32_t id, uint32_t bits)
158{
159 struct kfd_event *ev;
160
161 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
162 return NULL;
163
164 /* Fast path for the common case that @id is not a partial ID
165 * and we only need a single lookup.
166 */
167 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
168 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
169 return NULL;
170
171 return idr_find(&p->event_idr, id);
172 }
173
174 /* General case for partial IDs: Iterate over all matching IDs
175 * and find the first one that has signaled.
176 */
177 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
178 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
179 continue;
180
181 ev = idr_find(&p->event_idr, id);
182 }
183
184 return ev;
185}
186
40e8a766
DYS
187static int create_signal_event(struct file *devkfd, struct kfd_process *p,
188 struct kfd_event *ev, const int *restore_id)
f3a39818 189{
482f0777
FK
190 int ret;
191
b9a5d0a5
FK
192 if (p->signal_mapped_size &&
193 p->signal_event_count == p->signal_mapped_size / 8) {
c986169f 194 if (!p->signal_event_limit_reached) {
8f2e0c03 195 pr_debug("Signal event wasn't created because limit was reached\n");
c986169f
FK
196 p->signal_event_limit_reached = true;
197 }
482f0777 198 return -ENOSPC;
f3a39818
AL
199 }
200
40e8a766 201 ret = allocate_event_notification_slot(p, ev, restore_id);
482f0777 202 if (ret) {
79775b62 203 pr_warn("Signal event wasn't created because out of kernel memory\n");
482f0777 204 return ret;
f3a39818
AL
205 }
206
207 p->signal_event_count++;
208
482f0777 209 ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
79775b62 210 pr_debug("Signal event number %zu created with id %d, address %p\n",
6235e15e
OG
211 p->signal_event_count, ev->event_id,
212 ev->user_signal_address);
213
f3a39818
AL
214 return 0;
215}
216
40e8a766 217static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
f3a39818 218{
40e8a766
DYS
219 int id;
220
221 if (restore_id)
222 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
223 GFP_KERNEL);
224 else
225 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
226 * intentional integer overflow to -1 without a compiler
227 * warning. idr_alloc treats a negative value as "maximum
228 * signed integer".
229 */
230 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
231 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
232 GFP_KERNEL);
482f0777
FK
233
234 if (id < 0)
235 return id;
236 ev->event_id = id;
f3a39818
AL
237
238 return 0;
239}
240
c3eb12df 241int kfd_event_init_process(struct kfd_process *p)
f3a39818 242{
c3eb12df
FK
243 int id;
244
f3a39818 245 mutex_init(&p->event_mutex);
482f0777 246 idr_init(&p->event_idr);
50cb7dd9 247 p->signal_page = NULL;
c3eb12df
FK
248 p->signal_event_count = 1;
249 /* Allocate event ID 0. It is used for a fast path to ignore bogus events
250 * that are sent by the CP without a context ID
251 */
252 id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
253 if (id < 0) {
254 idr_destroy(&p->event_idr);
255 mutex_destroy(&p->event_mutex);
256 return id;
257 }
258 return 0;
f3a39818
AL
259}
260
261static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
262{
74e40716 263 struct kfd_event_waiter *waiter;
fe528c13 264
74e40716 265 /* Wake up pending waiters. They will return failure */
5273e82c 266 spin_lock(&ev->lock);
74e40716 267 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
5273e82c 268 WRITE_ONCE(waiter->event, NULL);
74e40716 269 wake_up_all(&ev->wq);
5273e82c 270 spin_unlock(&ev->lock);
fe528c13 271
482f0777
FK
272 if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
273 ev->type == KFD_EVENT_TYPE_DEBUG)
f3a39818 274 p->signal_event_count--;
f3a39818 275
482f0777 276 idr_remove(&p->event_idr, ev->event_id);
34d292d5 277 kfree_rcu(ev, rcu);
f3a39818
AL
278}
279
280static void destroy_events(struct kfd_process *p)
281{
282 struct kfd_event *ev;
482f0777 283 uint32_t id;
f3a39818 284
482f0777 285 idr_for_each_entry(&p->event_idr, ev, id)
c3eb12df
FK
286 if (ev)
287 destroy_event(p, ev);
482f0777 288 idr_destroy(&p->event_idr);
c3eb12df 289 mutex_destroy(&p->event_mutex);
f3a39818
AL
290}
291
292/*
293 * We assume that the process is being destroyed and there is no need to
294 * unmap the pages or keep bookkeeping data in order.
295 */
50cb7dd9 296static void shutdown_signal_page(struct kfd_process *p)
f3a39818 297{
50cb7dd9 298 struct kfd_signal_page *page = p->signal_page;
f3a39818 299
50cb7dd9 300 if (page) {
0fc8011f
FK
301 if (page->need_to_free_pages)
302 free_pages((unsigned long)page->kernel_address,
303 get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
f3a39818
AL
304 kfree(page);
305 }
306}
307
308void kfd_event_free_process(struct kfd_process *p)
309{
310 destroy_events(p);
50cb7dd9 311 shutdown_signal_page(p);
f3a39818
AL
312}
313
314static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
315{
316 return ev->type == KFD_EVENT_TYPE_SIGNAL ||
317 ev->type == KFD_EVENT_TYPE_DEBUG;
318}
319
320static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
321{
322 return ev->type == KFD_EVENT_TYPE_SIGNAL;
323}
324
40e8a766
DYS
325static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
326 uint64_t size, uint64_t user_handle)
0fc8011f
FK
327{
328 struct kfd_signal_page *page;
329
330 if (p->signal_page)
331 return -EBUSY;
332
333 page = kzalloc(sizeof(*page), GFP_KERNEL);
334 if (!page)
335 return -ENOMEM;
336
337 /* Initialize all events to unsignaled */
338 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
339 KFD_SIGNAL_EVENT_LIMIT * 8);
340
341 page->kernel_address = kernel_address;
342
343 p->signal_page = page;
344 p->signal_mapped_size = size;
40e8a766 345 p->signal_handle = user_handle;
0fc8011f
FK
346 return 0;
347}
348
40e8a766
DYS
349int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
350{
351 struct kfd_dev *kfd;
352 struct kfd_process_device *pdd;
353 void *mem, *kern_addr;
354 uint64_t size;
355 int err = 0;
356
357 if (p->signal_page) {
358 pr_err("Event page is already set\n");
359 return -EINVAL;
360 }
361
bef153b7
DYS
362 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
363 if (!pdd) {
40e8a766
DYS
364 pr_err("Getting device by id failed in %s\n", __func__);
365 return -EINVAL;
366 }
bef153b7 367 kfd = pdd->dev;
40e8a766
DYS
368
369 pdd = kfd_bind_process_to_device(kfd, p);
370 if (IS_ERR(pdd))
371 return PTR_ERR(pdd);
372
373 mem = kfd_process_device_translate_handle(pdd,
374 GET_IDR_HANDLE(event_page_offset));
375 if (!mem) {
376 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
377 return -EINVAL;
378 }
379
4e2d1044 380 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
40e8a766
DYS
381 if (err) {
382 pr_err("Failed to map event page to kernel\n");
383 return err;
384 }
385
386 err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
387 if (err) {
388 pr_err("Failed to set event page\n");
4e2d1044 389 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
40e8a766
DYS
390 return err;
391 }
392 return err;
393}
394
f3a39818
AL
395int kfd_event_create(struct file *devkfd, struct kfd_process *p,
396 uint32_t event_type, bool auto_reset, uint32_t node_id,
397 uint32_t *event_id, uint32_t *event_trigger_data,
398 uint64_t *event_page_offset, uint32_t *event_slot_index)
399{
400 int ret = 0;
401 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
402
403 if (!ev)
404 return -ENOMEM;
405
406 ev->type = event_type;
407 ev->auto_reset = auto_reset;
408 ev->signaled = false;
409
5273e82c 410 spin_lock_init(&ev->lock);
74e40716 411 init_waitqueue_head(&ev->wq);
f3a39818
AL
412
413 *event_page_offset = 0;
414
415 mutex_lock(&p->event_mutex);
416
417 switch (event_type) {
418 case KFD_EVENT_TYPE_SIGNAL:
419 case KFD_EVENT_TYPE_DEBUG:
40e8a766 420 ret = create_signal_event(devkfd, p, ev, NULL);
f3a39818 421 if (!ret) {
df03ef93 422 *event_page_offset = KFD_MMAP_TYPE_EVENTS;
482f0777 423 *event_slot_index = ev->event_id;
f3a39818
AL
424 }
425 break;
426 default:
40e8a766 427 ret = create_other_event(p, ev, NULL);
f3a39818
AL
428 break;
429 }
430
431 if (!ret) {
f3a39818
AL
432 *event_id = ev->event_id;
433 *event_trigger_data = ev->event_id;
434 } else {
435 kfree(ev);
436 }
437
438 mutex_unlock(&p->event_mutex);
439
440 return ret;
441}
442
40e8a766
DYS
443int kfd_criu_restore_event(struct file *devkfd,
444 struct kfd_process *p,
445 uint8_t __user *user_priv_ptr,
446 uint64_t *priv_data_offset,
447 uint64_t max_priv_data_size)
448{
449 struct kfd_criu_event_priv_data *ev_priv;
450 struct kfd_event *ev = NULL;
451 int ret = 0;
452
453 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
454 if (!ev_priv)
455 return -ENOMEM;
456
457 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
458 if (!ev) {
459 ret = -ENOMEM;
460 goto exit;
461 }
462
463 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
464 ret = -EINVAL;
465 goto exit;
466 }
467
468 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
469 if (ret) {
470 ret = -EFAULT;
471 goto exit;
472 }
473 *priv_data_offset += sizeof(*ev_priv);
474
475 if (ev_priv->user_handle) {
476 ret = kfd_kmap_event_page(p, ev_priv->user_handle);
477 if (ret)
478 goto exit;
479 }
480
481 ev->type = ev_priv->type;
482 ev->auto_reset = ev_priv->auto_reset;
483 ev->signaled = ev_priv->signaled;
484
5273e82c 485 spin_lock_init(&ev->lock);
40e8a766
DYS
486 init_waitqueue_head(&ev->wq);
487
488 mutex_lock(&p->event_mutex);
489 switch (ev->type) {
490 case KFD_EVENT_TYPE_SIGNAL:
491 case KFD_EVENT_TYPE_DEBUG:
492 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
493 break;
494 case KFD_EVENT_TYPE_MEMORY:
495 memcpy(&ev->memory_exception_data,
496 &ev_priv->memory_exception_data,
497 sizeof(struct kfd_hsa_memory_exception_data));
498
499 ret = create_other_event(p, ev, &ev_priv->event_id);
500 break;
501 case KFD_EVENT_TYPE_HW_EXCEPTION:
502 memcpy(&ev->hw_exception_data,
503 &ev_priv->hw_exception_data,
504 sizeof(struct kfd_hsa_hw_exception_data));
505
506 ret = create_other_event(p, ev, &ev_priv->event_id);
507 break;
508 }
66f79037 509 mutex_unlock(&p->event_mutex);
40e8a766
DYS
510
511exit:
512 if (ret)
513 kfree(ev);
514
515 kfree(ev_priv);
516
40e8a766
DYS
517 return ret;
518}
519
520int kfd_criu_checkpoint_events(struct kfd_process *p,
521 uint8_t __user *user_priv_data,
522 uint64_t *priv_data_offset)
523{
524 struct kfd_criu_event_priv_data *ev_privs;
525 int i = 0;
526 int ret = 0;
527 struct kfd_event *ev;
528 uint32_t ev_id;
529
530 uint32_t num_events = kfd_get_num_events(p);
531
532 if (!num_events)
533 return 0;
534
535 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
536 if (!ev_privs)
537 return -ENOMEM;
538
539
540 idr_for_each_entry(&p->event_idr, ev, ev_id) {
541 struct kfd_criu_event_priv_data *ev_priv;
542
543 /*
544 * Currently, all events have same size of private_data, but the current ioctl's
545 * and CRIU plugin supports private_data of variable sizes
546 */
547 ev_priv = &ev_privs[i];
548
549 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
550
551 /* We store the user_handle with the first event */
552 if (i == 0 && p->signal_page)
553 ev_priv->user_handle = p->signal_handle;
554
555 ev_priv->event_id = ev->event_id;
556 ev_priv->auto_reset = ev->auto_reset;
557 ev_priv->type = ev->type;
558 ev_priv->signaled = ev->signaled;
559
560 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
561 memcpy(&ev_priv->memory_exception_data,
562 &ev->memory_exception_data,
563 sizeof(struct kfd_hsa_memory_exception_data));
564 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
565 memcpy(&ev_priv->hw_exception_data,
566 &ev->hw_exception_data,
567 sizeof(struct kfd_hsa_hw_exception_data));
568
569 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
570 i,
571 ev_priv->event_id,
572 ev_priv->auto_reset,
573 ev_priv->type,
574 ev_priv->signaled);
575 i++;
576 }
577
578 ret = copy_to_user(user_priv_data + *priv_data_offset,
579 ev_privs, num_events * sizeof(*ev_privs));
580 if (ret) {
581 pr_err("Failed to copy events priv to user\n");
582 ret = -EFAULT;
583 }
584
585 *priv_data_offset += num_events * sizeof(*ev_privs);
586
587 kvfree(ev_privs);
588 return ret;
589}
590
591int kfd_get_num_events(struct kfd_process *p)
592{
593 struct kfd_event *ev;
594 uint32_t id;
595 u32 num_events = 0;
596
597 idr_for_each_entry(&p->event_idr, ev, id)
598 num_events++;
599
600 return num_events;
601}
602
f3a39818
AL
603/* Assumes that p is current. */
604int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
605{
606 struct kfd_event *ev;
607 int ret = 0;
608
609 mutex_lock(&p->event_mutex);
610
611 ev = lookup_event_by_id(p, event_id);
612
613 if (ev)
614 destroy_event(p, ev);
615 else
616 ret = -EINVAL;
617
618 mutex_unlock(&p->event_mutex);
619 return ret;
620}
621
622static void set_event(struct kfd_event *ev)
623{
624 struct kfd_event_waiter *waiter;
f3a39818 625
74e40716
FK
626 /* Auto reset if the list is non-empty and we're waking
627 * someone. waitqueue_active is safe here because we're
5273e82c 628 * protected by the ev->lock, which is also held when
74e40716
FK
629 * updating the wait queues in kfd_wait_on_events.
630 */
631 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
f3a39818 632
74e40716 633 list_for_each_entry(waiter, &ev->wq.head, wait.entry)
5273e82c 634 WRITE_ONCE(waiter->activated, true);
f3a39818 635
74e40716 636 wake_up_all(&ev->wq);
f3a39818
AL
637}
638
639/* Assumes that p is current. */
640int kfd_set_event(struct kfd_process *p, uint32_t event_id)
641{
642 int ret = 0;
643 struct kfd_event *ev;
644
5273e82c 645 rcu_read_lock();
f3a39818
AL
646
647 ev = lookup_event_by_id(p, event_id);
abb5bc59
DC
648 if (!ev) {
649 ret = -EINVAL;
650 goto unlock_rcu;
651 }
5273e82c 652 spin_lock(&ev->lock);
f3a39818 653
abb5bc59 654 if (event_can_be_cpu_signaled(ev))
f3a39818
AL
655 set_event(ev);
656 else
657 ret = -EINVAL;
658
5273e82c 659 spin_unlock(&ev->lock);
abb5bc59 660unlock_rcu:
5273e82c 661 rcu_read_unlock();
f3a39818
AL
662 return ret;
663}
664
665static void reset_event(struct kfd_event *ev)
666{
667 ev->signaled = false;
668}
669
670/* Assumes that p is current. */
671int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
672{
673 int ret = 0;
674 struct kfd_event *ev;
675
5273e82c 676 rcu_read_lock();
f3a39818
AL
677
678 ev = lookup_event_by_id(p, event_id);
abb5bc59
DC
679 if (!ev) {
680 ret = -EINVAL;
681 goto unlock_rcu;
682 }
5273e82c 683 spin_lock(&ev->lock);
f3a39818 684
abb5bc59 685 if (event_can_be_cpu_signaled(ev))
f3a39818
AL
686 reset_event(ev);
687 else
688 ret = -EINVAL;
689
5273e82c 690 spin_unlock(&ev->lock);
abb5bc59 691unlock_rcu:
5273e82c 692 rcu_read_unlock();
f3a39818
AL
693 return ret;
694
695}
696
697static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
698{
5273e82c 699 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
f3a39818
AL
700}
701
702static void set_event_from_interrupt(struct kfd_process *p,
703 struct kfd_event *ev)
704{
705 if (ev && event_can_be_gpu_signaled(ev)) {
706 acknowledge_signal(p, ev);
5273e82c 707 spin_lock(&ev->lock);
f3a39818 708 set_event(ev);
5273e82c 709 spin_unlock(&ev->lock);
f3a39818
AL
710 }
711}
712
c7b6bac9 713void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
f3a39818
AL
714 uint32_t valid_id_bits)
715{
3f04f961 716 struct kfd_event *ev = NULL;
f3a39818
AL
717
718 /*
719 * Because we are called from arbitrary context (workqueue) as opposed
720 * to process context, kfd_process could attempt to exit while we are
abb208a8 721 * running so the lookup function increments the process ref count.
f3a39818
AL
722 */
723 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
724
725 if (!p)
726 return; /* Presumably process exited. */
727
5273e82c 728 rcu_read_lock();
f3a39818 729
3f04f961
FK
730 if (valid_id_bits)
731 ev = lookup_signaled_event_by_partial_id(p, partial_id,
732 valid_id_bits);
733 if (ev) {
f3a39818 734 set_event_from_interrupt(p, ev);
50cb7dd9 735 } else if (p->signal_page) {
f3a39818 736 /*
3f04f961
FK
737 * Partial ID lookup failed. Assume that the event ID
738 * in the interrupt payload was invalid and do an
739 * exhaustive search of signaled events.
f3a39818 740 */
482f0777
FK
741 uint64_t *slots = page_slots(p->signal_page);
742 uint32_t id;
f3a39818 743
3f04f961
FK
744 if (valid_id_bits)
745 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
746 partial_id, valid_id_bits);
747
eeb27b7e 748 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
482f0777
FK
749 /* With relatively few events, it's faster to
750 * iterate over the event IDR
751 */
752 idr_for_each_entry(&p->event_idr, ev, id) {
753 if (id >= KFD_SIGNAL_EVENT_LIMIT)
754 break;
755
5273e82c 756 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
482f0777 757 set_event_from_interrupt(p, ev);
50cb7dd9 758 }
482f0777
FK
759 } else {
760 /* With relatively many events, it's faster to
761 * iterate over the signal slots and lookup
762 * only signaled events from the IDR.
763 */
c3eb12df 764 for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
5273e82c 765 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
482f0777
FK
766 ev = lookup_event_by_id(p, id);
767 set_event_from_interrupt(p, ev);
768 }
769 }
f3a39818
AL
770 }
771
5273e82c 772 rcu_read_unlock();
abb208a8 773 kfd_unref_process(p);
f3a39818
AL
774}
775
776static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
777{
778 struct kfd_event_waiter *event_waiters;
779 uint32_t i;
780
781 event_waiters = kmalloc_array(num_events,
782 sizeof(struct kfd_event_waiter),
783 GFP_KERNEL);
ebbb7bb9
Q
784 if (!event_waiters)
785 return NULL;
f3a39818
AL
786
787 for (i = 0; (event_waiters) && (i < num_events) ; i++) {
74e40716 788 init_wait(&event_waiters[i].wait);
f3a39818
AL
789 event_waiters[i].activated = false;
790 }
791
792 return event_waiters;
793}
794
250e64a3 795static int init_event_waiter(struct kfd_process *p,
59d3e8be 796 struct kfd_event_waiter *waiter,
ebf947fe 797 uint32_t event_id)
f3a39818
AL
798{
799 struct kfd_event *ev = lookup_event_by_id(p, event_id);
800
801 if (!ev)
802 return -EINVAL;
803
5273e82c 804 spin_lock(&ev->lock);
59d3e8be 805 waiter->event = ev;
f3a39818
AL
806 waiter->activated = ev->signaled;
807 ev->signaled = ev->signaled && !ev->auto_reset;
250e64a3
FK
808 if (!waiter->activated)
809 add_wait_queue(&ev->wq, &waiter->wait);
5273e82c 810 spin_unlock(&ev->lock);
f3a39818 811
f3a39818
AL
812 return 0;
813}
814
fe528c13
FK
815/* test_event_condition - Test condition of events being waited for
816 * @all: Return completion only if all events have signaled
817 * @num_events: Number of events to wait for
818 * @event_waiters: Array of event waiters, one per event
819 *
820 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
821 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
822 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
823 * the events have been destroyed.
824 */
825static uint32_t test_event_condition(bool all, uint32_t num_events,
f3a39818
AL
826 struct kfd_event_waiter *event_waiters)
827{
828 uint32_t i;
829 uint32_t activated_count = 0;
830
831 for (i = 0; i < num_events; i++) {
5273e82c 832 if (!READ_ONCE(event_waiters[i].event))
fe528c13
FK
833 return KFD_IOC_WAIT_RESULT_FAIL;
834
5273e82c 835 if (READ_ONCE(event_waiters[i].activated)) {
f3a39818 836 if (!all)
fe528c13 837 return KFD_IOC_WAIT_RESULT_COMPLETE;
f3a39818
AL
838
839 activated_count++;
840 }
841 }
842
fe528c13
FK
843 return activated_count == num_events ?
844 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
f3a39818
AL
845}
846
59d3e8be
AS
847/*
848 * Copy event specific data, if defined.
849 * Currently only memory exception events have additional data to copy to user
850 */
fdf0c833 851static int copy_signaled_event_data(uint32_t num_events,
59d3e8be
AS
852 struct kfd_event_waiter *event_waiters,
853 struct kfd_event_data __user *data)
854{
855 struct kfd_hsa_memory_exception_data *src;
856 struct kfd_hsa_memory_exception_data __user *dst;
857 struct kfd_event_waiter *waiter;
858 struct kfd_event *event;
859 uint32_t i;
860
861 for (i = 0; i < num_events; i++) {
862 waiter = &event_waiters[i];
863 event = waiter->event;
5273e82c
FK
864 if (!event)
865 return -EINVAL; /* event was destroyed */
59d3e8be 866 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
ebf947fe 867 dst = &data[i].memory_exception_data;
59d3e8be
AS
868 src = &event->memory_exception_data;
869 if (copy_to_user(dst, src,
870 sizeof(struct kfd_hsa_memory_exception_data)))
fdf0c833 871 return -EFAULT;
59d3e8be
AS
872 }
873 }
874
fdf0c833 875 return 0;
59d3e8be
AS
876}
877
f3a39818
AL
878static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
879{
880 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
881 return 0;
882
883 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
884 return MAX_SCHEDULE_TIMEOUT;
885
886 /*
887 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
888 * but we consider them finite.
889 * This hack is wrong, but nobody is likely to notice.
890 */
891 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
892
893 return msecs_to_jiffies(user_timeout_ms) + 1;
894}
895
bea9a56a
FK
896static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
897 bool undo_auto_reset)
f3a39818
AL
898{
899 uint32_t i;
900
901 for (i = 0; i < num_events; i++)
5273e82c
FK
902 if (waiters[i].event) {
903 spin_lock(&waiters[i].event->lock);
74e40716
FK
904 remove_wait_queue(&waiters[i].event->wq,
905 &waiters[i].wait);
bea9a56a
FK
906 if (undo_auto_reset && waiters[i].activated &&
907 waiters[i].event && waiters[i].event->auto_reset)
908 set_event(waiters[i].event);
5273e82c
FK
909 spin_unlock(&waiters[i].event->lock);
910 }
f3a39818
AL
911
912 kfree(waiters);
913}
914
915int kfd_wait_on_events(struct kfd_process *p,
59d3e8be 916 uint32_t num_events, void __user *data,
bea9a56a 917 bool all, uint32_t *user_timeout_ms,
fdf0c833 918 uint32_t *wait_result)
f3a39818 919{
59d3e8be
AS
920 struct kfd_event_data __user *events =
921 (struct kfd_event_data __user *) data;
f3a39818
AL
922 uint32_t i;
923 int ret = 0;
1f9d09be 924
f3a39818 925 struct kfd_event_waiter *event_waiters = NULL;
bea9a56a 926 long timeout = user_timeout_to_jiffies(*user_timeout_ms);
f3a39818 927
fdf0c833
FK
928 event_waiters = alloc_event_waiters(num_events);
929 if (!event_waiters) {
930 ret = -ENOMEM;
931 goto out;
932 }
933
5273e82c
FK
934 /* Use p->event_mutex here to protect against concurrent creation and
935 * destruction of events while we initialize event_waiters.
936 */
f3a39818
AL
937 mutex_lock(&p->event_mutex);
938
f3a39818 939 for (i = 0; i < num_events; i++) {
59d3e8be 940 struct kfd_event_data event_data;
f3a39818 941
59d3e8be 942 if (copy_from_user(&event_data, &events[i],
8bf79388
PB
943 sizeof(struct kfd_event_data))) {
944 ret = -EFAULT;
fdf0c833 945 goto out_unlock;
8bf79388 946 }
f3a39818 947
250e64a3
FK
948 ret = init_event_waiter(p, &event_waiters[i],
949 event_data.event_id);
f3a39818 950 if (ret)
fdf0c833 951 goto out_unlock;
f3a39818
AL
952 }
953
1f9d09be 954 /* Check condition once. */
fe528c13
FK
955 *wait_result = test_event_condition(all, num_events, event_waiters);
956 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
fdf0c833
FK
957 ret = copy_signaled_event_data(num_events,
958 event_waiters, events);
959 goto out_unlock;
fe528c13
FK
960 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
961 /* This should not happen. Events shouldn't be
962 * destroyed while we're holding the event_mutex
963 */
964 goto out_unlock;
1f9d09be
SK
965 }
966
f3a39818
AL
967 mutex_unlock(&p->event_mutex);
968
969 while (true) {
970 if (fatal_signal_pending(current)) {
971 ret = -EINTR;
972 break;
973 }
974
975 if (signal_pending(current)) {
f3a39818 976 ret = -ERESTARTSYS;
bea9a56a
FK
977 if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
978 *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
979 *user_timeout_ms = jiffies_to_msecs(
980 max(0l, timeout-1));
f3a39818
AL
981 break;
982 }
983
d9aeec4c
SK
984 /* Set task state to interruptible sleep before
985 * checking wake-up conditions. A concurrent wake-up
986 * will put the task back into runnable state. In that
987 * case schedule_timeout will not put the task to
988 * sleep and we'll get a chance to re-check the
989 * updated conditions almost immediately. Otherwise,
990 * this race condition would lead to a soft hang or a
991 * very long sleep.
992 */
993 set_current_state(TASK_INTERRUPTIBLE);
994
fe528c13
FK
995 *wait_result = test_event_condition(all, num_events,
996 event_waiters);
997 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
f3a39818 998 break;
f3a39818 999
fe528c13 1000 if (timeout <= 0)
f3a39818 1001 break;
f3a39818 1002
d9aeec4c 1003 timeout = schedule_timeout(timeout);
f3a39818
AL
1004 }
1005 __set_current_state(TASK_RUNNING);
1006
5273e82c 1007 mutex_lock(&p->event_mutex);
fdf0c833
FK
1008 /* copy_signaled_event_data may sleep. So this has to happen
1009 * after the task state is set back to RUNNING.
5273e82c
FK
1010 *
1011 * The event may also have been destroyed after signaling. So
1012 * copy_signaled_event_data also must confirm that the event
1013 * still exists. Therefore this must be under the p->event_mutex
1014 * which is also held when events are destroyed.
fdf0c833
FK
1015 */
1016 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1017 ret = copy_signaled_event_data(num_events,
1018 event_waiters, events);
1019
fdf0c833 1020out_unlock:
bea9a56a 1021 free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
f3a39818 1022 mutex_unlock(&p->event_mutex);
fdf0c833
FK
1023out:
1024 if (ret)
1025 *wait_result = KFD_IOC_WAIT_RESULT_FAIL;
fe528c13
FK
1026 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1027 ret = -EIO;
f3a39818
AL
1028
1029 return ret;
1030}
1031
1032int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1033{
f3a39818 1034 unsigned long pfn;
50cb7dd9 1035 struct kfd_signal_page *page;
b9a5d0a5 1036 int ret;
f3a39818 1037
b9a5d0a5
FK
1038 /* check required size doesn't exceed the allocated size */
1039 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
f3a39818 1040 get_order(vma->vm_end - vma->vm_start)) {
79775b62 1041 pr_err("Event page mmap requested illegal size\n");
f3a39818
AL
1042 return -EINVAL;
1043 }
1044
50cb7dd9 1045 page = p->signal_page;
f3a39818
AL
1046 if (!page) {
1047 /* Probably KFD bug, but mmap is user-accessible. */
50cb7dd9 1048 pr_debug("Signal page could not be found\n");
f3a39818
AL
1049 return -EINVAL;
1050 }
1051
1052 pfn = __pa(page->kernel_address);
1053 pfn >>= PAGE_SHIFT;
1054
1c71222e
SB
1055 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1056 | VM_DONTDUMP | VM_PFNMAP);
f3a39818 1057
79775b62 1058 pr_debug("Mapping signal page\n");
f3a39818
AL
1059 pr_debug(" start user address == 0x%08lx\n", vma->vm_start);
1060 pr_debug(" end user address == 0x%08lx\n", vma->vm_end);
1061 pr_debug(" pfn == 0x%016lX\n", pfn);
1062 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags);
1063 pr_debug(" size == 0x%08lX\n",
1064 vma->vm_end - vma->vm_start);
1065
1066 page->user_address = (uint64_t __user *)vma->vm_start;
1067
1068 /* mapping the page to user process */
b9a5d0a5 1069 ret = remap_pfn_range(vma, vma->vm_start, pfn,
f3a39818 1070 vma->vm_end - vma->vm_start, vma->vm_page_prot);
b9a5d0a5
FK
1071 if (!ret)
1072 p->signal_mapped_size = vma->vm_end - vma->vm_start;
1073
1074 return ret;
f3a39818 1075}
59d3e8be
AS
1076
1077/*
5273e82c 1078 * Assumes that p is not going away.
59d3e8be
AS
1079 */
1080static void lookup_events_by_type_and_signal(struct kfd_process *p,
1081 int type, void *event_data)
1082{
1083 struct kfd_hsa_memory_exception_data *ev_data;
1084 struct kfd_event *ev;
482f0777 1085 uint32_t id;
59d3e8be
AS
1086 bool send_signal = true;
1087
1088 ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1089
5273e82c
FK
1090 rcu_read_lock();
1091
482f0777
FK
1092 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1093 idr_for_each_entry_continue(&p->event_idr, ev, id)
59d3e8be
AS
1094 if (ev->type == type) {
1095 send_signal = false;
1096 dev_dbg(kfd_device,
1097 "Event found: id %X type %d",
1098 ev->event_id, ev->type);
5273e82c 1099 spin_lock(&ev->lock);
59d3e8be
AS
1100 set_event(ev);
1101 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1102 ev->memory_exception_data = *ev_data;
5273e82c 1103 spin_unlock(&ev->lock);
59d3e8be
AS
1104 }
1105
101fee63
MR
1106 if (type == KFD_EVENT_TYPE_MEMORY) {
1107 dev_warn(kfd_device,
6027b1bf
YZ
1108 "Sending SIGSEGV to process %d (pasid 0x%x)",
1109 p->lead_thread->pid, p->pasid);
101fee63
MR
1110 send_sig(SIGSEGV, p->lead_thread, 0);
1111 }
1112
59d3e8be
AS
1113 /* Send SIGTERM no event of type "type" has been found*/
1114 if (send_signal) {
81663016
OG
1115 if (send_sigterm) {
1116 dev_warn(kfd_device,
6027b1bf
YZ
1117 "Sending SIGTERM to process %d (pasid 0x%x)",
1118 p->lead_thread->pid, p->pasid);
81663016
OG
1119 send_sig(SIGTERM, p->lead_thread, 0);
1120 } else {
1121 dev_err(kfd_device,
6027b1bf
YZ
1122 "Process %d (pasid 0x%x) got unhandled exception",
1123 p->lead_thread->pid, p->pasid);
81663016 1124 }
59d3e8be 1125 }
5273e82c
FK
1126
1127 rcu_read_unlock();
59d3e8be
AS
1128}
1129
64d1c3a4 1130#ifdef KFD_SUPPORT_IOMMU_V2
c7b6bac9 1131void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
59d3e8be
AS
1132 unsigned long address, bool is_write_requested,
1133 bool is_execute_requested)
1134{
1135 struct kfd_hsa_memory_exception_data memory_exception_data;
1136 struct vm_area_struct *vma;
bef153b7 1137 int user_gpu_id;
59d3e8be
AS
1138
1139 /*
1140 * Because we are called from arbitrary context (workqueue) as opposed
1141 * to process context, kfd_process could attempt to exit while we are
abb208a8 1142 * running so the lookup function increments the process ref count.
59d3e8be
AS
1143 */
1144 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
9b56bb11 1145 struct mm_struct *mm;
59d3e8be
AS
1146
1147 if (!p)
1148 return; /* Presumably process exited. */
1149
9b56bb11
FK
1150 /* Take a safe reference to the mm_struct, which may otherwise
1151 * disappear even while the kfd_process is still referenced.
1152 */
1153 mm = get_task_mm(p->lead_thread);
1154 if (!mm) {
abb208a8 1155 kfd_unref_process(p);
9b56bb11
FK
1156 return; /* Process is exiting */
1157 }
1158
bef153b7
DYS
1159 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1160 if (unlikely(user_gpu_id == -EINVAL)) {
1161 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1162 return;
1163 }
59d3e8be
AS
1164 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1165
d8ed45c5 1166 mmap_read_lock(mm);
9b56bb11 1167 vma = find_vma(mm, address);
59d3e8be 1168
bef153b7 1169 memory_exception_data.gpu_id = user_gpu_id;
59d3e8be
AS
1170 memory_exception_data.va = address;
1171 /* Set failure reason */
1172 memory_exception_data.failure.NotPresent = 1;
1173 memory_exception_data.failure.NoExecute = 0;
1174 memory_exception_data.failure.ReadOnly = 0;
359cecdd
YZ
1175 if (vma && address >= vma->vm_start) {
1176 memory_exception_data.failure.NotPresent = 0;
1177
1178 if (is_write_requested && !(vma->vm_flags & VM_WRITE))
1179 memory_exception_data.failure.ReadOnly = 1;
1180 else
59d3e8be 1181 memory_exception_data.failure.ReadOnly = 0;
359cecdd
YZ
1182
1183 if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
1184 memory_exception_data.failure.NoExecute = 1;
1185 else
1186 memory_exception_data.failure.NoExecute = 0;
59d3e8be
AS
1187 }
1188
d8ed45c5 1189 mmap_read_unlock(mm);
9b56bb11 1190 mmput(mm);
59d3e8be 1191
8725aeca
YZ
1192 pr_debug("notpresent %d, noexecute %d, readonly %d\n",
1193 memory_exception_data.failure.NotPresent,
1194 memory_exception_data.failure.NoExecute,
1195 memory_exception_data.failure.ReadOnly);
59d3e8be 1196
8725aeca
YZ
1197 /* Workaround on Raven to not kill the process when memory is freed
1198 * before IOMMU is able to finish processing all the excessive PPRs
1199 */
046e674b
GS
1200
1201 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) &&
1202 KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) &&
5273e82c 1203 KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0))
8725aeca
YZ
1204 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
1205 &memory_exception_data);
1206
abb208a8 1207 kfd_unref_process(p);
59d3e8be 1208}
64d1c3a4 1209#endif /* KFD_SUPPORT_IOMMU_V2 */
930c5ff4 1210
c7b6bac9 1211void kfd_signal_hw_exception_event(u32 pasid)
930c5ff4
AS
1212{
1213 /*
1214 * Because we are called from arbitrary context (workqueue) as opposed
1215 * to process context, kfd_process could attempt to exit while we are
abb208a8 1216 * running so the lookup function increments the process ref count.
930c5ff4
AS
1217 */
1218 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1219
1220 if (!p)
1221 return; /* Presumably process exited. */
1222
930c5ff4 1223 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
abb208a8 1224 kfd_unref_process(p);
930c5ff4 1225}
2640c3fa 1226
c7b6bac9 1227void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
2640c3fa 1228 struct kfd_vm_fault_info *info)
1229{
1230 struct kfd_event *ev;
1231 uint32_t id;
1232 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1233 struct kfd_hsa_memory_exception_data memory_exception_data;
bef153b7 1234 int user_gpu_id;
2640c3fa 1235
1236 if (!p)
1237 return; /* Presumably process exited. */
bef153b7
DYS
1238
1239 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1240 if (unlikely(user_gpu_id == -EINVAL)) {
1241 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1242 return;
1243 }
1244
2640c3fa 1245 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
bef153b7 1246 memory_exception_data.gpu_id = user_gpu_id;
0d87c9cf 1247 memory_exception_data.failure.imprecise = true;
2640c3fa 1248 /* Set failure reason */
1249 if (info) {
1250 memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
1251 memory_exception_data.failure.NotPresent =
1252 info->prot_valid ? 1 : 0;
1253 memory_exception_data.failure.NoExecute =
1254 info->prot_exec ? 1 : 0;
1255 memory_exception_data.failure.ReadOnly =
1256 info->prot_write ? 1 : 0;
1257 memory_exception_data.failure.imprecise = 0;
1258 }
5273e82c
FK
1259
1260 rcu_read_lock();
2640c3fa 1261
1262 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1263 idr_for_each_entry_continue(&p->event_idr, ev, id)
1264 if (ev->type == KFD_EVENT_TYPE_MEMORY) {
5273e82c 1265 spin_lock(&ev->lock);
2640c3fa 1266 ev->memory_exception_data = memory_exception_data;
1267 set_event(ev);
5273e82c 1268 spin_unlock(&ev->lock);
2640c3fa 1269 }
1270
5273e82c 1271 rcu_read_unlock();
2640c3fa 1272 kfd_unref_process(p);
1273}
e42051d2
SL
1274
1275void kfd_signal_reset_event(struct kfd_dev *dev)
1276{
1277 struct kfd_hsa_hw_exception_data hw_exception_data;
9b54d201 1278 struct kfd_hsa_memory_exception_data memory_exception_data;
e42051d2
SL
1279 struct kfd_process *p;
1280 struct kfd_event *ev;
1281 unsigned int temp;
1282 uint32_t id, idx;
9b54d201
EH
1283 int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1284 KFD_HW_EXCEPTION_ECC :
1285 KFD_HW_EXCEPTION_GPU_HANG;
e42051d2
SL
1286
1287 /* Whole gpu reset caused by GPU hang and memory is lost */
1288 memset(&hw_exception_data, 0, sizeof(hw_exception_data));
e42051d2 1289 hw_exception_data.memory_lost = 1;
9b54d201
EH
1290 hw_exception_data.reset_cause = reset_cause;
1291
1292 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1293 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
9b54d201 1294 memory_exception_data.failure.imprecise = true;
e42051d2
SL
1295
1296 idx = srcu_read_lock(&kfd_processes_srcu);
1297 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
bef153b7
DYS
1298 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1299
1300 if (unlikely(user_gpu_id == -EINVAL)) {
1301 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1302 continue;
1303 }
1304
5273e82c
FK
1305 rcu_read_lock();
1306
e42051d2 1307 id = KFD_FIRST_NONSIGNAL_EVENT_ID;
9b54d201 1308 idr_for_each_entry_continue(&p->event_idr, ev, id) {
e42051d2 1309 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
5273e82c 1310 spin_lock(&ev->lock);
e42051d2 1311 ev->hw_exception_data = hw_exception_data;
bef153b7 1312 ev->hw_exception_data.gpu_id = user_gpu_id;
e42051d2 1313 set_event(ev);
5273e82c 1314 spin_unlock(&ev->lock);
e42051d2 1315 }
9b54d201
EH
1316 if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1317 reset_cause == KFD_HW_EXCEPTION_ECC) {
5273e82c 1318 spin_lock(&ev->lock);
9b54d201 1319 ev->memory_exception_data = memory_exception_data;
bef153b7 1320 ev->memory_exception_data.gpu_id = user_gpu_id;
9b54d201 1321 set_event(ev);
5273e82c 1322 spin_unlock(&ev->lock);
9b54d201
EH
1323 }
1324 }
5273e82c
FK
1325
1326 rcu_read_unlock();
e42051d2
SL
1327 }
1328 srcu_read_unlock(&kfd_processes_srcu, idx);
1329}
e2b1f9f5
DL
1330
1331void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid)
1332{
1333 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1334 struct kfd_hsa_memory_exception_data memory_exception_data;
1335 struct kfd_hsa_hw_exception_data hw_exception_data;
1336 struct kfd_event *ev;
1337 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
bef153b7 1338 int user_gpu_id;
e2b1f9f5
DL
1339
1340 if (!p)
1341 return; /* Presumably process exited. */
1342
bef153b7
DYS
1343 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1344 if (unlikely(user_gpu_id == -EINVAL)) {
1345 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1346 return;
1347 }
1348
e2b1f9f5 1349 memset(&hw_exception_data, 0, sizeof(hw_exception_data));
bef153b7 1350 hw_exception_data.gpu_id = user_gpu_id;
e2b1f9f5
DL
1351 hw_exception_data.memory_lost = 1;
1352 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1353
1354 memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1355 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
bef153b7 1356 memory_exception_data.gpu_id = user_gpu_id;
e2b1f9f5
DL
1357 memory_exception_data.failure.imprecise = true;
1358
5273e82c
FK
1359 rcu_read_lock();
1360
e2b1f9f5
DL
1361 idr_for_each_entry_continue(&p->event_idr, ev, id) {
1362 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
5273e82c 1363 spin_lock(&ev->lock);
e2b1f9f5
DL
1364 ev->hw_exception_data = hw_exception_data;
1365 set_event(ev);
5273e82c 1366 spin_unlock(&ev->lock);
e2b1f9f5
DL
1367 }
1368
1369 if (ev->type == KFD_EVENT_TYPE_MEMORY) {
5273e82c 1370 spin_lock(&ev->lock);
e2b1f9f5
DL
1371 ev->memory_exception_data = memory_exception_data;
1372 set_event(ev);
5273e82c 1373 spin_unlock(&ev->lock);
e2b1f9f5
DL
1374 }
1375 }
5273e82c
FK
1376
1377 rcu_read_unlock();
e2b1f9f5
DL
1378
1379 /* user application will handle SIGBUS signal */
1380 send_sig(SIGBUS, p->lead_thread, 0);
96b62c8a
DL
1381
1382 kfd_unref_process(p);
e2b1f9f5 1383}