tile_edac: convert driver to use the new edac ABI
[linux-block.git] / drivers / edac / x38_edac.c
CommitLineData
df8bc08c
HM
1/*
2 * Intel X38 Memory Controller kernel module
3 * Copyright (C) 2008 Cluster Computing, Inc.
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * This file is based on i3200_edac.c
9 *
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
df8bc08c
HM
16#include <linux/edac.h>
17#include "edac_core.h"
18
19#define X38_REVISION "1.1"
20
21#define EDAC_MOD_STR "x38_edac"
22
23#define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0
24
25#define X38_RANKS 8
26#define X38_RANKS_PER_CHANNEL 4
27#define X38_CHANNELS 2
28
29/* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
30
31#define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
3d768213 32#define X38_MCHBAR_HIGH 0x4c
df8bc08c
HM
33#define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
34#define X38_MMR_WINDOW_SIZE 16384
35
36#define X38_TOM 0xa0 /* Top of Memory (16b)
37 *
38 * 15:10 reserved
39 * 9:0 total populated physical memory
40 */
41#define X38_TOM_MASK 0x3ff /* bits 9:0 */
42#define X38_TOM_SHIFT 26 /* 64MiB grain */
43
44#define X38_ERRSTS 0xc8 /* Error Status Register (16b)
45 *
46 * 15 reserved
47 * 14 Isochronous TBWRR Run Behind FIFO Full
48 * (ITCV)
49 * 13 Isochronous TBWRR Run Behind FIFO Put
50 * (ITSTV)
51 * 12 reserved
52 * 11 MCH Thermal Sensor Event
53 * for SMI/SCI/SERR (GTSE)
54 * 10 reserved
55 * 9 LOCK to non-DRAM Memory Flag (LCKF)
56 * 8 reserved
57 * 7 DRAM Throttle Flag (DTF)
58 * 6:2 reserved
59 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
60 * 0 Single-bit DRAM ECC Error Flag (DSERR)
61 */
62#define X38_ERRSTS_UE 0x0002
63#define X38_ERRSTS_CE 0x0001
64#define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
65
66
67/* Intel MMIO register space - device 0 function 0 - MMR space */
68
69#define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4)
70 *
71 * 15:10 reserved
72 * 9:0 Channel 0 DRAM Rank Boundary Address
73 */
74#define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */
75#define X38_DRB_MASK 0x3ff /* bits 9:0 */
76#define X38_DRB_SHIFT 26 /* 64MiB grain */
77
78#define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b)
79 *
80 * 63:48 Error Column Address (ERRCOL)
81 * 47:32 Error Row Address (ERRROW)
82 * 31:29 Error Bank Address (ERRBANK)
83 * 28:27 Error Rank Address (ERRRANK)
84 * 26:24 reserved
85 * 23:16 Error Syndrome (ERRSYND)
86 * 15: 2 reserved
87 * 1 Multiple Bit Error Status (MERRSTS)
88 * 0 Correctable Error Status (CERRSTS)
89 */
90#define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */
91#define X38_ECCERRLOG_CE 0x1
92#define X38_ECCERRLOG_UE 0x2
93#define X38_ECCERRLOG_RANK_BITS 0x18000000
94#define X38_ECCERRLOG_SYNDROME_BITS 0xff0000
95
96#define X38_CAPID0 0xe0 /* see P.94 of spec for details */
97
98static int x38_channel_num;
99
100static int how_many_channel(struct pci_dev *pdev)
101{
102 unsigned char capid0_8b; /* 8th byte of CAPID0 */
103
104 pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105 if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
106 debugf0("In single channel mode.\n");
107 x38_channel_num = 1;
108 } else {
109 debugf0("In dual channel mode.\n");
110 x38_channel_num = 2;
111 }
112
113 return x38_channel_num;
114}
115
116static unsigned long eccerrlog_syndrome(u64 log)
117{
118 return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
119}
120
121static int eccerrlog_row(int channel, u64 log)
122{
123 return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124 (channel * X38_RANKS_PER_CHANNEL);
125}
126
127enum x38_chips {
128 X38 = 0,
129};
130
131struct x38_dev_info {
132 const char *ctl_name;
133};
134
135struct x38_error_info {
136 u16 errsts;
137 u16 errsts2;
138 u64 eccerrlog[X38_CHANNELS];
139};
140
141static const struct x38_dev_info x38_devs[] = {
142 [X38] = {
143 .ctl_name = "x38"},
144};
145
146static struct pci_dev *mci_pdev;
147static int x38_registered = 1;
148
149
150static void x38_clear_error_info(struct mem_ctl_info *mci)
151{
152 struct pci_dev *pdev;
153
154 pdev = to_pci_dev(mci->dev);
155
156 /*
157 * Clear any error bits.
158 * (Yes, we really clear bits by writing 1 to them.)
159 */
160 pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
161 X38_ERRSTS_BITS);
162}
163
164static u64 x38_readq(const void __iomem *addr)
165{
166 return readl(addr) | (((u64)readl(addr + 4)) << 32);
167}
168
169static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170 struct x38_error_info *info)
171{
172 struct pci_dev *pdev;
173 void __iomem *window = mci->pvt_info;
174
175 pdev = to_pci_dev(mci->dev);
176
177 /*
178 * This is a mess because there is no atomic way to read all the
179 * registers at once and the registers can transition from CE being
180 * overwritten by UE.
181 */
182 pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183 if (!(info->errsts & X38_ERRSTS_BITS))
184 return;
185
186 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187 if (x38_channel_num == 2)
188 info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
189
190 pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
191
192 /*
193 * If the error is the same for both reads then the first set
194 * of reads is valid. If there is a change then there is a CE
195 * with no info and the second set of reads is valid and
196 * should be UE info.
197 */
198 if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200 if (x38_channel_num == 2)
201 info->eccerrlog[1] =
202 x38_readq(window + X38_C1ECCERRLOG);
203 }
204
205 x38_clear_error_info(mci);
206}
207
208static void x38_process_error_info(struct mem_ctl_info *mci,
209 struct x38_error_info *info)
210{
211 int channel;
212 u64 log;
213
214 if (!(info->errsts & X38_ERRSTS_BITS))
215 return;
216
217 if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
218 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
219 info->errsts = info->errsts2;
220 }
221
222 for (channel = 0; channel < x38_channel_num; channel++) {
223 log = info->eccerrlog[channel];
224 if (log & X38_ECCERRLOG_UE) {
225 edac_mc_handle_ue(mci, 0, 0,
226 eccerrlog_row(channel, log), "x38 UE");
227 } else if (log & X38_ECCERRLOG_CE) {
228 edac_mc_handle_ce(mci, 0, 0,
229 eccerrlog_syndrome(log),
230 eccerrlog_row(channel, log), 0, "x38 CE");
231 }
232 }
233}
234
235static void x38_check(struct mem_ctl_info *mci)
236{
237 struct x38_error_info info;
238
239 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
240 x38_get_and_clear_error_info(mci, &info);
241 x38_process_error_info(mci, &info);
242}
243
244
245void __iomem *x38_map_mchbar(struct pci_dev *pdev)
246{
247 union {
248 u64 mchbar;
249 struct {
250 u32 mchbar_low;
251 u32 mchbar_high;
252 };
253 } u;
254 void __iomem *window;
255
256 pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
257 pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
258 pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
259 u.mchbar &= X38_MCHBAR_MASK;
260
261 if (u.mchbar != (resource_size_t)u.mchbar) {
262 printk(KERN_ERR
263 "x38: mmio space beyond accessible range (0x%llx)\n",
264 (unsigned long long)u.mchbar);
265 return NULL;
266 }
267
268 window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
269 if (!window)
270 printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
271 (unsigned long long)u.mchbar);
272
273 return window;
274}
275
276
277static void x38_get_drbs(void __iomem *window,
278 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
279{
280 int i;
281
282 for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
283 drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
284 drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
285 }
286}
287
288static bool x38_is_stacked(struct pci_dev *pdev,
289 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
290{
291 u16 tom;
292
293 pci_read_config_word(pdev, X38_TOM, &tom);
294 tom &= X38_TOM_MASK;
295
296 return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
297}
298
299static unsigned long drb_to_nr_pages(
300 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
301 bool stacked, int channel, int rank)
302{
303 int n;
304
305 n = drbs[channel][rank];
306 if (rank > 0)
307 n -= drbs[channel][rank - 1];
308 if (stacked && (channel == 1) && drbs[channel][rank] ==
309 drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
310 n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
311 }
312
313 n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
314 return n;
315}
316
317static int x38_probe1(struct pci_dev *pdev, int dev_idx)
318{
319 int rc;
084a4fcc 320 int i, j;
df8bc08c 321 struct mem_ctl_info *mci = NULL;
df8bc08c
HM
322 u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
323 bool stacked;
324 void __iomem *window;
325
326 debugf0("MC: %s()\n", __func__);
327
328 window = x38_map_mchbar(pdev);
329 if (!window)
330 return -ENODEV;
331
332 x38_get_drbs(window, drbs);
333
334 how_many_channel(pdev);
335
336 /* FIXME: unconventional pvt_info usage */
337 mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0);
338 if (!mci)
339 return -ENOMEM;
340
341 debugf3("MC: %s(): init mci\n", __func__);
342
343 mci->dev = &pdev->dev;
344 mci->mtype_cap = MEM_FLAG_DDR2;
345
346 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
347 mci->edac_cap = EDAC_FLAG_SECDED;
348
349 mci->mod_name = EDAC_MOD_STR;
350 mci->mod_ver = X38_REVISION;
351 mci->ctl_name = x38_devs[dev_idx].ctl_name;
352 mci->dev_name = pci_name(pdev);
353 mci->edac_check = x38_check;
354 mci->ctl_page_to_phys = NULL;
355 mci->pvt_info = window;
356
357 stacked = x38_is_stacked(pdev, drbs);
358
359 /*
360 * The dram rank boundary (DRB) reg values are boundary addresses
361 * for each DRAM rank with a granularity of 64MB. DRB regs are
362 * cumulative; the last one will contain the total memory
363 * contained in all ranks.
364 */
df8bc08c
HM
365 for (i = 0; i < mci->nr_csrows; i++) {
366 unsigned long nr_pages;
367 struct csrow_info *csrow = &mci->csrows[i];
368
369 nr_pages = drb_to_nr_pages(drbs, stacked,
370 i / X38_RANKS_PER_CHANNEL,
371 i % X38_RANKS_PER_CHANNEL);
372
084a4fcc 373 if (nr_pages == 0)
df8bc08c 374 continue;
df8bc08c 375
084a4fcc
MCC
376 for (j = 0; j < x38_channel_num; j++) {
377 struct dimm_info *dimm = csrow->channels[j].dimm;
a895bf8b
MCC
378
379 dimm->nr_pages = nr_pages / x38_channel_num;
084a4fcc
MCC
380 dimm->grain = nr_pages << PAGE_SHIFT;
381 dimm->mtype = MEM_DDR2;
382 dimm->dtype = DEV_UNKNOWN;
383 dimm->edac_mode = EDAC_UNKNOWN;
384 }
df8bc08c
HM
385 }
386
387 x38_clear_error_info(mci);
388
389 rc = -ENODEV;
390 if (edac_mc_add_mc(mci)) {
391 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
392 goto fail;
393 }
394
395 /* get this far and it's successful */
396 debugf3("MC: %s(): success\n", __func__);
397 return 0;
398
399fail:
400 iounmap(window);
401 if (mci)
402 edac_mc_free(mci);
403
404 return rc;
405}
406
407static int __devinit x38_init_one(struct pci_dev *pdev,
408 const struct pci_device_id *ent)
409{
410 int rc;
411
412 debugf0("MC: %s()\n", __func__);
413
414 if (pci_enable_device(pdev) < 0)
415 return -EIO;
416
417 rc = x38_probe1(pdev, ent->driver_data);
418 if (!mci_pdev)
419 mci_pdev = pci_dev_get(pdev);
420
421 return rc;
422}
423
424static void __devexit x38_remove_one(struct pci_dev *pdev)
425{
426 struct mem_ctl_info *mci;
427
428 debugf0("%s()\n", __func__);
429
430 mci = edac_mc_del_mc(&pdev->dev);
431 if (!mci)
432 return;
433
434 iounmap(mci->pvt_info);
435
436 edac_mc_free(mci);
437}
438
36c46f31 439static DEFINE_PCI_DEVICE_TABLE(x38_pci_tbl) = {
df8bc08c
HM
440 {
441 PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
442 X38},
443 {
444 0,
445 } /* 0 terminated list. */
446};
447
448MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
449
450static struct pci_driver x38_driver = {
451 .name = EDAC_MOD_STR,
452 .probe = x38_init_one,
453 .remove = __devexit_p(x38_remove_one),
454 .id_table = x38_pci_tbl,
455};
456
457static int __init x38_init(void)
458{
459 int pci_rc;
460
461 debugf3("MC: %s()\n", __func__);
462
463 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
464 opstate_init();
465
466 pci_rc = pci_register_driver(&x38_driver);
467 if (pci_rc < 0)
468 goto fail0;
469
470 if (!mci_pdev) {
471 x38_registered = 0;
472 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
473 PCI_DEVICE_ID_INTEL_X38_HB, NULL);
474 if (!mci_pdev) {
475 debugf0("x38 pci_get_device fail\n");
476 pci_rc = -ENODEV;
477 goto fail1;
478 }
479
480 pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
481 if (pci_rc < 0) {
482 debugf0("x38 init fail\n");
483 pci_rc = -ENODEV;
484 goto fail1;
485 }
486 }
487
488 return 0;
489
490fail1:
491 pci_unregister_driver(&x38_driver);
492
493fail0:
494 if (mci_pdev)
495 pci_dev_put(mci_pdev);
496
497 return pci_rc;
498}
499
500static void __exit x38_exit(void)
501{
502 debugf3("MC: %s()\n", __func__);
503
504 pci_unregister_driver(&x38_driver);
505 if (!x38_registered) {
506 x38_remove_one(mci_pdev);
507 pci_dev_put(mci_pdev);
508 }
509}
510
511module_init(x38_init);
512module_exit(x38_exit);
513
514MODULE_LICENSE("GPL");
515MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
516MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
517
518module_param(edac_op_state, int, 0444);
519MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");