drivers/edac: i3000: missing init code
[linux-block.git] / drivers / edac / i3000_edac.c
CommitLineData
535c6a53
JU
1/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/slab.h>
7ed31e0f 17#include <linux/edac.h>
535c6a53
JU
18#include "edac_core.h"
19
20#define I3000_REVISION "1.1"
21
22#define EDAC_MOD_STR "i3000_edac"
23
24#define I3000_RANKS 8
25#define I3000_RANKS_PER_CHANNEL 4
26#define I3000_CHANNELS 2
27
28/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
29
30#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
31#define I3000_MCHBAR_MASK 0xffffc000
32#define I3000_MMR_WINDOW_SIZE 16384
33
ce783d70
JU
34#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
35 *
36 * 7:1 reserved
37 * 0 bit 32 of address
38 */
39#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
40 *
41 * 31:7 address
42 * 6:1 reserved
43 * 0 Error channel 0/1
44 */
45#define I3000_DEAP_GRAIN (1 << 7)
4d2b165e
JU
46
47static inline unsigned long deap_pfn(u8 edeap, u32 deap)
48{
49 deap >>= PAGE_SHIFT;
50 deap |= (edeap & 1) << (32 - PAGE_SHIFT);
51 return deap;
52}
53
54static inline unsigned long deap_offset(u32 deap)
55{
56 return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
57}
58
59static inline int deap_channel(u32 deap)
60{
61 return deap & 1;
62}
535c6a53 63
ce783d70
JU
64#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
65 *
66 * 7:0 DRAM ECC Syndrome
67 */
68
69#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
70 *
71 * 15:12 reserved
72 * 11 MCH Thermal Sensor Event
73 * for SMI/SCI/SERR
74 * 10 reserved
75 * 9 LOCK to non-DRAM Memory Flag (LCKF)
76 * 8 Received Refresh Timeout Flag (RRTOF)
77 * 7:2 reserved
78 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
79 * 0 Single-bit DRAM ECC Error Flag (DSERR)
80 */
535c6a53
JU
81#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
82#define I3000_ERRSTS_UE 0x0002
83#define I3000_ERRSTS_CE 0x0001
84
ce783d70
JU
85#define I3000_ERRCMD 0xca /* Error Command (16b)
86 *
87 * 15:12 reserved
88 * 11 SERR on MCH Thermal Sensor Event
89 * (TSESERR)
90 * 10 reserved
91 * 9 SERR on LOCK to non-DRAM Memory
92 * (LCKERR)
93 * 8 SERR on DRAM Refresh Timeout
94 * (DRTOERR)
95 * 7:2 reserved
96 * 1 SERR Multi-Bit DRAM ECC Error
97 * (DMERR)
98 * 0 SERR on Single-Bit ECC Error
99 * (DSERR)
100 */
535c6a53
JU
101
102/* Intel MMIO register space - device 0 function 0 - MMR space */
103
104#define I3000_DRB_SHIFT 25 /* 32MiB grain */
105
ce783d70
JU
106#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
107 *
108 * 7:0 Channel 0 DRAM Rank Boundary Address
109 */
110#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
111 *
112 * 7:0 Channel 1 DRAM Rank Boundary Address
113 */
114
115#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
116 *
117 * 7 reserved
118 * 6:4 DRAM odd Rank Attribute
119 * 3 reserved
120 * 2:0 DRAM even Rank Attribute
121 *
122 * Each attribute defines the page
123 * size of the corresponding rank:
124 * 000: unpopulated
125 * 001: reserved
126 * 010: 4 KB
127 * 011: 8 KB
128 * 100: 16 KB
129 * Others: reserved
130 */
131#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
4d2b165e
JU
132
133static inline unsigned char odd_rank_attrib(unsigned char dra)
134{
135 return (dra & 0x70) >> 4;
136}
137
138static inline unsigned char even_rank_attrib(unsigned char dra)
139{
140 return dra & 0x07;
141}
ce783d70
JU
142
143#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
144 *
145 * 31:30 reserved
146 * 29 Initialization Complete (IC)
147 * 28:11 reserved
148 * 10:8 Refresh Mode Select (RMS)
149 * 7 reserved
150 * 6:4 Mode Select (SMS)
151 * 3:2 reserved
152 * 1:0 DRAM Type (DT)
153 */
154
155#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
156 *
157 * 31 Enhanced Addressing Enable (ENHADE)
158 * 30:0 reserved
159 */
535c6a53 160
535c6a53
JU
161enum i3000p_chips {
162 I3000 = 0,
163};
164
165struct i3000_dev_info {
166 const char *ctl_name;
167};
168
169struct i3000_error_info {
170 u16 errsts;
171 u8 derrsyn;
172 u8 edeap;
173 u32 deap;
174 u16 errsts2;
175};
176
177static const struct i3000_dev_info i3000_devs[] = {
178 [I3000] = {
052dfb45 179 .ctl_name = "i3000"},
535c6a53
JU
180};
181
f044091c 182static struct pci_dev *mci_pdev;
535c6a53 183static int i3000_registered = 1;
456a2f95 184static struct edac_pci_ctl_info *i3000_pci;
535c6a53
JU
185
186static void i3000_get_error_info(struct mem_ctl_info *mci,
36b8289e 187 struct i3000_error_info *info)
535c6a53
JU
188{
189 struct pci_dev *pdev;
190
191 pdev = to_pci_dev(mci->dev);
192
193 /*
194 * This is a mess because there is no atomic way to read all the
195 * registers at once and the registers can transition from CE being
196 * overwritten by UE.
197 */
198 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
199 if (!(info->errsts & I3000_ERRSTS_BITS))
200 return;
201 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
202 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
203 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
204 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
205
206 /*
207 * If the error is the same for both reads then the first set
208 * of reads is valid. If there is a change then there is a CE
209 * with no info and the second set of reads is valid and
210 * should be UE info.
211 */
212 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
36b8289e
DJ
213 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
214 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
215 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
535c6a53
JU
216 }
217
ce783d70
JU
218 /*
219 * Clear any error bits.
535c6a53
JU
220 * (Yes, we really clear bits by writing 1 to them.)
221 */
36b8289e
DJ
222 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
223 I3000_ERRSTS_BITS);
535c6a53
JU
224}
225
226static int i3000_process_error_info(struct mem_ctl_info *mci,
052dfb45
DT
227 struct i3000_error_info *info,
228 int handle_errors)
535c6a53 229{
4d2b165e
JU
230 int row, multi_chan, channel;
231 unsigned long pfn, offset;
535c6a53
JU
232
233 multi_chan = mci->csrows[0].nr_channels - 1;
234
235 if (!(info->errsts & I3000_ERRSTS_BITS))
236 return 0;
237
238 if (!handle_errors)
239 return 1;
240
241 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
242 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
243 info->errsts = info->errsts2;
244 }
245
4d2b165e
JU
246 pfn = deap_pfn(info->edeap, info->deap);
247 offset = deap_offset(info->deap);
248 channel = deap_channel(info->deap);
535c6a53
JU
249
250 row = edac_mc_find_csrow_by_page(mci, pfn);
251
252 if (info->errsts & I3000_ERRSTS_UE)
253 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
254 else
255 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
052dfb45 256 multi_chan ? channel : 0, "i3000 CE");
535c6a53
JU
257
258 return 1;
259}
260
261static void i3000_check(struct mem_ctl_info *mci)
262{
263 struct i3000_error_info info;
264
265 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
266 i3000_get_error_info(mci, &info);
267 i3000_process_error_info(mci, &info, 1);
268}
269
270static int i3000_is_interleaved(const unsigned char *c0dra,
271 const unsigned char *c1dra,
272 const unsigned char *c0drb,
273 const unsigned char *c1drb)
274{
275 int i;
276
ce783d70
JU
277 /*
278 * If the channels aren't populated identically then
535c6a53
JU
279 * we're not interleaved.
280 */
281 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
4d2b165e
JU
282 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
283 even_rank_attrib(c0dra[i]) !=
284 even_rank_attrib(c1dra[i]))
535c6a53
JU
285 return 0;
286
ce783d70
JU
287 /*
288 * If the rank boundaries for the two channels are different
535c6a53
JU
289 * then we're not interleaved.
290 */
291 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
292 if (c0drb[i] != c1drb[i])
293 return 0;
294
295 return 1;
296}
297
298static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
299{
300 int rc;
301 int i;
302 struct mem_ctl_info *mci = NULL;
303 unsigned long last_cumul_size;
304 int interleaved, nr_channels;
305 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
306 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
307 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
308 unsigned long mchbar;
0bd8496b 309 void __iomem *window;
535c6a53
JU
310
311 debugf0("MC: %s()\n", __func__);
312
36b8289e 313 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
535c6a53
JU
314 mchbar &= I3000_MCHBAR_MASK;
315 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
316 if (!window) {
36b8289e 317 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
052dfb45 318 mchbar);
535c6a53
JU
319 return -ENODEV;
320 }
321
7ed31e0f
HM
322 switch (edac_op_state) {
323 case EDAC_OPSTATE_POLL:
324 case EDAC_OPSTATE_NMI:
325 break;
326 default:
327 edac_op_state = EDAC_OPSTATE_POLL;
328 break;
329 }
330
36b8289e
DJ
331 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
332 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
333 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
334 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
535c6a53
JU
335
336 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
337 c0drb[i] = readb(window + I3000_C0DRB + i);
338 c1drb[i] = readb(window + I3000_C1DRB + i);
339 }
340
341 iounmap(window);
342
ce783d70
JU
343 /*
344 * Figure out how many channels we have.
535c6a53
JU
345 *
346 * If we have what the datasheet calls "asymmetric channels"
347 * (essentially the same as what was called "virtual single
348 * channel mode" in the i82875) then it's a single channel as
349 * far as EDAC is concerned.
350 */
351 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
352 nr_channels = interleaved ? 2 : 1;
b8f6f975 353 mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
535c6a53
JU
354 if (!mci)
355 return -ENOMEM;
356
357 debugf3("MC: %s(): init mci\n", __func__);
358
359 mci->dev = &pdev->dev;
360 mci->mtype_cap = MEM_FLAG_DDR2;
361
362 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
363 mci->edac_cap = EDAC_FLAG_SECDED;
364
365 mci->mod_name = EDAC_MOD_STR;
366 mci->mod_ver = I3000_REVISION;
367 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
368 mci->dev_name = pci_name(pdev);
369 mci->edac_check = i3000_check;
370 mci->ctl_page_to_phys = NULL;
371
372 /*
373 * The dram rank boundary (DRB) reg values are boundary addresses
374 * for each DRAM rank with a granularity of 32MB. DRB regs are
375 * cumulative; the last one will contain the total memory
376 * contained in all ranks.
377 *
378 * If we're in interleaved mode then we're only walking through
379 * the ranks of controller 0, so we double all the values we see.
380 */
381 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
382 u8 value;
383 u32 cumul_size;
384 struct csrow_info *csrow = &mci->csrows[i];
385
386 value = drb[i];
387 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
388 if (interleaved)
389 cumul_size <<= 1;
390 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
391 __func__, i, cumul_size);
392 if (cumul_size == last_cumul_size) {
393 csrow->mtype = MEM_EMPTY;
394 continue;
395 }
396
397 csrow->first_page = last_cumul_size;
398 csrow->last_page = cumul_size - 1;
399 csrow->nr_pages = cumul_size - last_cumul_size;
400 last_cumul_size = cumul_size;
401 csrow->grain = I3000_DEAP_GRAIN;
402 csrow->mtype = MEM_DDR2;
403 csrow->dtype = DEV_UNKNOWN;
404 csrow->edac_mode = EDAC_UNKNOWN;
405 }
406
ce783d70
JU
407 /*
408 * Clear any error bits.
535c6a53
JU
409 * (Yes, we really clear bits by writing 1 to them.)
410 */
36b8289e
DJ
411 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
412 I3000_ERRSTS_BITS);
535c6a53
JU
413
414 rc = -ENODEV;
b8f6f975 415 if (edac_mc_add_mc(mci)) {
535c6a53
JU
416 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
417 goto fail;
418 }
419
456a2f95
DJ
420 /* allocating generic PCI control info */
421 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
422 if (!i3000_pci) {
423 printk(KERN_WARNING
424 "%s(): Unable to create PCI control\n",
425 __func__);
426 printk(KERN_WARNING
427 "%s(): PCI error report via EDAC not setup\n",
428 __func__);
429 }
430
535c6a53
JU
431 /* get this far and it's successful */
432 debugf3("MC: %s(): success\n", __func__);
433 return 0;
434
ce783d70 435fail:
535c6a53
JU
436 if (mci)
437 edac_mc_free(mci);
438
439 return rc;
440}
441
442/* returns count (>= 0), or negative on error */
443static int __devinit i3000_init_one(struct pci_dev *pdev,
052dfb45 444 const struct pci_device_id *ent)
535c6a53
JU
445{
446 int rc;
447
448 debugf0("MC: %s()\n", __func__);
449
450 if (pci_enable_device(pdev) < 0)
451 return -EIO;
452
453 rc = i3000_probe1(pdev, ent->driver_data);
ce783d70 454 if (!mci_pdev)
535c6a53
JU
455 mci_pdev = pci_dev_get(pdev);
456
457 return rc;
458}
459
460static void __devexit i3000_remove_one(struct pci_dev *pdev)
461{
462 struct mem_ctl_info *mci;
463
464 debugf0("%s()\n", __func__);
465
456a2f95
DJ
466 if (i3000_pci)
467 edac_pci_release_generic_ctl(i3000_pci);
468
ce783d70
JU
469 mci = edac_mc_del_mc(&pdev->dev);
470 if (!mci)
535c6a53
JU
471 return;
472
473 edac_mc_free(mci);
474}
475
476static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
477 {
36b8289e
DJ
478 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
479 I3000},
535c6a53 480 {
36b8289e
DJ
481 0,
482 } /* 0 terminated list. */
535c6a53
JU
483};
484
485MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
486
487static struct pci_driver i3000_driver = {
488 .name = EDAC_MOD_STR,
489 .probe = i3000_init_one,
490 .remove = __devexit_p(i3000_remove_one),
491 .id_table = i3000_pci_tbl,
492};
493
494static int __init i3000_init(void)
495{
496 int pci_rc;
497
498 debugf3("MC: %s()\n", __func__);
499 pci_rc = pci_register_driver(&i3000_driver);
500 if (pci_rc < 0)
501 goto fail0;
502
ce783d70 503 if (!mci_pdev) {
535c6a53
JU
504 i3000_registered = 0;
505 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
052dfb45 506 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
535c6a53
JU
507 if (!mci_pdev) {
508 debugf0("i3000 pci_get_device fail\n");
509 pci_rc = -ENODEV;
510 goto fail1;
511 }
512
513 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
514 if (pci_rc < 0) {
515 debugf0("i3000 init fail\n");
516 pci_rc = -ENODEV;
517 goto fail1;
518 }
519 }
520
521 return 0;
522
052dfb45 523fail1:
535c6a53
JU
524 pci_unregister_driver(&i3000_driver);
525
052dfb45 526fail0:
535c6a53
JU
527 if (mci_pdev)
528 pci_dev_put(mci_pdev);
529
530 return pci_rc;
531}
532
533static void __exit i3000_exit(void)
534{
535 debugf3("MC: %s()\n", __func__);
536
537 pci_unregister_driver(&i3000_driver);
538 if (!i3000_registered) {
539 i3000_remove_one(mci_pdev);
540 pci_dev_put(mci_pdev);
541 }
542}
543
544module_init(i3000_init);
545module_exit(i3000_exit);
546
547MODULE_LICENSE("GPL");
548MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
549MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
7ed31e0f
HM
550
551module_param(edac_op_state, int, 0444);
552MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");