Merge tag 'please-pull-root_bus_hotplug' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
360b7f3c
BP
18/*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21static atomic_t drv_instances = ATOMIC_INIT(0);
22
cc4d8860
BP
23/* Per-node driver instances */
24static struct mem_ctl_info **mcis;
ae7bb7c6 25static struct ecc_settings **ecc_stngs;
2bc65418 26
b70ef010
BP
27/*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
c7e5301a 34static const struct scrubrate {
39094443
BP
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37} scrubrates[] = {
b70ef010
BP
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61};
62
66fed2d4
BP
63int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
b2b0c605
BP
65{
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74}
75
76int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78{
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87}
88
89/*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
94c1acf2 101 * F16h: has only 1 DCT
b2b0c605
BP
102 */
103static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105{
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110}
111
112static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114{
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116}
117
73ba8593
BP
118/*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122{
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
126 reg &= 0xfffffffe;
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129}
130
b2b0c605
BP
131static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133{
b2b0c605
BP
134 u8 dct = 0;
135
136 if (addr >= 0x140 && addr <= 0x1a0) {
137 dct = 1;
138 addr -= 0x100;
139 }
140
73ba8593 141 f15h_select_dct(pvt, dct);
b2b0c605
BP
142
143 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
144}
145
2bc65418
DT
146/*
147 * Memory scrubber control interface. For K8, memory scrubbing is handled by
148 * hardware and can involve L2 cache, dcache as well as the main memory. With
149 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
150 * functionality.
151 *
152 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
153 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
154 * bytes/sec for the setting.
155 *
156 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
157 * other archs, we might not have access to the caches directly.
158 */
159
160/*
161 * scan the scrub rate mapping table for a close or matching bandwidth value to
162 * issue. If requested is too big, then use last maximum value found.
163 */
395ae783 164static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
2bc65418
DT
165{
166 u32 scrubval;
167 int i;
168
169 /*
170 * map the configured rate (new_bw) to a value specific to the AMD64
171 * memory controller and apply to register. Search for the first
172 * bandwidth entry that is greater or equal than the setting requested
173 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
174 *
175 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
176 * by falling back to the last element in scrubrates[].
2bc65418 177 */
168bfeef 178 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
179 /*
180 * skip scrub rates which aren't recommended
181 * (see F10 BKDG, F3x58)
182 */
395ae783 183 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
184 continue;
185
186 if (scrubrates[i].bandwidth <= new_bw)
187 break;
2bc65418
DT
188 }
189
190 scrubval = scrubrates[i].scrubval;
2bc65418 191
5980bb9c 192 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
2bc65418 193
39094443
BP
194 if (scrubval)
195 return scrubrates[i].bandwidth;
196
2bc65418
DT
197 return 0;
198}
199
395ae783 200static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
201{
202 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 203 u32 min_scrubrate = 0x5;
2bc65418 204
87b3e0e6
BP
205 if (boot_cpu_data.x86 == 0xf)
206 min_scrubrate = 0x0;
207
73ba8593
BP
208 /* F15h Erratum #505 */
209 if (boot_cpu_data.x86 == 0x15)
210 f15h_select_dct(pvt, 0);
211
87b3e0e6 212 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
2bc65418
DT
213}
214
39094443 215static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
216{
217 struct amd64_pvt *pvt = mci->pvt_info;
218 u32 scrubval = 0;
39094443 219 int i, retval = -EINVAL;
2bc65418 220
73ba8593
BP
221 /* F15h Erratum #505 */
222 if (boot_cpu_data.x86 == 0x15)
223 f15h_select_dct(pvt, 0);
224
5980bb9c 225 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
226
227 scrubval = scrubval & 0x001F;
228
926311fd 229 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 230 if (scrubrates[i].scrubval == scrubval) {
39094443 231 retval = scrubrates[i].bandwidth;
2bc65418
DT
232 break;
233 }
234 }
39094443 235 return retval;
2bc65418
DT
236}
237
6775763a 238/*
7f19bf75
BP
239 * returns true if the SysAddr given by sys_addr matches the
240 * DRAM base/limit associated with node_id
6775763a 241 */
b487c33e 242static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
c7e5301a 243 u8 nid)
6775763a 244{
7f19bf75 245 u64 addr;
6775763a
DT
246
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
252 */
253 addr = sys_addr & 0x000000ffffffffffull;
254
7f19bf75
BP
255 return ((addr >= get_dram_base(pvt, nid)) &&
256 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
257}
258
259/*
260 * Attempt to map a SysAddr to a node. On success, return a pointer to the
261 * mem_ctl_info structure for the node that the SysAddr maps to.
262 *
263 * On failure, return NULL.
264 */
265static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
266 u64 sys_addr)
267{
268 struct amd64_pvt *pvt;
c7e5301a 269 u8 node_id;
6775763a
DT
270 u32 intlv_en, bits;
271
272 /*
273 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
274 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 */
276 pvt = mci->pvt_info;
277
278 /*
279 * The value of this field should be the same for all DRAM Base
280 * registers. Therefore we arbitrarily choose to read it from the
281 * register for node 0.
282 */
7f19bf75 283 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
284
285 if (intlv_en == 0) {
7f19bf75 286 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
6775763a 287 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 288 goto found;
6775763a 289 }
8edc5445 290 goto err_no_match;
6775763a
DT
291 }
292
72f158fe
BP
293 if (unlikely((intlv_en != 0x01) &&
294 (intlv_en != 0x03) &&
295 (intlv_en != 0x07))) {
24f9a7fe 296 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
297 return NULL;
298 }
299
300 bits = (((u32) sys_addr) >> 12) & intlv_en;
301
302 for (node_id = 0; ; ) {
7f19bf75 303 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
304 break; /* intlv_sel field matches */
305
7f19bf75 306 if (++node_id >= DRAM_RANGES)
6775763a
DT
307 goto err_no_match;
308 }
309
310 /* sanity test for sys_addr */
311 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
312 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
313 "range for node %d with node interleaving enabled.\n",
314 __func__, sys_addr, node_id);
6775763a
DT
315 return NULL;
316 }
317
318found:
b487c33e 319 return edac_mc_find((int)node_id);
6775763a
DT
320
321err_no_match:
956b9ba1
JP
322 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
323 (unsigned long)sys_addr);
6775763a
DT
324
325 return NULL;
326}
e2ce7255
DT
327
328/*
11c75ead
BP
329 * compute the CS base address of the @csrow on the DRAM controller @dct.
330 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 331 */
11c75ead
BP
332static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
333 u64 *base, u64 *mask)
e2ce7255 334{
11c75ead
BP
335 u64 csbase, csmask, base_bits, mask_bits;
336 u8 addr_shift;
e2ce7255 337
11c75ead
BP
338 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
339 csbase = pvt->csels[dct].csbases[csrow];
340 csmask = pvt->csels[dct].csmasks[csrow];
341 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
342 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
343 addr_shift = 4;
94c1acf2
AG
344
345 /*
346 * F16h needs two addr_shift values: 8 for high and 6 for low
347 * (cf. F16h BKDG).
348 */
349 } else if (boot_cpu_data.x86 == 0x16) {
350 csbase = pvt->csels[dct].csbases[csrow];
351 csmask = pvt->csels[dct].csmasks[csrow >> 1];
352
353 *base = (csbase & GENMASK(5, 15)) << 6;
354 *base |= (csbase & GENMASK(19, 30)) << 8;
355
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~((GENMASK(5, 15) << 6) |
359 (GENMASK(19, 30) << 8));
360
361 *mask |= (csmask & GENMASK(5, 15)) << 6;
362 *mask |= (csmask & GENMASK(19, 30)) << 8;
363
364 return;
11c75ead
BP
365 } else {
366 csbase = pvt->csels[dct].csbases[csrow];
367 csmask = pvt->csels[dct].csmasks[csrow >> 1];
368 addr_shift = 8;
e2ce7255 369
11c75ead
BP
370 if (boot_cpu_data.x86 == 0x15)
371 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
372 else
373 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
374 }
e2ce7255 375
11c75ead 376 *base = (csbase & base_bits) << addr_shift;
e2ce7255 377
11c75ead
BP
378 *mask = ~0ULL;
379 /* poke holes for the csmask */
380 *mask &= ~(mask_bits << addr_shift);
381 /* OR them in */
382 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
383}
384
11c75ead
BP
385#define for_each_chip_select(i, dct, pvt) \
386 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
387
614ec9d8
BP
388#define chip_select_base(i, dct, pvt) \
389 pvt->csels[dct].csbases[i]
390
11c75ead
BP
391#define for_each_chip_select_mask(i, dct, pvt) \
392 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
393
e2ce7255
DT
394/*
395 * @input_addr is an InputAddr associated with the node given by mci. Return the
396 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
397 */
398static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
399{
400 struct amd64_pvt *pvt;
401 int csrow;
402 u64 base, mask;
403
404 pvt = mci->pvt_info;
405
11c75ead
BP
406 for_each_chip_select(csrow, 0, pvt) {
407 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
408 continue;
409
11c75ead
BP
410 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
411
412 mask = ~mask;
e2ce7255
DT
413
414 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
415 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
416 (unsigned long)input_addr, csrow,
417 pvt->mc_node_id);
e2ce7255
DT
418
419 return csrow;
420 }
421 }
956b9ba1
JP
422 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
423 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
424
425 return -1;
426}
427
e2ce7255
DT
428/*
429 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
430 * for the node represented by mci. Info is passed back in *hole_base,
431 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
432 * info is invalid. Info may be invalid for either of the following reasons:
433 *
434 * - The revision of the node is not E or greater. In this case, the DRAM Hole
435 * Address Register does not exist.
436 *
437 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
438 * indicating that its contents are not valid.
439 *
440 * The values passed back in *hole_base, *hole_offset, and *hole_size are
441 * complete 32-bit values despite the fact that the bitfields in the DHAR
442 * only represent bits 31-24 of the base and offset values.
443 */
444int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
445 u64 *hole_offset, u64 *hole_size)
446{
447 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
448
449 /* only revE and later have the DRAM Hole Address Register */
1433eb99 450 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
451 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
452 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
453 return 1;
454 }
455
bc21fa57 456 /* valid for Fam10h and above */
c8e518d5 457 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 458 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
459 return 1;
460 }
461
c8e518d5 462 if (!dhar_valid(pvt)) {
956b9ba1
JP
463 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
464 pvt->mc_node_id);
e2ce7255
DT
465 return 1;
466 }
467
468 /* This node has Memory Hoisting */
469
470 /* +------------------+--------------------+--------------------+-----
471 * | memory | DRAM hole | relocated |
472 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
473 * | | | DRAM hole |
474 * | | | [0x100000000, |
475 * | | | (0x100000000+ |
476 * | | | (0xffffffff-x))] |
477 * +------------------+--------------------+--------------------+-----
478 *
479 * Above is a diagram of physical memory showing the DRAM hole and the
480 * relocated addresses from the DRAM hole. As shown, the DRAM hole
481 * starts at address x (the base address) and extends through address
482 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
483 * addresses in the hole so that they start at 0x100000000.
484 */
485
1f31677e
BP
486 *hole_base = dhar_base(pvt);
487 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255
DT
488
489 if (boot_cpu_data.x86 > 0xf)
bc21fa57 490 *hole_offset = f10_dhar_offset(pvt);
e2ce7255 491 else
bc21fa57 492 *hole_offset = k8_dhar_offset(pvt);
e2ce7255 493
956b9ba1
JP
494 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
495 pvt->mc_node_id, (unsigned long)*hole_base,
496 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
497
498 return 0;
499}
500EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
501
93c2df58
DT
502/*
503 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
504 * assumed that sys_addr maps to the node given by mci.
505 *
506 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
507 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
508 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
509 * then it is also involved in translating a SysAddr to a DramAddr. Sections
510 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
511 * These parts of the documentation are unclear. I interpret them as follows:
512 *
513 * When node n receives a SysAddr, it processes the SysAddr as follows:
514 *
515 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
516 * Limit registers for node n. If the SysAddr is not within the range
517 * specified by the base and limit values, then node n ignores the Sysaddr
518 * (since it does not map to node n). Otherwise continue to step 2 below.
519 *
520 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
521 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
522 * the range of relocated addresses (starting at 0x100000000) from the DRAM
523 * hole. If not, skip to step 3 below. Else get the value of the
524 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
525 * offset defined by this value from the SysAddr.
526 *
527 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
528 * Base register for node n. To obtain the DramAddr, subtract the base
529 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
530 */
531static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
532{
7f19bf75 533 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 534 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 535 int ret;
93c2df58 536
7f19bf75 537 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
538
539 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
540 &hole_size);
541 if (!ret) {
1f31677e
BP
542 if ((sys_addr >= (1ULL << 32)) &&
543 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
544 /* use DHAR to translate SysAddr to DramAddr */
545 dram_addr = sys_addr - hole_offset;
546
956b9ba1
JP
547 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
548 (unsigned long)sys_addr,
549 (unsigned long)dram_addr);
93c2df58
DT
550
551 return dram_addr;
552 }
553 }
554
555 /*
556 * Translate the SysAddr to a DramAddr as shown near the start of
557 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
558 * only deals with 40-bit values. Therefore we discard bits 63-40 of
559 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
560 * discard are all 1s. Otherwise the bits we discard are all 0s. See
561 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
562 * Programmer's Manual Volume 1 Application Programming.
563 */
f678b8cc 564 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
93c2df58 565
956b9ba1
JP
566 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
567 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
568 return dram_addr;
569}
570
571/*
572 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
573 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
574 * for node interleaving.
575 */
576static int num_node_interleave_bits(unsigned intlv_en)
577{
578 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
579 int n;
580
581 BUG_ON(intlv_en > 7);
582 n = intlv_shift_table[intlv_en];
583 return n;
584}
585
586/* Translate the DramAddr given by @dram_addr to an InputAddr. */
587static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
588{
589 struct amd64_pvt *pvt;
590 int intlv_shift;
591 u64 input_addr;
592
593 pvt = mci->pvt_info;
594
595 /*
596 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
597 * concerning translating a DramAddr to an InputAddr.
598 */
7f19bf75 599 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
f678b8cc
BP
600 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
601 (dram_addr & 0xfff);
93c2df58 602
956b9ba1
JP
603 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
604 intlv_shift, (unsigned long)dram_addr,
605 (unsigned long)input_addr);
93c2df58
DT
606
607 return input_addr;
608}
609
610/*
611 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
612 * assumed that @sys_addr maps to the node given by mci.
613 */
614static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
615{
616 u64 input_addr;
617
618 input_addr =
619 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
620
956b9ba1
JP
621 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
622 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
623
624 return input_addr;
625}
626
93c2df58
DT
627/* Map the Error address to a PAGE and PAGE OFFSET. */
628static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 629 struct err_info *err)
93c2df58 630{
33ca0643
BP
631 err->page = (u32) (error_address >> PAGE_SHIFT);
632 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
633}
634
635/*
636 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
637 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
638 * of a node that detected an ECC memory error. mci represents the node that
639 * the error address maps to (possibly different from the node that detected
640 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
641 * error.
642 */
643static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
644{
645 int csrow;
646
647 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
648
649 if (csrow == -1)
24f9a7fe
BP
650 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
651 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
652 return csrow;
653}
e2ce7255 654
bfc04aec 655static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 656
2da11654
DT
657/*
658 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
659 * are ECC capable.
660 */
1f6189ed 661static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
2da11654 662{
cb328507 663 u8 bit;
1f6189ed 664 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 665
1433eb99 666 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
667 ? 19
668 : 17;
669
584fcff4 670 if (pvt->dclr0 & BIT(bit))
2da11654
DT
671 edac_cap = EDAC_FLAG_SECDED;
672
673 return edac_cap;
674}
675
8c671751 676static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 677
68798e17
BP
678static void amd64_dump_dramcfg_low(u32 dclr, int chan)
679{
956b9ba1 680 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 681
956b9ba1
JP
682 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
683 (dclr & BIT(16)) ? "un" : "",
684 (dclr & BIT(19)) ? "yes" : "no");
68798e17 685
956b9ba1
JP
686 edac_dbg(1, " PAR/ERR parity: %s\n",
687 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 688
cb328507 689 if (boot_cpu_data.x86 == 0x10)
956b9ba1
JP
690 edac_dbg(1, " DCT 128bit mode width: %s\n",
691 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 692
956b9ba1
JP
693 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
694 (dclr & BIT(12)) ? "yes" : "no",
695 (dclr & BIT(13)) ? "yes" : "no",
696 (dclr & BIT(14)) ? "yes" : "no",
697 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
698}
699
2da11654 700/* Display and decode various NB registers for debug purposes. */
b2b0c605 701static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 702{
956b9ba1 703 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 704
956b9ba1
JP
705 edac_dbg(1, " NB two channel DRAM capable: %s\n",
706 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 707
956b9ba1
JP
708 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
709 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
710 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17
BP
711
712 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 713
956b9ba1 714 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 715
956b9ba1
JP
716 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
717 pvt->dhar, dhar_base(pvt),
718 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
719 : f10_dhar_offset(pvt));
2da11654 720
956b9ba1 721 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 722
8c671751 723 amd64_debug_display_dimm_sizes(pvt, 0);
4d796364 724
8de1d91e 725 /* everything below this point is Fam10h and above */
4d796364 726 if (boot_cpu_data.x86 == 0xf)
2da11654 727 return;
4d796364 728
8c671751 729 amd64_debug_display_dimm_sizes(pvt, 1);
2da11654 730
a3b7db09 731 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 732
8de1d91e 733 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
734 if (!dct_ganging_enabled(pvt))
735 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
736}
737
94be4bff 738/*
11c75ead 739 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 740 */
11c75ead 741static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 742{
1433eb99 743 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
744 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
745 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
9d858bb1 746 } else {
11c75ead
BP
747 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
748 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
749 }
750}
751
752/*
11c75ead 753 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 754 */
b2b0c605 755static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 756{
11c75ead 757 int cs;
94be4bff 758
11c75ead 759 prep_chip_selects(pvt);
94be4bff 760
11c75ead 761 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
762 int reg0 = DCSB0 + (cs * 4);
763 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
764 u32 *base0 = &pvt->csels[0].csbases[cs];
765 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 766
11c75ead 767 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
956b9ba1
JP
768 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
769 cs, *base0, reg0);
94be4bff 770
11c75ead
BP
771 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
772 continue;
b2b0c605 773
11c75ead 774 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
956b9ba1
JP
775 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
776 cs, *base1, reg1);
94be4bff
DT
777 }
778
11c75ead 779 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
780 int reg0 = DCSM0 + (cs * 4);
781 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
782 u32 *mask0 = &pvt->csels[0].csmasks[cs];
783 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 784
11c75ead 785 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
956b9ba1
JP
786 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
787 cs, *mask0, reg0);
94be4bff 788
11c75ead
BP
789 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
790 continue;
b2b0c605 791
11c75ead 792 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
956b9ba1
JP
793 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
794 cs, *mask1, reg1);
94be4bff
DT
795 }
796}
797
24f9a7fe 798static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
94be4bff
DT
799{
800 enum mem_type type;
801
cb328507
BP
802 /* F15h supports only DDR3 */
803 if (boot_cpu_data.x86 >= 0x15)
804 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
805 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
806 if (pvt->dchr0 & DDR3_MODE)
807 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
808 else
809 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 810 } else {
94be4bff
DT
811 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
812 }
813
24f9a7fe 814 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
94be4bff
DT
815
816 return type;
817}
818
cb328507 819/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
820static int k8_early_channel_count(struct amd64_pvt *pvt)
821{
cb328507 822 int flag;
ddff876d 823
9f56da0e 824 if (pvt->ext_model >= K8_REV_F)
ddff876d 825 /* RevF (NPT) and later */
41d8bfab 826 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 827 else
ddff876d
DT
828 /* RevE and earlier */
829 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
830
831 /* not used */
832 pvt->dclr1 = 0;
833
834 return (flag) ? 2 : 1;
835}
836
70046624
BP
837/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
838static u64 get_error_address(struct mce *m)
ddff876d 839{
c1ae6830
BP
840 struct cpuinfo_x86 *c = &boot_cpu_data;
841 u64 addr;
70046624
BP
842 u8 start_bit = 1;
843 u8 end_bit = 47;
844
c1ae6830 845 if (c->x86 == 0xf) {
70046624
BP
846 start_bit = 3;
847 end_bit = 39;
848 }
849
c1ae6830
BP
850 addr = m->addr & GENMASK(start_bit, end_bit);
851
852 /*
853 * Erratum 637 workaround
854 */
855 if (c->x86 == 0x15) {
856 struct amd64_pvt *pvt;
857 u64 cc6_base, tmp_addr;
858 u32 tmp;
8b84c8df
DB
859 u16 mce_nid;
860 u8 intlv_en;
c1ae6830
BP
861
862 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
863 return addr;
864
865 mce_nid = amd_get_nb_id(m->extcpu);
866 pvt = mcis[mce_nid]->pvt_info;
867
868 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
869 intlv_en = tmp >> 21 & 0x7;
870
871 /* add [47:27] + 3 trailing bits */
872 cc6_base = (tmp & GENMASK(0, 20)) << 3;
873
874 /* reverse and add DramIntlvEn */
875 cc6_base |= intlv_en ^ 0x7;
876
877 /* pin at [47:24] */
878 cc6_base <<= 24;
879
880 if (!intlv_en)
881 return cc6_base | (addr & GENMASK(0, 23));
882
883 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
884
885 /* faster log2 */
886 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
887
888 /* OR DramIntlvSel into bits [14:12] */
889 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
890
891 /* add remaining [11:0] bits from original MC4_ADDR */
892 tmp_addr |= addr & GENMASK(0, 11);
893
894 return cc6_base | tmp_addr;
895 }
896
897 return addr;
ddff876d
DT
898}
899
e2c0bffe
DB
900static struct pci_dev *pci_get_related_function(unsigned int vendor,
901 unsigned int device,
902 struct pci_dev *related)
903{
904 struct pci_dev *dev = NULL;
905
906 while ((dev = pci_get_device(vendor, device, dev))) {
907 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
908 (dev->bus->number == related->bus->number) &&
909 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
910 break;
911 }
912
913 return dev;
914}
915
7f19bf75 916static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 917{
e2c0bffe
DB
918 struct amd_northbridge *nb;
919 struct pci_dev *misc, *f1 = NULL;
f08e457c 920 struct cpuinfo_x86 *c = &boot_cpu_data;
71d2a32e 921 int off = range << 3;
e2c0bffe 922 u32 llim;
ddff876d 923
7f19bf75
BP
924 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
925 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 926
f08e457c 927 if (c->x86 == 0xf)
7f19bf75 928 return;
ddff876d 929
7f19bf75
BP
930 if (!dram_rw(pvt, range))
931 return;
ddff876d 932
7f19bf75
BP
933 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
934 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 935
e2c0bffe
DB
936 /* F15h: factor in CC6 save area by reading dst node's limit reg */
937 if (c->x86 != 0x15)
938 return;
f08e457c 939
e2c0bffe
DB
940 nb = node_to_amd_nb(dram_dst_node(pvt, range));
941 if (WARN_ON(!nb))
942 return;
f08e457c 943
e2c0bffe
DB
944 misc = nb->misc;
945 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
946 if (WARN_ON(!f1))
947 return;
f08e457c 948
e2c0bffe 949 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 950
e2c0bffe 951 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
f08e457c 952
e2c0bffe
DB
953 /* {[39:27],111b} */
954 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 955
e2c0bffe 956 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
f08e457c 957
e2c0bffe
DB
958 /* [47:40] */
959 pvt->ranges[range].lim.hi |= llim >> 13;
960
961 pci_dev_put(f1);
ddff876d
DT
962}
963
f192c7b1 964static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 965 struct err_info *err)
ddff876d 966{
f192c7b1 967 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 968
33ca0643 969 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
970
971 /*
972 * Find out which node the error address belongs to. This may be
973 * different from the node that detected the error.
974 */
33ca0643
BP
975 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
976 if (!err->src_mci) {
ab5a503c
MCC
977 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
978 (unsigned long)sys_addr);
33ca0643 979 err->err_code = ERR_NODE;
ab5a503c
MCC
980 return;
981 }
982
983 /* Now map the sys_addr to a CSROW */
33ca0643
BP
984 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
985 if (err->csrow < 0) {
986 err->err_code = ERR_CSROW;
ab5a503c
MCC
987 return;
988 }
989
ddff876d 990 /* CHIPKILL enabled */
f192c7b1 991 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
992 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
993 if (err->channel < 0) {
ddff876d
DT
994 /*
995 * Syndrome didn't map, so we don't know which of the
996 * 2 DIMMs is in error. So we need to ID 'both' of them
997 * as suspect.
998 */
33ca0643 999 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1000 "possible error reporting race\n",
33ca0643
BP
1001 err->syndrome);
1002 err->err_code = ERR_CHANNEL;
ddff876d
DT
1003 return;
1004 }
1005 } else {
1006 /*
1007 * non-chipkill ecc mode
1008 *
1009 * The k8 documentation is unclear about how to determine the
1010 * channel number when using non-chipkill memory. This method
1011 * was obtained from email communication with someone at AMD.
1012 * (Wish the email was placed in this comment - norsk)
1013 */
33ca0643 1014 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1015 }
ddff876d
DT
1016}
1017
41d8bfab 1018static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1019{
41d8bfab 1020 unsigned shift = 0;
ddff876d 1021
41d8bfab
BP
1022 if (i <= 2)
1023 shift = i;
1024 else if (!(i & 0x1))
1025 shift = i >> 1;
1433eb99 1026 else
41d8bfab 1027 shift = (i + 1) >> 1;
ddff876d 1028
41d8bfab
BP
1029 return 128 << (shift + !!dct_width);
1030}
1031
1032static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1033 unsigned cs_mode)
1034{
1035 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1036
1037 if (pvt->ext_model >= K8_REV_F) {
1038 WARN_ON(cs_mode > 11);
1039 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1040 }
1041 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1042 unsigned diff;
41d8bfab
BP
1043 WARN_ON(cs_mode > 10);
1044
11b0a314
BP
1045 /*
1046 * the below calculation, besides trying to win an obfuscated C
1047 * contest, maps cs_mode values to DIMM chip select sizes. The
1048 * mappings are:
1049 *
1050 * cs_mode CS size (mb)
1051 * ======= ============
1052 * 0 32
1053 * 1 64
1054 * 2 128
1055 * 3 128
1056 * 4 256
1057 * 5 512
1058 * 6 256
1059 * 7 512
1060 * 8 1024
1061 * 9 1024
1062 * 10 2048
1063 *
1064 * Basically, it calculates a value with which to shift the
1065 * smallest CS size of 32MB.
1066 *
1067 * ddr[23]_cs_size have a similar purpose.
1068 */
1069 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1070
1071 return 32 << (cs_mode - diff);
41d8bfab
BP
1072 }
1073 else {
1074 WARN_ON(cs_mode > 6);
1075 return 32 << cs_mode;
1076 }
ddff876d
DT
1077}
1078
1afd3c98
DT
1079/*
1080 * Get the number of DCT channels in use.
1081 *
1082 * Return:
1083 * number of Memory Channels in operation
1084 * Pass back:
1085 * contents of the DCL0_LOW register
1086 */
7d20d14d 1087static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1088{
6ba5dcdc 1089 int i, j, channels = 0;
1afd3c98 1090
7d20d14d 1091 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
41d8bfab 1092 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1093 return 2;
1afd3c98
DT
1094
1095 /*
d16149e8
BP
1096 * Need to check if in unganged mode: In such, there are 2 channels,
1097 * but they are not in 128 bit mode and thus the above 'dclr0' status
1098 * bit will be OFF.
1afd3c98
DT
1099 *
1100 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1101 * their CSEnable bit on. If so, then SINGLE DIMM case.
1102 */
956b9ba1 1103 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1104
1afd3c98
DT
1105 /*
1106 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1107 * is more than just one DIMM present in unganged mode. Need to check
1108 * both controllers since DIMMs can be placed in either one.
1109 */
525a1b20
BP
1110 for (i = 0; i < 2; i++) {
1111 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1112
57a30854
WW
1113 for (j = 0; j < 4; j++) {
1114 if (DBAM_DIMM(j, dbam) > 0) {
1115 channels++;
1116 break;
1117 }
1118 }
1afd3c98
DT
1119 }
1120
d16149e8
BP
1121 if (channels > 2)
1122 channels = 2;
1123
24f9a7fe 1124 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1125
1126 return channels;
1afd3c98
DT
1127}
1128
41d8bfab 1129static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1130{
41d8bfab
BP
1131 unsigned shift = 0;
1132 int cs_size = 0;
1133
1134 if (i == 0 || i == 3 || i == 4)
1135 cs_size = -1;
1136 else if (i <= 2)
1137 shift = i;
1138 else if (i == 12)
1139 shift = 7;
1140 else if (!(i & 0x1))
1141 shift = i >> 1;
1142 else
1143 shift = (i + 1) >> 1;
1144
1145 if (cs_size != -1)
1146 cs_size = (128 * (1 << !!dct_width)) << shift;
1147
1148 return cs_size;
1149}
1150
1151static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1152 unsigned cs_mode)
1153{
1154 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1155
1156 WARN_ON(cs_mode > 11);
1433eb99
BP
1157
1158 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1159 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1160 else
41d8bfab
BP
1161 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1162}
1163
1164/*
1165 * F15h supports only 64bit DCT interfaces
1166 */
1167static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1168 unsigned cs_mode)
1169{
1170 WARN_ON(cs_mode > 12);
1433eb99 1171
41d8bfab 1172 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1173}
1174
94c1acf2
AG
1175/*
1176 * F16h has only limited cs_modes
1177 */
1178static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1179 unsigned cs_mode)
1180{
1181 WARN_ON(cs_mode > 12);
1182
1183 if (cs_mode == 6 || cs_mode == 8 ||
1184 cs_mode == 9 || cs_mode == 12)
1185 return -1;
1186 else
1187 return ddr3_cs_size(cs_mode, false);
1188}
1189
5a5d2371 1190static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1191{
6163b5d4 1192
5a5d2371
BP
1193 if (boot_cpu_data.x86 == 0xf)
1194 return;
1195
78da121e 1196 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1197 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1198 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1199
956b9ba1
JP
1200 edac_dbg(0, " DCTs operate in %s mode\n",
1201 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1202
1203 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1204 edac_dbg(0, " Address range split per DCT: %s\n",
1205 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1206
956b9ba1
JP
1207 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1208 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1209 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1210
956b9ba1
JP
1211 edac_dbg(0, " channel interleave: %s, "
1212 "interleave bits selector: 0x%x\n",
1213 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1214 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1215 }
1216
78da121e 1217 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1218}
1219
f71d0a05 1220/*
229a7a11 1221 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1222 * Interleaving Modes.
1223 */
b15f0fca 1224static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1225 bool hi_range_sel, u8 intlv_en)
6163b5d4 1226{
151fa71c 1227 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1228
1229 if (dct_ganging_enabled(pvt))
229a7a11 1230 return 0;
6163b5d4 1231
229a7a11
BP
1232 if (hi_range_sel)
1233 return dct_sel_high;
6163b5d4 1234
229a7a11
BP
1235 /*
1236 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1237 */
1238 if (dct_interleave_enabled(pvt)) {
1239 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1240
1241 /* return DCT select function: 0=DCT0, 1=DCT1 */
1242 if (!intlv_addr)
1243 return sys_addr >> 6 & 1;
1244
1245 if (intlv_addr & 0x2) {
1246 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1247 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1248
1249 return ((sys_addr >> shift) & 1) ^ temp;
1250 }
1251
1252 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1253 }
1254
1255 if (dct_high_range_enabled(pvt))
1256 return ~dct_sel_high & 1;
6163b5d4
DT
1257
1258 return 0;
1259}
1260
c8e518d5 1261/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1262static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1263 u64 sys_addr, bool hi_rng,
1264 u32 dct_sel_base_addr)
6163b5d4
DT
1265{
1266 u64 chan_off;
c8e518d5
BP
1267 u64 dram_base = get_dram_base(pvt, range);
1268 u64 hole_off = f10_dhar_offset(pvt);
c8e518d5 1269 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1270
c8e518d5
BP
1271 if (hi_rng) {
1272 /*
1273 * if
1274 * base address of high range is below 4Gb
1275 * (bits [47:27] at [31:11])
1276 * DRAM address space on this DCT is hoisted above 4Gb &&
1277 * sys_addr > 4Gb
1278 *
1279 * remove hole offset from sys_addr
1280 * else
1281 * remove high range offset from sys_addr
1282 */
1283 if ((!(dct_sel_base_addr >> 16) ||
1284 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1285 dhar_valid(pvt) &&
c8e518d5 1286 (sys_addr >= BIT_64(32)))
bc21fa57 1287 chan_off = hole_off;
6163b5d4
DT
1288 else
1289 chan_off = dct_sel_base_off;
1290 } else {
c8e518d5
BP
1291 /*
1292 * if
1293 * we have a valid hole &&
1294 * sys_addr > 4Gb
1295 *
1296 * remove hole
1297 * else
1298 * remove dram base to normalize to DCT address
1299 */
972ea17a 1300 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1301 chan_off = hole_off;
6163b5d4 1302 else
c8e518d5 1303 chan_off = dram_base;
6163b5d4
DT
1304 }
1305
c8e518d5 1306 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
6163b5d4
DT
1307}
1308
6163b5d4
DT
1309/*
1310 * checks if the csrow passed in is marked as SPARED, if so returns the new
1311 * spare row
1312 */
11c75ead 1313static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1314{
614ec9d8
BP
1315 int tmp_cs;
1316
1317 if (online_spare_swap_done(pvt, dct) &&
1318 csrow == online_spare_bad_dramcs(pvt, dct)) {
1319
1320 for_each_chip_select(tmp_cs, dct, pvt) {
1321 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1322 csrow = tmp_cs;
1323 break;
1324 }
1325 }
6163b5d4
DT
1326 }
1327 return csrow;
1328}
1329
1330/*
1331 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1332 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1333 *
1334 * Return:
1335 * -EINVAL: NOT FOUND
1336 * 0..csrow = Chip-Select Row
1337 */
c7e5301a 1338static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1339{
1340 struct mem_ctl_info *mci;
1341 struct amd64_pvt *pvt;
11c75ead 1342 u64 cs_base, cs_mask;
6163b5d4
DT
1343 int cs_found = -EINVAL;
1344 int csrow;
1345
cc4d8860 1346 mci = mcis[nid];
6163b5d4
DT
1347 if (!mci)
1348 return cs_found;
1349
1350 pvt = mci->pvt_info;
1351
956b9ba1 1352 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1353
11c75ead
BP
1354 for_each_chip_select(csrow, dct, pvt) {
1355 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1356 continue;
1357
11c75ead 1358 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1359
956b9ba1
JP
1360 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1361 csrow, cs_base, cs_mask);
6163b5d4 1362
11c75ead 1363 cs_mask = ~cs_mask;
6163b5d4 1364
956b9ba1
JP
1365 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1366 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1367
11c75ead
BP
1368 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1369 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1370
956b9ba1 1371 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1372 break;
1373 }
1374 }
1375 return cs_found;
1376}
1377
95b0ef55
BP
1378/*
1379 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1380 * swapped with a region located at the bottom of memory so that the GPU can use
1381 * the interleaved region and thus two channels.
1382 */
b15f0fca 1383static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1384{
1385 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1386
1387 if (boot_cpu_data.x86 == 0x10) {
1388 /* only revC3 and revE have that feature */
1389 if (boot_cpu_data.x86_model < 4 ||
1390 (boot_cpu_data.x86_model < 0xa &&
1391 boot_cpu_data.x86_mask < 3))
1392 return sys_addr;
1393 }
1394
1395 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1396
1397 if (!(swap_reg & 0x1))
1398 return sys_addr;
1399
1400 swap_base = (swap_reg >> 3) & 0x7f;
1401 swap_limit = (swap_reg >> 11) & 0x7f;
1402 rgn_size = (swap_reg >> 20) & 0x7f;
1403 tmp_addr = sys_addr >> 27;
1404
1405 if (!(sys_addr >> 34) &&
1406 (((tmp_addr >= swap_base) &&
1407 (tmp_addr <= swap_limit)) ||
1408 (tmp_addr < rgn_size)))
1409 return sys_addr ^ (u64)swap_base << 27;
1410
1411 return sys_addr;
1412}
1413
f71d0a05 1414/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1415static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1416 u64 sys_addr, int *chan_sel)
f71d0a05 1417{
229a7a11 1418 int cs_found = -EINVAL;
c8e518d5 1419 u64 chan_addr;
5d4b58e8 1420 u32 dct_sel_base;
11c75ead 1421 u8 channel;
229a7a11 1422 bool high_range = false;
f71d0a05 1423
7f19bf75 1424 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1425 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1426 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1427
956b9ba1
JP
1428 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1429 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1430
355fba60
BP
1431 if (dhar_valid(pvt) &&
1432 dhar_base(pvt) <= sys_addr &&
1433 sys_addr < BIT_64(32)) {
1434 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1435 sys_addr);
1436 return -EINVAL;
1437 }
1438
f030ddfb 1439 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1440 return -EINVAL;
1441
b15f0fca 1442 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1443
f71d0a05
DT
1444 dct_sel_base = dct_sel_baseaddr(pvt);
1445
1446 /*
1447 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1448 * select between DCT0 and DCT1.
1449 */
1450 if (dct_high_range_enabled(pvt) &&
1451 !dct_ganging_enabled(pvt) &&
1452 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1453 high_range = true;
f71d0a05 1454
b15f0fca 1455 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1456
b15f0fca 1457 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1458 high_range, dct_sel_base);
f71d0a05 1459
e2f79dbd
BP
1460 /* Remove node interleaving, see F1x120 */
1461 if (intlv_en)
1462 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1463 (chan_addr & 0xfff);
f71d0a05 1464
5d4b58e8 1465 /* remove channel interleave */
f71d0a05
DT
1466 if (dct_interleave_enabled(pvt) &&
1467 !dct_high_range_enabled(pvt) &&
1468 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1469
1470 if (dct_sel_interleave_addr(pvt) != 1) {
1471 if (dct_sel_interleave_addr(pvt) == 0x3)
1472 /* hash 9 */
1473 chan_addr = ((chan_addr >> 10) << 9) |
1474 (chan_addr & 0x1ff);
1475 else
1476 /* A[6] or hash 6 */
1477 chan_addr = ((chan_addr >> 7) << 6) |
1478 (chan_addr & 0x3f);
1479 } else
1480 /* A[12] */
1481 chan_addr = ((chan_addr >> 13) << 12) |
1482 (chan_addr & 0xfff);
f71d0a05
DT
1483 }
1484
956b9ba1 1485 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1486
b15f0fca 1487 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1488
33ca0643 1489 if (cs_found >= 0)
f71d0a05 1490 *chan_sel = channel;
33ca0643 1491
f71d0a05
DT
1492 return cs_found;
1493}
1494
b15f0fca 1495static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
33ca0643 1496 int *chan_sel)
f71d0a05 1497{
e761359a
BP
1498 int cs_found = -EINVAL;
1499 unsigned range;
f71d0a05 1500
7f19bf75 1501 for (range = 0; range < DRAM_RANGES; range++) {
f71d0a05 1502
7f19bf75 1503 if (!dram_rw(pvt, range))
f71d0a05
DT
1504 continue;
1505
7f19bf75
BP
1506 if ((get_dram_base(pvt, range) <= sys_addr) &&
1507 (get_dram_limit(pvt, range) >= sys_addr)) {
f71d0a05 1508
b15f0fca 1509 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1510 sys_addr, chan_sel);
f71d0a05
DT
1511 if (cs_found >= 0)
1512 break;
1513 }
1514 }
1515 return cs_found;
1516}
1517
1518/*
bdc30a0c
BP
1519 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1520 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1521 *
bdc30a0c
BP
1522 * The @sys_addr is usually an error address received from the hardware
1523 * (MCX_ADDR).
f71d0a05 1524 */
b15f0fca 1525static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1526 struct err_info *err)
f71d0a05
DT
1527{
1528 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1529
33ca0643 1530 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1531
33ca0643
BP
1532 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1533 if (err->csrow < 0) {
1534 err->err_code = ERR_CSROW;
bdc30a0c
BP
1535 return;
1536 }
1537
bdc30a0c
BP
1538 /*
1539 * We need the syndromes for channel detection only when we're
1540 * ganged. Otherwise @chan should already contain the channel at
1541 * this point.
1542 */
a97fa68e 1543 if (dct_ganging_enabled(pvt))
33ca0643 1544 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1545}
1546
f71d0a05 1547/*
8566c4df 1548 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1549 * CSROWs
f71d0a05 1550 */
8c671751 1551static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1552{
bb89f5a0 1553 int dimm, size0, size1;
525a1b20
BP
1554 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1555 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1556
8566c4df
BP
1557 if (boot_cpu_data.x86 == 0xf) {
1558 /* K8 families < revF not supported yet */
1433eb99 1559 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1560 return;
1561 else
1562 WARN_ON(ctrl != 0);
1563 }
1564
4d796364 1565 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
11c75ead
BP
1566 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1567 : pvt->csels[0].csbases;
f71d0a05 1568
956b9ba1
JP
1569 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1570 ctrl, dbam);
f71d0a05 1571
8566c4df
BP
1572 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1573
f71d0a05
DT
1574 /* Dump memory sizes for DIMM and its CSROWs */
1575 for (dimm = 0; dimm < 4; dimm++) {
1576
1577 size0 = 0;
11c75ead 1578 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
41d8bfab
BP
1579 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1580 DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1581
1582 size1 = 0;
11c75ead 1583 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab
BP
1584 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1585 DBAM_DIMM(dimm, dbam));
f71d0a05 1586
24f9a7fe 1587 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1588 dimm * 2, size0,
1589 dimm * 2 + 1, size1);
f71d0a05
DT
1590 }
1591}
1592
4d37607a
DT
1593static struct amd64_family_type amd64_family_types[] = {
1594 [K8_CPUS] = {
0092b20d 1595 .ctl_name = "K8",
8d5b5d9c
BP
1596 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1597 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
4d37607a 1598 .ops = {
1433eb99 1599 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1600 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1601 .dbam_to_cs = k8_dbam_to_chip_select,
b2b0c605 1602 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
4d37607a
DT
1603 }
1604 },
1605 [F10_CPUS] = {
0092b20d 1606 .ctl_name = "F10h",
8d5b5d9c
BP
1607 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1608 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
4d37607a 1609 .ops = {
7d20d14d 1610 .early_channel_count = f1x_early_channel_count,
b15f0fca 1611 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1612 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1613 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1614 }
1615 },
1616 [F15_CPUS] = {
1617 .ctl_name = "F15h",
df71a053
BP
1618 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1619 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
b2b0c605 1620 .ops = {
7d20d14d 1621 .early_channel_count = f1x_early_channel_count,
b15f0fca 1622 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1623 .dbam_to_cs = f15_dbam_to_chip_select,
b2b0c605 1624 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
4d37607a
DT
1625 }
1626 },
94c1acf2
AG
1627 [F16_CPUS] = {
1628 .ctl_name = "F16h",
1629 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1630 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1631 .ops = {
1632 .early_channel_count = f1x_early_channel_count,
1633 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1634 .dbam_to_cs = f16_dbam_to_chip_select,
1635 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1636 }
1637 },
4d37607a
DT
1638};
1639
b1289d6f 1640/*
bfc04aec
BP
1641 * These are tables of eigenvectors (one per line) which can be used for the
1642 * construction of the syndrome tables. The modified syndrome search algorithm
1643 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1644 *
bfc04aec 1645 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1646 */
c7e5301a 1647static const u16 x4_vectors[] = {
bfc04aec
BP
1648 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1649 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1650 0x0001, 0x0002, 0x0004, 0x0008,
1651 0x1013, 0x3032, 0x4044, 0x8088,
1652 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1653 0x4857, 0xc4fe, 0x13cc, 0x3288,
1654 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1655 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1656 0x15c1, 0x2a42, 0x89ac, 0x4758,
1657 0x2b03, 0x1602, 0x4f0c, 0xca08,
1658 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1659 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1660 0x2b87, 0x164e, 0x642c, 0xdc18,
1661 0x40b9, 0x80de, 0x1094, 0x20e8,
1662 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1663 0x11c1, 0x2242, 0x84ac, 0x4c58,
1664 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1665 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1666 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1667 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1668 0x16b3, 0x3d62, 0x4f34, 0x8518,
1669 0x1e2f, 0x391a, 0x5cac, 0xf858,
1670 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1671 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1672 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1673 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1674 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1675 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1676 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1677 0x185d, 0x2ca6, 0x7914, 0x9e28,
1678 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1679 0x4199, 0x82ee, 0x19f4, 0x2e58,
1680 0x4807, 0xc40e, 0x130c, 0x3208,
1681 0x1905, 0x2e0a, 0x5804, 0xac08,
1682 0x213f, 0x132a, 0xadfc, 0x5ba8,
1683 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
1684};
1685
c7e5301a 1686static const u16 x8_vectors[] = {
bfc04aec
BP
1687 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1688 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1689 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1690 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1691 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1692 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1693 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1694 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1695 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1696 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1697 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1698 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1699 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1700 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1701 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1702 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1703 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1704 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1705 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1706};
1707
c7e5301a 1708static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 1709 unsigned v_dim)
b1289d6f 1710{
bfc04aec
BP
1711 unsigned int i, err_sym;
1712
1713 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1714 u16 s = syndrome;
d34a6ecd
BP
1715 unsigned v_idx = err_sym * v_dim;
1716 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
1717
1718 /* walk over all 16 bits of the syndrome */
1719 for (i = 1; i < (1U << 16); i <<= 1) {
1720
1721 /* if bit is set in that eigenvector... */
1722 if (v_idx < v_end && vectors[v_idx] & i) {
1723 u16 ev_comp = vectors[v_idx++];
1724
1725 /* ... and bit set in the modified syndrome, */
1726 if (s & i) {
1727 /* remove it. */
1728 s ^= ev_comp;
4d37607a 1729
bfc04aec
BP
1730 if (!s)
1731 return err_sym;
1732 }
b1289d6f 1733
bfc04aec
BP
1734 } else if (s & i)
1735 /* can't get to zero, move to next symbol */
1736 break;
1737 }
b1289d6f
DT
1738 }
1739
956b9ba1 1740 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
1741 return -1;
1742}
d27bf6fa 1743
bfc04aec
BP
1744static int map_err_sym_to_channel(int err_sym, int sym_size)
1745{
1746 if (sym_size == 4)
1747 switch (err_sym) {
1748 case 0x20:
1749 case 0x21:
1750 return 0;
1751 break;
1752 case 0x22:
1753 case 0x23:
1754 return 1;
1755 break;
1756 default:
1757 return err_sym >> 4;
1758 break;
1759 }
1760 /* x8 symbols */
1761 else
1762 switch (err_sym) {
1763 /* imaginary bits not in a DIMM */
1764 case 0x10:
1765 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1766 err_sym);
1767 return -1;
1768 break;
1769
1770 case 0x11:
1771 return 0;
1772 break;
1773 case 0x12:
1774 return 1;
1775 break;
1776 default:
1777 return err_sym >> 3;
1778 break;
1779 }
1780 return -1;
1781}
1782
1783static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1784{
1785 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
1786 int err_sym = -1;
1787
a3b7db09 1788 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
1789 err_sym = decode_syndrome(syndrome, x8_vectors,
1790 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
1791 pvt->ecc_sym_sz);
1792 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
1793 err_sym = decode_syndrome(syndrome, x4_vectors,
1794 ARRAY_SIZE(x4_vectors),
a3b7db09 1795 pvt->ecc_sym_sz);
ad6a32e9 1796 else {
a3b7db09 1797 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 1798 return err_sym;
bfc04aec 1799 }
ad6a32e9 1800
a3b7db09 1801 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
1802}
1803
33ca0643
BP
1804static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1805 u8 ecc_type)
d27bf6fa 1806{
33ca0643
BP
1807 enum hw_event_mc_err_type err_type;
1808 const char *string;
d27bf6fa 1809
33ca0643
BP
1810 if (ecc_type == 2)
1811 err_type = HW_EVENT_ERR_CORRECTED;
1812 else if (ecc_type == 1)
1813 err_type = HW_EVENT_ERR_UNCORRECTED;
1814 else {
1815 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
1816 return;
1817 }
1818
33ca0643
BP
1819 switch (err->err_code) {
1820 case DECODE_OK:
1821 string = "";
1822 break;
1823 case ERR_NODE:
1824 string = "Failed to map error addr to a node";
1825 break;
1826 case ERR_CSROW:
1827 string = "Failed to map error addr to a csrow";
1828 break;
1829 case ERR_CHANNEL:
1830 string = "unknown syndrome - possible error reporting race";
1831 break;
1832 default:
1833 string = "WTF error";
1834 break;
d27bf6fa 1835 }
33ca0643
BP
1836
1837 edac_mc_handle_error(err_type, mci, 1,
1838 err->page, err->offset, err->syndrome,
1839 err->csrow, err->channel, -1,
1840 string, "");
d27bf6fa
DT
1841}
1842
549d042d 1843static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
f192c7b1 1844 struct mce *m)
d27bf6fa 1845{
33ca0643 1846 struct amd64_pvt *pvt = mci->pvt_info;
f192c7b1 1847 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
1848 u8 xec = XEC(m->status, 0x1f);
1849 u16 ec = EC(m->status);
33ca0643
BP
1850 u64 sys_addr;
1851 struct err_info err;
d27bf6fa 1852
66fed2d4 1853 /* Bail out early if this was an 'observed' error */
5980bb9c 1854 if (PP(ec) == NBSL_PP_OBS)
b70ef010 1855 return;
d27bf6fa 1856
ecaf5606
BP
1857 /* Do only ECC errors */
1858 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 1859 return;
d27bf6fa 1860
33ca0643
BP
1861 memset(&err, 0, sizeof(err));
1862
1863 sys_addr = get_error_address(m);
1864
ecaf5606 1865 if (ecc_type == 2)
33ca0643
BP
1866 err.syndrome = extract_syndrome(m->status);
1867
1868 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1869
1870 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
1871}
1872
b0b07a2b 1873void amd64_decode_bus_error(int node_id, struct mce *m)
d27bf6fa 1874{
b0b07a2b 1875 __amd64_decode_bus_error(mcis[node_id], m);
d27bf6fa 1876}
d27bf6fa 1877
0ec449ee 1878/*
8d5b5d9c 1879 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
bbd0c1f6 1880 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
0ec449ee 1881 */
360b7f3c 1882static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
0ec449ee 1883{
0ec449ee 1884 /* Reserve the ADDRESS MAP Device */
8d5b5d9c
BP
1885 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1886 if (!pvt->F1) {
24f9a7fe
BP
1887 amd64_err("error address map device not found: "
1888 "vendor %x device 0x%x (broken BIOS?)\n",
1889 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 1890 return -ENODEV;
0ec449ee
DT
1891 }
1892
1893 /* Reserve the MISC Device */
8d5b5d9c
BP
1894 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1895 if (!pvt->F3) {
1896 pci_dev_put(pvt->F1);
1897 pvt->F1 = NULL;
0ec449ee 1898
24f9a7fe
BP
1899 amd64_err("error F3 device not found: "
1900 "vendor %x device 0x%x (broken BIOS?)\n",
1901 PCI_VENDOR_ID_AMD, f3_id);
0ec449ee 1902
bbd0c1f6 1903 return -ENODEV;
0ec449ee 1904 }
956b9ba1
JP
1905 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1906 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1907 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
1908
1909 return 0;
1910}
1911
360b7f3c 1912static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 1913{
8d5b5d9c
BP
1914 pci_dev_put(pvt->F1);
1915 pci_dev_put(pvt->F3);
0ec449ee
DT
1916}
1917
1918/*
1919 * Retrieve the hardware registers of the memory controller (this includes the
1920 * 'Address Map' and 'Misc' device regs)
1921 */
360b7f3c 1922static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 1923{
a3b7db09 1924 struct cpuinfo_x86 *c = &boot_cpu_data;
0ec449ee 1925 u64 msr_val;
ad6a32e9 1926 u32 tmp;
e761359a 1927 unsigned range;
0ec449ee
DT
1928
1929 /*
1930 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1931 * those are Read-As-Zero
1932 */
e97f8bb8 1933 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 1934 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
1935
1936 /* check first whether TOP_MEM2 is enabled */
1937 rdmsrl(MSR_K8_SYSCFG, msr_val);
1938 if (msr_val & (1U << 21)) {
e97f8bb8 1939 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 1940 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 1941 } else
956b9ba1 1942 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 1943
5980bb9c 1944 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 1945
5a5d2371 1946 read_dram_ctl_register(pvt);
0ec449ee 1947
7f19bf75
BP
1948 for (range = 0; range < DRAM_RANGES; range++) {
1949 u8 rw;
0ec449ee 1950
7f19bf75
BP
1951 /* read settings for this DRAM range */
1952 read_dram_base_limit_regs(pvt, range);
1953
1954 rw = dram_rw(pvt, range);
1955 if (!rw)
1956 continue;
1957
956b9ba1
JP
1958 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1959 range,
1960 get_dram_base(pvt, range),
1961 get_dram_limit(pvt, range));
7f19bf75 1962
956b9ba1
JP
1963 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1964 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1965 (rw & 0x1) ? "R" : "-",
1966 (rw & 0x2) ? "W" : "-",
1967 dram_intlv_sel(pvt, range),
1968 dram_dst_node(pvt, range));
0ec449ee
DT
1969 }
1970
b2b0c605 1971 read_dct_base_mask(pvt);
0ec449ee 1972
bc21fa57 1973 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
525a1b20 1974 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
0ec449ee 1975
8d5b5d9c 1976 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 1977
cb328507
BP
1978 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1979 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
0ec449ee 1980
78da121e 1981 if (!dct_ganging_enabled(pvt)) {
cb328507
BP
1982 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1983 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
0ec449ee 1984 }
ad6a32e9 1985
a3b7db09
BP
1986 pvt->ecc_sym_sz = 4;
1987
1988 if (c->x86 >= 0x10) {
b2b0c605 1989 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
94c1acf2
AG
1990 if (c->x86 != 0x16)
1991 /* F16h has only DCT0 */
1992 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
ad6a32e9 1993
a3b7db09
BP
1994 /* F10h, revD and later can do x8 ECC too */
1995 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
1996 pvt->ecc_sym_sz = 8;
1997 }
b2b0c605 1998 dump_misc_regs(pvt);
0ec449ee
DT
1999}
2000
2001/*
2002 * NOTE: CPU Revision Dependent code
2003 *
2004 * Input:
11c75ead 2005 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2006 * k8 private pointer to -->
2007 * DRAM Bank Address mapping register
2008 * node_id
2009 * DCL register where dual_channel_active is
2010 *
2011 * The DBAM register consists of 4 sets of 4 bits each definitions:
2012 *
2013 * Bits: CSROWs
2014 * 0-3 CSROWs 0 and 1
2015 * 4-7 CSROWs 2 and 3
2016 * 8-11 CSROWs 4 and 5
2017 * 12-15 CSROWs 6 and 7
2018 *
2019 * Values range from: 0 to 15
2020 * The meaning of the values depends on CPU revision and dual-channel state,
2021 * see relevant BKDG more info.
2022 *
2023 * The memory controller provides for total of only 8 CSROWs in its current
2024 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2025 * single channel or two (2) DIMMs in dual channel mode.
2026 *
2027 * The following code logic collapses the various tables for CSROW based on CPU
2028 * revision.
2029 *
2030 * Returns:
2031 * The number of PAGE_SIZE pages on the specified CSROW number it
2032 * encompasses
2033 *
2034 */
41d8bfab 2035static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2036{
1433eb99 2037 u32 cs_mode, nr_pages;
f92cae45 2038 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2039
10de6497 2040
0ec449ee
DT
2041 /*
2042 * The math on this doesn't look right on the surface because x/2*4 can
2043 * be simplified to x*2 but this expression makes use of the fact that
2044 * it is integral math where 1/2=0. This intermediate value becomes the
2045 * number of bits to shift the DBAM register to extract the proper CSROW
2046 * field.
2047 */
0a5dfc31 2048 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2049
41d8bfab 2050 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee 2051
10de6497
BP
2052 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2053 csrow_nr, dct, cs_mode);
2054 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2055
2056 return nr_pages;
2057}
2058
2059/*
2060 * Initialize the array of csrow attribute instances, based on the values
2061 * from pci config hardware registers.
2062 */
360b7f3c 2063static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2064{
10de6497 2065 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2066 struct csrow_info *csrow;
de3910eb 2067 struct dimm_info *dimm;
084a4fcc 2068 enum edac_type edac_mode;
10de6497
BP
2069 enum mem_type mtype;
2070 int i, j, empty = 1;
a895bf8b 2071 int nr_pages = 0;
10de6497 2072 u32 val;
0ec449ee 2073
a97fa68e 2074 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2075
2299ef71 2076 pvt->nbcfg = val;
0ec449ee 2077
956b9ba1
JP
2078 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2079 pvt->mc_node_id, val,
2080 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2081
10de6497
BP
2082 /*
2083 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2084 */
11c75ead 2085 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2086 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2087 bool row_dct1 = false;
0ec449ee 2088
10de6497
BP
2089 if (boot_cpu_data.x86 != 0xf)
2090 row_dct1 = !!csrow_enabled(i, 1, pvt);
2091
2092 if (!row_dct0 && !row_dct1)
0ec449ee 2093 continue;
0ec449ee 2094
10de6497 2095 csrow = mci->csrows[i];
0ec449ee 2096 empty = 0;
10de6497
BP
2097
2098 edac_dbg(1, "MC node: %d, csrow: %d\n",
2099 pvt->mc_node_id, i);
2100
1eef1282 2101 if (row_dct0) {
a895bf8b 2102 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2103 csrow->channels[0]->dimm->nr_pages = nr_pages;
2104 }
11c75ead 2105
10de6497 2106 /* K8 has only one DCT */
1eef1282
MCC
2107 if (boot_cpu_data.x86 != 0xf && row_dct1) {
2108 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
2109
2110 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2111 nr_pages += row_dct1_pages;
2112 }
0ec449ee 2113
084a4fcc 2114 mtype = amd64_determine_memory_type(pvt, i);
0ec449ee 2115
10de6497 2116 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2117
2118 /*
2119 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2120 */
a97fa68e 2121 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2122 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2123 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2124 else
084a4fcc
MCC
2125 edac_mode = EDAC_NONE;
2126
2127 for (j = 0; j < pvt->channel_count; j++) {
de3910eb
MCC
2128 dimm = csrow->channels[j]->dimm;
2129 dimm->mtype = mtype;
2130 dimm->edac_mode = edac_mode;
084a4fcc 2131 }
0ec449ee
DT
2132 }
2133
2134 return empty;
2135}
d27bf6fa 2136
f6d6ae96 2137/* get all cores on this DCT */
8b84c8df 2138static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2139{
2140 int cpu;
2141
2142 for_each_online_cpu(cpu)
2143 if (amd_get_nb_id(cpu) == nid)
2144 cpumask_set_cpu(cpu, mask);
2145}
2146
2147/* check MCG_CTL on all the cpus on this node */
c7e5301a 2148static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2149{
2150 cpumask_var_t mask;
50542251 2151 int cpu, nbe;
f6d6ae96
BP
2152 bool ret = false;
2153
2154 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2155 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2156 return false;
2157 }
2158
2159 get_cpus_on_this_dct_cpumask(mask, nid);
2160
f6d6ae96
BP
2161 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2162
2163 for_each_cpu(cpu, mask) {
50542251 2164 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2165 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2166
956b9ba1
JP
2167 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2168 cpu, reg->q,
2169 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2170
2171 if (!nbe)
2172 goto out;
f6d6ae96
BP
2173 }
2174 ret = true;
2175
2176out:
f6d6ae96
BP
2177 free_cpumask_var(mask);
2178 return ret;
2179}
2180
c7e5301a 2181static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2182{
2183 cpumask_var_t cmask;
50542251 2184 int cpu;
f6d6ae96
BP
2185
2186 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2187 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2188 return false;
2189 }
2190
ae7bb7c6 2191 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2192
f6d6ae96
BP
2193 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2194
2195 for_each_cpu(cpu, cmask) {
2196
50542251
BP
2197 struct msr *reg = per_cpu_ptr(msrs, cpu);
2198
f6d6ae96 2199 if (on) {
5980bb9c 2200 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2201 s->flags.nb_mce_enable = 1;
f6d6ae96 2202
5980bb9c 2203 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2204 } else {
2205 /*
d95cf4de 2206 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2207 */
ae7bb7c6 2208 if (!s->flags.nb_mce_enable)
5980bb9c 2209 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2210 }
f6d6ae96
BP
2211 }
2212 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2213
f6d6ae96
BP
2214 free_cpumask_var(cmask);
2215
2216 return 0;
2217}
2218
c7e5301a 2219static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2220 struct pci_dev *F3)
f9431992 2221{
2299ef71 2222 bool ret = true;
c9f4f26e 2223 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2224
2299ef71
BP
2225 if (toggle_ecc_err_reporting(s, nid, ON)) {
2226 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2227 return false;
2228 }
2229
c9f4f26e 2230 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2231
ae7bb7c6
BP
2232 s->old_nbctl = value & mask;
2233 s->nbctl_valid = true;
f9431992
DT
2234
2235 value |= mask;
c9f4f26e 2236 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2237
a97fa68e 2238 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2239
956b9ba1
JP
2240 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2241 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2242
a97fa68e 2243 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2244 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2245
ae7bb7c6 2246 s->flags.nb_ecc_prev = 0;
d95cf4de 2247
f9431992 2248 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2249 value |= NBCFG_ECC_ENABLE;
2250 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2251
a97fa68e 2252 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2253
a97fa68e 2254 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2255 amd64_warn("Hardware rejected DRAM ECC enable,"
2256 "check memory DIMM configuration.\n");
2299ef71 2257 ret = false;
f9431992 2258 } else {
24f9a7fe 2259 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2260 }
d95cf4de 2261 } else {
ae7bb7c6 2262 s->flags.nb_ecc_prev = 1;
f9431992 2263 }
d95cf4de 2264
956b9ba1
JP
2265 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2266 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2267
2299ef71 2268 return ret;
f9431992
DT
2269}
2270
c7e5301a 2271static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2272 struct pci_dev *F3)
f9431992 2273{
c9f4f26e
BP
2274 u32 value, mask = 0x3; /* UECC/CECC enable */
2275
f9431992 2276
ae7bb7c6 2277 if (!s->nbctl_valid)
f9431992
DT
2278 return;
2279
c9f4f26e 2280 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2281 value &= ~mask;
ae7bb7c6 2282 value |= s->old_nbctl;
f9431992 2283
c9f4f26e 2284 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2285
ae7bb7c6
BP
2286 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2287 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2288 amd64_read_pci_cfg(F3, NBCFG, &value);
2289 value &= ~NBCFG_ECC_ENABLE;
2290 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2291 }
2292
2293 /* restore the NB Enable MCGCTL bit */
2299ef71 2294 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2295 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2296}
2297
2298/*
2299ef71
BP
2299 * EDAC requires that the BIOS have ECC enabled before
2300 * taking over the processing of ECC errors. A command line
2301 * option allows to force-enable hardware ECC later in
2302 * enable_ecc_error_reporting().
f9431992 2303 */
cab4d277
BP
2304static const char *ecc_msg =
2305 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2306 " Either enable ECC checking or force module loading by setting "
2307 "'ecc_enable_override'.\n"
2308 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2309
c7e5301a 2310static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2311{
2312 u32 value;
2299ef71 2313 u8 ecc_en = 0;
06724535 2314 bool nb_mce_en = false;
f9431992 2315
a97fa68e 2316 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2317
a97fa68e 2318 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2319 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2320
2299ef71 2321 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
06724535 2322 if (!nb_mce_en)
2299ef71
BP
2323 amd64_notice("NB MCE bank disabled, set MSR "
2324 "0x%08x[4] on node %d to enable.\n",
2325 MSR_IA32_MCG_CTL, nid);
f9431992 2326
2299ef71
BP
2327 if (!ecc_en || !nb_mce_en) {
2328 amd64_notice("%s", ecc_msg);
2329 return false;
2330 }
2331 return true;
f9431992
DT
2332}
2333
c5608759 2334static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
7d6034d3 2335{
c5608759 2336 int rc;
7d6034d3 2337
c5608759
MCC
2338 rc = amd64_create_sysfs_dbg_files(mci);
2339 if (rc < 0)
2340 return rc;
7d6034d3 2341
c5608759
MCC
2342 if (boot_cpu_data.x86 >= 0x10) {
2343 rc = amd64_create_sysfs_inject_files(mci);
2344 if (rc < 0)
2345 return rc;
2346 }
2347
2348 return 0;
2349}
7d6034d3 2350
c5608759
MCC
2351static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2352{
2353 amd64_remove_sysfs_dbg_files(mci);
7d6034d3 2354
c5608759
MCC
2355 if (boot_cpu_data.x86 >= 0x10)
2356 amd64_remove_sysfs_inject_files(mci);
7d6034d3
DT
2357}
2358
df71a053
BP
2359static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2360 struct amd64_family_type *fam)
7d6034d3
DT
2361{
2362 struct amd64_pvt *pvt = mci->pvt_info;
2363
2364 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2365 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2366
5980bb9c 2367 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2368 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2369
5980bb9c 2370 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2371 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2372
2373 mci->edac_cap = amd64_determine_edac_cap(pvt);
2374 mci->mod_name = EDAC_MOD_STR;
2375 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2376 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2377 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2378 mci->ctl_page_to_phys = NULL;
2379
7d6034d3
DT
2380 /* memory scrubber interface */
2381 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2382 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2383}
2384
0092b20d
BP
2385/*
2386 * returns a pointer to the family descriptor on success, NULL otherwise.
2387 */
2388static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
395ae783 2389{
0092b20d
BP
2390 u8 fam = boot_cpu_data.x86;
2391 struct amd64_family_type *fam_type = NULL;
2392
2393 switch (fam) {
395ae783 2394 case 0xf:
0092b20d 2395 fam_type = &amd64_family_types[K8_CPUS];
b8cfa02f 2396 pvt->ops = &amd64_family_types[K8_CPUS].ops;
395ae783 2397 break;
df71a053 2398
395ae783 2399 case 0x10:
0092b20d 2400 fam_type = &amd64_family_types[F10_CPUS];
b8cfa02f 2401 pvt->ops = &amd64_family_types[F10_CPUS].ops;
df71a053
BP
2402 break;
2403
2404 case 0x15:
2405 fam_type = &amd64_family_types[F15_CPUS];
2406 pvt->ops = &amd64_family_types[F15_CPUS].ops;
395ae783
BP
2407 break;
2408
94c1acf2
AG
2409 case 0x16:
2410 fam_type = &amd64_family_types[F16_CPUS];
2411 pvt->ops = &amd64_family_types[F16_CPUS].ops;
2412 break;
2413
395ae783 2414 default:
24f9a7fe 2415 amd64_err("Unsupported family!\n");
0092b20d 2416 return NULL;
395ae783 2417 }
0092b20d 2418
b8cfa02f
BP
2419 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2420
df71a053 2421 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
0092b20d 2422 (fam == 0xf ?
24f9a7fe
BP
2423 (pvt->ext_model >= K8_REV_F ? "revF or later "
2424 : "revE or earlier ")
2425 : ""), pvt->mc_node_id);
0092b20d 2426 return fam_type;
395ae783
BP
2427}
2428
2299ef71 2429static int amd64_init_one_instance(struct pci_dev *F2)
7d6034d3
DT
2430{
2431 struct amd64_pvt *pvt = NULL;
0092b20d 2432 struct amd64_family_type *fam_type = NULL;
360b7f3c 2433 struct mem_ctl_info *mci = NULL;
ab5a503c 2434 struct edac_mc_layer layers[2];
7d6034d3 2435 int err = 0, ret;
772c3ff3 2436 u16 nid = amd_get_node_id(F2);
7d6034d3
DT
2437
2438 ret = -ENOMEM;
2439 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2440 if (!pvt)
360b7f3c 2441 goto err_ret;
7d6034d3 2442
360b7f3c 2443 pvt->mc_node_id = nid;
8d5b5d9c 2444 pvt->F2 = F2;
7d6034d3 2445
395ae783 2446 ret = -EINVAL;
0092b20d
BP
2447 fam_type = amd64_per_family_init(pvt);
2448 if (!fam_type)
395ae783
BP
2449 goto err_free;
2450
7d6034d3 2451 ret = -ENODEV;
360b7f3c 2452 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
7d6034d3
DT
2453 if (err)
2454 goto err_free;
2455
360b7f3c 2456 read_mc_regs(pvt);
7d6034d3 2457
7d6034d3
DT
2458 /*
2459 * We need to determine how many memory channels there are. Then use
2460 * that information for calculating the size of the dynamic instance
360b7f3c 2461 * tables in the 'mci' structure.
7d6034d3 2462 */
360b7f3c 2463 ret = -EINVAL;
7d6034d3
DT
2464 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2465 if (pvt->channel_count < 0)
360b7f3c 2466 goto err_siblings;
7d6034d3
DT
2467
2468 ret = -ENOMEM;
ab5a503c
MCC
2469 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2470 layers[0].size = pvt->csels[0].b_cnt;
2471 layers[0].is_virt_csrow = true;
2472 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2473 layers[1].size = pvt->channel_count;
2474 layers[1].is_virt_csrow = false;
ca0907b9 2475 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2476 if (!mci)
360b7f3c 2477 goto err_siblings;
7d6034d3
DT
2478
2479 mci->pvt_info = pvt;
fd687502 2480 mci->pdev = &pvt->F2->dev;
7d6034d3 2481
df71a053 2482 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2483
2484 if (init_csrows(mci))
7d6034d3
DT
2485 mci->edac_cap = EDAC_FLAG_NONE;
2486
7d6034d3
DT
2487 ret = -ENODEV;
2488 if (edac_mc_add_mc(mci)) {
956b9ba1 2489 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2490 goto err_add_mc;
2491 }
c5608759 2492 if (set_mc_sysfs_attrs(mci)) {
956b9ba1 2493 edac_dbg(1, "failed edac_mc_add_mc()\n");
c5608759
MCC
2494 goto err_add_sysfs;
2495 }
7d6034d3 2496
549d042d
BP
2497 /* register stuff with EDAC MCE */
2498 if (report_gart_errors)
2499 amd_report_gart_errors(true);
2500
2501 amd_register_ecc_decoder(amd64_decode_bus_error);
2502
360b7f3c
BP
2503 mcis[nid] = mci;
2504
2505 atomic_inc(&drv_instances);
2506
7d6034d3
DT
2507 return 0;
2508
c5608759
MCC
2509err_add_sysfs:
2510 edac_mc_del_mc(mci->pdev);
7d6034d3
DT
2511err_add_mc:
2512 edac_mc_free(mci);
2513
360b7f3c
BP
2514err_siblings:
2515 free_mc_sibling_devs(pvt);
7d6034d3 2516
360b7f3c
BP
2517err_free:
2518 kfree(pvt);
7d6034d3 2519
360b7f3c 2520err_ret:
7d6034d3
DT
2521 return ret;
2522}
2523
9b3c6e85
GKH
2524static int amd64_probe_one_instance(struct pci_dev *pdev,
2525 const struct pci_device_id *mc_type)
7d6034d3 2526{
772c3ff3 2527 u16 nid = amd_get_node_id(pdev);
2299ef71 2528 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2529 struct ecc_settings *s;
2299ef71 2530 int ret = 0;
7d6034d3 2531
7d6034d3 2532 ret = pci_enable_device(pdev);
b8cfa02f 2533 if (ret < 0) {
956b9ba1 2534 edac_dbg(0, "ret=%d\n", ret);
b8cfa02f
BP
2535 return -EIO;
2536 }
7d6034d3 2537
ae7bb7c6
BP
2538 ret = -ENOMEM;
2539 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2540 if (!s)
2299ef71 2541 goto err_out;
ae7bb7c6
BP
2542
2543 ecc_stngs[nid] = s;
2544
2299ef71
BP
2545 if (!ecc_enabled(F3, nid)) {
2546 ret = -ENODEV;
2547
2548 if (!ecc_enable_override)
2549 goto err_enable;
2550
2551 amd64_warn("Forcing ECC on!\n");
2552
2553 if (!enable_ecc_error_reporting(s, nid, F3))
2554 goto err_enable;
2555 }
2556
2557 ret = amd64_init_one_instance(pdev);
360b7f3c 2558 if (ret < 0) {
ae7bb7c6 2559 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2560 restore_ecc_error_reporting(s, nid, F3);
2561 }
7d6034d3
DT
2562
2563 return ret;
2299ef71
BP
2564
2565err_enable:
2566 kfree(s);
2567 ecc_stngs[nid] = NULL;
2568
2569err_out:
2570 return ret;
7d6034d3
DT
2571}
2572
9b3c6e85 2573static void amd64_remove_one_instance(struct pci_dev *pdev)
7d6034d3
DT
2574{
2575 struct mem_ctl_info *mci;
2576 struct amd64_pvt *pvt;
772c3ff3 2577 u16 nid = amd_get_node_id(pdev);
360b7f3c
BP
2578 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2579 struct ecc_settings *s = ecc_stngs[nid];
7d6034d3 2580
c5608759
MCC
2581 mci = find_mci_by_dev(&pdev->dev);
2582 del_mc_sysfs_attrs(mci);
7d6034d3
DT
2583 /* Remove from EDAC CORE tracking list */
2584 mci = edac_mc_del_mc(&pdev->dev);
2585 if (!mci)
2586 return;
2587
2588 pvt = mci->pvt_info;
2589
360b7f3c 2590 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2591
360b7f3c 2592 free_mc_sibling_devs(pvt);
7d6034d3 2593
549d042d
BP
2594 /* unregister from EDAC MCE */
2595 amd_report_gart_errors(false);
2596 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2597
360b7f3c
BP
2598 kfree(ecc_stngs[nid]);
2599 ecc_stngs[nid] = NULL;
ae7bb7c6 2600
7d6034d3 2601 /* Free the EDAC CORE resources */
8f68ed97 2602 mci->pvt_info = NULL;
360b7f3c 2603 mcis[nid] = NULL;
8f68ed97
BP
2604
2605 kfree(pvt);
7d6034d3
DT
2606 edac_mc_free(mci);
2607}
2608
2609/*
2610 * This table is part of the interface for loading drivers for PCI devices. The
2611 * PCI core identifies what devices are on a system during boot, and then
2612 * inquiry this table to see if this driver is for a given device found.
2613 */
36c46f31 2614static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
7d6034d3
DT
2615 {
2616 .vendor = PCI_VENDOR_ID_AMD,
2617 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2618 .subvendor = PCI_ANY_ID,
2619 .subdevice = PCI_ANY_ID,
2620 .class = 0,
2621 .class_mask = 0,
7d6034d3
DT
2622 },
2623 {
2624 .vendor = PCI_VENDOR_ID_AMD,
2625 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2626 .subvendor = PCI_ANY_ID,
2627 .subdevice = PCI_ANY_ID,
2628 .class = 0,
2629 .class_mask = 0,
7d6034d3 2630 },
df71a053
BP
2631 {
2632 .vendor = PCI_VENDOR_ID_AMD,
2633 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2634 .subvendor = PCI_ANY_ID,
2635 .subdevice = PCI_ANY_ID,
2636 .class = 0,
2637 .class_mask = 0,
2638 },
94c1acf2
AG
2639 {
2640 .vendor = PCI_VENDOR_ID_AMD,
2641 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2642 .subvendor = PCI_ANY_ID,
2643 .subdevice = PCI_ANY_ID,
2644 .class = 0,
2645 .class_mask = 0,
2646 },
df71a053 2647
7d6034d3
DT
2648 {0, }
2649};
2650MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2651
2652static struct pci_driver amd64_pci_driver = {
2653 .name = EDAC_MOD_STR,
2299ef71 2654 .probe = amd64_probe_one_instance,
9b3c6e85 2655 .remove = amd64_remove_one_instance,
7d6034d3
DT
2656 .id_table = amd64_pci_table,
2657};
2658
360b7f3c 2659static void setup_pci_device(void)
7d6034d3
DT
2660{
2661 struct mem_ctl_info *mci;
2662 struct amd64_pvt *pvt;
2663
2664 if (amd64_ctl_pci)
2665 return;
2666
cc4d8860 2667 mci = mcis[0];
7d6034d3
DT
2668 if (mci) {
2669
2670 pvt = mci->pvt_info;
2671 amd64_ctl_pci =
8d5b5d9c 2672 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
7d6034d3
DT
2673
2674 if (!amd64_ctl_pci) {
2675 pr_warning("%s(): Unable to create PCI control\n",
2676 __func__);
2677
2678 pr_warning("%s(): PCI error report via EDAC not set\n",
2679 __func__);
2680 }
2681 }
2682}
2683
2684static int __init amd64_edac_init(void)
2685{
360b7f3c 2686 int err = -ENODEV;
7d6034d3 2687
df71a053 2688 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
7d6034d3
DT
2689
2690 opstate_init();
2691
9653a5c7 2692 if (amd_cache_northbridges() < 0)
56b34b91 2693 goto err_ret;
7d6034d3 2694
cc4d8860 2695 err = -ENOMEM;
ae7bb7c6
BP
2696 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2697 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
360b7f3c 2698 if (!(mcis && ecc_stngs))
a9f0fbe2 2699 goto err_free;
cc4d8860 2700
50542251 2701 msrs = msrs_alloc();
56b34b91 2702 if (!msrs)
360b7f3c 2703 goto err_free;
50542251 2704
7d6034d3
DT
2705 err = pci_register_driver(&amd64_pci_driver);
2706 if (err)
56b34b91 2707 goto err_pci;
7d6034d3 2708
56b34b91 2709 err = -ENODEV;
360b7f3c
BP
2710 if (!atomic_read(&drv_instances))
2711 goto err_no_instances;
7d6034d3 2712
360b7f3c
BP
2713 setup_pci_device();
2714 return 0;
7d6034d3 2715
360b7f3c 2716err_no_instances:
7d6034d3 2717 pci_unregister_driver(&amd64_pci_driver);
cc4d8860 2718
56b34b91
BP
2719err_pci:
2720 msrs_free(msrs);
2721 msrs = NULL;
cc4d8860 2722
360b7f3c
BP
2723err_free:
2724 kfree(mcis);
2725 mcis = NULL;
2726
2727 kfree(ecc_stngs);
2728 ecc_stngs = NULL;
2729
56b34b91 2730err_ret:
7d6034d3
DT
2731 return err;
2732}
2733
2734static void __exit amd64_edac_exit(void)
2735{
2736 if (amd64_ctl_pci)
2737 edac_pci_release_generic_ctl(amd64_ctl_pci);
2738
2739 pci_unregister_driver(&amd64_pci_driver);
50542251 2740
ae7bb7c6
BP
2741 kfree(ecc_stngs);
2742 ecc_stngs = NULL;
2743
cc4d8860
BP
2744 kfree(mcis);
2745 mcis = NULL;
2746
50542251
BP
2747 msrs_free(msrs);
2748 msrs = NULL;
7d6034d3
DT
2749}
2750
2751module_init(amd64_edac_init);
2752module_exit(amd64_edac_exit);
2753
2754MODULE_LICENSE("GPL");
2755MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2756 "Dave Peterson, Thayne Harbaugh");
2757MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2758 EDAC_AMD64_VERSION);
2759
2760module_param(edac_op_state, int, 0444);
2761MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");