net/mlx4_core: Reduce harmless SRIOV error message to debug level
[linux-2.6-block.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418 3
d1ea71cd 4static struct edac_pci_ctl_info *pci_ctl;
2bc65418
DT
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2ec591ac 18/* Per-node stuff */
ae7bb7c6 19static struct ecc_settings **ecc_stngs;
2bc65418 20
b70ef010
BP
21/*
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24 * or higher value'.
25 *
26 *FIXME: Produce a better mapping/linearisation.
27 */
c7e5301a 28static const struct scrubrate {
39094443
BP
29 u32 scrubval; /* bit pattern for scrub rate */
30 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
31} scrubrates[] = {
b70ef010
BP
32 { 0x01, 1600000000UL},
33 { 0x02, 800000000UL},
34 { 0x03, 400000000UL},
35 { 0x04, 200000000UL},
36 { 0x05, 100000000UL},
37 { 0x06, 50000000UL},
38 { 0x07, 25000000UL},
39 { 0x08, 12284069UL},
40 { 0x09, 6274509UL},
41 { 0x0A, 3121951UL},
42 { 0x0B, 1560975UL},
43 { 0x0C, 781440UL},
44 { 0x0D, 390720UL},
45 { 0x0E, 195300UL},
46 { 0x0F, 97650UL},
47 { 0x10, 48854UL},
48 { 0x11, 24427UL},
49 { 0x12, 12213UL},
50 { 0x13, 6101UL},
51 { 0x14, 3051UL},
52 { 0x15, 1523UL},
53 { 0x16, 761UL},
54 { 0x00, 0UL}, /* scrubbing off */
55};
56
66fed2d4
BP
57int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 u32 *val, const char *func)
b2b0c605
BP
59{
60 int err = 0;
61
62 err = pci_read_config_dword(pdev, offset, val);
63 if (err)
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func, PCI_FUNC(pdev->devfn), offset);
66
67 return err;
68}
69
70int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 u32 val, const char *func)
72{
73 int err = 0;
74
75 err = pci_write_config_dword(pdev, offset, val);
76 if (err)
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func, PCI_FUNC(pdev->devfn), offset);
79
80 return err;
81}
82
7981a28f
AG
83/*
84 * Select DCT to which PCI cfg accesses are routed
85 */
86static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87{
88 u32 reg = 0;
89
90 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 reg |= dct;
93 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94}
95
b2b0c605
BP
96/*
97 *
98 * Depending on the family, F2 DCT reads need special handling:
99 *
7981a28f 100 * K8: has a single DCT only and no address offsets >= 0x100
b2b0c605
BP
101 *
102 * F10h: each DCT has its own set of regs
103 * DCT0 -> F2x040..
104 * DCT1 -> F2x140..
105 *
94c1acf2 106 * F16h: has only 1 DCT
7981a28f
AG
107 *
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
b2b0c605 109 */
7981a28f
AG
110static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 int offset, u32 *val)
b2b0c605 112{
7981a28f
AG
113 switch (pvt->fam) {
114 case 0xf:
115 if (dct || offset >= 0x100)
116 return -EINVAL;
117 break;
b2b0c605 118
7981a28f
AG
119 case 0x10:
120 if (dct) {
121 /*
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 */
126 if (dct_ganging_enabled(pvt))
127 return 0;
b2b0c605 128
7981a28f
AG
129 offset += 0x100;
130 }
131 break;
73ba8593 132
7981a28f
AG
133 case 0x15:
134 /*
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
137 */
138 dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 f15h_select_dct(pvt, dct);
140 break;
73ba8593 141
7981a28f
AG
142 case 0x16:
143 if (dct)
144 return -EINVAL;
145 break;
b2b0c605 146
7981a28f
AG
147 default:
148 break;
b2b0c605 149 }
7981a28f 150 return amd64_read_pci_cfg(pvt->F2, offset, val);
b2b0c605
BP
151}
152
2bc65418
DT
153/*
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157 * functionality.
158 *
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
162 *
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
165 */
166
8051c0af
YG
167static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
168{
169 /*
170 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 * as 0x0, scrubval 0x6 as 0x1, etc.
173 */
174 if (scrubval >= 0x5 && scrubval <= 0x14) {
175 scrubval -= 0x5;
176 pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
177 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
178 } else {
179 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
180 }
181}
2bc65418 182/*
8051c0af 183 * Scan the scrub rate mapping table for a close or matching bandwidth value to
2bc65418
DT
184 * issue. If requested is too big, then use last maximum value found.
185 */
da92110d 186static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
2bc65418
DT
187{
188 u32 scrubval;
189 int i;
190
191 /*
192 * map the configured rate (new_bw) to a value specific to the AMD64
193 * memory controller and apply to register. Search for the first
194 * bandwidth entry that is greater or equal than the setting requested
195 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
196 *
197 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 * by falling back to the last element in scrubrates[].
2bc65418 199 */
168bfeef 200 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
201 /*
202 * skip scrub rates which aren't recommended
203 * (see F10 BKDG, F3x58)
204 */
395ae783 205 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
206 continue;
207
208 if (scrubrates[i].bandwidth <= new_bw)
209 break;
2bc65418
DT
210 }
211
212 scrubval = scrubrates[i].scrubval;
2bc65418 213
8051c0af
YG
214 if (pvt->fam == 0x17) {
215 __f17h_set_scrubval(pvt, scrubval);
216 } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
da92110d
AG
217 f15h_select_dct(pvt, 0);
218 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
219 f15h_select_dct(pvt, 1);
220 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
221 } else {
222 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
223 }
2bc65418 224
39094443
BP
225 if (scrubval)
226 return scrubrates[i].bandwidth;
227
2bc65418
DT
228 return 0;
229}
230
d1ea71cd 231static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
232{
233 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 234 u32 min_scrubrate = 0x5;
2bc65418 235
a4b4bedc 236 if (pvt->fam == 0xf)
87b3e0e6
BP
237 min_scrubrate = 0x0;
238
da92110d
AG
239 if (pvt->fam == 0x15) {
240 /* Erratum #505 */
241 if (pvt->model < 0x10)
242 f15h_select_dct(pvt, 0);
73ba8593 243
da92110d
AG
244 if (pvt->model == 0x60)
245 min_scrubrate = 0x6;
246 }
247 return __set_scrub_rate(pvt, bw, min_scrubrate);
2bc65418
DT
248}
249
d1ea71cd 250static int get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
251{
252 struct amd64_pvt *pvt = mci->pvt_info;
39094443 253 int i, retval = -EINVAL;
8051c0af 254 u32 scrubval = 0;
2bc65418 255
8051c0af
YG
256 switch (pvt->fam) {
257 case 0x15:
da92110d
AG
258 /* Erratum #505 */
259 if (pvt->model < 0x10)
260 f15h_select_dct(pvt, 0);
73ba8593 261
da92110d
AG
262 if (pvt->model == 0x60)
263 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
8051c0af
YG
264 break;
265
266 case 0x17:
267 amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
268 if (scrubval & BIT(0)) {
269 amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
270 scrubval &= 0xF;
271 scrubval += 0x5;
272 } else {
273 scrubval = 0;
274 }
275 break;
276
277 default:
da92110d 278 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
8051c0af
YG
279 break;
280 }
2bc65418
DT
281
282 scrubval = scrubval & 0x001F;
283
926311fd 284 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 285 if (scrubrates[i].scrubval == scrubval) {
39094443 286 retval = scrubrates[i].bandwidth;
2bc65418
DT
287 break;
288 }
289 }
39094443 290 return retval;
2bc65418
DT
291}
292
6775763a 293/*
7f19bf75
BP
294 * returns true if the SysAddr given by sys_addr matches the
295 * DRAM base/limit associated with node_id
6775763a 296 */
d1ea71cd 297static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
6775763a 298{
7f19bf75 299 u64 addr;
6775763a
DT
300
301 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
302 * all ones if the most significant implemented address bit is 1.
303 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
304 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
305 * Application Programming.
306 */
307 addr = sys_addr & 0x000000ffffffffffull;
308
7f19bf75
BP
309 return ((addr >= get_dram_base(pvt, nid)) &&
310 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
311}
312
313/*
314 * Attempt to map a SysAddr to a node. On success, return a pointer to the
315 * mem_ctl_info structure for the node that the SysAddr maps to.
316 *
317 * On failure, return NULL.
318 */
319static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
320 u64 sys_addr)
321{
322 struct amd64_pvt *pvt;
c7e5301a 323 u8 node_id;
6775763a
DT
324 u32 intlv_en, bits;
325
326 /*
327 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
328 * 3.4.4.2) registers to map the SysAddr to a node ID.
329 */
330 pvt = mci->pvt_info;
331
332 /*
333 * The value of this field should be the same for all DRAM Base
334 * registers. Therefore we arbitrarily choose to read it from the
335 * register for node 0.
336 */
7f19bf75 337 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
338
339 if (intlv_en == 0) {
7f19bf75 340 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
d1ea71cd 341 if (base_limit_match(pvt, sys_addr, node_id))
8edc5445 342 goto found;
6775763a 343 }
8edc5445 344 goto err_no_match;
6775763a
DT
345 }
346
72f158fe
BP
347 if (unlikely((intlv_en != 0x01) &&
348 (intlv_en != 0x03) &&
349 (intlv_en != 0x07))) {
24f9a7fe 350 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
351 return NULL;
352 }
353
354 bits = (((u32) sys_addr) >> 12) & intlv_en;
355
356 for (node_id = 0; ; ) {
7f19bf75 357 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
358 break; /* intlv_sel field matches */
359
7f19bf75 360 if (++node_id >= DRAM_RANGES)
6775763a
DT
361 goto err_no_match;
362 }
363
364 /* sanity test for sys_addr */
d1ea71cd 365 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
366 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
367 "range for node %d with node interleaving enabled.\n",
368 __func__, sys_addr, node_id);
6775763a
DT
369 return NULL;
370 }
371
372found:
b487c33e 373 return edac_mc_find((int)node_id);
6775763a
DT
374
375err_no_match:
956b9ba1
JP
376 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
377 (unsigned long)sys_addr);
6775763a
DT
378
379 return NULL;
380}
e2ce7255
DT
381
382/*
11c75ead
BP
383 * compute the CS base address of the @csrow on the DRAM controller @dct.
384 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 385 */
11c75ead
BP
386static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
387 u64 *base, u64 *mask)
e2ce7255 388{
11c75ead
BP
389 u64 csbase, csmask, base_bits, mask_bits;
390 u8 addr_shift;
e2ce7255 391
18b94f66 392 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
393 csbase = pvt->csels[dct].csbases[csrow];
394 csmask = pvt->csels[dct].csmasks[csrow];
10ef6b0d
CG
395 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
396 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
11c75ead 397 addr_shift = 4;
94c1acf2
AG
398
399 /*
18b94f66
AG
400 * F16h and F15h, models 30h and later need two addr_shift values:
401 * 8 for high and 6 for low (cf. F16h BKDG).
402 */
403 } else if (pvt->fam == 0x16 ||
404 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
94c1acf2
AG
405 csbase = pvt->csels[dct].csbases[csrow];
406 csmask = pvt->csels[dct].csmasks[csrow >> 1];
407
10ef6b0d
CG
408 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
409 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
410
411 *mask = ~0ULL;
412 /* poke holes for the csmask */
10ef6b0d
CG
413 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
414 (GENMASK_ULL(30, 19) << 8));
94c1acf2 415
10ef6b0d
CG
416 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
417 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
418
419 return;
11c75ead
BP
420 } else {
421 csbase = pvt->csels[dct].csbases[csrow];
422 csmask = pvt->csels[dct].csmasks[csrow >> 1];
423 addr_shift = 8;
e2ce7255 424
a4b4bedc 425 if (pvt->fam == 0x15)
10ef6b0d
CG
426 base_bits = mask_bits =
427 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
11c75ead 428 else
10ef6b0d
CG
429 base_bits = mask_bits =
430 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
11c75ead 431 }
e2ce7255 432
11c75ead 433 *base = (csbase & base_bits) << addr_shift;
e2ce7255 434
11c75ead
BP
435 *mask = ~0ULL;
436 /* poke holes for the csmask */
437 *mask &= ~(mask_bits << addr_shift);
438 /* OR them in */
439 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
440}
441
11c75ead
BP
442#define for_each_chip_select(i, dct, pvt) \
443 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
444
614ec9d8
BP
445#define chip_select_base(i, dct, pvt) \
446 pvt->csels[dct].csbases[i]
447
11c75ead
BP
448#define for_each_chip_select_mask(i, dct, pvt) \
449 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
450
e2ce7255
DT
451/*
452 * @input_addr is an InputAddr associated with the node given by mci. Return the
453 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
454 */
455static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
456{
457 struct amd64_pvt *pvt;
458 int csrow;
459 u64 base, mask;
460
461 pvt = mci->pvt_info;
462
11c75ead
BP
463 for_each_chip_select(csrow, 0, pvt) {
464 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
465 continue;
466
11c75ead
BP
467 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
468
469 mask = ~mask;
e2ce7255
DT
470
471 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
472 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
473 (unsigned long)input_addr, csrow,
474 pvt->mc_node_id);
e2ce7255
DT
475
476 return csrow;
477 }
478 }
956b9ba1
JP
479 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
480 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
481
482 return -1;
483}
484
e2ce7255
DT
485/*
486 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
487 * for the node represented by mci. Info is passed back in *hole_base,
488 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
489 * info is invalid. Info may be invalid for either of the following reasons:
490 *
491 * - The revision of the node is not E or greater. In this case, the DRAM Hole
492 * Address Register does not exist.
493 *
494 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
495 * indicating that its contents are not valid.
496 *
497 * The values passed back in *hole_base, *hole_offset, and *hole_size are
498 * complete 32-bit values despite the fact that the bitfields in the DHAR
499 * only represent bits 31-24 of the base and offset values.
500 */
501int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
502 u64 *hole_offset, u64 *hole_size)
503{
504 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
505
506 /* only revE and later have the DRAM Hole Address Register */
a4b4bedc 507 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
508 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
509 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
510 return 1;
511 }
512
bc21fa57 513 /* valid for Fam10h and above */
a4b4bedc 514 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 515 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
516 return 1;
517 }
518
c8e518d5 519 if (!dhar_valid(pvt)) {
956b9ba1
JP
520 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
521 pvt->mc_node_id);
e2ce7255
DT
522 return 1;
523 }
524
525 /* This node has Memory Hoisting */
526
527 /* +------------------+--------------------+--------------------+-----
528 * | memory | DRAM hole | relocated |
529 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
530 * | | | DRAM hole |
531 * | | | [0x100000000, |
532 * | | | (0x100000000+ |
533 * | | | (0xffffffff-x))] |
534 * +------------------+--------------------+--------------------+-----
535 *
536 * Above is a diagram of physical memory showing the DRAM hole and the
537 * relocated addresses from the DRAM hole. As shown, the DRAM hole
538 * starts at address x (the base address) and extends through address
539 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
540 * addresses in the hole so that they start at 0x100000000.
541 */
542
1f31677e
BP
543 *hole_base = dhar_base(pvt);
544 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255 545
a4b4bedc
BP
546 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
547 : k8_dhar_offset(pvt);
e2ce7255 548
956b9ba1
JP
549 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
550 pvt->mc_node_id, (unsigned long)*hole_base,
551 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
552
553 return 0;
554}
555EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
556
93c2df58
DT
557/*
558 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
559 * assumed that sys_addr maps to the node given by mci.
560 *
561 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
562 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
563 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
564 * then it is also involved in translating a SysAddr to a DramAddr. Sections
565 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
566 * These parts of the documentation are unclear. I interpret them as follows:
567 *
568 * When node n receives a SysAddr, it processes the SysAddr as follows:
569 *
570 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
571 * Limit registers for node n. If the SysAddr is not within the range
572 * specified by the base and limit values, then node n ignores the Sysaddr
573 * (since it does not map to node n). Otherwise continue to step 2 below.
574 *
575 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
576 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
577 * the range of relocated addresses (starting at 0x100000000) from the DRAM
578 * hole. If not, skip to step 3 below. Else get the value of the
579 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
580 * offset defined by this value from the SysAddr.
581 *
582 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
583 * Base register for node n. To obtain the DramAddr, subtract the base
584 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
585 */
586static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
587{
7f19bf75 588 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 589 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 590 int ret;
93c2df58 591
7f19bf75 592 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
593
594 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
595 &hole_size);
596 if (!ret) {
1f31677e
BP
597 if ((sys_addr >= (1ULL << 32)) &&
598 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
599 /* use DHAR to translate SysAddr to DramAddr */
600 dram_addr = sys_addr - hole_offset;
601
956b9ba1
JP
602 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
603 (unsigned long)sys_addr,
604 (unsigned long)dram_addr);
93c2df58
DT
605
606 return dram_addr;
607 }
608 }
609
610 /*
611 * Translate the SysAddr to a DramAddr as shown near the start of
612 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
613 * only deals with 40-bit values. Therefore we discard bits 63-40 of
614 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
615 * discard are all 1s. Otherwise the bits we discard are all 0s. See
616 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
617 * Programmer's Manual Volume 1 Application Programming.
618 */
10ef6b0d 619 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
93c2df58 620
956b9ba1
JP
621 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
622 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
623 return dram_addr;
624}
625
626/*
627 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
628 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
629 * for node interleaving.
630 */
631static int num_node_interleave_bits(unsigned intlv_en)
632{
633 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
634 int n;
635
636 BUG_ON(intlv_en > 7);
637 n = intlv_shift_table[intlv_en];
638 return n;
639}
640
641/* Translate the DramAddr given by @dram_addr to an InputAddr. */
642static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
643{
644 struct amd64_pvt *pvt;
645 int intlv_shift;
646 u64 input_addr;
647
648 pvt = mci->pvt_info;
649
650 /*
651 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
652 * concerning translating a DramAddr to an InputAddr.
653 */
7f19bf75 654 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
10ef6b0d 655 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
f678b8cc 656 (dram_addr & 0xfff);
93c2df58 657
956b9ba1
JP
658 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
659 intlv_shift, (unsigned long)dram_addr,
660 (unsigned long)input_addr);
93c2df58
DT
661
662 return input_addr;
663}
664
665/*
666 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
667 * assumed that @sys_addr maps to the node given by mci.
668 */
669static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
670{
671 u64 input_addr;
672
673 input_addr =
674 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
675
c19ca6cb 676 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
956b9ba1 677 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
678
679 return input_addr;
680}
681
93c2df58
DT
682/* Map the Error address to a PAGE and PAGE OFFSET. */
683static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 684 struct err_info *err)
93c2df58 685{
33ca0643
BP
686 err->page = (u32) (error_address >> PAGE_SHIFT);
687 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
688}
689
690/*
691 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
692 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
693 * of a node that detected an ECC memory error. mci represents the node that
694 * the error address maps to (possibly different from the node that detected
695 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
696 * error.
697 */
698static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
699{
700 int csrow;
701
702 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
703
704 if (csrow == -1)
24f9a7fe
BP
705 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
706 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
707 return csrow;
708}
e2ce7255 709
bfc04aec 710static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 711
2da11654
DT
712/*
713 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
714 * are ECC capable.
715 */
d1ea71cd 716static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
2da11654 717{
1f6189ed 718 unsigned long edac_cap = EDAC_FLAG_NONE;
d27f3a34
YG
719 u8 bit;
720
721 if (pvt->umc) {
722 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
2da11654 723
d27f3a34
YG
724 for (i = 0; i < NUM_UMCS; i++) {
725 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
726 continue;
2da11654 727
d27f3a34
YG
728 umc_en_mask |= BIT(i);
729
730 /* UMC Configuration bit 12 (DimmEccEn) */
731 if (pvt->umc[i].umc_cfg & BIT(12))
732 dimm_ecc_en_mask |= BIT(i);
733 }
734
735 if (umc_en_mask == dimm_ecc_en_mask)
736 edac_cap = EDAC_FLAG_SECDED;
737 } else {
738 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
739 ? 19
740 : 17;
741
742 if (pvt->dclr0 & BIT(bit))
743 edac_cap = EDAC_FLAG_SECDED;
744 }
2da11654
DT
745
746 return edac_cap;
747}
748
d1ea71cd 749static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 750
d1ea71cd 751static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
68798e17 752{
956b9ba1 753 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 754
a597d2a5
AG
755 if (pvt->dram_type == MEM_LRDDR3) {
756 u32 dcsm = pvt->csels[chan].csmasks[0];
757 /*
758 * It's assumed all LRDIMMs in a DCT are going to be of
759 * same 'type' until proven otherwise. So, use a cs
760 * value of '0' here to get dcsm value.
761 */
762 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
763 }
764
765 edac_dbg(1, "All DIMMs support ECC:%s\n",
766 (dclr & BIT(19)) ? "yes" : "no");
767
68798e17 768
956b9ba1
JP
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 771
a4b4bedc 772 if (pvt->fam == 0x10)
956b9ba1
JP
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 775
956b9ba1
JP
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
781}
782
07ed82ef
YG
783static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
784{
785 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
786 int dimm, size0, size1;
787
788 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
789
790 for (dimm = 0; dimm < 4; dimm++) {
791 size0 = 0;
792
793 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
794 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
795
796 size1 = 0;
797 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
798 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
799
800 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
801 dimm * 2, size0,
802 dimm * 2 + 1, size1);
803 }
804}
805
806static void __dump_misc_regs_df(struct amd64_pvt *pvt)
807{
808 struct amd64_umc *umc;
809 u32 i, tmp, umc_base;
810
811 for (i = 0; i < NUM_UMCS; i++) {
812 umc_base = get_umc_base(i);
813 umc = &pvt->umc[i];
814
815 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
816 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
817 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
818 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
819
820 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
821 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
822
823 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
824 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
825 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
826
827 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
828 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
829 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
830 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
831 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
832 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
833 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
834 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
835 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
836
837 if (pvt->dram_type == MEM_LRDDR4) {
838 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
839 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
840 i, 1 << ((tmp >> 4) & 0x3));
841 }
842
843 debug_display_dimm_sizes_df(pvt, i);
844 }
845
846 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
847 pvt->dhar, dhar_base(pvt));
848}
849
2da11654 850/* Display and decode various NB registers for debug purposes. */
07ed82ef 851static void __dump_misc_regs(struct amd64_pvt *pvt)
2da11654 852{
956b9ba1 853 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 854
956b9ba1
JP
855 edac_dbg(1, " NB two channel DRAM capable: %s\n",
856 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 857
956b9ba1
JP
858 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
859 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
860 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17 861
d1ea71cd 862 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
2da11654 863
956b9ba1 864 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 865
956b9ba1
JP
866 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
867 pvt->dhar, dhar_base(pvt),
a4b4bedc
BP
868 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
869 : f10_dhar_offset(pvt));
2da11654 870
d1ea71cd 871 debug_display_dimm_sizes(pvt, 0);
4d796364 872
8de1d91e 873 /* everything below this point is Fam10h and above */
a4b4bedc 874 if (pvt->fam == 0xf)
2da11654 875 return;
4d796364 876
d1ea71cd 877 debug_display_dimm_sizes(pvt, 1);
2da11654 878
8de1d91e 879 /* Only if NOT ganged does dclr1 have valid info */
68798e17 880 if (!dct_ganging_enabled(pvt))
d1ea71cd 881 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
2da11654
DT
882}
883
07ed82ef
YG
884/* Display and decode various NB registers for debug purposes. */
885static void dump_misc_regs(struct amd64_pvt *pvt)
886{
887 if (pvt->umc)
888 __dump_misc_regs_df(pvt);
889 else
890 __dump_misc_regs(pvt);
891
892 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
893
894 amd64_info("using %s syndromes.\n",
895 ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
896}
897
94be4bff 898/*
18b94f66 899 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 900 */
11c75ead 901static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 902{
18b94f66 903 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
904 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
905 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
a597d2a5 906 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
18b94f66
AG
907 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
908 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
9d858bb1 909 } else {
11c75ead
BP
910 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
911 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
912 }
913}
914
915/*
11c75ead 916 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 917 */
b2b0c605 918static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 919{
b64ce7cd 920 int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
94be4bff 921
11c75ead 922 prep_chip_selects(pvt);
94be4bff 923
b64ce7cd
YG
924 if (pvt->umc) {
925 base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
926 base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
927 mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
928 mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
929 } else {
930 base_reg0 = DCSB0;
931 base_reg1 = DCSB1;
932 mask_reg0 = DCSM0;
933 mask_reg1 = DCSM1;
934 }
935
11c75ead 936 for_each_chip_select(cs, 0, pvt) {
b64ce7cd
YG
937 int reg0 = base_reg0 + (cs * 4);
938 int reg1 = base_reg1 + (cs * 4);
11c75ead
BP
939 u32 *base0 = &pvt->csels[0].csbases[cs];
940 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 941
b64ce7cd
YG
942 if (pvt->umc) {
943 if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
944 edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
945 cs, *base0, reg0);
946
947 if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
948 edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
949 cs, *base1, reg1);
950 } else {
951 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
952 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
953 cs, *base0, reg0);
954
955 if (pvt->fam == 0xf)
956 continue;
957
958 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
959 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
960 cs, *base1, (pvt->fam == 0x10) ? reg1
7981a28f 961 : reg0);
b64ce7cd 962 }
94be4bff
DT
963 }
964
11c75ead 965 for_each_chip_select_mask(cs, 0, pvt) {
b64ce7cd
YG
966 int reg0 = mask_reg0 + (cs * 4);
967 int reg1 = mask_reg1 + (cs * 4);
11c75ead
BP
968 u32 *mask0 = &pvt->csels[0].csmasks[cs];
969 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 970
b64ce7cd
YG
971 if (pvt->umc) {
972 if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
973 edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
974 cs, *mask0, reg0);
975
976 if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
977 edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
978 cs, *mask1, reg1);
979 } else {
980 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
981 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
982 cs, *mask0, reg0);
983
984 if (pvt->fam == 0xf)
985 continue;
986
987 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
988 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
989 cs, *mask1, (pvt->fam == 0x10) ? reg1
7981a28f 990 : reg0);
b64ce7cd 991 }
94be4bff
DT
992 }
993}
994
a597d2a5 995static void determine_memory_type(struct amd64_pvt *pvt)
94be4bff 996{
a597d2a5 997 u32 dram_ctrl, dcsm;
94be4bff 998
a597d2a5
AG
999 switch (pvt->fam) {
1000 case 0xf:
1001 if (pvt->ext_model >= K8_REV_F)
1002 goto ddr3;
1003
1004 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1005 return;
1006
1007 case 0x10:
6b4c0bde 1008 if (pvt->dchr0 & DDR3_MODE)
a597d2a5
AG
1009 goto ddr3;
1010
1011 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1012 return;
1013
1014 case 0x15:
1015 if (pvt->model < 0x60)
1016 goto ddr3;
1017
1018 /*
1019 * Model 0x60h needs special handling:
1020 *
1021 * We use a Chip Select value of '0' to obtain dcsm.
1022 * Theoretically, it is possible to populate LRDIMMs of different
1023 * 'Rank' value on a DCT. But this is not the common case. So,
1024 * it's reasonable to assume all DIMMs are going to be of same
1025 * 'type' until proven otherwise.
1026 */
1027 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1028 dcsm = pvt->csels[0].csmasks[0];
1029
1030 if (((dram_ctrl >> 8) & 0x7) == 0x2)
1031 pvt->dram_type = MEM_DDR4;
1032 else if (pvt->dclr0 & BIT(16))
1033 pvt->dram_type = MEM_DDR3;
1034 else if (dcsm & 0x3)
1035 pvt->dram_type = MEM_LRDDR3;
6b4c0bde 1036 else
a597d2a5 1037 pvt->dram_type = MEM_RDDR3;
94be4bff 1038
a597d2a5
AG
1039 return;
1040
1041 case 0x16:
1042 goto ddr3;
1043
b64ce7cd
YG
1044 case 0x17:
1045 if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
1046 pvt->dram_type = MEM_LRDDR4;
1047 else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
1048 pvt->dram_type = MEM_RDDR4;
1049 else
1050 pvt->dram_type = MEM_DDR4;
1051 return;
1052
a597d2a5
AG
1053 default:
1054 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1055 pvt->dram_type = MEM_EMPTY;
1056 }
1057 return;
94be4bff 1058
a597d2a5
AG
1059ddr3:
1060 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
94be4bff
DT
1061}
1062
cb328507 1063/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
1064static int k8_early_channel_count(struct amd64_pvt *pvt)
1065{
cb328507 1066 int flag;
ddff876d 1067
9f56da0e 1068 if (pvt->ext_model >= K8_REV_F)
ddff876d 1069 /* RevF (NPT) and later */
41d8bfab 1070 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 1071 else
ddff876d
DT
1072 /* RevE and earlier */
1073 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
1074
1075 /* not used */
1076 pvt->dclr1 = 0;
1077
1078 return (flag) ? 2 : 1;
1079}
1080
70046624 1081/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
a4b4bedc 1082static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
ddff876d 1083{
2ec591ac
BP
1084 u16 mce_nid = amd_get_nb_id(m->extcpu);
1085 struct mem_ctl_info *mci;
70046624
BP
1086 u8 start_bit = 1;
1087 u8 end_bit = 47;
2ec591ac
BP
1088 u64 addr;
1089
1090 mci = edac_mc_find(mce_nid);
1091 if (!mci)
1092 return 0;
1093
1094 pvt = mci->pvt_info;
70046624 1095
a4b4bedc 1096 if (pvt->fam == 0xf) {
70046624
BP
1097 start_bit = 3;
1098 end_bit = 39;
1099 }
1100
10ef6b0d 1101 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
c1ae6830
BP
1102
1103 /*
1104 * Erratum 637 workaround
1105 */
a4b4bedc 1106 if (pvt->fam == 0x15) {
c1ae6830
BP
1107 u64 cc6_base, tmp_addr;
1108 u32 tmp;
8b84c8df 1109 u8 intlv_en;
c1ae6830 1110
10ef6b0d 1111 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
c1ae6830
BP
1112 return addr;
1113
c1ae6830
BP
1114
1115 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1116 intlv_en = tmp >> 21 & 0x7;
1117
1118 /* add [47:27] + 3 trailing bits */
10ef6b0d 1119 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
c1ae6830
BP
1120
1121 /* reverse and add DramIntlvEn */
1122 cc6_base |= intlv_en ^ 0x7;
1123
1124 /* pin at [47:24] */
1125 cc6_base <<= 24;
1126
1127 if (!intlv_en)
10ef6b0d 1128 return cc6_base | (addr & GENMASK_ULL(23, 0));
c1ae6830
BP
1129
1130 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1131
1132 /* faster log2 */
10ef6b0d 1133 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
c1ae6830
BP
1134
1135 /* OR DramIntlvSel into bits [14:12] */
10ef6b0d 1136 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
c1ae6830
BP
1137
1138 /* add remaining [11:0] bits from original MC4_ADDR */
10ef6b0d 1139 tmp_addr |= addr & GENMASK_ULL(11, 0);
c1ae6830
BP
1140
1141 return cc6_base | tmp_addr;
1142 }
1143
1144 return addr;
ddff876d
DT
1145}
1146
e2c0bffe
DB
1147static struct pci_dev *pci_get_related_function(unsigned int vendor,
1148 unsigned int device,
1149 struct pci_dev *related)
1150{
1151 struct pci_dev *dev = NULL;
1152
1153 while ((dev = pci_get_device(vendor, device, dev))) {
1154 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1155 (dev->bus->number == related->bus->number) &&
1156 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1157 break;
1158 }
1159
1160 return dev;
1161}
1162
7f19bf75 1163static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 1164{
e2c0bffe 1165 struct amd_northbridge *nb;
18b94f66
AG
1166 struct pci_dev *f1 = NULL;
1167 unsigned int pci_func;
71d2a32e 1168 int off = range << 3;
e2c0bffe 1169 u32 llim;
ddff876d 1170
7f19bf75
BP
1171 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1172 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1173
18b94f66 1174 if (pvt->fam == 0xf)
7f19bf75 1175 return;
ddff876d 1176
7f19bf75
BP
1177 if (!dram_rw(pvt, range))
1178 return;
ddff876d 1179
7f19bf75
BP
1180 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1181 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 1182
e2c0bffe 1183 /* F15h: factor in CC6 save area by reading dst node's limit reg */
18b94f66 1184 if (pvt->fam != 0x15)
e2c0bffe 1185 return;
f08e457c 1186
e2c0bffe
DB
1187 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1188 if (WARN_ON(!nb))
1189 return;
f08e457c 1190
a597d2a5
AG
1191 if (pvt->model == 0x60)
1192 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1193 else if (pvt->model == 0x30)
1194 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1195 else
1196 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
18b94f66
AG
1197
1198 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
e2c0bffe
DB
1199 if (WARN_ON(!f1))
1200 return;
f08e457c 1201
e2c0bffe 1202 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 1203
10ef6b0d 1204 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
f08e457c 1205
e2c0bffe
DB
1206 /* {[39:27],111b} */
1207 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 1208
10ef6b0d 1209 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
f08e457c 1210
e2c0bffe
DB
1211 /* [47:40] */
1212 pvt->ranges[range].lim.hi |= llim >> 13;
1213
1214 pci_dev_put(f1);
ddff876d
DT
1215}
1216
f192c7b1 1217static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1218 struct err_info *err)
ddff876d 1219{
f192c7b1 1220 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 1221
33ca0643 1222 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
1223
1224 /*
1225 * Find out which node the error address belongs to. This may be
1226 * different from the node that detected the error.
1227 */
33ca0643
BP
1228 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1229 if (!err->src_mci) {
ab5a503c
MCC
1230 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1231 (unsigned long)sys_addr);
33ca0643 1232 err->err_code = ERR_NODE;
ab5a503c
MCC
1233 return;
1234 }
1235
1236 /* Now map the sys_addr to a CSROW */
33ca0643
BP
1237 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1238 if (err->csrow < 0) {
1239 err->err_code = ERR_CSROW;
ab5a503c
MCC
1240 return;
1241 }
1242
ddff876d 1243 /* CHIPKILL enabled */
f192c7b1 1244 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
1245 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1246 if (err->channel < 0) {
ddff876d
DT
1247 /*
1248 * Syndrome didn't map, so we don't know which of the
1249 * 2 DIMMs is in error. So we need to ID 'both' of them
1250 * as suspect.
1251 */
33ca0643 1252 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1253 "possible error reporting race\n",
33ca0643
BP
1254 err->syndrome);
1255 err->err_code = ERR_CHANNEL;
ddff876d
DT
1256 return;
1257 }
1258 } else {
1259 /*
1260 * non-chipkill ecc mode
1261 *
1262 * The k8 documentation is unclear about how to determine the
1263 * channel number when using non-chipkill memory. This method
1264 * was obtained from email communication with someone at AMD.
1265 * (Wish the email was placed in this comment - norsk)
1266 */
33ca0643 1267 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1268 }
ddff876d
DT
1269}
1270
41d8bfab 1271static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1272{
41d8bfab 1273 unsigned shift = 0;
ddff876d 1274
41d8bfab
BP
1275 if (i <= 2)
1276 shift = i;
1277 else if (!(i & 0x1))
1278 shift = i >> 1;
1433eb99 1279 else
41d8bfab 1280 shift = (i + 1) >> 1;
ddff876d 1281
41d8bfab
BP
1282 return 128 << (shift + !!dct_width);
1283}
1284
1285static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1286 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1287{
1288 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1289
1290 if (pvt->ext_model >= K8_REV_F) {
1291 WARN_ON(cs_mode > 11);
1292 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1293 }
1294 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1295 unsigned diff;
41d8bfab
BP
1296 WARN_ON(cs_mode > 10);
1297
11b0a314
BP
1298 /*
1299 * the below calculation, besides trying to win an obfuscated C
1300 * contest, maps cs_mode values to DIMM chip select sizes. The
1301 * mappings are:
1302 *
1303 * cs_mode CS size (mb)
1304 * ======= ============
1305 * 0 32
1306 * 1 64
1307 * 2 128
1308 * 3 128
1309 * 4 256
1310 * 5 512
1311 * 6 256
1312 * 7 512
1313 * 8 1024
1314 * 9 1024
1315 * 10 2048
1316 *
1317 * Basically, it calculates a value with which to shift the
1318 * smallest CS size of 32MB.
1319 *
1320 * ddr[23]_cs_size have a similar purpose.
1321 */
1322 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1323
1324 return 32 << (cs_mode - diff);
41d8bfab
BP
1325 }
1326 else {
1327 WARN_ON(cs_mode > 6);
1328 return 32 << cs_mode;
1329 }
ddff876d
DT
1330}
1331
1afd3c98
DT
1332/*
1333 * Get the number of DCT channels in use.
1334 *
1335 * Return:
1336 * number of Memory Channels in operation
1337 * Pass back:
1338 * contents of the DCL0_LOW register
1339 */
7d20d14d 1340static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1341{
6ba5dcdc 1342 int i, j, channels = 0;
1afd3c98 1343
7d20d14d 1344 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
a4b4bedc 1345 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1346 return 2;
1afd3c98
DT
1347
1348 /*
d16149e8
BP
1349 * Need to check if in unganged mode: In such, there are 2 channels,
1350 * but they are not in 128 bit mode and thus the above 'dclr0' status
1351 * bit will be OFF.
1afd3c98
DT
1352 *
1353 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1354 * their CSEnable bit on. If so, then SINGLE DIMM case.
1355 */
956b9ba1 1356 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1357
1afd3c98
DT
1358 /*
1359 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1360 * is more than just one DIMM present in unganged mode. Need to check
1361 * both controllers since DIMMs can be placed in either one.
1362 */
525a1b20
BP
1363 for (i = 0; i < 2; i++) {
1364 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1365
57a30854
WW
1366 for (j = 0; j < 4; j++) {
1367 if (DBAM_DIMM(j, dbam) > 0) {
1368 channels++;
1369 break;
1370 }
1371 }
1afd3c98
DT
1372 }
1373
d16149e8
BP
1374 if (channels > 2)
1375 channels = 2;
1376
24f9a7fe 1377 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1378
1379 return channels;
1afd3c98
DT
1380}
1381
f1cbbec9
YG
1382static int f17_early_channel_count(struct amd64_pvt *pvt)
1383{
1384 int i, channels = 0;
1385
1386 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1387 for (i = 0; i < NUM_UMCS; i++)
1388 channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
1389
1390 amd64_info("MCT channel count: %d\n", channels);
1391
1392 return channels;
1393}
1394
41d8bfab 1395static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1396{
41d8bfab
BP
1397 unsigned shift = 0;
1398 int cs_size = 0;
1399
1400 if (i == 0 || i == 3 || i == 4)
1401 cs_size = -1;
1402 else if (i <= 2)
1403 shift = i;
1404 else if (i == 12)
1405 shift = 7;
1406 else if (!(i & 0x1))
1407 shift = i >> 1;
1408 else
1409 shift = (i + 1) >> 1;
1410
1411 if (cs_size != -1)
1412 cs_size = (128 * (1 << !!dct_width)) << shift;
1413
1414 return cs_size;
1415}
1416
a597d2a5
AG
1417static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1418{
1419 unsigned shift = 0;
1420 int cs_size = 0;
1421
1422 if (i < 4 || i == 6)
1423 cs_size = -1;
1424 else if (i == 12)
1425 shift = 7;
1426 else if (!(i & 0x1))
1427 shift = i >> 1;
1428 else
1429 shift = (i + 1) >> 1;
1430
1431 if (cs_size != -1)
1432 cs_size = rank_multiply * (128 << shift);
1433
1434 return cs_size;
1435}
1436
1437static int ddr4_cs_size(unsigned i)
1438{
1439 int cs_size = 0;
1440
1441 if (i == 0)
1442 cs_size = -1;
1443 else if (i == 1)
1444 cs_size = 1024;
1445 else
1446 /* Min cs_size = 1G */
1447 cs_size = 1024 * (1 << (i >> 1));
1448
1449 return cs_size;
1450}
1451
41d8bfab 1452static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1453 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1454{
1455 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1456
1457 WARN_ON(cs_mode > 11);
1433eb99
BP
1458
1459 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1460 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1461 else
41d8bfab
BP
1462 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1463}
1464
1465/*
1466 * F15h supports only 64bit DCT interfaces
1467 */
1468static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1469 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1470{
1471 WARN_ON(cs_mode > 12);
1433eb99 1472
41d8bfab 1473 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1474}
1475
a597d2a5
AG
1476/* F15h M60h supports DDR4 mapping as well.. */
1477static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1478 unsigned cs_mode, int cs_mask_nr)
1479{
1480 int cs_size;
1481 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1482
1483 WARN_ON(cs_mode > 12);
1484
1485 if (pvt->dram_type == MEM_DDR4) {
1486 if (cs_mode > 9)
1487 return -1;
1488
1489 cs_size = ddr4_cs_size(cs_mode);
1490 } else if (pvt->dram_type == MEM_LRDDR3) {
1491 unsigned rank_multiply = dcsm & 0xf;
1492
1493 if (rank_multiply == 3)
1494 rank_multiply = 4;
1495 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1496 } else {
1497 /* Minimum cs size is 512mb for F15hM60h*/
1498 if (cs_mode == 0x1)
1499 return -1;
1500
1501 cs_size = ddr3_cs_size(cs_mode, false);
1502 }
1503
1504 return cs_size;
1505}
1506
94c1acf2 1507/*
18b94f66 1508 * F16h and F15h model 30h have only limited cs_modes.
94c1acf2
AG
1509 */
1510static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1511 unsigned cs_mode, int cs_mask_nr)
94c1acf2
AG
1512{
1513 WARN_ON(cs_mode > 12);
1514
1515 if (cs_mode == 6 || cs_mode == 8 ||
1516 cs_mode == 9 || cs_mode == 12)
1517 return -1;
1518 else
1519 return ddr3_cs_size(cs_mode, false);
1520}
1521
f1cbbec9
YG
1522static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1523 unsigned int cs_mode, int csrow_nr)
1524{
1525 u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
1526
1527 /* Each mask is used for every two base addresses. */
1528 u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
1529
1530 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1531 u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
1532
1533 edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
1534
1535 /* Return size in MBs. */
1536 return size >> 10;
1537}
1538
5a5d2371 1539static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1540{
6163b5d4 1541
a4b4bedc 1542 if (pvt->fam == 0xf)
5a5d2371
BP
1543 return;
1544
7981a28f 1545 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1546 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1547 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1548
956b9ba1
JP
1549 edac_dbg(0, " DCTs operate in %s mode\n",
1550 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1551
1552 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1553 edac_dbg(0, " Address range split per DCT: %s\n",
1554 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1555
956b9ba1
JP
1556 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1557 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1558 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1559
956b9ba1
JP
1560 edac_dbg(0, " channel interleave: %s, "
1561 "interleave bits selector: 0x%x\n",
1562 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1563 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1564 }
1565
7981a28f 1566 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1567}
1568
18b94f66
AG
1569/*
1570 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1571 * 2.10.12 Memory Interleaving Modes).
1572 */
1573static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1574 u8 intlv_en, int num_dcts_intlv,
1575 u32 dct_sel)
1576{
1577 u8 channel = 0;
1578 u8 select;
1579
1580 if (!(intlv_en))
1581 return (u8)(dct_sel);
1582
1583 if (num_dcts_intlv == 2) {
1584 select = (sys_addr >> 8) & 0x3;
1585 channel = select ? 0x3 : 0;
9d0e8d83
AG
1586 } else if (num_dcts_intlv == 4) {
1587 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1588 switch (intlv_addr) {
1589 case 0x4:
1590 channel = (sys_addr >> 8) & 0x3;
1591 break;
1592 case 0x5:
1593 channel = (sys_addr >> 9) & 0x3;
1594 break;
1595 }
1596 }
18b94f66
AG
1597 return channel;
1598}
1599
f71d0a05 1600/*
229a7a11 1601 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1602 * Interleaving Modes.
1603 */
b15f0fca 1604static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1605 bool hi_range_sel, u8 intlv_en)
6163b5d4 1606{
151fa71c 1607 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1608
1609 if (dct_ganging_enabled(pvt))
229a7a11 1610 return 0;
6163b5d4 1611
229a7a11
BP
1612 if (hi_range_sel)
1613 return dct_sel_high;
6163b5d4 1614
229a7a11
BP
1615 /*
1616 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1617 */
1618 if (dct_interleave_enabled(pvt)) {
1619 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1620
1621 /* return DCT select function: 0=DCT0, 1=DCT1 */
1622 if (!intlv_addr)
1623 return sys_addr >> 6 & 1;
1624
1625 if (intlv_addr & 0x2) {
1626 u8 shift = intlv_addr & 0x1 ? 9 : 6;
dc0a50a8 1627 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
229a7a11
BP
1628
1629 return ((sys_addr >> shift) & 1) ^ temp;
1630 }
1631
dc0a50a8
YG
1632 if (intlv_addr & 0x4) {
1633 u8 shift = intlv_addr & 0x1 ? 9 : 8;
1634
1635 return (sys_addr >> shift) & 1;
1636 }
1637
229a7a11
BP
1638 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1639 }
1640
1641 if (dct_high_range_enabled(pvt))
1642 return ~dct_sel_high & 1;
6163b5d4
DT
1643
1644 return 0;
1645}
1646
c8e518d5 1647/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1648static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1649 u64 sys_addr, bool hi_rng,
1650 u32 dct_sel_base_addr)
6163b5d4
DT
1651{
1652 u64 chan_off;
c8e518d5
BP
1653 u64 dram_base = get_dram_base(pvt, range);
1654 u64 hole_off = f10_dhar_offset(pvt);
6f3508f6 1655 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1656
c8e518d5
BP
1657 if (hi_rng) {
1658 /*
1659 * if
1660 * base address of high range is below 4Gb
1661 * (bits [47:27] at [31:11])
1662 * DRAM address space on this DCT is hoisted above 4Gb &&
1663 * sys_addr > 4Gb
1664 *
1665 * remove hole offset from sys_addr
1666 * else
1667 * remove high range offset from sys_addr
1668 */
1669 if ((!(dct_sel_base_addr >> 16) ||
1670 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1671 dhar_valid(pvt) &&
c8e518d5 1672 (sys_addr >= BIT_64(32)))
bc21fa57 1673 chan_off = hole_off;
6163b5d4
DT
1674 else
1675 chan_off = dct_sel_base_off;
1676 } else {
c8e518d5
BP
1677 /*
1678 * if
1679 * we have a valid hole &&
1680 * sys_addr > 4Gb
1681 *
1682 * remove hole
1683 * else
1684 * remove dram base to normalize to DCT address
1685 */
972ea17a 1686 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1687 chan_off = hole_off;
6163b5d4 1688 else
c8e518d5 1689 chan_off = dram_base;
6163b5d4
DT
1690 }
1691
10ef6b0d 1692 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
6163b5d4
DT
1693}
1694
6163b5d4
DT
1695/*
1696 * checks if the csrow passed in is marked as SPARED, if so returns the new
1697 * spare row
1698 */
11c75ead 1699static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1700{
614ec9d8
BP
1701 int tmp_cs;
1702
1703 if (online_spare_swap_done(pvt, dct) &&
1704 csrow == online_spare_bad_dramcs(pvt, dct)) {
1705
1706 for_each_chip_select(tmp_cs, dct, pvt) {
1707 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1708 csrow = tmp_cs;
1709 break;
1710 }
1711 }
6163b5d4
DT
1712 }
1713 return csrow;
1714}
1715
1716/*
1717 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1718 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1719 *
1720 * Return:
1721 * -EINVAL: NOT FOUND
1722 * 0..csrow = Chip-Select Row
1723 */
c7e5301a 1724static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1725{
1726 struct mem_ctl_info *mci;
1727 struct amd64_pvt *pvt;
11c75ead 1728 u64 cs_base, cs_mask;
6163b5d4
DT
1729 int cs_found = -EINVAL;
1730 int csrow;
1731
2ec591ac 1732 mci = edac_mc_find(nid);
6163b5d4
DT
1733 if (!mci)
1734 return cs_found;
1735
1736 pvt = mci->pvt_info;
1737
956b9ba1 1738 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1739
11c75ead
BP
1740 for_each_chip_select(csrow, dct, pvt) {
1741 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1742 continue;
1743
11c75ead 1744 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1745
956b9ba1
JP
1746 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1747 csrow, cs_base, cs_mask);
6163b5d4 1748
11c75ead 1749 cs_mask = ~cs_mask;
6163b5d4 1750
956b9ba1
JP
1751 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1752 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1753
11c75ead 1754 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
18b94f66
AG
1755 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1756 cs_found = csrow;
1757 break;
1758 }
11c75ead 1759 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1760
956b9ba1 1761 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1762 break;
1763 }
1764 }
1765 return cs_found;
1766}
1767
95b0ef55
BP
1768/*
1769 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1770 * swapped with a region located at the bottom of memory so that the GPU can use
1771 * the interleaved region and thus two channels.
1772 */
b15f0fca 1773static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1774{
1775 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1776
a4b4bedc 1777 if (pvt->fam == 0x10) {
95b0ef55 1778 /* only revC3 and revE have that feature */
a4b4bedc 1779 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
95b0ef55
BP
1780 return sys_addr;
1781 }
1782
7981a28f 1783 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
95b0ef55
BP
1784
1785 if (!(swap_reg & 0x1))
1786 return sys_addr;
1787
1788 swap_base = (swap_reg >> 3) & 0x7f;
1789 swap_limit = (swap_reg >> 11) & 0x7f;
1790 rgn_size = (swap_reg >> 20) & 0x7f;
1791 tmp_addr = sys_addr >> 27;
1792
1793 if (!(sys_addr >> 34) &&
1794 (((tmp_addr >= swap_base) &&
1795 (tmp_addr <= swap_limit)) ||
1796 (tmp_addr < rgn_size)))
1797 return sys_addr ^ (u64)swap_base << 27;
1798
1799 return sys_addr;
1800}
1801
f71d0a05 1802/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1803static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1804 u64 sys_addr, int *chan_sel)
f71d0a05 1805{
229a7a11 1806 int cs_found = -EINVAL;
c8e518d5 1807 u64 chan_addr;
5d4b58e8 1808 u32 dct_sel_base;
11c75ead 1809 u8 channel;
229a7a11 1810 bool high_range = false;
f71d0a05 1811
7f19bf75 1812 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1813 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1814 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1815
956b9ba1
JP
1816 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1817 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1818
355fba60
BP
1819 if (dhar_valid(pvt) &&
1820 dhar_base(pvt) <= sys_addr &&
1821 sys_addr < BIT_64(32)) {
1822 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1823 sys_addr);
1824 return -EINVAL;
1825 }
1826
f030ddfb 1827 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1828 return -EINVAL;
1829
b15f0fca 1830 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1831
f71d0a05
DT
1832 dct_sel_base = dct_sel_baseaddr(pvt);
1833
1834 /*
1835 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1836 * select between DCT0 and DCT1.
1837 */
1838 if (dct_high_range_enabled(pvt) &&
1839 !dct_ganging_enabled(pvt) &&
1840 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1841 high_range = true;
f71d0a05 1842
b15f0fca 1843 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1844
b15f0fca 1845 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1846 high_range, dct_sel_base);
f71d0a05 1847
e2f79dbd
BP
1848 /* Remove node interleaving, see F1x120 */
1849 if (intlv_en)
1850 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1851 (chan_addr & 0xfff);
f71d0a05 1852
5d4b58e8 1853 /* remove channel interleave */
f71d0a05
DT
1854 if (dct_interleave_enabled(pvt) &&
1855 !dct_high_range_enabled(pvt) &&
1856 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1857
1858 if (dct_sel_interleave_addr(pvt) != 1) {
1859 if (dct_sel_interleave_addr(pvt) == 0x3)
1860 /* hash 9 */
1861 chan_addr = ((chan_addr >> 10) << 9) |
1862 (chan_addr & 0x1ff);
1863 else
1864 /* A[6] or hash 6 */
1865 chan_addr = ((chan_addr >> 7) << 6) |
1866 (chan_addr & 0x3f);
1867 } else
1868 /* A[12] */
1869 chan_addr = ((chan_addr >> 13) << 12) |
1870 (chan_addr & 0xfff);
f71d0a05
DT
1871 }
1872
956b9ba1 1873 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1874
b15f0fca 1875 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1876
33ca0643 1877 if (cs_found >= 0)
f71d0a05 1878 *chan_sel = channel;
33ca0643 1879
f71d0a05
DT
1880 return cs_found;
1881}
1882
18b94f66
AG
1883static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1884 u64 sys_addr, int *chan_sel)
1885{
1886 int cs_found = -EINVAL;
1887 int num_dcts_intlv = 0;
1888 u64 chan_addr, chan_offset;
1889 u64 dct_base, dct_limit;
1890 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1891 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1892
1893 u64 dhar_offset = f10_dhar_offset(pvt);
1894 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1895 u8 node_id = dram_dst_node(pvt, range);
1896 u8 intlv_en = dram_intlv_en(pvt, range);
1897
1898 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1899 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1900
1901 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1902 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1903
1904 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1905 range, sys_addr, get_dram_limit(pvt, range));
1906
1907 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1908 !(get_dram_limit(pvt, range) >= sys_addr))
1909 return -EINVAL;
1910
1911 if (dhar_valid(pvt) &&
1912 dhar_base(pvt) <= sys_addr &&
1913 sys_addr < BIT_64(32)) {
1914 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1915 sys_addr);
1916 return -EINVAL;
1917 }
1918
1919 /* Verify sys_addr is within DCT Range. */
4fc06b31
AG
1920 dct_base = (u64) dct_sel_baseaddr(pvt);
1921 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
18b94f66
AG
1922
1923 if (!(dct_cont_base_reg & BIT(0)) &&
4fc06b31
AG
1924 !(dct_base <= (sys_addr >> 27) &&
1925 dct_limit >= (sys_addr >> 27)))
18b94f66
AG
1926 return -EINVAL;
1927
1928 /* Verify number of dct's that participate in channel interleaving. */
1929 num_dcts_intlv = (int) hweight8(intlv_en);
1930
1931 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1932 return -EINVAL;
1933
dc0a50a8
YG
1934 if (pvt->model >= 0x60)
1935 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
1936 else
1937 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1938 num_dcts_intlv, dct_sel);
18b94f66
AG
1939
1940 /* Verify we stay within the MAX number of channels allowed */
7f3f5240 1941 if (channel > 3)
18b94f66
AG
1942 return -EINVAL;
1943
1944 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1945
1946 /* Get normalized DCT addr */
1947 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1948 chan_offset = dhar_offset;
1949 else
4fc06b31 1950 chan_offset = dct_base << 27;
18b94f66
AG
1951
1952 chan_addr = sys_addr - chan_offset;
1953
1954 /* remove channel interleave */
1955 if (num_dcts_intlv == 2) {
1956 if (intlv_addr == 0x4)
1957 chan_addr = ((chan_addr >> 9) << 8) |
1958 (chan_addr & 0xff);
1959 else if (intlv_addr == 0x5)
1960 chan_addr = ((chan_addr >> 10) << 9) |
1961 (chan_addr & 0x1ff);
1962 else
1963 return -EINVAL;
1964
1965 } else if (num_dcts_intlv == 4) {
1966 if (intlv_addr == 0x4)
1967 chan_addr = ((chan_addr >> 10) << 8) |
1968 (chan_addr & 0xff);
1969 else if (intlv_addr == 0x5)
1970 chan_addr = ((chan_addr >> 11) << 9) |
1971 (chan_addr & 0x1ff);
1972 else
1973 return -EINVAL;
1974 }
1975
1976 if (dct_offset_en) {
1977 amd64_read_pci_cfg(pvt->F1,
1978 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1979 &tmp);
4fc06b31 1980 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
18b94f66
AG
1981 }
1982
1983 f15h_select_dct(pvt, channel);
1984
1985 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1986
1987 /*
1988 * Find Chip select:
1989 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1990 * there is support for 4 DCT's, but only 2 are currently functional.
1991 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1992 * pvt->csels[1]. So we need to use '1' here to get correct info.
1993 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1994 */
1995 alias_channel = (channel == 3) ? 1 : channel;
1996
1997 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1998
1999 if (cs_found >= 0)
2000 *chan_sel = alias_channel;
2001
2002 return cs_found;
2003}
2004
2005static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2006 u64 sys_addr,
2007 int *chan_sel)
f71d0a05 2008{
e761359a
BP
2009 int cs_found = -EINVAL;
2010 unsigned range;
f71d0a05 2011
7f19bf75 2012 for (range = 0; range < DRAM_RANGES; range++) {
7f19bf75 2013 if (!dram_rw(pvt, range))
f71d0a05
DT
2014 continue;
2015
18b94f66
AG
2016 if (pvt->fam == 0x15 && pvt->model >= 0x30)
2017 cs_found = f15_m30h_match_to_this_node(pvt, range,
2018 sys_addr,
2019 chan_sel);
f71d0a05 2020
18b94f66
AG
2021 else if ((get_dram_base(pvt, range) <= sys_addr) &&
2022 (get_dram_limit(pvt, range) >= sys_addr)) {
b15f0fca 2023 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 2024 sys_addr, chan_sel);
f71d0a05
DT
2025 if (cs_found >= 0)
2026 break;
2027 }
2028 }
2029 return cs_found;
2030}
2031
2032/*
bdc30a0c
BP
2033 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2034 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 2035 *
bdc30a0c
BP
2036 * The @sys_addr is usually an error address received from the hardware
2037 * (MCX_ADDR).
f71d0a05 2038 */
b15f0fca 2039static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 2040 struct err_info *err)
f71d0a05
DT
2041{
2042 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 2043
33ca0643 2044 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 2045
33ca0643
BP
2046 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2047 if (err->csrow < 0) {
2048 err->err_code = ERR_CSROW;
bdc30a0c
BP
2049 return;
2050 }
2051
bdc30a0c
BP
2052 /*
2053 * We need the syndromes for channel detection only when we're
2054 * ganged. Otherwise @chan should already contain the channel at
2055 * this point.
2056 */
a97fa68e 2057 if (dct_ganging_enabled(pvt))
33ca0643 2058 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
2059}
2060
f71d0a05 2061/*
8566c4df 2062 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 2063 * CSROWs
f71d0a05 2064 */
d1ea71cd 2065static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 2066{
bb89f5a0 2067 int dimm, size0, size1;
525a1b20
BP
2068 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2069 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 2070
a4b4bedc 2071 if (pvt->fam == 0xf) {
8566c4df 2072 /* K8 families < revF not supported yet */
1433eb99 2073 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
2074 return;
2075 else
2076 WARN_ON(ctrl != 0);
2077 }
2078
7981a28f
AG
2079 if (pvt->fam == 0x10) {
2080 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2081 : pvt->dbam0;
2082 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2083 pvt->csels[1].csbases :
2084 pvt->csels[0].csbases;
2085 } else if (ctrl) {
2086 dbam = pvt->dbam0;
2087 dcsb = pvt->csels[1].csbases;
2088 }
956b9ba1
JP
2089 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2090 ctrl, dbam);
f71d0a05 2091
8566c4df
BP
2092 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2093
f71d0a05
DT
2094 /* Dump memory sizes for DIMM and its CSROWs */
2095 for (dimm = 0; dimm < 4; dimm++) {
2096
2097 size0 = 0;
11c75ead 2098 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
07ed82ef
YG
2099 /*
2100 * For F15m60h, we need multiplier for LRDIMM cs_size
2101 * calculation. We pass dimm value to the dbam_to_cs
a597d2a5
AG
2102 * mapper so we can find the multiplier from the
2103 * corresponding DCSM.
2104 */
41d8bfab 2105 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
2106 DBAM_DIMM(dimm, dbam),
2107 dimm);
f71d0a05
DT
2108
2109 size1 = 0;
11c75ead 2110 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab 2111 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
2112 DBAM_DIMM(dimm, dbam),
2113 dimm);
f71d0a05 2114
24f9a7fe 2115 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
2116 dimm * 2, size0,
2117 dimm * 2 + 1, size1);
f71d0a05
DT
2118 }
2119}
2120
d1ea71cd 2121static struct amd64_family_type family_types[] = {
4d37607a 2122 [K8_CPUS] = {
0092b20d 2123 .ctl_name = "K8",
8d5b5d9c 2124 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
3f37a36b 2125 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
4d37607a 2126 .ops = {
1433eb99 2127 .early_channel_count = k8_early_channel_count,
1433eb99
BP
2128 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
2129 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
2130 }
2131 },
2132 [F10_CPUS] = {
0092b20d 2133 .ctl_name = "F10h",
8d5b5d9c 2134 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
3f37a36b 2135 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
4d37607a 2136 .ops = {
7d20d14d 2137 .early_channel_count = f1x_early_channel_count,
b15f0fca 2138 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 2139 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
2140 }
2141 },
2142 [F15_CPUS] = {
2143 .ctl_name = "F15h",
df71a053 2144 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
3f37a36b 2145 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
b2b0c605 2146 .ops = {
7d20d14d 2147 .early_channel_count = f1x_early_channel_count,
b15f0fca 2148 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 2149 .dbam_to_cs = f15_dbam_to_chip_select,
4d37607a
DT
2150 }
2151 },
18b94f66
AG
2152 [F15_M30H_CPUS] = {
2153 .ctl_name = "F15h_M30h",
2154 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
3f37a36b 2155 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
18b94f66
AG
2156 .ops = {
2157 .early_channel_count = f1x_early_channel_count,
2158 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2159 .dbam_to_cs = f16_dbam_to_chip_select,
18b94f66
AG
2160 }
2161 },
a597d2a5
AG
2162 [F15_M60H_CPUS] = {
2163 .ctl_name = "F15h_M60h",
2164 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
3f37a36b 2165 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
a597d2a5
AG
2166 .ops = {
2167 .early_channel_count = f1x_early_channel_count,
2168 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2169 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
2170 }
2171 },
94c1acf2
AG
2172 [F16_CPUS] = {
2173 .ctl_name = "F16h",
2174 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
3f37a36b 2175 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
94c1acf2
AG
2176 .ops = {
2177 .early_channel_count = f1x_early_channel_count,
2178 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2179 .dbam_to_cs = f16_dbam_to_chip_select,
94c1acf2
AG
2180 }
2181 },
85a8885b
AG
2182 [F16_M30H_CPUS] = {
2183 .ctl_name = "F16h_M30h",
2184 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
3f37a36b 2185 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
85a8885b
AG
2186 .ops = {
2187 .early_channel_count = f1x_early_channel_count,
2188 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2189 .dbam_to_cs = f16_dbam_to_chip_select,
85a8885b
AG
2190 }
2191 },
f1cbbec9
YG
2192 [F17_CPUS] = {
2193 .ctl_name = "F17h",
2194 .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
2195 .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2196 .ops = {
2197 .early_channel_count = f17_early_channel_count,
2198 .dbam_to_cs = f17_base_addr_to_cs_size,
2199 }
2200 },
4d37607a
DT
2201};
2202
b1289d6f 2203/*
bfc04aec
BP
2204 * These are tables of eigenvectors (one per line) which can be used for the
2205 * construction of the syndrome tables. The modified syndrome search algorithm
2206 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 2207 *
bfc04aec 2208 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 2209 */
c7e5301a 2210static const u16 x4_vectors[] = {
bfc04aec
BP
2211 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2212 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2213 0x0001, 0x0002, 0x0004, 0x0008,
2214 0x1013, 0x3032, 0x4044, 0x8088,
2215 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2216 0x4857, 0xc4fe, 0x13cc, 0x3288,
2217 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2218 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2219 0x15c1, 0x2a42, 0x89ac, 0x4758,
2220 0x2b03, 0x1602, 0x4f0c, 0xca08,
2221 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2222 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2223 0x2b87, 0x164e, 0x642c, 0xdc18,
2224 0x40b9, 0x80de, 0x1094, 0x20e8,
2225 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2226 0x11c1, 0x2242, 0x84ac, 0x4c58,
2227 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2228 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2229 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2230 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2231 0x16b3, 0x3d62, 0x4f34, 0x8518,
2232 0x1e2f, 0x391a, 0x5cac, 0xf858,
2233 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2234 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2235 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2236 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2237 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2238 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2239 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2240 0x185d, 0x2ca6, 0x7914, 0x9e28,
2241 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2242 0x4199, 0x82ee, 0x19f4, 0x2e58,
2243 0x4807, 0xc40e, 0x130c, 0x3208,
2244 0x1905, 0x2e0a, 0x5804, 0xac08,
2245 0x213f, 0x132a, 0xadfc, 0x5ba8,
2246 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
2247};
2248
c7e5301a 2249static const u16 x8_vectors[] = {
bfc04aec
BP
2250 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2251 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2252 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2253 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2254 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2255 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2256 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2257 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2258 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2259 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2260 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2261 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2262 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2263 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2264 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2265 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2266 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2267 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2268 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2269};
2270
c7e5301a 2271static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 2272 unsigned v_dim)
b1289d6f 2273{
bfc04aec
BP
2274 unsigned int i, err_sym;
2275
2276 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2277 u16 s = syndrome;
d34a6ecd
BP
2278 unsigned v_idx = err_sym * v_dim;
2279 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
2280
2281 /* walk over all 16 bits of the syndrome */
2282 for (i = 1; i < (1U << 16); i <<= 1) {
2283
2284 /* if bit is set in that eigenvector... */
2285 if (v_idx < v_end && vectors[v_idx] & i) {
2286 u16 ev_comp = vectors[v_idx++];
2287
2288 /* ... and bit set in the modified syndrome, */
2289 if (s & i) {
2290 /* remove it. */
2291 s ^= ev_comp;
4d37607a 2292
bfc04aec
BP
2293 if (!s)
2294 return err_sym;
2295 }
b1289d6f 2296
bfc04aec
BP
2297 } else if (s & i)
2298 /* can't get to zero, move to next symbol */
2299 break;
2300 }
b1289d6f
DT
2301 }
2302
956b9ba1 2303 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
2304 return -1;
2305}
d27bf6fa 2306
bfc04aec
BP
2307static int map_err_sym_to_channel(int err_sym, int sym_size)
2308{
2309 if (sym_size == 4)
2310 switch (err_sym) {
2311 case 0x20:
2312 case 0x21:
2313 return 0;
2314 break;
2315 case 0x22:
2316 case 0x23:
2317 return 1;
2318 break;
2319 default:
2320 return err_sym >> 4;
2321 break;
2322 }
2323 /* x8 symbols */
2324 else
2325 switch (err_sym) {
2326 /* imaginary bits not in a DIMM */
2327 case 0x10:
2328 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2329 err_sym);
2330 return -1;
2331 break;
2332
2333 case 0x11:
2334 return 0;
2335 break;
2336 case 0x12:
2337 return 1;
2338 break;
2339 default:
2340 return err_sym >> 3;
2341 break;
2342 }
2343 return -1;
2344}
2345
2346static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2347{
2348 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
2349 int err_sym = -1;
2350
a3b7db09 2351 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
2352 err_sym = decode_syndrome(syndrome, x8_vectors,
2353 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
2354 pvt->ecc_sym_sz);
2355 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
2356 err_sym = decode_syndrome(syndrome, x4_vectors,
2357 ARRAY_SIZE(x4_vectors),
a3b7db09 2358 pvt->ecc_sym_sz);
ad6a32e9 2359 else {
a3b7db09 2360 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 2361 return err_sym;
bfc04aec 2362 }
ad6a32e9 2363
a3b7db09 2364 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
2365}
2366
e70984d9 2367static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
33ca0643 2368 u8 ecc_type)
d27bf6fa 2369{
33ca0643
BP
2370 enum hw_event_mc_err_type err_type;
2371 const char *string;
d27bf6fa 2372
33ca0643
BP
2373 if (ecc_type == 2)
2374 err_type = HW_EVENT_ERR_CORRECTED;
2375 else if (ecc_type == 1)
2376 err_type = HW_EVENT_ERR_UNCORRECTED;
d12a969e
YG
2377 else if (ecc_type == 3)
2378 err_type = HW_EVENT_ERR_DEFERRED;
33ca0643
BP
2379 else {
2380 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
2381 return;
2382 }
2383
33ca0643
BP
2384 switch (err->err_code) {
2385 case DECODE_OK:
2386 string = "";
2387 break;
2388 case ERR_NODE:
2389 string = "Failed to map error addr to a node";
2390 break;
2391 case ERR_CSROW:
2392 string = "Failed to map error addr to a csrow";
2393 break;
2394 case ERR_CHANNEL:
713ad546
YG
2395 string = "Unknown syndrome - possible error reporting race";
2396 break;
2397 case ERR_SYND:
2398 string = "MCA_SYND not valid - unknown syndrome and csrow";
2399 break;
2400 case ERR_NORM_ADDR:
2401 string = "Cannot decode normalized address";
33ca0643
BP
2402 break;
2403 default:
2404 string = "WTF error";
2405 break;
d27bf6fa 2406 }
33ca0643
BP
2407
2408 edac_mc_handle_error(err_type, mci, 1,
2409 err->page, err->offset, err->syndrome,
2410 err->csrow, err->channel, -1,
2411 string, "");
d27bf6fa
DT
2412}
2413
df781d03 2414static inline void decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2415{
0c510cc8
DB
2416 struct mem_ctl_info *mci;
2417 struct amd64_pvt *pvt;
f192c7b1 2418 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
2419 u8 xec = XEC(m->status, 0x1f);
2420 u16 ec = EC(m->status);
33ca0643
BP
2421 u64 sys_addr;
2422 struct err_info err;
d27bf6fa 2423
0c510cc8
DB
2424 mci = edac_mc_find(node_id);
2425 if (!mci)
2426 return;
2427
2428 pvt = mci->pvt_info;
2429
66fed2d4 2430 /* Bail out early if this was an 'observed' error */
5980bb9c 2431 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2432 return;
d27bf6fa 2433
ecaf5606
BP
2434 /* Do only ECC errors */
2435 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2436 return;
d27bf6fa 2437
33ca0643
BP
2438 memset(&err, 0, sizeof(err));
2439
a4b4bedc 2440 sys_addr = get_error_address(pvt, m);
33ca0643 2441
ecaf5606 2442 if (ecc_type == 2)
33ca0643
BP
2443 err.syndrome = extract_syndrome(m->status);
2444
2445 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2446
e70984d9 2447 __log_ecc_error(mci, &err, ecc_type);
d27bf6fa
DT
2448}
2449
713ad546
YG
2450/*
2451 * To find the UMC channel represented by this bank we need to match on its
2452 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2453 * IPID.
2454 */
2455static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
2456{
2457 u32 umc_instance_id[] = {0x50f00, 0x150f00};
2458 u32 instance_id = m->ipid & GENMASK(31, 0);
2459 int i, channel = -1;
2460
2461 for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
2462 if (umc_instance_id[i] == instance_id)
2463 channel = i;
2464
2465 return channel;
2466}
2467
2468static void decode_umc_error(int node_id, struct mce *m)
2469{
2470 u8 ecc_type = (m->status >> 45) & 0x3;
2471 struct mem_ctl_info *mci;
2472 struct amd64_pvt *pvt;
2473 struct err_info err;
2474 u64 sys_addr;
2475
2476 mci = edac_mc_find(node_id);
2477 if (!mci)
2478 return;
2479
2480 pvt = mci->pvt_info;
2481
2482 memset(&err, 0, sizeof(err));
2483
2484 if (m->status & MCI_STATUS_DEFERRED)
2485 ecc_type = 3;
2486
2487 err.channel = find_umc_channel(pvt, m);
2488 if (err.channel < 0) {
2489 err.err_code = ERR_CHANNEL;
2490 goto log_error;
2491 }
2492
2493 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
2494 err.err_code = ERR_NORM_ADDR;
2495 goto log_error;
2496 }
2497
2498 error_address_to_page_and_offset(sys_addr, &err);
2499
2500 if (!(m->status & MCI_STATUS_SYNDV)) {
2501 err.err_code = ERR_SYND;
2502 goto log_error;
2503 }
2504
2505 if (ecc_type == 2) {
2506 u8 length = (m->synd >> 18) & 0x3f;
2507
2508 if (length)
2509 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
2510 else
2511 err.err_code = ERR_CHANNEL;
2512 }
2513
2514 err.csrow = m->synd & 0x7;
2515
2516log_error:
2517 __log_ecc_error(mci, &err, ecc_type);
2518}
2519
0ec449ee 2520/*
3f37a36b
BP
2521 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2522 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
936fc3af 2523 * Reserve F0 and F6 on systems with a UMC.
0ec449ee 2524 */
936fc3af
YG
2525static int
2526reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
2527{
2528 if (pvt->umc) {
2529 pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2530 if (!pvt->F0) {
5246c540 2531 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
936fc3af
YG
2532 return -ENODEV;
2533 }
2534
2535 pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2536 if (!pvt->F6) {
2537 pci_dev_put(pvt->F0);
2538 pvt->F0 = NULL;
2539
5246c540 2540 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
936fc3af
YG
2541 return -ENODEV;
2542 }
5246c540 2543
936fc3af
YG
2544 edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
2545 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2546 edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
2547
2548 return 0;
2549 }
2550
0ec449ee 2551 /* Reserve the ADDRESS MAP Device */
936fc3af 2552 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
8d5b5d9c 2553 if (!pvt->F1) {
5246c540 2554 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
bbd0c1f6 2555 return -ENODEV;
0ec449ee
DT
2556 }
2557
3f37a36b 2558 /* Reserve the DCT Device */
936fc3af 2559 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
3f37a36b 2560 if (!pvt->F2) {
8d5b5d9c
BP
2561 pci_dev_put(pvt->F1);
2562 pvt->F1 = NULL;
0ec449ee 2563
5246c540
BP
2564 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2565 return -ENODEV;
0ec449ee 2566 }
936fc3af 2567
956b9ba1
JP
2568 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2569 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2570 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2571
2572 return 0;
2573}
2574
360b7f3c 2575static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2576{
936fc3af
YG
2577 if (pvt->umc) {
2578 pci_dev_put(pvt->F0);
2579 pci_dev_put(pvt->F6);
2580 } else {
2581 pci_dev_put(pvt->F1);
2582 pci_dev_put(pvt->F2);
2583 }
0ec449ee
DT
2584}
2585
b64ce7cd
YG
2586static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
2587{
2588 pvt->ecc_sym_sz = 4;
2589
2590 if (pvt->umc) {
2591 u8 i;
2592
2593 for (i = 0; i < NUM_UMCS; i++) {
2594 /* Check enabled channels only: */
2595 if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
2596 (pvt->umc[i].ecc_ctrl & BIT(7))) {
2597 pvt->ecc_sym_sz = 8;
2598 break;
2599 }
2600 }
2601
2602 return;
2603 }
2604
2605 if (pvt->fam >= 0x10) {
2606 u32 tmp;
2607
2608 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2609 /* F16h has only DCT0, so no need to read dbam1. */
2610 if (pvt->fam != 0x16)
2611 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2612
2613 /* F10h, revD and later can do x8 ECC too. */
2614 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2615 pvt->ecc_sym_sz = 8;
2616 }
2617}
2618
2619/*
2620 * Retrieve the hardware registers of the memory controller.
2621 */
2622static void __read_mc_regs_df(struct amd64_pvt *pvt)
2623{
2624 u8 nid = pvt->mc_node_id;
2625 struct amd64_umc *umc;
2626 u32 i, umc_base;
2627
2628 /* Read registers from each UMC */
2629 for (i = 0; i < NUM_UMCS; i++) {
2630
2631 umc_base = get_umc_base(i);
2632 umc = &pvt->umc[i];
2633
07ed82ef
YG
2634 amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
2635 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
b64ce7cd
YG
2636 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
2637 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
07ed82ef 2638 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
b64ce7cd
YG
2639 }
2640}
2641
0ec449ee
DT
2642/*
2643 * Retrieve the hardware registers of the memory controller (this includes the
2644 * 'Address Map' and 'Misc' device regs)
2645 */
360b7f3c 2646static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2647{
b64ce7cd 2648 unsigned int range;
0ec449ee 2649 u64 msr_val;
0ec449ee
DT
2650
2651 /*
2652 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
b64ce7cd 2653 * those are Read-As-Zero.
0ec449ee 2654 */
e97f8bb8 2655 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2656 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee 2657
b64ce7cd 2658 /* Check first whether TOP_MEM2 is enabled: */
0ec449ee 2659 rdmsrl(MSR_K8_SYSCFG, msr_val);
b64ce7cd 2660 if (msr_val & BIT(21)) {
e97f8bb8 2661 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2662 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
b64ce7cd 2663 } else {
956b9ba1 2664 edac_dbg(0, " TOP_MEM2 disabled\n");
b64ce7cd
YG
2665 }
2666
2667 if (pvt->umc) {
2668 __read_mc_regs_df(pvt);
2669 amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
2670
2671 goto skip;
2672 }
0ec449ee 2673
5980bb9c 2674 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2675
5a5d2371 2676 read_dram_ctl_register(pvt);
0ec449ee 2677
7f19bf75
BP
2678 for (range = 0; range < DRAM_RANGES; range++) {
2679 u8 rw;
0ec449ee 2680
7f19bf75
BP
2681 /* read settings for this DRAM range */
2682 read_dram_base_limit_regs(pvt, range);
2683
2684 rw = dram_rw(pvt, range);
2685 if (!rw)
2686 continue;
2687
956b9ba1
JP
2688 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2689 range,
2690 get_dram_base(pvt, range),
2691 get_dram_limit(pvt, range));
7f19bf75 2692
956b9ba1
JP
2693 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2694 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2695 (rw & 0x1) ? "R" : "-",
2696 (rw & 0x2) ? "W" : "-",
2697 dram_intlv_sel(pvt, range),
2698 dram_dst_node(pvt, range));
0ec449ee
DT
2699 }
2700
bc21fa57 2701 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
7981a28f 2702 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
0ec449ee 2703
8d5b5d9c 2704 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2705
7981a28f
AG
2706 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2707 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
0ec449ee 2708
78da121e 2709 if (!dct_ganging_enabled(pvt)) {
7981a28f
AG
2710 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2711 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
0ec449ee 2712 }
ad6a32e9 2713
b64ce7cd
YG
2714skip:
2715 read_dct_base_mask(pvt);
2716
a597d2a5
AG
2717 determine_memory_type(pvt);
2718 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
a3b7db09 2719
b64ce7cd 2720 determine_ecc_sym_sz(pvt);
ad6a32e9 2721
b2b0c605 2722 dump_misc_regs(pvt);
0ec449ee
DT
2723}
2724
2725/*
2726 * NOTE: CPU Revision Dependent code
2727 *
2728 * Input:
11c75ead 2729 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2730 * k8 private pointer to -->
2731 * DRAM Bank Address mapping register
2732 * node_id
2733 * DCL register where dual_channel_active is
2734 *
2735 * The DBAM register consists of 4 sets of 4 bits each definitions:
2736 *
2737 * Bits: CSROWs
2738 * 0-3 CSROWs 0 and 1
2739 * 4-7 CSROWs 2 and 3
2740 * 8-11 CSROWs 4 and 5
2741 * 12-15 CSROWs 6 and 7
2742 *
2743 * Values range from: 0 to 15
2744 * The meaning of the values depends on CPU revision and dual-channel state,
2745 * see relevant BKDG more info.
2746 *
2747 * The memory controller provides for total of only 8 CSROWs in its current
2748 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2749 * single channel or two (2) DIMMs in dual channel mode.
2750 *
2751 * The following code logic collapses the various tables for CSROW based on CPU
2752 * revision.
2753 *
2754 * Returns:
2755 * The number of PAGE_SIZE pages on the specified CSROW number it
2756 * encompasses
2757 *
2758 */
d1ea71cd 2759static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2760{
1433eb99 2761 u32 cs_mode, nr_pages;
f92cae45 2762 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2763
10de6497 2764
0ec449ee
DT
2765 /*
2766 * The math on this doesn't look right on the surface because x/2*4 can
2767 * be simplified to x*2 but this expression makes use of the fact that
2768 * it is integral math where 1/2=0. This intermediate value becomes the
2769 * number of bits to shift the DBAM register to extract the proper CSROW
2770 * field.
2771 */
0a5dfc31 2772 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2773
a597d2a5
AG
2774 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
2775 << (20 - PAGE_SHIFT);
0ec449ee 2776
10de6497
BP
2777 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2778 csrow_nr, dct, cs_mode);
2779 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2780
2781 return nr_pages;
2782}
2783
2784/*
2785 * Initialize the array of csrow attribute instances, based on the values
2786 * from pci config hardware registers.
2787 */
360b7f3c 2788static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2789{
10de6497 2790 struct amd64_pvt *pvt = mci->pvt_info;
2d09d8f3 2791 enum edac_type edac_mode = EDAC_NONE;
0ec449ee 2792 struct csrow_info *csrow;
de3910eb 2793 struct dimm_info *dimm;
10de6497 2794 int i, j, empty = 1;
a895bf8b 2795 int nr_pages = 0;
10de6497 2796 u32 val;
0ec449ee 2797
2d09d8f3
YG
2798 if (!pvt->umc) {
2799 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2800
2d09d8f3 2801 pvt->nbcfg = val;
0ec449ee 2802
2d09d8f3
YG
2803 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2804 pvt->mc_node_id, val,
2805 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2806 }
0ec449ee 2807
10de6497
BP
2808 /*
2809 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2810 */
11c75ead 2811 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2812 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2813 bool row_dct1 = false;
0ec449ee 2814
a4b4bedc 2815 if (pvt->fam != 0xf)
10de6497
BP
2816 row_dct1 = !!csrow_enabled(i, 1, pvt);
2817
2818 if (!row_dct0 && !row_dct1)
0ec449ee 2819 continue;
0ec449ee 2820
10de6497 2821 csrow = mci->csrows[i];
0ec449ee 2822 empty = 0;
10de6497
BP
2823
2824 edac_dbg(1, "MC node: %d, csrow: %d\n",
2825 pvt->mc_node_id, i);
2826
1eef1282 2827 if (row_dct0) {
d1ea71cd 2828 nr_pages = get_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2829 csrow->channels[0]->dimm->nr_pages = nr_pages;
2830 }
11c75ead 2831
10de6497 2832 /* K8 has only one DCT */
a4b4bedc 2833 if (pvt->fam != 0xf && row_dct1) {
d1ea71cd 2834 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
1eef1282
MCC
2835
2836 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2837 nr_pages += row_dct1_pages;
2838 }
0ec449ee 2839
10de6497 2840 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee 2841
2d09d8f3
YG
2842 /* Determine DIMM ECC mode: */
2843 if (pvt->umc) {
2844 if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
2845 edac_mode = EDAC_S4ECD4ED;
2846 else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
2847 edac_mode = EDAC_SECDED;
2848
2849 } else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2850 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
2851 ? EDAC_S4ECD4ED
2852 : EDAC_SECDED;
2853 }
084a4fcc
MCC
2854
2855 for (j = 0; j < pvt->channel_count; j++) {
de3910eb 2856 dimm = csrow->channels[j]->dimm;
a597d2a5 2857 dimm->mtype = pvt->dram_type;
de3910eb 2858 dimm->edac_mode = edac_mode;
084a4fcc 2859 }
0ec449ee
DT
2860 }
2861
2862 return empty;
2863}
d27bf6fa 2864
f6d6ae96 2865/* get all cores on this DCT */
8b84c8df 2866static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2867{
2868 int cpu;
2869
2870 for_each_online_cpu(cpu)
2871 if (amd_get_nb_id(cpu) == nid)
2872 cpumask_set_cpu(cpu, mask);
2873}
2874
2875/* check MCG_CTL on all the cpus on this node */
d1ea71cd 2876static bool nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2877{
2878 cpumask_var_t mask;
50542251 2879 int cpu, nbe;
f6d6ae96
BP
2880 bool ret = false;
2881
2882 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2883 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2884 return false;
2885 }
2886
2887 get_cpus_on_this_dct_cpumask(mask, nid);
2888
f6d6ae96
BP
2889 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2890
2891 for_each_cpu(cpu, mask) {
50542251 2892 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2893 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2894
956b9ba1
JP
2895 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2896 cpu, reg->q,
2897 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2898
2899 if (!nbe)
2900 goto out;
f6d6ae96
BP
2901 }
2902 ret = true;
2903
2904out:
f6d6ae96
BP
2905 free_cpumask_var(mask);
2906 return ret;
2907}
2908
c7e5301a 2909static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2910{
2911 cpumask_var_t cmask;
50542251 2912 int cpu;
f6d6ae96
BP
2913
2914 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2915 amd64_warn("%s: error allocating mask\n", __func__);
0de27884 2916 return -ENOMEM;
f6d6ae96
BP
2917 }
2918
ae7bb7c6 2919 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2920
f6d6ae96
BP
2921 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2922
2923 for_each_cpu(cpu, cmask) {
2924
50542251
BP
2925 struct msr *reg = per_cpu_ptr(msrs, cpu);
2926
f6d6ae96 2927 if (on) {
5980bb9c 2928 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2929 s->flags.nb_mce_enable = 1;
f6d6ae96 2930
5980bb9c 2931 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2932 } else {
2933 /*
d95cf4de 2934 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2935 */
ae7bb7c6 2936 if (!s->flags.nb_mce_enable)
5980bb9c 2937 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2938 }
f6d6ae96
BP
2939 }
2940 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2941
f6d6ae96
BP
2942 free_cpumask_var(cmask);
2943
2944 return 0;
2945}
2946
c7e5301a 2947static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2948 struct pci_dev *F3)
f9431992 2949{
2299ef71 2950 bool ret = true;
c9f4f26e 2951 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2952
2299ef71
BP
2953 if (toggle_ecc_err_reporting(s, nid, ON)) {
2954 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2955 return false;
2956 }
2957
c9f4f26e 2958 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2959
ae7bb7c6
BP
2960 s->old_nbctl = value & mask;
2961 s->nbctl_valid = true;
f9431992
DT
2962
2963 value |= mask;
c9f4f26e 2964 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2965
a97fa68e 2966 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2967
956b9ba1
JP
2968 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2969 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2970
a97fa68e 2971 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2972 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2973
ae7bb7c6 2974 s->flags.nb_ecc_prev = 0;
d95cf4de 2975
f9431992 2976 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2977 value |= NBCFG_ECC_ENABLE;
2978 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2979
a97fa68e 2980 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2981
a97fa68e 2982 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2983 amd64_warn("Hardware rejected DRAM ECC enable,"
2984 "check memory DIMM configuration.\n");
2299ef71 2985 ret = false;
f9431992 2986 } else {
24f9a7fe 2987 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2988 }
d95cf4de 2989 } else {
ae7bb7c6 2990 s->flags.nb_ecc_prev = 1;
f9431992 2991 }
d95cf4de 2992
956b9ba1
JP
2993 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2994 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2995
2299ef71 2996 return ret;
f9431992
DT
2997}
2998
c7e5301a 2999static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 3000 struct pci_dev *F3)
f9431992 3001{
c9f4f26e
BP
3002 u32 value, mask = 0x3; /* UECC/CECC enable */
3003
ae7bb7c6 3004 if (!s->nbctl_valid)
f9431992
DT
3005 return;
3006
c9f4f26e 3007 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 3008 value &= ~mask;
ae7bb7c6 3009 value |= s->old_nbctl;
f9431992 3010
c9f4f26e 3011 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 3012
ae7bb7c6
BP
3013 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3014 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
3015 amd64_read_pci_cfg(F3, NBCFG, &value);
3016 value &= ~NBCFG_ECC_ENABLE;
3017 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
3018 }
3019
3020 /* restore the NB Enable MCGCTL bit */
2299ef71 3021 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 3022 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
3023}
3024
3025/*
2299ef71
BP
3026 * EDAC requires that the BIOS have ECC enabled before
3027 * taking over the processing of ECC errors. A command line
3028 * option allows to force-enable hardware ECC later in
3029 * enable_ecc_error_reporting().
f9431992 3030 */
cab4d277
BP
3031static const char *ecc_msg =
3032 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3033 " Either enable ECC checking or force module loading by setting "
3034 "'ecc_enable_override'.\n"
3035 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 3036
c7e5301a 3037static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992 3038{
06724535 3039 bool nb_mce_en = false;
196b79fc
YG
3040 u8 ecc_en = 0, i;
3041 u32 value;
f9431992 3042
196b79fc
YG
3043 if (boot_cpu_data.x86 >= 0x17) {
3044 u8 umc_en_mask = 0, ecc_en_mask = 0;
f9431992 3045
196b79fc
YG
3046 for (i = 0; i < NUM_UMCS; i++) {
3047 u32 base = get_umc_base(i);
3048
3049 /* Only check enabled UMCs. */
3050 if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
3051 continue;
3052
3053 if (!(value & UMC_SDP_INIT))
3054 continue;
3055
3056 umc_en_mask |= BIT(i);
3057
3058 if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
3059 continue;
3060
3061 if (value & UMC_ECC_ENABLED)
3062 ecc_en_mask |= BIT(i);
3063 }
3064
3065 /* Check whether at least one UMC is enabled: */
3066 if (umc_en_mask)
3067 ecc_en = umc_en_mask == ecc_en_mask;
11ab1cae
YG
3068 else
3069 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
196b79fc
YG
3070
3071 /* Assume UMC MCA banks are enabled. */
3072 nb_mce_en = true;
3073 } else {
3074 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 3075
196b79fc
YG
3076 ecc_en = !!(value & NBCFG_ECC_ENABLE);
3077
3078 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3079 if (!nb_mce_en)
11ab1cae 3080 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
196b79fc
YG
3081 MSR_IA32_MCG_CTL, nid);
3082 }
3083
11ab1cae
YG
3084 amd64_info("Node %d: DRAM ECC %s.\n",
3085 nid, (ecc_en ? "enabled" : "disabled"));
f9431992 3086
2299ef71 3087 if (!ecc_en || !nb_mce_en) {
11ab1cae 3088 amd64_info("%s", ecc_msg);
2299ef71
BP
3089 return false;
3090 }
3091 return true;
f9431992
DT
3092}
3093
2d09d8f3
YG
3094static inline void
3095f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3096{
3097 u8 i, ecc_en = 1, cpk_en = 1;
3098
3099 for (i = 0; i < NUM_UMCS; i++) {
3100 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3101 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3102 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3103 }
3104 }
3105
3106 /* Set chipkill only if ECC is enabled: */
3107 if (ecc_en) {
3108 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3109
3110 if (cpk_en)
3111 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3112 }
3113}
3114
df71a053
BP
3115static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
3116 struct amd64_family_type *fam)
7d6034d3
DT
3117{
3118 struct amd64_pvt *pvt = mci->pvt_info;
3119
3120 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3121 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 3122
2d09d8f3
YG
3123 if (pvt->umc) {
3124 f17h_determine_edac_ctl_cap(mci, pvt);
3125 } else {
3126 if (pvt->nbcap & NBCAP_SECDED)
3127 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
7d6034d3 3128
2d09d8f3
YG
3129 if (pvt->nbcap & NBCAP_CHIPKILL)
3130 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3131 }
7d6034d3 3132
d1ea71cd 3133 mci->edac_cap = determine_edac_cap(pvt);
7d6034d3
DT
3134 mci->mod_name = EDAC_MOD_STR;
3135 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 3136 mci->ctl_name = fam->ctl_name;
e7934b70 3137 mci->dev_name = pci_name(pvt->F3);
7d6034d3
DT
3138 mci->ctl_page_to_phys = NULL;
3139
7d6034d3 3140 /* memory scrubber interface */
d1ea71cd
BP
3141 mci->set_sdram_scrub_rate = set_scrub_rate;
3142 mci->get_sdram_scrub_rate = get_scrub_rate;
7d6034d3
DT
3143}
3144
0092b20d
BP
3145/*
3146 * returns a pointer to the family descriptor on success, NULL otherwise.
3147 */
d1ea71cd 3148static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
395ae783 3149{
0092b20d
BP
3150 struct amd64_family_type *fam_type = NULL;
3151
18b94f66 3152 pvt->ext_model = boot_cpu_data.x86_model >> 4;
a4b4bedc 3153 pvt->stepping = boot_cpu_data.x86_mask;
18b94f66
AG
3154 pvt->model = boot_cpu_data.x86_model;
3155 pvt->fam = boot_cpu_data.x86;
3156
3157 switch (pvt->fam) {
395ae783 3158 case 0xf:
d1ea71cd
BP
3159 fam_type = &family_types[K8_CPUS];
3160 pvt->ops = &family_types[K8_CPUS].ops;
395ae783 3161 break;
df71a053 3162
395ae783 3163 case 0x10:
d1ea71cd
BP
3164 fam_type = &family_types[F10_CPUS];
3165 pvt->ops = &family_types[F10_CPUS].ops;
df71a053
BP
3166 break;
3167
3168 case 0x15:
18b94f66 3169 if (pvt->model == 0x30) {
d1ea71cd
BP
3170 fam_type = &family_types[F15_M30H_CPUS];
3171 pvt->ops = &family_types[F15_M30H_CPUS].ops;
18b94f66 3172 break;
a597d2a5
AG
3173 } else if (pvt->model == 0x60) {
3174 fam_type = &family_types[F15_M60H_CPUS];
3175 pvt->ops = &family_types[F15_M60H_CPUS].ops;
3176 break;
18b94f66
AG
3177 }
3178
d1ea71cd
BP
3179 fam_type = &family_types[F15_CPUS];
3180 pvt->ops = &family_types[F15_CPUS].ops;
395ae783
BP
3181 break;
3182
94c1acf2 3183 case 0x16:
85a8885b
AG
3184 if (pvt->model == 0x30) {
3185 fam_type = &family_types[F16_M30H_CPUS];
3186 pvt->ops = &family_types[F16_M30H_CPUS].ops;
3187 break;
3188 }
d1ea71cd
BP
3189 fam_type = &family_types[F16_CPUS];
3190 pvt->ops = &family_types[F16_CPUS].ops;
94c1acf2
AG
3191 break;
3192
f1cbbec9
YG
3193 case 0x17:
3194 fam_type = &family_types[F17_CPUS];
3195 pvt->ops = &family_types[F17_CPUS].ops;
3196 break;
3197
395ae783 3198 default:
24f9a7fe 3199 amd64_err("Unsupported family!\n");
0092b20d 3200 return NULL;
395ae783 3201 }
0092b20d 3202
df71a053 3203 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
18b94f66 3204 (pvt->fam == 0xf ?
24f9a7fe
BP
3205 (pvt->ext_model >= K8_REV_F ? "revF or later "
3206 : "revE or earlier ")
3207 : ""), pvt->mc_node_id);
0092b20d 3208 return fam_type;
395ae783
BP
3209}
3210
e339f1ec
TI
3211static const struct attribute_group *amd64_edac_attr_groups[] = {
3212#ifdef CONFIG_EDAC_DEBUG
3213 &amd64_edac_dbg_group,
3214#endif
3215#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3216 &amd64_edac_inj_group,
3217#endif
3218 NULL
3219};
3220
3f37a36b 3221static int init_one_instance(unsigned int nid)
7d6034d3 3222{
3f37a36b 3223 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
0092b20d 3224 struct amd64_family_type *fam_type = NULL;
360b7f3c 3225 struct mem_ctl_info *mci = NULL;
ab5a503c 3226 struct edac_mc_layer layers[2];
3f37a36b 3227 struct amd64_pvt *pvt = NULL;
936fc3af 3228 u16 pci_id1, pci_id2;
7d6034d3
DT
3229 int err = 0, ret;
3230
3231 ret = -ENOMEM;
3232 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3233 if (!pvt)
360b7f3c 3234 goto err_ret;
7d6034d3 3235
360b7f3c 3236 pvt->mc_node_id = nid;
3f37a36b 3237 pvt->F3 = F3;
7d6034d3 3238
395ae783 3239 ret = -EINVAL;
d1ea71cd 3240 fam_type = per_family_init(pvt);
0092b20d 3241 if (!fam_type)
395ae783
BP
3242 goto err_free;
3243
936fc3af
YG
3244 if (pvt->fam >= 0x17) {
3245 pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
3246 if (!pvt->umc) {
3247 ret = -ENOMEM;
3248 goto err_free;
3249 }
3250
3251 pci_id1 = fam_type->f0_id;
3252 pci_id2 = fam_type->f6_id;
3253 } else {
3254 pci_id1 = fam_type->f1_id;
3255 pci_id2 = fam_type->f2_id;
3256 }
3257
3258 err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
7d6034d3 3259 if (err)
936fc3af 3260 goto err_post_init;
7d6034d3 3261
360b7f3c 3262 read_mc_regs(pvt);
7d6034d3 3263
7d6034d3
DT
3264 /*
3265 * We need to determine how many memory channels there are. Then use
3266 * that information for calculating the size of the dynamic instance
360b7f3c 3267 * tables in the 'mci' structure.
7d6034d3 3268 */
360b7f3c 3269 ret = -EINVAL;
7d6034d3
DT
3270 pvt->channel_count = pvt->ops->early_channel_count(pvt);
3271 if (pvt->channel_count < 0)
360b7f3c 3272 goto err_siblings;
7d6034d3
DT
3273
3274 ret = -ENOMEM;
ab5a503c
MCC
3275 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3276 layers[0].size = pvt->csels[0].b_cnt;
3277 layers[0].is_virt_csrow = true;
3278 layers[1].type = EDAC_MC_LAYER_CHANNEL;
f0a56c48
BP
3279
3280 /*
3281 * Always allocate two channels since we can have setups with DIMMs on
3282 * only one channel. Also, this simplifies handling later for the price
3283 * of a couple of KBs tops.
3284 */
3285 layers[1].size = 2;
ab5a503c 3286 layers[1].is_virt_csrow = false;
f0a56c48 3287
ca0907b9 3288 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 3289 if (!mci)
360b7f3c 3290 goto err_siblings;
7d6034d3
DT
3291
3292 mci->pvt_info = pvt;
3f37a36b 3293 mci->pdev = &pvt->F3->dev;
7d6034d3 3294
df71a053 3295 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
3296
3297 if (init_csrows(mci))
7d6034d3
DT
3298 mci->edac_cap = EDAC_FLAG_NONE;
3299
7d6034d3 3300 ret = -ENODEV;
e339f1ec 3301 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
956b9ba1 3302 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
3303 goto err_add_mc;
3304 }
3305
7d6034d3
DT
3306 return 0;
3307
3308err_add_mc:
3309 edac_mc_free(mci);
3310
360b7f3c
BP
3311err_siblings:
3312 free_mc_sibling_devs(pvt);
7d6034d3 3313
936fc3af
YG
3314err_post_init:
3315 if (pvt->fam >= 0x17)
3316 kfree(pvt->umc);
3317
360b7f3c
BP
3318err_free:
3319 kfree(pvt);
7d6034d3 3320
360b7f3c 3321err_ret:
7d6034d3
DT
3322 return ret;
3323}
3324
3f37a36b 3325static int probe_one_instance(unsigned int nid)
7d6034d3 3326{
2299ef71 3327 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 3328 struct ecc_settings *s;
3f37a36b 3329 int ret;
7d6034d3 3330
ae7bb7c6
BP
3331 ret = -ENOMEM;
3332 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
3333 if (!s)
2299ef71 3334 goto err_out;
ae7bb7c6
BP
3335
3336 ecc_stngs[nid] = s;
3337
2299ef71 3338 if (!ecc_enabled(F3, nid)) {
4688c9b4 3339 ret = 0;
2299ef71
BP
3340
3341 if (!ecc_enable_override)
3342 goto err_enable;
3343
044e7a41
YG
3344 if (boot_cpu_data.x86 >= 0x17) {
3345 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3346 goto err_enable;
3347 } else
3348 amd64_warn("Forcing ECC on!\n");
2299ef71
BP
3349
3350 if (!enable_ecc_error_reporting(s, nid, F3))
3351 goto err_enable;
3352 }
3353
3f37a36b 3354 ret = init_one_instance(nid);
360b7f3c 3355 if (ret < 0) {
ae7bb7c6 3356 amd64_err("Error probing instance: %d\n", nid);
044e7a41
YG
3357
3358 if (boot_cpu_data.x86 < 0x17)
3359 restore_ecc_error_reporting(s, nid, F3);
2b9b2c46
YG
3360
3361 goto err_enable;
360b7f3c 3362 }
7d6034d3
DT
3363
3364 return ret;
2299ef71
BP
3365
3366err_enable:
3367 kfree(s);
3368 ecc_stngs[nid] = NULL;
3369
3370err_out:
3371 return ret;
7d6034d3
DT
3372}
3373
3f37a36b 3374static void remove_one_instance(unsigned int nid)
7d6034d3 3375{
360b7f3c
BP
3376 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3377 struct ecc_settings *s = ecc_stngs[nid];
3f37a36b
BP
3378 struct mem_ctl_info *mci;
3379 struct amd64_pvt *pvt;
7d6034d3 3380
3f37a36b 3381 mci = find_mci_by_dev(&F3->dev);
a4b4bedc
BP
3382 WARN_ON(!mci);
3383
7d6034d3 3384 /* Remove from EDAC CORE tracking list */
3f37a36b 3385 mci = edac_mc_del_mc(&F3->dev);
7d6034d3
DT
3386 if (!mci)
3387 return;
3388
3389 pvt = mci->pvt_info;
3390
360b7f3c 3391 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 3392
360b7f3c 3393 free_mc_sibling_devs(pvt);
7d6034d3 3394
360b7f3c
BP
3395 kfree(ecc_stngs[nid]);
3396 ecc_stngs[nid] = NULL;
ae7bb7c6 3397
7d6034d3 3398 /* Free the EDAC CORE resources */
8f68ed97 3399 mci->pvt_info = NULL;
8f68ed97
BP
3400
3401 kfree(pvt);
7d6034d3
DT
3402 edac_mc_free(mci);
3403}
3404
360b7f3c 3405static void setup_pci_device(void)
7d6034d3
DT
3406{
3407 struct mem_ctl_info *mci;
3408 struct amd64_pvt *pvt;
3409
d1ea71cd 3410 if (pci_ctl)
7d6034d3
DT
3411 return;
3412
2ec591ac 3413 mci = edac_mc_find(0);
d1ea71cd
BP
3414 if (!mci)
3415 return;
7d6034d3 3416
d1ea71cd 3417 pvt = mci->pvt_info;
936fc3af
YG
3418 if (pvt->umc)
3419 pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
3420 else
3421 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
d1ea71cd
BP
3422 if (!pci_ctl) {
3423 pr_warn("%s(): Unable to create PCI control\n", __func__);
3424 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
7d6034d3
DT
3425 }
3426}
3427
d6efab74
YG
3428static const struct x86_cpu_id amd64_cpuids[] = {
3429 { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3430 { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3431 { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3432 { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
95d3af6b 3433 { X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
d6efab74
YG
3434 { }
3435};
3436MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
3437
7d6034d3
DT
3438static int __init amd64_edac_init(void)
3439{
360b7f3c 3440 int err = -ENODEV;
3f37a36b 3441 int i;
7d6034d3 3442
1bd9900b
YG
3443 if (!x86_match_cpu(amd64_cpuids))
3444 return -ENODEV;
3445
9653a5c7 3446 if (amd_cache_northbridges() < 0)
1bd9900b 3447 return -ENODEV;
7d6034d3 3448
6ba92fea
BP
3449 opstate_init();
3450
cc4d8860 3451 err = -ENOMEM;
ae7bb7c6 3452 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2ec591ac 3453 if (!ecc_stngs)
a9f0fbe2 3454 goto err_free;
cc4d8860 3455
50542251 3456 msrs = msrs_alloc();
56b34b91 3457 if (!msrs)
360b7f3c 3458 goto err_free;
50542251 3459
2287c636
YG
3460 for (i = 0; i < amd_nb_num(); i++) {
3461 err = probe_one_instance(i);
3462 if (err) {
3f37a36b
BP
3463 /* unwind properly */
3464 while (--i >= 0)
3465 remove_one_instance(i);
7d6034d3 3466
3f37a36b
BP
3467 goto err_pci;
3468 }
2287c636 3469 }
7d6034d3 3470
4688c9b4
YG
3471 if (!edac_has_mcs()) {
3472 err = -ENODEV;
3473 goto err_pci;
3474 }
3475
234365f5
YG
3476 /* register stuff with EDAC MCE */
3477 if (report_gart_errors)
3478 amd_report_gart_errors(true);
3479
3480 if (boot_cpu_data.x86 >= 0x17)
3481 amd_register_ecc_decoder(decode_umc_error);
3482 else
3483 amd_register_ecc_decoder(decode_bus_error);
3484
360b7f3c 3485 setup_pci_device();
f5b10c45
TP
3486
3487#ifdef CONFIG_X86_32
3488 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3489#endif
3490
de0336b3
BP
3491 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
3492
360b7f3c 3493 return 0;
7d6034d3 3494
56b34b91
BP
3495err_pci:
3496 msrs_free(msrs);
3497 msrs = NULL;
cc4d8860 3498
360b7f3c 3499err_free:
360b7f3c
BP
3500 kfree(ecc_stngs);
3501 ecc_stngs = NULL;
3502
7d6034d3
DT
3503 return err;
3504}
3505
3506static void __exit amd64_edac_exit(void)
3507{
3f37a36b
BP
3508 int i;
3509
d1ea71cd
BP
3510 if (pci_ctl)
3511 edac_pci_release_generic_ctl(pci_ctl);
7d6034d3 3512
234365f5
YG
3513 /* unregister from EDAC MCE */
3514 amd_report_gart_errors(false);
3515
3516 if (boot_cpu_data.x86 >= 0x17)
3517 amd_unregister_ecc_decoder(decode_umc_error);
3518 else
3519 amd_unregister_ecc_decoder(decode_bus_error);
3520
3f37a36b
BP
3521 for (i = 0; i < amd_nb_num(); i++)
3522 remove_one_instance(i);
50542251 3523
ae7bb7c6
BP
3524 kfree(ecc_stngs);
3525 ecc_stngs = NULL;
3526
50542251
BP
3527 msrs_free(msrs);
3528 msrs = NULL;
7d6034d3
DT
3529}
3530
3531module_init(amd64_edac_init);
3532module_exit(amd64_edac_exit);
3533
3534MODULE_LICENSE("GPL");
3535MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3536 "Dave Peterson, Thayne Harbaugh");
3537MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3538 EDAC_AMD64_VERSION);
3539
3540module_param(edac_op_state, int, 0444);
3541MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");