drm/tegra: Remove dma_buf->k(un)map
[linux-2.6-block.git] / drivers / dma-buf / dma-buf.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
d15bd7ee
SS
2/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
d15bd7ee
SS
12 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
f54d1867 17#include <linux/dma-fence.h>
d15bd7ee
SS
18#include <linux/anon_inodes.h>
19#include <linux/export.h>
b89e3563 20#include <linux/debugfs.h>
9abdffe2 21#include <linux/module.h>
b89e3563 22#include <linux/seq_file.h>
9b495a58 23#include <linux/poll.h>
52791eee 24#include <linux/dma-resv.h>
b02da6f8 25#include <linux/mm.h>
ed63bb1d 26#include <linux/mount.h>
933a90bf 27#include <linux/pseudo_fs.h>
d15bd7ee 28
c11e391d 29#include <uapi/linux/dma-buf.h>
ed63bb1d 30#include <uapi/linux/magic.h>
c11e391d 31
d15bd7ee
SS
32static inline int is_dma_buf_file(struct file *);
33
b89e3563
SS
34struct dma_buf_list {
35 struct list_head head;
36 struct mutex lock;
37};
38
39static struct dma_buf_list db_list;
40
bb2bb903
GH
41static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42{
43 struct dma_buf *dmabuf;
44 char name[DMA_BUF_NAME_LEN];
45 size_t ret = 0;
46
47 dmabuf = dentry->d_fsdata;
15fd552d 48 dma_resv_lock(dmabuf->resv, NULL);
bb2bb903
GH
49 if (dmabuf->name)
50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
15fd552d 51 dma_resv_unlock(dmabuf->resv);
bb2bb903
GH
52
53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 dentry->d_name.name, ret > 0 ? name : "");
55}
56
ed63bb1d 57static const struct dentry_operations dma_buf_dentry_ops = {
bb2bb903 58 .d_dname = dmabuffs_dname,
ed63bb1d
GH
59};
60
61static struct vfsmount *dma_buf_mnt;
62
933a90bf 63static int dma_buf_fs_init_context(struct fs_context *fc)
ed63bb1d 64{
933a90bf
LT
65 struct pseudo_fs_context *ctx;
66
67 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 if (!ctx)
69 return -ENOMEM;
70 ctx->dops = &dma_buf_dentry_ops;
71 return 0;
ed63bb1d
GH
72}
73
74static struct file_system_type dma_buf_fs_type = {
75 .name = "dmabuf",
933a90bf 76 .init_fs_context = dma_buf_fs_init_context,
ed63bb1d
GH
77 .kill_sb = kill_anon_super,
78};
79
d15bd7ee
SS
80static int dma_buf_release(struct inode *inode, struct file *file)
81{
82 struct dma_buf *dmabuf;
83
84 if (!is_dma_buf_file(file))
85 return -EINVAL;
86
87 dmabuf = file->private_data;
88
f00b4dad
DV
89 BUG_ON(dmabuf->vmapping_counter);
90
9b495a58
ML
91 /*
92 * Any fences that a dma-buf poll can wait on should be signaled
93 * before releasing dma-buf. This is the responsibility of each
94 * driver that uses the reservation objects.
95 *
96 * If you hit this BUG() it means someone dropped their ref to the
97 * dma-buf while still having pending operation to the buffer.
98 */
99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
100
d15bd7ee 101 dmabuf->ops->release(dmabuf);
b89e3563
SS
102
103 mutex_lock(&db_list.lock);
104 list_del(&dmabuf->list_node);
105 mutex_unlock(&db_list.lock);
106
52791eee
CK
107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 dma_resv_fini(dmabuf->resv);
3aac4502 109
9abdffe2 110 module_put(dmabuf->owner);
d15bd7ee
SS
111 kfree(dmabuf);
112 return 0;
113}
114
4c78513e
DV
115static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
116{
117 struct dma_buf *dmabuf;
118
119 if (!is_dma_buf_file(file))
120 return -EINVAL;
121
122 dmabuf = file->private_data;
123
e3a9d6c5
AD
124 /* check if buffer supports mmap */
125 if (!dmabuf->ops->mmap)
126 return -EINVAL;
127
4c78513e 128 /* check for overflowing the buffer's size */
b02da6f8 129 if (vma->vm_pgoff + vma_pages(vma) >
4c78513e
DV
130 dmabuf->size >> PAGE_SHIFT)
131 return -EINVAL;
132
133 return dmabuf->ops->mmap(dmabuf, vma);
134}
135
19e8697b
CJHR
136static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
137{
138 struct dma_buf *dmabuf;
139 loff_t base;
140
141 if (!is_dma_buf_file(file))
142 return -EBADF;
143
144 dmabuf = file->private_data;
145
146 /* only support discovering the end of the buffer,
147 but also allow SEEK_SET to maintain the idiomatic
148 SEEK_END(0), SEEK_CUR(0) pattern */
149 if (whence == SEEK_END)
150 base = dmabuf->size;
151 else if (whence == SEEK_SET)
152 base = 0;
153 else
154 return -EINVAL;
155
156 if (offset != 0)
157 return -EINVAL;
158
159 return base + offset;
160}
161
e7e21c72
DV
162/**
163 * DOC: fence polling
164 *
165 * To support cross-device and cross-driver synchronization of buffer access
f641d3b5 166 * implicit fences (represented internally in the kernel with &struct fence) can
e7e21c72 167 * be attached to a &dma_buf. The glue for that and a few related things are
52791eee 168 * provided in the &dma_resv structure.
e7e21c72
DV
169 *
170 * Userspace can query the state of these implicitly tracked fences using poll()
171 * and related system calls:
172 *
a9a08845 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
e7e21c72
DV
174 * most recent write or exclusive fence.
175 *
a9a08845 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
e7e21c72
DV
177 * all attached fences, shared and exclusive ones.
178 *
179 * Note that this only signals the completion of the respective fences, i.e. the
180 * DMA transfers are complete. Cache flushing and any other necessary
181 * preparations before CPU access can begin still need to happen.
182 */
183
f54d1867 184static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
9b495a58
ML
185{
186 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
187 unsigned long flags;
188
189 spin_lock_irqsave(&dcb->poll->lock, flags);
190 wake_up_locked_poll(dcb->poll, dcb->active);
191 dcb->active = 0;
192 spin_unlock_irqrestore(&dcb->poll->lock, flags);
193}
194
afc9a42b 195static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
9b495a58
ML
196{
197 struct dma_buf *dmabuf;
52791eee
CK
198 struct dma_resv *resv;
199 struct dma_resv_list *fobj;
f54d1867 200 struct dma_fence *fence_excl;
01699437 201 __poll_t events;
b016cd6e 202 unsigned shared_count, seq;
9b495a58
ML
203
204 dmabuf = file->private_data;
205 if (!dmabuf || !dmabuf->resv)
a9a08845 206 return EPOLLERR;
9b495a58
ML
207
208 resv = dmabuf->resv;
209
210 poll_wait(file, &dmabuf->poll, poll);
211
a9a08845 212 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
9b495a58
ML
213 if (!events)
214 return 0;
215
b016cd6e
CW
216retry:
217 seq = read_seqcount_begin(&resv->seq);
3c3b177a 218 rcu_read_lock();
b016cd6e
CW
219
220 fobj = rcu_dereference(resv->fence);
221 if (fobj)
222 shared_count = fobj->shared_count;
223 else
224 shared_count = 0;
225 fence_excl = rcu_dereference(resv->fence_excl);
226 if (read_seqcount_retry(&resv->seq, seq)) {
227 rcu_read_unlock();
228 goto retry;
229 }
230
a9a08845 231 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
9b495a58 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
a9a08845 233 __poll_t pevents = EPOLLIN;
9b495a58 234
04a5faa8 235 if (shared_count == 0)
a9a08845 236 pevents |= EPOLLOUT;
9b495a58
ML
237
238 spin_lock_irq(&dmabuf->poll.lock);
239 if (dcb->active) {
240 dcb->active |= pevents;
241 events &= ~pevents;
242 } else
243 dcb->active = pevents;
244 spin_unlock_irq(&dmabuf->poll.lock);
245
246 if (events & pevents) {
f54d1867 247 if (!dma_fence_get_rcu(fence_excl)) {
3c3b177a
ML
248 /* force a recheck */
249 events &= ~pevents;
250 dma_buf_poll_cb(NULL, &dcb->cb);
f54d1867
CW
251 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
252 dma_buf_poll_cb)) {
9b495a58 253 events &= ~pevents;
f54d1867 254 dma_fence_put(fence_excl);
04a5faa8 255 } else {
9b495a58
ML
256 /*
257 * No callback queued, wake up any additional
258 * waiters.
259 */
f54d1867 260 dma_fence_put(fence_excl);
9b495a58 261 dma_buf_poll_cb(NULL, &dcb->cb);
04a5faa8 262 }
9b495a58
ML
263 }
264 }
265
a9a08845 266 if ((events & EPOLLOUT) && shared_count > 0) {
9b495a58
ML
267 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
268 int i;
269
270 /* Only queue a new callback if no event has fired yet */
271 spin_lock_irq(&dmabuf->poll.lock);
272 if (dcb->active)
a9a08845 273 events &= ~EPOLLOUT;
9b495a58 274 else
a9a08845 275 dcb->active = EPOLLOUT;
9b495a58
ML
276 spin_unlock_irq(&dmabuf->poll.lock);
277
a9a08845 278 if (!(events & EPOLLOUT))
9b495a58
ML
279 goto out;
280
04a5faa8 281 for (i = 0; i < shared_count; ++i) {
f54d1867 282 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
04a5faa8 283
f54d1867 284 if (!dma_fence_get_rcu(fence)) {
3c3b177a
ML
285 /*
286 * fence refcount dropped to zero, this means
287 * that fobj has been freed
288 *
289 * call dma_buf_poll_cb and force a recheck!
290 */
a9a08845 291 events &= ~EPOLLOUT;
3c3b177a
ML
292 dma_buf_poll_cb(NULL, &dcb->cb);
293 break;
294 }
f54d1867
CW
295 if (!dma_fence_add_callback(fence, &dcb->cb,
296 dma_buf_poll_cb)) {
297 dma_fence_put(fence);
a9a08845 298 events &= ~EPOLLOUT;
9b495a58
ML
299 break;
300 }
f54d1867 301 dma_fence_put(fence);
04a5faa8 302 }
9b495a58
ML
303
304 /* No callback queued, wake up any additional waiters. */
04a5faa8 305 if (i == shared_count)
9b495a58
ML
306 dma_buf_poll_cb(NULL, &dcb->cb);
307 }
308
309out:
3c3b177a 310 rcu_read_unlock();
9b495a58
ML
311 return events;
312}
313
bb2bb903
GH
314/**
315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
316 * The name of the dma-buf buffer can only be set when the dma-buf is not
317 * attached to any devices. It could theoritically support changing the
318 * name of the dma-buf if the same piece of memory is used for multiple
319 * purpose between different devices.
320 *
321 * @dmabuf [in] dmabuf buffer that will be renamed.
322 * @buf: [in] A piece of userspace memory that contains the name of
323 * the dma-buf.
324 *
325 * Returns 0 on success. If the dma-buf buffer is already attached to
326 * devices, return -EBUSY.
327 *
328 */
329static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
330{
331 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
332 long ret = 0;
333
334 if (IS_ERR(name))
335 return PTR_ERR(name);
336
15fd552d 337 dma_resv_lock(dmabuf->resv, NULL);
bb2bb903
GH
338 if (!list_empty(&dmabuf->attachments)) {
339 ret = -EBUSY;
340 kfree(name);
341 goto out_unlock;
342 }
343 kfree(dmabuf->name);
344 dmabuf->name = name;
345
346out_unlock:
15fd552d 347 dma_resv_unlock(dmabuf->resv);
bb2bb903
GH
348 return ret;
349}
350
c11e391d
DV
351static long dma_buf_ioctl(struct file *file,
352 unsigned int cmd, unsigned long arg)
353{
354 struct dma_buf *dmabuf;
355 struct dma_buf_sync sync;
356 enum dma_data_direction direction;
18b862dc 357 int ret;
c11e391d
DV
358
359 dmabuf = file->private_data;
360
361 switch (cmd) {
362 case DMA_BUF_IOCTL_SYNC:
363 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
364 return -EFAULT;
365
366 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
367 return -EINVAL;
368
369 switch (sync.flags & DMA_BUF_SYNC_RW) {
370 case DMA_BUF_SYNC_READ:
371 direction = DMA_FROM_DEVICE;
372 break;
373 case DMA_BUF_SYNC_WRITE:
374 direction = DMA_TO_DEVICE;
375 break;
376 case DMA_BUF_SYNC_RW:
377 direction = DMA_BIDIRECTIONAL;
378 break;
379 default:
380 return -EINVAL;
381 }
382
383 if (sync.flags & DMA_BUF_SYNC_END)
18b862dc 384 ret = dma_buf_end_cpu_access(dmabuf, direction);
c11e391d 385 else
18b862dc 386 ret = dma_buf_begin_cpu_access(dmabuf, direction);
c11e391d 387
18b862dc 388 return ret;
bb2bb903
GH
389
390 case DMA_BUF_SET_NAME:
391 return dma_buf_set_name(dmabuf, (const char __user *)arg);
392
c11e391d
DV
393 default:
394 return -ENOTTY;
395 }
396}
397
bcc07111
GH
398static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
399{
400 struct dma_buf *dmabuf = file->private_data;
401
402 seq_printf(m, "size:\t%zu\n", dmabuf->size);
403 /* Don't count the temporary reference taken inside procfs seq_show */
404 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
405 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
15fd552d 406 dma_resv_lock(dmabuf->resv, NULL);
bcc07111
GH
407 if (dmabuf->name)
408 seq_printf(m, "name:\t%s\n", dmabuf->name);
15fd552d 409 dma_resv_unlock(dmabuf->resv);
bcc07111
GH
410}
411
d15bd7ee
SS
412static const struct file_operations dma_buf_fops = {
413 .release = dma_buf_release,
4c78513e 414 .mmap = dma_buf_mmap_internal,
19e8697b 415 .llseek = dma_buf_llseek,
9b495a58 416 .poll = dma_buf_poll,
c11e391d 417 .unlocked_ioctl = dma_buf_ioctl,
888022c0
MS
418#ifdef CONFIG_COMPAT
419 .compat_ioctl = dma_buf_ioctl,
420#endif
bcc07111 421 .show_fdinfo = dma_buf_show_fdinfo,
d15bd7ee
SS
422};
423
424/*
425 * is_dma_buf_file - Check if struct file* is associated with dma_buf
426 */
427static inline int is_dma_buf_file(struct file *file)
428{
429 return file->f_op == &dma_buf_fops;
430}
431
ed63bb1d
GH
432static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
433{
434 struct file *file;
435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
436
437 if (IS_ERR(inode))
438 return ERR_CAST(inode);
439
440 inode->i_size = dmabuf->size;
441 inode_set_bytes(inode, dmabuf->size);
442
443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
444 flags, &dma_buf_fops);
445 if (IS_ERR(file))
446 goto err_alloc_file;
447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
448 file->private_data = dmabuf;
bb2bb903 449 file->f_path.dentry->d_fsdata = dmabuf;
ed63bb1d
GH
450
451 return file;
452
453err_alloc_file:
454 iput(inode);
455 return file;
456}
457
2904a8c1
DV
458/**
459 * DOC: dma buf device access
460 *
461 * For device DMA access to a shared DMA buffer the usual sequence of operations
462 * is fairly simple:
463 *
464 * 1. The exporter defines his exporter instance using
465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
467 * as a file descriptor by calling dma_buf_fd().
468 *
469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
470 * to share with: First the filedescriptor is converted to a &dma_buf using
c138782d 471 * dma_buf_get(). Then the buffer is attached to the device using
2904a8c1
DV
472 * dma_buf_attach().
473 *
474 * Up to this stage the exporter is still free to migrate or reallocate the
475 * backing storage.
476 *
c138782d 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA
2904a8c1
DV
478 * access to the shared buffer. In the kernel this is done by calling
479 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
480 *
481 * 4. Once a driver is done with a shared buffer it needs to call
482 * dma_buf_detach() (after cleaning up any mappings) and then release the
483 * reference acquired with dma_buf_get by calling dma_buf_put().
484 *
485 * For the detailed semantics exporters are expected to implement see
486 * &dma_buf_ops.
487 */
488
d15bd7ee 489/**
d8fbe341 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file
d15bd7ee
SS
491 * with this buffer, so it can be exported.
492 * Also connect the allocator specific data and ops to the buffer.
78df9695 493 * Additionally, provide a name string for exporter; useful in debugging.
d15bd7ee 494 *
d8fbe341 495 * @exp_info: [in] holds all the export related information provided
f641d3b5 496 * by the exporter. see &struct dma_buf_export_info
d8fbe341 497 * for further details.
d15bd7ee
SS
498 *
499 * Returns, on success, a newly created dma_buf object, which wraps the
500 * supplied private data and operations for dma_buf_ops. On either missing
501 * ops, or error in allocating struct dma_buf, will return negative error.
502 *
2904a8c1
DV
503 * For most cases the easiest way to create @exp_info is through the
504 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
d15bd7ee 505 */
d8fbe341 506struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
d15bd7ee
SS
507{
508 struct dma_buf *dmabuf;
52791eee 509 struct dma_resv *resv = exp_info->resv;
d15bd7ee 510 struct file *file;
3aac4502 511 size_t alloc_size = sizeof(struct dma_buf);
a026df4c 512 int ret;
5136629d 513
d8fbe341 514 if (!exp_info->resv)
52791eee 515 alloc_size += sizeof(struct dma_resv);
3aac4502
ML
516 else
517 /* prevent &dma_buf[1] == dma_buf->resv */
518 alloc_size += 1;
d15bd7ee 519
d8fbe341
SS
520 if (WARN_ON(!exp_info->priv
521 || !exp_info->ops
522 || !exp_info->ops->map_dma_buf
523 || !exp_info->ops->unmap_dma_buf
e3a9d6c5 524 || !exp_info->ops->release)) {
d15bd7ee
SS
525 return ERR_PTR(-EINVAL);
526 }
527
15fd552d
CK
528 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
529 exp_info->ops->dynamic_mapping))
530 return ERR_PTR(-EINVAL);
531
9abdffe2
SS
532 if (!try_module_get(exp_info->owner))
533 return ERR_PTR(-ENOENT);
534
3aac4502 535 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
9abdffe2 536 if (!dmabuf) {
a026df4c
CW
537 ret = -ENOMEM;
538 goto err_module;
9abdffe2 539 }
d15bd7ee 540
d8fbe341
SS
541 dmabuf->priv = exp_info->priv;
542 dmabuf->ops = exp_info->ops;
543 dmabuf->size = exp_info->size;
544 dmabuf->exp_name = exp_info->exp_name;
9abdffe2 545 dmabuf->owner = exp_info->owner;
9b495a58
ML
546 init_waitqueue_head(&dmabuf->poll);
547 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
548 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
549
3aac4502 550 if (!resv) {
52791eee
CK
551 resv = (struct dma_resv *)&dmabuf[1];
552 dma_resv_init(resv);
3aac4502
ML
553 }
554 dmabuf->resv = resv;
d15bd7ee 555
ed63bb1d 556 file = dma_buf_getfile(dmabuf, exp_info->flags);
9022e24e 557 if (IS_ERR(file)) {
a026df4c
CW
558 ret = PTR_ERR(file);
559 goto err_dmabuf;
9022e24e 560 }
19e8697b
CJHR
561
562 file->f_mode |= FMODE_LSEEK;
d15bd7ee
SS
563 dmabuf->file = file;
564
565 mutex_init(&dmabuf->lock);
566 INIT_LIST_HEAD(&dmabuf->attachments);
567
b89e3563
SS
568 mutex_lock(&db_list.lock);
569 list_add(&dmabuf->list_node, &db_list.head);
570 mutex_unlock(&db_list.lock);
571
d15bd7ee 572 return dmabuf;
a026df4c
CW
573
574err_dmabuf:
575 kfree(dmabuf);
576err_module:
577 module_put(exp_info->owner);
578 return ERR_PTR(ret);
d15bd7ee 579}
d8fbe341 580EXPORT_SYMBOL_GPL(dma_buf_export);
d15bd7ee
SS
581
582/**
583 * dma_buf_fd - returns a file descriptor for the given dma_buf
584 * @dmabuf: [in] pointer to dma_buf for which fd is required.
55c1c4ca 585 * @flags: [in] flags to give to fd
d15bd7ee
SS
586 *
587 * On success, returns an associated 'fd'. Else, returns error.
588 */
55c1c4ca 589int dma_buf_fd(struct dma_buf *dmabuf, int flags)
d15bd7ee 590{
f5e097f0 591 int fd;
d15bd7ee
SS
592
593 if (!dmabuf || !dmabuf->file)
594 return -EINVAL;
595
f5e097f0
BP
596 fd = get_unused_fd_flags(flags);
597 if (fd < 0)
598 return fd;
d15bd7ee
SS
599
600 fd_install(fd, dmabuf->file);
601
602 return fd;
603}
604EXPORT_SYMBOL_GPL(dma_buf_fd);
605
606/**
607 * dma_buf_get - returns the dma_buf structure related to an fd
608 * @fd: [in] fd associated with the dma_buf to be returned
609 *
610 * On success, returns the dma_buf structure associated with an fd; uses
611 * file's refcounting done by fget to increase refcount. returns ERR_PTR
612 * otherwise.
613 */
614struct dma_buf *dma_buf_get(int fd)
615{
616 struct file *file;
617
618 file = fget(fd);
619
620 if (!file)
621 return ERR_PTR(-EBADF);
622
623 if (!is_dma_buf_file(file)) {
624 fput(file);
625 return ERR_PTR(-EINVAL);
626 }
627
628 return file->private_data;
629}
630EXPORT_SYMBOL_GPL(dma_buf_get);
631
632/**
633 * dma_buf_put - decreases refcount of the buffer
634 * @dmabuf: [in] buffer to reduce refcount of
635 *
2904a8c1
DV
636 * Uses file's refcounting done implicitly by fput().
637 *
638 * If, as a result of this call, the refcount becomes 0, the 'release' file
e9b4d7b5
DV
639 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
640 * in turn, and frees the memory allocated for dmabuf when exported.
d15bd7ee
SS
641 */
642void dma_buf_put(struct dma_buf *dmabuf)
643{
644 if (WARN_ON(!dmabuf || !dmabuf->file))
645 return;
646
647 fput(dmabuf->file);
648}
649EXPORT_SYMBOL_GPL(dma_buf_put);
650
651/**
15fd552d 652 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
d15bd7ee 653 * calls attach() of dma_buf_ops to allow device-specific attach functionality
15fd552d
CK
654 * @dmabuf: [in] buffer to attach device to.
655 * @dev: [in] device to be attached.
656 * @dynamic_mapping: [in] calling convention for map/unmap
d15bd7ee 657 *
2904a8c1
DV
658 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
659 * must be cleaned up by calling dma_buf_detach().
660 *
661 * Returns:
662 *
663 * A pointer to newly created &dma_buf_attachment on success, or a negative
664 * error code wrapped into a pointer on failure.
665 *
666 * Note that this can fail if the backing storage of @dmabuf is in a place not
667 * accessible to @dev, and cannot be moved to a more suitable place. This is
668 * indicated with the error code -EBUSY.
d15bd7ee 669 */
15fd552d
CK
670struct dma_buf_attachment *
671dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
672 bool dynamic_mapping)
d15bd7ee
SS
673{
674 struct dma_buf_attachment *attach;
675 int ret;
676
d1aa06a1 677 if (WARN_ON(!dmabuf || !dev))
d15bd7ee
SS
678 return ERR_PTR(-EINVAL);
679
db7942b6 680 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
34d84ec4 681 if (!attach)
a9fbc3b7 682 return ERR_PTR(-ENOMEM);
d15bd7ee 683
d15bd7ee
SS
684 attach->dev = dev;
685 attach->dmabuf = dmabuf;
15fd552d 686 attach->dynamic_mapping = dynamic_mapping;
2ed9201b 687
d15bd7ee 688 if (dmabuf->ops->attach) {
a19741e5 689 ret = dmabuf->ops->attach(dmabuf, attach);
d15bd7ee
SS
690 if (ret)
691 goto err_attach;
692 }
15fd552d 693 dma_resv_lock(dmabuf->resv, NULL);
d15bd7ee 694 list_add(&attach->node, &dmabuf->attachments);
15fd552d 695 dma_resv_unlock(dmabuf->resv);
d15bd7ee 696
15fd552d
CK
697 /* When either the importer or the exporter can't handle dynamic
698 * mappings we cache the mapping here to avoid issues with the
699 * reservation object lock.
700 */
701 if (dma_buf_attachment_is_dynamic(attach) !=
702 dma_buf_is_dynamic(dmabuf)) {
703 struct sg_table *sgt;
704
705 if (dma_buf_is_dynamic(attach->dmabuf))
706 dma_resv_lock(attach->dmabuf->resv, NULL);
707
708 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
709 if (!sgt)
710 sgt = ERR_PTR(-ENOMEM);
711 if (IS_ERR(sgt)) {
712 ret = PTR_ERR(sgt);
713 goto err_unlock;
714 }
715 if (dma_buf_is_dynamic(attach->dmabuf))
716 dma_resv_unlock(attach->dmabuf->resv);
717 attach->sgt = sgt;
718 attach->dir = DMA_BIDIRECTIONAL;
719 }
720
d15bd7ee
SS
721 return attach;
722
d15bd7ee
SS
723err_attach:
724 kfree(attach);
d15bd7ee 725 return ERR_PTR(ret);
15fd552d
CK
726
727err_unlock:
728 if (dma_buf_is_dynamic(attach->dmabuf))
729 dma_resv_unlock(attach->dmabuf->resv);
730
731 dma_buf_detach(dmabuf, attach);
732 return ERR_PTR(ret);
733}
734EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
735
736/**
737 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
738 * @dmabuf: [in] buffer to attach device to.
739 * @dev: [in] device to be attached.
740 *
741 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
742 * mapping.
743 */
744struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
745 struct device *dev)
746{
747 return dma_buf_dynamic_attach(dmabuf, dev, false);
d15bd7ee
SS
748}
749EXPORT_SYMBOL_GPL(dma_buf_attach);
750
751/**
752 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
753 * optionally calls detach() of dma_buf_ops for device-specific detach
754 * @dmabuf: [in] buffer to detach from.
755 * @attach: [in] attachment to be detached; is free'd after this call.
756 *
2904a8c1 757 * Clean up a device attachment obtained by calling dma_buf_attach().
d15bd7ee
SS
758 */
759void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
760{
d1aa06a1 761 if (WARN_ON(!dmabuf || !attach))
d15bd7ee
SS
762 return;
763
15fd552d
CK
764 if (attach->sgt) {
765 if (dma_buf_is_dynamic(attach->dmabuf))
766 dma_resv_lock(attach->dmabuf->resv, NULL);
767
f13e143e
CK
768 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
769
15fd552d
CK
770 if (dma_buf_is_dynamic(attach->dmabuf))
771 dma_resv_unlock(attach->dmabuf->resv);
772 }
773
15fd552d 774 dma_resv_lock(dmabuf->resv, NULL);
d15bd7ee 775 list_del(&attach->node);
15fd552d 776 dma_resv_unlock(dmabuf->resv);
d15bd7ee
SS
777 if (dmabuf->ops->detach)
778 dmabuf->ops->detach(dmabuf, attach);
779
d15bd7ee
SS
780 kfree(attach);
781}
782EXPORT_SYMBOL_GPL(dma_buf_detach);
783
784/**
785 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
786 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
787 * dma_buf_ops.
788 * @attach: [in] attachment whose scatterlist is to be returned
789 * @direction: [in] direction of DMA transfer
790 *
fee0c54e 791 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
2904a8c1
DV
792 * on error. May return -EINTR if it is interrupted by a signal.
793 *
c138782d 794 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
2904a8c1
DV
795 * the underlying backing storage is pinned for as long as a mapping exists,
796 * therefore users/importers should not hold onto a mapping for undue amounts of
797 * time.
d15bd7ee
SS
798 */
799struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
800 enum dma_data_direction direction)
801{
531beb06 802 struct sg_table *sg_table;
d15bd7ee
SS
803
804 might_sleep();
805
d1aa06a1 806 if (WARN_ON(!attach || !attach->dmabuf))
d15bd7ee
SS
807 return ERR_PTR(-EINVAL);
808
15fd552d
CK
809 if (dma_buf_attachment_is_dynamic(attach))
810 dma_resv_assert_held(attach->dmabuf->resv);
811
f13e143e
CK
812 if (attach->sgt) {
813 /*
814 * Two mappings with different directions for the same
815 * attachment are not allowed.
816 */
817 if (attach->dir != direction &&
818 attach->dir != DMA_BIDIRECTIONAL)
819 return ERR_PTR(-EBUSY);
820
821 return attach->sgt;
822 }
823
15fd552d
CK
824 if (dma_buf_is_dynamic(attach->dmabuf))
825 dma_resv_assert_held(attach->dmabuf->resv);
826
d1aa06a1 827 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
fee0c54e
CC
828 if (!sg_table)
829 sg_table = ERR_PTR(-ENOMEM);
d15bd7ee 830
f13e143e
CK
831 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
832 attach->sgt = sg_table;
833 attach->dir = direction;
834 }
835
d15bd7ee
SS
836 return sg_table;
837}
838EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
839
840/**
841 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
842 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
843 * dma_buf_ops.
844 * @attach: [in] attachment to unmap buffer from
845 * @sg_table: [in] scatterlist info of the buffer to unmap
33ea2dcb 846 * @direction: [in] direction of DMA transfer
d15bd7ee 847 *
2904a8c1 848 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
d15bd7ee
SS
849 */
850void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
33ea2dcb
SS
851 struct sg_table *sg_table,
852 enum dma_data_direction direction)
d15bd7ee 853{
b6fa0cd6
RC
854 might_sleep();
855
d1aa06a1 856 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
d15bd7ee
SS
857 return;
858
15fd552d
CK
859 if (dma_buf_attachment_is_dynamic(attach))
860 dma_resv_assert_held(attach->dmabuf->resv);
861
f13e143e
CK
862 if (attach->sgt == sg_table)
863 return;
864
15fd552d
CK
865 if (dma_buf_is_dynamic(attach->dmabuf))
866 dma_resv_assert_held(attach->dmabuf->resv);
867
f13e143e 868 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
d15bd7ee
SS
869}
870EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
fc13020e 871
0959a168
DV
872/**
873 * DOC: cpu access
874 *
875 * There are mutliple reasons for supporting CPU access to a dma buffer object:
876 *
877 * - Fallback operations in the kernel, for example when a device is connected
878 * over USB and the kernel needs to shuffle the data around first before
879 * sending it away. Cache coherency is handled by braketing any transactions
880 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
881 * access.
882 *
883 * To support dma_buf objects residing in highmem cpu access is page-based
884 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
885 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
886 * returns a pointer in kernel virtual address space. Afterwards the chunk
887 * needs to be unmapped again. There is no limit on how often a given chunk
888 * can be mapped and unmapped, i.e. the importer does not need to call
889 * begin_cpu_access again before mapping the same chunk again.
890 *
891 * Interfaces::
892 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
893 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
894 *
f664a526
CK
895 * Implementing the functions is optional for exporters and for importers all
896 * the restrictions of using kmap apply.
0959a168
DV
897 *
898 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
899 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
900 * the partial chunks at the beginning and end but may return stale or bogus
901 * data outside of the range (in these partial chunks).
902 *
0959a168
DV
903 * For some cases the overhead of kmap can be too high, a vmap interface
904 * is introduced. This interface should be used very carefully, as vmalloc
905 * space is a limited resources on many architectures.
906 *
907 * Interfaces::
908 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
909 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
910 *
911 * The vmap call can fail if there is no vmap support in the exporter, or if
912 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
913 * that the dma-buf layer keeps a reference count for all vmap access and
914 * calls down into the exporter's vmap function only when no vmapping exists,
915 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
916 * provided by taking the dma_buf->lock mutex.
917 *
918 * - For full compatibility on the importer side with existing userspace
919 * interfaces, which might already support mmap'ing buffers. This is needed in
920 * many processing pipelines (e.g. feeding a software rendered image into a
921 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
922 * framework already supported this and for DMA buffer file descriptors to
923 * replace ION buffers mmap support was needed.
924 *
925 * There is no special interfaces, userspace simply calls mmap on the dma-buf
926 * fd. But like for CPU access there's a need to braket the actual access,
927 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
928 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
929 * be restarted.
930 *
931 * Some systems might need some sort of cache coherency management e.g. when
932 * CPU and GPU domains are being accessed through dma-buf at the same time.
933 * To circumvent this problem there are begin/end coherency markers, that
934 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
935 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
936 * sequence would be used like following:
937 *
938 * - mmap dma-buf fd
939 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
940 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
941 * want (with the new data being consumed by say the GPU or the scanout
942 * device)
943 * - munmap once you don't need the buffer any more
944 *
945 * For correctness and optimal performance, it is always required to use
946 * SYNC_START and SYNC_END before and after, respectively, when accessing the
947 * mapped address. Userspace cannot rely on coherent access, even when there
948 * are systems where it just works without calling these ioctls.
949 *
950 * - And as a CPU fallback in userspace processing pipelines.
951 *
952 * Similar to the motivation for kernel cpu access it is again important that
953 * the userspace code of a given importing subsystem can use the same
954 * interfaces with a imported dma-buf buffer object as with a native buffer
955 * object. This is especially important for drm where the userspace part of
956 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
957 * use a different way to mmap a buffer rather invasive.
958 *
959 * The assumption in the current dma-buf interfaces is that redirecting the
960 * initial mmap is all that's needed. A survey of some of the existing
961 * subsystems shows that no driver seems to do any nefarious thing like
962 * syncing up with outstanding asynchronous processing on the device or
963 * allocating special resources at fault time. So hopefully this is good
964 * enough, since adding interfaces to intercept pagefaults and allow pte
965 * shootdowns would increase the complexity quite a bit.
966 *
967 * Interface::
968 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
969 * unsigned long);
970 *
971 * If the importing subsystem simply provides a special-purpose mmap call to
972 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
973 * equally achieve that for a dma-buf object.
974 */
975
ae4e46b1
CW
976static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
977 enum dma_data_direction direction)
978{
979 bool write = (direction == DMA_BIDIRECTIONAL ||
980 direction == DMA_TO_DEVICE);
52791eee 981 struct dma_resv *resv = dmabuf->resv;
ae4e46b1
CW
982 long ret;
983
984 /* Wait on any implicit rendering fences */
52791eee 985 ret = dma_resv_wait_timeout_rcu(resv, write, true,
ae4e46b1
CW
986 MAX_SCHEDULE_TIMEOUT);
987 if (ret < 0)
988 return ret;
989
990 return 0;
991}
fc13020e
DV
992
993/**
994 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
995 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
996 * preparations. Coherency is only guaranteed in the specified range for the
997 * specified access direction.
efb4df82 998 * @dmabuf: [in] buffer to prepare cpu access for.
fc13020e
DV
999 * @direction: [in] length of range for cpu access.
1000 *
0959a168
DV
1001 * After the cpu access is complete the caller should call
1002 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1003 * it guaranteed to be coherent with other DMA access.
1004 *
fc13020e
DV
1005 * Can return negative error values, returns 0 on success.
1006 */
831e9da7 1007int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
fc13020e
DV
1008 enum dma_data_direction direction)
1009{
1010 int ret = 0;
1011
1012 if (WARN_ON(!dmabuf))
1013 return -EINVAL;
1014
1015 if (dmabuf->ops->begin_cpu_access)
831e9da7 1016 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
fc13020e 1017
ae4e46b1
CW
1018 /* Ensure that all fences are waited upon - but we first allow
1019 * the native handler the chance to do so more efficiently if it
1020 * chooses. A double invocation here will be reasonably cheap no-op.
1021 */
1022 if (ret == 0)
1023 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1024
fc13020e
DV
1025 return ret;
1026}
1027EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1028
1029/**
1030 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1031 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1032 * actions. Coherency is only guaranteed in the specified range for the
1033 * specified access direction.
efb4df82 1034 * @dmabuf: [in] buffer to complete cpu access for.
fc13020e
DV
1035 * @direction: [in] length of range for cpu access.
1036 *
0959a168
DV
1037 * This terminates CPU access started with dma_buf_begin_cpu_access().
1038 *
87e332d5 1039 * Can return negative error values, returns 0 on success.
fc13020e 1040 */
18b862dc
CW
1041int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1042 enum dma_data_direction direction)
fc13020e 1043{
18b862dc
CW
1044 int ret = 0;
1045
fc13020e
DV
1046 WARN_ON(!dmabuf);
1047
1048 if (dmabuf->ops->end_cpu_access)
18b862dc
CW
1049 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1050
1051 return ret;
fc13020e
DV
1052}
1053EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1054
fc13020e
DV
1055/**
1056 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
1057 * same restrictions as for kmap and friends apply.
efb4df82 1058 * @dmabuf: [in] buffer to map page from.
fc13020e
DV
1059 * @page_num: [in] page in PAGE_SIZE units to map.
1060 *
1061 * This call must always succeed, any necessary preparations that might fail
1062 * need to be done in begin_cpu_access.
1063 */
1064void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
1065{
1066 WARN_ON(!dmabuf);
1067
09ea0dfb
GH
1068 if (!dmabuf->ops->map)
1069 return NULL;
f9b67f00 1070 return dmabuf->ops->map(dmabuf, page_num);
fc13020e
DV
1071}
1072EXPORT_SYMBOL_GPL(dma_buf_kmap);
1073
1074/**
1075 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
efb4df82 1076 * @dmabuf: [in] buffer to unmap page from.
fc13020e
DV
1077 * @page_num: [in] page in PAGE_SIZE units to unmap.
1078 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
1079 *
1080 * This call must always succeed.
1081 */
1082void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1083 void *vaddr)
1084{
1085 WARN_ON(!dmabuf);
1086
f9b67f00
LG
1087 if (dmabuf->ops->unmap)
1088 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
fc13020e
DV
1089}
1090EXPORT_SYMBOL_GPL(dma_buf_kunmap);
4c78513e
DV
1091
1092
1093/**
1094 * dma_buf_mmap - Setup up a userspace mmap with the given vma
12c4727e 1095 * @dmabuf: [in] buffer that should back the vma
4c78513e
DV
1096 * @vma: [in] vma for the mmap
1097 * @pgoff: [in] offset in pages where this mmap should start within the
5136629d 1098 * dma-buf buffer.
4c78513e
DV
1099 *
1100 * This function adjusts the passed in vma so that it points at the file of the
ecf1dbac 1101 * dma_buf operation. It also adjusts the starting pgoff and does bounds
4c78513e
DV
1102 * checking on the size of the vma. Then it calls the exporters mmap function to
1103 * set up the mapping.
1104 *
1105 * Can return negative error values, returns 0 on success.
1106 */
1107int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1108 unsigned long pgoff)
1109{
495c10cc
JS
1110 struct file *oldfile;
1111 int ret;
1112
4c78513e
DV
1113 if (WARN_ON(!dmabuf || !vma))
1114 return -EINVAL;
1115
e3a9d6c5
AD
1116 /* check if buffer supports mmap */
1117 if (!dmabuf->ops->mmap)
1118 return -EINVAL;
1119
4c78513e 1120 /* check for offset overflow */
b02da6f8 1121 if (pgoff + vma_pages(vma) < pgoff)
4c78513e
DV
1122 return -EOVERFLOW;
1123
1124 /* check for overflowing the buffer's size */
b02da6f8 1125 if (pgoff + vma_pages(vma) >
4c78513e
DV
1126 dmabuf->size >> PAGE_SHIFT)
1127 return -EINVAL;
1128
1129 /* readjust the vma */
495c10cc
JS
1130 get_file(dmabuf->file);
1131 oldfile = vma->vm_file;
1132 vma->vm_file = dmabuf->file;
4c78513e
DV
1133 vma->vm_pgoff = pgoff;
1134
495c10cc
JS
1135 ret = dmabuf->ops->mmap(dmabuf, vma);
1136 if (ret) {
1137 /* restore old parameters on failure */
1138 vma->vm_file = oldfile;
1139 fput(dmabuf->file);
1140 } else {
1141 if (oldfile)
1142 fput(oldfile);
1143 }
1144 return ret;
1145
4c78513e
DV
1146}
1147EXPORT_SYMBOL_GPL(dma_buf_mmap);
98f86c9e
DA
1148
1149/**
12c4727e
SS
1150 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1151 * address space. Same restrictions as for vmap and friends apply.
1152 * @dmabuf: [in] buffer to vmap
98f86c9e
DA
1153 *
1154 * This call may fail due to lack of virtual mapping address space.
1155 * These calls are optional in drivers. The intended use for them
1156 * is for mapping objects linear in kernel space for high use objects.
1157 * Please attempt to use kmap/kunmap before thinking about these interfaces.
fee0c54e
CC
1158 *
1159 * Returns NULL on error.
98f86c9e
DA
1160 */
1161void *dma_buf_vmap(struct dma_buf *dmabuf)
1162{
f00b4dad
DV
1163 void *ptr;
1164
98f86c9e
DA
1165 if (WARN_ON(!dmabuf))
1166 return NULL;
1167
f00b4dad
DV
1168 if (!dmabuf->ops->vmap)
1169 return NULL;
1170
1171 mutex_lock(&dmabuf->lock);
1172 if (dmabuf->vmapping_counter) {
1173 dmabuf->vmapping_counter++;
1174 BUG_ON(!dmabuf->vmap_ptr);
1175 ptr = dmabuf->vmap_ptr;
1176 goto out_unlock;
1177 }
1178
1179 BUG_ON(dmabuf->vmap_ptr);
1180
1181 ptr = dmabuf->ops->vmap(dmabuf);
fee0c54e
CC
1182 if (WARN_ON_ONCE(IS_ERR(ptr)))
1183 ptr = NULL;
1184 if (!ptr)
f00b4dad
DV
1185 goto out_unlock;
1186
1187 dmabuf->vmap_ptr = ptr;
1188 dmabuf->vmapping_counter = 1;
1189
1190out_unlock:
1191 mutex_unlock(&dmabuf->lock);
1192 return ptr;
98f86c9e
DA
1193}
1194EXPORT_SYMBOL_GPL(dma_buf_vmap);
1195
1196/**
1197 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
12c4727e 1198 * @dmabuf: [in] buffer to vunmap
6e7b4a59 1199 * @vaddr: [in] vmap to vunmap
98f86c9e
DA
1200 */
1201void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1202{
1203 if (WARN_ON(!dmabuf))
1204 return;
1205
f00b4dad
DV
1206 BUG_ON(!dmabuf->vmap_ptr);
1207 BUG_ON(dmabuf->vmapping_counter == 0);
1208 BUG_ON(dmabuf->vmap_ptr != vaddr);
1209
1210 mutex_lock(&dmabuf->lock);
1211 if (--dmabuf->vmapping_counter == 0) {
1212 if (dmabuf->ops->vunmap)
1213 dmabuf->ops->vunmap(dmabuf, vaddr);
1214 dmabuf->vmap_ptr = NULL;
1215 }
1216 mutex_unlock(&dmabuf->lock);
98f86c9e
DA
1217}
1218EXPORT_SYMBOL_GPL(dma_buf_vunmap);
b89e3563
SS
1219
1220#ifdef CONFIG_DEBUG_FS
eb0b947e 1221static int dma_buf_debug_show(struct seq_file *s, void *unused)
b89e3563
SS
1222{
1223 int ret;
1224 struct dma_buf *buf_obj;
1225 struct dma_buf_attachment *attach_obj;
52791eee
CK
1226 struct dma_resv *robj;
1227 struct dma_resv_list *fobj;
5eb2c72c 1228 struct dma_fence *fence;
b016cd6e 1229 unsigned seq;
5eb2c72c 1230 int count = 0, attach_count, shared_count, i;
b89e3563
SS
1231 size_t size = 0;
1232
1233 ret = mutex_lock_interruptible(&db_list.lock);
1234
1235 if (ret)
1236 return ret;
1237
c0b00a52 1238 seq_puts(s, "\nDma-buf Objects:\n");
ed63bb1d
GH
1239 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1240 "size", "flags", "mode", "count", "ino");
b89e3563
SS
1241
1242 list_for_each_entry(buf_obj, &db_list.head, list_node) {
15fd552d 1243
15fd552d
CK
1244 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1245 if (ret)
f45f57cc 1246 goto error_unlock;
b89e3563 1247
bb2bb903 1248 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
c0b00a52 1249 buf_obj->size,
b89e3563 1250 buf_obj->file->f_flags, buf_obj->file->f_mode,
a1f6dbac 1251 file_count(buf_obj->file),
ed63bb1d 1252 buf_obj->exp_name,
bb2bb903
GH
1253 file_inode(buf_obj->file)->i_ino,
1254 buf_obj->name ?: "");
b89e3563 1255
5eb2c72c 1256 robj = buf_obj->resv;
b016cd6e
CW
1257 while (true) {
1258 seq = read_seqcount_begin(&robj->seq);
1259 rcu_read_lock();
1260 fobj = rcu_dereference(robj->fence);
1261 shared_count = fobj ? fobj->shared_count : 0;
1262 fence = rcu_dereference(robj->fence_excl);
1263 if (!read_seqcount_retry(&robj->seq, seq))
1264 break;
1265 rcu_read_unlock();
1266 }
5eb2c72c
RK
1267
1268 if (fence)
1269 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1270 fence->ops->get_driver_name(fence),
1271 fence->ops->get_timeline_name(fence),
1272 dma_fence_is_signaled(fence) ? "" : "un");
1273 for (i = 0; i < shared_count; i++) {
1274 fence = rcu_dereference(fobj->shared[i]);
1275 if (!dma_fence_get_rcu(fence))
1276 continue;
1277 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1278 fence->ops->get_driver_name(fence),
1279 fence->ops->get_timeline_name(fence),
1280 dma_fence_is_signaled(fence) ? "" : "un");
5e383a97 1281 dma_fence_put(fence);
5eb2c72c
RK
1282 }
1283 rcu_read_unlock();
1284
c0b00a52 1285 seq_puts(s, "\tAttached Devices:\n");
b89e3563
SS
1286 attach_count = 0;
1287
1288 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
9eddb41d 1289 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
b89e3563
SS
1290 attach_count++;
1291 }
15fd552d 1292 dma_resv_unlock(buf_obj->resv);
b89e3563 1293
c0b00a52 1294 seq_printf(s, "Total %d devices attached\n\n",
b89e3563
SS
1295 attach_count);
1296
1297 count++;
1298 size += buf_obj->size;
b89e3563
SS
1299 }
1300
1301 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1302
1303 mutex_unlock(&db_list.lock);
1304 return 0;
15fd552d 1305
f45f57cc 1306error_unlock:
15fd552d
CK
1307 mutex_unlock(&db_list.lock);
1308 return ret;
b89e3563
SS
1309}
1310
2674305a 1311DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
b89e3563
SS
1312
1313static struct dentry *dma_buf_debugfs_dir;
1314
1315static int dma_buf_init_debugfs(void)
1316{
bd3e2208 1317 struct dentry *d;
b89e3563 1318 int err = 0;
5136629d 1319
bd3e2208
MK
1320 d = debugfs_create_dir("dma_buf", NULL);
1321 if (IS_ERR(d))
1322 return PTR_ERR(d);
5136629d 1323
bd3e2208 1324 dma_buf_debugfs_dir = d;
b89e3563 1325
bd3e2208
MK
1326 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1327 NULL, &dma_buf_debug_fops);
1328 if (IS_ERR(d)) {
b89e3563 1329 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
b7479990
MK
1330 debugfs_remove_recursive(dma_buf_debugfs_dir);
1331 dma_buf_debugfs_dir = NULL;
bd3e2208 1332 err = PTR_ERR(d);
b7479990 1333 }
b89e3563
SS
1334
1335 return err;
1336}
1337
1338static void dma_buf_uninit_debugfs(void)
1339{
298b6a81 1340 debugfs_remove_recursive(dma_buf_debugfs_dir);
b89e3563 1341}
b89e3563
SS
1342#else
1343static inline int dma_buf_init_debugfs(void)
1344{
1345 return 0;
1346}
1347static inline void dma_buf_uninit_debugfs(void)
1348{
1349}
1350#endif
1351
1352static int __init dma_buf_init(void)
1353{
ed63bb1d
GH
1354 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1355 if (IS_ERR(dma_buf_mnt))
1356 return PTR_ERR(dma_buf_mnt);
1357
b89e3563
SS
1358 mutex_init(&db_list.lock);
1359 INIT_LIST_HEAD(&db_list.head);
1360 dma_buf_init_debugfs();
1361 return 0;
1362}
1363subsys_initcall(dma_buf_init);
1364
1365static void __exit dma_buf_deinit(void)
1366{
1367 dma_buf_uninit_debugfs();
ed63bb1d 1368 kern_unmount(dma_buf_mnt);
b89e3563
SS
1369}
1370__exitcall(dma_buf_deinit);