drm/amdgpu: Fix connector atomic_check compilation fail
[linux-block.git] / drivers / dma-buf / dma-buf.c
CommitLineData
d15bd7ee
SS
1/*
2 * Framework for buffer objects that can be shared across devices/subsystems.
3 *
4 * Copyright(C) 2011 Linaro Limited. All rights reserved.
5 * Author: Sumit Semwal <sumit.semwal@ti.com>
6 *
7 * Many thanks to linaro-mm-sig list, and specially
8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
10 * refining of this idea.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 *
21 * You should have received a copy of the GNU General Public License along with
22 * this program. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/dma-buf.h>
f54d1867 28#include <linux/dma-fence.h>
d15bd7ee
SS
29#include <linux/anon_inodes.h>
30#include <linux/export.h>
b89e3563 31#include <linux/debugfs.h>
9abdffe2 32#include <linux/module.h>
b89e3563 33#include <linux/seq_file.h>
9b495a58 34#include <linux/poll.h>
3aac4502 35#include <linux/reservation.h>
b02da6f8 36#include <linux/mm.h>
d15bd7ee 37
c11e391d
DV
38#include <uapi/linux/dma-buf.h>
39
d15bd7ee
SS
40static inline int is_dma_buf_file(struct file *);
41
b89e3563
SS
42struct dma_buf_list {
43 struct list_head head;
44 struct mutex lock;
45};
46
47static struct dma_buf_list db_list;
48
d15bd7ee
SS
49static int dma_buf_release(struct inode *inode, struct file *file)
50{
51 struct dma_buf *dmabuf;
52
53 if (!is_dma_buf_file(file))
54 return -EINVAL;
55
56 dmabuf = file->private_data;
57
f00b4dad
DV
58 BUG_ON(dmabuf->vmapping_counter);
59
9b495a58
ML
60 /*
61 * Any fences that a dma-buf poll can wait on should be signaled
62 * before releasing dma-buf. This is the responsibility of each
63 * driver that uses the reservation objects.
64 *
65 * If you hit this BUG() it means someone dropped their ref to the
66 * dma-buf while still having pending operation to the buffer.
67 */
68 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
69
d15bd7ee 70 dmabuf->ops->release(dmabuf);
b89e3563
SS
71
72 mutex_lock(&db_list.lock);
73 list_del(&dmabuf->list_node);
74 mutex_unlock(&db_list.lock);
75
3aac4502
ML
76 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
77 reservation_object_fini(dmabuf->resv);
78
9abdffe2 79 module_put(dmabuf->owner);
d15bd7ee
SS
80 kfree(dmabuf);
81 return 0;
82}
83
4c78513e
DV
84static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
85{
86 struct dma_buf *dmabuf;
87
88 if (!is_dma_buf_file(file))
89 return -EINVAL;
90
91 dmabuf = file->private_data;
92
e3a9d6c5
AD
93 /* check if buffer supports mmap */
94 if (!dmabuf->ops->mmap)
95 return -EINVAL;
96
4c78513e 97 /* check for overflowing the buffer's size */
b02da6f8 98 if (vma->vm_pgoff + vma_pages(vma) >
4c78513e
DV
99 dmabuf->size >> PAGE_SHIFT)
100 return -EINVAL;
101
102 return dmabuf->ops->mmap(dmabuf, vma);
103}
104
19e8697b
CJHR
105static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
106{
107 struct dma_buf *dmabuf;
108 loff_t base;
109
110 if (!is_dma_buf_file(file))
111 return -EBADF;
112
113 dmabuf = file->private_data;
114
115 /* only support discovering the end of the buffer,
116 but also allow SEEK_SET to maintain the idiomatic
117 SEEK_END(0), SEEK_CUR(0) pattern */
118 if (whence == SEEK_END)
119 base = dmabuf->size;
120 else if (whence == SEEK_SET)
121 base = 0;
122 else
123 return -EINVAL;
124
125 if (offset != 0)
126 return -EINVAL;
127
128 return base + offset;
129}
130
e7e21c72
DV
131/**
132 * DOC: fence polling
133 *
134 * To support cross-device and cross-driver synchronization of buffer access
f641d3b5 135 * implicit fences (represented internally in the kernel with &struct fence) can
e7e21c72
DV
136 * be attached to a &dma_buf. The glue for that and a few related things are
137 * provided in the &reservation_object structure.
138 *
139 * Userspace can query the state of these implicitly tracked fences using poll()
140 * and related system calls:
141 *
a9a08845 142 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
e7e21c72
DV
143 * most recent write or exclusive fence.
144 *
a9a08845 145 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
e7e21c72
DV
146 * all attached fences, shared and exclusive ones.
147 *
148 * Note that this only signals the completion of the respective fences, i.e. the
149 * DMA transfers are complete. Cache flushing and any other necessary
150 * preparations before CPU access can begin still need to happen.
151 */
152
f54d1867 153static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
9b495a58
ML
154{
155 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
156 unsigned long flags;
157
158 spin_lock_irqsave(&dcb->poll->lock, flags);
159 wake_up_locked_poll(dcb->poll, dcb->active);
160 dcb->active = 0;
161 spin_unlock_irqrestore(&dcb->poll->lock, flags);
162}
163
afc9a42b 164static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
9b495a58
ML
165{
166 struct dma_buf *dmabuf;
167 struct reservation_object *resv;
04a5faa8 168 struct reservation_object_list *fobj;
f54d1867 169 struct dma_fence *fence_excl;
01699437 170 __poll_t events;
3c3b177a 171 unsigned shared_count, seq;
9b495a58
ML
172
173 dmabuf = file->private_data;
174 if (!dmabuf || !dmabuf->resv)
a9a08845 175 return EPOLLERR;
9b495a58
ML
176
177 resv = dmabuf->resv;
178
179 poll_wait(file, &dmabuf->poll, poll);
180
a9a08845 181 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
9b495a58
ML
182 if (!events)
183 return 0;
184
3c3b177a
ML
185retry:
186 seq = read_seqcount_begin(&resv->seq);
187 rcu_read_lock();
9b495a58 188
3c3b177a
ML
189 fobj = rcu_dereference(resv->fence);
190 if (fobj)
191 shared_count = fobj->shared_count;
192 else
193 shared_count = 0;
194 fence_excl = rcu_dereference(resv->fence_excl);
195 if (read_seqcount_retry(&resv->seq, seq)) {
196 rcu_read_unlock();
197 goto retry;
198 }
04a5faa8 199
a9a08845 200 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
9b495a58 201 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
a9a08845 202 __poll_t pevents = EPOLLIN;
9b495a58 203
04a5faa8 204 if (shared_count == 0)
a9a08845 205 pevents |= EPOLLOUT;
9b495a58
ML
206
207 spin_lock_irq(&dmabuf->poll.lock);
208 if (dcb->active) {
209 dcb->active |= pevents;
210 events &= ~pevents;
211 } else
212 dcb->active = pevents;
213 spin_unlock_irq(&dmabuf->poll.lock);
214
215 if (events & pevents) {
f54d1867 216 if (!dma_fence_get_rcu(fence_excl)) {
3c3b177a
ML
217 /* force a recheck */
218 events &= ~pevents;
219 dma_buf_poll_cb(NULL, &dcb->cb);
f54d1867
CW
220 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
221 dma_buf_poll_cb)) {
9b495a58 222 events &= ~pevents;
f54d1867 223 dma_fence_put(fence_excl);
04a5faa8 224 } else {
9b495a58
ML
225 /*
226 * No callback queued, wake up any additional
227 * waiters.
228 */
f54d1867 229 dma_fence_put(fence_excl);
9b495a58 230 dma_buf_poll_cb(NULL, &dcb->cb);
04a5faa8 231 }
9b495a58
ML
232 }
233 }
234
a9a08845 235 if ((events & EPOLLOUT) && shared_count > 0) {
9b495a58
ML
236 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
237 int i;
238
239 /* Only queue a new callback if no event has fired yet */
240 spin_lock_irq(&dmabuf->poll.lock);
241 if (dcb->active)
a9a08845 242 events &= ~EPOLLOUT;
9b495a58 243 else
a9a08845 244 dcb->active = EPOLLOUT;
9b495a58
ML
245 spin_unlock_irq(&dmabuf->poll.lock);
246
a9a08845 247 if (!(events & EPOLLOUT))
9b495a58
ML
248 goto out;
249
04a5faa8 250 for (i = 0; i < shared_count; ++i) {
f54d1867 251 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
04a5faa8 252
f54d1867 253 if (!dma_fence_get_rcu(fence)) {
3c3b177a
ML
254 /*
255 * fence refcount dropped to zero, this means
256 * that fobj has been freed
257 *
258 * call dma_buf_poll_cb and force a recheck!
259 */
a9a08845 260 events &= ~EPOLLOUT;
3c3b177a
ML
261 dma_buf_poll_cb(NULL, &dcb->cb);
262 break;
263 }
f54d1867
CW
264 if (!dma_fence_add_callback(fence, &dcb->cb,
265 dma_buf_poll_cb)) {
266 dma_fence_put(fence);
a9a08845 267 events &= ~EPOLLOUT;
9b495a58
ML
268 break;
269 }
f54d1867 270 dma_fence_put(fence);
04a5faa8 271 }
9b495a58
ML
272
273 /* No callback queued, wake up any additional waiters. */
04a5faa8 274 if (i == shared_count)
9b495a58
ML
275 dma_buf_poll_cb(NULL, &dcb->cb);
276 }
277
278out:
3c3b177a 279 rcu_read_unlock();
9b495a58
ML
280 return events;
281}
282
c11e391d
DV
283static long dma_buf_ioctl(struct file *file,
284 unsigned int cmd, unsigned long arg)
285{
286 struct dma_buf *dmabuf;
287 struct dma_buf_sync sync;
288 enum dma_data_direction direction;
18b862dc 289 int ret;
c11e391d
DV
290
291 dmabuf = file->private_data;
292
293 switch (cmd) {
294 case DMA_BUF_IOCTL_SYNC:
295 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
296 return -EFAULT;
297
298 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
299 return -EINVAL;
300
301 switch (sync.flags & DMA_BUF_SYNC_RW) {
302 case DMA_BUF_SYNC_READ:
303 direction = DMA_FROM_DEVICE;
304 break;
305 case DMA_BUF_SYNC_WRITE:
306 direction = DMA_TO_DEVICE;
307 break;
308 case DMA_BUF_SYNC_RW:
309 direction = DMA_BIDIRECTIONAL;
310 break;
311 default:
312 return -EINVAL;
313 }
314
315 if (sync.flags & DMA_BUF_SYNC_END)
18b862dc 316 ret = dma_buf_end_cpu_access(dmabuf, direction);
c11e391d 317 else
18b862dc 318 ret = dma_buf_begin_cpu_access(dmabuf, direction);
c11e391d 319
18b862dc 320 return ret;
c11e391d
DV
321 default:
322 return -ENOTTY;
323 }
324}
325
d15bd7ee
SS
326static const struct file_operations dma_buf_fops = {
327 .release = dma_buf_release,
4c78513e 328 .mmap = dma_buf_mmap_internal,
19e8697b 329 .llseek = dma_buf_llseek,
9b495a58 330 .poll = dma_buf_poll,
c11e391d 331 .unlocked_ioctl = dma_buf_ioctl,
888022c0
MS
332#ifdef CONFIG_COMPAT
333 .compat_ioctl = dma_buf_ioctl,
334#endif
d15bd7ee
SS
335};
336
337/*
338 * is_dma_buf_file - Check if struct file* is associated with dma_buf
339 */
340static inline int is_dma_buf_file(struct file *file)
341{
342 return file->f_op == &dma_buf_fops;
343}
344
2904a8c1
DV
345/**
346 * DOC: dma buf device access
347 *
348 * For device DMA access to a shared DMA buffer the usual sequence of operations
349 * is fairly simple:
350 *
351 * 1. The exporter defines his exporter instance using
352 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
353 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
354 * as a file descriptor by calling dma_buf_fd().
355 *
356 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
357 * to share with: First the filedescriptor is converted to a &dma_buf using
c138782d 358 * dma_buf_get(). Then the buffer is attached to the device using
2904a8c1
DV
359 * dma_buf_attach().
360 *
361 * Up to this stage the exporter is still free to migrate or reallocate the
362 * backing storage.
363 *
c138782d 364 * 3. Once the buffer is attached to all devices userspace can initiate DMA
2904a8c1
DV
365 * access to the shared buffer. In the kernel this is done by calling
366 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
367 *
368 * 4. Once a driver is done with a shared buffer it needs to call
369 * dma_buf_detach() (after cleaning up any mappings) and then release the
370 * reference acquired with dma_buf_get by calling dma_buf_put().
371 *
372 * For the detailed semantics exporters are expected to implement see
373 * &dma_buf_ops.
374 */
375
d15bd7ee 376/**
d8fbe341 377 * dma_buf_export - Creates a new dma_buf, and associates an anon file
d15bd7ee
SS
378 * with this buffer, so it can be exported.
379 * Also connect the allocator specific data and ops to the buffer.
78df9695 380 * Additionally, provide a name string for exporter; useful in debugging.
d15bd7ee 381 *
d8fbe341 382 * @exp_info: [in] holds all the export related information provided
f641d3b5 383 * by the exporter. see &struct dma_buf_export_info
d8fbe341 384 * for further details.
d15bd7ee
SS
385 *
386 * Returns, on success, a newly created dma_buf object, which wraps the
387 * supplied private data and operations for dma_buf_ops. On either missing
388 * ops, or error in allocating struct dma_buf, will return negative error.
389 *
2904a8c1
DV
390 * For most cases the easiest way to create @exp_info is through the
391 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
d15bd7ee 392 */
d8fbe341 393struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
d15bd7ee
SS
394{
395 struct dma_buf *dmabuf;
d8fbe341 396 struct reservation_object *resv = exp_info->resv;
d15bd7ee 397 struct file *file;
3aac4502 398 size_t alloc_size = sizeof(struct dma_buf);
a026df4c 399 int ret;
5136629d 400
d8fbe341 401 if (!exp_info->resv)
3aac4502
ML
402 alloc_size += sizeof(struct reservation_object);
403 else
404 /* prevent &dma_buf[1] == dma_buf->resv */
405 alloc_size += 1;
d15bd7ee 406
d8fbe341
SS
407 if (WARN_ON(!exp_info->priv
408 || !exp_info->ops
409 || !exp_info->ops->map_dma_buf
410 || !exp_info->ops->unmap_dma_buf
e3a9d6c5 411 || !exp_info->ops->release)) {
d15bd7ee
SS
412 return ERR_PTR(-EINVAL);
413 }
414
9abdffe2
SS
415 if (!try_module_get(exp_info->owner))
416 return ERR_PTR(-ENOENT);
417
3aac4502 418 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
9abdffe2 419 if (!dmabuf) {
a026df4c
CW
420 ret = -ENOMEM;
421 goto err_module;
9abdffe2 422 }
d15bd7ee 423
d8fbe341
SS
424 dmabuf->priv = exp_info->priv;
425 dmabuf->ops = exp_info->ops;
426 dmabuf->size = exp_info->size;
427 dmabuf->exp_name = exp_info->exp_name;
9abdffe2 428 dmabuf->owner = exp_info->owner;
9b495a58
ML
429 init_waitqueue_head(&dmabuf->poll);
430 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
431 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
432
3aac4502
ML
433 if (!resv) {
434 resv = (struct reservation_object *)&dmabuf[1];
435 reservation_object_init(resv);
436 }
437 dmabuf->resv = resv;
d15bd7ee 438
d8fbe341
SS
439 file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
440 exp_info->flags);
9022e24e 441 if (IS_ERR(file)) {
a026df4c
CW
442 ret = PTR_ERR(file);
443 goto err_dmabuf;
9022e24e 444 }
19e8697b
CJHR
445
446 file->f_mode |= FMODE_LSEEK;
d15bd7ee
SS
447 dmabuf->file = file;
448
449 mutex_init(&dmabuf->lock);
450 INIT_LIST_HEAD(&dmabuf->attachments);
451
b89e3563
SS
452 mutex_lock(&db_list.lock);
453 list_add(&dmabuf->list_node, &db_list.head);
454 mutex_unlock(&db_list.lock);
455
d15bd7ee 456 return dmabuf;
a026df4c
CW
457
458err_dmabuf:
459 kfree(dmabuf);
460err_module:
461 module_put(exp_info->owner);
462 return ERR_PTR(ret);
d15bd7ee 463}
d8fbe341 464EXPORT_SYMBOL_GPL(dma_buf_export);
d15bd7ee
SS
465
466/**
467 * dma_buf_fd - returns a file descriptor for the given dma_buf
468 * @dmabuf: [in] pointer to dma_buf for which fd is required.
55c1c4ca 469 * @flags: [in] flags to give to fd
d15bd7ee
SS
470 *
471 * On success, returns an associated 'fd'. Else, returns error.
472 */
55c1c4ca 473int dma_buf_fd(struct dma_buf *dmabuf, int flags)
d15bd7ee 474{
f5e097f0 475 int fd;
d15bd7ee
SS
476
477 if (!dmabuf || !dmabuf->file)
478 return -EINVAL;
479
f5e097f0
BP
480 fd = get_unused_fd_flags(flags);
481 if (fd < 0)
482 return fd;
d15bd7ee
SS
483
484 fd_install(fd, dmabuf->file);
485
486 return fd;
487}
488EXPORT_SYMBOL_GPL(dma_buf_fd);
489
490/**
491 * dma_buf_get - returns the dma_buf structure related to an fd
492 * @fd: [in] fd associated with the dma_buf to be returned
493 *
494 * On success, returns the dma_buf structure associated with an fd; uses
495 * file's refcounting done by fget to increase refcount. returns ERR_PTR
496 * otherwise.
497 */
498struct dma_buf *dma_buf_get(int fd)
499{
500 struct file *file;
501
502 file = fget(fd);
503
504 if (!file)
505 return ERR_PTR(-EBADF);
506
507 if (!is_dma_buf_file(file)) {
508 fput(file);
509 return ERR_PTR(-EINVAL);
510 }
511
512 return file->private_data;
513}
514EXPORT_SYMBOL_GPL(dma_buf_get);
515
516/**
517 * dma_buf_put - decreases refcount of the buffer
518 * @dmabuf: [in] buffer to reduce refcount of
519 *
2904a8c1
DV
520 * Uses file's refcounting done implicitly by fput().
521 *
522 * If, as a result of this call, the refcount becomes 0, the 'release' file
e9b4d7b5
DV
523 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
524 * in turn, and frees the memory allocated for dmabuf when exported.
d15bd7ee
SS
525 */
526void dma_buf_put(struct dma_buf *dmabuf)
527{
528 if (WARN_ON(!dmabuf || !dmabuf->file))
529 return;
530
531 fput(dmabuf->file);
532}
533EXPORT_SYMBOL_GPL(dma_buf_put);
534
535/**
536 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
537 * calls attach() of dma_buf_ops to allow device-specific attach functionality
538 * @dmabuf: [in] buffer to attach device to.
539 * @dev: [in] device to be attached.
540 *
2904a8c1
DV
541 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
542 * must be cleaned up by calling dma_buf_detach().
543 *
544 * Returns:
545 *
546 * A pointer to newly created &dma_buf_attachment on success, or a negative
547 * error code wrapped into a pointer on failure.
548 *
549 * Note that this can fail if the backing storage of @dmabuf is in a place not
550 * accessible to @dev, and cannot be moved to a more suitable place. This is
551 * indicated with the error code -EBUSY.
d15bd7ee
SS
552 */
553struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
554 struct device *dev)
555{
556 struct dma_buf_attachment *attach;
557 int ret;
558
d1aa06a1 559 if (WARN_ON(!dmabuf || !dev))
d15bd7ee
SS
560 return ERR_PTR(-EINVAL);
561
db7942b6 562 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
34d84ec4 563 if (!attach)
a9fbc3b7 564 return ERR_PTR(-ENOMEM);
d15bd7ee 565
d15bd7ee
SS
566 attach->dev = dev;
567 attach->dmabuf = dmabuf;
2ed9201b
LP
568
569 mutex_lock(&dmabuf->lock);
570
d15bd7ee 571 if (dmabuf->ops->attach) {
a19741e5 572 ret = dmabuf->ops->attach(dmabuf, attach);
d15bd7ee
SS
573 if (ret)
574 goto err_attach;
575 }
576 list_add(&attach->node, &dmabuf->attachments);
577
578 mutex_unlock(&dmabuf->lock);
f13e143e 579
d15bd7ee
SS
580 return attach;
581
d15bd7ee
SS
582err_attach:
583 kfree(attach);
584 mutex_unlock(&dmabuf->lock);
585 return ERR_PTR(ret);
586}
587EXPORT_SYMBOL_GPL(dma_buf_attach);
588
589/**
590 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
591 * optionally calls detach() of dma_buf_ops for device-specific detach
592 * @dmabuf: [in] buffer to detach from.
593 * @attach: [in] attachment to be detached; is free'd after this call.
594 *
2904a8c1 595 * Clean up a device attachment obtained by calling dma_buf_attach().
d15bd7ee
SS
596 */
597void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
598{
d1aa06a1 599 if (WARN_ON(!dmabuf || !attach))
d15bd7ee
SS
600 return;
601
f13e143e
CK
602 if (attach->sgt)
603 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
604
d15bd7ee
SS
605 mutex_lock(&dmabuf->lock);
606 list_del(&attach->node);
607 if (dmabuf->ops->detach)
608 dmabuf->ops->detach(dmabuf, attach);
609
610 mutex_unlock(&dmabuf->lock);
611 kfree(attach);
612}
613EXPORT_SYMBOL_GPL(dma_buf_detach);
614
615/**
616 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
617 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
618 * dma_buf_ops.
619 * @attach: [in] attachment whose scatterlist is to be returned
620 * @direction: [in] direction of DMA transfer
621 *
fee0c54e 622 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
2904a8c1
DV
623 * on error. May return -EINTR if it is interrupted by a signal.
624 *
c138782d 625 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
2904a8c1
DV
626 * the underlying backing storage is pinned for as long as a mapping exists,
627 * therefore users/importers should not hold onto a mapping for undue amounts of
628 * time.
d15bd7ee
SS
629 */
630struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
631 enum dma_data_direction direction)
632{
531beb06 633 struct sg_table *sg_table;
d15bd7ee
SS
634
635 might_sleep();
636
d1aa06a1 637 if (WARN_ON(!attach || !attach->dmabuf))
d15bd7ee
SS
638 return ERR_PTR(-EINVAL);
639
f13e143e
CK
640 if (attach->sgt) {
641 /*
642 * Two mappings with different directions for the same
643 * attachment are not allowed.
644 */
645 if (attach->dir != direction &&
646 attach->dir != DMA_BIDIRECTIONAL)
647 return ERR_PTR(-EBUSY);
648
649 return attach->sgt;
650 }
651
d1aa06a1 652 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
fee0c54e
CC
653 if (!sg_table)
654 sg_table = ERR_PTR(-ENOMEM);
d15bd7ee 655
f13e143e
CK
656 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
657 attach->sgt = sg_table;
658 attach->dir = direction;
659 }
660
d15bd7ee
SS
661 return sg_table;
662}
663EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
664
665/**
666 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
667 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
668 * dma_buf_ops.
669 * @attach: [in] attachment to unmap buffer from
670 * @sg_table: [in] scatterlist info of the buffer to unmap
33ea2dcb 671 * @direction: [in] direction of DMA transfer
d15bd7ee 672 *
2904a8c1 673 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
d15bd7ee
SS
674 */
675void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
33ea2dcb
SS
676 struct sg_table *sg_table,
677 enum dma_data_direction direction)
d15bd7ee 678{
b6fa0cd6
RC
679 might_sleep();
680
d1aa06a1 681 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
d15bd7ee
SS
682 return;
683
f13e143e
CK
684 if (attach->sgt == sg_table)
685 return;
686
687 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
d15bd7ee
SS
688}
689EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
fc13020e 690
0959a168
DV
691/**
692 * DOC: cpu access
693 *
694 * There are mutliple reasons for supporting CPU access to a dma buffer object:
695 *
696 * - Fallback operations in the kernel, for example when a device is connected
697 * over USB and the kernel needs to shuffle the data around first before
698 * sending it away. Cache coherency is handled by braketing any transactions
699 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
700 * access.
701 *
702 * To support dma_buf objects residing in highmem cpu access is page-based
703 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
704 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
705 * returns a pointer in kernel virtual address space. Afterwards the chunk
706 * needs to be unmapped again. There is no limit on how often a given chunk
707 * can be mapped and unmapped, i.e. the importer does not need to call
708 * begin_cpu_access again before mapping the same chunk again.
709 *
710 * Interfaces::
711 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
712 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
713 *
f664a526
CK
714 * Implementing the functions is optional for exporters and for importers all
715 * the restrictions of using kmap apply.
0959a168
DV
716 *
717 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
718 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
719 * the partial chunks at the beginning and end but may return stale or bogus
720 * data outside of the range (in these partial chunks).
721 *
0959a168
DV
722 * For some cases the overhead of kmap can be too high, a vmap interface
723 * is introduced. This interface should be used very carefully, as vmalloc
724 * space is a limited resources on many architectures.
725 *
726 * Interfaces::
727 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
728 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
729 *
730 * The vmap call can fail if there is no vmap support in the exporter, or if
731 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
732 * that the dma-buf layer keeps a reference count for all vmap access and
733 * calls down into the exporter's vmap function only when no vmapping exists,
734 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
735 * provided by taking the dma_buf->lock mutex.
736 *
737 * - For full compatibility on the importer side with existing userspace
738 * interfaces, which might already support mmap'ing buffers. This is needed in
739 * many processing pipelines (e.g. feeding a software rendered image into a
740 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
741 * framework already supported this and for DMA buffer file descriptors to
742 * replace ION buffers mmap support was needed.
743 *
744 * There is no special interfaces, userspace simply calls mmap on the dma-buf
745 * fd. But like for CPU access there's a need to braket the actual access,
746 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
747 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
748 * be restarted.
749 *
750 * Some systems might need some sort of cache coherency management e.g. when
751 * CPU and GPU domains are being accessed through dma-buf at the same time.
752 * To circumvent this problem there are begin/end coherency markers, that
753 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
754 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
755 * sequence would be used like following:
756 *
757 * - mmap dma-buf fd
758 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
759 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
760 * want (with the new data being consumed by say the GPU or the scanout
761 * device)
762 * - munmap once you don't need the buffer any more
763 *
764 * For correctness and optimal performance, it is always required to use
765 * SYNC_START and SYNC_END before and after, respectively, when accessing the
766 * mapped address. Userspace cannot rely on coherent access, even when there
767 * are systems where it just works without calling these ioctls.
768 *
769 * - And as a CPU fallback in userspace processing pipelines.
770 *
771 * Similar to the motivation for kernel cpu access it is again important that
772 * the userspace code of a given importing subsystem can use the same
773 * interfaces with a imported dma-buf buffer object as with a native buffer
774 * object. This is especially important for drm where the userspace part of
775 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
776 * use a different way to mmap a buffer rather invasive.
777 *
778 * The assumption in the current dma-buf interfaces is that redirecting the
779 * initial mmap is all that's needed. A survey of some of the existing
780 * subsystems shows that no driver seems to do any nefarious thing like
781 * syncing up with outstanding asynchronous processing on the device or
782 * allocating special resources at fault time. So hopefully this is good
783 * enough, since adding interfaces to intercept pagefaults and allow pte
784 * shootdowns would increase the complexity quite a bit.
785 *
786 * Interface::
787 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
788 * unsigned long);
789 *
790 * If the importing subsystem simply provides a special-purpose mmap call to
791 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
792 * equally achieve that for a dma-buf object.
793 */
794
ae4e46b1
CW
795static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
796 enum dma_data_direction direction)
797{
798 bool write = (direction == DMA_BIDIRECTIONAL ||
799 direction == DMA_TO_DEVICE);
800 struct reservation_object *resv = dmabuf->resv;
801 long ret;
802
803 /* Wait on any implicit rendering fences */
804 ret = reservation_object_wait_timeout_rcu(resv, write, true,
805 MAX_SCHEDULE_TIMEOUT);
806 if (ret < 0)
807 return ret;
808
809 return 0;
810}
fc13020e
DV
811
812/**
813 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
814 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
815 * preparations. Coherency is only guaranteed in the specified range for the
816 * specified access direction.
efb4df82 817 * @dmabuf: [in] buffer to prepare cpu access for.
fc13020e
DV
818 * @direction: [in] length of range for cpu access.
819 *
0959a168
DV
820 * After the cpu access is complete the caller should call
821 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
822 * it guaranteed to be coherent with other DMA access.
823 *
fc13020e
DV
824 * Can return negative error values, returns 0 on success.
825 */
831e9da7 826int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
fc13020e
DV
827 enum dma_data_direction direction)
828{
829 int ret = 0;
830
831 if (WARN_ON(!dmabuf))
832 return -EINVAL;
833
834 if (dmabuf->ops->begin_cpu_access)
831e9da7 835 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
fc13020e 836
ae4e46b1
CW
837 /* Ensure that all fences are waited upon - but we first allow
838 * the native handler the chance to do so more efficiently if it
839 * chooses. A double invocation here will be reasonably cheap no-op.
840 */
841 if (ret == 0)
842 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
843
fc13020e
DV
844 return ret;
845}
846EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
847
848/**
849 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
850 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
851 * actions. Coherency is only guaranteed in the specified range for the
852 * specified access direction.
efb4df82 853 * @dmabuf: [in] buffer to complete cpu access for.
fc13020e
DV
854 * @direction: [in] length of range for cpu access.
855 *
0959a168
DV
856 * This terminates CPU access started with dma_buf_begin_cpu_access().
857 *
87e332d5 858 * Can return negative error values, returns 0 on success.
fc13020e 859 */
18b862dc
CW
860int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
861 enum dma_data_direction direction)
fc13020e 862{
18b862dc
CW
863 int ret = 0;
864
fc13020e
DV
865 WARN_ON(!dmabuf);
866
867 if (dmabuf->ops->end_cpu_access)
18b862dc
CW
868 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
869
870 return ret;
fc13020e
DV
871}
872EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
873
fc13020e
DV
874/**
875 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
876 * same restrictions as for kmap and friends apply.
efb4df82 877 * @dmabuf: [in] buffer to map page from.
fc13020e
DV
878 * @page_num: [in] page in PAGE_SIZE units to map.
879 *
880 * This call must always succeed, any necessary preparations that might fail
881 * need to be done in begin_cpu_access.
882 */
883void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
884{
885 WARN_ON(!dmabuf);
886
09ea0dfb
GH
887 if (!dmabuf->ops->map)
888 return NULL;
f9b67f00 889 return dmabuf->ops->map(dmabuf, page_num);
fc13020e
DV
890}
891EXPORT_SYMBOL_GPL(dma_buf_kmap);
892
893/**
894 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
efb4df82 895 * @dmabuf: [in] buffer to unmap page from.
fc13020e
DV
896 * @page_num: [in] page in PAGE_SIZE units to unmap.
897 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
898 *
899 * This call must always succeed.
900 */
901void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
902 void *vaddr)
903{
904 WARN_ON(!dmabuf);
905
f9b67f00
LG
906 if (dmabuf->ops->unmap)
907 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
fc13020e
DV
908}
909EXPORT_SYMBOL_GPL(dma_buf_kunmap);
4c78513e
DV
910
911
912/**
913 * dma_buf_mmap - Setup up a userspace mmap with the given vma
12c4727e 914 * @dmabuf: [in] buffer that should back the vma
4c78513e
DV
915 * @vma: [in] vma for the mmap
916 * @pgoff: [in] offset in pages where this mmap should start within the
5136629d 917 * dma-buf buffer.
4c78513e
DV
918 *
919 * This function adjusts the passed in vma so that it points at the file of the
ecf1dbac 920 * dma_buf operation. It also adjusts the starting pgoff and does bounds
4c78513e
DV
921 * checking on the size of the vma. Then it calls the exporters mmap function to
922 * set up the mapping.
923 *
924 * Can return negative error values, returns 0 on success.
925 */
926int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
927 unsigned long pgoff)
928{
495c10cc
JS
929 struct file *oldfile;
930 int ret;
931
4c78513e
DV
932 if (WARN_ON(!dmabuf || !vma))
933 return -EINVAL;
934
e3a9d6c5
AD
935 /* check if buffer supports mmap */
936 if (!dmabuf->ops->mmap)
937 return -EINVAL;
938
4c78513e 939 /* check for offset overflow */
b02da6f8 940 if (pgoff + vma_pages(vma) < pgoff)
4c78513e
DV
941 return -EOVERFLOW;
942
943 /* check for overflowing the buffer's size */
b02da6f8 944 if (pgoff + vma_pages(vma) >
4c78513e
DV
945 dmabuf->size >> PAGE_SHIFT)
946 return -EINVAL;
947
948 /* readjust the vma */
495c10cc
JS
949 get_file(dmabuf->file);
950 oldfile = vma->vm_file;
951 vma->vm_file = dmabuf->file;
4c78513e
DV
952 vma->vm_pgoff = pgoff;
953
495c10cc
JS
954 ret = dmabuf->ops->mmap(dmabuf, vma);
955 if (ret) {
956 /* restore old parameters on failure */
957 vma->vm_file = oldfile;
958 fput(dmabuf->file);
959 } else {
960 if (oldfile)
961 fput(oldfile);
962 }
963 return ret;
964
4c78513e
DV
965}
966EXPORT_SYMBOL_GPL(dma_buf_mmap);
98f86c9e
DA
967
968/**
12c4727e
SS
969 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
970 * address space. Same restrictions as for vmap and friends apply.
971 * @dmabuf: [in] buffer to vmap
98f86c9e
DA
972 *
973 * This call may fail due to lack of virtual mapping address space.
974 * These calls are optional in drivers. The intended use for them
975 * is for mapping objects linear in kernel space for high use objects.
976 * Please attempt to use kmap/kunmap before thinking about these interfaces.
fee0c54e
CC
977 *
978 * Returns NULL on error.
98f86c9e
DA
979 */
980void *dma_buf_vmap(struct dma_buf *dmabuf)
981{
f00b4dad
DV
982 void *ptr;
983
98f86c9e
DA
984 if (WARN_ON(!dmabuf))
985 return NULL;
986
f00b4dad
DV
987 if (!dmabuf->ops->vmap)
988 return NULL;
989
990 mutex_lock(&dmabuf->lock);
991 if (dmabuf->vmapping_counter) {
992 dmabuf->vmapping_counter++;
993 BUG_ON(!dmabuf->vmap_ptr);
994 ptr = dmabuf->vmap_ptr;
995 goto out_unlock;
996 }
997
998 BUG_ON(dmabuf->vmap_ptr);
999
1000 ptr = dmabuf->ops->vmap(dmabuf);
fee0c54e
CC
1001 if (WARN_ON_ONCE(IS_ERR(ptr)))
1002 ptr = NULL;
1003 if (!ptr)
f00b4dad
DV
1004 goto out_unlock;
1005
1006 dmabuf->vmap_ptr = ptr;
1007 dmabuf->vmapping_counter = 1;
1008
1009out_unlock:
1010 mutex_unlock(&dmabuf->lock);
1011 return ptr;
98f86c9e
DA
1012}
1013EXPORT_SYMBOL_GPL(dma_buf_vmap);
1014
1015/**
1016 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
12c4727e 1017 * @dmabuf: [in] buffer to vunmap
6e7b4a59 1018 * @vaddr: [in] vmap to vunmap
98f86c9e
DA
1019 */
1020void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1021{
1022 if (WARN_ON(!dmabuf))
1023 return;
1024
f00b4dad
DV
1025 BUG_ON(!dmabuf->vmap_ptr);
1026 BUG_ON(dmabuf->vmapping_counter == 0);
1027 BUG_ON(dmabuf->vmap_ptr != vaddr);
1028
1029 mutex_lock(&dmabuf->lock);
1030 if (--dmabuf->vmapping_counter == 0) {
1031 if (dmabuf->ops->vunmap)
1032 dmabuf->ops->vunmap(dmabuf, vaddr);
1033 dmabuf->vmap_ptr = NULL;
1034 }
1035 mutex_unlock(&dmabuf->lock);
98f86c9e
DA
1036}
1037EXPORT_SYMBOL_GPL(dma_buf_vunmap);
b89e3563
SS
1038
1039#ifdef CONFIG_DEBUG_FS
eb0b947e 1040static int dma_buf_debug_show(struct seq_file *s, void *unused)
b89e3563
SS
1041{
1042 int ret;
1043 struct dma_buf *buf_obj;
1044 struct dma_buf_attachment *attach_obj;
5eb2c72c
RK
1045 struct reservation_object *robj;
1046 struct reservation_object_list *fobj;
1047 struct dma_fence *fence;
1048 unsigned seq;
1049 int count = 0, attach_count, shared_count, i;
b89e3563
SS
1050 size_t size = 0;
1051
1052 ret = mutex_lock_interruptible(&db_list.lock);
1053
1054 if (ret)
1055 return ret;
1056
c0b00a52 1057 seq_puts(s, "\nDma-buf Objects:\n");
da6c8f5e
RK
1058 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n",
1059 "size", "flags", "mode", "count");
b89e3563
SS
1060
1061 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1062 ret = mutex_lock_interruptible(&buf_obj->lock);
1063
1064 if (ret) {
c0b00a52
SS
1065 seq_puts(s,
1066 "\tERROR locking buffer object: skipping\n");
b89e3563
SS
1067 continue;
1068 }
1069
c0b00a52
SS
1070 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n",
1071 buf_obj->size,
b89e3563 1072 buf_obj->file->f_flags, buf_obj->file->f_mode,
a1f6dbac 1073 file_count(buf_obj->file),
c0b00a52 1074 buf_obj->exp_name);
b89e3563 1075
5eb2c72c
RK
1076 robj = buf_obj->resv;
1077 while (true) {
1078 seq = read_seqcount_begin(&robj->seq);
1079 rcu_read_lock();
1080 fobj = rcu_dereference(robj->fence);
1081 shared_count = fobj ? fobj->shared_count : 0;
1082 fence = rcu_dereference(robj->fence_excl);
1083 if (!read_seqcount_retry(&robj->seq, seq))
1084 break;
1085 rcu_read_unlock();
1086 }
1087
1088 if (fence)
1089 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1090 fence->ops->get_driver_name(fence),
1091 fence->ops->get_timeline_name(fence),
1092 dma_fence_is_signaled(fence) ? "" : "un");
1093 for (i = 0; i < shared_count; i++) {
1094 fence = rcu_dereference(fobj->shared[i]);
1095 if (!dma_fence_get_rcu(fence))
1096 continue;
1097 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1098 fence->ops->get_driver_name(fence),
1099 fence->ops->get_timeline_name(fence),
1100 dma_fence_is_signaled(fence) ? "" : "un");
5e383a97 1101 dma_fence_put(fence);
5eb2c72c
RK
1102 }
1103 rcu_read_unlock();
1104
c0b00a52 1105 seq_puts(s, "\tAttached Devices:\n");
b89e3563
SS
1106 attach_count = 0;
1107
1108 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
9eddb41d 1109 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
b89e3563
SS
1110 attach_count++;
1111 }
1112
c0b00a52 1113 seq_printf(s, "Total %d devices attached\n\n",
b89e3563
SS
1114 attach_count);
1115
1116 count++;
1117 size += buf_obj->size;
1118 mutex_unlock(&buf_obj->lock);
1119 }
1120
1121 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1122
1123 mutex_unlock(&db_list.lock);
1124 return 0;
1125}
1126
2674305a 1127DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
b89e3563
SS
1128
1129static struct dentry *dma_buf_debugfs_dir;
1130
1131static int dma_buf_init_debugfs(void)
1132{
bd3e2208 1133 struct dentry *d;
b89e3563 1134 int err = 0;
5136629d 1135
bd3e2208
MK
1136 d = debugfs_create_dir("dma_buf", NULL);
1137 if (IS_ERR(d))
1138 return PTR_ERR(d);
5136629d 1139
bd3e2208 1140 dma_buf_debugfs_dir = d;
b89e3563 1141
bd3e2208
MK
1142 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1143 NULL, &dma_buf_debug_fops);
1144 if (IS_ERR(d)) {
b89e3563 1145 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
b7479990
MK
1146 debugfs_remove_recursive(dma_buf_debugfs_dir);
1147 dma_buf_debugfs_dir = NULL;
bd3e2208 1148 err = PTR_ERR(d);
b7479990 1149 }
b89e3563
SS
1150
1151 return err;
1152}
1153
1154static void dma_buf_uninit_debugfs(void)
1155{
298b6a81 1156 debugfs_remove_recursive(dma_buf_debugfs_dir);
b89e3563 1157}
b89e3563
SS
1158#else
1159static inline int dma_buf_init_debugfs(void)
1160{
1161 return 0;
1162}
1163static inline void dma_buf_uninit_debugfs(void)
1164{
1165}
1166#endif
1167
1168static int __init dma_buf_init(void)
1169{
1170 mutex_init(&db_list.lock);
1171 INIT_LIST_HEAD(&db_list.head);
1172 dma_buf_init_debugfs();
1173 return 0;
1174}
1175subsys_initcall(dma_buf_init);
1176
1177static void __exit dma_buf_deinit(void)
1178{
1179 dma_buf_uninit_debugfs();
1180}
1181__exitcall(dma_buf_deinit);