dmaengine: rcar-dmac: Fix oops due to unintialized list in error ISR
[linux-block.git] / drivers / dma / sh / rcar-dmac.c
CommitLineData
87244fe5
LP
1/*
2 * Renesas R-Car Gen2 DMA Controller Driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Inc.
5 *
6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7 *
8 * This is free software; you can redistribute it and/or modify
9 * it under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 */
12
ccadee9b 13#include <linux/dma-mapping.h>
87244fe5
LP
14#include <linux/dmaengine.h>
15#include <linux/interrupt.h>
16#include <linux/list.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <linux/of.h>
20#include <linux/of_dma.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26
27#include "../dmaengine.h"
28
29/*
30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31 * @node: entry in the parent's chunks list
32 * @src_addr: device source address
33 * @dst_addr: device destination address
34 * @size: transfer size in bytes
35 */
36struct rcar_dmac_xfer_chunk {
37 struct list_head node;
38
39 dma_addr_t src_addr;
40 dma_addr_t dst_addr;
41 u32 size;
42};
43
ccadee9b
LP
44/*
45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46 * @sar: value of the SAR register (source address)
47 * @dar: value of the DAR register (destination address)
48 * @tcr: value of the TCR register (transfer count)
49 */
50struct rcar_dmac_hw_desc {
51 u32 sar;
52 u32 dar;
53 u32 tcr;
54 u32 reserved;
55} __attribute__((__packed__));
56
87244fe5
LP
57/*
58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59 * @async_tx: base DMA asynchronous transaction descriptor
60 * @direction: direction of the DMA transfer
61 * @xfer_shift: log2 of the transfer size
62 * @chcr: value of the channel configuration register for this transfer
63 * @node: entry in the channel's descriptors lists
64 * @chunks: list of transfer chunks for this transfer
65 * @running: the transfer chunk being currently processed
ccadee9b 66 * @nchunks: number of transfer chunks for this transfer
1ed1315f 67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
ccadee9b
LP
68 * @hwdescs.mem: hardware descriptors memory for the transfer
69 * @hwdescs.dma: device address of the hardware descriptors memory
70 * @hwdescs.size: size of the hardware descriptors in bytes
87244fe5
LP
71 * @size: transfer size in bytes
72 * @cyclic: when set indicates that the DMA transfer is cyclic
73 */
74struct rcar_dmac_desc {
75 struct dma_async_tx_descriptor async_tx;
76 enum dma_transfer_direction direction;
77 unsigned int xfer_shift;
78 u32 chcr;
79
80 struct list_head node;
81 struct list_head chunks;
82 struct rcar_dmac_xfer_chunk *running;
ccadee9b
LP
83 unsigned int nchunks;
84
85 struct {
1ed1315f 86 bool use;
ccadee9b
LP
87 struct rcar_dmac_hw_desc *mem;
88 dma_addr_t dma;
89 size_t size;
90 } hwdescs;
87244fe5
LP
91
92 unsigned int size;
93 bool cyclic;
94};
95
96#define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97
98/*
99 * struct rcar_dmac_desc_page - One page worth of descriptors
100 * @node: entry in the channel's pages list
101 * @descs: array of DMA descriptors
102 * @chunks: array of transfer chunk descriptors
103 */
104struct rcar_dmac_desc_page {
105 struct list_head node;
106
107 union {
108 struct rcar_dmac_desc descs[0];
109 struct rcar_dmac_xfer_chunk chunks[0];
110 };
111};
112
113#define RCAR_DMAC_DESCS_PER_PAGE \
114 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
115 sizeof(struct rcar_dmac_desc))
116#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
117 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
118 sizeof(struct rcar_dmac_xfer_chunk))
119
120/*
121 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
122 * @chan: base DMA channel object
123 * @iomem: channel I/O memory base
124 * @index: index of this channel in the controller
125 * @src_xfer_size: size (in bytes) of hardware transfers on the source side
126 * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
127 * @src_slave_addr: slave source memory address
128 * @dst_slave_addr: slave destination memory address
129 * @mid_rid: hardware MID/RID for the DMA client using this channel
130 * @lock: protects the channel CHCR register and the desc members
131 * @desc.free: list of free descriptors
132 * @desc.pending: list of pending descriptors (submitted with tx_submit)
133 * @desc.active: list of active descriptors (activated with issue_pending)
134 * @desc.done: list of completed descriptors
135 * @desc.wait: list of descriptors waiting for an ack
136 * @desc.running: the descriptor being processed (a member of the active list)
137 * @desc.chunks_free: list of free transfer chunk descriptors
138 * @desc.pages: list of pages used by allocated descriptors
139 */
140struct rcar_dmac_chan {
141 struct dma_chan chan;
142 void __iomem *iomem;
143 unsigned int index;
144
145 unsigned int src_xfer_size;
146 unsigned int dst_xfer_size;
147 dma_addr_t src_slave_addr;
148 dma_addr_t dst_slave_addr;
149 int mid_rid;
150
151 spinlock_t lock;
152
153 struct {
154 struct list_head free;
155 struct list_head pending;
156 struct list_head active;
157 struct list_head done;
158 struct list_head wait;
159 struct rcar_dmac_desc *running;
160
161 struct list_head chunks_free;
162
163 struct list_head pages;
164 } desc;
165};
166
167#define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
168
169/*
170 * struct rcar_dmac - R-Car Gen2 DMA Controller
171 * @engine: base DMA engine object
172 * @dev: the hardware device
173 * @iomem: remapped I/O memory base
174 * @n_channels: number of available channels
175 * @channels: array of DMAC channels
176 * @modules: bitmask of client modules in use
177 */
178struct rcar_dmac {
179 struct dma_device engine;
180 struct device *dev;
181 void __iomem *iomem;
182
183 unsigned int n_channels;
184 struct rcar_dmac_chan *channels;
185
186 unsigned long modules[256 / BITS_PER_LONG];
187};
188
189#define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
190
191/* -----------------------------------------------------------------------------
192 * Registers
193 */
194
195#define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
196
197#define RCAR_DMAISTA 0x0020
198#define RCAR_DMASEC 0x0030
199#define RCAR_DMAOR 0x0060
200#define RCAR_DMAOR_PRI_FIXED (0 << 8)
201#define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
202#define RCAR_DMAOR_AE (1 << 2)
203#define RCAR_DMAOR_DME (1 << 0)
204#define RCAR_DMACHCLR 0x0080
205#define RCAR_DMADPSEC 0x00a0
206
207#define RCAR_DMASAR 0x0000
208#define RCAR_DMADAR 0x0004
209#define RCAR_DMATCR 0x0008
210#define RCAR_DMATCR_MASK 0x00ffffff
211#define RCAR_DMATSR 0x0028
212#define RCAR_DMACHCR 0x000c
213#define RCAR_DMACHCR_CAE (1 << 31)
214#define RCAR_DMACHCR_CAIE (1 << 30)
215#define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
216#define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
217#define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
218#define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
219#define RCAR_DMACHCR_RPT_SAR (1 << 27)
220#define RCAR_DMACHCR_RPT_DAR (1 << 26)
221#define RCAR_DMACHCR_RPT_TCR (1 << 25)
222#define RCAR_DMACHCR_DPB (1 << 22)
223#define RCAR_DMACHCR_DSE (1 << 19)
224#define RCAR_DMACHCR_DSIE (1 << 18)
225#define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
226#define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
227#define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
228#define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
229#define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
230#define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
231#define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
232#define RCAR_DMACHCR_DM_FIXED (0 << 14)
233#define RCAR_DMACHCR_DM_INC (1 << 14)
234#define RCAR_DMACHCR_DM_DEC (2 << 14)
235#define RCAR_DMACHCR_SM_FIXED (0 << 12)
236#define RCAR_DMACHCR_SM_INC (1 << 12)
237#define RCAR_DMACHCR_SM_DEC (2 << 12)
238#define RCAR_DMACHCR_RS_AUTO (4 << 8)
239#define RCAR_DMACHCR_RS_DMARS (8 << 8)
240#define RCAR_DMACHCR_IE (1 << 2)
241#define RCAR_DMACHCR_TE (1 << 1)
242#define RCAR_DMACHCR_DE (1 << 0)
243#define RCAR_DMATCRB 0x0018
244#define RCAR_DMATSRB 0x0038
245#define RCAR_DMACHCRB 0x001c
246#define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
ccadee9b
LP
247#define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
248#define RCAR_DMACHCRB_DPTR_SHIFT 16
87244fe5
LP
249#define RCAR_DMACHCRB_DRST (1 << 15)
250#define RCAR_DMACHCRB_DTS (1 << 8)
251#define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
252#define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
253#define RCAR_DMACHCRB_PRI(n) ((n) << 0)
254#define RCAR_DMARS 0x0040
255#define RCAR_DMABUFCR 0x0048
256#define RCAR_DMABUFCR_MBU(n) ((n) << 16)
257#define RCAR_DMABUFCR_ULB(n) ((n) << 0)
258#define RCAR_DMADPBASE 0x0050
259#define RCAR_DMADPBASE_MASK 0xfffffff0
260#define RCAR_DMADPBASE_SEL (1 << 0)
261#define RCAR_DMADPCR 0x0054
262#define RCAR_DMADPCR_DIPT(n) ((n) << 24)
263#define RCAR_DMAFIXSAR 0x0010
264#define RCAR_DMAFIXDAR 0x0014
265#define RCAR_DMAFIXDPBASE 0x0060
266
267/* Hardcode the MEMCPY transfer size to 4 bytes. */
268#define RCAR_DMAC_MEMCPY_XFER_SIZE 4
269
270/* -----------------------------------------------------------------------------
271 * Device access
272 */
273
274static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
275{
276 if (reg == RCAR_DMAOR)
277 writew(data, dmac->iomem + reg);
278 else
279 writel(data, dmac->iomem + reg);
280}
281
282static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
283{
284 if (reg == RCAR_DMAOR)
285 return readw(dmac->iomem + reg);
286 else
287 return readl(dmac->iomem + reg);
288}
289
290static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
291{
292 if (reg == RCAR_DMARS)
293 return readw(chan->iomem + reg);
294 else
295 return readl(chan->iomem + reg);
296}
297
298static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
299{
300 if (reg == RCAR_DMARS)
301 writew(data, chan->iomem + reg);
302 else
303 writel(data, chan->iomem + reg);
304}
305
306/* -----------------------------------------------------------------------------
307 * Initialization and configuration
308 */
309
310static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
311{
312 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
313
314 return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
315}
316
317static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
318{
319 struct rcar_dmac_desc *desc = chan->desc.running;
ccadee9b 320 u32 chcr = desc->chcr;
87244fe5
LP
321
322 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
323
ccadee9b
LP
324 if (chan->mid_rid >= 0)
325 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
326
1ed1315f 327 if (desc->hwdescs.use) {
ccadee9b
LP
328 dev_dbg(chan->chan.device->dev,
329 "chan%u: queue desc %p: %u@%pad\n",
330 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
331
87244fe5 332#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
ccadee9b
LP
333 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
334 desc->hwdescs.dma >> 32);
87244fe5 335#endif
ccadee9b
LP
336 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
337 (desc->hwdescs.dma & 0xfffffff0) |
338 RCAR_DMADPBASE_SEL);
339 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
340 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
341 RCAR_DMACHCRB_DRST);
87244fe5 342
ccadee9b
LP
343 /*
344 * Program the descriptor stage interrupt to occur after the end
345 * of the first stage.
346 */
347 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
348
349 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
350 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
351
352 /*
353 * If the descriptor isn't cyclic enable normal descriptor mode
354 * and the transfer completion interrupt.
355 */
356 if (!desc->cyclic)
357 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
358 /*
359 * If the descriptor is cyclic and has a callback enable the
360 * descriptor stage interrupt in infinite repeat mode.
361 */
362 else if (desc->async_tx.callback)
363 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
364 /*
365 * Otherwise just select infinite repeat mode without any
366 * interrupt.
367 */
368 else
369 chcr |= RCAR_DMACHCR_DPM_INFINITE;
370 } else {
371 struct rcar_dmac_xfer_chunk *chunk = desc->running;
87244fe5 372
ccadee9b
LP
373 dev_dbg(chan->chan.device->dev,
374 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
375 chan->index, chunk, chunk->size, &chunk->src_addr,
376 &chunk->dst_addr);
87244fe5 377
ccadee9b
LP
378#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
379 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
380 chunk->src_addr >> 32);
381 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
382 chunk->dst_addr >> 32);
383#endif
384 rcar_dmac_chan_write(chan, RCAR_DMASAR,
385 chunk->src_addr & 0xffffffff);
386 rcar_dmac_chan_write(chan, RCAR_DMADAR,
387 chunk->dst_addr & 0xffffffff);
388 rcar_dmac_chan_write(chan, RCAR_DMATCR,
389 chunk->size >> desc->xfer_shift);
390
391 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
392 }
393
394 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
87244fe5
LP
395}
396
397static int rcar_dmac_init(struct rcar_dmac *dmac)
398{
399 u16 dmaor;
400
401 /* Clear all channels and enable the DMAC globally. */
402 rcar_dmac_write(dmac, RCAR_DMACHCLR, 0x7fff);
403 rcar_dmac_write(dmac, RCAR_DMAOR,
404 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
405
406 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
407 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
408 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
409 return -EIO;
410 }
411
412 return 0;
413}
414
415/* -----------------------------------------------------------------------------
416 * Descriptors submission
417 */
418
419static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
420{
421 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
422 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
423 unsigned long flags;
424 dma_cookie_t cookie;
425
426 spin_lock_irqsave(&chan->lock, flags);
427
428 cookie = dma_cookie_assign(tx);
429
430 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
431 chan->index, tx->cookie, desc);
432
433 list_add_tail(&desc->node, &chan->desc.pending);
434 desc->running = list_first_entry(&desc->chunks,
435 struct rcar_dmac_xfer_chunk, node);
436
437 spin_unlock_irqrestore(&chan->lock, flags);
438
439 return cookie;
440}
441
442/* -----------------------------------------------------------------------------
443 * Descriptors allocation and free
444 */
445
446/*
447 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
448 * @chan: the DMA channel
449 * @gfp: allocation flags
450 */
451static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
452{
453 struct rcar_dmac_desc_page *page;
454 LIST_HEAD(list);
455 unsigned int i;
456
457 page = (void *)get_zeroed_page(gfp);
458 if (!page)
459 return -ENOMEM;
460
461 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
462 struct rcar_dmac_desc *desc = &page->descs[i];
463
464 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
465 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
466 INIT_LIST_HEAD(&desc->chunks);
467
468 list_add_tail(&desc->node, &list);
469 }
470
471 spin_lock_irq(&chan->lock);
472 list_splice_tail(&list, &chan->desc.free);
473 list_add_tail(&page->node, &chan->desc.pages);
474 spin_unlock_irq(&chan->lock);
475
476 return 0;
477}
478
479/*
480 * rcar_dmac_desc_put - Release a DMA transfer descriptor
481 * @chan: the DMA channel
482 * @desc: the descriptor
483 *
484 * Put the descriptor and its transfer chunk descriptors back in the channel's
1ed1315f
LP
485 * free descriptors lists. The descriptor's chunks list will be reinitialized to
486 * an empty list as a result.
87244fe5 487 *
ccadee9b
LP
488 * The descriptor must have been removed from the channel's lists before calling
489 * this function.
87244fe5
LP
490 */
491static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
492 struct rcar_dmac_desc *desc)
493{
f3915072
LP
494 unsigned long flags;
495
496 spin_lock_irqsave(&chan->lock, flags);
87244fe5
LP
497 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
498 list_add_tail(&desc->node, &chan->desc.free);
f3915072 499 spin_unlock_irqrestore(&chan->lock, flags);
87244fe5
LP
500}
501
502static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
503{
504 struct rcar_dmac_desc *desc, *_desc;
ccadee9b 505 LIST_HEAD(list);
87244fe5 506
ccadee9b
LP
507 /*
508 * We have to temporarily move all descriptors from the wait list to a
509 * local list as iterating over the wait list, even with
510 * list_for_each_entry_safe, isn't safe if we release the channel lock
511 * around the rcar_dmac_desc_put() call.
512 */
513 spin_lock_irq(&chan->lock);
514 list_splice_init(&chan->desc.wait, &list);
515 spin_unlock_irq(&chan->lock);
516
517 list_for_each_entry_safe(desc, _desc, &list, node) {
87244fe5
LP
518 if (async_tx_test_ack(&desc->async_tx)) {
519 list_del(&desc->node);
520 rcar_dmac_desc_put(chan, desc);
521 }
522 }
ccadee9b
LP
523
524 if (list_empty(&list))
525 return;
526
527 /* Put the remaining descriptors back in the wait list. */
528 spin_lock_irq(&chan->lock);
529 list_splice(&list, &chan->desc.wait);
530 spin_unlock_irq(&chan->lock);
87244fe5
LP
531}
532
533/*
534 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
535 * @chan: the DMA channel
536 *
537 * Locking: This function must be called in a non-atomic context.
538 *
539 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
540 * be allocated.
541 */
542static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
543{
544 struct rcar_dmac_desc *desc;
545 int ret;
546
87244fe5
LP
547 /* Recycle acked descriptors before attempting allocation. */
548 rcar_dmac_desc_recycle_acked(chan);
549
ccadee9b
LP
550 spin_lock_irq(&chan->lock);
551
a55e07c8
LP
552 while (list_empty(&chan->desc.free)) {
553 /*
554 * No free descriptors, allocate a page worth of them and try
555 * again, as someone else could race us to get the newly
556 * allocated descriptors. If the allocation fails return an
557 * error.
558 */
559 spin_unlock_irq(&chan->lock);
560 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
561 if (ret < 0)
562 return NULL;
563 spin_lock_irq(&chan->lock);
564 }
87244fe5 565
a55e07c8
LP
566 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
567 list_del(&desc->node);
87244fe5
LP
568
569 spin_unlock_irq(&chan->lock);
570
571 return desc;
572}
573
574/*
575 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
576 * @chan: the DMA channel
577 * @gfp: allocation flags
578 */
579static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
580{
581 struct rcar_dmac_desc_page *page;
582 LIST_HEAD(list);
583 unsigned int i;
584
585 page = (void *)get_zeroed_page(gfp);
586 if (!page)
587 return -ENOMEM;
588
589 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
590 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
591
592 list_add_tail(&chunk->node, &list);
593 }
594
595 spin_lock_irq(&chan->lock);
596 list_splice_tail(&list, &chan->desc.chunks_free);
597 list_add_tail(&page->node, &chan->desc.pages);
598 spin_unlock_irq(&chan->lock);
599
600 return 0;
601}
602
603/*
604 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
605 * @chan: the DMA channel
606 *
607 * Locking: This function must be called in a non-atomic context.
608 *
609 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
610 * descriptor can be allocated.
611 */
612static struct rcar_dmac_xfer_chunk *
613rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
614{
615 struct rcar_dmac_xfer_chunk *chunk;
616 int ret;
617
618 spin_lock_irq(&chan->lock);
619
a55e07c8
LP
620 while (list_empty(&chan->desc.chunks_free)) {
621 /*
622 * No free descriptors, allocate a page worth of them and try
623 * again, as someone else could race us to get the newly
624 * allocated descriptors. If the allocation fails return an
625 * error.
626 */
627 spin_unlock_irq(&chan->lock);
628 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
629 if (ret < 0)
630 return NULL;
631 spin_lock_irq(&chan->lock);
632 }
87244fe5 633
a55e07c8
LP
634 chunk = list_first_entry(&chan->desc.chunks_free,
635 struct rcar_dmac_xfer_chunk, node);
636 list_del(&chunk->node);
87244fe5
LP
637
638 spin_unlock_irq(&chan->lock);
639
640 return chunk;
641}
642
1ed1315f
LP
643static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
644 struct rcar_dmac_desc *desc, size_t size)
645{
646 /*
647 * dma_alloc_coherent() allocates memory in page size increments. To
648 * avoid reallocating the hardware descriptors when the allocated size
649 * wouldn't change align the requested size to a multiple of the page
650 * size.
651 */
652 size = PAGE_ALIGN(size);
653
654 if (desc->hwdescs.size == size)
655 return;
656
657 if (desc->hwdescs.mem) {
658 dma_free_coherent(NULL, desc->hwdescs.size, desc->hwdescs.mem,
659 desc->hwdescs.dma);
660 desc->hwdescs.mem = NULL;
661 desc->hwdescs.size = 0;
662 }
663
664 if (!size)
665 return;
666
667 desc->hwdescs.mem = dma_alloc_coherent(NULL, size, &desc->hwdescs.dma,
668 GFP_NOWAIT);
669 if (!desc->hwdescs.mem)
670 return;
671
672 desc->hwdescs.size = size;
673}
674
ee4b876b
JB
675static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
676 struct rcar_dmac_desc *desc)
ccadee9b
LP
677{
678 struct rcar_dmac_xfer_chunk *chunk;
679 struct rcar_dmac_hw_desc *hwdesc;
ccadee9b 680
1ed1315f
LP
681 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
682
683 hwdesc = desc->hwdescs.mem;
ccadee9b 684 if (!hwdesc)
ee4b876b 685 return -ENOMEM;
ccadee9b 686
ccadee9b
LP
687 list_for_each_entry(chunk, &desc->chunks, node) {
688 hwdesc->sar = chunk->src_addr;
689 hwdesc->dar = chunk->dst_addr;
690 hwdesc->tcr = chunk->size >> desc->xfer_shift;
691 hwdesc++;
692 }
ee4b876b
JB
693
694 return 0;
ccadee9b
LP
695}
696
87244fe5
LP
697/* -----------------------------------------------------------------------------
698 * Stop and reset
699 */
700
701static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
702{
703 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
704
ccadee9b
LP
705 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
706 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
87244fe5
LP
707 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
708}
709
710static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
711{
712 struct rcar_dmac_desc *desc, *_desc;
713 unsigned long flags;
714 LIST_HEAD(descs);
715
716 spin_lock_irqsave(&chan->lock, flags);
717
718 /* Move all non-free descriptors to the local lists. */
719 list_splice_init(&chan->desc.pending, &descs);
720 list_splice_init(&chan->desc.active, &descs);
721 list_splice_init(&chan->desc.done, &descs);
722 list_splice_init(&chan->desc.wait, &descs);
723
724 chan->desc.running = NULL;
725
726 spin_unlock_irqrestore(&chan->lock, flags);
727
728 list_for_each_entry_safe(desc, _desc, &descs, node) {
729 list_del(&desc->node);
730 rcar_dmac_desc_put(chan, desc);
731 }
732}
733
734static void rcar_dmac_stop(struct rcar_dmac *dmac)
735{
736 rcar_dmac_write(dmac, RCAR_DMAOR, 0);
737}
738
739static void rcar_dmac_abort(struct rcar_dmac *dmac)
740{
741 unsigned int i;
742
743 /* Stop all channels. */
744 for (i = 0; i < dmac->n_channels; ++i) {
745 struct rcar_dmac_chan *chan = &dmac->channels[i];
746
747 /* Stop and reinitialize the channel. */
748 spin_lock(&chan->lock);
749 rcar_dmac_chan_halt(chan);
750 spin_unlock(&chan->lock);
751
752 rcar_dmac_chan_reinit(chan);
753 }
754}
755
756/* -----------------------------------------------------------------------------
757 * Descriptors preparation
758 */
759
760static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
761 struct rcar_dmac_desc *desc)
762{
763 static const u32 chcr_ts[] = {
764 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
765 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
766 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
767 RCAR_DMACHCR_TS_64B,
768 };
769
770 unsigned int xfer_size;
771 u32 chcr;
772
773 switch (desc->direction) {
774 case DMA_DEV_TO_MEM:
775 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
776 | RCAR_DMACHCR_RS_DMARS;
777 xfer_size = chan->src_xfer_size;
778 break;
779
780 case DMA_MEM_TO_DEV:
781 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
782 | RCAR_DMACHCR_RS_DMARS;
783 xfer_size = chan->dst_xfer_size;
784 break;
785
786 case DMA_MEM_TO_MEM:
787 default:
788 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
789 | RCAR_DMACHCR_RS_AUTO;
790 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
791 break;
792 }
793
794 desc->xfer_shift = ilog2(xfer_size);
795 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
796}
797
798/*
799 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
800 *
801 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
802 * converted to scatter-gather to guarantee consistent locking and a correct
803 * list manipulation. For slave DMA direction carries the usual meaning, and,
804 * logically, the SG list is RAM and the addr variable contains slave address,
805 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
806 * and the SG list contains only one element and points at the source buffer.
807 */
808static struct dma_async_tx_descriptor *
809rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
810 unsigned int sg_len, dma_addr_t dev_addr,
811 enum dma_transfer_direction dir, unsigned long dma_flags,
812 bool cyclic)
813{
814 struct rcar_dmac_xfer_chunk *chunk;
815 struct rcar_dmac_desc *desc;
816 struct scatterlist *sg;
ccadee9b 817 unsigned int nchunks = 0;
87244fe5
LP
818 unsigned int max_chunk_size;
819 unsigned int full_size = 0;
ccadee9b 820 bool highmem = false;
87244fe5
LP
821 unsigned int i;
822
823 desc = rcar_dmac_desc_get(chan);
824 if (!desc)
825 return NULL;
826
827 desc->async_tx.flags = dma_flags;
828 desc->async_tx.cookie = -EBUSY;
829
830 desc->cyclic = cyclic;
831 desc->direction = dir;
832
833 rcar_dmac_chan_configure_desc(chan, desc);
834
835 max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
836
837 /*
838 * Allocate and fill the transfer chunk descriptors. We own the only
839 * reference to the DMA descriptor, there's no need for locking.
840 */
841 for_each_sg(sgl, sg, sg_len, i) {
842 dma_addr_t mem_addr = sg_dma_address(sg);
843 unsigned int len = sg_dma_len(sg);
844
845 full_size += len;
846
847 while (len) {
848 unsigned int size = min(len, max_chunk_size);
849
850#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
851 /*
852 * Prevent individual transfers from crossing 4GB
853 * boundaries.
854 */
855 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
856 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
857 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
858 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
ccadee9b
LP
859
860 /*
861 * Check if either of the source or destination address
862 * can't be expressed in 32 bits. If so we can't use
863 * hardware descriptor lists.
864 */
865 if (dev_addr >> 32 || mem_addr >> 32)
866 highmem = true;
87244fe5
LP
867#endif
868
869 chunk = rcar_dmac_xfer_chunk_get(chan);
870 if (!chunk) {
871 rcar_dmac_desc_put(chan, desc);
872 return NULL;
873 }
874
875 if (dir == DMA_DEV_TO_MEM) {
876 chunk->src_addr = dev_addr;
877 chunk->dst_addr = mem_addr;
878 } else {
879 chunk->src_addr = mem_addr;
880 chunk->dst_addr = dev_addr;
881 }
882
883 chunk->size = size;
884
885 dev_dbg(chan->chan.device->dev,
886 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
887 chan->index, chunk, desc, i, sg, size, len,
888 &chunk->src_addr, &chunk->dst_addr);
889
890 mem_addr += size;
891 if (dir == DMA_MEM_TO_MEM)
892 dev_addr += size;
893
894 len -= size;
895
896 list_add_tail(&chunk->node, &desc->chunks);
ccadee9b 897 nchunks++;
87244fe5
LP
898 }
899 }
900
ccadee9b 901 desc->nchunks = nchunks;
87244fe5
LP
902 desc->size = full_size;
903
ccadee9b
LP
904 /*
905 * Use hardware descriptor lists if possible when more than one chunk
906 * needs to be transferred (otherwise they don't make much sense).
907 *
908 * The highmem check currently covers the whole transfer. As an
909 * optimization we could use descriptor lists for consecutive lowmem
910 * chunks and direct manual mode for highmem chunks. Whether the
911 * performance improvement would be significant enough compared to the
912 * additional complexity remains to be investigated.
913 */
1ed1315f 914 desc->hwdescs.use = !highmem && nchunks > 1;
ee4b876b
JB
915 if (desc->hwdescs.use) {
916 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
917 desc->hwdescs.use = false;
918 }
ccadee9b 919
87244fe5
LP
920 return &desc->async_tx;
921}
922
923/* -----------------------------------------------------------------------------
924 * DMA engine operations
925 */
926
927static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
928{
929 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
930 int ret;
931
87244fe5
LP
932 INIT_LIST_HEAD(&rchan->desc.chunks_free);
933 INIT_LIST_HEAD(&rchan->desc.pages);
934
935 /* Preallocate descriptors. */
936 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
937 if (ret < 0)
938 return -ENOMEM;
939
940 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
941 if (ret < 0)
942 return -ENOMEM;
943
944 return pm_runtime_get_sync(chan->device->dev);
945}
946
947static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
948{
949 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
950 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
951 struct rcar_dmac_desc_page *page, *_page;
1ed1315f
LP
952 struct rcar_dmac_desc *desc;
953 LIST_HEAD(list);
87244fe5
LP
954
955 /* Protect against ISR */
956 spin_lock_irq(&rchan->lock);
957 rcar_dmac_chan_halt(rchan);
958 spin_unlock_irq(&rchan->lock);
959
960 /* Now no new interrupts will occur */
961
962 if (rchan->mid_rid >= 0) {
963 /* The caller is holding dma_list_mutex */
964 clear_bit(rchan->mid_rid, dmac->modules);
965 rchan->mid_rid = -EINVAL;
966 }
967
f7638c90
LP
968 list_splice_init(&rchan->desc.free, &list);
969 list_splice_init(&rchan->desc.pending, &list);
970 list_splice_init(&rchan->desc.active, &list);
971 list_splice_init(&rchan->desc.done, &list);
972 list_splice_init(&rchan->desc.wait, &list);
1ed1315f
LP
973
974 list_for_each_entry(desc, &list, node)
975 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
976
87244fe5
LP
977 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
978 list_del(&page->node);
979 free_page((unsigned long)page);
980 }
981
982 pm_runtime_put(chan->device->dev);
983}
984
985static struct dma_async_tx_descriptor *
986rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
987 dma_addr_t dma_src, size_t len, unsigned long flags)
988{
989 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
990 struct scatterlist sgl;
991
992 if (!len)
993 return NULL;
994
995 sg_init_table(&sgl, 1);
996 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
997 offset_in_page(dma_src));
998 sg_dma_address(&sgl) = dma_src;
999 sg_dma_len(&sgl) = len;
1000
1001 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1002 DMA_MEM_TO_MEM, flags, false);
1003}
1004
1005static struct dma_async_tx_descriptor *
1006rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1007 unsigned int sg_len, enum dma_transfer_direction dir,
1008 unsigned long flags, void *context)
1009{
1010 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1011 dma_addr_t dev_addr;
1012
1013 /* Someone calling slave DMA on a generic channel? */
1014 if (rchan->mid_rid < 0 || !sg_len) {
1015 dev_warn(chan->device->dev,
1016 "%s: bad parameter: len=%d, id=%d\n",
1017 __func__, sg_len, rchan->mid_rid);
1018 return NULL;
1019 }
1020
1021 dev_addr = dir == DMA_DEV_TO_MEM
1022 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1023 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1024 dir, flags, false);
1025}
1026
1027#define RCAR_DMAC_MAX_SG_LEN 32
1028
1029static struct dma_async_tx_descriptor *
1030rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1031 size_t buf_len, size_t period_len,
1032 enum dma_transfer_direction dir, unsigned long flags)
1033{
1034 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1035 struct dma_async_tx_descriptor *desc;
1036 struct scatterlist *sgl;
1037 dma_addr_t dev_addr;
1038 unsigned int sg_len;
1039 unsigned int i;
1040
1041 /* Someone calling slave DMA on a generic channel? */
1042 if (rchan->mid_rid < 0 || buf_len < period_len) {
1043 dev_warn(chan->device->dev,
1044 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1045 __func__, buf_len, period_len, rchan->mid_rid);
1046 return NULL;
1047 }
1048
1049 sg_len = buf_len / period_len;
1050 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1051 dev_err(chan->device->dev,
1052 "chan%u: sg length %d exceds limit %d",
1053 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1054 return NULL;
1055 }
1056
1057 /*
1058 * Allocate the sg list dynamically as it would consume too much stack
1059 * space.
1060 */
1061 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1062 if (!sgl)
1063 return NULL;
1064
1065 sg_init_table(sgl, sg_len);
1066
1067 for (i = 0; i < sg_len; ++i) {
1068 dma_addr_t src = buf_addr + (period_len * i);
1069
1070 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1071 offset_in_page(src));
1072 sg_dma_address(&sgl[i]) = src;
1073 sg_dma_len(&sgl[i]) = period_len;
1074 }
1075
1076 dev_addr = dir == DMA_DEV_TO_MEM
1077 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1078 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1079 dir, flags, true);
1080
1081 kfree(sgl);
1082 return desc;
1083}
1084
1085static int rcar_dmac_device_config(struct dma_chan *chan,
1086 struct dma_slave_config *cfg)
1087{
1088 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1089
1090 /*
1091 * We could lock this, but you shouldn't be configuring the
1092 * channel, while using it...
1093 */
1094 rchan->src_slave_addr = cfg->src_addr;
1095 rchan->dst_slave_addr = cfg->dst_addr;
1096 rchan->src_xfer_size = cfg->src_addr_width;
1097 rchan->dst_xfer_size = cfg->dst_addr_width;
1098
1099 return 0;
1100}
1101
1102static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1103{
1104 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1105 unsigned long flags;
1106
1107 spin_lock_irqsave(&rchan->lock, flags);
1108 rcar_dmac_chan_halt(rchan);
1109 spin_unlock_irqrestore(&rchan->lock, flags);
1110
1111 /*
1112 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1113 * be running.
1114 */
1115
1116 rcar_dmac_chan_reinit(rchan);
1117
1118 return 0;
1119}
1120
1121static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1122 dma_cookie_t cookie)
1123{
1124 struct rcar_dmac_desc *desc = chan->desc.running;
ccadee9b 1125 struct rcar_dmac_xfer_chunk *running = NULL;
87244fe5
LP
1126 struct rcar_dmac_xfer_chunk *chunk;
1127 unsigned int residue = 0;
ccadee9b 1128 unsigned int dptr = 0;
87244fe5
LP
1129
1130 if (!desc)
1131 return 0;
1132
1133 /*
1134 * If the cookie doesn't correspond to the currently running transfer
1135 * then the descriptor hasn't been processed yet, and the residue is
1136 * equal to the full descriptor size.
1137 */
1138 if (cookie != desc->async_tx.cookie)
1139 return desc->size;
1140
ccadee9b
LP
1141 /*
1142 * In descriptor mode the descriptor running pointer is not maintained
1143 * by the interrupt handler, find the running descriptor from the
1144 * descriptor pointer field in the CHCRB register. In non-descriptor
1145 * mode just use the running descriptor pointer.
1146 */
1ed1315f 1147 if (desc->hwdescs.use) {
ccadee9b
LP
1148 dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1149 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1150 WARN_ON(dptr >= desc->nchunks);
1151 } else {
1152 running = desc->running;
1153 }
1154
87244fe5
LP
1155 /* Compute the size of all chunks still to be transferred. */
1156 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
ccadee9b 1157 if (chunk == running || ++dptr == desc->nchunks)
87244fe5
LP
1158 break;
1159
1160 residue += chunk->size;
1161 }
1162
1163 /* Add the residue for the current chunk. */
1164 residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1165
1166 return residue;
1167}
1168
1169static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1170 dma_cookie_t cookie,
1171 struct dma_tx_state *txstate)
1172{
1173 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1174 enum dma_status status;
1175 unsigned long flags;
1176 unsigned int residue;
1177
1178 status = dma_cookie_status(chan, cookie, txstate);
1179 if (status == DMA_COMPLETE || !txstate)
1180 return status;
1181
1182 spin_lock_irqsave(&rchan->lock, flags);
1183 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1184 spin_unlock_irqrestore(&rchan->lock, flags);
1185
1186 dma_set_residue(txstate, residue);
1187
1188 return status;
1189}
1190
1191static void rcar_dmac_issue_pending(struct dma_chan *chan)
1192{
1193 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1194 unsigned long flags;
1195
1196 spin_lock_irqsave(&rchan->lock, flags);
1197
1198 if (list_empty(&rchan->desc.pending))
1199 goto done;
1200
1201 /* Append the pending list to the active list. */
1202 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1203
1204 /*
1205 * If no transfer is running pick the first descriptor from the active
1206 * list and start the transfer.
1207 */
1208 if (!rchan->desc.running) {
1209 struct rcar_dmac_desc *desc;
1210
1211 desc = list_first_entry(&rchan->desc.active,
1212 struct rcar_dmac_desc, node);
1213 rchan->desc.running = desc;
1214
1215 rcar_dmac_chan_start_xfer(rchan);
1216 }
1217
1218done:
1219 spin_unlock_irqrestore(&rchan->lock, flags);
1220}
1221
1222/* -----------------------------------------------------------------------------
1223 * IRQ handling
1224 */
1225
ccadee9b
LP
1226static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1227{
1228 struct rcar_dmac_desc *desc = chan->desc.running;
1229 unsigned int stage;
1230
1231 if (WARN_ON(!desc || !desc->cyclic)) {
1232 /*
1233 * This should never happen, there should always be a running
1234 * cyclic descriptor when a descriptor stage end interrupt is
1235 * triggered. Warn and return.
1236 */
1237 return IRQ_NONE;
1238 }
1239
1240 /* Program the interrupt pointer to the next stage. */
1241 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1242 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1243 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1244
1245 return IRQ_WAKE_THREAD;
1246}
1247
87244fe5
LP
1248static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1249{
1250 struct rcar_dmac_desc *desc = chan->desc.running;
87244fe5
LP
1251 irqreturn_t ret = IRQ_WAKE_THREAD;
1252
1253 if (WARN_ON_ONCE(!desc)) {
1254 /*
ccadee9b
LP
1255 * This should never happen, there should always be a running
1256 * descriptor when a transfer end interrupt is triggered. Warn
1257 * and return.
87244fe5
LP
1258 */
1259 return IRQ_NONE;
1260 }
1261
1262 /*
ccadee9b
LP
1263 * The transfer end interrupt isn't generated for each chunk when using
1264 * descriptor mode. Only update the running chunk pointer in
1265 * non-descriptor mode.
87244fe5 1266 */
1ed1315f 1267 if (!desc->hwdescs.use) {
ccadee9b
LP
1268 /*
1269 * If we haven't completed the last transfer chunk simply move
1270 * to the next one. Only wake the IRQ thread if the transfer is
1271 * cyclic.
1272 */
1273 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1274 desc->running = list_next_entry(desc->running, node);
1275 if (!desc->cyclic)
1276 ret = IRQ_HANDLED;
1277 goto done;
1278 }
87244fe5 1279
ccadee9b
LP
1280 /*
1281 * We've completed the last transfer chunk. If the transfer is
1282 * cyclic, move back to the first one.
1283 */
1284 if (desc->cyclic) {
1285 desc->running =
1286 list_first_entry(&desc->chunks,
87244fe5
LP
1287 struct rcar_dmac_xfer_chunk,
1288 node);
ccadee9b
LP
1289 goto done;
1290 }
87244fe5
LP
1291 }
1292
1293 /* The descriptor is complete, move it to the done list. */
1294 list_move_tail(&desc->node, &chan->desc.done);
1295
1296 /* Queue the next descriptor, if any. */
1297 if (!list_empty(&chan->desc.active))
1298 chan->desc.running = list_first_entry(&chan->desc.active,
1299 struct rcar_dmac_desc,
1300 node);
1301 else
1302 chan->desc.running = NULL;
1303
1304done:
1305 if (chan->desc.running)
1306 rcar_dmac_chan_start_xfer(chan);
1307
1308 return ret;
1309}
1310
1311static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1312{
ccadee9b 1313 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
87244fe5
LP
1314 struct rcar_dmac_chan *chan = dev;
1315 irqreturn_t ret = IRQ_NONE;
1316 u32 chcr;
1317
1318 spin_lock(&chan->lock);
1319
1320 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
ccadee9b
LP
1321 if (chcr & RCAR_DMACHCR_TE)
1322 mask |= RCAR_DMACHCR_DE;
1323 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1324
1325 if (chcr & RCAR_DMACHCR_DSE)
1326 ret |= rcar_dmac_isr_desc_stage_end(chan);
87244fe5
LP
1327
1328 if (chcr & RCAR_DMACHCR_TE)
1329 ret |= rcar_dmac_isr_transfer_end(chan);
1330
1331 spin_unlock(&chan->lock);
1332
1333 return ret;
1334}
1335
1336static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1337{
1338 struct rcar_dmac_chan *chan = dev;
1339 struct rcar_dmac_desc *desc;
1340
1341 spin_lock_irq(&chan->lock);
1342
1343 /* For cyclic transfers notify the user after every chunk. */
1344 if (chan->desc.running && chan->desc.running->cyclic) {
1345 dma_async_tx_callback callback;
1346 void *callback_param;
1347
1348 desc = chan->desc.running;
1349 callback = desc->async_tx.callback;
1350 callback_param = desc->async_tx.callback_param;
1351
1352 if (callback) {
1353 spin_unlock_irq(&chan->lock);
1354 callback(callback_param);
1355 spin_lock_irq(&chan->lock);
1356 }
1357 }
1358
1359 /*
1360 * Call the callback function for all descriptors on the done list and
1361 * move them to the ack wait list.
1362 */
1363 while (!list_empty(&chan->desc.done)) {
1364 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1365 node);
1366 dma_cookie_complete(&desc->async_tx);
1367 list_del(&desc->node);
1368
1369 if (desc->async_tx.callback) {
1370 spin_unlock_irq(&chan->lock);
1371 /*
1372 * We own the only reference to this descriptor, we can
1373 * safely dereference it without holding the channel
1374 * lock.
1375 */
1376 desc->async_tx.callback(desc->async_tx.callback_param);
1377 spin_lock_irq(&chan->lock);
1378 }
1379
1380 list_add_tail(&desc->node, &chan->desc.wait);
1381 }
1382
ccadee9b
LP
1383 spin_unlock_irq(&chan->lock);
1384
87244fe5
LP
1385 /* Recycle all acked descriptors. */
1386 rcar_dmac_desc_recycle_acked(chan);
1387
87244fe5
LP
1388 return IRQ_HANDLED;
1389}
1390
1391static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1392{
1393 struct rcar_dmac *dmac = data;
1394
1395 if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1396 return IRQ_NONE;
1397
1398 /*
1399 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1400 * abort transfers on all channels, and reinitialize the DMAC.
1401 */
1402 rcar_dmac_stop(dmac);
1403 rcar_dmac_abort(dmac);
1404 rcar_dmac_init(dmac);
1405
1406 return IRQ_HANDLED;
1407}
1408
1409/* -----------------------------------------------------------------------------
1410 * OF xlate and channel filter
1411 */
1412
1413static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1414{
1415 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1416 struct of_phandle_args *dma_spec = arg;
1417
1418 /*
1419 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1420 * function knows from which device it wants to allocate a channel from,
1421 * and would be perfectly capable of selecting the channel it wants.
1422 * Forcing it to call dma_request_channel() and iterate through all
1423 * channels from all controllers is just pointless.
1424 */
1425 if (chan->device->device_config != rcar_dmac_device_config ||
1426 dma_spec->np != chan->device->dev->of_node)
1427 return false;
1428
1429 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1430}
1431
1432static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1433 struct of_dma *ofdma)
1434{
1435 struct rcar_dmac_chan *rchan;
1436 struct dma_chan *chan;
1437 dma_cap_mask_t mask;
1438
1439 if (dma_spec->args_count != 1)
1440 return NULL;
1441
1442 /* Only slave DMA channels can be allocated via DT */
1443 dma_cap_zero(mask);
1444 dma_cap_set(DMA_SLAVE, mask);
1445
1446 chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1447 if (!chan)
1448 return NULL;
1449
1450 rchan = to_rcar_dmac_chan(chan);
1451 rchan->mid_rid = dma_spec->args[0];
1452
1453 return chan;
1454}
1455
1456/* -----------------------------------------------------------------------------
1457 * Power management
1458 */
1459
1460#ifdef CONFIG_PM_SLEEP
1461static int rcar_dmac_sleep_suspend(struct device *dev)
1462{
1463 /*
1464 * TODO: Wait for the current transfer to complete and stop the device.
1465 */
1466 return 0;
1467}
1468
1469static int rcar_dmac_sleep_resume(struct device *dev)
1470{
1471 /* TODO: Resume transfers, if any. */
1472 return 0;
1473}
1474#endif
1475
1476#ifdef CONFIG_PM
1477static int rcar_dmac_runtime_suspend(struct device *dev)
1478{
1479 return 0;
1480}
1481
1482static int rcar_dmac_runtime_resume(struct device *dev)
1483{
1484 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1485
1486 return rcar_dmac_init(dmac);
1487}
1488#endif
1489
1490static const struct dev_pm_ops rcar_dmac_pm = {
1491 SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1492 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1493 NULL)
1494};
1495
1496/* -----------------------------------------------------------------------------
1497 * Probe and remove
1498 */
1499
1500static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1501 struct rcar_dmac_chan *rchan,
1502 unsigned int index)
1503{
1504 struct platform_device *pdev = to_platform_device(dmac->dev);
1505 struct dma_chan *chan = &rchan->chan;
1506 char pdev_irqname[5];
1507 char *irqname;
1508 int irq;
1509 int ret;
1510
1511 rchan->index = index;
1512 rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1513 rchan->mid_rid = -EINVAL;
1514
1515 spin_lock_init(&rchan->lock);
1516
f7638c90
LP
1517 INIT_LIST_HEAD(&rchan->desc.free);
1518 INIT_LIST_HEAD(&rchan->desc.pending);
1519 INIT_LIST_HEAD(&rchan->desc.active);
1520 INIT_LIST_HEAD(&rchan->desc.done);
1521 INIT_LIST_HEAD(&rchan->desc.wait);
1522
87244fe5
LP
1523 /* Request the channel interrupt. */
1524 sprintf(pdev_irqname, "ch%u", index);
1525 irq = platform_get_irq_byname(pdev, pdev_irqname);
1526 if (irq < 0) {
1527 dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1528 return -ENODEV;
1529 }
1530
1531 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1532 dev_name(dmac->dev), index);
1533 if (!irqname)
1534 return -ENOMEM;
1535
1536 ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1537 rcar_dmac_isr_channel_thread, 0,
1538 irqname, rchan);
1539 if (ret) {
1540 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1541 return ret;
1542 }
1543
1544 /*
1545 * Initialize the DMA engine channel and add it to the DMA engine
1546 * channels list.
1547 */
1548 chan->device = &dmac->engine;
1549 dma_cookie_init(chan);
1550
1551 list_add_tail(&chan->device_node, &dmac->engine.channels);
1552
1553 return 0;
1554}
1555
1556static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1557{
1558 struct device_node *np = dev->of_node;
1559 int ret;
1560
1561 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1562 if (ret < 0) {
1563 dev_err(dev, "unable to read dma-channels property\n");
1564 return ret;
1565 }
1566
1567 if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1568 dev_err(dev, "invalid number of channels %u\n",
1569 dmac->n_channels);
1570 return -EINVAL;
1571 }
1572
1573 return 0;
1574}
1575
1576static int rcar_dmac_probe(struct platform_device *pdev)
1577{
1578 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1579 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1580 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1581 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1582 struct dma_device *engine;
1583 struct rcar_dmac *dmac;
1584 struct resource *mem;
1585 unsigned int i;
1586 char *irqname;
1587 int irq;
1588 int ret;
1589
1590 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1591 if (!dmac)
1592 return -ENOMEM;
1593
1594 dmac->dev = &pdev->dev;
1595 platform_set_drvdata(pdev, dmac);
1596
1597 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1598 if (ret < 0)
1599 return ret;
1600
1601 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1602 sizeof(*dmac->channels), GFP_KERNEL);
1603 if (!dmac->channels)
1604 return -ENOMEM;
1605
1606 /* Request resources. */
1607 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1608 dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1609 if (IS_ERR(dmac->iomem))
1610 return PTR_ERR(dmac->iomem);
1611
1612 irq = platform_get_irq_byname(pdev, "error");
1613 if (irq < 0) {
1614 dev_err(&pdev->dev, "no error IRQ specified\n");
1615 return -ENODEV;
1616 }
1617
1618 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1619 dev_name(dmac->dev));
1620 if (!irqname)
1621 return -ENOMEM;
1622
1623 ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1624 irqname, dmac);
1625 if (ret) {
1626 dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1627 irq, ret);
1628 return ret;
1629 }
1630
1631 /* Enable runtime PM and initialize the device. */
1632 pm_runtime_enable(&pdev->dev);
1633 ret = pm_runtime_get_sync(&pdev->dev);
1634 if (ret < 0) {
1635 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1636 return ret;
1637 }
1638
1639 ret = rcar_dmac_init(dmac);
1640 pm_runtime_put(&pdev->dev);
1641
1642 if (ret) {
1643 dev_err(&pdev->dev, "failed to reset device\n");
1644 goto error;
1645 }
1646
1647 /* Initialize the channels. */
1648 INIT_LIST_HEAD(&dmac->engine.channels);
1649
1650 for (i = 0; i < dmac->n_channels; ++i) {
1651 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i], i);
1652 if (ret < 0)
1653 goto error;
1654 }
1655
1656 /* Register the DMAC as a DMA provider for DT. */
1657 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1658 NULL);
1659 if (ret < 0)
1660 goto error;
1661
1662 /*
1663 * Register the DMA engine device.
1664 *
1665 * Default transfer size of 32 bytes requires 32-byte alignment.
1666 */
1667 engine = &dmac->engine;
1668 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1669 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1670
1671 engine->dev = &pdev->dev;
1672 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1673
1674 engine->src_addr_widths = widths;
1675 engine->dst_addr_widths = widths;
1676 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1677 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1678
1679 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1680 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1681 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1682 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1683 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1684 engine->device_config = rcar_dmac_device_config;
1685 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1686 engine->device_tx_status = rcar_dmac_tx_status;
1687 engine->device_issue_pending = rcar_dmac_issue_pending;
1688
1689 ret = dma_async_device_register(engine);
1690 if (ret < 0)
1691 goto error;
1692
1693 return 0;
1694
1695error:
1696 of_dma_controller_free(pdev->dev.of_node);
1697 pm_runtime_disable(&pdev->dev);
1698 return ret;
1699}
1700
1701static int rcar_dmac_remove(struct platform_device *pdev)
1702{
1703 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1704
1705 of_dma_controller_free(pdev->dev.of_node);
1706 dma_async_device_unregister(&dmac->engine);
1707
1708 pm_runtime_disable(&pdev->dev);
1709
1710 return 0;
1711}
1712
1713static void rcar_dmac_shutdown(struct platform_device *pdev)
1714{
1715 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1716
1717 rcar_dmac_stop(dmac);
1718}
1719
1720static const struct of_device_id rcar_dmac_of_ids[] = {
1721 { .compatible = "renesas,rcar-dmac", },
1722 { /* Sentinel */ }
1723};
1724MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1725
1726static struct platform_driver rcar_dmac_driver = {
1727 .driver = {
1728 .pm = &rcar_dmac_pm,
1729 .name = "rcar-dmac",
1730 .of_match_table = rcar_dmac_of_ids,
1731 },
1732 .probe = rcar_dmac_probe,
1733 .remove = rcar_dmac_remove,
1734 .shutdown = rcar_dmac_shutdown,
1735};
1736
1737module_platform_driver(rcar_dmac_driver);
1738
1739MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1740MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1741MODULE_LICENSE("GPL v2");