dmaengine: add a driver for AMBA AXI NBPF DMAC IP cores
[linux-2.6-block.git] / drivers / dma / nbpfaxi.c
CommitLineData
b45b262c
GL
1/*
2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 */
9
10#include <linux/bitmap.h>
11#include <linux/bitops.h>
12#include <linux/clk.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/log2.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/of_dma.h>
23#include <linux/platform_device.h>
24#include <linux/slab.h>
25
26#include <dt-bindings/dma/nbpfaxi.h>
27
28#include "dmaengine.h"
29
30#define NBPF_REG_CHAN_OFFSET 0
31#define NBPF_REG_CHAN_SIZE 0x40
32
33/* Channel Current Transaction Byte register */
34#define NBPF_CHAN_CUR_TR_BYTE 0x20
35
36/* Channel Status register */
37#define NBPF_CHAN_STAT 0x24
38#define NBPF_CHAN_STAT_EN 1
39#define NBPF_CHAN_STAT_TACT 4
40#define NBPF_CHAN_STAT_ERR 0x10
41#define NBPF_CHAN_STAT_END 0x20
42#define NBPF_CHAN_STAT_TC 0x40
43#define NBPF_CHAN_STAT_DER 0x400
44
45/* Channel Control register */
46#define NBPF_CHAN_CTRL 0x28
47#define NBPF_CHAN_CTRL_SETEN 1
48#define NBPF_CHAN_CTRL_CLREN 2
49#define NBPF_CHAN_CTRL_STG 4
50#define NBPF_CHAN_CTRL_SWRST 8
51#define NBPF_CHAN_CTRL_CLRRQ 0x10
52#define NBPF_CHAN_CTRL_CLREND 0x20
53#define NBPF_CHAN_CTRL_CLRTC 0x40
54#define NBPF_CHAN_CTRL_SETSUS 0x100
55#define NBPF_CHAN_CTRL_CLRSUS 0x200
56
57/* Channel Configuration register */
58#define NBPF_CHAN_CFG 0x2c
59#define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */
60#define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */
61#define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
62#define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
63#define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
64#define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
65#define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
66#define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */
67#define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */
68#define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */
69#define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */
70#define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */
71#define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */
72#define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */
73#define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */
74#define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */
75#define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */
76#define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */
77
78#define NBPF_CHAN_NXLA 0x38
79#define NBPF_CHAN_CRLA 0x3c
80
81/* Link Header field */
82#define NBPF_HEADER_LV 1
83#define NBPF_HEADER_LE 2
84#define NBPF_HEADER_WBD 4
85#define NBPF_HEADER_DIM 8
86
87#define NBPF_CTRL 0x300
88#define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */
89#define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
90
91#define NBPF_DSTAT_ER 0x314
92#define NBPF_DSTAT_END 0x318
93
94#define NBPF_DMA_BUSWIDTHS \
95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
100
101struct nbpf_config {
102 int num_channels;
103 int buffer_size;
104};
105
106/*
107 * We've got 3 types of objects, used to describe DMA transfers:
108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
109 * in it, used to communicate with the user
110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
111 * queuing, these must be DMAable, using either the streaming DMA API or
112 * allocated from coherent memory - one per SG segment
113 * 3. one per SG segment descriptors, used to manage HW link descriptors from
114 * (2). They do not have to be DMAable. They can either be (a) allocated
115 * together with link descriptors as mixed (DMA / CPU) objects, or (b)
116 * separately. Even if allocated separately it would be best to link them
117 * to link descriptors once during channel resource allocation and always
118 * use them as a single object.
119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
120 * treated as a single SG segment descriptor.
121 */
122
123struct nbpf_link_reg {
124 u32 header;
125 u32 src_addr;
126 u32 dst_addr;
127 u32 transaction_size;
128 u32 config;
129 u32 interval;
130 u32 extension;
131 u32 next;
132} __packed;
133
134struct nbpf_device;
135struct nbpf_channel;
136struct nbpf_desc;
137
138struct nbpf_link_desc {
139 struct nbpf_link_reg *hwdesc;
140 dma_addr_t hwdesc_dma_addr;
141 struct nbpf_desc *desc;
142 struct list_head node;
143};
144
145/**
146 * struct nbpf_desc - DMA transfer descriptor
147 * @async_tx: dmaengine object
148 * @user_wait: waiting for a user ack
149 * @length: total transfer length
150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc
151 * @node: member in channel descriptor lists
152 */
153struct nbpf_desc {
154 struct dma_async_tx_descriptor async_tx;
155 bool user_wait;
156 size_t length;
157 struct nbpf_channel *chan;
158 struct list_head sg;
159 struct list_head node;
160};
161
162/* Take a wild guess: allocate 4 segments per descriptor */
163#define NBPF_SEGMENTS_PER_DESC 4
164#define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \
165 (sizeof(struct nbpf_desc) + \
166 NBPF_SEGMENTS_PER_DESC * \
167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
168#define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
169
170struct nbpf_desc_page {
171 struct list_head node;
172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
175};
176
177/**
178 * struct nbpf_channel - one DMAC channel
179 * @dma_chan: standard dmaengine channel object
180 * @base: register address base
181 * @nbpf: DMAC
182 * @name: IRQ name
183 * @irq: IRQ number
184 * @slave_addr: address for slave DMA
185 * @slave_width:slave data size in bytes
186 * @slave_burst:maximum slave burst size in bytes
187 * @terminal: DMA terminal, assigned to this channel
188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
189 * @flags: configuration flags from DT
190 * @lock: protect descriptor lists
191 * @free_links: list of free link descriptors
192 * @free: list of free descriptors
193 * @queued: list of queued descriptors
194 * @active: list of descriptors, scheduled for processing
195 * @done: list of completed descriptors, waiting post-processing
196 * @desc_page: list of additionally allocated descriptor pages - if any
197 */
198struct nbpf_channel {
199 struct dma_chan dma_chan;
200 void __iomem *base;
201 struct nbpf_device *nbpf;
202 char name[16];
203 int irq;
204 dma_addr_t slave_src_addr;
205 size_t slave_src_width;
206 size_t slave_src_burst;
207 dma_addr_t slave_dst_addr;
208 size_t slave_dst_width;
209 size_t slave_dst_burst;
210 unsigned int terminal;
211 u32 dmarq_cfg;
212 unsigned long flags;
213 spinlock_t lock;
214 struct list_head free_links;
215 struct list_head free;
216 struct list_head queued;
217 struct list_head active;
218 struct list_head done;
219 struct list_head desc_page;
220 struct nbpf_desc *running;
221 bool paused;
222};
223
224struct nbpf_device {
225 struct dma_device dma_dev;
226 void __iomem *base;
227 struct clk *clk;
228 const struct nbpf_config *config;
229 struct nbpf_channel chan[];
230};
231
232enum nbpf_model {
233 NBPF1B4,
234 NBPF1B8,
235 NBPF1B16,
236 NBPF4B4,
237 NBPF4B8,
238 NBPF4B16,
239 NBPF8B4,
240 NBPF8B8,
241 NBPF8B16,
242};
243
244static struct nbpf_config nbpf_cfg[] = {
245 [NBPF1B4] = {
246 .num_channels = 1,
247 .buffer_size = 4,
248 },
249 [NBPF1B8] = {
250 .num_channels = 1,
251 .buffer_size = 8,
252 },
253 [NBPF1B16] = {
254 .num_channels = 1,
255 .buffer_size = 16,
256 },
257 [NBPF4B4] = {
258 .num_channels = 4,
259 .buffer_size = 4,
260 },
261 [NBPF4B8] = {
262 .num_channels = 4,
263 .buffer_size = 8,
264 },
265 [NBPF4B16] = {
266 .num_channels = 4,
267 .buffer_size = 16,
268 },
269 [NBPF8B4] = {
270 .num_channels = 8,
271 .buffer_size = 4,
272 },
273 [NBPF8B8] = {
274 .num_channels = 8,
275 .buffer_size = 8,
276 },
277 [NBPF8B16] = {
278 .num_channels = 8,
279 .buffer_size = 16,
280 },
281};
282
283#define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
284
285/*
286 * dmaengine drivers seem to have a lot in common and instead of sharing more
287 * code, they reimplement those common algorithms independently. In this driver
288 * we try to separate the hardware-specific part from the (largely) generic
289 * part. This improves code readability and makes it possible in the future to
290 * reuse the generic code in form of a helper library. That generic code should
291 * be suitable for various DMA controllers, using transfer descriptors in RAM
292 * and pushing one SG list at a time to the DMA controller.
293 */
294
295/* Hardware-specific part */
296
297static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
298 unsigned int offset)
299{
300 u32 data = ioread32(chan->base + offset);
301 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
302 __func__, chan->base, offset, data);
303 return data;
304}
305
306static inline void nbpf_chan_write(struct nbpf_channel *chan,
307 unsigned int offset, u32 data)
308{
309 iowrite32(data, chan->base + offset);
310 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
311 __func__, chan->base, offset, data);
312}
313
314static inline u32 nbpf_read(struct nbpf_device *nbpf,
315 unsigned int offset)
316{
317 u32 data = ioread32(nbpf->base + offset);
318 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
319 __func__, nbpf->base, offset, data);
320 return data;
321}
322
323static inline void nbpf_write(struct nbpf_device *nbpf,
324 unsigned int offset, u32 data)
325{
326 iowrite32(data, nbpf->base + offset);
327 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
328 __func__, nbpf->base, offset, data);
329}
330
331static void nbpf_chan_halt(struct nbpf_channel *chan)
332{
333 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
334}
335
336static bool nbpf_status_get(struct nbpf_channel *chan)
337{
338 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
339
340 return status & BIT(chan - chan->nbpf->chan);
341}
342
343static void nbpf_status_ack(struct nbpf_channel *chan)
344{
345 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
346}
347
348static u32 nbpf_error_get(struct nbpf_device *nbpf)
349{
350 return nbpf_read(nbpf, NBPF_DSTAT_ER);
351}
352
353struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
354{
355 return nbpf->chan + __ffs(error);
356}
357
358static void nbpf_error_clear(struct nbpf_channel *chan)
359{
360 u32 status;
361 int i;
362
363 /* Stop the channel, make sure DMA has been aborted */
364 nbpf_chan_halt(chan);
365
366 for (i = 1000; i; i--) {
367 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
368 if (!(status & NBPF_CHAN_STAT_TACT))
369 break;
370 cpu_relax();
371 }
372
373 if (!i)
374 dev_err(chan->dma_chan.device->dev,
375 "%s(): abort timeout, channel status 0x%x\n", __func__, status);
376
377 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
378}
379
380static int nbpf_start(struct nbpf_desc *desc)
381{
382 struct nbpf_channel *chan = desc->chan;
383 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
384
385 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
386 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
387 chan->paused = false;
388
389 /* Software trigger MEMCPY - only MEMCPY uses the block mode */
390 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
391 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
392
393 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
394 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
395
396 return 0;
397}
398
399static void nbpf_chan_prepare(struct nbpf_channel *chan)
400{
401 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
402 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
403 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
404 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
405 chan->terminal;
406}
407
408static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
409{
410 /* Don't output DMAACK */
411 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
412 chan->terminal = 0;
413 chan->flags = 0;
414}
415
416static void nbpf_chan_configure(struct nbpf_channel *chan)
417{
418 /*
419 * We assume, that only the link mode and DMA request line configuration
420 * have to be set in the configuration register manually. Dynamic
421 * per-transfer configuration will be loaded from transfer descriptors.
422 */
423 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
424}
425
426static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size)
427{
428 /* Maximum supported bursts depend on the buffer size */
429 return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8));
430}
431
432static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
433 enum dma_slave_buswidth width, u32 burst)
434{
435 size_t size;
436
437 if (!burst)
438 burst = 1;
439
440 switch (width) {
441 case DMA_SLAVE_BUSWIDTH_8_BYTES:
442 size = 8 * burst;
443 break;
444
445 case DMA_SLAVE_BUSWIDTH_4_BYTES:
446 size = 4 * burst;
447 break;
448
449 case DMA_SLAVE_BUSWIDTH_2_BYTES:
450 size = 2 * burst;
451 break;
452
453 default:
454 pr_warn("%s(): invalid bus width %u\n", __func__, width);
455 case DMA_SLAVE_BUSWIDTH_1_BYTE:
456 size = burst;
457 }
458
459 return nbpf_xfer_ds(nbpf, size);
460}
461
462/*
463 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
464 * i.e. it isn't known in advance how many bytes will be received. Therefore
465 * the slave driver has to provide a "large enough" buffer and either read the
466 * buffer, when it is full, or detect, that some data has arrived, then wait for
467 * a timeout, if no more data arrives - receive what's already there. We want to
468 * handle such slaves in a special way to allow an optimised mode for other
469 * users, for whom the amount of data is known in advance. So far there's no way
470 * to recognise such slaves. We use a data-width check to distinguish between
471 * the SD host and the PL011 UART.
472 */
473
474static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
475 enum dma_transfer_direction direction,
476 dma_addr_t src, dma_addr_t dst, size_t size, bool last)
477{
478 struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
479 struct nbpf_desc *desc = ldesc->desc;
480 struct nbpf_channel *chan = desc->chan;
481 struct device *dev = chan->dma_chan.device->dev;
482 size_t mem_xfer, slave_xfer;
483 bool can_burst;
484
485 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
486 (last ? NBPF_HEADER_LE : 0);
487
488 hwdesc->src_addr = src;
489 hwdesc->dst_addr = dst;
490 hwdesc->transaction_size = size;
491
492 /*
493 * set config: SAD, DAD, DDS, SDS, etc.
494 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
495 * but it is important to have transaction size a multiple of both
496 * receiver and transmitter transfer sizes. It is also possible to use
497 * different RAM and device transfer sizes, and it does work well with
498 * some devices, e.g. with V08R07S01E SD host controllers, which can use
499 * 128 byte transfers. But this doesn't work with other devices,
500 * especially when the transaction size is unknown. This is the case,
501 * e.g. with serial drivers like amba-pl011.c. For reception it sets up
502 * the transaction size of 4K and if fewer bytes are received, it
503 * pauses DMA and reads out data received via DMA as well as those left
504 * in the Rx FIFO. For this to work with the RAM side using burst
505 * transfers we enable the SBE bit and terminate the transfer in our
506 * DMA_PAUSE handler.
507 */
508 mem_xfer = nbpf_xfer_ds(chan->nbpf, size);
509
510 switch (direction) {
511 case DMA_DEV_TO_MEM:
512 can_burst = chan->slave_src_width >= 3;
513 slave_xfer = min(mem_xfer, can_burst ?
514 chan->slave_src_burst : chan->slave_src_width);
515 /*
516 * Is the slave narrower than 64 bits, i.e. isn't using the full
517 * bus width and cannot use bursts?
518 */
519 if (mem_xfer > chan->slave_src_burst && !can_burst)
520 mem_xfer = chan->slave_src_burst;
521 /* Device-to-RAM DMA is unreliable without REQD set */
522 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
523 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
524 NBPF_CHAN_CFG_SBE;
525 break;
526
527 case DMA_MEM_TO_DEV:
528 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
529 chan->slave_dst_burst : chan->slave_dst_width);
530 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
531 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
532 break;
533
534 case DMA_MEM_TO_MEM:
535 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
536 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
537 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
538 break;
539
540 default:
541 return -EINVAL;
542 }
543
544 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
545 NBPF_CHAN_CFG_DMS;
546
547 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
548 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
549 hwdesc->config, size, &src, &dst);
550
551 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
552 DMA_TO_DEVICE);
553
554 return 0;
555}
556
557static size_t nbpf_bytes_left(struct nbpf_channel *chan)
558{
559 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
560}
561
562static void nbpf_configure(struct nbpf_device *nbpf)
563{
564 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
565}
566
567static void nbpf_pause(struct nbpf_channel *chan)
568{
569 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
570 /* See comment in nbpf_prep_one() */
571 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
572}
573
574/* Generic part */
575
576/* DMA ENGINE functions */
577static void nbpf_issue_pending(struct dma_chan *dchan)
578{
579 struct nbpf_channel *chan = nbpf_to_chan(dchan);
580 unsigned long flags;
581
582 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
583
584 spin_lock_irqsave(&chan->lock, flags);
585 if (list_empty(&chan->queued))
586 goto unlock;
587
588 list_splice_tail_init(&chan->queued, &chan->active);
589
590 if (!chan->running) {
591 struct nbpf_desc *desc = list_first_entry(&chan->active,
592 struct nbpf_desc, node);
593 if (!nbpf_start(desc))
594 chan->running = desc;
595 }
596
597unlock:
598 spin_unlock_irqrestore(&chan->lock, flags);
599}
600
601static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
602 dma_cookie_t cookie, struct dma_tx_state *state)
603{
604 struct nbpf_channel *chan = nbpf_to_chan(dchan);
605 enum dma_status status = dma_cookie_status(dchan, cookie, state);
606
607 if (state) {
608 dma_cookie_t running;
609 unsigned long flags;
610
611 spin_lock_irqsave(&chan->lock, flags);
612 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
613
614 if (cookie == running) {
615 state->residue = nbpf_bytes_left(chan);
616 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
617 state->residue);
618 } else if (status == DMA_IN_PROGRESS) {
619 struct nbpf_desc *desc;
620 bool found = false;
621
622 list_for_each_entry(desc, &chan->active, node)
623 if (desc->async_tx.cookie == cookie) {
624 found = true;
625 break;
626 }
627
628 if (!found)
629 list_for_each_entry(desc, &chan->queued, node)
630 if (desc->async_tx.cookie == cookie) {
631 found = true;
632 break;
633
634 }
635
636 state->residue = found ? desc->length : 0;
637 }
638
639 spin_unlock_irqrestore(&chan->lock, flags);
640 }
641
642 if (chan->paused)
643 status = DMA_PAUSED;
644
645 return status;
646}
647
648static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
649{
650 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
651 struct nbpf_channel *chan = desc->chan;
652 unsigned long flags;
653 dma_cookie_t cookie;
654
655 spin_lock_irqsave(&chan->lock, flags);
656 cookie = dma_cookie_assign(tx);
657 list_add_tail(&desc->node, &chan->queued);
658 spin_unlock_irqrestore(&chan->lock, flags);
659
660 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
661
662 return cookie;
663}
664
665static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
666{
667 struct dma_chan *dchan = &chan->dma_chan;
668 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
669 struct nbpf_link_desc *ldesc;
670 struct nbpf_link_reg *hwdesc;
671 struct nbpf_desc *desc;
672 LIST_HEAD(head);
673 LIST_HEAD(lhead);
674 int i;
675 struct device *dev = dchan->device->dev;
676
677 if (!dpage)
678 return -ENOMEM;
679
680 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
681 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
682
683 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
684 i < ARRAY_SIZE(dpage->ldesc);
685 i++, ldesc++, hwdesc++) {
686 ldesc->hwdesc = hwdesc;
687 list_add_tail(&ldesc->node, &lhead);
688 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
689 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
690
691 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
692 hwdesc, &ldesc->hwdesc_dma_addr);
693 }
694
695 for (i = 0, desc = dpage->desc;
696 i < ARRAY_SIZE(dpage->desc);
697 i++, desc++) {
698 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
699 desc->async_tx.tx_submit = nbpf_tx_submit;
700 desc->chan = chan;
701 INIT_LIST_HEAD(&desc->sg);
702 list_add_tail(&desc->node, &head);
703 }
704
705 /*
706 * This function cannot be called from interrupt context, so, no need to
707 * save flags
708 */
709 spin_lock_irq(&chan->lock);
710 list_splice_tail(&lhead, &chan->free_links);
711 list_splice_tail(&head, &chan->free);
712 list_add(&dpage->node, &chan->desc_page);
713 spin_unlock_irq(&chan->lock);
714
715 return ARRAY_SIZE(dpage->desc);
716}
717
718static void nbpf_desc_put(struct nbpf_desc *desc)
719{
720 struct nbpf_channel *chan = desc->chan;
721 struct nbpf_link_desc *ldesc, *tmp;
722 unsigned long flags;
723
724 spin_lock_irqsave(&chan->lock, flags);
725 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
726 list_move(&ldesc->node, &chan->free_links);
727
728 list_add(&desc->node, &chan->free);
729 spin_unlock_irqrestore(&chan->lock, flags);
730}
731
732static void nbpf_scan_acked(struct nbpf_channel *chan)
733{
734 struct nbpf_desc *desc, *tmp;
735 unsigned long flags;
736 LIST_HEAD(head);
737
738 spin_lock_irqsave(&chan->lock, flags);
739 list_for_each_entry_safe(desc, tmp, &chan->done, node)
740 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
741 list_move(&desc->node, &head);
742 desc->user_wait = false;
743 }
744 spin_unlock_irqrestore(&chan->lock, flags);
745
746 list_for_each_entry_safe(desc, tmp, &head, node) {
747 list_del(&desc->node);
748 nbpf_desc_put(desc);
749 }
750}
751
752/*
753 * We have to allocate descriptors with the channel lock dropped. This means,
754 * before we re-acquire the lock buffers can be taken already, so we have to
755 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
756 * again.
757 */
758static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
759{
760 struct nbpf_desc *desc = NULL;
761 struct nbpf_link_desc *ldesc, *prev = NULL;
762
763 nbpf_scan_acked(chan);
764
765 spin_lock_irq(&chan->lock);
766
767 do {
768 int i = 0, ret;
769
770 if (list_empty(&chan->free)) {
771 /* No more free descriptors */
772 spin_unlock_irq(&chan->lock);
773 ret = nbpf_desc_page_alloc(chan);
774 if (ret < 0)
775 return NULL;
776 spin_lock_irq(&chan->lock);
777 continue;
778 }
779 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
780 list_del(&desc->node);
781
782 do {
783 if (list_empty(&chan->free_links)) {
784 /* No more free link descriptors */
785 spin_unlock_irq(&chan->lock);
786 ret = nbpf_desc_page_alloc(chan);
787 if (ret < 0) {
788 nbpf_desc_put(desc);
789 return NULL;
790 }
791 spin_lock_irq(&chan->lock);
792 continue;
793 }
794
795 ldesc = list_first_entry(&chan->free_links,
796 struct nbpf_link_desc, node);
797 ldesc->desc = desc;
798 if (prev)
799 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
800
801 prev = ldesc;
802 list_move_tail(&ldesc->node, &desc->sg);
803
804 i++;
805 } while (i < len);
806 } while (!desc);
807
808 prev->hwdesc->next = 0;
809
810 spin_unlock_irq(&chan->lock);
811
812 return desc;
813}
814
815static void nbpf_chan_idle(struct nbpf_channel *chan)
816{
817 struct nbpf_desc *desc, *tmp;
818 unsigned long flags;
819 LIST_HEAD(head);
820
821 spin_lock_irqsave(&chan->lock, flags);
822
823 list_splice_init(&chan->done, &head);
824 list_splice_init(&chan->active, &head);
825 list_splice_init(&chan->queued, &head);
826
827 chan->running = NULL;
828
829 spin_unlock_irqrestore(&chan->lock, flags);
830
831 list_for_each_entry_safe(desc, tmp, &head, node) {
832 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
833 __func__, desc, desc->async_tx.cookie);
834 list_del(&desc->node);
835 nbpf_desc_put(desc);
836 }
837}
838
839static int nbpf_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd,
840 unsigned long arg)
841{
842 struct nbpf_channel *chan = nbpf_to_chan(dchan);
843 struct dma_slave_config *config;
844
845 dev_dbg(dchan->device->dev, "Entry %s(%d)\n", __func__, cmd);
846
847 switch (cmd) {
848 case DMA_TERMINATE_ALL:
849 dev_dbg(dchan->device->dev, "Terminating\n");
850 nbpf_chan_halt(chan);
851 nbpf_chan_idle(chan);
852 break;
853
854 case DMA_SLAVE_CONFIG:
855 if (!arg)
856 return -EINVAL;
857 config = (struct dma_slave_config *)arg;
858
859 /*
860 * We could check config->slave_id to match chan->terminal here,
861 * but with DT they would be coming from the same source, so
862 * such a check would be superflous
863 */
864
865 chan->slave_dst_addr = config->dst_addr;
866 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
867 config->dst_addr_width, 1);
868 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
869 config->dst_addr_width,
870 config->dst_maxburst);
871 chan->slave_src_addr = config->src_addr;
872 chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
873 config->src_addr_width, 1);
874 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
875 config->src_addr_width,
876 config->src_maxburst);
877 break;
878
879 case DMA_PAUSE:
880 chan->paused = true;
881 nbpf_pause(chan);
882 break;
883
884 default:
885 return -ENXIO;
886 }
887
888 return 0;
889}
890
891static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
892 struct scatterlist *src_sg, struct scatterlist *dst_sg,
893 size_t len, enum dma_transfer_direction direction,
894 unsigned long flags)
895{
896 struct nbpf_link_desc *ldesc;
897 struct scatterlist *mem_sg;
898 struct nbpf_desc *desc;
899 bool inc_src, inc_dst;
900 size_t data_len = 0;
901 int i = 0;
902
903 switch (direction) {
904 case DMA_DEV_TO_MEM:
905 mem_sg = dst_sg;
906 inc_src = false;
907 inc_dst = true;
908 break;
909
910 case DMA_MEM_TO_DEV:
911 mem_sg = src_sg;
912 inc_src = true;
913 inc_dst = false;
914 break;
915
916 default:
917 case DMA_MEM_TO_MEM:
918 mem_sg = src_sg;
919 inc_src = true;
920 inc_dst = true;
921 }
922
923 desc = nbpf_desc_get(chan, len);
924 if (!desc)
925 return NULL;
926
927 desc->async_tx.flags = flags;
928 desc->async_tx.cookie = -EBUSY;
929 desc->user_wait = false;
930
931 /*
932 * This is a private descriptor list, and we own the descriptor. No need
933 * to lock.
934 */
935 list_for_each_entry(ldesc, &desc->sg, node) {
936 int ret = nbpf_prep_one(ldesc, direction,
937 sg_dma_address(src_sg),
938 sg_dma_address(dst_sg),
939 sg_dma_len(mem_sg),
940 i == len - 1);
941 if (ret < 0) {
942 nbpf_desc_put(desc);
943 return NULL;
944 }
945 data_len += sg_dma_len(mem_sg);
946 if (inc_src)
947 src_sg = sg_next(src_sg);
948 if (inc_dst)
949 dst_sg = sg_next(dst_sg);
950 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
951 i++;
952 }
953
954 desc->length = data_len;
955
956 /* The user has to return the descriptor to us ASAP via .tx_submit() */
957 return &desc->async_tx;
958}
959
960static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
961 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
962 size_t len, unsigned long flags)
963{
964 struct nbpf_channel *chan = nbpf_to_chan(dchan);
965 struct scatterlist dst_sg;
966 struct scatterlist src_sg;
967
968 sg_init_table(&dst_sg, 1);
969 sg_init_table(&src_sg, 1);
970
971 sg_dma_address(&dst_sg) = dst;
972 sg_dma_address(&src_sg) = src;
973
974 sg_dma_len(&dst_sg) = len;
975 sg_dma_len(&src_sg) = len;
976
977 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
978 __func__, len, &src, &dst);
979
980 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
981 DMA_MEM_TO_MEM, flags);
982}
983
984static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg(
985 struct dma_chan *dchan,
986 struct scatterlist *dst_sg, unsigned int dst_nents,
987 struct scatterlist *src_sg, unsigned int src_nents,
988 unsigned long flags)
989{
990 struct nbpf_channel *chan = nbpf_to_chan(dchan);
991
992 if (dst_nents != src_nents)
993 return NULL;
994
995 return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents,
996 DMA_MEM_TO_MEM, flags);
997}
998
999static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1000 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1001 enum dma_transfer_direction direction, unsigned long flags, void *context)
1002{
1003 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1004 struct scatterlist slave_sg;
1005
1006 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1007
1008 sg_init_table(&slave_sg, 1);
1009
1010 switch (direction) {
1011 case DMA_MEM_TO_DEV:
1012 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1013 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1014 direction, flags);
1015
1016 case DMA_DEV_TO_MEM:
1017 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1018 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1019 direction, flags);
1020
1021 default:
1022 return NULL;
1023 }
1024}
1025
1026static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1027{
1028 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1029 int ret;
1030
1031 INIT_LIST_HEAD(&chan->free);
1032 INIT_LIST_HEAD(&chan->free_links);
1033 INIT_LIST_HEAD(&chan->queued);
1034 INIT_LIST_HEAD(&chan->active);
1035 INIT_LIST_HEAD(&chan->done);
1036
1037 ret = nbpf_desc_page_alloc(chan);
1038 if (ret < 0)
1039 return ret;
1040
1041 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1042 chan->terminal);
1043
1044 nbpf_chan_configure(chan);
1045
1046 return ret;
1047}
1048
1049static void nbpf_free_chan_resources(struct dma_chan *dchan)
1050{
1051 struct nbpf_channel *chan = nbpf_to_chan(dchan);
1052 struct nbpf_desc_page *dpage, *tmp;
1053
1054 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1055
1056 nbpf_chan_halt(chan);
1057 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1058 nbpf_chan_prepare_default(chan);
1059
1060 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1061 struct nbpf_link_desc *ldesc;
1062 int i;
1063 list_del(&dpage->node);
1064 for (i = 0, ldesc = dpage->ldesc;
1065 i < ARRAY_SIZE(dpage->ldesc);
1066 i++, ldesc++)
1067 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1068 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1069 free_page((unsigned long)dpage);
1070 }
1071}
1072
1073static int nbpf_slave_caps(struct dma_chan *dchan,
1074 struct dma_slave_caps *caps)
1075{
1076 caps->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1077 caps->dstn_addr_widths = NBPF_DMA_BUSWIDTHS;
1078 caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1079 caps->cmd_pause = false;
1080 caps->cmd_terminate = true;
1081
1082 return 0;
1083}
1084
1085static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1086 struct of_dma *ofdma)
1087{
1088 struct nbpf_device *nbpf = ofdma->of_dma_data;
1089 struct dma_chan *dchan;
1090 struct nbpf_channel *chan;
1091
1092 if (dma_spec->args_count != 2)
1093 return NULL;
1094
1095 dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1096 if (!dchan)
1097 return NULL;
1098
1099 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__,
1100 dma_spec->np->name);
1101
1102 chan = nbpf_to_chan(dchan);
1103
1104 chan->terminal = dma_spec->args[0];
1105 chan->flags = dma_spec->args[1];
1106
1107 nbpf_chan_prepare(chan);
1108 nbpf_chan_configure(chan);
1109
1110 return dchan;
1111}
1112
1113static irqreturn_t nbpf_chan_irqt(int irq, void *dev)
1114{
1115 struct nbpf_channel *chan = dev;
1116 struct nbpf_desc *desc, *tmp;
1117 dma_async_tx_callback callback;
1118 void *param;
1119
1120 while (!list_empty(&chan->done)) {
1121 bool found = false, must_put, recycling = false;
1122
1123 spin_lock_irq(&chan->lock);
1124
1125 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1126 if (!desc->user_wait) {
1127 /* Newly completed descriptor, have to process */
1128 found = true;
1129 break;
1130 } else if (async_tx_test_ack(&desc->async_tx)) {
1131 /*
1132 * This descriptor was waiting for a user ACK,
1133 * it can be recycled now.
1134 */
1135 list_del(&desc->node);
1136 spin_unlock_irq(&chan->lock);
1137 nbpf_desc_put(desc);
1138 recycling = true;
1139 break;
1140 }
1141 }
1142
1143 if (recycling)
1144 continue;
1145
1146 if (!found) {
1147 /* This can happen if TERMINATE_ALL has been called */
1148 spin_unlock_irq(&chan->lock);
1149 break;
1150 }
1151
1152 dma_cookie_complete(&desc->async_tx);
1153
1154 /*
1155 * With released lock we cannot dereference desc, maybe it's
1156 * still on the "done" list
1157 */
1158 if (async_tx_test_ack(&desc->async_tx)) {
1159 list_del(&desc->node);
1160 must_put = true;
1161 } else {
1162 desc->user_wait = true;
1163 must_put = false;
1164 }
1165
1166 callback = desc->async_tx.callback;
1167 param = desc->async_tx.callback_param;
1168
1169 /* ack and callback completed descriptor */
1170 spin_unlock_irq(&chan->lock);
1171
1172 if (callback)
1173 callback(param);
1174
1175 if (must_put)
1176 nbpf_desc_put(desc);
1177 }
1178
1179 return IRQ_HANDLED;
1180}
1181
1182static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1183{
1184 struct nbpf_channel *chan = dev;
1185 bool done = nbpf_status_get(chan);
1186 struct nbpf_desc *desc;
1187 irqreturn_t ret;
1188
1189 if (!done)
1190 return IRQ_NONE;
1191
1192 nbpf_status_ack(chan);
1193
1194 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1195
1196 spin_lock(&chan->lock);
1197 desc = chan->running;
1198 if (WARN_ON(!desc)) {
1199 ret = IRQ_NONE;
1200 goto unlock;
1201 } else {
1202 ret = IRQ_WAKE_THREAD;
1203 }
1204
1205 list_move_tail(&desc->node, &chan->done);
1206 chan->running = NULL;
1207
1208 if (!list_empty(&chan->active)) {
1209 desc = list_first_entry(&chan->active,
1210 struct nbpf_desc, node);
1211 if (!nbpf_start(desc))
1212 chan->running = desc;
1213 }
1214
1215unlock:
1216 spin_unlock(&chan->lock);
1217
1218 return ret;
1219}
1220
1221static irqreturn_t nbpf_err_irq(int irq, void *dev)
1222{
1223 struct nbpf_device *nbpf = dev;
1224 u32 error = nbpf_error_get(nbpf);
1225
1226 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1227
1228 if (!error)
1229 return IRQ_NONE;
1230
1231 do {
1232 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1233 /* On error: abort all queued transfers, no callback */
1234 nbpf_error_clear(chan);
1235 nbpf_chan_idle(chan);
1236 error = nbpf_error_get(nbpf);
1237 } while (error);
1238
1239 return IRQ_HANDLED;
1240}
1241
1242static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1243{
1244 struct dma_device *dma_dev = &nbpf->dma_dev;
1245 struct nbpf_channel *chan = nbpf->chan + n;
1246 int ret;
1247
1248 chan->nbpf = nbpf;
1249 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1250 INIT_LIST_HEAD(&chan->desc_page);
1251 spin_lock_init(&chan->lock);
1252 chan->dma_chan.device = dma_dev;
1253 dma_cookie_init(&chan->dma_chan);
1254 nbpf_chan_prepare_default(chan);
1255
1256 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1257
1258 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1259
1260 ret = devm_request_threaded_irq(dma_dev->dev, chan->irq,
1261 nbpf_chan_irq, nbpf_chan_irqt, IRQF_SHARED,
1262 chan->name, chan);
1263 if (ret < 0)
1264 return ret;
1265
1266 /* Add the channel to DMA device channel list */
1267 list_add_tail(&chan->dma_chan.device_node,
1268 &dma_dev->channels);
1269
1270 return 0;
1271}
1272
1273static const struct of_device_id nbpf_match[] = {
1274 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]},
1275 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]},
1276 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]},
1277 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]},
1278 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]},
1279 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]},
1280 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]},
1281 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]},
1282 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]},
1283 {}
1284};
1285MODULE_DEVICE_TABLE(of, nbpf_match);
1286
1287static int nbpf_probe(struct platform_device *pdev)
1288{
1289 struct device *dev = &pdev->dev;
1290 const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
1291 struct device_node *np = dev->of_node;
1292 struct nbpf_device *nbpf;
1293 struct dma_device *dma_dev;
1294 struct resource *iomem, *irq_res;
1295 const struct nbpf_config *cfg;
1296 int num_channels;
1297 int ret, irq, eirq, i;
1298 int irqbuf[9] /* maximum 8 channels + error IRQ */;
1299 unsigned int irqs = 0;
1300
1301 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1302
1303 /* DT only */
1304 if (!np || !of_id || !of_id->data)
1305 return -ENODEV;
1306
1307 cfg = of_id->data;
1308 num_channels = cfg->num_channels;
1309
1310 nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
1311 sizeof(nbpf->chan[0]), GFP_KERNEL);
1312 if (!nbpf) {
1313 dev_err(dev, "Memory allocation failed\n");
1314 return -ENOMEM;
1315 }
1316 dma_dev = &nbpf->dma_dev;
1317 dma_dev->dev = dev;
1318
1319 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1320 nbpf->base = devm_ioremap_resource(dev, iomem);
1321 if (IS_ERR(nbpf->base))
1322 return PTR_ERR(nbpf->base);
1323
1324 nbpf->clk = devm_clk_get(dev, NULL);
1325 if (IS_ERR(nbpf->clk))
1326 return PTR_ERR(nbpf->clk);
1327
1328 nbpf->config = cfg;
1329
1330 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1331 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1332 if (!irq_res)
1333 break;
1334
1335 for (irq = irq_res->start; irq <= irq_res->end;
1336 irq++, irqs++)
1337 irqbuf[irqs] = irq;
1338 }
1339
1340 /*
1341 * 3 IRQ resource schemes are supported:
1342 * 1. 1 shared IRQ for error and all channels
1343 * 2. 2 IRQs: one for error and one shared for all channels
1344 * 3. 1 IRQ for error and an own IRQ for each channel
1345 */
1346 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1347 return -ENXIO;
1348
1349 if (irqs == 1) {
1350 eirq = irqbuf[0];
1351
1352 for (i = 0; i <= num_channels; i++)
1353 nbpf->chan[i].irq = irqbuf[0];
1354 } else {
1355 eirq = platform_get_irq_byname(pdev, "error");
1356 if (eirq < 0)
1357 return eirq;
1358
1359 if (irqs == num_channels + 1) {
1360 struct nbpf_channel *chan;
1361
1362 for (i = 0, chan = nbpf->chan; i <= num_channels;
1363 i++, chan++) {
1364 /* Skip the error IRQ */
1365 if (irqbuf[i] == eirq)
1366 i++;
1367 chan->irq = irqbuf[i];
1368 }
1369
1370 if (chan != nbpf->chan + num_channels)
1371 return -EINVAL;
1372 } else {
1373 /* 2 IRQs and more than one channel */
1374 if (irqbuf[0] == eirq)
1375 irq = irqbuf[1];
1376 else
1377 irq = irqbuf[0];
1378
1379 for (i = 0; i <= num_channels; i++)
1380 nbpf->chan[i].irq = irq;
1381 }
1382 }
1383
1384 ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1385 IRQF_SHARED, "dma error", nbpf);
1386 if (ret < 0)
1387 return ret;
1388
1389 INIT_LIST_HEAD(&dma_dev->channels);
1390
1391 /* Create DMA Channel */
1392 for (i = 0; i < num_channels; i++) {
1393 ret = nbpf_chan_probe(nbpf, i);
1394 if (ret < 0)
1395 return ret;
1396 }
1397
1398 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1399 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1400 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1401 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1402
1403 /* Common and MEMCPY operations */
1404 dma_dev->device_alloc_chan_resources
1405 = nbpf_alloc_chan_resources;
1406 dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1407 dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg;
1408 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1409 dma_dev->device_tx_status = nbpf_tx_status;
1410 dma_dev->device_issue_pending = nbpf_issue_pending;
1411 dma_dev->device_slave_caps = nbpf_slave_caps;
1412
1413 /*
1414 * If we drop support for unaligned MEMCPY buffer addresses and / or
1415 * lengths by setting
1416 * dma_dev->copy_align = 4;
1417 * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1418 * DMA_MEM_TO_MEM
1419 */
1420
1421 /* Compulsory for DMA_SLAVE fields */
1422 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1423 dma_dev->device_control = nbpf_control;
1424
1425 platform_set_drvdata(pdev, nbpf);
1426
1427 ret = clk_prepare_enable(nbpf->clk);
1428 if (ret < 0)
1429 return ret;
1430
1431 nbpf_configure(nbpf);
1432
1433 ret = dma_async_device_register(dma_dev);
1434 if (ret < 0)
1435 goto e_clk_off;
1436
1437 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1438 if (ret < 0)
1439 goto e_dma_dev_unreg;
1440
1441 return 0;
1442
1443e_dma_dev_unreg:
1444 dma_async_device_unregister(dma_dev);
1445e_clk_off:
1446 clk_disable_unprepare(nbpf->clk);
1447
1448 return ret;
1449}
1450
1451static int nbpf_remove(struct platform_device *pdev)
1452{
1453 struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1454
1455 of_dma_controller_free(pdev->dev.of_node);
1456 dma_async_device_unregister(&nbpf->dma_dev);
1457 clk_disable_unprepare(nbpf->clk);
1458
1459 return 0;
1460}
1461
1462static struct platform_device_id nbpf_ids[] = {
1463 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1464 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1465 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1466 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1467 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1468 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1469 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1470 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1471 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1472 {},
1473};
1474MODULE_DEVICE_TABLE(platform, nbpf_ids);
1475
1476#ifdef CONFIG_PM_RUNTIME
1477static int nbpf_runtime_suspend(struct device *dev)
1478{
1479 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1480 clk_disable_unprepare(nbpf->clk);
1481 return 0;
1482}
1483
1484static int nbpf_runtime_resume(struct device *dev)
1485{
1486 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1487 return clk_prepare_enable(nbpf->clk);
1488}
1489#endif
1490
1491static const struct dev_pm_ops nbpf_pm_ops = {
1492 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1493};
1494
1495static struct platform_driver nbpf_driver = {
1496 .driver = {
1497 .owner = THIS_MODULE,
1498 .name = "dma-nbpf",
1499 .of_match_table = nbpf_match,
1500 .pm = &nbpf_pm_ops,
1501 },
1502 .id_table = nbpf_ids,
1503 .probe = nbpf_probe,
1504 .remove = nbpf_remove,
1505};
1506
1507module_platform_driver(nbpf_driver);
1508
1509MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1510MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1511MODULE_LICENSE("GPL v2");