selftests/bpf: Add a test case for loading BPF_SK_SKB_VERDICT
[linux-2.6-block.git] / drivers / crypto / s5p-sss.c
CommitLineData
5c8d850c
KK
1// SPDX-License-Identifier: GPL-2.0
2//
3// Cryptographic API.
4//
5// Support for Samsung S5PV210 and Exynos HW acceleration.
6//
7// Copyright (C) 2011 NetUP Inc. All rights reserved.
8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9//
10// Hash part based on omap-sham.c driver.
a49e490c 11
3cf9d84e
KK
12#include <linux/clk.h>
13#include <linux/crypto.h>
14#include <linux/dma-mapping.h>
a49e490c 15#include <linux/err.h>
a49e490c 16#include <linux/errno.h>
3cf9d84e
KK
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
a49e490c 20#include <linux/kernel.h>
3cf9d84e
KK
21#include <linux/module.h>
22#include <linux/of.h>
a49e490c
VZ
23#include <linux/platform_device.h>
24#include <linux/scatterlist.h>
a49e490c 25
a49e490c 26#include <crypto/ctr.h>
3cf9d84e
KK
27#include <crypto/aes.h>
28#include <crypto/algapi.h>
9e4a1100 29#include <crypto/scatterwalk.h>
a49e490c 30
c2afad6c
KK
31#include <crypto/hash.h>
32#include <crypto/md5.h>
a24d22b2
EB
33#include <crypto/sha1.h>
34#include <crypto/sha2.h>
c2afad6c
KK
35#include <crypto/internal/hash.h>
36
e5e40908 37#define _SBF(s, v) ((v) << (s))
a49e490c
VZ
38
39/* Feed control registers */
e5e40908 40#define SSS_REG_FCINTSTAT 0x0000
c2afad6c
KK
41#define SSS_FCINTSTAT_HPARTINT BIT(7)
42#define SSS_FCINTSTAT_HDONEINT BIT(5)
e5e40908
KK
43#define SSS_FCINTSTAT_BRDMAINT BIT(3)
44#define SSS_FCINTSTAT_BTDMAINT BIT(2)
45#define SSS_FCINTSTAT_HRDMAINT BIT(1)
46#define SSS_FCINTSTAT_PKDMAINT BIT(0)
47
48#define SSS_REG_FCINTENSET 0x0004
c2afad6c
KK
49#define SSS_FCINTENSET_HPARTINTENSET BIT(7)
50#define SSS_FCINTENSET_HDONEINTENSET BIT(5)
e5e40908
KK
51#define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
52#define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
53#define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
54#define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
55
56#define SSS_REG_FCINTENCLR 0x0008
c2afad6c
KK
57#define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
58#define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
e5e40908
KK
59#define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
60#define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
61#define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
62#define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
63
64#define SSS_REG_FCINTPEND 0x000C
c2afad6c
KK
65#define SSS_FCINTPEND_HPARTINTP BIT(7)
66#define SSS_FCINTPEND_HDONEINTP BIT(5)
e5e40908
KK
67#define SSS_FCINTPEND_BRDMAINTP BIT(3)
68#define SSS_FCINTPEND_BTDMAINTP BIT(2)
69#define SSS_FCINTPEND_HRDMAINTP BIT(1)
70#define SSS_FCINTPEND_PKDMAINTP BIT(0)
71
72#define SSS_REG_FCFIFOSTAT 0x0010
73#define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
74#define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
75#define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
76#define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
77#define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
78#define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
79#define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
80#define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
81
82#define SSS_REG_FCFIFOCTRL 0x0014
83#define SSS_FCFIFOCTRL_DESSEL BIT(2)
84#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
85#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
86#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
c2afad6c 87#define SSS_HASHIN_MASK _SBF(0, 0x03)
e5e40908
KK
88
89#define SSS_REG_FCBRDMAS 0x0020
90#define SSS_REG_FCBRDMAL 0x0024
91#define SSS_REG_FCBRDMAC 0x0028
92#define SSS_FCBRDMAC_BYTESWAP BIT(1)
93#define SSS_FCBRDMAC_FLUSH BIT(0)
94
95#define SSS_REG_FCBTDMAS 0x0030
96#define SSS_REG_FCBTDMAL 0x0034
97#define SSS_REG_FCBTDMAC 0x0038
98#define SSS_FCBTDMAC_BYTESWAP BIT(1)
99#define SSS_FCBTDMAC_FLUSH BIT(0)
100
101#define SSS_REG_FCHRDMAS 0x0040
102#define SSS_REG_FCHRDMAL 0x0044
103#define SSS_REG_FCHRDMAC 0x0048
104#define SSS_FCHRDMAC_BYTESWAP BIT(1)
105#define SSS_FCHRDMAC_FLUSH BIT(0)
106
107#define SSS_REG_FCPKDMAS 0x0050
108#define SSS_REG_FCPKDMAL 0x0054
109#define SSS_REG_FCPKDMAC 0x0058
110#define SSS_FCPKDMAC_BYTESWAP BIT(3)
111#define SSS_FCPKDMAC_DESCEND BIT(2)
112#define SSS_FCPKDMAC_TRANSMIT BIT(1)
113#define SSS_FCPKDMAC_FLUSH BIT(0)
114
115#define SSS_REG_FCPKDMAO 0x005C
a49e490c
VZ
116
117/* AES registers */
89245107 118#define SSS_REG_AES_CONTROL 0x00
e5e40908
KK
119#define SSS_AES_BYTESWAP_DI BIT(11)
120#define SSS_AES_BYTESWAP_DO BIT(10)
121#define SSS_AES_BYTESWAP_IV BIT(9)
122#define SSS_AES_BYTESWAP_CNT BIT(8)
123#define SSS_AES_BYTESWAP_KEY BIT(7)
124#define SSS_AES_KEY_CHANGE_MODE BIT(6)
125#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
126#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
127#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
128#define SSS_AES_FIFO_MODE BIT(3)
129#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
130#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
131#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
132#define SSS_AES_MODE_DECRYPT BIT(0)
a49e490c 133
89245107 134#define SSS_REG_AES_STATUS 0x04
e5e40908
KK
135#define SSS_AES_BUSY BIT(2)
136#define SSS_AES_INPUT_READY BIT(1)
137#define SSS_AES_OUTPUT_READY BIT(0)
a49e490c 138
89245107
NKC
139#define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
140#define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
141#define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
142#define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
143#define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
a49e490c 144
e5e40908
KK
145#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
146#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
147#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
a49e490c 148
e5e40908 149#define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
89245107
NKC
150#define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
151 SSS_AES_REG(dev, reg))
152
a49e490c 153/* HW engine modes */
e5e40908
KK
154#define FLAGS_AES_DECRYPT BIT(0)
155#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
156#define FLAGS_AES_CBC _SBF(1, 0x01)
157#define FLAGS_AES_CTR _SBF(1, 0x02)
a49e490c 158
e5e40908
KK
159#define AES_KEY_LEN 16
160#define CRYPTO_QUEUE_LEN 1
a49e490c 161
c2afad6c
KK
162/* HASH registers */
163#define SSS_REG_HASH_CTRL 0x00
164
165#define SSS_HASH_USER_IV_EN BIT(5)
166#define SSS_HASH_INIT_BIT BIT(4)
167#define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
168#define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
169#define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
170
171#define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
172
173#define SSS_REG_HASH_CTRL_PAUSE 0x04
174
175#define SSS_HASH_PAUSE BIT(0)
176
177#define SSS_REG_HASH_CTRL_FIFO 0x08
178
179#define SSS_HASH_FIFO_MODE_DMA BIT(0)
180#define SSS_HASH_FIFO_MODE_CPU 0
181
182#define SSS_REG_HASH_CTRL_SWAP 0x0C
183
184#define SSS_HASH_BYTESWAP_DI BIT(3)
185#define SSS_HASH_BYTESWAP_DO BIT(2)
186#define SSS_HASH_BYTESWAP_IV BIT(1)
187#define SSS_HASH_BYTESWAP_KEY BIT(0)
188
189#define SSS_REG_HASH_STATUS 0x10
190
191#define SSS_HASH_STATUS_MSG_DONE BIT(6)
192#define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
193#define SSS_HASH_STATUS_BUFFER_READY BIT(0)
194
195#define SSS_REG_HASH_MSG_SIZE_LOW 0x20
196#define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
197
198#define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
199#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
200
201#define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
202#define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
203
204#define HASH_BLOCK_SIZE 64
205#define HASH_REG_SIZEOF 4
206#define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207#define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208#define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209
210/*
211 * HASH bit numbers, used by device, setting in dev->hash_flags with
212 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 */
216#define HASH_FLAGS_BUSY 0
217#define HASH_FLAGS_FINAL 1
218#define HASH_FLAGS_DMA_ACTIVE 2
219#define HASH_FLAGS_OUTPUT_READY 3
220#define HASH_FLAGS_DMA_READY 4
221#define HASH_FLAGS_SGS_COPIED 5
222#define HASH_FLAGS_SGS_ALLOCED 6
223
224/* HASH HW constants */
225#define BUFLEN HASH_BLOCK_SIZE
226
227#define SSS_HASH_DMA_LEN_ALIGN 8
228#define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
229
230#define SSS_HASH_QUEUE_LENGTH 10
231
89245107
NKC
232/**
233 * struct samsung_aes_variant - platform specific SSS driver data
89245107 234 * @aes_offset: AES register offset from SSS module's base.
c2afad6c 235 * @hash_offset: HASH register offset from SSS module's base.
0918f18c 236 * @clk_names: names of clocks needed to run SSS IP
89245107
NKC
237 *
238 * Specifies platform specific configuration of SSS module.
239 * Note: A structure for driver specific platform data is used for future
240 * expansion of its usage.
241 */
242struct samsung_aes_variant {
5318c53d 243 unsigned int aes_offset;
c2afad6c 244 unsigned int hash_offset;
aa1abbe0 245 const char *clk_names[2];
89245107
NKC
246};
247
a49e490c 248struct s5p_aes_reqctx {
5318c53d 249 unsigned long mode;
a49e490c
VZ
250};
251
252struct s5p_aes_ctx {
5318c53d 253 struct s5p_aes_dev *dev;
a49e490c 254
b1b4416f
CM
255 u8 aes_key[AES_MAX_KEY_SIZE];
256 u8 nonce[CTR_RFC3686_NONCE_SIZE];
5318c53d 257 int keylen;
a49e490c
VZ
258};
259
106d7334
KK
260/**
261 * struct s5p_aes_dev - Crypto device state container
262 * @dev: Associated device
263 * @clk: Clock for accessing hardware
98a6bc10 264 * @pclk: APB bus clock necessary to access the hardware
106d7334
KK
265 * @ioaddr: Mapped IO memory region
266 * @aes_ioaddr: Per-varian offset for AES block IO memory
267 * @irq_fc: Feed control interrupt line
268 * @req: Crypto request currently handled by the device
269 * @ctx: Configuration for currently handled crypto request
270 * @sg_src: Scatter list with source data for currently handled block
271 * in device. This is DMA-mapped into device.
272 * @sg_dst: Scatter list with destination data for currently handled block
273 * in device. This is DMA-mapped into device.
274 * @sg_src_cpy: In case of unaligned access, copied scatter list
275 * with source data.
276 * @sg_dst_cpy: In case of unaligned access, copied scatter list
277 * with destination data.
278 * @tasklet: New request scheduling jib
279 * @queue: Crypto queue
280 * @busy: Indicates whether the device is currently handling some request
281 * thus it uses some of the fields from this state, like:
282 * req, ctx, sg_src/dst (and copies). This essentially
283 * protects against concurrent access to these fields.
284 * @lock: Lock for protecting both access to device hardware registers
285 * and fields related to current request (including the busy field).
c2afad6c
KK
286 * @res: Resources for hash.
287 * @io_hash_base: Per-variant offset for HASH block IO memory.
288 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
289 * variable.
290 * @hash_flags: Flags for current HASH op.
291 * @hash_queue: Async hash queue.
292 * @hash_tasklet: New HASH request scheduling job.
293 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
294 * @hash_req: Current request sending to SSS HASH block.
295 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
296 * @hash_sg_cnt: Counter for hash_sg_iter.
297 *
298 * @use_hash: true if HASH algs enabled
106d7334 299 */
a49e490c 300struct s5p_aes_dev {
5318c53d
KK
301 struct device *dev;
302 struct clk *clk;
0918f18c 303 struct clk *pclk;
5318c53d
KK
304 void __iomem *ioaddr;
305 void __iomem *aes_ioaddr;
306 int irq_fc;
a49e490c 307
e6b98ce6 308 struct skcipher_request *req;
5318c53d
KK
309 struct s5p_aes_ctx *ctx;
310 struct scatterlist *sg_src;
311 struct scatterlist *sg_dst;
a49e490c 312
5318c53d
KK
313 struct scatterlist *sg_src_cpy;
314 struct scatterlist *sg_dst_cpy;
9e4a1100 315
5318c53d
KK
316 struct tasklet_struct tasklet;
317 struct crypto_queue queue;
318 bool busy;
319 spinlock_t lock;
c2afad6c
KK
320
321 struct resource *res;
322 void __iomem *io_hash_base;
323
324 spinlock_t hash_lock; /* protect hash_ vars */
325 unsigned long hash_flags;
326 struct crypto_queue hash_queue;
327 struct tasklet_struct hash_tasklet;
328
329 u8 xmit_buf[BUFLEN];
330 struct ahash_request *hash_req;
331 struct scatterlist *hash_sg_iter;
332 unsigned int hash_sg_cnt;
333
334 bool use_hash;
a49e490c
VZ
335};
336
c2afad6c
KK
337/**
338 * struct s5p_hash_reqctx - HASH request context
339 * @dd: Associated device
340 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
341 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
342 * @digest: Digest message or IV for partial result
343 * @nregs: Number of HW registers for digest or IV read/write
344 * @engine: Bits for selecting type of HASH in SSS block
345 * @sg: sg for DMA transfer
346 * @sg_len: Length of sg for DMA transfer
98a6bc10 347 * @sgl: sg for joining buffer and req->src scatterlist
c2afad6c
KK
348 * @skip: Skip offset in req->src for current op
349 * @total: Total number of bytes for current request
350 * @finup: Keep state for finup or final.
351 * @error: Keep track of error.
352 * @bufcnt: Number of bytes holded in buffer[]
98a6bc10 353 * @buffer: For byte(s) from end of req->src in UPDATE op
c2afad6c
KK
354 */
355struct s5p_hash_reqctx {
356 struct s5p_aes_dev *dd;
357 bool op_update;
358
359 u64 digcnt;
360 u8 digest[SHA256_DIGEST_SIZE];
361
362 unsigned int nregs; /* digest_size / sizeof(reg) */
363 u32 engine;
364
365 struct scatterlist *sg;
366 unsigned int sg_len;
367 struct scatterlist sgl[2];
368 unsigned int skip;
369 unsigned int total;
370 bool finup;
371 bool error;
372
373 u32 bufcnt;
a4a70fa9 374 u8 buffer[];
c2afad6c
KK
375};
376
377/**
378 * struct s5p_hash_ctx - HASH transformation context
379 * @dd: Associated device
380 * @flags: Bits for algorithm HASH.
381 * @fallback: Software transformation for zero message or size < BUFLEN.
382 */
383struct s5p_hash_ctx {
384 struct s5p_aes_dev *dd;
385 unsigned long flags;
386 struct crypto_shash *fallback;
387};
a49e490c 388
89245107 389static const struct samsung_aes_variant s5p_aes_data = {
89245107 390 .aes_offset = 0x4000,
c2afad6c 391 .hash_offset = 0x6000,
0918f18c 392 .clk_names = { "secss", },
89245107
NKC
393};
394
395static const struct samsung_aes_variant exynos_aes_data = {
89245107 396 .aes_offset = 0x200,
c2afad6c 397 .hash_offset = 0x400,
0918f18c
KK
398 .clk_names = { "secss", },
399};
400
401static const struct samsung_aes_variant exynos5433_slim_aes_data = {
402 .aes_offset = 0x400,
403 .hash_offset = 0x800,
404 .clk_names = { "pclk", "aclk", },
89245107
NKC
405};
406
6b9f16e6 407static const struct of_device_id s5p_sss_dt_match[] = {
89245107
NKC
408 {
409 .compatible = "samsung,s5pv210-secss",
410 .data = &s5p_aes_data,
411 },
412 {
413 .compatible = "samsung,exynos4210-secss",
414 .data = &exynos_aes_data,
415 },
0918f18c
KK
416 {
417 .compatible = "samsung,exynos5433-slim-sss",
418 .data = &exynos5433_slim_aes_data,
419 },
6b9f16e6
NKC
420 { },
421};
422MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
423
6584eacb
KK
424static inline const struct samsung_aes_variant *find_s5p_sss_version
425 (const struct platform_device *pdev)
89245107
NKC
426{
427 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
428 const struct of_device_id *match;
313becd1 429
89245107
NKC
430 match = of_match_node(s5p_sss_dt_match,
431 pdev->dev.of_node);
6584eacb 432 return (const struct samsung_aes_variant *)match->data;
89245107 433 }
6584eacb 434 return (const struct samsung_aes_variant *)
89245107
NKC
435 platform_get_device_id(pdev)->driver_data;
436}
437
c2afad6c
KK
438static struct s5p_aes_dev *s5p_dev;
439
6584eacb
KK
440static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
441 const struct scatterlist *sg)
a49e490c
VZ
442{
443 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
444 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
445}
446
6584eacb
KK
447static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
448 const struct scatterlist *sg)
a49e490c
VZ
449{
450 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
451 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
452}
453
9e4a1100
KK
454static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
455{
456 int len;
457
458 if (!*sg)
459 return;
460
e6b98ce6 461 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
9e4a1100
KK
462 free_pages((unsigned long)sg_virt(*sg), get_order(len));
463
464 kfree(*sg);
465 *sg = NULL;
466}
467
468static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
469 unsigned int nbytes, int out)
470{
471 struct scatter_walk walk;
472
473 if (!nbytes)
474 return;
475
476 scatterwalk_start(&walk, sg);
477 scatterwalk_copychunks(buf, &walk, nbytes, out);
478 scatterwalk_done(&walk, out, 0);
479}
480
28b62b14 481static void s5p_sg_done(struct s5p_aes_dev *dev)
a49e490c 482{
e6b98ce6
AB
483 struct skcipher_request *req = dev->req;
484 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
e8e3c1ca 485
9e4a1100
KK
486 if (dev->sg_dst_cpy) {
487 dev_dbg(dev->dev,
488 "Copying %d bytes of output data back to original place\n",
e6b98ce6 489 dev->req->cryptlen);
9e4a1100 490 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
e6b98ce6 491 dev->req->cryptlen, 1);
9e4a1100
KK
492 }
493 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
494 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
e8e3c1ca 495 if (reqctx->mode & FLAGS_AES_CBC)
e6b98ce6 496 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
e8e3c1ca
KK
497
498 else if (reqctx->mode & FLAGS_AES_CTR)
e6b98ce6 499 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
28b62b14 500}
9e4a1100 501
28b62b14 502/* Calls the completion. Cannot be called with dev->lock hold. */
e6b98ce6 503static void s5p_aes_complete(struct skcipher_request *req, int err)
28b62b14 504{
5842cd44 505 req->base.complete(&req->base, err);
a49e490c
VZ
506}
507
508static void s5p_unset_outdata(struct s5p_aes_dev *dev)
509{
510 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
511}
512
513static void s5p_unset_indata(struct s5p_aes_dev *dev)
514{
515 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
516}
517
9e4a1100 518static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
6c12b6ba 519 struct scatterlist **dst)
9e4a1100
KK
520{
521 void *pages;
522 int len;
523
524 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
525 if (!*dst)
526 return -ENOMEM;
527
e6b98ce6 528 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
9e4a1100
KK
529 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
530 if (!pages) {
531 kfree(*dst);
532 *dst = NULL;
533 return -ENOMEM;
534 }
535
e6b98ce6 536 s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
9e4a1100
KK
537
538 sg_init_table(*dst, 1);
539 sg_set_buf(*dst, pages, len);
540
541 return 0;
542}
543
a49e490c
VZ
544static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
545{
b1b4416f
CM
546 if (!sg->length)
547 return -EINVAL;
a49e490c 548
b1b4416f
CM
549 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
550 return -ENOMEM;
a49e490c
VZ
551
552 dev->sg_dst = sg;
a49e490c 553
b1b4416f 554 return 0;
a49e490c
VZ
555}
556
557static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
558{
b1b4416f
CM
559 if (!sg->length)
560 return -EINVAL;
a49e490c 561
b1b4416f
CM
562 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
563 return -ENOMEM;
a49e490c
VZ
564
565 dev->sg_src = sg;
a49e490c 566
b1b4416f 567 return 0;
a49e490c
VZ
568}
569
79152e8d 570/*
28b62b14
KK
571 * Returns -ERRNO on error (mapping of new data failed).
572 * On success returns:
573 * - 0 if there is no more data,
574 * - 1 if new transmitting (output) data is ready and its address+length
575 * have to be written to device (by calling s5p_set_dma_outdata()).
79152e8d 576 */
28b62b14 577static int s5p_aes_tx(struct s5p_aes_dev *dev)
a49e490c 578{
28b62b14 579 int ret = 0;
a49e490c
VZ
580
581 s5p_unset_outdata(dev);
582
583 if (!sg_is_last(dev->sg_dst)) {
28b62b14
KK
584 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
585 if (!ret)
586 ret = 1;
dc5e3f19 587 }
79152e8d
KK
588
589 return ret;
a49e490c
VZ
590}
591
79152e8d 592/*
28b62b14
KK
593 * Returns -ERRNO on error (mapping of new data failed).
594 * On success returns:
595 * - 0 if there is no more data,
596 * - 1 if new receiving (input) data is ready and its address+length
597 * have to be written to device (by calling s5p_set_dma_indata()).
79152e8d 598 */
28b62b14 599static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
a49e490c 600{
28b62b14 601 int ret = 0;
a49e490c
VZ
602
603 s5p_unset_indata(dev);
604
605 if (!sg_is_last(dev->sg_src)) {
28b62b14
KK
606 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
607 if (!ret)
608 ret = 1;
a49e490c 609 }
79152e8d
KK
610
611 return ret;
a49e490c
VZ
612}
613
c2afad6c
KK
614static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
615{
616 return __raw_readl(dd->io_hash_base + offset);
617}
618
619static inline void s5p_hash_write(struct s5p_aes_dev *dd,
620 u32 offset, u32 value)
621{
622 __raw_writel(value, dd->io_hash_base + offset);
623}
624
625/**
626 * s5p_set_dma_hashdata() - start DMA with sg
627 * @dev: device
628 * @sg: scatterlist ready to DMA transmit
629 */
630static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
6584eacb 631 const struct scatterlist *sg)
c2afad6c
KK
632{
633 dev->hash_sg_cnt--;
634 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
635 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
636}
637
638/**
639 * s5p_hash_rx() - get next hash_sg_iter
640 * @dev: device
641 *
642 * Return:
643 * 2 if there is no more data and it is UPDATE op
644 * 1 if new receiving (input) data is ready and can be written to device
645 * 0 if there is no more data and it is FINAL op
646 */
647static int s5p_hash_rx(struct s5p_aes_dev *dev)
648{
649 if (dev->hash_sg_cnt > 0) {
650 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
651 return 1;
652 }
653
654 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
655 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
656 return 0;
657
658 return 2;
659}
660
a49e490c
VZ
661static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
662{
663 struct platform_device *pdev = dev_id;
5318c53d 664 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
e6b98ce6 665 struct skcipher_request *req;
28b62b14
KK
666 int err_dma_tx = 0;
667 int err_dma_rx = 0;
c2afad6c 668 int err_dma_hx = 0;
28b62b14 669 bool tx_end = false;
c2afad6c 670 bool hx_end = false;
5318c53d 671 unsigned long flags;
b1b4416f 672 u32 status, st_bits;
28b62b14 673 int err;
a49e490c
VZ
674
675 spin_lock_irqsave(&dev->lock, flags);
676
28b62b14
KK
677 /*
678 * Handle rx or tx interrupt. If there is still data (scatterlist did not
679 * reach end), then map next scatterlist entry.
680 * In case of such mapping error, s5p_aes_complete() should be called.
681 *
682 * If there is no more data in tx scatter list, call s5p_aes_complete()
683 * and schedule new tasklet.
c2afad6c
KK
684 *
685 * Handle hx interrupt. If there is still data map next entry.
28b62b14 686 */
55124425
KK
687 status = SSS_READ(dev, FCINTSTAT);
688 if (status & SSS_FCINTSTAT_BRDMAINT)
28b62b14
KK
689 err_dma_rx = s5p_aes_rx(dev);
690
691 if (status & SSS_FCINTSTAT_BTDMAINT) {
692 if (sg_is_last(dev->sg_dst))
693 tx_end = true;
694 err_dma_tx = s5p_aes_tx(dev);
695 }
a49e490c 696
c2afad6c
KK
697 if (status & SSS_FCINTSTAT_HRDMAINT)
698 err_dma_hx = s5p_hash_rx(dev);
699
700 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
701 SSS_FCINTSTAT_HRDMAINT);
702 /* clear DMA bits */
703 SSS_WRITE(dev, FCINTPEND, st_bits);
704
705 /* clear HASH irq bits */
706 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
707 /* cannot have both HPART and HDONE */
708 if (status & SSS_FCINTSTAT_HPARTINT)
709 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
710
711 if (status & SSS_FCINTSTAT_HDONEINT)
712 st_bits = SSS_HASH_STATUS_MSG_DONE;
713
714 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
715 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
716 hx_end = true;
717 /* when DONE or PART, do not handle HASH DMA */
718 err_dma_hx = 0;
719 }
a49e490c 720
28b62b14
KK
721 if (err_dma_rx < 0) {
722 err = err_dma_rx;
723 goto error;
724 }
725 if (err_dma_tx < 0) {
726 err = err_dma_tx;
727 goto error;
728 }
729
730 if (tx_end) {
731 s5p_sg_done(dev);
c2afad6c
KK
732 if (err_dma_hx == 1)
733 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
28b62b14
KK
734
735 spin_unlock_irqrestore(&dev->lock, flags);
736
5842cd44 737 s5p_aes_complete(dev->req, 0);
42d5c176 738 /* Device is still busy */
28b62b14
KK
739 tasklet_schedule(&dev->tasklet);
740 } else {
741 /*
742 * Writing length of DMA block (either receiving or
743 * transmitting) will start the operation immediately, so this
744 * should be done at the end (even after clearing pending
745 * interrupts to not miss the interrupt).
746 */
747 if (err_dma_tx == 1)
748 s5p_set_dma_outdata(dev, dev->sg_dst);
749 if (err_dma_rx == 1)
750 s5p_set_dma_indata(dev, dev->sg_src);
c2afad6c
KK
751 if (err_dma_hx == 1)
752 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
79152e8d 753
28b62b14
KK
754 spin_unlock_irqrestore(&dev->lock, flags);
755 }
756
c2afad6c 757 goto hash_irq_end;
28b62b14
KK
758
759error:
760 s5p_sg_done(dev);
42d5c176 761 dev->busy = false;
5842cd44 762 req = dev->req;
c2afad6c
KK
763 if (err_dma_hx == 1)
764 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
765
a49e490c 766 spin_unlock_irqrestore(&dev->lock, flags);
5842cd44 767 s5p_aes_complete(req, err);
a49e490c 768
c2afad6c
KK
769hash_irq_end:
770 /*
771 * Note about else if:
772 * when hash_sg_iter reaches end and its UPDATE op,
773 * issue SSS_HASH_PAUSE and wait for HPART irq
774 */
775 if (hx_end)
776 tasklet_schedule(&dev->hash_tasklet);
777 else if (err_dma_hx == 2)
778 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
779 SSS_HASH_PAUSE);
780
a49e490c
VZ
781 return IRQ_HANDLED;
782}
783
c2afad6c
KK
784/**
785 * s5p_hash_read_msg() - read message or IV from HW
786 * @req: AHASH request
787 */
788static void s5p_hash_read_msg(struct ahash_request *req)
789{
790 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
791 struct s5p_aes_dev *dd = ctx->dd;
792 u32 *hash = (u32 *)ctx->digest;
793 unsigned int i;
794
795 for (i = 0; i < ctx->nregs; i++)
796 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
797}
798
799/**
800 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
801 * @dd: device
802 * @ctx: request context
803 */
804static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
6584eacb 805 const struct s5p_hash_reqctx *ctx)
c2afad6c 806{
6584eacb 807 const u32 *hash = (const u32 *)ctx->digest;
c2afad6c
KK
808 unsigned int i;
809
810 for (i = 0; i < ctx->nregs; i++)
811 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
812}
813
814/**
815 * s5p_hash_write_iv() - write IV for next partial/finup op.
816 * @req: AHASH request
817 */
818static void s5p_hash_write_iv(struct ahash_request *req)
819{
820 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
821
822 s5p_hash_write_ctx_iv(ctx->dd, ctx);
823}
824
825/**
826 * s5p_hash_copy_result() - copy digest into req->result
827 * @req: AHASH request
828 */
829static void s5p_hash_copy_result(struct ahash_request *req)
830{
6584eacb 831 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
c2afad6c
KK
832
833 if (!req->result)
834 return;
835
836 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
837}
838
839/**
840 * s5p_hash_dma_flush() - flush HASH DMA
841 * @dev: secss device
842 */
843static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
844{
845 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
846}
847
848/**
849 * s5p_hash_dma_enable() - enable DMA mode for HASH
850 * @dev: secss device
851 *
852 * enable DMA mode for HASH
853 */
854static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
855{
856 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
857}
858
859/**
860 * s5p_hash_irq_disable() - disable irq HASH signals
861 * @dev: secss device
862 * @flags: bitfield with irq's to be disabled
863 */
864static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
865{
866 SSS_WRITE(dev, FCINTENCLR, flags);
867}
868
869/**
870 * s5p_hash_irq_enable() - enable irq signals
871 * @dev: secss device
872 * @flags: bitfield with irq's to be enabled
873 */
874static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
875{
876 SSS_WRITE(dev, FCINTENSET, flags);
877}
878
879/**
880 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
881 * @dev: secss device
882 * @hashflow: HASH stream flow with/without crypto AES/DES
883 */
884static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
885{
886 unsigned long flags;
887 u32 flow;
888
889 spin_lock_irqsave(&dev->lock, flags);
890
891 flow = SSS_READ(dev, FCFIFOCTRL);
892 flow &= ~SSS_HASHIN_MASK;
893 flow |= hashflow;
894 SSS_WRITE(dev, FCFIFOCTRL, flow);
895
896 spin_unlock_irqrestore(&dev->lock, flags);
897}
898
899/**
900 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
901 * @dev: secss device
902 * @hashflow: HASH stream flow with/without AES/DES
903 *
904 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
905 * enable HASH irq's HRDMA, HDONE, HPART
906 */
907static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
908{
909 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
910 SSS_FCINTENCLR_HDONEINTENCLR |
911 SSS_FCINTENCLR_HPARTINTENCLR);
912 s5p_hash_dma_flush(dev);
913
914 s5p_hash_dma_enable(dev);
915 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
916 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
917 SSS_FCINTENSET_HDONEINTENSET |
918 SSS_FCINTENSET_HPARTINTENSET);
919}
920
921/**
922 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
923 * @dd: secss device
924 * @length: length for request
925 * @final: true if final op
926 *
927 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
928 * after previous updates, fill up IV words. For final, calculate and set
929 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
930 * length as 2^63 so it will be never reached and set to zero prelow and
931 * prehigh.
932 *
933 * This function does not start DMA transfer.
934 */
935static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
936 bool final)
937{
938 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
939 u32 prelow, prehigh, low, high;
940 u32 configflags, swapflags;
941 u64 tmplen;
942
943 configflags = ctx->engine | SSS_HASH_INIT_BIT;
944
945 if (likely(ctx->digcnt)) {
946 s5p_hash_write_ctx_iv(dd, ctx);
947 configflags |= SSS_HASH_USER_IV_EN;
948 }
949
950 if (final) {
951 /* number of bytes for last part */
952 low = length;
953 high = 0;
954 /* total number of bits prev hashed */
955 tmplen = ctx->digcnt * 8;
956 prelow = (u32)tmplen;
957 prehigh = (u32)(tmplen >> 32);
958 } else {
959 prelow = 0;
960 prehigh = 0;
961 low = 0;
962 high = BIT(31);
963 }
964
965 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
966 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
967
968 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
969 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
970 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
971 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
972
973 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
974 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
975}
976
977/**
978 * s5p_hash_xmit_dma() - start DMA hash processing
979 * @dd: secss device
980 * @length: length for request
981 * @final: true if final op
982 *
983 * Update digcnt here, as it is needed for finup/final op.
984 */
985static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
986 bool final)
987{
988 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
989 unsigned int cnt;
990
991 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
992 if (!cnt) {
993 dev_err(dd->dev, "dma_map_sg error\n");
994 ctx->error = true;
995 return -EINVAL;
996 }
997
998 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
999 dd->hash_sg_iter = ctx->sg;
1000 dd->hash_sg_cnt = cnt;
1001 s5p_hash_write_ctrl(dd, length, final);
1002 ctx->digcnt += length;
1003 ctx->total -= length;
1004
1005 /* catch last interrupt */
1006 if (final)
1007 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1008
1009 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1010
1011 return -EINPROGRESS;
1012}
1013
1014/**
1015 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1016 * @ctx: request context
1017 * @sg: source scatterlist request
1018 * @new_len: number of bytes to process from sg
1019 *
1020 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1021 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1022 * with allocated buffer.
1023 *
1024 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1025 */
1026static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1027 struct scatterlist *sg, unsigned int new_len)
1028{
1029 unsigned int pages, len;
1030 void *buf;
1031
1032 len = new_len + ctx->bufcnt;
1033 pages = get_order(len);
1034
1035 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1036 if (!buf) {
1037 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1038 ctx->error = true;
1039 return -ENOMEM;
1040 }
1041
1042 if (ctx->bufcnt)
1043 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1044
1045 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1046 new_len, 0);
1047 sg_init_table(ctx->sgl, 1);
1048 sg_set_buf(ctx->sgl, buf, len);
1049 ctx->sg = ctx->sgl;
1050 ctx->sg_len = 1;
1051 ctx->bufcnt = 0;
1052 ctx->skip = 0;
1053 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1054
1055 return 0;
1056}
1057
1058/**
1059 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1060 * @ctx: request context
1061 * @sg: source scatterlist request
1062 * @new_len: number of bytes to process from sg
1063 *
1064 * Allocate new scatterlist table, copy data for HASH into it. If there was
1065 * xmit_buf filled, prepare it first, then copy page, length and offset from
1066 * source sg into it, adjusting begin and/or end for skip offset and
1067 * hash_later value.
1068 *
1069 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1070 * it after irq ends processing.
1071 */
1072static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1073 struct scatterlist *sg, unsigned int new_len)
1074{
1075 unsigned int skip = ctx->skip, n = sg_nents(sg);
1076 struct scatterlist *tmp;
1077 unsigned int len;
1078
1079 if (ctx->bufcnt)
1080 n++;
1081
1082 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1083 if (!ctx->sg) {
1084 ctx->error = true;
1085 return -ENOMEM;
1086 }
1087
1088 sg_init_table(ctx->sg, n);
1089
1090 tmp = ctx->sg;
1091
1092 ctx->sg_len = 0;
1093
1094 if (ctx->bufcnt) {
1095 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1096 tmp = sg_next(tmp);
1097 ctx->sg_len++;
1098 }
1099
1100 while (sg && skip >= sg->length) {
1101 skip -= sg->length;
1102 sg = sg_next(sg);
1103 }
1104
1105 while (sg && new_len) {
1106 len = sg->length - skip;
1107 if (new_len < len)
1108 len = new_len;
1109
1110 new_len -= len;
1111 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1112 skip = 0;
1113 if (new_len <= 0)
1114 sg_mark_end(tmp);
1115
1116 tmp = sg_next(tmp);
1117 ctx->sg_len++;
1118 sg = sg_next(sg);
1119 }
1120
1121 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1122
1123 return 0;
1124}
1125
1126/**
1127 * s5p_hash_prepare_sgs() - prepare sg for processing
1128 * @ctx: request context
1129 * @sg: source scatterlist request
98a6bc10 1130 * @new_len: number of bytes to process from sg
c2afad6c
KK
1131 * @final: final flag
1132 *
1133 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1134 * sg table have good aligned elements (list_ok). If one of this checks fails,
1135 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1136 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1137 * table and prepare sg elements.
1138 *
1139 * For digest or finup all conditions can be good, and we may not need any
1140 * fixes.
1141 */
1142static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1143 struct scatterlist *sg,
1144 unsigned int new_len, bool final)
1145{
1146 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1147 bool aligned = true, list_ok = true;
1148 struct scatterlist *sg_tmp = sg;
1149
1150 if (!sg || !sg->length || !new_len)
1151 return 0;
1152
1153 if (skip || !final)
1154 list_ok = false;
1155
1156 while (nbytes > 0 && sg_tmp) {
1157 n++;
1158 if (skip >= sg_tmp->length) {
1159 skip -= sg_tmp->length;
1160 if (!sg_tmp->length) {
1161 aligned = false;
1162 break;
1163 }
1164 } else {
1165 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1166 aligned = false;
1167 break;
1168 }
1169
1170 if (nbytes < sg_tmp->length - skip) {
1171 list_ok = false;
1172 break;
1173 }
1174
1175 nbytes -= sg_tmp->length - skip;
1176 skip = 0;
1177 }
1178
1179 sg_tmp = sg_next(sg_tmp);
1180 }
1181
1182 if (!aligned)
1183 return s5p_hash_copy_sgs(ctx, sg, new_len);
1184 else if (!list_ok)
1185 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1186
1187 /*
1188 * Have aligned data from previous operation and/or current
1189 * Note: will enter here only if (digest or finup) and aligned
1190 */
1191 if (ctx->bufcnt) {
1192 ctx->sg_len = n;
1193 sg_init_table(ctx->sgl, 2);
1194 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1195 sg_chain(ctx->sgl, 2, sg);
1196 ctx->sg = ctx->sgl;
1197 ctx->sg_len++;
1198 } else {
1199 ctx->sg = sg;
1200 ctx->sg_len = n;
1201 }
1202
1203 return 0;
1204}
1205
1206/**
1207 * s5p_hash_prepare_request() - prepare request for processing
1208 * @req: AHASH request
1209 * @update: true if UPDATE op
1210 *
1211 * Note 1: we can have update flag _and_ final flag at the same time.
1212 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1213 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1214 * we have final op
1215 */
1216static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1217{
1218 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1219 bool final = ctx->finup;
1220 int xmit_len, hash_later, nbytes;
1221 int ret;
1222
c2afad6c
KK
1223 if (update)
1224 nbytes = req->nbytes;
1225 else
1226 nbytes = 0;
1227
1228 ctx->total = nbytes + ctx->bufcnt;
1229 if (!ctx->total)
1230 return 0;
1231
1232 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1233 /* bytes left from previous request, so fill up to BUFLEN */
1234 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1235
1236 if (len > nbytes)
1237 len = nbytes;
1238
1239 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1240 0, len, 0);
1241 ctx->bufcnt += len;
1242 nbytes -= len;
1243 ctx->skip = len;
1244 } else {
1245 ctx->skip = 0;
1246 }
1247
1248 if (ctx->bufcnt)
1249 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1250
1251 xmit_len = ctx->total;
1252 if (final) {
1253 hash_later = 0;
1254 } else {
1255 if (IS_ALIGNED(xmit_len, BUFLEN))
1256 xmit_len -= BUFLEN;
1257 else
1258 xmit_len -= xmit_len & (BUFLEN - 1);
1259
1260 hash_later = ctx->total - xmit_len;
1261 /* copy hash_later bytes from end of req->src */
1262 /* previous bytes are in xmit_buf, so no overwrite */
1263 scatterwalk_map_and_copy(ctx->buffer, req->src,
1264 req->nbytes - hash_later,
1265 hash_later, 0);
1266 }
1267
1268 if (xmit_len > BUFLEN) {
1269 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1270 final);
1271 if (ret)
1272 return ret;
1273 } else {
1274 /* have buffered data only */
1275 if (unlikely(!ctx->bufcnt)) {
1276 /* first update didn't fill up buffer */
1277 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1278 0, xmit_len, 0);
1279 }
1280
1281 sg_init_table(ctx->sgl, 1);
1282 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1283
1284 ctx->sg = ctx->sgl;
1285 ctx->sg_len = 1;
1286 }
1287
1288 ctx->bufcnt = hash_later;
1289 if (!final)
1290 ctx->total = xmit_len;
1291
1292 return 0;
1293}
1294
1295/**
1296 * s5p_hash_update_dma_stop() - unmap DMA
1297 * @dd: secss device
1298 *
1299 * Unmap scatterlist ctx->sg.
1300 */
1301static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1302{
6584eacb 1303 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
c2afad6c
KK
1304
1305 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1306 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1307}
1308
1309/**
1310 * s5p_hash_finish() - copy calculated digest to crypto layer
1311 * @req: AHASH request
1312 */
1313static void s5p_hash_finish(struct ahash_request *req)
1314{
1315 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1316 struct s5p_aes_dev *dd = ctx->dd;
1317
1318 if (ctx->digcnt)
1319 s5p_hash_copy_result(req);
1320
1321 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1322}
1323
1324/**
1325 * s5p_hash_finish_req() - finish request
1326 * @req: AHASH request
1327 * @err: error
1328 */
1329static void s5p_hash_finish_req(struct ahash_request *req, int err)
1330{
1331 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1332 struct s5p_aes_dev *dd = ctx->dd;
1333 unsigned long flags;
1334
1335 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1336 free_pages((unsigned long)sg_virt(ctx->sg),
1337 get_order(ctx->sg->length));
1338
1339 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1340 kfree(ctx->sg);
1341
1342 ctx->sg = NULL;
1343 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1344 BIT(HASH_FLAGS_SGS_COPIED));
1345
1346 if (!err && !ctx->error) {
1347 s5p_hash_read_msg(req);
1348 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1349 s5p_hash_finish(req);
1350 } else {
1351 ctx->error = true;
1352 }
1353
1354 spin_lock_irqsave(&dd->hash_lock, flags);
1355 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1356 BIT(HASH_FLAGS_DMA_READY) |
1357 BIT(HASH_FLAGS_OUTPUT_READY));
1358 spin_unlock_irqrestore(&dd->hash_lock, flags);
1359
1360 if (req->base.complete)
1361 req->base.complete(&req->base, err);
1362}
1363
1364/**
1365 * s5p_hash_handle_queue() - handle hash queue
1366 * @dd: device s5p_aes_dev
1367 * @req: AHASH request
1368 *
1369 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1370 * device then processes the first request from the dd->queue
1371 *
1372 * Returns: see s5p_hash_final below.
1373 */
1374static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1375 struct ahash_request *req)
1376{
1377 struct crypto_async_request *async_req, *backlog;
1378 struct s5p_hash_reqctx *ctx;
1379 unsigned long flags;
1380 int err = 0, ret = 0;
1381
1382retry:
1383 spin_lock_irqsave(&dd->hash_lock, flags);
1384 if (req)
1385 ret = ahash_enqueue_request(&dd->hash_queue, req);
1386
1387 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1388 spin_unlock_irqrestore(&dd->hash_lock, flags);
1389 return ret;
1390 }
1391
1392 backlog = crypto_get_backlog(&dd->hash_queue);
1393 async_req = crypto_dequeue_request(&dd->hash_queue);
1394 if (async_req)
1395 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1396
1397 spin_unlock_irqrestore(&dd->hash_lock, flags);
1398
1399 if (!async_req)
1400 return ret;
1401
1402 if (backlog)
1403 backlog->complete(backlog, -EINPROGRESS);
1404
1405 req = ahash_request_cast(async_req);
1406 dd->hash_req = req;
1407 ctx = ahash_request_ctx(req);
1408
1409 err = s5p_hash_prepare_request(req, ctx->op_update);
1410 if (err || !ctx->total)
1411 goto out;
1412
1413 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1414 ctx->op_update, req->nbytes);
1415
1416 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1417 if (ctx->digcnt)
1418 s5p_hash_write_iv(req); /* restore hash IV */
1419
1420 if (ctx->op_update) { /* HASH_OP_UPDATE */
1421 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1422 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1423 /* no final() after finup() */
1424 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1425 } else { /* HASH_OP_FINAL */
1426 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1427 }
1428out:
1429 if (err != -EINPROGRESS) {
1430 /* hash_tasklet_cb will not finish it, so do it here */
1431 s5p_hash_finish_req(req, err);
1432 req = NULL;
1433
1434 /*
1435 * Execute next request immediately if there is anything
1436 * in queue.
1437 */
1438 goto retry;
1439 }
1440
1441 return ret;
1442}
1443
1444/**
1445 * s5p_hash_tasklet_cb() - hash tasklet
1446 * @data: ptr to s5p_aes_dev
1447 */
1448static void s5p_hash_tasklet_cb(unsigned long data)
1449{
1450 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1451
1452 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1453 s5p_hash_handle_queue(dd, NULL);
1454 return;
1455 }
1456
1457 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1458 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1459 &dd->hash_flags)) {
1460 s5p_hash_update_dma_stop(dd);
1461 }
1462
1463 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1464 &dd->hash_flags)) {
1465 /* hash or semi-hash ready */
1466 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
f7daa715 1467 goto finish;
c2afad6c
KK
1468 }
1469 }
1470
1471 return;
1472
1473finish:
1474 /* finish curent request */
1475 s5p_hash_finish_req(dd->hash_req, 0);
1476
1477 /* If we are not busy, process next req */
1478 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1479 s5p_hash_handle_queue(dd, NULL);
1480}
1481
1482/**
1483 * s5p_hash_enqueue() - enqueue request
1484 * @req: AHASH request
1485 * @op: operation UPDATE (true) or FINAL (false)
1486 *
1487 * Returns: see s5p_hash_final below.
1488 */
1489static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1490{
1491 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1492 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1493
1494 ctx->op_update = op;
1495
1496 return s5p_hash_handle_queue(tctx->dd, req);
1497}
1498
1499/**
1500 * s5p_hash_update() - process the hash input data
1501 * @req: AHASH request
1502 *
1503 * If request will fit in buffer, copy it and return immediately
1504 * else enqueue it with OP_UPDATE.
1505 *
1506 * Returns: see s5p_hash_final below.
1507 */
1508static int s5p_hash_update(struct ahash_request *req)
1509{
1510 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1511
1512 if (!req->nbytes)
1513 return 0;
1514
1515 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1516 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1517 0, req->nbytes, 0);
1518 ctx->bufcnt += req->nbytes;
1519 return 0;
1520 }
1521
1522 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1523}
1524
c2afad6c
KK
1525/**
1526 * s5p_hash_final() - close up hash and calculate digest
1527 * @req: AHASH request
1528 *
1529 * Note: in final req->src do not have any data, and req->nbytes can be
1530 * non-zero.
1531 *
1532 * If there were no input data processed yet and the buffered hash data is
1533 * less than BUFLEN (64) then calculate the final hash immediately by using
1534 * SW algorithm fallback.
1535 *
1536 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1537 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1538 * previous update op, so there are always some buffered bytes in ctx->buffer,
1539 * which means that ctx->bufcnt!=0
1540 *
1541 * Returns:
1542 * 0 if the request has been processed immediately,
1543 * -EINPROGRESS if the operation has been queued for later execution or is set
1544 * to processing by HW,
1545 * -EBUSY if queue is full and request should be resubmitted later,
1546 * other negative values denotes an error.
1547 */
1548static int s5p_hash_final(struct ahash_request *req)
1549{
1550 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1551
1552 ctx->finup = true;
1553 if (ctx->error)
1554 return -EINVAL; /* uncompleted hash is not needed */
1555
ecca1ad6
EB
1556 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1557 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1558
1559 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1560 ctx->bufcnt, req->result);
1561 }
c2afad6c
KK
1562
1563 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1564}
1565
1566/**
1567 * s5p_hash_finup() - process last req->src and calculate digest
1568 * @req: AHASH request containing the last update data
1569 *
1570 * Return values: see s5p_hash_final above.
1571 */
1572static int s5p_hash_finup(struct ahash_request *req)
1573{
1574 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1575 int err1, err2;
1576
1577 ctx->finup = true;
1578
1579 err1 = s5p_hash_update(req);
1580 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1581 return err1;
1582
1583 /*
1584 * final() has to be always called to cleanup resources even if
1585 * update() failed, except EINPROGRESS or calculate digest for small
1586 * size
1587 */
1588 err2 = s5p_hash_final(req);
1589
1590 return err1 ?: err2;
1591}
1592
1593/**
1594 * s5p_hash_init() - initialize AHASH request contex
1595 * @req: AHASH request
1596 *
1597 * Init async hash request context.
1598 */
1599static int s5p_hash_init(struct ahash_request *req)
1600{
1601 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1602 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1603 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1604
1605 ctx->dd = tctx->dd;
1606 ctx->error = false;
1607 ctx->finup = false;
1608 ctx->bufcnt = 0;
1609 ctx->digcnt = 0;
1610 ctx->total = 0;
1611 ctx->skip = 0;
1612
1613 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1614 crypto_ahash_digestsize(tfm));
1615
1616 switch (crypto_ahash_digestsize(tfm)) {
1617 case MD5_DIGEST_SIZE:
1618 ctx->engine = SSS_HASH_ENGINE_MD5;
1619 ctx->nregs = HASH_MD5_MAX_REG;
1620 break;
1621 case SHA1_DIGEST_SIZE:
1622 ctx->engine = SSS_HASH_ENGINE_SHA1;
1623 ctx->nregs = HASH_SHA1_MAX_REG;
1624 break;
1625 case SHA256_DIGEST_SIZE:
1626 ctx->engine = SSS_HASH_ENGINE_SHA256;
1627 ctx->nregs = HASH_SHA256_MAX_REG;
1628 break;
1629 default:
1630 ctx->error = true;
1631 return -EINVAL;
1632 }
1633
1634 return 0;
1635}
1636
1637/**
1638 * s5p_hash_digest - calculate digest from req->src
1639 * @req: AHASH request
1640 *
1641 * Return values: see s5p_hash_final above.
1642 */
1643static int s5p_hash_digest(struct ahash_request *req)
1644{
1645 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1646}
1647
1648/**
1649 * s5p_hash_cra_init_alg - init crypto alg transformation
1650 * @tfm: crypto transformation
1651 */
1652static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1653{
1654 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1655 const char *alg_name = crypto_tfm_alg_name(tfm);
1656
1657 tctx->dd = s5p_dev;
1658 /* Allocate a fallback and abort if it failed. */
1659 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1660 CRYPTO_ALG_NEED_FALLBACK);
1661 if (IS_ERR(tctx->fallback)) {
1662 pr_err("fallback alloc fails for '%s'\n", alg_name);
1663 return PTR_ERR(tctx->fallback);
1664 }
1665
1666 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1667 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1668
1669 return 0;
1670}
1671
1672/**
1673 * s5p_hash_cra_init - init crypto tfm
1674 * @tfm: crypto transformation
1675 */
1676static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1677{
1678 return s5p_hash_cra_init_alg(tfm);
1679}
1680
1681/**
1682 * s5p_hash_cra_exit - exit crypto tfm
1683 * @tfm: crypto transformation
1684 *
1685 * free allocated fallback
1686 */
1687static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1688{
1689 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1690
1691 crypto_free_shash(tctx->fallback);
1692 tctx->fallback = NULL;
1693}
1694
1695/**
1696 * s5p_hash_export - export hash state
1697 * @req: AHASH request
1698 * @out: buffer for exported state
1699 */
1700static int s5p_hash_export(struct ahash_request *req, void *out)
1701{
6584eacb 1702 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
c2afad6c
KK
1703
1704 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1705
1706 return 0;
1707}
1708
1709/**
1710 * s5p_hash_import - import hash state
1711 * @req: AHASH request
1712 * @in: buffer with state to be imported from
1713 */
1714static int s5p_hash_import(struct ahash_request *req, const void *in)
1715{
1716 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1717 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1718 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1719 const struct s5p_hash_reqctx *ctx_in = in;
1720
1721 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1722 if (ctx_in->bufcnt > BUFLEN) {
1723 ctx->error = true;
1724 return -EINVAL;
1725 }
1726
1727 ctx->dd = tctx->dd;
1728 ctx->error = false;
1729
1730 return 0;
1731}
1732
1733static struct ahash_alg algs_sha1_md5_sha256[] = {
1734{
1735 .init = s5p_hash_init,
1736 .update = s5p_hash_update,
1737 .final = s5p_hash_final,
1738 .finup = s5p_hash_finup,
1739 .digest = s5p_hash_digest,
1740 .export = s5p_hash_export,
1741 .import = s5p_hash_import,
1742 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1743 .halg.digestsize = SHA1_DIGEST_SIZE,
1744 .halg.base = {
1745 .cra_name = "sha1",
1746 .cra_driver_name = "exynos-sha1",
1747 .cra_priority = 100,
6a38f622 1748 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
c2afad6c
KK
1749 CRYPTO_ALG_ASYNC |
1750 CRYPTO_ALG_NEED_FALLBACK,
1751 .cra_blocksize = HASH_BLOCK_SIZE,
1752 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1753 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1754 .cra_module = THIS_MODULE,
1755 .cra_init = s5p_hash_cra_init,
1756 .cra_exit = s5p_hash_cra_exit,
1757 }
1758},
1759{
1760 .init = s5p_hash_init,
1761 .update = s5p_hash_update,
1762 .final = s5p_hash_final,
1763 .finup = s5p_hash_finup,
1764 .digest = s5p_hash_digest,
1765 .export = s5p_hash_export,
1766 .import = s5p_hash_import,
1767 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768 .halg.digestsize = MD5_DIGEST_SIZE,
1769 .halg.base = {
1770 .cra_name = "md5",
1771 .cra_driver_name = "exynos-md5",
1772 .cra_priority = 100,
6a38f622 1773 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
c2afad6c
KK
1774 CRYPTO_ALG_ASYNC |
1775 CRYPTO_ALG_NEED_FALLBACK,
1776 .cra_blocksize = HASH_BLOCK_SIZE,
1777 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1778 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1779 .cra_module = THIS_MODULE,
1780 .cra_init = s5p_hash_cra_init,
1781 .cra_exit = s5p_hash_cra_exit,
1782 }
1783},
1784{
1785 .init = s5p_hash_init,
1786 .update = s5p_hash_update,
1787 .final = s5p_hash_final,
1788 .finup = s5p_hash_finup,
1789 .digest = s5p_hash_digest,
1790 .export = s5p_hash_export,
1791 .import = s5p_hash_import,
1792 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1793 .halg.digestsize = SHA256_DIGEST_SIZE,
1794 .halg.base = {
1795 .cra_name = "sha256",
1796 .cra_driver_name = "exynos-sha256",
1797 .cra_priority = 100,
6a38f622 1798 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
c2afad6c
KK
1799 CRYPTO_ALG_ASYNC |
1800 CRYPTO_ALG_NEED_FALLBACK,
1801 .cra_blocksize = HASH_BLOCK_SIZE,
1802 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1803 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1804 .cra_module = THIS_MODULE,
1805 .cra_init = s5p_hash_cra_init,
1806 .cra_exit = s5p_hash_cra_exit,
1807 }
1808}
1809
1810};
1811
a49e490c 1812static void s5p_set_aes(struct s5p_aes_dev *dev,
cdf640a6 1813 const u8 *key, const u8 *iv, const u8 *ctr,
6584eacb 1814 unsigned int keylen)
a49e490c
VZ
1815{
1816 void __iomem *keystart;
1817
8f9702aa 1818 if (iv)
ef5c73b3
KK
1819 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1820 AES_BLOCK_SIZE);
a49e490c 1821
cdf640a6 1822 if (ctr)
ef5c73b3
KK
1823 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1824 AES_BLOCK_SIZE);
cdf640a6 1825
a49e490c 1826 if (keylen == AES_KEYSIZE_256)
89245107 1827 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
a49e490c 1828 else if (keylen == AES_KEYSIZE_192)
89245107 1829 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
a49e490c 1830 else
89245107 1831 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
a49e490c 1832
1e3012d0 1833 memcpy_toio(keystart, key, keylen);
a49e490c
VZ
1834}
1835
9e4a1100
KK
1836static bool s5p_is_sg_aligned(struct scatterlist *sg)
1837{
1838 while (sg) {
d1497977 1839 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
9e4a1100
KK
1840 return false;
1841 sg = sg_next(sg);
1842 }
1843
1844 return true;
1845}
1846
1847static int s5p_set_indata_start(struct s5p_aes_dev *dev,
e6b98ce6 1848 struct skcipher_request *req)
9e4a1100
KK
1849{
1850 struct scatterlist *sg;
1851 int err;
1852
1853 dev->sg_src_cpy = NULL;
1854 sg = req->src;
1855 if (!s5p_is_sg_aligned(sg)) {
1856 dev_dbg(dev->dev,
1857 "At least one unaligned source scatter list, making a copy\n");
1858 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1859 if (err)
1860 return err;
1861
1862 sg = dev->sg_src_cpy;
1863 }
1864
1865 err = s5p_set_indata(dev, sg);
1866 if (err) {
1867 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1868 return err;
1869 }
1870
1871 return 0;
1872}
1873
1874static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
e6b98ce6 1875 struct skcipher_request *req)
9e4a1100
KK
1876{
1877 struct scatterlist *sg;
1878 int err;
1879
1880 dev->sg_dst_cpy = NULL;
1881 sg = req->dst;
1882 if (!s5p_is_sg_aligned(sg)) {
1883 dev_dbg(dev->dev,
1884 "At least one unaligned dest scatter list, making a copy\n");
1885 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1886 if (err)
1887 return err;
1888
1889 sg = dev->sg_dst_cpy;
1890 }
1891
1892 err = s5p_set_outdata(dev, sg);
1893 if (err) {
1894 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1895 return err;
1896 }
1897
1898 return 0;
1899}
1900
a49e490c
VZ
1901static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1902{
e6b98ce6 1903 struct skcipher_request *req = dev->req;
b1b4416f 1904 u32 aes_control;
5318c53d
KK
1905 unsigned long flags;
1906 int err;
cdf640a6 1907 u8 *iv, *ctr;
a49e490c 1908
cdf640a6 1909 /* This sets bit [13:12] to 00, which selects 128-bit counter */
a49e490c
VZ
1910 aes_control = SSS_AES_KEY_CHANGE_MODE;
1911 if (mode & FLAGS_AES_DECRYPT)
1912 aes_control |= SSS_AES_MODE_DECRYPT;
1913
c927b080 1914 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
a49e490c 1915 aes_control |= SSS_AES_CHAIN_MODE_CBC;
e6b98ce6 1916 iv = req->iv;
cdf640a6 1917 ctr = NULL;
c927b080 1918 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
a49e490c 1919 aes_control |= SSS_AES_CHAIN_MODE_CTR;
cdf640a6 1920 iv = NULL;
e6b98ce6 1921 ctr = req->iv;
c927b080
KK
1922 } else {
1923 iv = NULL; /* AES_ECB */
cdf640a6 1924 ctr = NULL;
c927b080 1925 }
a49e490c
VZ
1926
1927 if (dev->ctx->keylen == AES_KEYSIZE_192)
1928 aes_control |= SSS_AES_KEY_SIZE_192;
1929 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1930 aes_control |= SSS_AES_KEY_SIZE_256;
1931
1932 aes_control |= SSS_AES_FIFO_MODE;
1933
1934 /* as a variant it is possible to use byte swapping on DMA side */
1935 aes_control |= SSS_AES_BYTESWAP_DI
1936 | SSS_AES_BYTESWAP_DO
1937 | SSS_AES_BYTESWAP_IV
1938 | SSS_AES_BYTESWAP_KEY
1939 | SSS_AES_BYTESWAP_CNT;
1940
1941 spin_lock_irqsave(&dev->lock, flags);
1942
1943 SSS_WRITE(dev, FCINTENCLR,
1944 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1945 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1946
9e4a1100 1947 err = s5p_set_indata_start(dev, req);
a49e490c
VZ
1948 if (err)
1949 goto indata_error;
1950
9e4a1100 1951 err = s5p_set_outdata_start(dev, req);
a49e490c
VZ
1952 if (err)
1953 goto outdata_error;
1954
89245107 1955 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
cdf640a6 1956 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
a49e490c 1957
9e4a1100
KK
1958 s5p_set_dma_indata(dev, dev->sg_src);
1959 s5p_set_dma_outdata(dev, dev->sg_dst);
a49e490c
VZ
1960
1961 SSS_WRITE(dev, FCINTENSET,
1962 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1963
1964 spin_unlock_irqrestore(&dev->lock, flags);
1965
1966 return;
1967
119c3ab4 1968outdata_error:
a49e490c
VZ
1969 s5p_unset_indata(dev);
1970
119c3ab4 1971indata_error:
28b62b14 1972 s5p_sg_done(dev);
42d5c176 1973 dev->busy = false;
a49e490c 1974 spin_unlock_irqrestore(&dev->lock, flags);
5842cd44 1975 s5p_aes_complete(req, err);
a49e490c
VZ
1976}
1977
1978static void s5p_tasklet_cb(unsigned long data)
1979{
1980 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1981 struct crypto_async_request *async_req, *backlog;
1982 struct s5p_aes_reqctx *reqctx;
1983 unsigned long flags;
1984
1985 spin_lock_irqsave(&dev->lock, flags);
1986 backlog = crypto_get_backlog(&dev->queue);
1987 async_req = crypto_dequeue_request(&dev->queue);
a49e490c 1988
dc5e3f19
NKC
1989 if (!async_req) {
1990 dev->busy = false;
1991 spin_unlock_irqrestore(&dev->lock, flags);
a49e490c 1992 return;
dc5e3f19
NKC
1993 }
1994 spin_unlock_irqrestore(&dev->lock, flags);
a49e490c
VZ
1995
1996 if (backlog)
1997 backlog->complete(backlog, -EINPROGRESS);
1998
e6b98ce6 1999 dev->req = skcipher_request_cast(async_req);
a49e490c 2000 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
e6b98ce6 2001 reqctx = skcipher_request_ctx(dev->req);
a49e490c
VZ
2002
2003 s5p_aes_crypt_start(dev, reqctx->mode);
2004}
2005
2006static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
e6b98ce6 2007 struct skcipher_request *req)
a49e490c
VZ
2008{
2009 unsigned long flags;
2010 int err;
2011
2012 spin_lock_irqsave(&dev->lock, flags);
e6b98ce6 2013 err = crypto_enqueue_request(&dev->queue, &req->base);
a49e490c 2014 if (dev->busy) {
a49e490c 2015 spin_unlock_irqrestore(&dev->lock, flags);
b1b4416f 2016 return err;
a49e490c
VZ
2017 }
2018 dev->busy = true;
2019
a49e490c
VZ
2020 spin_unlock_irqrestore(&dev->lock, flags);
2021
2022 tasklet_schedule(&dev->tasklet);
2023
a49e490c
VZ
2024 return err;
2025}
2026
e6b98ce6 2027static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
a49e490c 2028{
e6b98ce6
AB
2029 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2030 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2031 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
5318c53d 2032 struct s5p_aes_dev *dev = ctx->dev;
a49e490c 2033
e6b98ce6 2034 if (!req->cryptlen)
84a0b00a
AB
2035 return 0;
2036
e6b98ce6 2037 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
cdf640a6 2038 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
84a0b00a 2039 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
a49e490c
VZ
2040 return -EINVAL;
2041 }
2042
2043 reqctx->mode = mode;
2044
2045 return s5p_aes_handle_req(dev, req);
2046}
2047
e6b98ce6 2048static int s5p_aes_setkey(struct crypto_skcipher *cipher,
b1b4416f 2049 const u8 *key, unsigned int keylen)
a49e490c 2050{
e6b98ce6 2051 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
a49e490c
VZ
2052 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2053
2054 if (keylen != AES_KEYSIZE_128 &&
2055 keylen != AES_KEYSIZE_192 &&
2056 keylen != AES_KEYSIZE_256)
2057 return -EINVAL;
2058
2059 memcpy(ctx->aes_key, key, keylen);
2060 ctx->keylen = keylen;
2061
2062 return 0;
2063}
2064
e6b98ce6 2065static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
a49e490c
VZ
2066{
2067 return s5p_aes_crypt(req, 0);
2068}
2069
e6b98ce6 2070static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
a49e490c
VZ
2071{
2072 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2073}
2074
e6b98ce6 2075static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
a49e490c
VZ
2076{
2077 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2078}
2079
e6b98ce6 2080static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
a49e490c
VZ
2081{
2082 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2083}
2084
e6b98ce6 2085static int s5p_aes_ctr_crypt(struct skcipher_request *req)
cdf640a6
CM
2086{
2087 return s5p_aes_crypt(req, FLAGS_AES_CTR);
2088}
2089
e6b98ce6 2090static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
a49e490c 2091{
e6b98ce6 2092 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
a49e490c
VZ
2093
2094 ctx->dev = s5p_dev;
e6b98ce6 2095 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
a49e490c
VZ
2096
2097 return 0;
2098}
2099
e6b98ce6 2100static struct skcipher_alg algs[] = {
a49e490c 2101 {
e6b98ce6
AB
2102 .base.cra_name = "ecb(aes)",
2103 .base.cra_driver_name = "ecb-aes-s5p",
2104 .base.cra_priority = 100,
2105 .base.cra_flags = CRYPTO_ALG_ASYNC |
d912bb76 2106 CRYPTO_ALG_KERN_DRIVER_ONLY,
e6b98ce6
AB
2107 .base.cra_blocksize = AES_BLOCK_SIZE,
2108 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2109 .base.cra_alignmask = 0x0f,
2110 .base.cra_module = THIS_MODULE,
2111
2112 .min_keysize = AES_MIN_KEY_SIZE,
2113 .max_keysize = AES_MAX_KEY_SIZE,
2114 .setkey = s5p_aes_setkey,
2115 .encrypt = s5p_aes_ecb_encrypt,
2116 .decrypt = s5p_aes_ecb_decrypt,
2117 .init = s5p_aes_init_tfm,
a49e490c
VZ
2118 },
2119 {
e6b98ce6
AB
2120 .base.cra_name = "cbc(aes)",
2121 .base.cra_driver_name = "cbc-aes-s5p",
2122 .base.cra_priority = 100,
2123 .base.cra_flags = CRYPTO_ALG_ASYNC |
d912bb76 2124 CRYPTO_ALG_KERN_DRIVER_ONLY,
e6b98ce6
AB
2125 .base.cra_blocksize = AES_BLOCK_SIZE,
2126 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2127 .base.cra_alignmask = 0x0f,
2128 .base.cra_module = THIS_MODULE,
2129
2130 .min_keysize = AES_MIN_KEY_SIZE,
2131 .max_keysize = AES_MAX_KEY_SIZE,
2132 .ivsize = AES_BLOCK_SIZE,
2133 .setkey = s5p_aes_setkey,
2134 .encrypt = s5p_aes_cbc_encrypt,
2135 .decrypt = s5p_aes_cbc_decrypt,
2136 .init = s5p_aes_init_tfm,
a49e490c 2137 },
cdf640a6 2138 {
e6b98ce6
AB
2139 .base.cra_name = "ctr(aes)",
2140 .base.cra_driver_name = "ctr-aes-s5p",
2141 .base.cra_priority = 100,
2142 .base.cra_flags = CRYPTO_ALG_ASYNC |
cdf640a6 2143 CRYPTO_ALG_KERN_DRIVER_ONLY,
e6b98ce6
AB
2144 .base.cra_blocksize = 1,
2145 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
2146 .base.cra_alignmask = 0x0f,
2147 .base.cra_module = THIS_MODULE,
2148
2149 .min_keysize = AES_MIN_KEY_SIZE,
2150 .max_keysize = AES_MAX_KEY_SIZE,
2151 .ivsize = AES_BLOCK_SIZE,
2152 .setkey = s5p_aes_setkey,
2153 .encrypt = s5p_aes_ctr_crypt,
2154 .decrypt = s5p_aes_ctr_crypt,
2155 .init = s5p_aes_init_tfm,
cdf640a6 2156 },
a49e490c
VZ
2157};
2158
2159static int s5p_aes_probe(struct platform_device *pdev)
2160{
5318c53d
KK
2161 struct device *dev = &pdev->dev;
2162 int i, j, err = -ENODEV;
6584eacb 2163 const struct samsung_aes_variant *variant;
5318c53d
KK
2164 struct s5p_aes_dev *pdata;
2165 struct resource *res;
c2afad6c 2166 unsigned int hash_i;
a49e490c
VZ
2167
2168 if (s5p_dev)
2169 return -EEXIST;
2170
a49e490c
VZ
2171 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2172 if (!pdata)
2173 return -ENOMEM;
2174
c2afad6c 2175 variant = find_s5p_sss_version(pdev);
0fdefe2c 2176 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
a49e490c 2177
c2afad6c
KK
2178 /*
2179 * Note: HASH and PRNG uses the same registers in secss, avoid
2180 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2181 * is enabled in config. We need larger size for HASH registers in
2182 * secss, current describe only AES/DES
2183 */
2184 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2185 if (variant == &exynos_aes_data) {
2186 res->end += 0x300;
2187 pdata->use_hash = true;
2188 }
2189 }
2190
2191 pdata->res = res;
2192 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2193 if (IS_ERR(pdata->ioaddr)) {
2194 if (!pdata->use_hash)
2195 return PTR_ERR(pdata->ioaddr);
2196 /* try AES without HASH */
2197 res->end -= 0x300;
2198 pdata->use_hash = false;
2199 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2200 if (IS_ERR(pdata->ioaddr))
2201 return PTR_ERR(pdata->ioaddr);
2202 }
89245107 2203
0918f18c 2204 pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
b7da560e
KK
2205 if (IS_ERR(pdata->clk))
2206 return dev_err_probe(dev, PTR_ERR(pdata->clk),
2207 "failed to find secss clock %s\n",
2208 variant->clk_names[0]);
a49e490c 2209
c1eb7ef2
NKC
2210 err = clk_prepare_enable(pdata->clk);
2211 if (err < 0) {
0918f18c
KK
2212 dev_err(dev, "Enabling clock %s failed, err %d\n",
2213 variant->clk_names[0], err);
c1eb7ef2
NKC
2214 return err;
2215 }
a49e490c 2216
0918f18c
KK
2217 if (variant->clk_names[1]) {
2218 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2219 if (IS_ERR(pdata->pclk)) {
b7da560e
KK
2220 err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2221 "failed to find clock %s\n",
2222 variant->clk_names[1]);
0918f18c
KK
2223 goto err_clk;
2224 }
2225
2226 err = clk_prepare_enable(pdata->pclk);
2227 if (err < 0) {
2228 dev_err(dev, "Enabling clock %s failed, err %d\n",
2229 variant->clk_names[0], err);
2230 goto err_clk;
2231 }
2232 } else {
2233 pdata->pclk = NULL;
2234 }
2235
a49e490c 2236 spin_lock_init(&pdata->lock);
c2afad6c 2237 spin_lock_init(&pdata->hash_lock);
a49e490c 2238
89245107 2239 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
c2afad6c 2240 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
89245107 2241
96fc70b6
NKC
2242 pdata->irq_fc = platform_get_irq(pdev, 0);
2243 if (pdata->irq_fc < 0) {
2244 err = pdata->irq_fc;
2245 dev_warn(dev, "feed control interrupt is not available.\n");
a49e490c
VZ
2246 goto err_irq;
2247 }
07de4bc8
KK
2248 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2249 s5p_aes_interrupt, IRQF_ONESHOT,
2250 pdev->name, pdev);
a49e490c 2251 if (err < 0) {
96fc70b6 2252 dev_warn(dev, "feed control interrupt is not available.\n");
a49e490c
VZ
2253 goto err_irq;
2254 }
2255
dc5e3f19 2256 pdata->busy = false;
a49e490c
VZ
2257 pdata->dev = dev;
2258 platform_set_drvdata(pdev, pdata);
2259 s5p_dev = pdata;
2260
2261 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2262 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2263
2264 for (i = 0; i < ARRAY_SIZE(algs); i++) {
e6b98ce6 2265 err = crypto_register_skcipher(&algs[i]);
a49e490c
VZ
2266 if (err)
2267 goto err_algs;
2268 }
2269
c2afad6c
KK
2270 if (pdata->use_hash) {
2271 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2272 (unsigned long)pdata);
2273 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2274
2275 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2276 hash_i++) {
2277 struct ahash_alg *alg;
2278
2279 alg = &algs_sha1_md5_sha256[hash_i];
2280 err = crypto_register_ahash(alg);
2281 if (err) {
2282 dev_err(dev, "can't register '%s': %d\n",
2283 alg->halg.base.cra_driver_name, err);
2284 goto err_hash;
2285 }
2286 }
2287 }
2288
313becd1 2289 dev_info(dev, "s5p-sss driver registered\n");
a49e490c
VZ
2290
2291 return 0;
2292
c2afad6c
KK
2293err_hash:
2294 for (j = hash_i - 1; j >= 0; j--)
2295 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2296
2297 tasklet_kill(&pdata->hash_tasklet);
2298 res->end -= 0x300;
2299
119c3ab4 2300err_algs:
c2afad6c 2301 if (i < ARRAY_SIZE(algs))
e6b98ce6 2302 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
c2afad6c 2303 err);
a49e490c
VZ
2304
2305 for (j = 0; j < i; j++)
e6b98ce6 2306 crypto_unregister_skcipher(&algs[j]);
a49e490c
VZ
2307
2308 tasklet_kill(&pdata->tasklet);
2309
119c3ab4 2310err_irq:
7fe99da1 2311 clk_disable_unprepare(pdata->pclk);
a49e490c 2312
0918f18c
KK
2313err_clk:
2314 clk_disable_unprepare(pdata->clk);
a49e490c 2315 s5p_dev = NULL;
a49e490c
VZ
2316
2317 return err;
2318}
2319
2320static int s5p_aes_remove(struct platform_device *pdev)
2321{
2322 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2323 int i;
2324
2325 if (!pdata)
2326 return -ENODEV;
2327
2328 for (i = 0; i < ARRAY_SIZE(algs); i++)
e6b98ce6 2329 crypto_unregister_skcipher(&algs[i]);
a49e490c
VZ
2330
2331 tasklet_kill(&pdata->tasklet);
c2afad6c
KK
2332 if (pdata->use_hash) {
2333 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2334 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
a49e490c 2335
c2afad6c
KK
2336 pdata->res->end -= 0x300;
2337 tasklet_kill(&pdata->hash_tasklet);
2338 pdata->use_hash = false;
2339 }
a49e490c 2340
7fe99da1 2341 clk_disable_unprepare(pdata->pclk);
0918f18c 2342
c2afad6c 2343 clk_disable_unprepare(pdata->clk);
a49e490c 2344 s5p_dev = NULL;
a49e490c
VZ
2345
2346 return 0;
2347}
2348
2349static struct platform_driver s5p_aes_crypto = {
2350 .probe = s5p_aes_probe,
2351 .remove = s5p_aes_remove,
2352 .driver = {
a49e490c 2353 .name = "s5p-secss",
6b9f16e6 2354 .of_match_table = s5p_sss_dt_match,
a49e490c
VZ
2355 },
2356};
2357
741e8c2d 2358module_platform_driver(s5p_aes_crypto);
a49e490c
VZ
2359
2360MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2361MODULE_LICENSE("GPL v2");
2362MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
c2afad6c 2363MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");