Merge branch 'drm-misc-next-fixes' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-block.git] / drivers / crypto / s5p-sss.c
CommitLineData
5c8d850c
KK
1// SPDX-License-Identifier: GPL-2.0
2//
3// Cryptographic API.
4//
5// Support for Samsung S5PV210 and Exynos HW acceleration.
6//
7// Copyright (C) 2011 NetUP Inc. All rights reserved.
8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9//
10// Hash part based on omap-sham.c driver.
a49e490c 11
3cf9d84e
KK
12#include <linux/clk.h>
13#include <linux/crypto.h>
14#include <linux/dma-mapping.h>
a49e490c 15#include <linux/err.h>
a49e490c 16#include <linux/errno.h>
3cf9d84e
KK
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
a49e490c 20#include <linux/kernel.h>
3cf9d84e
KK
21#include <linux/module.h>
22#include <linux/of.h>
a49e490c
VZ
23#include <linux/platform_device.h>
24#include <linux/scatterlist.h>
a49e490c 25
a49e490c 26#include <crypto/ctr.h>
3cf9d84e
KK
27#include <crypto/aes.h>
28#include <crypto/algapi.h>
9e4a1100 29#include <crypto/scatterwalk.h>
a49e490c 30
c2afad6c
KK
31#include <crypto/hash.h>
32#include <crypto/md5.h>
33#include <crypto/sha.h>
34#include <crypto/internal/hash.h>
35
e5e40908 36#define _SBF(s, v) ((v) << (s))
a49e490c
VZ
37
38/* Feed control registers */
e5e40908 39#define SSS_REG_FCINTSTAT 0x0000
c2afad6c
KK
40#define SSS_FCINTSTAT_HPARTINT BIT(7)
41#define SSS_FCINTSTAT_HDONEINT BIT(5)
e5e40908
KK
42#define SSS_FCINTSTAT_BRDMAINT BIT(3)
43#define SSS_FCINTSTAT_BTDMAINT BIT(2)
44#define SSS_FCINTSTAT_HRDMAINT BIT(1)
45#define SSS_FCINTSTAT_PKDMAINT BIT(0)
46
47#define SSS_REG_FCINTENSET 0x0004
c2afad6c
KK
48#define SSS_FCINTENSET_HPARTINTENSET BIT(7)
49#define SSS_FCINTENSET_HDONEINTENSET BIT(5)
e5e40908
KK
50#define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
51#define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
52#define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
53#define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
54
55#define SSS_REG_FCINTENCLR 0x0008
c2afad6c
KK
56#define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
57#define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
e5e40908
KK
58#define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
59#define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
60#define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
61#define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
62
63#define SSS_REG_FCINTPEND 0x000C
c2afad6c
KK
64#define SSS_FCINTPEND_HPARTINTP BIT(7)
65#define SSS_FCINTPEND_HDONEINTP BIT(5)
e5e40908
KK
66#define SSS_FCINTPEND_BRDMAINTP BIT(3)
67#define SSS_FCINTPEND_BTDMAINTP BIT(2)
68#define SSS_FCINTPEND_HRDMAINTP BIT(1)
69#define SSS_FCINTPEND_PKDMAINTP BIT(0)
70
71#define SSS_REG_FCFIFOSTAT 0x0010
72#define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
73#define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
74#define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
75#define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
76#define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
77#define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
78#define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
79#define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
80
81#define SSS_REG_FCFIFOCTRL 0x0014
82#define SSS_FCFIFOCTRL_DESSEL BIT(2)
83#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
84#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
85#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
c2afad6c 86#define SSS_HASHIN_MASK _SBF(0, 0x03)
e5e40908
KK
87
88#define SSS_REG_FCBRDMAS 0x0020
89#define SSS_REG_FCBRDMAL 0x0024
90#define SSS_REG_FCBRDMAC 0x0028
91#define SSS_FCBRDMAC_BYTESWAP BIT(1)
92#define SSS_FCBRDMAC_FLUSH BIT(0)
93
94#define SSS_REG_FCBTDMAS 0x0030
95#define SSS_REG_FCBTDMAL 0x0034
96#define SSS_REG_FCBTDMAC 0x0038
97#define SSS_FCBTDMAC_BYTESWAP BIT(1)
98#define SSS_FCBTDMAC_FLUSH BIT(0)
99
100#define SSS_REG_FCHRDMAS 0x0040
101#define SSS_REG_FCHRDMAL 0x0044
102#define SSS_REG_FCHRDMAC 0x0048
103#define SSS_FCHRDMAC_BYTESWAP BIT(1)
104#define SSS_FCHRDMAC_FLUSH BIT(0)
105
106#define SSS_REG_FCPKDMAS 0x0050
107#define SSS_REG_FCPKDMAL 0x0054
108#define SSS_REG_FCPKDMAC 0x0058
109#define SSS_FCPKDMAC_BYTESWAP BIT(3)
110#define SSS_FCPKDMAC_DESCEND BIT(2)
111#define SSS_FCPKDMAC_TRANSMIT BIT(1)
112#define SSS_FCPKDMAC_FLUSH BIT(0)
113
114#define SSS_REG_FCPKDMAO 0x005C
a49e490c
VZ
115
116/* AES registers */
89245107 117#define SSS_REG_AES_CONTROL 0x00
e5e40908
KK
118#define SSS_AES_BYTESWAP_DI BIT(11)
119#define SSS_AES_BYTESWAP_DO BIT(10)
120#define SSS_AES_BYTESWAP_IV BIT(9)
121#define SSS_AES_BYTESWAP_CNT BIT(8)
122#define SSS_AES_BYTESWAP_KEY BIT(7)
123#define SSS_AES_KEY_CHANGE_MODE BIT(6)
124#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
125#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
126#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
127#define SSS_AES_FIFO_MODE BIT(3)
128#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
129#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
130#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
131#define SSS_AES_MODE_DECRYPT BIT(0)
a49e490c 132
89245107 133#define SSS_REG_AES_STATUS 0x04
e5e40908
KK
134#define SSS_AES_BUSY BIT(2)
135#define SSS_AES_INPUT_READY BIT(1)
136#define SSS_AES_OUTPUT_READY BIT(0)
a49e490c 137
89245107
NKC
138#define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
139#define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
140#define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
141#define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
142#define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
a49e490c 143
e5e40908
KK
144#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
145#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
146#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
a49e490c 147
e5e40908 148#define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
89245107
NKC
149#define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
150 SSS_AES_REG(dev, reg))
151
a49e490c 152/* HW engine modes */
e5e40908
KK
153#define FLAGS_AES_DECRYPT BIT(0)
154#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
155#define FLAGS_AES_CBC _SBF(1, 0x01)
156#define FLAGS_AES_CTR _SBF(1, 0x02)
a49e490c 157
e5e40908
KK
158#define AES_KEY_LEN 16
159#define CRYPTO_QUEUE_LEN 1
a49e490c 160
c2afad6c
KK
161/* HASH registers */
162#define SSS_REG_HASH_CTRL 0x00
163
164#define SSS_HASH_USER_IV_EN BIT(5)
165#define SSS_HASH_INIT_BIT BIT(4)
166#define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
167#define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
168#define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
169
170#define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
171
172#define SSS_REG_HASH_CTRL_PAUSE 0x04
173
174#define SSS_HASH_PAUSE BIT(0)
175
176#define SSS_REG_HASH_CTRL_FIFO 0x08
177
178#define SSS_HASH_FIFO_MODE_DMA BIT(0)
179#define SSS_HASH_FIFO_MODE_CPU 0
180
181#define SSS_REG_HASH_CTRL_SWAP 0x0C
182
183#define SSS_HASH_BYTESWAP_DI BIT(3)
184#define SSS_HASH_BYTESWAP_DO BIT(2)
185#define SSS_HASH_BYTESWAP_IV BIT(1)
186#define SSS_HASH_BYTESWAP_KEY BIT(0)
187
188#define SSS_REG_HASH_STATUS 0x10
189
190#define SSS_HASH_STATUS_MSG_DONE BIT(6)
191#define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
192#define SSS_HASH_STATUS_BUFFER_READY BIT(0)
193
194#define SSS_REG_HASH_MSG_SIZE_LOW 0x20
195#define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
196
197#define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
198#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
199
200#define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
201#define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
202
203#define HASH_BLOCK_SIZE 64
204#define HASH_REG_SIZEOF 4
205#define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206#define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207#define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208
209/*
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214 */
215#define HASH_FLAGS_BUSY 0
216#define HASH_FLAGS_FINAL 1
217#define HASH_FLAGS_DMA_ACTIVE 2
218#define HASH_FLAGS_OUTPUT_READY 3
219#define HASH_FLAGS_DMA_READY 4
220#define HASH_FLAGS_SGS_COPIED 5
221#define HASH_FLAGS_SGS_ALLOCED 6
222
223/* HASH HW constants */
224#define BUFLEN HASH_BLOCK_SIZE
225
226#define SSS_HASH_DMA_LEN_ALIGN 8
227#define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
228
229#define SSS_HASH_QUEUE_LENGTH 10
230
89245107
NKC
231/**
232 * struct samsung_aes_variant - platform specific SSS driver data
89245107 233 * @aes_offset: AES register offset from SSS module's base.
c2afad6c 234 * @hash_offset: HASH register offset from SSS module's base.
89245107
NKC
235 *
236 * Specifies platform specific configuration of SSS module.
237 * Note: A structure for driver specific platform data is used for future
238 * expansion of its usage.
239 */
240struct samsung_aes_variant {
5318c53d 241 unsigned int aes_offset;
c2afad6c 242 unsigned int hash_offset;
89245107
NKC
243};
244
a49e490c 245struct s5p_aes_reqctx {
5318c53d 246 unsigned long mode;
a49e490c
VZ
247};
248
249struct s5p_aes_ctx {
5318c53d 250 struct s5p_aes_dev *dev;
a49e490c 251
5318c53d
KK
252 uint8_t aes_key[AES_MAX_KEY_SIZE];
253 uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
254 int keylen;
a49e490c
VZ
255};
256
106d7334
KK
257/**
258 * struct s5p_aes_dev - Crypto device state container
259 * @dev: Associated device
260 * @clk: Clock for accessing hardware
261 * @ioaddr: Mapped IO memory region
262 * @aes_ioaddr: Per-varian offset for AES block IO memory
263 * @irq_fc: Feed control interrupt line
264 * @req: Crypto request currently handled by the device
265 * @ctx: Configuration for currently handled crypto request
266 * @sg_src: Scatter list with source data for currently handled block
267 * in device. This is DMA-mapped into device.
268 * @sg_dst: Scatter list with destination data for currently handled block
269 * in device. This is DMA-mapped into device.
270 * @sg_src_cpy: In case of unaligned access, copied scatter list
271 * with source data.
272 * @sg_dst_cpy: In case of unaligned access, copied scatter list
273 * with destination data.
274 * @tasklet: New request scheduling jib
275 * @queue: Crypto queue
276 * @busy: Indicates whether the device is currently handling some request
277 * thus it uses some of the fields from this state, like:
278 * req, ctx, sg_src/dst (and copies). This essentially
279 * protects against concurrent access to these fields.
280 * @lock: Lock for protecting both access to device hardware registers
281 * and fields related to current request (including the busy field).
c2afad6c
KK
282 * @res: Resources for hash.
283 * @io_hash_base: Per-variant offset for HASH block IO memory.
284 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
285 * variable.
286 * @hash_flags: Flags for current HASH op.
287 * @hash_queue: Async hash queue.
288 * @hash_tasklet: New HASH request scheduling job.
289 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
290 * @hash_req: Current request sending to SSS HASH block.
291 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292 * @hash_sg_cnt: Counter for hash_sg_iter.
293 *
294 * @use_hash: true if HASH algs enabled
106d7334 295 */
a49e490c 296struct s5p_aes_dev {
5318c53d
KK
297 struct device *dev;
298 struct clk *clk;
299 void __iomem *ioaddr;
300 void __iomem *aes_ioaddr;
301 int irq_fc;
a49e490c 302
5318c53d
KK
303 struct ablkcipher_request *req;
304 struct s5p_aes_ctx *ctx;
305 struct scatterlist *sg_src;
306 struct scatterlist *sg_dst;
a49e490c 307
5318c53d
KK
308 struct scatterlist *sg_src_cpy;
309 struct scatterlist *sg_dst_cpy;
9e4a1100 310
5318c53d
KK
311 struct tasklet_struct tasklet;
312 struct crypto_queue queue;
313 bool busy;
314 spinlock_t lock;
c2afad6c
KK
315
316 struct resource *res;
317 void __iomem *io_hash_base;
318
319 spinlock_t hash_lock; /* protect hash_ vars */
320 unsigned long hash_flags;
321 struct crypto_queue hash_queue;
322 struct tasklet_struct hash_tasklet;
323
324 u8 xmit_buf[BUFLEN];
325 struct ahash_request *hash_req;
326 struct scatterlist *hash_sg_iter;
327 unsigned int hash_sg_cnt;
328
329 bool use_hash;
a49e490c
VZ
330};
331
c2afad6c
KK
332/**
333 * struct s5p_hash_reqctx - HASH request context
334 * @dd: Associated device
335 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
336 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
337 * @digest: Digest message or IV for partial result
338 * @nregs: Number of HW registers for digest or IV read/write
339 * @engine: Bits for selecting type of HASH in SSS block
340 * @sg: sg for DMA transfer
341 * @sg_len: Length of sg for DMA transfer
342 * @sgl[]: sg for joining buffer and req->src scatterlist
343 * @skip: Skip offset in req->src for current op
344 * @total: Total number of bytes for current request
345 * @finup: Keep state for finup or final.
346 * @error: Keep track of error.
347 * @bufcnt: Number of bytes holded in buffer[]
348 * @buffer[]: For byte(s) from end of req->src in UPDATE op
349 */
350struct s5p_hash_reqctx {
351 struct s5p_aes_dev *dd;
352 bool op_update;
353
354 u64 digcnt;
355 u8 digest[SHA256_DIGEST_SIZE];
356
357 unsigned int nregs; /* digest_size / sizeof(reg) */
358 u32 engine;
359
360 struct scatterlist *sg;
361 unsigned int sg_len;
362 struct scatterlist sgl[2];
363 unsigned int skip;
364 unsigned int total;
365 bool finup;
366 bool error;
367
368 u32 bufcnt;
369 u8 buffer[0];
370};
371
372/**
373 * struct s5p_hash_ctx - HASH transformation context
374 * @dd: Associated device
375 * @flags: Bits for algorithm HASH.
376 * @fallback: Software transformation for zero message or size < BUFLEN.
377 */
378struct s5p_hash_ctx {
379 struct s5p_aes_dev *dd;
380 unsigned long flags;
381 struct crypto_shash *fallback;
382};
a49e490c 383
89245107 384static const struct samsung_aes_variant s5p_aes_data = {
89245107 385 .aes_offset = 0x4000,
c2afad6c 386 .hash_offset = 0x6000,
89245107
NKC
387};
388
389static const struct samsung_aes_variant exynos_aes_data = {
89245107 390 .aes_offset = 0x200,
c2afad6c 391 .hash_offset = 0x400,
89245107
NKC
392};
393
6b9f16e6 394static const struct of_device_id s5p_sss_dt_match[] = {
89245107
NKC
395 {
396 .compatible = "samsung,s5pv210-secss",
397 .data = &s5p_aes_data,
398 },
399 {
400 .compatible = "samsung,exynos4210-secss",
401 .data = &exynos_aes_data,
402 },
6b9f16e6
NKC
403 { },
404};
405MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
406
89245107
NKC
407static inline struct samsung_aes_variant *find_s5p_sss_version
408 (struct platform_device *pdev)
409{
410 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
411 const struct of_device_id *match;
313becd1 412
89245107
NKC
413 match = of_match_node(s5p_sss_dt_match,
414 pdev->dev.of_node);
415 return (struct samsung_aes_variant *)match->data;
416 }
417 return (struct samsung_aes_variant *)
418 platform_get_device_id(pdev)->driver_data;
419}
420
c2afad6c
KK
421static struct s5p_aes_dev *s5p_dev;
422
a49e490c
VZ
423static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
424{
425 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
426 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
427}
428
429static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
430{
431 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
432 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
433}
434
9e4a1100
KK
435static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
436{
437 int len;
438
439 if (!*sg)
440 return;
441
442 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
443 free_pages((unsigned long)sg_virt(*sg), get_order(len));
444
445 kfree(*sg);
446 *sg = NULL;
447}
448
449static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
450 unsigned int nbytes, int out)
451{
452 struct scatter_walk walk;
453
454 if (!nbytes)
455 return;
456
457 scatterwalk_start(&walk, sg);
458 scatterwalk_copychunks(buf, &walk, nbytes, out);
459 scatterwalk_done(&walk, out, 0);
460}
461
28b62b14 462static void s5p_sg_done(struct s5p_aes_dev *dev)
a49e490c 463{
9e4a1100
KK
464 if (dev->sg_dst_cpy) {
465 dev_dbg(dev->dev,
466 "Copying %d bytes of output data back to original place\n",
467 dev->req->nbytes);
468 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
469 dev->req->nbytes, 1);
470 }
471 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
472 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
28b62b14 473}
9e4a1100 474
28b62b14
KK
475/* Calls the completion. Cannot be called with dev->lock hold. */
476static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
477{
a49e490c 478 dev->req->base.complete(&dev->req->base, err);
a49e490c
VZ
479}
480
481static void s5p_unset_outdata(struct s5p_aes_dev *dev)
482{
483 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
484}
485
486static void s5p_unset_indata(struct s5p_aes_dev *dev)
487{
488 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
489}
490
9e4a1100
KK
491static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
492 struct scatterlist **dst)
493{
494 void *pages;
495 int len;
496
497 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
498 if (!*dst)
499 return -ENOMEM;
500
501 len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
502 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
503 if (!pages) {
504 kfree(*dst);
505 *dst = NULL;
506 return -ENOMEM;
507 }
508
509 s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
510
511 sg_init_table(*dst, 1);
512 sg_set_buf(*dst, pages, len);
513
514 return 0;
515}
516
a49e490c
VZ
517static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
518{
519 int err;
520
d1497977 521 if (!sg->length) {
a49e490c
VZ
522 err = -EINVAL;
523 goto exit;
524 }
525
526 err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
527 if (!err) {
528 err = -ENOMEM;
529 goto exit;
530 }
531
532 dev->sg_dst = sg;
533 err = 0;
534
119c3ab4 535exit:
a49e490c
VZ
536 return err;
537}
538
539static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
540{
541 int err;
542
d1497977 543 if (!sg->length) {
a49e490c
VZ
544 err = -EINVAL;
545 goto exit;
546 }
547
548 err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
549 if (!err) {
550 err = -ENOMEM;
551 goto exit;
552 }
553
554 dev->sg_src = sg;
555 err = 0;
556
119c3ab4 557exit:
a49e490c
VZ
558 return err;
559}
560
79152e8d 561/*
28b62b14
KK
562 * Returns -ERRNO on error (mapping of new data failed).
563 * On success returns:
564 * - 0 if there is no more data,
565 * - 1 if new transmitting (output) data is ready and its address+length
566 * have to be written to device (by calling s5p_set_dma_outdata()).
79152e8d 567 */
28b62b14 568static int s5p_aes_tx(struct s5p_aes_dev *dev)
a49e490c 569{
28b62b14 570 int ret = 0;
a49e490c
VZ
571
572 s5p_unset_outdata(dev);
573
574 if (!sg_is_last(dev->sg_dst)) {
28b62b14
KK
575 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
576 if (!ret)
577 ret = 1;
dc5e3f19 578 }
79152e8d
KK
579
580 return ret;
a49e490c
VZ
581}
582
79152e8d 583/*
28b62b14
KK
584 * Returns -ERRNO on error (mapping of new data failed).
585 * On success returns:
586 * - 0 if there is no more data,
587 * - 1 if new receiving (input) data is ready and its address+length
588 * have to be written to device (by calling s5p_set_dma_indata()).
79152e8d 589 */
28b62b14 590static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
a49e490c 591{
28b62b14 592 int ret = 0;
a49e490c
VZ
593
594 s5p_unset_indata(dev);
595
596 if (!sg_is_last(dev->sg_src)) {
28b62b14
KK
597 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
598 if (!ret)
599 ret = 1;
a49e490c 600 }
79152e8d
KK
601
602 return ret;
a49e490c
VZ
603}
604
c2afad6c
KK
605static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
606{
607 return __raw_readl(dd->io_hash_base + offset);
608}
609
610static inline void s5p_hash_write(struct s5p_aes_dev *dd,
611 u32 offset, u32 value)
612{
613 __raw_writel(value, dd->io_hash_base + offset);
614}
615
616/**
617 * s5p_set_dma_hashdata() - start DMA with sg
618 * @dev: device
619 * @sg: scatterlist ready to DMA transmit
620 */
621static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
622 struct scatterlist *sg)
623{
624 dev->hash_sg_cnt--;
625 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
626 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
627}
628
629/**
630 * s5p_hash_rx() - get next hash_sg_iter
631 * @dev: device
632 *
633 * Return:
634 * 2 if there is no more data and it is UPDATE op
635 * 1 if new receiving (input) data is ready and can be written to device
636 * 0 if there is no more data and it is FINAL op
637 */
638static int s5p_hash_rx(struct s5p_aes_dev *dev)
639{
640 if (dev->hash_sg_cnt > 0) {
641 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
642 return 1;
643 }
644
645 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
646 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
647 return 0;
648
649 return 2;
650}
651
a49e490c
VZ
652static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
653{
654 struct platform_device *pdev = dev_id;
5318c53d 655 struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
28b62b14
KK
656 int err_dma_tx = 0;
657 int err_dma_rx = 0;
c2afad6c 658 int err_dma_hx = 0;
28b62b14 659 bool tx_end = false;
c2afad6c 660 bool hx_end = false;
5318c53d
KK
661 unsigned long flags;
662 uint32_t status;
c2afad6c 663 u32 st_bits;
28b62b14 664 int err;
a49e490c
VZ
665
666 spin_lock_irqsave(&dev->lock, flags);
667
28b62b14
KK
668 /*
669 * Handle rx or tx interrupt. If there is still data (scatterlist did not
670 * reach end), then map next scatterlist entry.
671 * In case of such mapping error, s5p_aes_complete() should be called.
672 *
673 * If there is no more data in tx scatter list, call s5p_aes_complete()
674 * and schedule new tasklet.
c2afad6c
KK
675 *
676 * Handle hx interrupt. If there is still data map next entry.
28b62b14 677 */
55124425
KK
678 status = SSS_READ(dev, FCINTSTAT);
679 if (status & SSS_FCINTSTAT_BRDMAINT)
28b62b14
KK
680 err_dma_rx = s5p_aes_rx(dev);
681
682 if (status & SSS_FCINTSTAT_BTDMAINT) {
683 if (sg_is_last(dev->sg_dst))
684 tx_end = true;
685 err_dma_tx = s5p_aes_tx(dev);
686 }
a49e490c 687
c2afad6c
KK
688 if (status & SSS_FCINTSTAT_HRDMAINT)
689 err_dma_hx = s5p_hash_rx(dev);
690
691 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
692 SSS_FCINTSTAT_HRDMAINT);
693 /* clear DMA bits */
694 SSS_WRITE(dev, FCINTPEND, st_bits);
695
696 /* clear HASH irq bits */
697 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
698 /* cannot have both HPART and HDONE */
699 if (status & SSS_FCINTSTAT_HPARTINT)
700 st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
701
702 if (status & SSS_FCINTSTAT_HDONEINT)
703 st_bits = SSS_HASH_STATUS_MSG_DONE;
704
705 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
706 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
707 hx_end = true;
708 /* when DONE or PART, do not handle HASH DMA */
709 err_dma_hx = 0;
710 }
a49e490c 711
28b62b14
KK
712 if (err_dma_rx < 0) {
713 err = err_dma_rx;
714 goto error;
715 }
716 if (err_dma_tx < 0) {
717 err = err_dma_tx;
718 goto error;
719 }
720
721 if (tx_end) {
722 s5p_sg_done(dev);
c2afad6c
KK
723 if (err_dma_hx == 1)
724 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
28b62b14
KK
725
726 spin_unlock_irqrestore(&dev->lock, flags);
727
728 s5p_aes_complete(dev, 0);
42d5c176 729 /* Device is still busy */
28b62b14
KK
730 tasklet_schedule(&dev->tasklet);
731 } else {
732 /*
733 * Writing length of DMA block (either receiving or
734 * transmitting) will start the operation immediately, so this
735 * should be done at the end (even after clearing pending
736 * interrupts to not miss the interrupt).
737 */
738 if (err_dma_tx == 1)
739 s5p_set_dma_outdata(dev, dev->sg_dst);
740 if (err_dma_rx == 1)
741 s5p_set_dma_indata(dev, dev->sg_src);
c2afad6c
KK
742 if (err_dma_hx == 1)
743 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
79152e8d 744
28b62b14
KK
745 spin_unlock_irqrestore(&dev->lock, flags);
746 }
747
c2afad6c 748 goto hash_irq_end;
28b62b14
KK
749
750error:
751 s5p_sg_done(dev);
42d5c176 752 dev->busy = false;
c2afad6c
KK
753 if (err_dma_hx == 1)
754 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
755
a49e490c 756 spin_unlock_irqrestore(&dev->lock, flags);
28b62b14 757 s5p_aes_complete(dev, err);
a49e490c 758
c2afad6c
KK
759hash_irq_end:
760 /*
761 * Note about else if:
762 * when hash_sg_iter reaches end and its UPDATE op,
763 * issue SSS_HASH_PAUSE and wait for HPART irq
764 */
765 if (hx_end)
766 tasklet_schedule(&dev->hash_tasklet);
767 else if (err_dma_hx == 2)
768 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
769 SSS_HASH_PAUSE);
770
a49e490c
VZ
771 return IRQ_HANDLED;
772}
773
c2afad6c
KK
774/**
775 * s5p_hash_read_msg() - read message or IV from HW
776 * @req: AHASH request
777 */
778static void s5p_hash_read_msg(struct ahash_request *req)
779{
780 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
781 struct s5p_aes_dev *dd = ctx->dd;
782 u32 *hash = (u32 *)ctx->digest;
783 unsigned int i;
784
785 for (i = 0; i < ctx->nregs; i++)
786 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
787}
788
789/**
790 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
791 * @dd: device
792 * @ctx: request context
793 */
794static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
795 struct s5p_hash_reqctx *ctx)
796{
797 u32 *hash = (u32 *)ctx->digest;
798 unsigned int i;
799
800 for (i = 0; i < ctx->nregs; i++)
801 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
802}
803
804/**
805 * s5p_hash_write_iv() - write IV for next partial/finup op.
806 * @req: AHASH request
807 */
808static void s5p_hash_write_iv(struct ahash_request *req)
809{
810 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
811
812 s5p_hash_write_ctx_iv(ctx->dd, ctx);
813}
814
815/**
816 * s5p_hash_copy_result() - copy digest into req->result
817 * @req: AHASH request
818 */
819static void s5p_hash_copy_result(struct ahash_request *req)
820{
821 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
822
823 if (!req->result)
824 return;
825
826 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
827}
828
829/**
830 * s5p_hash_dma_flush() - flush HASH DMA
831 * @dev: secss device
832 */
833static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
834{
835 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
836}
837
838/**
839 * s5p_hash_dma_enable() - enable DMA mode for HASH
840 * @dev: secss device
841 *
842 * enable DMA mode for HASH
843 */
844static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
845{
846 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
847}
848
849/**
850 * s5p_hash_irq_disable() - disable irq HASH signals
851 * @dev: secss device
852 * @flags: bitfield with irq's to be disabled
853 */
854static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
855{
856 SSS_WRITE(dev, FCINTENCLR, flags);
857}
858
859/**
860 * s5p_hash_irq_enable() - enable irq signals
861 * @dev: secss device
862 * @flags: bitfield with irq's to be enabled
863 */
864static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
865{
866 SSS_WRITE(dev, FCINTENSET, flags);
867}
868
869/**
870 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
871 * @dev: secss device
872 * @hashflow: HASH stream flow with/without crypto AES/DES
873 */
874static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
875{
876 unsigned long flags;
877 u32 flow;
878
879 spin_lock_irqsave(&dev->lock, flags);
880
881 flow = SSS_READ(dev, FCFIFOCTRL);
882 flow &= ~SSS_HASHIN_MASK;
883 flow |= hashflow;
884 SSS_WRITE(dev, FCFIFOCTRL, flow);
885
886 spin_unlock_irqrestore(&dev->lock, flags);
887}
888
889/**
890 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
891 * @dev: secss device
892 * @hashflow: HASH stream flow with/without AES/DES
893 *
894 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
895 * enable HASH irq's HRDMA, HDONE, HPART
896 */
897static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
898{
899 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
900 SSS_FCINTENCLR_HDONEINTENCLR |
901 SSS_FCINTENCLR_HPARTINTENCLR);
902 s5p_hash_dma_flush(dev);
903
904 s5p_hash_dma_enable(dev);
905 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
906 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
907 SSS_FCINTENSET_HDONEINTENSET |
908 SSS_FCINTENSET_HPARTINTENSET);
909}
910
911/**
912 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
913 * @dd: secss device
914 * @length: length for request
915 * @final: true if final op
916 *
917 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
918 * after previous updates, fill up IV words. For final, calculate and set
919 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
920 * length as 2^63 so it will be never reached and set to zero prelow and
921 * prehigh.
922 *
923 * This function does not start DMA transfer.
924 */
925static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
926 bool final)
927{
928 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
929 u32 prelow, prehigh, low, high;
930 u32 configflags, swapflags;
931 u64 tmplen;
932
933 configflags = ctx->engine | SSS_HASH_INIT_BIT;
934
935 if (likely(ctx->digcnt)) {
936 s5p_hash_write_ctx_iv(dd, ctx);
937 configflags |= SSS_HASH_USER_IV_EN;
938 }
939
940 if (final) {
941 /* number of bytes for last part */
942 low = length;
943 high = 0;
944 /* total number of bits prev hashed */
945 tmplen = ctx->digcnt * 8;
946 prelow = (u32)tmplen;
947 prehigh = (u32)(tmplen >> 32);
948 } else {
949 prelow = 0;
950 prehigh = 0;
951 low = 0;
952 high = BIT(31);
953 }
954
955 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
956 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
957
958 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
959 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
960 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
961 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
962
963 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
964 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
965}
966
967/**
968 * s5p_hash_xmit_dma() - start DMA hash processing
969 * @dd: secss device
970 * @length: length for request
971 * @final: true if final op
972 *
973 * Update digcnt here, as it is needed for finup/final op.
974 */
975static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
976 bool final)
977{
978 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
979 unsigned int cnt;
980
981 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
982 if (!cnt) {
983 dev_err(dd->dev, "dma_map_sg error\n");
984 ctx->error = true;
985 return -EINVAL;
986 }
987
988 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
989 dd->hash_sg_iter = ctx->sg;
990 dd->hash_sg_cnt = cnt;
991 s5p_hash_write_ctrl(dd, length, final);
992 ctx->digcnt += length;
993 ctx->total -= length;
994
995 /* catch last interrupt */
996 if (final)
997 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
998
999 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1000
1001 return -EINPROGRESS;
1002}
1003
1004/**
1005 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1006 * @ctx: request context
1007 * @sg: source scatterlist request
1008 * @new_len: number of bytes to process from sg
1009 *
1010 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1011 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1012 * with allocated buffer.
1013 *
1014 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1015 */
1016static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1017 struct scatterlist *sg, unsigned int new_len)
1018{
1019 unsigned int pages, len;
1020 void *buf;
1021
1022 len = new_len + ctx->bufcnt;
1023 pages = get_order(len);
1024
1025 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1026 if (!buf) {
1027 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1028 ctx->error = true;
1029 return -ENOMEM;
1030 }
1031
1032 if (ctx->bufcnt)
1033 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1034
1035 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1036 new_len, 0);
1037 sg_init_table(ctx->sgl, 1);
1038 sg_set_buf(ctx->sgl, buf, len);
1039 ctx->sg = ctx->sgl;
1040 ctx->sg_len = 1;
1041 ctx->bufcnt = 0;
1042 ctx->skip = 0;
1043 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1044
1045 return 0;
1046}
1047
1048/**
1049 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1050 * @ctx: request context
1051 * @sg: source scatterlist request
1052 * @new_len: number of bytes to process from sg
1053 *
1054 * Allocate new scatterlist table, copy data for HASH into it. If there was
1055 * xmit_buf filled, prepare it first, then copy page, length and offset from
1056 * source sg into it, adjusting begin and/or end for skip offset and
1057 * hash_later value.
1058 *
1059 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1060 * it after irq ends processing.
1061 */
1062static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1063 struct scatterlist *sg, unsigned int new_len)
1064{
1065 unsigned int skip = ctx->skip, n = sg_nents(sg);
1066 struct scatterlist *tmp;
1067 unsigned int len;
1068
1069 if (ctx->bufcnt)
1070 n++;
1071
1072 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1073 if (!ctx->sg) {
1074 ctx->error = true;
1075 return -ENOMEM;
1076 }
1077
1078 sg_init_table(ctx->sg, n);
1079
1080 tmp = ctx->sg;
1081
1082 ctx->sg_len = 0;
1083
1084 if (ctx->bufcnt) {
1085 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1086 tmp = sg_next(tmp);
1087 ctx->sg_len++;
1088 }
1089
1090 while (sg && skip >= sg->length) {
1091 skip -= sg->length;
1092 sg = sg_next(sg);
1093 }
1094
1095 while (sg && new_len) {
1096 len = sg->length - skip;
1097 if (new_len < len)
1098 len = new_len;
1099
1100 new_len -= len;
1101 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1102 skip = 0;
1103 if (new_len <= 0)
1104 sg_mark_end(tmp);
1105
1106 tmp = sg_next(tmp);
1107 ctx->sg_len++;
1108 sg = sg_next(sg);
1109 }
1110
1111 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1112
1113 return 0;
1114}
1115
1116/**
1117 * s5p_hash_prepare_sgs() - prepare sg for processing
1118 * @ctx: request context
1119 * @sg: source scatterlist request
1120 * @nbytes: number of bytes to process from sg
1121 * @final: final flag
1122 *
1123 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1124 * sg table have good aligned elements (list_ok). If one of this checks fails,
1125 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1126 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1127 * table and prepare sg elements.
1128 *
1129 * For digest or finup all conditions can be good, and we may not need any
1130 * fixes.
1131 */
1132static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1133 struct scatterlist *sg,
1134 unsigned int new_len, bool final)
1135{
1136 unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1137 bool aligned = true, list_ok = true;
1138 struct scatterlist *sg_tmp = sg;
1139
1140 if (!sg || !sg->length || !new_len)
1141 return 0;
1142
1143 if (skip || !final)
1144 list_ok = false;
1145
1146 while (nbytes > 0 && sg_tmp) {
1147 n++;
1148 if (skip >= sg_tmp->length) {
1149 skip -= sg_tmp->length;
1150 if (!sg_tmp->length) {
1151 aligned = false;
1152 break;
1153 }
1154 } else {
1155 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1156 aligned = false;
1157 break;
1158 }
1159
1160 if (nbytes < sg_tmp->length - skip) {
1161 list_ok = false;
1162 break;
1163 }
1164
1165 nbytes -= sg_tmp->length - skip;
1166 skip = 0;
1167 }
1168
1169 sg_tmp = sg_next(sg_tmp);
1170 }
1171
1172 if (!aligned)
1173 return s5p_hash_copy_sgs(ctx, sg, new_len);
1174 else if (!list_ok)
1175 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1176
1177 /*
1178 * Have aligned data from previous operation and/or current
1179 * Note: will enter here only if (digest or finup) and aligned
1180 */
1181 if (ctx->bufcnt) {
1182 ctx->sg_len = n;
1183 sg_init_table(ctx->sgl, 2);
1184 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1185 sg_chain(ctx->sgl, 2, sg);
1186 ctx->sg = ctx->sgl;
1187 ctx->sg_len++;
1188 } else {
1189 ctx->sg = sg;
1190 ctx->sg_len = n;
1191 }
1192
1193 return 0;
1194}
1195
1196/**
1197 * s5p_hash_prepare_request() - prepare request for processing
1198 * @req: AHASH request
1199 * @update: true if UPDATE op
1200 *
1201 * Note 1: we can have update flag _and_ final flag at the same time.
1202 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1203 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1204 * we have final op
1205 */
1206static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1207{
1208 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1209 bool final = ctx->finup;
1210 int xmit_len, hash_later, nbytes;
1211 int ret;
1212
1213 if (!req)
1214 return 0;
1215
1216 if (update)
1217 nbytes = req->nbytes;
1218 else
1219 nbytes = 0;
1220
1221 ctx->total = nbytes + ctx->bufcnt;
1222 if (!ctx->total)
1223 return 0;
1224
1225 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1226 /* bytes left from previous request, so fill up to BUFLEN */
1227 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1228
1229 if (len > nbytes)
1230 len = nbytes;
1231
1232 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1233 0, len, 0);
1234 ctx->bufcnt += len;
1235 nbytes -= len;
1236 ctx->skip = len;
1237 } else {
1238 ctx->skip = 0;
1239 }
1240
1241 if (ctx->bufcnt)
1242 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1243
1244 xmit_len = ctx->total;
1245 if (final) {
1246 hash_later = 0;
1247 } else {
1248 if (IS_ALIGNED(xmit_len, BUFLEN))
1249 xmit_len -= BUFLEN;
1250 else
1251 xmit_len -= xmit_len & (BUFLEN - 1);
1252
1253 hash_later = ctx->total - xmit_len;
1254 /* copy hash_later bytes from end of req->src */
1255 /* previous bytes are in xmit_buf, so no overwrite */
1256 scatterwalk_map_and_copy(ctx->buffer, req->src,
1257 req->nbytes - hash_later,
1258 hash_later, 0);
1259 }
1260
1261 if (xmit_len > BUFLEN) {
1262 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1263 final);
1264 if (ret)
1265 return ret;
1266 } else {
1267 /* have buffered data only */
1268 if (unlikely(!ctx->bufcnt)) {
1269 /* first update didn't fill up buffer */
1270 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1271 0, xmit_len, 0);
1272 }
1273
1274 sg_init_table(ctx->sgl, 1);
1275 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1276
1277 ctx->sg = ctx->sgl;
1278 ctx->sg_len = 1;
1279 }
1280
1281 ctx->bufcnt = hash_later;
1282 if (!final)
1283 ctx->total = xmit_len;
1284
1285 return 0;
1286}
1287
1288/**
1289 * s5p_hash_update_dma_stop() - unmap DMA
1290 * @dd: secss device
1291 *
1292 * Unmap scatterlist ctx->sg.
1293 */
1294static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1295{
1296 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1297
1298 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1299 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1300}
1301
1302/**
1303 * s5p_hash_finish() - copy calculated digest to crypto layer
1304 * @req: AHASH request
1305 */
1306static void s5p_hash_finish(struct ahash_request *req)
1307{
1308 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1309 struct s5p_aes_dev *dd = ctx->dd;
1310
1311 if (ctx->digcnt)
1312 s5p_hash_copy_result(req);
1313
1314 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1315}
1316
1317/**
1318 * s5p_hash_finish_req() - finish request
1319 * @req: AHASH request
1320 * @err: error
1321 */
1322static void s5p_hash_finish_req(struct ahash_request *req, int err)
1323{
1324 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1325 struct s5p_aes_dev *dd = ctx->dd;
1326 unsigned long flags;
1327
1328 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1329 free_pages((unsigned long)sg_virt(ctx->sg),
1330 get_order(ctx->sg->length));
1331
1332 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1333 kfree(ctx->sg);
1334
1335 ctx->sg = NULL;
1336 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1337 BIT(HASH_FLAGS_SGS_COPIED));
1338
1339 if (!err && !ctx->error) {
1340 s5p_hash_read_msg(req);
1341 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1342 s5p_hash_finish(req);
1343 } else {
1344 ctx->error = true;
1345 }
1346
1347 spin_lock_irqsave(&dd->hash_lock, flags);
1348 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1349 BIT(HASH_FLAGS_DMA_READY) |
1350 BIT(HASH_FLAGS_OUTPUT_READY));
1351 spin_unlock_irqrestore(&dd->hash_lock, flags);
1352
1353 if (req->base.complete)
1354 req->base.complete(&req->base, err);
1355}
1356
1357/**
1358 * s5p_hash_handle_queue() - handle hash queue
1359 * @dd: device s5p_aes_dev
1360 * @req: AHASH request
1361 *
1362 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1363 * device then processes the first request from the dd->queue
1364 *
1365 * Returns: see s5p_hash_final below.
1366 */
1367static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1368 struct ahash_request *req)
1369{
1370 struct crypto_async_request *async_req, *backlog;
1371 struct s5p_hash_reqctx *ctx;
1372 unsigned long flags;
1373 int err = 0, ret = 0;
1374
1375retry:
1376 spin_lock_irqsave(&dd->hash_lock, flags);
1377 if (req)
1378 ret = ahash_enqueue_request(&dd->hash_queue, req);
1379
1380 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1381 spin_unlock_irqrestore(&dd->hash_lock, flags);
1382 return ret;
1383 }
1384
1385 backlog = crypto_get_backlog(&dd->hash_queue);
1386 async_req = crypto_dequeue_request(&dd->hash_queue);
1387 if (async_req)
1388 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1389
1390 spin_unlock_irqrestore(&dd->hash_lock, flags);
1391
1392 if (!async_req)
1393 return ret;
1394
1395 if (backlog)
1396 backlog->complete(backlog, -EINPROGRESS);
1397
1398 req = ahash_request_cast(async_req);
1399 dd->hash_req = req;
1400 ctx = ahash_request_ctx(req);
1401
1402 err = s5p_hash_prepare_request(req, ctx->op_update);
1403 if (err || !ctx->total)
1404 goto out;
1405
1406 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1407 ctx->op_update, req->nbytes);
1408
1409 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1410 if (ctx->digcnt)
1411 s5p_hash_write_iv(req); /* restore hash IV */
1412
1413 if (ctx->op_update) { /* HASH_OP_UPDATE */
1414 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1415 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1416 /* no final() after finup() */
1417 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1418 } else { /* HASH_OP_FINAL */
1419 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1420 }
1421out:
1422 if (err != -EINPROGRESS) {
1423 /* hash_tasklet_cb will not finish it, so do it here */
1424 s5p_hash_finish_req(req, err);
1425 req = NULL;
1426
1427 /*
1428 * Execute next request immediately if there is anything
1429 * in queue.
1430 */
1431 goto retry;
1432 }
1433
1434 return ret;
1435}
1436
1437/**
1438 * s5p_hash_tasklet_cb() - hash tasklet
1439 * @data: ptr to s5p_aes_dev
1440 */
1441static void s5p_hash_tasklet_cb(unsigned long data)
1442{
1443 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1444
1445 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1446 s5p_hash_handle_queue(dd, NULL);
1447 return;
1448 }
1449
1450 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1451 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1452 &dd->hash_flags)) {
1453 s5p_hash_update_dma_stop(dd);
1454 }
1455
1456 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1457 &dd->hash_flags)) {
1458 /* hash or semi-hash ready */
1459 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
f7daa715 1460 goto finish;
c2afad6c
KK
1461 }
1462 }
1463
1464 return;
1465
1466finish:
1467 /* finish curent request */
1468 s5p_hash_finish_req(dd->hash_req, 0);
1469
1470 /* If we are not busy, process next req */
1471 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1472 s5p_hash_handle_queue(dd, NULL);
1473}
1474
1475/**
1476 * s5p_hash_enqueue() - enqueue request
1477 * @req: AHASH request
1478 * @op: operation UPDATE (true) or FINAL (false)
1479 *
1480 * Returns: see s5p_hash_final below.
1481 */
1482static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1483{
1484 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1485 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1486
1487 ctx->op_update = op;
1488
1489 return s5p_hash_handle_queue(tctx->dd, req);
1490}
1491
1492/**
1493 * s5p_hash_update() - process the hash input data
1494 * @req: AHASH request
1495 *
1496 * If request will fit in buffer, copy it and return immediately
1497 * else enqueue it with OP_UPDATE.
1498 *
1499 * Returns: see s5p_hash_final below.
1500 */
1501static int s5p_hash_update(struct ahash_request *req)
1502{
1503 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1504
1505 if (!req->nbytes)
1506 return 0;
1507
1508 if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1509 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1510 0, req->nbytes, 0);
1511 ctx->bufcnt += req->nbytes;
1512 return 0;
1513 }
1514
1515 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1516}
1517
1518/**
1519 * s5p_hash_shash_digest() - calculate shash digest
1520 * @tfm: crypto transformation
1521 * @flags: tfm flags
1522 * @data: input data
1523 * @len: length of data
1524 * @out: output buffer
1525 */
1526static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1527 const u8 *data, unsigned int len, u8 *out)
1528{
1529 SHASH_DESC_ON_STACK(shash, tfm);
1530
1531 shash->tfm = tfm;
1532 shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1533
1534 return crypto_shash_digest(shash, data, len, out);
1535}
1536
1537/**
1538 * s5p_hash_final_shash() - calculate shash digest
1539 * @req: AHASH request
1540 */
1541static int s5p_hash_final_shash(struct ahash_request *req)
1542{
1543 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1544 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1545
1546 return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1547 ctx->buffer, ctx->bufcnt, req->result);
1548}
1549
1550/**
1551 * s5p_hash_final() - close up hash and calculate digest
1552 * @req: AHASH request
1553 *
1554 * Note: in final req->src do not have any data, and req->nbytes can be
1555 * non-zero.
1556 *
1557 * If there were no input data processed yet and the buffered hash data is
1558 * less than BUFLEN (64) then calculate the final hash immediately by using
1559 * SW algorithm fallback.
1560 *
1561 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1562 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1563 * previous update op, so there are always some buffered bytes in ctx->buffer,
1564 * which means that ctx->bufcnt!=0
1565 *
1566 * Returns:
1567 * 0 if the request has been processed immediately,
1568 * -EINPROGRESS if the operation has been queued for later execution or is set
1569 * to processing by HW,
1570 * -EBUSY if queue is full and request should be resubmitted later,
1571 * other negative values denotes an error.
1572 */
1573static int s5p_hash_final(struct ahash_request *req)
1574{
1575 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1576
1577 ctx->finup = true;
1578 if (ctx->error)
1579 return -EINVAL; /* uncompleted hash is not needed */
1580
1581 if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1582 return s5p_hash_final_shash(req);
1583
1584 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1585}
1586
1587/**
1588 * s5p_hash_finup() - process last req->src and calculate digest
1589 * @req: AHASH request containing the last update data
1590 *
1591 * Return values: see s5p_hash_final above.
1592 */
1593static int s5p_hash_finup(struct ahash_request *req)
1594{
1595 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1596 int err1, err2;
1597
1598 ctx->finup = true;
1599
1600 err1 = s5p_hash_update(req);
1601 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1602 return err1;
1603
1604 /*
1605 * final() has to be always called to cleanup resources even if
1606 * update() failed, except EINPROGRESS or calculate digest for small
1607 * size
1608 */
1609 err2 = s5p_hash_final(req);
1610
1611 return err1 ?: err2;
1612}
1613
1614/**
1615 * s5p_hash_init() - initialize AHASH request contex
1616 * @req: AHASH request
1617 *
1618 * Init async hash request context.
1619 */
1620static int s5p_hash_init(struct ahash_request *req)
1621{
1622 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1623 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1624 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1625
1626 ctx->dd = tctx->dd;
1627 ctx->error = false;
1628 ctx->finup = false;
1629 ctx->bufcnt = 0;
1630 ctx->digcnt = 0;
1631 ctx->total = 0;
1632 ctx->skip = 0;
1633
1634 dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1635 crypto_ahash_digestsize(tfm));
1636
1637 switch (crypto_ahash_digestsize(tfm)) {
1638 case MD5_DIGEST_SIZE:
1639 ctx->engine = SSS_HASH_ENGINE_MD5;
1640 ctx->nregs = HASH_MD5_MAX_REG;
1641 break;
1642 case SHA1_DIGEST_SIZE:
1643 ctx->engine = SSS_HASH_ENGINE_SHA1;
1644 ctx->nregs = HASH_SHA1_MAX_REG;
1645 break;
1646 case SHA256_DIGEST_SIZE:
1647 ctx->engine = SSS_HASH_ENGINE_SHA256;
1648 ctx->nregs = HASH_SHA256_MAX_REG;
1649 break;
1650 default:
1651 ctx->error = true;
1652 return -EINVAL;
1653 }
1654
1655 return 0;
1656}
1657
1658/**
1659 * s5p_hash_digest - calculate digest from req->src
1660 * @req: AHASH request
1661 *
1662 * Return values: see s5p_hash_final above.
1663 */
1664static int s5p_hash_digest(struct ahash_request *req)
1665{
1666 return s5p_hash_init(req) ?: s5p_hash_finup(req);
1667}
1668
1669/**
1670 * s5p_hash_cra_init_alg - init crypto alg transformation
1671 * @tfm: crypto transformation
1672 */
1673static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1674{
1675 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1676 const char *alg_name = crypto_tfm_alg_name(tfm);
1677
1678 tctx->dd = s5p_dev;
1679 /* Allocate a fallback and abort if it failed. */
1680 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1681 CRYPTO_ALG_NEED_FALLBACK);
1682 if (IS_ERR(tctx->fallback)) {
1683 pr_err("fallback alloc fails for '%s'\n", alg_name);
1684 return PTR_ERR(tctx->fallback);
1685 }
1686
1687 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1688 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1689
1690 return 0;
1691}
1692
1693/**
1694 * s5p_hash_cra_init - init crypto tfm
1695 * @tfm: crypto transformation
1696 */
1697static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1698{
1699 return s5p_hash_cra_init_alg(tfm);
1700}
1701
1702/**
1703 * s5p_hash_cra_exit - exit crypto tfm
1704 * @tfm: crypto transformation
1705 *
1706 * free allocated fallback
1707 */
1708static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1709{
1710 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1711
1712 crypto_free_shash(tctx->fallback);
1713 tctx->fallback = NULL;
1714}
1715
1716/**
1717 * s5p_hash_export - export hash state
1718 * @req: AHASH request
1719 * @out: buffer for exported state
1720 */
1721static int s5p_hash_export(struct ahash_request *req, void *out)
1722{
1723 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1724
1725 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1726
1727 return 0;
1728}
1729
1730/**
1731 * s5p_hash_import - import hash state
1732 * @req: AHASH request
1733 * @in: buffer with state to be imported from
1734 */
1735static int s5p_hash_import(struct ahash_request *req, const void *in)
1736{
1737 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1738 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1739 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1740 const struct s5p_hash_reqctx *ctx_in = in;
1741
1742 memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1743 if (ctx_in->bufcnt > BUFLEN) {
1744 ctx->error = true;
1745 return -EINVAL;
1746 }
1747
1748 ctx->dd = tctx->dd;
1749 ctx->error = false;
1750
1751 return 0;
1752}
1753
1754static struct ahash_alg algs_sha1_md5_sha256[] = {
1755{
1756 .init = s5p_hash_init,
1757 .update = s5p_hash_update,
1758 .final = s5p_hash_final,
1759 .finup = s5p_hash_finup,
1760 .digest = s5p_hash_digest,
1761 .export = s5p_hash_export,
1762 .import = s5p_hash_import,
1763 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1764 .halg.digestsize = SHA1_DIGEST_SIZE,
1765 .halg.base = {
1766 .cra_name = "sha1",
1767 .cra_driver_name = "exynos-sha1",
1768 .cra_priority = 100,
1769 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1770 CRYPTO_ALG_KERN_DRIVER_ONLY |
1771 CRYPTO_ALG_ASYNC |
1772 CRYPTO_ALG_NEED_FALLBACK,
1773 .cra_blocksize = HASH_BLOCK_SIZE,
1774 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1775 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1776 .cra_module = THIS_MODULE,
1777 .cra_init = s5p_hash_cra_init,
1778 .cra_exit = s5p_hash_cra_exit,
1779 }
1780},
1781{
1782 .init = s5p_hash_init,
1783 .update = s5p_hash_update,
1784 .final = s5p_hash_final,
1785 .finup = s5p_hash_finup,
1786 .digest = s5p_hash_digest,
1787 .export = s5p_hash_export,
1788 .import = s5p_hash_import,
1789 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1790 .halg.digestsize = MD5_DIGEST_SIZE,
1791 .halg.base = {
1792 .cra_name = "md5",
1793 .cra_driver_name = "exynos-md5",
1794 .cra_priority = 100,
1795 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1796 CRYPTO_ALG_KERN_DRIVER_ONLY |
1797 CRYPTO_ALG_ASYNC |
1798 CRYPTO_ALG_NEED_FALLBACK,
1799 .cra_blocksize = HASH_BLOCK_SIZE,
1800 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1801 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1802 .cra_module = THIS_MODULE,
1803 .cra_init = s5p_hash_cra_init,
1804 .cra_exit = s5p_hash_cra_exit,
1805 }
1806},
1807{
1808 .init = s5p_hash_init,
1809 .update = s5p_hash_update,
1810 .final = s5p_hash_final,
1811 .finup = s5p_hash_finup,
1812 .digest = s5p_hash_digest,
1813 .export = s5p_hash_export,
1814 .import = s5p_hash_import,
1815 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1816 .halg.digestsize = SHA256_DIGEST_SIZE,
1817 .halg.base = {
1818 .cra_name = "sha256",
1819 .cra_driver_name = "exynos-sha256",
1820 .cra_priority = 100,
1821 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1822 CRYPTO_ALG_KERN_DRIVER_ONLY |
1823 CRYPTO_ALG_ASYNC |
1824 CRYPTO_ALG_NEED_FALLBACK,
1825 .cra_blocksize = HASH_BLOCK_SIZE,
1826 .cra_ctxsize = sizeof(struct s5p_hash_ctx),
1827 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
1828 .cra_module = THIS_MODULE,
1829 .cra_init = s5p_hash_cra_init,
1830 .cra_exit = s5p_hash_cra_exit,
1831 }
1832}
1833
1834};
1835
a49e490c
VZ
1836static void s5p_set_aes(struct s5p_aes_dev *dev,
1837 uint8_t *key, uint8_t *iv, unsigned int keylen)
1838{
1839 void __iomem *keystart;
1840
8f9702aa 1841 if (iv)
1e3012d0 1842 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
a49e490c
VZ
1843
1844 if (keylen == AES_KEYSIZE_256)
89245107 1845 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
a49e490c 1846 else if (keylen == AES_KEYSIZE_192)
89245107 1847 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
a49e490c 1848 else
89245107 1849 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
a49e490c 1850
1e3012d0 1851 memcpy_toio(keystart, key, keylen);
a49e490c
VZ
1852}
1853
9e4a1100
KK
1854static bool s5p_is_sg_aligned(struct scatterlist *sg)
1855{
1856 while (sg) {
d1497977 1857 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
9e4a1100
KK
1858 return false;
1859 sg = sg_next(sg);
1860 }
1861
1862 return true;
1863}
1864
1865static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1866 struct ablkcipher_request *req)
1867{
1868 struct scatterlist *sg;
1869 int err;
1870
1871 dev->sg_src_cpy = NULL;
1872 sg = req->src;
1873 if (!s5p_is_sg_aligned(sg)) {
1874 dev_dbg(dev->dev,
1875 "At least one unaligned source scatter list, making a copy\n");
1876 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1877 if (err)
1878 return err;
1879
1880 sg = dev->sg_src_cpy;
1881 }
1882
1883 err = s5p_set_indata(dev, sg);
1884 if (err) {
1885 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1886 return err;
1887 }
1888
1889 return 0;
1890}
1891
1892static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1893 struct ablkcipher_request *req)
1894{
1895 struct scatterlist *sg;
1896 int err;
1897
1898 dev->sg_dst_cpy = NULL;
1899 sg = req->dst;
1900 if (!s5p_is_sg_aligned(sg)) {
1901 dev_dbg(dev->dev,
1902 "At least one unaligned dest scatter list, making a copy\n");
1903 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1904 if (err)
1905 return err;
1906
1907 sg = dev->sg_dst_cpy;
1908 }
1909
1910 err = s5p_set_outdata(dev, sg);
1911 if (err) {
1912 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1913 return err;
1914 }
1915
1916 return 0;
1917}
1918
a49e490c
VZ
1919static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1920{
5318c53d
KK
1921 struct ablkcipher_request *req = dev->req;
1922 uint32_t aes_control;
1923 unsigned long flags;
1924 int err;
c927b080 1925 u8 *iv;
a49e490c
VZ
1926
1927 aes_control = SSS_AES_KEY_CHANGE_MODE;
1928 if (mode & FLAGS_AES_DECRYPT)
1929 aes_control |= SSS_AES_MODE_DECRYPT;
1930
c927b080 1931 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
a49e490c 1932 aes_control |= SSS_AES_CHAIN_MODE_CBC;
c927b080
KK
1933 iv = req->info;
1934 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
a49e490c 1935 aes_control |= SSS_AES_CHAIN_MODE_CTR;
c927b080
KK
1936 iv = req->info;
1937 } else {
1938 iv = NULL; /* AES_ECB */
1939 }
a49e490c
VZ
1940
1941 if (dev->ctx->keylen == AES_KEYSIZE_192)
1942 aes_control |= SSS_AES_KEY_SIZE_192;
1943 else if (dev->ctx->keylen == AES_KEYSIZE_256)
1944 aes_control |= SSS_AES_KEY_SIZE_256;
1945
1946 aes_control |= SSS_AES_FIFO_MODE;
1947
1948 /* as a variant it is possible to use byte swapping on DMA side */
1949 aes_control |= SSS_AES_BYTESWAP_DI
1950 | SSS_AES_BYTESWAP_DO
1951 | SSS_AES_BYTESWAP_IV
1952 | SSS_AES_BYTESWAP_KEY
1953 | SSS_AES_BYTESWAP_CNT;
1954
1955 spin_lock_irqsave(&dev->lock, flags);
1956
1957 SSS_WRITE(dev, FCINTENCLR,
1958 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1959 SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1960
9e4a1100 1961 err = s5p_set_indata_start(dev, req);
a49e490c
VZ
1962 if (err)
1963 goto indata_error;
1964
9e4a1100 1965 err = s5p_set_outdata_start(dev, req);
a49e490c
VZ
1966 if (err)
1967 goto outdata_error;
1968
89245107 1969 SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
c927b080 1970 s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen);
a49e490c 1971
9e4a1100
KK
1972 s5p_set_dma_indata(dev, dev->sg_src);
1973 s5p_set_dma_outdata(dev, dev->sg_dst);
a49e490c
VZ
1974
1975 SSS_WRITE(dev, FCINTENSET,
1976 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1977
1978 spin_unlock_irqrestore(&dev->lock, flags);
1979
1980 return;
1981
119c3ab4 1982outdata_error:
a49e490c
VZ
1983 s5p_unset_indata(dev);
1984
119c3ab4 1985indata_error:
28b62b14 1986 s5p_sg_done(dev);
42d5c176 1987 dev->busy = false;
a49e490c 1988 spin_unlock_irqrestore(&dev->lock, flags);
28b62b14 1989 s5p_aes_complete(dev, err);
a49e490c
VZ
1990}
1991
1992static void s5p_tasklet_cb(unsigned long data)
1993{
1994 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1995 struct crypto_async_request *async_req, *backlog;
1996 struct s5p_aes_reqctx *reqctx;
1997 unsigned long flags;
1998
1999 spin_lock_irqsave(&dev->lock, flags);
2000 backlog = crypto_get_backlog(&dev->queue);
2001 async_req = crypto_dequeue_request(&dev->queue);
a49e490c 2002
dc5e3f19
NKC
2003 if (!async_req) {
2004 dev->busy = false;
2005 spin_unlock_irqrestore(&dev->lock, flags);
a49e490c 2006 return;
dc5e3f19
NKC
2007 }
2008 spin_unlock_irqrestore(&dev->lock, flags);
a49e490c
VZ
2009
2010 if (backlog)
2011 backlog->complete(backlog, -EINPROGRESS);
2012
2013 dev->req = ablkcipher_request_cast(async_req);
2014 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2015 reqctx = ablkcipher_request_ctx(dev->req);
2016
2017 s5p_aes_crypt_start(dev, reqctx->mode);
2018}
2019
2020static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2021 struct ablkcipher_request *req)
2022{
2023 unsigned long flags;
2024 int err;
2025
2026 spin_lock_irqsave(&dev->lock, flags);
dc5e3f19 2027 err = ablkcipher_enqueue_request(&dev->queue, req);
a49e490c 2028 if (dev->busy) {
a49e490c
VZ
2029 spin_unlock_irqrestore(&dev->lock, flags);
2030 goto exit;
2031 }
2032 dev->busy = true;
2033
a49e490c
VZ
2034 spin_unlock_irqrestore(&dev->lock, flags);
2035
2036 tasklet_schedule(&dev->tasklet);
2037
119c3ab4 2038exit:
a49e490c
VZ
2039 return err;
2040}
2041
2042static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2043{
5318c53d
KK
2044 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2045 struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2046 struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2047 struct s5p_aes_dev *dev = ctx->dev;
a49e490c
VZ
2048
2049 if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
313becd1 2050 dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
a49e490c
VZ
2051 return -EINVAL;
2052 }
2053
2054 reqctx->mode = mode;
2055
2056 return s5p_aes_handle_req(dev, req);
2057}
2058
2059static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2060 const uint8_t *key, unsigned int keylen)
2061{
5318c53d 2062 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
a49e490c
VZ
2063 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2064
2065 if (keylen != AES_KEYSIZE_128 &&
2066 keylen != AES_KEYSIZE_192 &&
2067 keylen != AES_KEYSIZE_256)
2068 return -EINVAL;
2069
2070 memcpy(ctx->aes_key, key, keylen);
2071 ctx->keylen = keylen;
2072
2073 return 0;
2074}
2075
2076static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2077{
2078 return s5p_aes_crypt(req, 0);
2079}
2080
2081static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2082{
2083 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2084}
2085
2086static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2087{
2088 return s5p_aes_crypt(req, FLAGS_AES_CBC);
2089}
2090
2091static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2092{
2093 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2094}
2095
2096static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2097{
313becd1 2098 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
a49e490c
VZ
2099
2100 ctx->dev = s5p_dev;
2101 tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2102
2103 return 0;
2104}
2105
2106static struct crypto_alg algs[] = {
2107 {
2108 .cra_name = "ecb(aes)",
2109 .cra_driver_name = "ecb-aes-s5p",
2110 .cra_priority = 100,
2111 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
d912bb76
NM
2112 CRYPTO_ALG_ASYNC |
2113 CRYPTO_ALG_KERN_DRIVER_ONLY,
a49e490c
VZ
2114 .cra_blocksize = AES_BLOCK_SIZE,
2115 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2116 .cra_alignmask = 0x0f,
2117 .cra_type = &crypto_ablkcipher_type,
2118 .cra_module = THIS_MODULE,
2119 .cra_init = s5p_aes_cra_init,
2120 .cra_u.ablkcipher = {
2121 .min_keysize = AES_MIN_KEY_SIZE,
2122 .max_keysize = AES_MAX_KEY_SIZE,
2123 .setkey = s5p_aes_setkey,
2124 .encrypt = s5p_aes_ecb_encrypt,
2125 .decrypt = s5p_aes_ecb_decrypt,
2126 }
2127 },
2128 {
2129 .cra_name = "cbc(aes)",
2130 .cra_driver_name = "cbc-aes-s5p",
2131 .cra_priority = 100,
2132 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
d912bb76
NM
2133 CRYPTO_ALG_ASYNC |
2134 CRYPTO_ALG_KERN_DRIVER_ONLY,
a49e490c
VZ
2135 .cra_blocksize = AES_BLOCK_SIZE,
2136 .cra_ctxsize = sizeof(struct s5p_aes_ctx),
2137 .cra_alignmask = 0x0f,
2138 .cra_type = &crypto_ablkcipher_type,
2139 .cra_module = THIS_MODULE,
2140 .cra_init = s5p_aes_cra_init,
2141 .cra_u.ablkcipher = {
2142 .min_keysize = AES_MIN_KEY_SIZE,
2143 .max_keysize = AES_MAX_KEY_SIZE,
2144 .ivsize = AES_BLOCK_SIZE,
2145 .setkey = s5p_aes_setkey,
2146 .encrypt = s5p_aes_cbc_encrypt,
2147 .decrypt = s5p_aes_cbc_decrypt,
2148 }
2149 },
2150};
2151
2152static int s5p_aes_probe(struct platform_device *pdev)
2153{
5318c53d
KK
2154 struct device *dev = &pdev->dev;
2155 int i, j, err = -ENODEV;
89245107 2156 struct samsung_aes_variant *variant;
5318c53d
KK
2157 struct s5p_aes_dev *pdata;
2158 struct resource *res;
c2afad6c 2159 unsigned int hash_i;
a49e490c
VZ
2160
2161 if (s5p_dev)
2162 return -EEXIST;
2163
a49e490c
VZ
2164 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2165 if (!pdata)
2166 return -ENOMEM;
2167
c2afad6c 2168 variant = find_s5p_sss_version(pdev);
0fdefe2c 2169 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
a49e490c 2170
c2afad6c
KK
2171 /*
2172 * Note: HASH and PRNG uses the same registers in secss, avoid
2173 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2174 * is enabled in config. We need larger size for HASH registers in
2175 * secss, current describe only AES/DES
2176 */
2177 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2178 if (variant == &exynos_aes_data) {
2179 res->end += 0x300;
2180 pdata->use_hash = true;
2181 }
2182 }
2183
2184 pdata->res = res;
2185 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2186 if (IS_ERR(pdata->ioaddr)) {
2187 if (!pdata->use_hash)
2188 return PTR_ERR(pdata->ioaddr);
2189 /* try AES without HASH */
2190 res->end -= 0x300;
2191 pdata->use_hash = false;
2192 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2193 if (IS_ERR(pdata->ioaddr))
2194 return PTR_ERR(pdata->ioaddr);
2195 }
89245107 2196
5c22ba66 2197 pdata->clk = devm_clk_get(dev, "secss");
a49e490c
VZ
2198 if (IS_ERR(pdata->clk)) {
2199 dev_err(dev, "failed to find secss clock source\n");
2200 return -ENOENT;
2201 }
2202
c1eb7ef2
NKC
2203 err = clk_prepare_enable(pdata->clk);
2204 if (err < 0) {
2205 dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2206 return err;
2207 }
a49e490c
VZ
2208
2209 spin_lock_init(&pdata->lock);
c2afad6c 2210 spin_lock_init(&pdata->hash_lock);
a49e490c 2211
89245107 2212 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
c2afad6c 2213 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
89245107 2214
96fc70b6
NKC
2215 pdata->irq_fc = platform_get_irq(pdev, 0);
2216 if (pdata->irq_fc < 0) {
2217 err = pdata->irq_fc;
2218 dev_warn(dev, "feed control interrupt is not available.\n");
a49e490c
VZ
2219 goto err_irq;
2220 }
07de4bc8
KK
2221 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2222 s5p_aes_interrupt, IRQF_ONESHOT,
2223 pdev->name, pdev);
a49e490c 2224 if (err < 0) {
96fc70b6 2225 dev_warn(dev, "feed control interrupt is not available.\n");
a49e490c
VZ
2226 goto err_irq;
2227 }
2228
dc5e3f19 2229 pdata->busy = false;
a49e490c
VZ
2230 pdata->dev = dev;
2231 platform_set_drvdata(pdev, pdata);
2232 s5p_dev = pdata;
2233
2234 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2235 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2236
2237 for (i = 0; i < ARRAY_SIZE(algs); i++) {
a49e490c
VZ
2238 err = crypto_register_alg(&algs[i]);
2239 if (err)
2240 goto err_algs;
2241 }
2242
c2afad6c
KK
2243 if (pdata->use_hash) {
2244 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2245 (unsigned long)pdata);
2246 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2247
2248 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2249 hash_i++) {
2250 struct ahash_alg *alg;
2251
2252 alg = &algs_sha1_md5_sha256[hash_i];
2253 err = crypto_register_ahash(alg);
2254 if (err) {
2255 dev_err(dev, "can't register '%s': %d\n",
2256 alg->halg.base.cra_driver_name, err);
2257 goto err_hash;
2258 }
2259 }
2260 }
2261
313becd1 2262 dev_info(dev, "s5p-sss driver registered\n");
a49e490c
VZ
2263
2264 return 0;
2265
c2afad6c
KK
2266err_hash:
2267 for (j = hash_i - 1; j >= 0; j--)
2268 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2269
2270 tasklet_kill(&pdata->hash_tasklet);
2271 res->end -= 0x300;
2272
119c3ab4 2273err_algs:
c2afad6c
KK
2274 if (i < ARRAY_SIZE(algs))
2275 dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2276 err);
a49e490c
VZ
2277
2278 for (j = 0; j < i; j++)
2279 crypto_unregister_alg(&algs[j]);
2280
2281 tasklet_kill(&pdata->tasklet);
2282
119c3ab4 2283err_irq:
c1eb7ef2 2284 clk_disable_unprepare(pdata->clk);
a49e490c
VZ
2285
2286 s5p_dev = NULL;
a49e490c
VZ
2287
2288 return err;
2289}
2290
2291static int s5p_aes_remove(struct platform_device *pdev)
2292{
2293 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2294 int i;
2295
2296 if (!pdata)
2297 return -ENODEV;
2298
2299 for (i = 0; i < ARRAY_SIZE(algs); i++)
2300 crypto_unregister_alg(&algs[i]);
2301
2302 tasklet_kill(&pdata->tasklet);
c2afad6c
KK
2303 if (pdata->use_hash) {
2304 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2305 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
a49e490c 2306
c2afad6c
KK
2307 pdata->res->end -= 0x300;
2308 tasklet_kill(&pdata->hash_tasklet);
2309 pdata->use_hash = false;
2310 }
a49e490c 2311
c2afad6c 2312 clk_disable_unprepare(pdata->clk);
a49e490c 2313 s5p_dev = NULL;
a49e490c
VZ
2314
2315 return 0;
2316}
2317
2318static struct platform_driver s5p_aes_crypto = {
2319 .probe = s5p_aes_probe,
2320 .remove = s5p_aes_remove,
2321 .driver = {
a49e490c 2322 .name = "s5p-secss",
6b9f16e6 2323 .of_match_table = s5p_sss_dt_match,
a49e490c
VZ
2324 },
2325};
2326
741e8c2d 2327module_platform_driver(s5p_aes_crypto);
a49e490c
VZ
2328
2329MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2330MODULE_LICENSE("GPL v2");
2331MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
c2afad6c 2332MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");