[CRYPTO] Use standard byte order macros wherever possible
[linux-2.6-block.git] / drivers / crypto / padlock-aes.c
CommitLineData
1da177e4
LT
1/*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
7 *
8 * Key expansion routine taken from crypto/aes.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * ---------------------------------------------------------------------------
16 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17 * All rights reserved.
18 *
19 * LICENSE TERMS
20 *
21 * The free distribution and use of this software in both source and binary
22 * form is allowed (with or without changes) provided that:
23 *
24 * 1. distributions of this source code include the above copyright
25 * notice, this list of conditions and the following disclaimer;
26 *
27 * 2. distributions in binary form include the above copyright
28 * notice, this list of conditions and the following disclaimer
29 * in the documentation and/or other associated materials;
30 *
31 * 3. the copyright holder's name is not used to endorse products
32 * built using this software without specific written permission.
33 *
34 * ALTERNATIVELY, provided that this notice is retained in full, this product
35 * may be distributed under the terms of the GNU General Public License (GPL),
36 * in which case the provisions of the GPL apply INSTEAD OF those given above.
37 *
38 * DISCLAIMER
39 *
40 * This software is provided 'as is' with no explicit or implied warranties
41 * in respect of its properties, including, but not limited to, correctness
42 * and/or fitness for purpose.
43 * ---------------------------------------------------------------------------
44 */
45
46#include <linux/module.h>
47#include <linux/init.h>
48#include <linux/types.h>
49#include <linux/errno.h>
50#include <linux/crypto.h>
51#include <linux/interrupt.h>
6789b2dc 52#include <linux/kernel.h>
1da177e4
LT
53#include <asm/byteorder.h>
54#include "padlock.h"
55
56#define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
57#define AES_MAX_KEY_SIZE 32 /* ditto */
58#define AES_BLOCK_SIZE 16 /* ditto */
59#define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
60#define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
61
62struct aes_ctx {
6789b2dc
HX
63 uint32_t e_data[AES_EXTENDED_KEY_SIZE];
64 uint32_t d_data[AES_EXTENDED_KEY_SIZE];
65 struct {
66 struct cword encrypt;
67 struct cword decrypt;
68 } cword;
1da177e4
LT
69 uint32_t *E;
70 uint32_t *D;
71 int key_length;
72};
73
74/* ====== Key management routines ====== */
75
76static inline uint32_t
77generic_rotr32 (const uint32_t x, const unsigned bits)
78{
79 const unsigned n = bits % 32;
80 return (x >> n) | (x << (32 - n));
81}
82
83static inline uint32_t
84generic_rotl32 (const uint32_t x, const unsigned bits)
85{
86 const unsigned n = bits % 32;
87 return (x << n) | (x >> (32 - n));
88}
89
90#define rotl generic_rotl32
91#define rotr generic_rotr32
92
93/*
94 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
95 */
96static inline uint8_t
97byte(const uint32_t x, const unsigned n)
98{
99 return x >> (n << 3);
100}
101
1da177e4
LT
102#define E_KEY ctx->E
103#define D_KEY ctx->D
104
105static uint8_t pow_tab[256];
106static uint8_t log_tab[256];
107static uint8_t sbx_tab[256];
108static uint8_t isb_tab[256];
109static uint32_t rco_tab[10];
110static uint32_t ft_tab[4][256];
111static uint32_t it_tab[4][256];
112
113static uint32_t fl_tab[4][256];
114static uint32_t il_tab[4][256];
115
116static inline uint8_t
117f_mult (uint8_t a, uint8_t b)
118{
119 uint8_t aa = log_tab[a], cc = aa + log_tab[b];
120
121 return pow_tab[cc + (cc < aa ? 1 : 0)];
122}
123
124#define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
125
126#define f_rn(bo, bi, n, k) \
127 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
128 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
129 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
130 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
131
132#define i_rn(bo, bi, n, k) \
133 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
134 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
135 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
136 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
137
138#define ls_box(x) \
139 ( fl_tab[0][byte(x, 0)] ^ \
140 fl_tab[1][byte(x, 1)] ^ \
141 fl_tab[2][byte(x, 2)] ^ \
142 fl_tab[3][byte(x, 3)] )
143
144#define f_rl(bo, bi, n, k) \
145 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
146 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
147 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
148 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
149
150#define i_rl(bo, bi, n, k) \
151 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
152 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
153 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
154 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
155
156static void
157gen_tabs (void)
158{
159 uint32_t i, t;
160 uint8_t p, q;
161
162 /* log and power tables for GF(2**8) finite field with
163 0x011b as modular polynomial - the simplest prmitive
164 root is 0x03, used here to generate the tables */
165
166 for (i = 0, p = 1; i < 256; ++i) {
167 pow_tab[i] = (uint8_t) p;
168 log_tab[p] = (uint8_t) i;
169
170 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
171 }
172
173 log_tab[1] = 0;
174
175 for (i = 0, p = 1; i < 10; ++i) {
176 rco_tab[i] = p;
177
178 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
179 }
180
181 for (i = 0; i < 256; ++i) {
182 p = (i ? pow_tab[255 - log_tab[i]] : 0);
183 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
184 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
185 sbx_tab[i] = p;
186 isb_tab[p] = (uint8_t) i;
187 }
188
189 for (i = 0; i < 256; ++i) {
190 p = sbx_tab[i];
191
192 t = p;
193 fl_tab[0][i] = t;
194 fl_tab[1][i] = rotl (t, 8);
195 fl_tab[2][i] = rotl (t, 16);
196 fl_tab[3][i] = rotl (t, 24);
197
198 t = ((uint32_t) ff_mult (2, p)) |
199 ((uint32_t) p << 8) |
200 ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
201
202 ft_tab[0][i] = t;
203 ft_tab[1][i] = rotl (t, 8);
204 ft_tab[2][i] = rotl (t, 16);
205 ft_tab[3][i] = rotl (t, 24);
206
207 p = isb_tab[i];
208
209 t = p;
210 il_tab[0][i] = t;
211 il_tab[1][i] = rotl (t, 8);
212 il_tab[2][i] = rotl (t, 16);
213 il_tab[3][i] = rotl (t, 24);
214
215 t = ((uint32_t) ff_mult (14, p)) |
216 ((uint32_t) ff_mult (9, p) << 8) |
217 ((uint32_t) ff_mult (13, p) << 16) |
218 ((uint32_t) ff_mult (11, p) << 24);
219
220 it_tab[0][i] = t;
221 it_tab[1][i] = rotl (t, 8);
222 it_tab[2][i] = rotl (t, 16);
223 it_tab[3][i] = rotl (t, 24);
224 }
225}
226
227#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
228
229#define imix_col(y,x) \
230 u = star_x(x); \
231 v = star_x(u); \
232 w = star_x(v); \
233 t = w ^ (x); \
234 (y) = u ^ v ^ w; \
235 (y) ^= rotr(u ^ t, 8) ^ \
236 rotr(v ^ t, 16) ^ \
237 rotr(t,24)
238
239/* initialise the key schedule from the user supplied key */
240
241#define loop4(i) \
242{ t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
243 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
244 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
245 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
246 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
247}
248
249#define loop6(i) \
250{ t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
251 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
252 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
253 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
254 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
255 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
256 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
257}
258
259#define loop8(i) \
260{ t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
261 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
262 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
263 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
264 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
265 t = E_KEY[8 * i + 4] ^ ls_box(t); \
266 E_KEY[8 * i + 12] = t; \
267 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
268 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
269 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
270}
271
272/* Tells whether the ACE is capable to generate
273 the extended key for a given key_len. */
274static inline int
275aes_hw_extkey_available(uint8_t key_len)
276{
277 /* TODO: We should check the actual CPU model/stepping
278 as it's possible that the capability will be
279 added in the next CPU revisions. */
280 if (key_len == 16)
281 return 1;
282 return 0;
283}
284
6789b2dc
HX
285static inline struct aes_ctx *aes_ctx(void *ctx)
286{
287 return (struct aes_ctx *)ALIGN((unsigned long)ctx, PADLOCK_ALIGNMENT);
288}
289
1da177e4
LT
290static int
291aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
292{
6789b2dc 293 struct aes_ctx *ctx = aes_ctx(ctx_arg);
06ace7a9 294 const __le32 *key = (const __le32 *)in_key;
1da177e4
LT
295 uint32_t i, t, u, v, w;
296 uint32_t P[AES_EXTENDED_KEY_SIZE];
297 uint32_t rounds;
298
299 if (key_len != 16 && key_len != 24 && key_len != 32) {
300 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
301 return -EINVAL;
302 }
303
304 ctx->key_length = key_len;
305
6789b2dc
HX
306 /*
307 * If the hardware is capable of generating the extended key
308 * itself we must supply the plain key for both encryption
309 * and decryption.
310 */
1da177e4 311 ctx->E = ctx->e_data;
6789b2dc 312 ctx->D = ctx->e_data;
1da177e4 313
06ace7a9
HX
314 E_KEY[0] = le32_to_cpu(key[0]);
315 E_KEY[1] = le32_to_cpu(key[1]);
316 E_KEY[2] = le32_to_cpu(key[2]);
317 E_KEY[3] = le32_to_cpu(key[3]);
1da177e4 318
6789b2dc
HX
319 /* Prepare control words. */
320 memset(&ctx->cword, 0, sizeof(ctx->cword));
321
322 ctx->cword.decrypt.encdec = 1;
323 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
324 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
325 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
326 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
327
1da177e4
LT
328 /* Don't generate extended keys if the hardware can do it. */
329 if (aes_hw_extkey_available(key_len))
330 return 0;
331
6789b2dc
HX
332 ctx->D = ctx->d_data;
333 ctx->cword.encrypt.keygen = 1;
334 ctx->cword.decrypt.keygen = 1;
335
1da177e4
LT
336 switch (key_len) {
337 case 16:
338 t = E_KEY[3];
339 for (i = 0; i < 10; ++i)
340 loop4 (i);
341 break;
342
343 case 24:
06ace7a9
HX
344 E_KEY[4] = le32_to_cpu(key[4]);
345 t = E_KEY[5] = le32_to_cpu(key[5]);
1da177e4
LT
346 for (i = 0; i < 8; ++i)
347 loop6 (i);
348 break;
349
350 case 32:
06ace7a9
HX
351 E_KEY[4] = le32_to_cpu(in_key[4]);
352 E_KEY[5] = le32_to_cpu(in_key[5]);
353 E_KEY[6] = le32_to_cpu(in_key[6]);
354 t = E_KEY[7] = le32_to_cpu(in_key[7]);
1da177e4
LT
355 for (i = 0; i < 7; ++i)
356 loop8 (i);
357 break;
358 }
359
360 D_KEY[0] = E_KEY[0];
361 D_KEY[1] = E_KEY[1];
362 D_KEY[2] = E_KEY[2];
363 D_KEY[3] = E_KEY[3];
364
365 for (i = 4; i < key_len + 24; ++i) {
366 imix_col (D_KEY[i], E_KEY[i]);
367 }
368
369 /* PadLock needs a different format of the decryption key. */
370 rounds = 10 + (key_len - 16) / 4;
371
372 for (i = 0; i < rounds; i++) {
373 P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
374 P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
375 P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
376 P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
377 }
378
379 P[0] = E_KEY[(rounds * 4) + 0];
380 P[1] = E_KEY[(rounds * 4) + 1];
381 P[2] = E_KEY[(rounds * 4) + 2];
382 P[3] = E_KEY[(rounds * 4) + 3];
383
384 memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
385
386 return 0;
387}
388
389/* ====== Encryption/decryption routines ====== */
390
28e8c3ad 391/* These are the real call to PadLock. */
6789b2dc
HX
392static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
393 void *control_word, u32 count)
1da177e4
LT
394{
395 asm volatile ("pushfl; popfl"); /* enforce key reload. */
396 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
397 : "+S"(input), "+D"(output)
398 : "d"(control_word), "b"(key), "c"(count));
399}
400
476df259
HX
401static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
402 u8 *iv, void *control_word, u32 count)
28e8c3ad
HX
403{
404 /* Enforce key reload. */
405 asm volatile ("pushfl; popfl");
406 /* rep xcryptcbc */
407 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
408 : "+S" (input), "+D" (output), "+a" (iv)
409 : "d" (control_word), "b" (key), "c" (count));
476df259 410 return iv;
28e8c3ad
HX
411}
412
1da177e4
LT
413static void
414aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
415{
6789b2dc
HX
416 struct aes_ctx *ctx = aes_ctx(ctx_arg);
417 padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
1da177e4
LT
418}
419
420static void
421aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
422{
6789b2dc
HX
423 struct aes_ctx *ctx = aes_ctx(ctx_arg);
424 padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
1da177e4
LT
425}
426
28e8c3ad
HX
427static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
428 const u8 *in, unsigned int nbytes)
429{
430 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
431 padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
432 nbytes / AES_BLOCK_SIZE);
433 return nbytes & ~(AES_BLOCK_SIZE - 1);
434}
435
436static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
437 const u8 *in, unsigned int nbytes)
438{
439 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
440 padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
441 nbytes / AES_BLOCK_SIZE);
442 return nbytes & ~(AES_BLOCK_SIZE - 1);
443}
444
445static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
446 const u8 *in, unsigned int nbytes)
447{
448 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
476df259
HX
449 u8 *iv;
450
451 iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
452 &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
453 memcpy(desc->info, iv, AES_BLOCK_SIZE);
454
28e8c3ad
HX
455 return nbytes & ~(AES_BLOCK_SIZE - 1);
456}
457
458static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
459 const u8 *in, unsigned int nbytes)
460{
461 struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
462 padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
463 nbytes / AES_BLOCK_SIZE);
464 return nbytes & ~(AES_BLOCK_SIZE - 1);
465}
466
1da177e4
LT
467static struct crypto_alg aes_alg = {
468 .cra_name = "aes",
469 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
470 .cra_blocksize = AES_BLOCK_SIZE,
fbdae9f3 471 .cra_ctxsize = sizeof(struct aes_ctx),
6789b2dc 472 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
1da177e4
LT
473 .cra_module = THIS_MODULE,
474 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
475 .cra_u = {
476 .cipher = {
477 .cia_min_keysize = AES_MIN_KEY_SIZE,
478 .cia_max_keysize = AES_MAX_KEY_SIZE,
479 .cia_setkey = aes_set_key,
480 .cia_encrypt = aes_encrypt,
28e8c3ad
HX
481 .cia_decrypt = aes_decrypt,
482 .cia_encrypt_ecb = aes_encrypt_ecb,
483 .cia_decrypt_ecb = aes_decrypt_ecb,
484 .cia_encrypt_cbc = aes_encrypt_cbc,
485 .cia_decrypt_cbc = aes_decrypt_cbc,
1da177e4
LT
486 }
487 }
488};
489
490int __init padlock_init_aes(void)
491{
492 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
493
494 gen_tabs();
495 return crypto_register_alg(&aes_alg);
496}
497
498void __exit padlock_fini_aes(void)
499{
500 crypto_unregister_alg(&aes_alg);
501}