crypto: remove CRYPTO_TFM_RES_BAD_KEY_LEN
[linux-block.git] / drivers / crypto / bcm / cipher.c
CommitLineData
cb849fc5 1// SPDX-License-Identifier: GPL-2.0-only
9d12ba86
RR
2/*
3 * Copyright 2016 Broadcom
9d12ba86
RR
4 */
5
6#include <linux/err.h>
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/errno.h>
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/platform_device.h>
13#include <linux/scatterlist.h>
14#include <linux/crypto.h>
15#include <linux/kthread.h>
16#include <linux/rtnetlink.h>
17#include <linux/sched.h>
18#include <linux/of_address.h>
19#include <linux/of_device.h>
20#include <linux/io.h>
21#include <linux/bitops.h>
22
23#include <crypto/algapi.h>
24#include <crypto/aead.h>
25#include <crypto/internal/aead.h>
26#include <crypto/aes.h>
05a7238d 27#include <crypto/internal/des.h>
1126d47d 28#include <crypto/hmac.h>
9d12ba86
RR
29#include <crypto/sha.h>
30#include <crypto/md5.h>
31#include <crypto/authenc.h>
32#include <crypto/skcipher.h>
33#include <crypto/hash.h>
9d12ba86
RR
34#include <crypto/sha3.h>
35
36#include "util.h"
37#include "cipher.h"
38#include "spu.h"
39#include "spum.h"
40#include "spu2.h"
41
42/* ================= Device Structure ================== */
43
44struct device_private iproc_priv;
45
46/* ==================== Parameters ===================== */
47
48int flow_debug_logging;
49module_param(flow_debug_logging, int, 0644);
50MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
51
52int packet_debug_logging;
53module_param(packet_debug_logging, int, 0644);
54MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
55
56int debug_logging_sleep;
57module_param(debug_logging_sleep, int, 0644);
58MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
59
60/*
61 * The value of these module parameters is used to set the priority for each
62 * algo type when this driver registers algos with the kernel crypto API.
63 * To use a priority other than the default, set the priority in the insmod or
64 * modprobe. Changing the module priority after init time has no effect.
65 *
66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67 * algos, but more preferred than generic software algos.
68 */
69static int cipher_pri = 150;
70module_param(cipher_pri, int, 0644);
71MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
72
73static int hash_pri = 100;
74module_param(hash_pri, int, 0644);
75MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
76
77static int aead_pri = 150;
78module_param(aead_pri, int, 0644);
79MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
80
9d12ba86
RR
81/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
83 * 0x60 - ring 0
84 * 0x68 - ring 1
85 * 0x70 - ring 2
86 * 0x78 - ring 3
87 */
dd508618 88static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
9d12ba86
RR
89/*
90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91 * is set dynamically after reading SPU type from device tree.
92 */
93#define BCM_HDR_LEN iproc_priv.bcm_hdr_len
94
95/* min and max time to sleep before retrying when mbox queue is full. usec */
96#define MBOX_SLEEP_MIN 800
97#define MBOX_SLEEP_MAX 1000
98
99/**
100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
101 * channel in round robin order.
102 *
103 * Return: channel index
104 */
105static u8 select_channel(void)
106{
107 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
108
9166c443 109 return chan_idx % iproc_priv.spu.num_chan;
9d12ba86
RR
110}
111
112/**
a9c01cd6
AB
113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114 * receive a SPU response message for an skcipher request. Includes buffers to
9d12ba86
RR
115 * catch SPU message headers and the response data.
116 * @mssg: mailbox message containing the receive sg
117 * @rctx: crypto request context
118 * @rx_frag_num: number of scatterlist elements required to hold the
119 * SPU response message
120 * @chunksize: Number of bytes of response data expected
121 * @stat_pad_len: Number of bytes required to pad the STAT field to
122 * a 4-byte boundary
123 *
124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125 * when the request completes, whether the request is handled successfully or
126 * there is an error.
127 *
128 * Returns:
129 * 0 if successful
130 * < 0 if an error
131 */
132static int
a9c01cd6 133spu_skcipher_rx_sg_create(struct brcm_message *mssg,
9d12ba86
RR
134 struct iproc_reqctx_s *rctx,
135 u8 rx_frag_num,
136 unsigned int chunksize, u32 stat_pad_len)
137{
138 struct spu_hw *spu = &iproc_priv.spu;
139 struct scatterlist *sg; /* used to build sgs in mbox message */
140 struct iproc_ctx_s *ctx = rctx->ctx;
141 u32 datalen; /* Number of bytes of response data expected */
142
143 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
144 rctx->gfp);
145 if (!mssg->spu.dst)
146 return -ENOMEM;
147
148 sg = mssg->spu.dst;
149 sg_init_table(sg, rx_frag_num);
150 /* Space for SPU message header */
151 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
152
153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
154 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
155 spu->spu_xts_tweak_in_payload())
156 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
157 SPU_XTS_TWEAK_SIZE);
158
159 /* Copy in each dst sg entry from request, up to chunksize */
160 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
161 rctx->dst_nents, chunksize);
162 if (datalen < chunksize) {
163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164 __func__, chunksize, datalen);
165 return -EFAULT;
166 }
167
168 if (ctx->cipher.alg == CIPHER_ALG_RC4)
169 /* Add buffer to catch 260-byte SUPDT field for RC4 */
170 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
171
172 if (stat_pad_len)
173 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
174
175 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
176 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
177
178 return 0;
179}
180
181/**
a9c01cd6
AB
182 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
183 * send a SPU request message for an skcipher request. Includes SPU message
9d12ba86
RR
184 * headers and the request data.
185 * @mssg: mailbox message containing the transmit sg
186 * @rctx: crypto request context
187 * @tx_frag_num: number of scatterlist elements required to construct the
188 * SPU request message
189 * @chunksize: Number of bytes of request data
190 * @pad_len: Number of pad bytes
191 *
192 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
193 * when the request completes, whether the request is handled successfully or
194 * there is an error.
195 *
196 * Returns:
197 * 0 if successful
198 * < 0 if an error
199 */
200static int
a9c01cd6 201spu_skcipher_tx_sg_create(struct brcm_message *mssg,
9d12ba86
RR
202 struct iproc_reqctx_s *rctx,
203 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
204{
205 struct spu_hw *spu = &iproc_priv.spu;
206 struct scatterlist *sg; /* used to build sgs in mbox message */
207 struct iproc_ctx_s *ctx = rctx->ctx;
208 u32 datalen; /* Number of bytes of response data expected */
209 u32 stat_len;
210
211 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
212 rctx->gfp);
213 if (unlikely(!mssg->spu.src))
214 return -ENOMEM;
215
216 sg = mssg->spu.src;
217 sg_init_table(sg, tx_frag_num);
218
219 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
220 BCM_HDR_LEN + ctx->spu_req_hdr_len);
221
222 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
223 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
224 spu->spu_xts_tweak_in_payload())
225 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
226
227 /* Copy in each src sg entry from request, up to chunksize */
228 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
229 rctx->src_nents, chunksize);
230 if (unlikely(datalen < chunksize)) {
231 pr_err("%s(): failed to copy src sg to mbox msg",
232 __func__);
233 return -EFAULT;
234 }
235
236 if (pad_len)
237 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
238
239 stat_len = spu->spu_tx_status_len();
240 if (stat_len) {
241 memset(rctx->msg_buf.tx_stat, 0, stat_len);
242 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
243 }
244 return 0;
245}
246
f0e2ce58 247static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
248 u8 chan_idx)
249{
250 int err;
251 int retry_cnt = 0;
252 struct device *dev = &(iproc_priv.pdev->dev);
253
254 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
255 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
256 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
257 /*
258 * Mailbox queue is full. Since MAY_SLEEP is set, assume
259 * not in atomic context and we can wait and try again.
260 */
261 retry_cnt++;
262 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
263 err = mbox_send_message(iproc_priv.mbox[chan_idx],
264 mssg);
265 atomic_inc(&iproc_priv.mb_no_spc);
266 }
267 }
268 if (err < 0) {
269 atomic_inc(&iproc_priv.mb_send_fail);
270 return err;
271 }
272
273 /* Check error returned by mailbox controller */
274 err = mssg->error;
275 if (unlikely(err < 0)) {
276 dev_err(dev, "message error %d", err);
277 /* Signal txdone for mailbox channel */
278 }
279
280 /* Signal txdone for mailbox channel */
281 mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
282 return err;
283}
284
9d12ba86 285/**
a9c01cd6 286 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
9d12ba86
RR
287 * a single SPU request message, starting at the current position in the request
288 * data.
289 * @rctx: Crypto request context
290 *
291 * This may be called on the crypto API thread, or, when a request is so large
292 * it must be broken into multiple SPU messages, on the thread used to invoke
293 * the response callback. When requests are broken into multiple SPU
294 * messages, we assume subsequent messages depend on previous results, and
295 * thus always wait for previous results before submitting the next message.
296 * Because requests are submitted in lock step like this, there is no need
297 * to synchronize access to request data structures.
298 *
299 * Return: -EINPROGRESS: request has been accepted and result will be returned
300 * asynchronously
301 * Any other value indicates an error
302 */
a9c01cd6 303static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
9d12ba86
RR
304{
305 struct spu_hw *spu = &iproc_priv.spu;
306 struct crypto_async_request *areq = rctx->parent;
a9c01cd6
AB
307 struct skcipher_request *req =
308 container_of(areq, struct skcipher_request, base);
9d12ba86
RR
309 struct iproc_ctx_s *ctx = rctx->ctx;
310 struct spu_cipher_parms cipher_parms;
311 int err = 0;
312 unsigned int chunksize = 0; /* Num bytes of request to submit */
313 int remaining = 0; /* Bytes of request still to process */
314 int chunk_start; /* Beginning of data for current SPU msg */
315
316 /* IV or ctr value to use in this SPU msg */
317 u8 local_iv_ctr[MAX_IV_SIZE];
318 u32 stat_pad_len; /* num bytes to align status field */
319 u32 pad_len; /* total length of all padding */
320 bool update_key = false;
321 struct brcm_message *mssg; /* mailbox message */
9d12ba86
RR
322
323 /* number of entries in src and dst sg in mailbox message. */
324 u8 rx_frag_num = 2; /* response header and STATUS */
325 u8 tx_frag_num = 1; /* request header */
326
327 flow_log("%s\n", __func__);
328
329 cipher_parms.alg = ctx->cipher.alg;
330 cipher_parms.mode = ctx->cipher.mode;
331 cipher_parms.type = ctx->cipher_type;
332 cipher_parms.key_len = ctx->enckeylen;
333 cipher_parms.key_buf = ctx->enckey;
334 cipher_parms.iv_buf = local_iv_ctr;
335 cipher_parms.iv_len = rctx->iv_ctr_len;
336
337 mssg = &rctx->mb_mssg;
338 chunk_start = rctx->src_sent;
339 remaining = rctx->total_todo - chunk_start;
340
341 /* determine the chunk we are breaking off and update the indexes */
342 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
343 (remaining > ctx->max_payload))
344 chunksize = ctx->max_payload;
345 else
346 chunksize = remaining;
347
348 rctx->src_sent += chunksize;
349 rctx->total_sent = rctx->src_sent;
350
351 /* Count number of sg entries to be included in this request */
352 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
353 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
354
355 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
356 rctx->is_encrypt && chunk_start)
357 /*
358 * Encrypting non-first first chunk. Copy last block of
359 * previous result to IV for this chunk.
360 */
361 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
362 rctx->iv_ctr_len,
363 chunk_start - rctx->iv_ctr_len);
364
365 if (rctx->iv_ctr_len) {
366 /* get our local copy of the iv */
367 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
368 rctx->iv_ctr_len);
369
370 /* generate the next IV if possible */
371 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
372 !rctx->is_encrypt) {
373 /*
374 * CBC Decrypt: next IV is the last ciphertext block in
375 * this chunk
376 */
377 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
378 rctx->iv_ctr_len,
379 rctx->src_sent - rctx->iv_ctr_len);
380 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
381 /*
382 * The SPU hardware increments the counter once for
383 * each AES block of 16 bytes. So update the counter
384 * for the next chunk, if there is one. Note that for
385 * this chunk, the counter has already been copied to
386 * local_iv_ctr. We can assume a block size of 16,
387 * because we only support CTR mode for AES, not for
388 * any other cipher alg.
389 */
390 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
391 }
392 }
393
394 if (ctx->cipher.alg == CIPHER_ALG_RC4) {
395 rx_frag_num++;
396 if (chunk_start) {
397 /*
398 * for non-first RC4 chunks, use SUPDT from previous
399 * response as key for this chunk.
400 */
401 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
402 update_key = true;
403 cipher_parms.type = CIPHER_TYPE_UPDT;
404 } else if (!rctx->is_encrypt) {
405 /*
406 * First RC4 chunk. For decrypt, key in pre-built msg
407 * header may have been changed if encrypt required
408 * multiple chunks. So revert the key to the
409 * ctx->enckey value.
410 */
411 update_key = true;
412 cipher_parms.type = CIPHER_TYPE_INIT;
413 }
414 }
415
416 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
417 flow_log("max_payload infinite\n");
418 else
419 flow_log("max_payload %u\n", ctx->max_payload);
420
421 flow_log("sent:%u start:%u remains:%u size:%u\n",
422 rctx->src_sent, chunk_start, remaining, chunksize);
423
424 /* Copy SPU header template created at setkey time */
425 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
426 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
427
428 /*
429 * Pass SUPDT field as key. Key field in finish() call is only used
430 * when update_key has been set above for RC4. Will be ignored in
431 * all other cases.
432 */
433 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
434 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
435 &cipher_parms, update_key, chunksize);
436
437 atomic64_add(chunksize, &iproc_priv.bytes_out);
438
439 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
440 if (stat_pad_len)
441 rx_frag_num++;
442 pad_len = stat_pad_len;
443 if (pad_len) {
444 tx_frag_num++;
445 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
446 0, ctx->auth.alg, ctx->auth.mode,
447 rctx->total_sent, stat_pad_len);
448 }
449
450 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
451 ctx->spu_req_hdr_len);
452 packet_log("payload:\n");
453 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
454 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
455
456 /*
457 * Build mailbox message containing SPU request msg and rx buffers
458 * to catch response message
459 */
460 memset(mssg, 0, sizeof(*mssg));
461 mssg->type = BRCM_MESSAGE_SPU;
462 mssg->ctx = rctx; /* Will be returned in response */
463
464 /* Create rx scatterlist to catch result */
465 rx_frag_num += rctx->dst_nents;
466
467 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
468 spu->spu_xts_tweak_in_payload())
469 rx_frag_num++; /* extra sg to insert tweak */
470
a9c01cd6 471 err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
9d12ba86
RR
472 stat_pad_len);
473 if (err)
474 return err;
475
476 /* Create tx scatterlist containing SPU request message */
477 tx_frag_num += rctx->src_nents;
478 if (spu->spu_tx_status_len())
479 tx_frag_num++;
480
481 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
482 spu->spu_xts_tweak_in_payload())
483 tx_frag_num++; /* extra sg to insert tweak */
484
a9c01cd6 485 err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
9d12ba86
RR
486 pad_len);
487 if (err)
488 return err;
489
f0e2ce58 490 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
491 if (unlikely(err < 0))
9d12ba86 492 return err;
9d12ba86
RR
493
494 return -EINPROGRESS;
495}
496
497/**
a9c01cd6 498 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
9d12ba86
RR
499 * total received count for the request and updates global stats.
500 * @rctx: Crypto request context
501 */
a9c01cd6 502static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
9d12ba86
RR
503{
504 struct spu_hw *spu = &iproc_priv.spu;
505#ifdef DEBUG
506 struct crypto_async_request *areq = rctx->parent;
a9c01cd6 507 struct skcipher_request *req = skcipher_request_cast(areq);
9d12ba86
RR
508#endif
509 struct iproc_ctx_s *ctx = rctx->ctx;
510 u32 payload_len;
511
512 /* See how much data was returned */
513 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
514
515 /*
516 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
517 * encrypted tweak ("i") value; we don't count those.
518 */
519 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
520 spu->spu_xts_tweak_in_payload() &&
521 (payload_len >= SPU_XTS_TWEAK_SIZE))
522 payload_len -= SPU_XTS_TWEAK_SIZE;
523
524 atomic64_add(payload_len, &iproc_priv.bytes_in);
525
526 flow_log("%s() offset: %u, bd_len: %u BD:\n",
527 __func__, rctx->total_received, payload_len);
528
529 dump_sg(req->dst, rctx->total_received, payload_len);
530 if (ctx->cipher.alg == CIPHER_ALG_RC4)
531 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak,
532 SPU_SUPDT_LEN);
533
534 rctx->total_received += payload_len;
535 if (rctx->total_received == rctx->total_todo) {
536 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
537 atomic_inc(
538 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
539 }
540}
541
542/**
543 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
544 * receive a SPU response message for an ahash request.
545 * @mssg: mailbox message containing the receive sg
546 * @rctx: crypto request context
547 * @rx_frag_num: number of scatterlist elements required to hold the
548 * SPU response message
549 * @digestsize: length of hash digest, in bytes
550 * @stat_pad_len: Number of bytes required to pad the STAT field to
551 * a 4-byte boundary
552 *
553 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
554 * when the request completes, whether the request is handled successfully or
555 * there is an error.
556 *
557 * Return:
558 * 0 if successful
559 * < 0 if an error
560 */
561static int
562spu_ahash_rx_sg_create(struct brcm_message *mssg,
563 struct iproc_reqctx_s *rctx,
564 u8 rx_frag_num, unsigned int digestsize,
565 u32 stat_pad_len)
566{
567 struct spu_hw *spu = &iproc_priv.spu;
568 struct scatterlist *sg; /* used to build sgs in mbox message */
569 struct iproc_ctx_s *ctx = rctx->ctx;
570
571 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
572 rctx->gfp);
573 if (!mssg->spu.dst)
574 return -ENOMEM;
575
576 sg = mssg->spu.dst;
577 sg_init_table(sg, rx_frag_num);
578 /* Space for SPU message header */
579 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
580
581 /* Space for digest */
582 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
583
584 if (stat_pad_len)
585 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
586
587 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
588 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
589 return 0;
590}
591
592/**
593 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
594 * a SPU request message for an ahash request. Includes SPU message headers and
595 * the request data.
596 * @mssg: mailbox message containing the transmit sg
597 * @rctx: crypto request context
598 * @tx_frag_num: number of scatterlist elements required to construct the
599 * SPU request message
600 * @spu_hdr_len: length in bytes of SPU message header
601 * @hash_carry_len: Number of bytes of data carried over from previous req
602 * @new_data_len: Number of bytes of new request data
603 * @pad_len: Number of pad bytes
604 *
605 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
606 * when the request completes, whether the request is handled successfully or
607 * there is an error.
608 *
609 * Return:
610 * 0 if successful
611 * < 0 if an error
612 */
613static int
614spu_ahash_tx_sg_create(struct brcm_message *mssg,
615 struct iproc_reqctx_s *rctx,
616 u8 tx_frag_num,
617 u32 spu_hdr_len,
618 unsigned int hash_carry_len,
619 unsigned int new_data_len, u32 pad_len)
620{
621 struct spu_hw *spu = &iproc_priv.spu;
622 struct scatterlist *sg; /* used to build sgs in mbox message */
623 u32 datalen; /* Number of bytes of response data expected */
624 u32 stat_len;
625
626 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
627 rctx->gfp);
628 if (!mssg->spu.src)
629 return -ENOMEM;
630
631 sg = mssg->spu.src;
632 sg_init_table(sg, tx_frag_num);
633
634 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
635 BCM_HDR_LEN + spu_hdr_len);
636
637 if (hash_carry_len)
638 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
639
640 if (new_data_len) {
641 /* Copy in each src sg entry from request, up to chunksize */
642 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
643 rctx->src_nents, new_data_len);
644 if (datalen < new_data_len) {
645 pr_err("%s(): failed to copy src sg to mbox msg",
646 __func__);
647 return -EFAULT;
648 }
649 }
650
651 if (pad_len)
652 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
653
654 stat_len = spu->spu_tx_status_len();
655 if (stat_len) {
656 memset(rctx->msg_buf.tx_stat, 0, stat_len);
657 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
658 }
659
660 return 0;
661}
662
663/**
664 * handle_ahash_req() - Process an asynchronous hash request from the crypto
665 * API.
666 * @rctx: Crypto request context
667 *
668 * Builds a SPU request message embedded in a mailbox message and submits the
669 * mailbox message on a selected mailbox channel. The SPU request message is
670 * constructed as a scatterlist, including entries from the crypto API's
671 * src scatterlist to avoid copying the data to be hashed. This function is
672 * called either on the thread from the crypto API, or, in the case that the
673 * crypto API request is too large to fit in a single SPU request message,
674 * on the thread that invokes the receive callback with a response message.
675 * Because some operations require the response from one chunk before the next
676 * chunk can be submitted, we always wait for the response for the previous
677 * chunk before submitting the next chunk. Because requests are submitted in
678 * lock step like this, there is no need to synchronize access to request data
679 * structures.
680 *
681 * Return:
682 * -EINPROGRESS: request has been submitted to SPU and response will be
683 * returned asynchronously
684 * -EAGAIN: non-final request included a small amount of data, which for
685 * efficiency we did not submit to the SPU, but instead stored
686 * to be submitted to the SPU with the next part of the request
687 * other: an error code
688 */
689static int handle_ahash_req(struct iproc_reqctx_s *rctx)
690{
691 struct spu_hw *spu = &iproc_priv.spu;
692 struct crypto_async_request *areq = rctx->parent;
693 struct ahash_request *req = ahash_request_cast(areq);
694 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
695 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
696 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
697 struct iproc_ctx_s *ctx = rctx->ctx;
698
699 /* number of bytes still to be hashed in this req */
700 unsigned int nbytes_to_hash = 0;
701 int err = 0;
702 unsigned int chunksize = 0; /* length of hash carry + new data */
703 /*
704 * length of new data, not from hash carry, to be submitted in
705 * this hw request
706 */
707 unsigned int new_data_len;
708
707d0cf8 709 unsigned int __maybe_unused chunk_start = 0;
9d12ba86
RR
710 u32 db_size; /* Length of data field, incl gcm and hash padding */
711 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
712 u32 data_pad_len = 0; /* length of GCM/CCM padding */
713 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
714 struct brcm_message *mssg; /* mailbox message */
715 struct spu_request_opts req_opts;
716 struct spu_cipher_parms cipher_parms;
717 struct spu_hash_parms hash_parms;
718 struct spu_aead_parms aead_parms;
719 unsigned int local_nbuf;
720 u32 spu_hdr_len;
721 unsigned int digestsize;
722 u16 rem = 0;
9d12ba86
RR
723
724 /*
725 * number of entries in src and dst sg. Always includes SPU msg header.
726 * rx always includes a buffer to catch digest and STATUS.
727 */
728 u8 rx_frag_num = 3;
729 u8 tx_frag_num = 1;
730
731 flow_log("total_todo %u, total_sent %u\n",
732 rctx->total_todo, rctx->total_sent);
733
734 memset(&req_opts, 0, sizeof(req_opts));
735 memset(&cipher_parms, 0, sizeof(cipher_parms));
736 memset(&hash_parms, 0, sizeof(hash_parms));
737 memset(&aead_parms, 0, sizeof(aead_parms));
738
739 req_opts.bd_suppress = true;
740 hash_parms.alg = ctx->auth.alg;
741 hash_parms.mode = ctx->auth.mode;
742 hash_parms.type = HASH_TYPE_NONE;
743 hash_parms.key_buf = (u8 *)ctx->authkey;
744 hash_parms.key_len = ctx->authkeylen;
745
746 /*
747 * For hash algorithms below assignment looks bit odd but
748 * it's needed for AES-XCBC and AES-CMAC hash algorithms
749 * to differentiate between 128, 192, 256 bit key values.
750 * Based on the key values, hash algorithm is selected.
751 * For example for 128 bit key, hash algorithm is AES-128.
752 */
753 cipher_parms.type = ctx->cipher_type;
754
755 mssg = &rctx->mb_mssg;
756 chunk_start = rctx->src_sent;
757
758 /*
759 * Compute the amount remaining to hash. This may include data
760 * carried over from previous requests.
761 */
762 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
763 chunksize = nbytes_to_hash;
764 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
765 (chunksize > ctx->max_payload))
766 chunksize = ctx->max_payload;
767
768 /*
769 * If this is not a final request and the request data is not a multiple
770 * of a full block, then simply park the extra data and prefix it to the
771 * data for the next request.
772 */
773 if (!rctx->is_final) {
774 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
775 u16 new_len; /* len of data to add to hash carry */
776
777 rem = chunksize % blocksize; /* remainder */
778 if (rem) {
779 /* chunksize not a multiple of blocksize */
780 chunksize -= rem;
781 if (chunksize == 0) {
782 /* Don't have a full block to submit to hw */
783 new_len = rem - rctx->hash_carry_len;
784 sg_copy_part_to_buf(req->src, dest, new_len,
785 rctx->src_sent);
786 rctx->hash_carry_len = rem;
787 flow_log("Exiting with hash carry len: %u\n",
788 rctx->hash_carry_len);
789 packet_dump(" buf: ",
790 rctx->hash_carry,
791 rctx->hash_carry_len);
792 return -EAGAIN;
793 }
794 }
795 }
796
797 /* if we have hash carry, then prefix it to the data in this request */
798 local_nbuf = rctx->hash_carry_len;
799 rctx->hash_carry_len = 0;
800 if (local_nbuf)
801 tx_frag_num++;
802 new_data_len = chunksize - local_nbuf;
803
804 /* Count number of sg entries to be used in this request */
805 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
806 new_data_len);
807
808 /* AES hashing keeps key size in type field, so need to copy it here */
809 if (hash_parms.alg == HASH_ALG_AES)
a2e5d408 810 hash_parms.type = (enum hash_type)cipher_parms.type;
9d12ba86
RR
811 else
812 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
813
814 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
815 hash_parms.type);
816 hash_parms.digestsize = digestsize;
817
818 /* update the indexes */
819 rctx->total_sent += chunksize;
820 /* if you sent a prebuf then that wasn't from this req->src */
821 rctx->src_sent += new_data_len;
822
823 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
824 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
825 hash_parms.mode,
826 chunksize,
827 blocksize);
828
829 /*
830 * If a non-first chunk, then include the digest returned from the
831 * previous chunk so that hw can add to it (except for AES types).
832 */
833 if ((hash_parms.type == HASH_TYPE_UPDT) &&
834 (hash_parms.alg != HASH_ALG_AES)) {
835 hash_parms.key_buf = rctx->incr_hash;
836 hash_parms.key_len = digestsize;
837 }
838
839 atomic64_add(chunksize, &iproc_priv.bytes_out);
840
841 flow_log("%s() final: %u nbuf: %u ",
842 __func__, rctx->is_final, local_nbuf);
843
844 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
845 flow_log("max_payload infinite\n");
846 else
847 flow_log("max_payload %u\n", ctx->max_payload);
848
849 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
850
851 /* Prepend SPU header with type 3 BCM header */
852 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
853
854 hash_parms.prebuf_len = local_nbuf;
855 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
856 BCM_HDR_LEN,
857 &req_opts, &cipher_parms,
858 &hash_parms, &aead_parms,
859 new_data_len);
860
861 if (spu_hdr_len == 0) {
862 pr_err("Failed to create SPU request header\n");
863 return -EFAULT;
864 }
865
866 /*
867 * Determine total length of padding required. Put all padding in one
868 * buffer.
869 */
870 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
871 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
872 0, 0, hash_parms.pad_len);
873 if (spu->spu_tx_status_len())
874 stat_pad_len = spu->spu_wordalign_padlen(db_size);
875 if (stat_pad_len)
876 rx_frag_num++;
877 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
878 if (pad_len) {
879 tx_frag_num++;
880 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
881 hash_parms.pad_len, ctx->auth.alg,
882 ctx->auth.mode, rctx->total_sent,
883 stat_pad_len);
884 }
885
886 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
887 spu_hdr_len);
888 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
889 flow_log("Data:\n");
890 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
891 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
892
893 /*
894 * Build mailbox message containing SPU request msg and rx buffers
895 * to catch response message
896 */
897 memset(mssg, 0, sizeof(*mssg));
898 mssg->type = BRCM_MESSAGE_SPU;
899 mssg->ctx = rctx; /* Will be returned in response */
900
901 /* Create rx scatterlist to catch result */
902 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
903 stat_pad_len);
904 if (err)
905 return err;
906
907 /* Create tx scatterlist containing SPU request message */
908 tx_frag_num += rctx->src_nents;
909 if (spu->spu_tx_status_len())
910 tx_frag_num++;
911 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
912 local_nbuf, new_data_len, pad_len);
913 if (err)
914 return err;
915
f0e2ce58 916 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
917 if (unlikely(err < 0))
9d12ba86 918 return err;
f0e2ce58 919
9d12ba86
RR
920 return -EINPROGRESS;
921}
922
923/**
924 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
925 * for an HMAC request.
926 * @req: The HMAC request from the crypto API
927 * @ctx: The session context
928 *
929 * Return: 0 if synchronous hash operation successful
930 * -EINVAL if the hash algo is unrecognized
931 * any other value indicates an error
932 */
933static int spu_hmac_outer_hash(struct ahash_request *req,
934 struct iproc_ctx_s *ctx)
935{
936 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
937 unsigned int blocksize =
938 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
939 int rc;
940
941 switch (ctx->auth.alg) {
942 case HASH_ALG_MD5:
943 rc = do_shash("md5", req->result, ctx->opad, blocksize,
944 req->result, ctx->digestsize, NULL, 0);
945 break;
946 case HASH_ALG_SHA1:
947 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
948 req->result, ctx->digestsize, NULL, 0);
949 break;
950 case HASH_ALG_SHA224:
951 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
952 req->result, ctx->digestsize, NULL, 0);
953 break;
954 case HASH_ALG_SHA256:
955 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
956 req->result, ctx->digestsize, NULL, 0);
957 break;
958 case HASH_ALG_SHA384:
959 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
960 req->result, ctx->digestsize, NULL, 0);
961 break;
962 case HASH_ALG_SHA512:
963 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
964 req->result, ctx->digestsize, NULL, 0);
965 break;
966 default:
967 pr_err("%s() Error : unknown hmac type\n", __func__);
968 rc = -EINVAL;
969 }
970 return rc;
971}
972
973/**
974 * ahash_req_done() - Process a hash result from the SPU hardware.
975 * @rctx: Crypto request context
976 *
977 * Return: 0 if successful
978 * < 0 if an error
979 */
980static int ahash_req_done(struct iproc_reqctx_s *rctx)
981{
982 struct spu_hw *spu = &iproc_priv.spu;
983 struct crypto_async_request *areq = rctx->parent;
984 struct ahash_request *req = ahash_request_cast(areq);
985 struct iproc_ctx_s *ctx = rctx->ctx;
986 int err;
987
988 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
989
990 if (spu->spu_type == SPU_TYPE_SPUM) {
991 /* byte swap the output from the UPDT function to network byte
992 * order
993 */
994 if (ctx->auth.alg == HASH_ALG_MD5) {
995 __swab32s((u32 *)req->result);
996 __swab32s(((u32 *)req->result) + 1);
997 __swab32s(((u32 *)req->result) + 2);
998 __swab32s(((u32 *)req->result) + 3);
999 __swab32s(((u32 *)req->result) + 4);
1000 }
1001 }
1002
1003 flow_dump(" digest ", req->result, ctx->digestsize);
1004
1005 /* if this an HMAC then do the outer hash */
1006 if (rctx->is_sw_hmac) {
1007 err = spu_hmac_outer_hash(req, ctx);
1008 if (err < 0)
1009 return err;
1010 flow_dump(" hmac: ", req->result, ctx->digestsize);
1011 }
1012
1013 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1014 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1015 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1016 } else {
1017 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1018 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1019 }
1020
1021 return 0;
1022}
1023
1024/**
1025 * handle_ahash_resp() - Process a SPU response message for a hash request.
1026 * Checks if the entire crypto API request has been processed, and if so,
1027 * invokes post processing on the result.
1028 * @rctx: Crypto request context
1029 */
1030static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1031{
1032 struct iproc_ctx_s *ctx = rctx->ctx;
1033#ifdef DEBUG
1034 struct crypto_async_request *areq = rctx->parent;
1035 struct ahash_request *req = ahash_request_cast(areq);
1036 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1037 unsigned int blocksize =
1038 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1039#endif
1040 /*
1041 * Save hash to use as input to next op if incremental. Might be copying
1042 * too much, but that's easier than figuring out actual digest size here
1043 */
1044 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1045
1046 flow_log("%s() blocksize:%u digestsize:%u\n",
1047 __func__, blocksize, ctx->digestsize);
1048
1049 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1050
1051 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1052 ahash_req_done(rctx);
1053}
1054
1055/**
1056 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1057 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1058 * message headers and the response data.
1059 * @mssg: mailbox message containing the receive sg
1060 * @rctx: crypto request context
1061 * @rx_frag_num: number of scatterlist elements required to hold the
1062 * SPU response message
1063 * @assoc_len: Length of associated data included in the crypto request
1064 * @ret_iv_len: Length of IV returned in response
1065 * @resp_len: Number of bytes of response data expected to be written to
1066 * dst buffer from crypto API
1067 * @digestsize: Length of hash digest, in bytes
1068 * @stat_pad_len: Number of bytes required to pad the STAT field to
1069 * a 4-byte boundary
1070 *
1071 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1072 * when the request completes, whether the request is handled successfully or
1073 * there is an error.
1074 *
1075 * Returns:
1076 * 0 if successful
1077 * < 0 if an error
1078 */
1079static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1080 struct aead_request *req,
1081 struct iproc_reqctx_s *rctx,
1082 u8 rx_frag_num,
1083 unsigned int assoc_len,
1084 u32 ret_iv_len, unsigned int resp_len,
1085 unsigned int digestsize, u32 stat_pad_len)
1086{
1087 struct spu_hw *spu = &iproc_priv.spu;
1088 struct scatterlist *sg; /* used to build sgs in mbox message */
1089 struct iproc_ctx_s *ctx = rctx->ctx;
1090 u32 datalen; /* Number of bytes of response data expected */
1091 u32 assoc_buf_len;
1092 u8 data_padlen = 0;
1093
1094 if (ctx->is_rfc4543) {
1095 /* RFC4543: only pad after data, not after AAD */
1096 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1097 assoc_len + resp_len);
1098 assoc_buf_len = assoc_len;
1099 } else {
1100 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1101 resp_len);
1102 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1103 assoc_len, ret_iv_len,
1104 rctx->is_encrypt);
1105 }
1106
1107 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1108 /* ICV (after data) must be in the next 32-bit word for CCM */
1109 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1110 resp_len +
1111 data_padlen);
1112
1113 if (data_padlen)
1114 /* have to catch gcm pad in separate buffer */
1115 rx_frag_num++;
1116
1117 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1118 rctx->gfp);
1119 if (!mssg->spu.dst)
1120 return -ENOMEM;
1121
1122 sg = mssg->spu.dst;
1123 sg_init_table(sg, rx_frag_num);
1124
1125 /* Space for SPU message header */
1126 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1127
1128 if (assoc_buf_len) {
1129 /*
1130 * Don't write directly to req->dst, because SPU may pad the
1131 * assoc data in the response
1132 */
1133 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1134 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1135 }
1136
1137 if (resp_len) {
1138 /*
1139 * Copy in each dst sg entry from request, up to chunksize.
1140 * dst sg catches just the data. digest caught in separate buf.
1141 */
1142 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1143 rctx->dst_nents, resp_len);
1144 if (datalen < (resp_len)) {
1145 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1146 __func__, resp_len, datalen);
1147 return -EFAULT;
1148 }
1149 }
1150
1151 /* If GCM/CCM data is padded, catch padding in separate buffer */
1152 if (data_padlen) {
1153 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1154 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1155 }
1156
1157 /* Always catch ICV in separate buffer */
1158 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1159
1160 flow_log("stat_pad_len %u\n", stat_pad_len);
1161 if (stat_pad_len) {
1162 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1163 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1164 }
1165
1166 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1167 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1168
1169 return 0;
1170}
1171
1172/**
1173 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1174 * SPU request message for an AEAD request. Includes SPU message headers and the
1175 * request data.
1176 * @mssg: mailbox message containing the transmit sg
1177 * @rctx: crypto request context
1178 * @tx_frag_num: number of scatterlist elements required to construct the
1179 * SPU request message
1180 * @spu_hdr_len: length of SPU message header in bytes
1181 * @assoc: crypto API associated data scatterlist
1182 * @assoc_len: length of associated data
1183 * @assoc_nents: number of scatterlist entries containing assoc data
1184 * @aead_iv_len: length of AEAD IV, if included
1185 * @chunksize: Number of bytes of request data
1186 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1187 * @pad_len: Number of pad bytes
1188 * @incl_icv: If true, write separate ICV buffer after data and
1189 * any padding
1190 *
1191 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1192 * when the request completes, whether the request is handled successfully or
1193 * there is an error.
1194 *
1195 * Return:
1196 * 0 if successful
1197 * < 0 if an error
1198 */
1199static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1200 struct iproc_reqctx_s *rctx,
1201 u8 tx_frag_num,
1202 u32 spu_hdr_len,
1203 struct scatterlist *assoc,
1204 unsigned int assoc_len,
1205 int assoc_nents,
1206 unsigned int aead_iv_len,
1207 unsigned int chunksize,
1208 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1209{
1210 struct spu_hw *spu = &iproc_priv.spu;
1211 struct scatterlist *sg; /* used to build sgs in mbox message */
1212 struct scatterlist *assoc_sg = assoc;
1213 struct iproc_ctx_s *ctx = rctx->ctx;
1214 u32 datalen; /* Number of bytes of data to write */
1215 u32 written; /* Number of bytes of data written */
1216 u32 assoc_offset = 0;
1217 u32 stat_len;
1218
1219 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1220 rctx->gfp);
1221 if (!mssg->spu.src)
1222 return -ENOMEM;
1223
1224 sg = mssg->spu.src;
1225 sg_init_table(sg, tx_frag_num);
1226
1227 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1228 BCM_HDR_LEN + spu_hdr_len);
1229
1230 if (assoc_len) {
1231 /* Copy in each associated data sg entry from request */
1232 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1233 assoc_nents, assoc_len);
1234 if (written < assoc_len) {
1235 pr_err("%s(): failed to copy assoc sg to mbox msg",
1236 __func__);
1237 return -EFAULT;
1238 }
1239 }
1240
1241 if (aead_iv_len)
1242 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1243
1244 if (aad_pad_len) {
1245 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1246 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1247 }
1248
1249 datalen = chunksize;
1250 if ((chunksize > ctx->digestsize) && incl_icv)
1251 datalen -= ctx->digestsize;
1252 if (datalen) {
1253 /* For aead, a single msg should consume the entire src sg */
1254 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1255 rctx->src_nents, datalen);
1256 if (written < datalen) {
1257 pr_err("%s(): failed to copy src sg to mbox msg",
1258 __func__);
1259 return -EFAULT;
1260 }
1261 }
1262
1263 if (pad_len) {
1264 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1265 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1266 }
1267
1268 if (incl_icv)
1269 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1270
1271 stat_len = spu->spu_tx_status_len();
1272 if (stat_len) {
1273 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1274 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1275 }
1276 return 0;
1277}
1278
1279/**
1280 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1281 * current AEAD request.
1282 * @rctx: Crypto request context
1283 *
1284 * Unlike other operation types, we assume the length of the request fits in
1285 * a single SPU request message. aead_enqueue() makes sure this is true.
1286 * Comments for other op types regarding threads applies here as well.
1287 *
1288 * Unlike incremental hash ops, where the spu returns the entire hash for
1289 * truncated algs like sha-224, the SPU returns just the truncated hash in
1290 * response to aead requests. So digestsize is always ctx->digestsize here.
1291 *
1292 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1293 * returned asynchronously
1294 * Any other value indicates an error
1295 */
1296static int handle_aead_req(struct iproc_reqctx_s *rctx)
1297{
1298 struct spu_hw *spu = &iproc_priv.spu;
1299 struct crypto_async_request *areq = rctx->parent;
1300 struct aead_request *req = container_of(areq,
1301 struct aead_request, base);
1302 struct iproc_ctx_s *ctx = rctx->ctx;
1303 int err;
1304 unsigned int chunksize;
1305 unsigned int resp_len;
1306 u32 spu_hdr_len;
1307 u32 db_size;
1308 u32 stat_pad_len;
1309 u32 pad_len;
1310 struct brcm_message *mssg; /* mailbox message */
1311 struct spu_request_opts req_opts;
1312 struct spu_cipher_parms cipher_parms;
1313 struct spu_hash_parms hash_parms;
1314 struct spu_aead_parms aead_parms;
1315 int assoc_nents = 0;
1316 bool incl_icv = false;
1317 unsigned int digestsize = ctx->digestsize;
9d12ba86
RR
1318
1319 /* number of entries in src and dst sg. Always includes SPU msg header.
1320 */
1321 u8 rx_frag_num = 2; /* and STATUS */
1322 u8 tx_frag_num = 1;
1323
1324 /* doing the whole thing at once */
1325 chunksize = rctx->total_todo;
1326
1327 flow_log("%s: chunksize %u\n", __func__, chunksize);
1328
1329 memset(&req_opts, 0, sizeof(req_opts));
1330 memset(&hash_parms, 0, sizeof(hash_parms));
1331 memset(&aead_parms, 0, sizeof(aead_parms));
1332
1333 req_opts.is_inbound = !(rctx->is_encrypt);
1334 req_opts.auth_first = ctx->auth_first;
1335 req_opts.is_aead = true;
1336 req_opts.is_esp = ctx->is_esp;
1337
1338 cipher_parms.alg = ctx->cipher.alg;
1339 cipher_parms.mode = ctx->cipher.mode;
1340 cipher_parms.type = ctx->cipher_type;
1341 cipher_parms.key_buf = ctx->enckey;
1342 cipher_parms.key_len = ctx->enckeylen;
1343 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1344 cipher_parms.iv_len = rctx->iv_ctr_len;
1345
1346 hash_parms.alg = ctx->auth.alg;
1347 hash_parms.mode = ctx->auth.mode;
1348 hash_parms.type = HASH_TYPE_NONE;
1349 hash_parms.key_buf = (u8 *)ctx->authkey;
1350 hash_parms.key_len = ctx->authkeylen;
1351 hash_parms.digestsize = digestsize;
1352
1353 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1354 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1355 hash_parms.key_len = SHA224_DIGEST_SIZE;
1356
1357 aead_parms.assoc_size = req->assoclen;
1358 if (ctx->is_esp && !ctx->is_rfc4543) {
1359 /*
1360 * 8-byte IV is included assoc data in request. SPU2
1361 * expects AAD to include just SPI and seqno. So
1362 * subtract off the IV len.
1363 */
a59851d2 1364 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
9d12ba86
RR
1365
1366 if (rctx->is_encrypt) {
1367 aead_parms.return_iv = true;
a59851d2 1368 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
9d12ba86
RR
1369 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1370 }
1371 } else {
1372 aead_parms.ret_iv_len = 0;
1373 }
1374
1375 /*
1376 * Count number of sg entries from the crypto API request that are to
1377 * be included in this mailbox message. For dst sg, don't count space
1378 * for digest. Digest gets caught in a separate buffer and copied back
1379 * to dst sg when processing response.
1380 */
1381 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1382 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1383 if (aead_parms.assoc_size)
1384 assoc_nents = spu_sg_count(rctx->assoc, 0,
1385 aead_parms.assoc_size);
1386
1387 mssg = &rctx->mb_mssg;
1388
1389 rctx->total_sent = chunksize;
1390 rctx->src_sent = chunksize;
1391 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1392 aead_parms.assoc_size,
1393 aead_parms.ret_iv_len,
1394 rctx->is_encrypt))
1395 rx_frag_num++;
1396
1397 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1398 rctx->iv_ctr_len);
1399
1400 if (ctx->auth.alg == HASH_ALG_AES)
a2e5d408 1401 hash_parms.type = (enum hash_type)ctx->cipher_type;
9d12ba86
RR
1402
1403 /* General case AAD padding (CCM and RFC4543 special cases below) */
1404 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1405 aead_parms.assoc_size);
1406
1407 /* General case data padding (CCM decrypt special case below) */
1408 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1409 chunksize);
1410
1411 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1412 /*
1413 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1414 * 128-bit aligned
1415 */
1416 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1417 ctx->cipher.mode,
1418 aead_parms.assoc_size + 2);
1419
1420 /*
1421 * And when decrypting CCM, need to pad without including
1422 * size of ICV which is tacked on to end of chunk
1423 */
1424 if (!rctx->is_encrypt)
1425 aead_parms.data_pad_len =
1426 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1427 chunksize - digestsize);
1428
1429 /* CCM also requires software to rewrite portions of IV: */
1430 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1431 chunksize, rctx->is_encrypt,
1432 ctx->is_esp);
1433 }
1434
1435 if (ctx->is_rfc4543) {
1436 /*
1437 * RFC4543: data is included in AAD, so don't pad after AAD
1438 * and pad data based on both AAD + data size
1439 */
1440 aead_parms.aad_pad_len = 0;
1441 if (!rctx->is_encrypt)
1442 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1443 ctx->cipher.mode,
1444 aead_parms.assoc_size + chunksize -
1445 digestsize);
1446 else
1447 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1448 ctx->cipher.mode,
1449 aead_parms.assoc_size + chunksize);
1450
1451 req_opts.is_rfc4543 = true;
1452 }
1453
1454 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1455 incl_icv = true;
1456 tx_frag_num++;
1457 /* Copy ICV from end of src scatterlist to digest buf */
1458 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1459 req->assoclen + rctx->total_sent -
1460 digestsize);
1461 }
1462
1463 atomic64_add(chunksize, &iproc_priv.bytes_out);
1464
1465 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1466
1467 /* Prepend SPU header with type 3 BCM header */
1468 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1469
1470 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1471 BCM_HDR_LEN, &req_opts,
1472 &cipher_parms, &hash_parms,
1473 &aead_parms, chunksize);
1474
1475 /* Determine total length of padding. Put all padding in one buffer. */
1476 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1477 chunksize, aead_parms.aad_pad_len,
1478 aead_parms.data_pad_len, 0);
1479
1480 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1481
1482 if (stat_pad_len)
1483 rx_frag_num++;
1484 pad_len = aead_parms.data_pad_len + stat_pad_len;
1485 if (pad_len) {
1486 tx_frag_num++;
1487 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1488 aead_parms.data_pad_len, 0,
1489 ctx->auth.alg, ctx->auth.mode,
1490 rctx->total_sent, stat_pad_len);
1491 }
1492
1493 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1494 spu_hdr_len);
1495 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1496 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1497 packet_log("BD:\n");
1498 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1499 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1500
1501 /*
1502 * Build mailbox message containing SPU request msg and rx buffers
1503 * to catch response message
1504 */
1505 memset(mssg, 0, sizeof(*mssg));
1506 mssg->type = BRCM_MESSAGE_SPU;
1507 mssg->ctx = rctx; /* Will be returned in response */
1508
1509 /* Create rx scatterlist to catch result */
1510 rx_frag_num += rctx->dst_nents;
1511 resp_len = chunksize;
1512
1513 /*
1514 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1515 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1516 * sends entire digest back.
1517 */
1518 rx_frag_num++;
1519
1520 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1521 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1522 /*
1523 * Input is ciphertxt plus ICV, but ICV not incl
1524 * in output.
1525 */
1526 resp_len -= ctx->digestsize;
1527 if (resp_len == 0)
1528 /* no rx frags to catch output data */
1529 rx_frag_num -= rctx->dst_nents;
1530 }
1531
1532 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1533 aead_parms.assoc_size,
1534 aead_parms.ret_iv_len, resp_len, digestsize,
1535 stat_pad_len);
1536 if (err)
1537 return err;
1538
1539 /* Create tx scatterlist containing SPU request message */
1540 tx_frag_num += rctx->src_nents;
1541 tx_frag_num += assoc_nents;
1542 if (aead_parms.aad_pad_len)
1543 tx_frag_num++;
1544 if (aead_parms.iv_len)
1545 tx_frag_num++;
1546 if (spu->spu_tx_status_len())
1547 tx_frag_num++;
1548 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1549 rctx->assoc, aead_parms.assoc_size,
1550 assoc_nents, aead_parms.iv_len, chunksize,
1551 aead_parms.aad_pad_len, pad_len, incl_icv);
1552 if (err)
1553 return err;
1554
f0e2ce58 1555 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1556 if (unlikely(err < 0))
9d12ba86 1557 return err;
9d12ba86
RR
1558
1559 return -EINPROGRESS;
1560}
1561
1562/**
1563 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1564 * @rctx: Crypto request context
1565 */
1566static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1567{
1568 struct spu_hw *spu = &iproc_priv.spu;
1569 struct crypto_async_request *areq = rctx->parent;
1570 struct aead_request *req = container_of(areq,
1571 struct aead_request, base);
1572 struct iproc_ctx_s *ctx = rctx->ctx;
1573 u32 payload_len;
1574 unsigned int icv_offset;
1575 u32 result_len;
1576
1577 /* See how much data was returned */
1578 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1579 flow_log("payload_len %u\n", payload_len);
1580
1581 /* only count payload */
1582 atomic64_add(payload_len, &iproc_priv.bytes_in);
1583
1584 if (req->assoclen)
1585 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1586 req->assoclen);
1587
1588 /*
1589 * Copy the ICV back to the destination
1590 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1591 * API doesn't expect ICV in dst buffer.
1592 */
1593 result_len = req->cryptlen;
1594 if (rctx->is_encrypt) {
1595 icv_offset = req->assoclen + rctx->total_sent;
1596 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1597 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1598 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1599 ctx->digestsize, icv_offset);
1600 result_len += ctx->digestsize;
1601 }
1602
1603 packet_log("response data: ");
1604 dump_sg(req->dst, req->assoclen, result_len);
1605
1606 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1607 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1608 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1609 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1610 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1611 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1612 else
1613 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1614 } else {
1615 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1616 }
1617}
1618
1619/**
1620 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1621 * @rctx: request context
1622 *
1623 * Mailbox scatterlists are allocated for each chunk. So free them after
1624 * processing each chunk.
1625 */
1626static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1627{
1628 /* mailbox message used to tx request */
1629 struct brcm_message *mssg = &rctx->mb_mssg;
1630
1631 kfree(mssg->spu.src);
1632 kfree(mssg->spu.dst);
1633 memset(mssg, 0, sizeof(struct brcm_message));
1634}
1635
1636/**
1637 * finish_req() - Used to invoke the complete callback from the requester when
1638 * a request has been handled asynchronously.
1639 * @rctx: Request context
1640 * @err: Indicates whether the request was successful or not
1641 *
1642 * Ensures that cleanup has been done for request
1643 */
1644static void finish_req(struct iproc_reqctx_s *rctx, int err)
1645{
1646 struct crypto_async_request *areq = rctx->parent;
1647
1648 flow_log("%s() err:%d\n\n", __func__, err);
1649
1650 /* No harm done if already called */
1651 spu_chunk_cleanup(rctx);
1652
1653 if (areq)
1654 areq->complete(areq, err);
1655}
1656
1657/**
1658 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1659 * @cl: mailbox client structure for SPU driver
1660 * @msg: mailbox message containing SPU response
1661 */
1662static void spu_rx_callback(struct mbox_client *cl, void *msg)
1663{
1664 struct spu_hw *spu = &iproc_priv.spu;
1665 struct brcm_message *mssg = msg;
1666 struct iproc_reqctx_s *rctx;
9d12ba86
RR
1667 int err = 0;
1668
1669 rctx = mssg->ctx;
1670 if (unlikely(!rctx)) {
1671 /* This is fatal */
1672 pr_err("%s(): no request context", __func__);
1673 err = -EFAULT;
1674 goto cb_finish;
1675 }
9d12ba86
RR
1676
1677 /* process the SPU status */
1678 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1679 if (err != 0) {
1680 if (err == SPU_INVALID_ICV)
1681 atomic_inc(&iproc_priv.bad_icv);
1682 err = -EBADMSG;
1683 goto cb_finish;
1684 }
1685
1686 /* Process the SPU response message */
1687 switch (rctx->ctx->alg->type) {
a9c01cd6
AB
1688 case CRYPTO_ALG_TYPE_SKCIPHER:
1689 handle_skcipher_resp(rctx);
9d12ba86
RR
1690 break;
1691 case CRYPTO_ALG_TYPE_AHASH:
1692 handle_ahash_resp(rctx);
1693 break;
1694 case CRYPTO_ALG_TYPE_AEAD:
1695 handle_aead_resp(rctx);
1696 break;
1697 default:
1698 err = -EINVAL;
1699 goto cb_finish;
1700 }
1701
1702 /*
1703 * If this response does not complete the request, then send the next
1704 * request chunk.
1705 */
1706 if (rctx->total_sent < rctx->total_todo) {
1707 /* Deallocate anything specific to previous chunk */
1708 spu_chunk_cleanup(rctx);
1709
1710 switch (rctx->ctx->alg->type) {
a9c01cd6
AB
1711 case CRYPTO_ALG_TYPE_SKCIPHER:
1712 err = handle_skcipher_req(rctx);
9d12ba86
RR
1713 break;
1714 case CRYPTO_ALG_TYPE_AHASH:
1715 err = handle_ahash_req(rctx);
1716 if (err == -EAGAIN)
1717 /*
1718 * we saved data in hash carry, but tell crypto
1719 * API we successfully completed request.
1720 */
1721 err = 0;
1722 break;
1723 case CRYPTO_ALG_TYPE_AEAD:
1724 err = handle_aead_req(rctx);
1725 break;
1726 default:
1727 err = -EINVAL;
1728 }
1729
1730 if (err == -EINPROGRESS)
1731 /* Successfully submitted request for next chunk */
1732 return;
1733 }
1734
1735cb_finish:
1736 finish_req(rctx, err);
1737}
1738
1739/* ==================== Kernel Cryptographic API ==================== */
1740
1741/**
a9c01cd6 1742 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
9d12ba86
RR
1743 * @req: Crypto API request
1744 * @encrypt: true if encrypting; false if decrypting
1745 *
1746 * Return: -EINPROGRESS if request accepted and result will be returned
1747 * asynchronously
1748 * < 0 if an error
1749 */
a9c01cd6 1750static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
9d12ba86 1751{
a9c01cd6 1752 struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
9d12ba86 1753 struct iproc_ctx_s *ctx =
a9c01cd6 1754 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
9d12ba86
RR
1755 int err;
1756
1757 flow_log("%s() enc:%u\n", __func__, encrypt);
1758
1759 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1760 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1761 rctx->parent = &req->base;
1762 rctx->is_encrypt = encrypt;
1763 rctx->bd_suppress = false;
a9c01cd6 1764 rctx->total_todo = req->cryptlen;
9d12ba86
RR
1765 rctx->src_sent = 0;
1766 rctx->total_sent = 0;
1767 rctx->total_received = 0;
1768 rctx->ctx = ctx;
1769
1770 /* Initialize current position in src and dst scatterlists */
1771 rctx->src_sg = req->src;
1772 rctx->src_nents = 0;
1773 rctx->src_skip = 0;
1774 rctx->dst_sg = req->dst;
1775 rctx->dst_nents = 0;
1776 rctx->dst_skip = 0;
1777
1778 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1779 ctx->cipher.mode == CIPHER_MODE_CTR ||
1780 ctx->cipher.mode == CIPHER_MODE_OFB ||
1781 ctx->cipher.mode == CIPHER_MODE_XTS ||
1782 ctx->cipher.mode == CIPHER_MODE_GCM ||
1783 ctx->cipher.mode == CIPHER_MODE_CCM) {
1784 rctx->iv_ctr_len =
a9c01cd6
AB
1785 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1786 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
9d12ba86
RR
1787 } else {
1788 rctx->iv_ctr_len = 0;
1789 }
1790
1791 /* Choose a SPU to process this request */
1792 rctx->chan_idx = select_channel();
a9c01cd6 1793 err = handle_skcipher_req(rctx);
9d12ba86
RR
1794 if (err != -EINPROGRESS)
1795 /* synchronous result */
1796 spu_chunk_cleanup(rctx);
1797
1798 return err;
1799}
1800
a9c01cd6 1801static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
9d12ba86
RR
1802 unsigned int keylen)
1803{
a9c01cd6 1804 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
05a7238d 1805 int err;
9d12ba86 1806
a9c01cd6 1807 err = verify_skcipher_des_key(cipher, key);
05a7238d
AB
1808 if (err)
1809 return err;
9d12ba86 1810
05a7238d 1811 ctx->cipher_type = CIPHER_TYPE_DES;
9d12ba86
RR
1812 return 0;
1813}
1814
a9c01cd6 1815static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
9d12ba86
RR
1816 unsigned int keylen)
1817{
a9c01cd6 1818 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
05a7238d 1819 int err;
9d12ba86 1820
a9c01cd6 1821 err = verify_skcipher_des3_key(cipher, key);
05a7238d
AB
1822 if (err)
1823 return err;
9d12ba86 1824
05a7238d 1825 ctx->cipher_type = CIPHER_TYPE_3DES;
9d12ba86
RR
1826 return 0;
1827}
1828
a9c01cd6 1829static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
9d12ba86
RR
1830 unsigned int keylen)
1831{
a9c01cd6 1832 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
9d12ba86
RR
1833
1834 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1835 /* XTS includes two keys of equal length */
1836 keylen = keylen / 2;
1837
1838 switch (keylen) {
1839 case AES_KEYSIZE_128:
1840 ctx->cipher_type = CIPHER_TYPE_AES128;
1841 break;
1842 case AES_KEYSIZE_192:
1843 ctx->cipher_type = CIPHER_TYPE_AES192;
1844 break;
1845 case AES_KEYSIZE_256:
1846 ctx->cipher_type = CIPHER_TYPE_AES256;
1847 break;
1848 default:
9d12ba86
RR
1849 return -EINVAL;
1850 }
1851 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1852 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1853 return 0;
1854}
1855
a9c01cd6 1856static int rc4_setkey(struct crypto_skcipher *cipher, const u8 *key,
9d12ba86
RR
1857 unsigned int keylen)
1858{
a9c01cd6 1859 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
9d12ba86
RR
1860 int i;
1861
1862 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1863
1864 ctx->enckey[0] = 0x00; /* 0x00 */
1865 ctx->enckey[1] = 0x00; /* i */
1866 ctx->enckey[2] = 0x00; /* 0x00 */
1867 ctx->enckey[3] = 0x00; /* j */
1868 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1869 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1870
1871 ctx->cipher_type = CIPHER_TYPE_INIT;
1872
1873 return 0;
1874}
1875
a9c01cd6 1876static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
9d12ba86
RR
1877 unsigned int keylen)
1878{
1879 struct spu_hw *spu = &iproc_priv.spu;
a9c01cd6 1880 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
9d12ba86
RR
1881 struct spu_cipher_parms cipher_parms;
1882 u32 alloc_len = 0;
1883 int err;
1884
a9c01cd6 1885 flow_log("skcipher_setkey() keylen: %d\n", keylen);
9d12ba86
RR
1886 flow_dump(" key: ", key, keylen);
1887
1888 switch (ctx->cipher.alg) {
1889 case CIPHER_ALG_DES:
1890 err = des_setkey(cipher, key, keylen);
1891 break;
1892 case CIPHER_ALG_3DES:
1893 err = threedes_setkey(cipher, key, keylen);
1894 break;
1895 case CIPHER_ALG_AES:
1896 err = aes_setkey(cipher, key, keylen);
1897 break;
1898 case CIPHER_ALG_RC4:
1899 err = rc4_setkey(cipher, key, keylen);
1900 break;
1901 default:
1902 pr_err("%s() Error: unknown cipher alg\n", __func__);
1903 err = -EINVAL;
1904 }
1905 if (err)
1906 return err;
1907
1908 /* RC4 already populated ctx->enkey */
1909 if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1910 memcpy(ctx->enckey, key, keylen);
1911 ctx->enckeylen = keylen;
1912 }
1913 /* SPU needs XTS keys in the reverse order the crypto API presents */
1914 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1915 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1916 unsigned int xts_keylen = keylen / 2;
1917
1918 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1919 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1920 }
1921
1922 if (spu->spu_type == SPU_TYPE_SPUM)
1923 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1924 else if (spu->spu_type == SPU_TYPE_SPU2)
1925 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1926 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1927 cipher_parms.iv_buf = NULL;
a9c01cd6 1928 cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
9d12ba86
RR
1929 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1930
1931 cipher_parms.alg = ctx->cipher.alg;
1932 cipher_parms.mode = ctx->cipher.mode;
1933 cipher_parms.type = ctx->cipher_type;
1934 cipher_parms.key_buf = ctx->enckey;
1935 cipher_parms.key_len = ctx->enckeylen;
1936
1937 /* Prepend SPU request message with BCM header */
1938 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1939 ctx->spu_req_hdr_len =
1940 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1941 &cipher_parms);
1942
1943 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1944 ctx->enckeylen,
1945 false);
1946
1947 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1948
1949 return 0;
1950}
1951
a9c01cd6 1952static int skcipher_encrypt(struct skcipher_request *req)
9d12ba86 1953{
a9c01cd6 1954 flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
9d12ba86 1955
a9c01cd6 1956 return skcipher_enqueue(req, true);
9d12ba86
RR
1957}
1958
a9c01cd6 1959static int skcipher_decrypt(struct skcipher_request *req)
9d12ba86 1960{
a9c01cd6
AB
1961 flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1962 return skcipher_enqueue(req, false);
9d12ba86
RR
1963}
1964
1965static int ahash_enqueue(struct ahash_request *req)
1966{
1967 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1968 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1969 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1970 int err = 0;
1971 const char *alg_name;
1972
1973 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1974
1975 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1976 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1977 rctx->parent = &req->base;
1978 rctx->ctx = ctx;
1979 rctx->bd_suppress = true;
1980 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1981
1982 /* Initialize position in src scatterlist */
1983 rctx->src_sg = req->src;
1984 rctx->src_skip = 0;
1985 rctx->src_nents = 0;
1986 rctx->dst_sg = NULL;
1987 rctx->dst_skip = 0;
1988 rctx->dst_nents = 0;
1989
1990 /* SPU2 hardware does not compute hash of zero length data */
1991 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1992 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1993 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1994 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1995 rctx->is_final ? "" : "non-", alg_name);
1996 err = do_shash((unsigned char *)alg_name, req->result,
1997 NULL, 0, NULL, 0, ctx->authkey,
1998 ctx->authkeylen);
1999 if (err < 0)
2000 flow_log("Hash request failed with error %d\n", err);
2001 return err;
2002 }
2003 /* Choose a SPU to process this request */
2004 rctx->chan_idx = select_channel();
2005
2006 err = handle_ahash_req(rctx);
2007 if (err != -EINPROGRESS)
2008 /* synchronous result */
2009 spu_chunk_cleanup(rctx);
2010
2011 if (err == -EAGAIN)
2012 /*
2013 * we saved data in hash carry, but tell crypto API
2014 * we successfully completed request.
2015 */
2016 err = 0;
2017
2018 return err;
2019}
2020
2021static int __ahash_init(struct ahash_request *req)
2022{
2023 struct spu_hw *spu = &iproc_priv.spu;
2024 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2025 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2026 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2027
2028 flow_log("%s()\n", __func__);
2029
2030 /* Initialize the context */
2031 rctx->hash_carry_len = 0;
2032 rctx->is_final = 0;
2033
2034 rctx->total_todo = 0;
2035 rctx->src_sent = 0;
2036 rctx->total_sent = 0;
2037 rctx->total_received = 0;
2038
2039 ctx->digestsize = crypto_ahash_digestsize(tfm);
2040 /* If we add a hash whose digest is larger, catch it here. */
2041 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2042
2043 rctx->is_sw_hmac = false;
2044
2045 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2046 true);
2047
2048 return 0;
2049}
2050
2051/**
2052 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2053 * @ctx: Crypto session context
2054 *
2055 * SPU-2 does not support incremental hashing (we'll have to revisit and
2056 * condition based on chip revision or device tree entry if future versions do
2057 * support incremental hash)
2058 *
2059 * SPU-M also doesn't support incremental hashing of AES-XCBC
2060 *
2061 * Return: true if incremental hashing is not supported
2062 * false otherwise
2063 */
dd508618 2064static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
9d12ba86
RR
2065{
2066 struct spu_hw *spu = &iproc_priv.spu;
2067
2068 if (spu->spu_type == SPU_TYPE_SPU2)
2069 return true;
2070
2071 if ((ctx->auth.alg == HASH_ALG_AES) &&
2072 (ctx->auth.mode == HASH_MODE_XCBC))
2073 return true;
2074
2075 /* Otherwise, incremental hashing is supported */
2076 return false;
2077}
2078
2079static int ahash_init(struct ahash_request *req)
2080{
2081 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2082 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2083 const char *alg_name;
2084 struct crypto_shash *hash;
2085 int ret;
2086 gfp_t gfp;
2087
2088 if (spu_no_incr_hash(ctx)) {
2089 /*
2090 * If we get an incremental hashing request and it's not
2091 * supported by the hardware, we need to handle it in software
2092 * by calling synchronous hash functions.
2093 */
2094 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2095 hash = crypto_alloc_shash(alg_name, 0, 0);
2096 if (IS_ERR(hash)) {
2097 ret = PTR_ERR(hash);
2098 goto err;
2099 }
2100
2101 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2102 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2103 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2104 crypto_shash_descsize(hash), gfp);
2105 if (!ctx->shash) {
2106 ret = -ENOMEM;
2107 goto err_hash;
2108 }
2109 ctx->shash->tfm = hash;
9d12ba86
RR
2110
2111 /* Set the key using data we already have from setkey */
2112 if (ctx->authkeylen > 0) {
2113 ret = crypto_shash_setkey(hash, ctx->authkey,
2114 ctx->authkeylen);
2115 if (ret)
2116 goto err_shash;
2117 }
2118
2119 /* Initialize hash w/ this key and other params */
2120 ret = crypto_shash_init(ctx->shash);
2121 if (ret)
2122 goto err_shash;
2123 } else {
2124 /* Otherwise call the internal function which uses SPU hw */
2125 ret = __ahash_init(req);
2126 }
2127
2128 return ret;
2129
2130err_shash:
2131 kfree(ctx->shash);
2132err_hash:
2133 crypto_free_shash(hash);
2134err:
2135 return ret;
2136}
2137
2138static int __ahash_update(struct ahash_request *req)
2139{
2140 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2141
2142 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2143
2144 if (!req->nbytes)
2145 return 0;
2146 rctx->total_todo += req->nbytes;
2147 rctx->src_sent = 0;
2148
2149 return ahash_enqueue(req);
2150}
2151
2152static int ahash_update(struct ahash_request *req)
2153{
2154 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2155 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2156 u8 *tmpbuf;
2157 int ret;
2158 int nents;
2159 gfp_t gfp;
2160
2161 if (spu_no_incr_hash(ctx)) {
2162 /*
2163 * If we get an incremental hashing request and it's not
2164 * supported by the hardware, we need to handle it in software
2165 * by calling synchronous hash functions.
2166 */
2167 if (req->src)
2168 nents = sg_nents(req->src);
2169 else
2170 return -EINVAL;
2171
2172 /* Copy data from req scatterlist to tmp buffer */
2173 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2174 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2175 tmpbuf = kmalloc(req->nbytes, gfp);
2176 if (!tmpbuf)
2177 return -ENOMEM;
2178
2179 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2180 req->nbytes) {
2181 kfree(tmpbuf);
2182 return -EINVAL;
2183 }
2184
2185 /* Call synchronous update */
2186 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2187 kfree(tmpbuf);
2188 } else {
2189 /* Otherwise call the internal function which uses SPU hw */
2190 ret = __ahash_update(req);
2191 }
2192
2193 return ret;
2194}
2195
2196static int __ahash_final(struct ahash_request *req)
2197{
2198 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2199
2200 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2201
2202 rctx->is_final = 1;
2203
2204 return ahash_enqueue(req);
2205}
2206
2207static int ahash_final(struct ahash_request *req)
2208{
2209 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2210 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2211 int ret;
2212
2213 if (spu_no_incr_hash(ctx)) {
2214 /*
2215 * If we get an incremental hashing request and it's not
2216 * supported by the hardware, we need to handle it in software
2217 * by calling synchronous hash functions.
2218 */
2219 ret = crypto_shash_final(ctx->shash, req->result);
2220
2221 /* Done with hash, can deallocate it now */
2222 crypto_free_shash(ctx->shash->tfm);
2223 kfree(ctx->shash);
2224
2225 } else {
2226 /* Otherwise call the internal function which uses SPU hw */
2227 ret = __ahash_final(req);
2228 }
2229
2230 return ret;
2231}
2232
2233static int __ahash_finup(struct ahash_request *req)
2234{
2235 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2236
2237 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2238
2239 rctx->total_todo += req->nbytes;
2240 rctx->src_sent = 0;
2241 rctx->is_final = 1;
2242
2243 return ahash_enqueue(req);
2244}
2245
2246static int ahash_finup(struct ahash_request *req)
2247{
2248 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2249 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2250 u8 *tmpbuf;
2251 int ret;
2252 int nents;
2253 gfp_t gfp;
2254
2255 if (spu_no_incr_hash(ctx)) {
2256 /*
2257 * If we get an incremental hashing request and it's not
2258 * supported by the hardware, we need to handle it in software
2259 * by calling synchronous hash functions.
2260 */
2261 if (req->src) {
2262 nents = sg_nents(req->src);
2263 } else {
2264 ret = -EINVAL;
2265 goto ahash_finup_exit;
2266 }
2267
2268 /* Copy data from req scatterlist to tmp buffer */
2269 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2270 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2271 tmpbuf = kmalloc(req->nbytes, gfp);
2272 if (!tmpbuf) {
2273 ret = -ENOMEM;
2274 goto ahash_finup_exit;
2275 }
2276
2277 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2278 req->nbytes) {
2279 ret = -EINVAL;
2280 goto ahash_finup_free;
2281 }
2282
2283 /* Call synchronous update */
2284 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2285 req->result);
9d12ba86
RR
2286 } else {
2287 /* Otherwise call the internal function which uses SPU hw */
2288 return __ahash_finup(req);
2289 }
2290ahash_finup_free:
2291 kfree(tmpbuf);
2292
2293ahash_finup_exit:
2294 /* Done with hash, can deallocate it now */
2295 crypto_free_shash(ctx->shash->tfm);
2296 kfree(ctx->shash);
2297 return ret;
2298}
2299
2300static int ahash_digest(struct ahash_request *req)
2301{
2302 int err = 0;
2303
2304 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2305
2306 /* whole thing at once */
2307 err = __ahash_init(req);
2308 if (!err)
2309 err = __ahash_finup(req);
2310
2311 return err;
2312}
2313
2314static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2315 unsigned int keylen)
2316{
2317 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2318
2319 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2320 __func__, ahash, key, keylen);
2321 flow_dump(" key: ", key, keylen);
2322
2323 if (ctx->auth.alg == HASH_ALG_AES) {
2324 switch (keylen) {
2325 case AES_KEYSIZE_128:
2326 ctx->cipher_type = CIPHER_TYPE_AES128;
2327 break;
2328 case AES_KEYSIZE_192:
2329 ctx->cipher_type = CIPHER_TYPE_AES192;
2330 break;
2331 case AES_KEYSIZE_256:
2332 ctx->cipher_type = CIPHER_TYPE_AES256;
2333 break;
2334 default:
2335 pr_err("%s() Error: Invalid key length\n", __func__);
2336 return -EINVAL;
2337 }
2338 } else {
2339 pr_err("%s() Error: unknown hash alg\n", __func__);
2340 return -EINVAL;
2341 }
2342 memcpy(ctx->authkey, key, keylen);
2343 ctx->authkeylen = keylen;
2344
2345 return 0;
2346}
2347
2348static int ahash_export(struct ahash_request *req, void *out)
2349{
2350 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2351 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2352
2353 spu_exp->total_todo = rctx->total_todo;
2354 spu_exp->total_sent = rctx->total_sent;
2355 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2356 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2357 spu_exp->hash_carry_len = rctx->hash_carry_len;
2358 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2359
2360 return 0;
2361}
2362
2363static int ahash_import(struct ahash_request *req, const void *in)
2364{
2365 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2366 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2367
2368 rctx->total_todo = spu_exp->total_todo;
2369 rctx->total_sent = spu_exp->total_sent;
2370 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2371 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2372 rctx->hash_carry_len = spu_exp->hash_carry_len;
2373 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2374
2375 return 0;
2376}
2377
2378static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2379 unsigned int keylen)
2380{
2381 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2382 unsigned int blocksize =
2383 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2384 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2385 unsigned int index;
2386 int rc;
2387
2388 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2389 __func__, ahash, key, keylen, blocksize, digestsize);
2390 flow_dump(" key: ", key, keylen);
2391
2392 if (keylen > blocksize) {
2393 switch (ctx->auth.alg) {
2394 case HASH_ALG_MD5:
2395 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2396 0, NULL, 0);
2397 break;
2398 case HASH_ALG_SHA1:
2399 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2400 0, NULL, 0);
2401 break;
2402 case HASH_ALG_SHA224:
2403 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2404 0, NULL, 0);
2405 break;
2406 case HASH_ALG_SHA256:
2407 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2408 0, NULL, 0);
2409 break;
2410 case HASH_ALG_SHA384:
2411 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2412 0, NULL, 0);
2413 break;
2414 case HASH_ALG_SHA512:
2415 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2416 0, NULL, 0);
2417 break;
2418 case HASH_ALG_SHA3_224:
2419 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2420 NULL, 0, NULL, 0);
2421 break;
2422 case HASH_ALG_SHA3_256:
2423 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2424 NULL, 0, NULL, 0);
2425 break;
2426 case HASH_ALG_SHA3_384:
2427 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2428 NULL, 0, NULL, 0);
2429 break;
2430 case HASH_ALG_SHA3_512:
2431 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2432 NULL, 0, NULL, 0);
2433 break;
2434 default:
2435 pr_err("%s() Error: unknown hash alg\n", __func__);
2436 return -EINVAL;
2437 }
2438 if (rc < 0) {
2439 pr_err("%s() Error %d computing shash for %s\n",
2440 __func__, rc, hash_alg_name[ctx->auth.alg]);
2441 return rc;
2442 }
2443 ctx->authkeylen = digestsize;
2444
2445 flow_log(" keylen > digestsize... hashed\n");
2446 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2447 } else {
2448 memcpy(ctx->authkey, key, keylen);
2449 ctx->authkeylen = keylen;
2450 }
2451
2452 /*
2453 * Full HMAC operation in SPUM is not verified,
2454 * So keeping the generation of IPAD, OPAD and
2455 * outer hashing in software.
2456 */
2457 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2458 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2459 memset(ctx->ipad + ctx->authkeylen, 0,
2460 blocksize - ctx->authkeylen);
2461 ctx->authkeylen = 0;
2462 memcpy(ctx->opad, ctx->ipad, blocksize);
2463
2464 for (index = 0; index < blocksize; index++) {
1126d47d
CL
2465 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2466 ctx->opad[index] ^= HMAC_OPAD_VALUE;
9d12ba86
RR
2467 }
2468
2469 flow_dump(" ipad: ", ctx->ipad, blocksize);
2470 flow_dump(" opad: ", ctx->opad, blocksize);
2471 }
2472 ctx->digestsize = digestsize;
2473 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2474
2475 return 0;
2476}
2477
2478static int ahash_hmac_init(struct ahash_request *req)
2479{
2480 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2481 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2482 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2483 unsigned int blocksize =
2484 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2485
2486 flow_log("ahash_hmac_init()\n");
2487
2488 /* init the context as a hash */
2489 ahash_init(req);
2490
2491 if (!spu_no_incr_hash(ctx)) {
2492 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2493 rctx->is_sw_hmac = true;
2494 ctx->auth.mode = HASH_MODE_HASH;
2495 /* start with a prepended ipad */
2496 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2497 rctx->hash_carry_len = blocksize;
2498 rctx->total_todo += blocksize;
2499 }
2500
2501 return 0;
2502}
2503
2504static int ahash_hmac_update(struct ahash_request *req)
2505{
2506 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2507
2508 if (!req->nbytes)
2509 return 0;
2510
2511 return ahash_update(req);
2512}
2513
2514static int ahash_hmac_final(struct ahash_request *req)
2515{
2516 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2517
2518 return ahash_final(req);
2519}
2520
2521static int ahash_hmac_finup(struct ahash_request *req)
2522{
2523 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2524
2525 return ahash_finup(req);
2526}
2527
2528static int ahash_hmac_digest(struct ahash_request *req)
2529{
2530 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2531 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2532 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2533 unsigned int blocksize =
2534 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2535
2536 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2537
2538 /* Perform initialization and then call finup */
2539 __ahash_init(req);
2540
2541 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2542 /*
2543 * SPU2 supports full HMAC implementation in the
2544 * hardware, need not to generate IPAD, OPAD and
2545 * outer hash in software.
2546 * Only for hash key len > hash block size, SPU2
2547 * expects to perform hashing on the key, shorten
2548 * it to digest size and feed it as hash key.
2549 */
2550 rctx->is_sw_hmac = false;
2551 ctx->auth.mode = HASH_MODE_HMAC;
2552 } else {
2553 rctx->is_sw_hmac = true;
2554 ctx->auth.mode = HASH_MODE_HASH;
2555 /* start with a prepended ipad */
2556 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2557 rctx->hash_carry_len = blocksize;
2558 rctx->total_todo += blocksize;
2559 }
2560
2561 return __ahash_finup(req);
2562}
2563
2564/* aead helpers */
2565
2566static int aead_need_fallback(struct aead_request *req)
2567{
2568 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2569 struct spu_hw *spu = &iproc_priv.spu;
2570 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2571 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2572 u32 payload_len;
2573
2574 /*
2575 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2576 * and AAD are both 0 bytes long. So use fallback in this case.
2577 */
2578 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2579 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2580 (req->assoclen == 0)) {
2581 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2582 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2583 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2584 return 1;
2585 }
2586 }
2587
2588 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2589 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2590 (spu->spu_type == SPU_TYPE_SPUM) &&
2591 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2592 (ctx->digestsize != 16)) {
b1a4b182 2593 flow_log("%s() AES CCM needs fallback for digest size %d\n",
9d12ba86
RR
2594 __func__, ctx->digestsize);
2595 return 1;
2596 }
2597
2598 /*
2599 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2600 * when AAD size is 0
2601 */
2602 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2603 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2604 (req->assoclen == 0)) {
2605 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2606 __func__);
2607 return 1;
2608 }
2609
b3553eff
IP
2610 /*
2611 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2612 * 16 or 20 bytes long. So use fallback in this case.
2613 */
2614 if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2615 ctx->cipher.alg == CIPHER_ALG_AES &&
2616 rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2617 req->assoclen != 16 && req->assoclen != 20) {
2618 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2619 " other than 16 or 20 bytes\n");
2620 return 1;
2621 }
2622
9d12ba86
RR
2623 payload_len = req->cryptlen;
2624 if (spu->spu_type == SPU_TYPE_SPUM)
2625 payload_len += req->assoclen;
2626
2627 flow_log("%s() payload len: %u\n", __func__, payload_len);
2628
2629 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2630 return 0;
2631 else
2632 return payload_len > ctx->max_payload;
2633}
2634
2635static void aead_complete(struct crypto_async_request *areq, int err)
2636{
2637 struct aead_request *req =
2638 container_of(areq, struct aead_request, base);
2639 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2640 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2641
2642 flow_log("%s() err:%d\n", __func__, err);
2643
2644 areq->tfm = crypto_aead_tfm(aead);
2645
2646 areq->complete = rctx->old_complete;
2647 areq->data = rctx->old_data;
2648
2649 areq->complete(areq, err);
2650}
2651
2652static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2653{
2654 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2655 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2656 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2657 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2658 int err;
2659 u32 req_flags;
2660
2661 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2662
2663 if (ctx->fallback_cipher) {
2664 /* Store the cipher tfm and then use the fallback tfm */
2665 rctx->old_tfm = tfm;
2666 aead_request_set_tfm(req, ctx->fallback_cipher);
2667 /*
2668 * Save the callback and chain ourselves in, so we can restore
2669 * the tfm
2670 */
2671 rctx->old_complete = req->base.complete;
2672 rctx->old_data = req->base.data;
2673 req_flags = aead_request_flags(req);
2674 aead_request_set_callback(req, req_flags, aead_complete, req);
2675 err = is_encrypt ? crypto_aead_encrypt(req) :
2676 crypto_aead_decrypt(req);
2677
2678 if (err == 0) {
2679 /*
2680 * fallback was synchronous (did not return
2681 * -EINPROGRESS). So restore request state here.
2682 */
2683 aead_request_set_callback(req, req_flags,
2684 rctx->old_complete, req);
2685 req->base.data = rctx->old_data;
2686 aead_request_set_tfm(req, aead);
2687 flow_log("%s() fallback completed successfully\n\n",
2688 __func__);
2689 }
2690 } else {
2691 err = -EINVAL;
2692 }
2693
2694 return err;
2695}
2696
2697static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2698{
2699 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2700 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2701 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2702 int err;
2703
2704 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2705
2706 if (req->assoclen > MAX_ASSOC_SIZE) {
2707 pr_err
2708 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2709 __func__, req->assoclen, MAX_ASSOC_SIZE);
2710 return -EINVAL;
2711 }
2712
2713 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2714 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2715 rctx->parent = &req->base;
2716 rctx->is_encrypt = is_encrypt;
2717 rctx->bd_suppress = false;
2718 rctx->total_todo = req->cryptlen;
2719 rctx->src_sent = 0;
2720 rctx->total_sent = 0;
2721 rctx->total_received = 0;
2722 rctx->is_sw_hmac = false;
2723 rctx->ctx = ctx;
2724 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2725
2726 /* assoc data is at start of src sg */
2727 rctx->assoc = req->src;
2728
2729 /*
2730 * Init current position in src scatterlist to be after assoc data.
2731 * src_skip set to buffer offset where data begins. (Assoc data could
2732 * end in the middle of a buffer.)
2733 */
2734 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2735 &rctx->src_skip) < 0) {
2736 pr_err("%s() Error: Unable to find start of src data\n",
2737 __func__);
2738 return -EINVAL;
2739 }
2740
2741 rctx->src_nents = 0;
2742 rctx->dst_nents = 0;
2743 if (req->dst == req->src) {
2744 rctx->dst_sg = rctx->src_sg;
2745 rctx->dst_skip = rctx->src_skip;
2746 } else {
2747 /*
2748 * Expect req->dst to have room for assoc data followed by
2749 * output data and ICV, if encrypt. So initialize dst_sg
2750 * to point beyond assoc len offset.
2751 */
2752 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2753 &rctx->dst_skip) < 0) {
2754 pr_err("%s() Error: Unable to find start of dst data\n",
2755 __func__);
2756 return -EINVAL;
2757 }
2758 }
2759
2760 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2761 ctx->cipher.mode == CIPHER_MODE_CTR ||
2762 ctx->cipher.mode == CIPHER_MODE_OFB ||
2763 ctx->cipher.mode == CIPHER_MODE_XTS ||
2764 ctx->cipher.mode == CIPHER_MODE_GCM) {
2765 rctx->iv_ctr_len =
2766 ctx->salt_len +
2767 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2768 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2769 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2770 } else {
2771 rctx->iv_ctr_len = 0;
2772 }
2773
2774 rctx->hash_carry_len = 0;
2775
2776 flow_log(" src sg: %p\n", req->src);
2777 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2778 rctx->src_sg, rctx->src_skip);
2779 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2780 flow_log(" dst sg: %p\n", req->dst);
2781 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2782 rctx->dst_sg, rctx->dst_skip);
2783 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2784 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2785 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2786 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2787
2788 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2789 flow_log(" max_payload infinite");
2790 else
2791 flow_log(" max_payload: %u\n", ctx->max_payload);
2792
2793 if (unlikely(aead_need_fallback(req)))
2794 return aead_do_fallback(req, is_encrypt);
2795
2796 /*
2797 * Do memory allocations for request after fallback check, because if we
2798 * do fallback, we won't call finish_req() to dealloc.
2799 */
2800 if (rctx->iv_ctr_len) {
2801 if (ctx->salt_len)
2802 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2803 ctx->salt, ctx->salt_len);
2804 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2805 req->iv,
2806 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2807 }
2808
2809 rctx->chan_idx = select_channel();
2810 err = handle_aead_req(rctx);
2811 if (err != -EINPROGRESS)
2812 /* synchronous result */
2813 spu_chunk_cleanup(rctx);
2814
2815 return err;
2816}
2817
2818static int aead_authenc_setkey(struct crypto_aead *cipher,
2819 const u8 *key, unsigned int keylen)
2820{
2821 struct spu_hw *spu = &iproc_priv.spu;
2822 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2823 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
ab57b335
EB
2824 struct crypto_authenc_keys keys;
2825 int ret;
9d12ba86
RR
2826
2827 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2828 keylen);
2829 flow_dump(" key: ", key, keylen);
2830
ab57b335
EB
2831 ret = crypto_authenc_extractkeys(&keys, key, keylen);
2832 if (ret)
9d12ba86 2833 goto badkey;
9d12ba86 2834
ab57b335
EB
2835 if (keys.enckeylen > MAX_KEY_SIZE ||
2836 keys.authkeylen > MAX_KEY_SIZE)
9d12ba86
RR
2837 goto badkey;
2838
ab57b335
EB
2839 ctx->enckeylen = keys.enckeylen;
2840 ctx->authkeylen = keys.authkeylen;
9d12ba86 2841
ab57b335 2842 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
9d12ba86
RR
2843 /* May end up padding auth key. So make sure it's zeroed. */
2844 memset(ctx->authkey, 0, sizeof(ctx->authkey));
ab57b335 2845 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
9d12ba86
RR
2846
2847 switch (ctx->alg->cipher_info.alg) {
2848 case CIPHER_ALG_DES:
05a7238d
AB
2849 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2850 return -EINVAL;
9d12ba86 2851
05a7238d 2852 ctx->cipher_type = CIPHER_TYPE_DES;
9d12ba86
RR
2853 break;
2854 case CIPHER_ALG_3DES:
05a7238d 2855 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
9d12ba86 2856 return -EINVAL;
05a7238d
AB
2857
2858 ctx->cipher_type = CIPHER_TYPE_3DES;
9d12ba86
RR
2859 break;
2860 case CIPHER_ALG_AES:
2861 switch (ctx->enckeylen) {
2862 case AES_KEYSIZE_128:
2863 ctx->cipher_type = CIPHER_TYPE_AES128;
2864 break;
2865 case AES_KEYSIZE_192:
2866 ctx->cipher_type = CIPHER_TYPE_AES192;
2867 break;
2868 case AES_KEYSIZE_256:
2869 ctx->cipher_type = CIPHER_TYPE_AES256;
2870 break;
2871 default:
2872 goto badkey;
2873 }
2874 break;
2875 case CIPHER_ALG_RC4:
2876 ctx->cipher_type = CIPHER_TYPE_INIT;
2877 break;
2878 default:
2879 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2880 return -EINVAL;
2881 }
2882
2883 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2884 ctx->authkeylen);
2885 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2886 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2887
2888 /* setkey the fallback just in case we needto use it */
2889 if (ctx->fallback_cipher) {
2890 flow_log(" running fallback setkey()\n");
2891
2892 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2893 ctx->fallback_cipher->base.crt_flags |=
2894 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
ab57b335 2895 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
9d12ba86
RR
2896 if (ret) {
2897 flow_log(" fallback setkey() returned:%d\n", ret);
2898 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2899 tfm->crt_flags |=
2900 (ctx->fallback_cipher->base.crt_flags &
2901 CRYPTO_TFM_RES_MASK);
2902 }
2903 }
2904
2905 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2906 ctx->enckeylen,
2907 false);
2908
2909 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2910
2911 return ret;
2912
2913badkey:
2914 ctx->enckeylen = 0;
2915 ctx->authkeylen = 0;
2916 ctx->digestsize = 0;
2917
9d12ba86
RR
2918 return -EINVAL;
2919}
2920
2921static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2922 const u8 *key, unsigned int keylen)
2923{
2924 struct spu_hw *spu = &iproc_priv.spu;
2925 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2926 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2927
2928 int ret = 0;
2929
2930 flow_log("%s() keylen:%u\n", __func__, keylen);
2931 flow_dump(" key: ", key, keylen);
2932
2933 if (!ctx->is_esp)
2934 ctx->digestsize = keylen;
2935
2936 ctx->enckeylen = keylen;
2937 ctx->authkeylen = 0;
2938 memcpy(ctx->enckey, key, ctx->enckeylen);
2939
2940 switch (ctx->enckeylen) {
2941 case AES_KEYSIZE_128:
2942 ctx->cipher_type = CIPHER_TYPE_AES128;
2943 break;
2944 case AES_KEYSIZE_192:
2945 ctx->cipher_type = CIPHER_TYPE_AES192;
2946 break;
2947 case AES_KEYSIZE_256:
2948 ctx->cipher_type = CIPHER_TYPE_AES256;
2949 break;
2950 default:
2951 goto badkey;
2952 }
2953
2954 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2955 ctx->authkeylen);
2956 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2957 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2958
2959 /* setkey the fallback just in case we need to use it */
2960 if (ctx->fallback_cipher) {
2961 flow_log(" running fallback setkey()\n");
2962
2963 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2964 ctx->fallback_cipher->base.crt_flags |=
2965 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2966 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2967 keylen + ctx->salt_len);
2968 if (ret) {
2969 flow_log(" fallback setkey() returned:%d\n", ret);
2970 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2971 tfm->crt_flags |=
2972 (ctx->fallback_cipher->base.crt_flags &
2973 CRYPTO_TFM_RES_MASK);
2974 }
2975 }
2976
2977 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2978 ctx->enckeylen,
2979 false);
2980
2981 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2982
2983 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2984 ctx->authkeylen);
2985
2986 return ret;
2987
2988badkey:
2989 ctx->enckeylen = 0;
2990 ctx->authkeylen = 0;
2991 ctx->digestsize = 0;
2992
9d12ba86
RR
2993 return -EINVAL;
2994}
2995
2996/**
2997 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2998 * @cipher: AEAD structure
2999 * @key: Key followed by 4 bytes of salt
3000 * @keylen: Length of key plus salt, in bytes
3001 *
3002 * Extracts salt from key and stores it to be prepended to IV on each request.
3003 * Digest is always 16 bytes
3004 *
3005 * Return: Value from generic gcm setkey.
3006 */
3007static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3008 const u8 *key, unsigned int keylen)
3009{
3010 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3011
3012 flow_log("%s\n", __func__);
3013 ctx->salt_len = GCM_ESP_SALT_SIZE;
3014 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3015 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3016 keylen -= GCM_ESP_SALT_SIZE;
3017 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3018 ctx->is_esp = true;
3019 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3020
3021 return aead_gcm_ccm_setkey(cipher, key, keylen);
3022}
3023
3024/**
3025 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3026 * cipher: AEAD structure
3027 * key: Key followed by 4 bytes of salt
3028 * keylen: Length of key plus salt, in bytes
3029 *
3030 * Extracts salt from key and stores it to be prepended to IV on each request.
3031 * Digest is always 16 bytes
3032 *
3033 * Return: Value from generic gcm setkey.
3034 */
3035static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3036 const u8 *key, unsigned int keylen)
3037{
3038 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3039
3040 flow_log("%s\n", __func__);
3041 ctx->salt_len = GCM_ESP_SALT_SIZE;
3042 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3043 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3044 keylen -= GCM_ESP_SALT_SIZE;
3045 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3046 ctx->is_esp = true;
3047 ctx->is_rfc4543 = true;
3048 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3049
3050 return aead_gcm_ccm_setkey(cipher, key, keylen);
3051}
3052
3053/**
3054 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3055 * @cipher: AEAD structure
3056 * @key: Key followed by 4 bytes of salt
3057 * @keylen: Length of key plus salt, in bytes
3058 *
3059 * Extracts salt from key and stores it to be prepended to IV on each request.
3060 * Digest is always 16 bytes
3061 *
3062 * Return: Value from generic ccm setkey.
3063 */
3064static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3065 const u8 *key, unsigned int keylen)
3066{
3067 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3068
3069 flow_log("%s\n", __func__);
3070 ctx->salt_len = CCM_ESP_SALT_SIZE;
3071 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3072 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3073 keylen -= CCM_ESP_SALT_SIZE;
3074 ctx->is_esp = true;
3075 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3076
3077 return aead_gcm_ccm_setkey(cipher, key, keylen);
3078}
3079
3080static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3081{
3082 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3083 int ret = 0;
3084
3085 flow_log("%s() authkeylen:%u authsize:%u\n",
3086 __func__, ctx->authkeylen, authsize);
3087
3088 ctx->digestsize = authsize;
3089
3090 /* setkey the fallback just in case we needto use it */
3091 if (ctx->fallback_cipher) {
3092 flow_log(" running fallback setauth()\n");
3093
3094 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3095 if (ret)
3096 flow_log(" fallback setauth() returned:%d\n", ret);
3097 }
3098
3099 return ret;
3100}
3101
3102static int aead_encrypt(struct aead_request *req)
3103{
3104 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3105 req->cryptlen);
3106 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3107 flow_log(" assoc_len:%u\n", req->assoclen);
3108
3109 return aead_enqueue(req, true);
3110}
3111
3112static int aead_decrypt(struct aead_request *req)
3113{
3114 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3115 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3116 flow_log(" assoc_len:%u\n", req->assoclen);
3117
3118 return aead_enqueue(req, false);
3119}
3120
3121/* ==================== Supported Cipher Algorithms ==================== */
3122
3123static struct iproc_alg_s driver_algs[] = {
3124 {
3125 .type = CRYPTO_ALG_TYPE_AEAD,
3126 .alg.aead = {
3127 .base = {
3128 .cra_name = "gcm(aes)",
3129 .cra_driver_name = "gcm-aes-iproc",
3130 .cra_blocksize = AES_BLOCK_SIZE,
3131 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3132 },
3133 .setkey = aead_gcm_ccm_setkey,
3134 .ivsize = GCM_AES_IV_SIZE,
3135 .maxauthsize = AES_BLOCK_SIZE,
3136 },
3137 .cipher_info = {
3138 .alg = CIPHER_ALG_AES,
3139 .mode = CIPHER_MODE_GCM,
3140 },
3141 .auth_info = {
3142 .alg = HASH_ALG_AES,
3143 .mode = HASH_MODE_GCM,
3144 },
3145 .auth_first = 0,
3146 },
3147 {
3148 .type = CRYPTO_ALG_TYPE_AEAD,
3149 .alg.aead = {
3150 .base = {
3151 .cra_name = "ccm(aes)",
3152 .cra_driver_name = "ccm-aes-iproc",
3153 .cra_blocksize = AES_BLOCK_SIZE,
3154 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3155 },
3156 .setkey = aead_gcm_ccm_setkey,
3157 .ivsize = CCM_AES_IV_SIZE,
3158 .maxauthsize = AES_BLOCK_SIZE,
3159 },
3160 .cipher_info = {
3161 .alg = CIPHER_ALG_AES,
3162 .mode = CIPHER_MODE_CCM,
3163 },
3164 .auth_info = {
3165 .alg = HASH_ALG_AES,
3166 .mode = HASH_MODE_CCM,
3167 },
3168 .auth_first = 0,
3169 },
3170 {
3171 .type = CRYPTO_ALG_TYPE_AEAD,
3172 .alg.aead = {
3173 .base = {
3174 .cra_name = "rfc4106(gcm(aes))",
3175 .cra_driver_name = "gcm-aes-esp-iproc",
3176 .cra_blocksize = AES_BLOCK_SIZE,
3177 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3178 },
3179 .setkey = aead_gcm_esp_setkey,
a59851d2 3180 .ivsize = GCM_RFC4106_IV_SIZE,
9d12ba86
RR
3181 .maxauthsize = AES_BLOCK_SIZE,
3182 },
3183 .cipher_info = {
3184 .alg = CIPHER_ALG_AES,
3185 .mode = CIPHER_MODE_GCM,
3186 },
3187 .auth_info = {
3188 .alg = HASH_ALG_AES,
3189 .mode = HASH_MODE_GCM,
3190 },
3191 .auth_first = 0,
3192 },
3193 {
3194 .type = CRYPTO_ALG_TYPE_AEAD,
3195 .alg.aead = {
3196 .base = {
3197 .cra_name = "rfc4309(ccm(aes))",
3198 .cra_driver_name = "ccm-aes-esp-iproc",
3199 .cra_blocksize = AES_BLOCK_SIZE,
3200 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3201 },
3202 .setkey = aead_ccm_esp_setkey,
3203 .ivsize = CCM_AES_IV_SIZE,
3204 .maxauthsize = AES_BLOCK_SIZE,
3205 },
3206 .cipher_info = {
3207 .alg = CIPHER_ALG_AES,
3208 .mode = CIPHER_MODE_CCM,
3209 },
3210 .auth_info = {
3211 .alg = HASH_ALG_AES,
3212 .mode = HASH_MODE_CCM,
3213 },
3214 .auth_first = 0,
3215 },
3216 {
3217 .type = CRYPTO_ALG_TYPE_AEAD,
3218 .alg.aead = {
3219 .base = {
3220 .cra_name = "rfc4543(gcm(aes))",
3221 .cra_driver_name = "gmac-aes-esp-iproc",
3222 .cra_blocksize = AES_BLOCK_SIZE,
3223 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3224 },
3225 .setkey = rfc4543_gcm_esp_setkey,
a59851d2 3226 .ivsize = GCM_RFC4106_IV_SIZE,
9d12ba86
RR
3227 .maxauthsize = AES_BLOCK_SIZE,
3228 },
3229 .cipher_info = {
3230 .alg = CIPHER_ALG_AES,
3231 .mode = CIPHER_MODE_GCM,
3232 },
3233 .auth_info = {
3234 .alg = HASH_ALG_AES,
3235 .mode = HASH_MODE_GCM,
3236 },
3237 .auth_first = 0,
3238 },
3239 {
3240 .type = CRYPTO_ALG_TYPE_AEAD,
3241 .alg.aead = {
3242 .base = {
3243 .cra_name = "authenc(hmac(md5),cbc(aes))",
3244 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3245 .cra_blocksize = AES_BLOCK_SIZE,
3246 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3247 },
3248 .setkey = aead_authenc_setkey,
3249 .ivsize = AES_BLOCK_SIZE,
3250 .maxauthsize = MD5_DIGEST_SIZE,
3251 },
3252 .cipher_info = {
3253 .alg = CIPHER_ALG_AES,
3254 .mode = CIPHER_MODE_CBC,
3255 },
3256 .auth_info = {
3257 .alg = HASH_ALG_MD5,
3258 .mode = HASH_MODE_HMAC,
3259 },
3260 .auth_first = 0,
3261 },
3262 {
3263 .type = CRYPTO_ALG_TYPE_AEAD,
3264 .alg.aead = {
3265 .base = {
3266 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3267 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3268 .cra_blocksize = AES_BLOCK_SIZE,
3269 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3270 },
3271 .setkey = aead_authenc_setkey,
3272 .ivsize = AES_BLOCK_SIZE,
3273 .maxauthsize = SHA1_DIGEST_SIZE,
3274 },
3275 .cipher_info = {
3276 .alg = CIPHER_ALG_AES,
3277 .mode = CIPHER_MODE_CBC,
3278 },
3279 .auth_info = {
3280 .alg = HASH_ALG_SHA1,
3281 .mode = HASH_MODE_HMAC,
3282 },
3283 .auth_first = 0,
3284 },
3285 {
3286 .type = CRYPTO_ALG_TYPE_AEAD,
3287 .alg.aead = {
3288 .base = {
3289 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3290 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3291 .cra_blocksize = AES_BLOCK_SIZE,
3292 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3293 },
3294 .setkey = aead_authenc_setkey,
3295 .ivsize = AES_BLOCK_SIZE,
3296 .maxauthsize = SHA256_DIGEST_SIZE,
3297 },
3298 .cipher_info = {
3299 .alg = CIPHER_ALG_AES,
3300 .mode = CIPHER_MODE_CBC,
3301 },
3302 .auth_info = {
3303 .alg = HASH_ALG_SHA256,
3304 .mode = HASH_MODE_HMAC,
3305 },
3306 .auth_first = 0,
3307 },
3308 {
3309 .type = CRYPTO_ALG_TYPE_AEAD,
3310 .alg.aead = {
3311 .base = {
3312 .cra_name = "authenc(hmac(md5),cbc(des))",
3313 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3314 .cra_blocksize = DES_BLOCK_SIZE,
3315 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3316 },
3317 .setkey = aead_authenc_setkey,
3318 .ivsize = DES_BLOCK_SIZE,
3319 .maxauthsize = MD5_DIGEST_SIZE,
3320 },
3321 .cipher_info = {
3322 .alg = CIPHER_ALG_DES,
3323 .mode = CIPHER_MODE_CBC,
3324 },
3325 .auth_info = {
3326 .alg = HASH_ALG_MD5,
3327 .mode = HASH_MODE_HMAC,
3328 },
3329 .auth_first = 0,
3330 },
3331 {
3332 .type = CRYPTO_ALG_TYPE_AEAD,
3333 .alg.aead = {
3334 .base = {
3335 .cra_name = "authenc(hmac(sha1),cbc(des))",
3336 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3337 .cra_blocksize = DES_BLOCK_SIZE,
3338 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3339 },
3340 .setkey = aead_authenc_setkey,
3341 .ivsize = DES_BLOCK_SIZE,
3342 .maxauthsize = SHA1_DIGEST_SIZE,
3343 },
3344 .cipher_info = {
3345 .alg = CIPHER_ALG_DES,
3346 .mode = CIPHER_MODE_CBC,
3347 },
3348 .auth_info = {
3349 .alg = HASH_ALG_SHA1,
3350 .mode = HASH_MODE_HMAC,
3351 },
3352 .auth_first = 0,
3353 },
3354 {
3355 .type = CRYPTO_ALG_TYPE_AEAD,
3356 .alg.aead = {
3357 .base = {
3358 .cra_name = "authenc(hmac(sha224),cbc(des))",
3359 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3360 .cra_blocksize = DES_BLOCK_SIZE,
3361 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3362 },
3363 .setkey = aead_authenc_setkey,
3364 .ivsize = DES_BLOCK_SIZE,
3365 .maxauthsize = SHA224_DIGEST_SIZE,
3366 },
3367 .cipher_info = {
3368 .alg = CIPHER_ALG_DES,
3369 .mode = CIPHER_MODE_CBC,
3370 },
3371 .auth_info = {
3372 .alg = HASH_ALG_SHA224,
3373 .mode = HASH_MODE_HMAC,
3374 },
3375 .auth_first = 0,
3376 },
3377 {
3378 .type = CRYPTO_ALG_TYPE_AEAD,
3379 .alg.aead = {
3380 .base = {
3381 .cra_name = "authenc(hmac(sha256),cbc(des))",
3382 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3383 .cra_blocksize = DES_BLOCK_SIZE,
3384 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3385 },
3386 .setkey = aead_authenc_setkey,
3387 .ivsize = DES_BLOCK_SIZE,
3388 .maxauthsize = SHA256_DIGEST_SIZE,
3389 },
3390 .cipher_info = {
3391 .alg = CIPHER_ALG_DES,
3392 .mode = CIPHER_MODE_CBC,
3393 },
3394 .auth_info = {
3395 .alg = HASH_ALG_SHA256,
3396 .mode = HASH_MODE_HMAC,
3397 },
3398 .auth_first = 0,
3399 },
3400 {
3401 .type = CRYPTO_ALG_TYPE_AEAD,
3402 .alg.aead = {
3403 .base = {
3404 .cra_name = "authenc(hmac(sha384),cbc(des))",
3405 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3406 .cra_blocksize = DES_BLOCK_SIZE,
3407 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3408 },
3409 .setkey = aead_authenc_setkey,
3410 .ivsize = DES_BLOCK_SIZE,
3411 .maxauthsize = SHA384_DIGEST_SIZE,
3412 },
3413 .cipher_info = {
3414 .alg = CIPHER_ALG_DES,
3415 .mode = CIPHER_MODE_CBC,
3416 },
3417 .auth_info = {
3418 .alg = HASH_ALG_SHA384,
3419 .mode = HASH_MODE_HMAC,
3420 },
3421 .auth_first = 0,
3422 },
3423 {
3424 .type = CRYPTO_ALG_TYPE_AEAD,
3425 .alg.aead = {
3426 .base = {
3427 .cra_name = "authenc(hmac(sha512),cbc(des))",
3428 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3429 .cra_blocksize = DES_BLOCK_SIZE,
3430 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3431 },
3432 .setkey = aead_authenc_setkey,
3433 .ivsize = DES_BLOCK_SIZE,
3434 .maxauthsize = SHA512_DIGEST_SIZE,
3435 },
3436 .cipher_info = {
3437 .alg = CIPHER_ALG_DES,
3438 .mode = CIPHER_MODE_CBC,
3439 },
3440 .auth_info = {
3441 .alg = HASH_ALG_SHA512,
3442 .mode = HASH_MODE_HMAC,
3443 },
3444 .auth_first = 0,
3445 },
3446 {
3447 .type = CRYPTO_ALG_TYPE_AEAD,
3448 .alg.aead = {
3449 .base = {
3450 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3451 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3452 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3453 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3454 },
3455 .setkey = aead_authenc_setkey,
3456 .ivsize = DES3_EDE_BLOCK_SIZE,
3457 .maxauthsize = MD5_DIGEST_SIZE,
3458 },
3459 .cipher_info = {
3460 .alg = CIPHER_ALG_3DES,
3461 .mode = CIPHER_MODE_CBC,
3462 },
3463 .auth_info = {
3464 .alg = HASH_ALG_MD5,
3465 .mode = HASH_MODE_HMAC,
3466 },
3467 .auth_first = 0,
3468 },
3469 {
3470 .type = CRYPTO_ALG_TYPE_AEAD,
3471 .alg.aead = {
3472 .base = {
3473 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3474 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3475 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3476 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3477 },
3478 .setkey = aead_authenc_setkey,
3479 .ivsize = DES3_EDE_BLOCK_SIZE,
3480 .maxauthsize = SHA1_DIGEST_SIZE,
3481 },
3482 .cipher_info = {
3483 .alg = CIPHER_ALG_3DES,
3484 .mode = CIPHER_MODE_CBC,
3485 },
3486 .auth_info = {
3487 .alg = HASH_ALG_SHA1,
3488 .mode = HASH_MODE_HMAC,
3489 },
3490 .auth_first = 0,
3491 },
3492 {
3493 .type = CRYPTO_ALG_TYPE_AEAD,
3494 .alg.aead = {
3495 .base = {
3496 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3497 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3498 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3499 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3500 },
3501 .setkey = aead_authenc_setkey,
3502 .ivsize = DES3_EDE_BLOCK_SIZE,
3503 .maxauthsize = SHA224_DIGEST_SIZE,
3504 },
3505 .cipher_info = {
3506 .alg = CIPHER_ALG_3DES,
3507 .mode = CIPHER_MODE_CBC,
3508 },
3509 .auth_info = {
3510 .alg = HASH_ALG_SHA224,
3511 .mode = HASH_MODE_HMAC,
3512 },
3513 .auth_first = 0,
3514 },
3515 {
3516 .type = CRYPTO_ALG_TYPE_AEAD,
3517 .alg.aead = {
3518 .base = {
3519 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3520 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3521 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3522 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3523 },
3524 .setkey = aead_authenc_setkey,
3525 .ivsize = DES3_EDE_BLOCK_SIZE,
3526 .maxauthsize = SHA256_DIGEST_SIZE,
3527 },
3528 .cipher_info = {
3529 .alg = CIPHER_ALG_3DES,
3530 .mode = CIPHER_MODE_CBC,
3531 },
3532 .auth_info = {
3533 .alg = HASH_ALG_SHA256,
3534 .mode = HASH_MODE_HMAC,
3535 },
3536 .auth_first = 0,
3537 },
3538 {
3539 .type = CRYPTO_ALG_TYPE_AEAD,
3540 .alg.aead = {
3541 .base = {
3542 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3543 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3544 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3545 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3546 },
3547 .setkey = aead_authenc_setkey,
3548 .ivsize = DES3_EDE_BLOCK_SIZE,
3549 .maxauthsize = SHA384_DIGEST_SIZE,
3550 },
3551 .cipher_info = {
3552 .alg = CIPHER_ALG_3DES,
3553 .mode = CIPHER_MODE_CBC,
3554 },
3555 .auth_info = {
3556 .alg = HASH_ALG_SHA384,
3557 .mode = HASH_MODE_HMAC,
3558 },
3559 .auth_first = 0,
3560 },
3561 {
3562 .type = CRYPTO_ALG_TYPE_AEAD,
3563 .alg.aead = {
3564 .base = {
3565 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3566 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3567 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3568 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3569 },
3570 .setkey = aead_authenc_setkey,
3571 .ivsize = DES3_EDE_BLOCK_SIZE,
3572 .maxauthsize = SHA512_DIGEST_SIZE,
3573 },
3574 .cipher_info = {
3575 .alg = CIPHER_ALG_3DES,
3576 .mode = CIPHER_MODE_CBC,
3577 },
3578 .auth_info = {
3579 .alg = HASH_ALG_SHA512,
3580 .mode = HASH_MODE_HMAC,
3581 },
3582 .auth_first = 0,
3583 },
3584
a9c01cd6 3585/* SKCIPHER algorithms. */
9d12ba86 3586 {
a9c01cd6
AB
3587 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3588 .alg.skcipher = {
3589 .base.cra_name = "ecb(arc4)",
3590 .base.cra_driver_name = "ecb-arc4-iproc",
3591 .base.cra_blocksize = ARC4_BLOCK_SIZE,
3592 .min_keysize = ARC4_MIN_KEY_SIZE,
3593 .max_keysize = ARC4_MAX_KEY_SIZE,
3594 .ivsize = 0,
9d12ba86
RR
3595 },
3596 .cipher_info = {
3597 .alg = CIPHER_ALG_RC4,
3598 .mode = CIPHER_MODE_NONE,
3599 },
3600 .auth_info = {
3601 .alg = HASH_ALG_NONE,
3602 .mode = HASH_MODE_NONE,
3603 },
3604 },
3605 {
a9c01cd6
AB
3606 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3607 .alg.skcipher = {
3608 .base.cra_name = "ofb(des)",
3609 .base.cra_driver_name = "ofb-des-iproc",
3610 .base.cra_blocksize = DES_BLOCK_SIZE,
3611 .min_keysize = DES_KEY_SIZE,
3612 .max_keysize = DES_KEY_SIZE,
3613 .ivsize = DES_BLOCK_SIZE,
9d12ba86
RR
3614 },
3615 .cipher_info = {
3616 .alg = CIPHER_ALG_DES,
3617 .mode = CIPHER_MODE_OFB,
3618 },
3619 .auth_info = {
3620 .alg = HASH_ALG_NONE,
3621 .mode = HASH_MODE_NONE,
3622 },
3623 },
3624 {
a9c01cd6
AB
3625 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3626 .alg.skcipher = {
3627 .base.cra_name = "cbc(des)",
3628 .base.cra_driver_name = "cbc-des-iproc",
3629 .base.cra_blocksize = DES_BLOCK_SIZE,
3630 .min_keysize = DES_KEY_SIZE,
3631 .max_keysize = DES_KEY_SIZE,
3632 .ivsize = DES_BLOCK_SIZE,
9d12ba86
RR
3633 },
3634 .cipher_info = {
3635 .alg = CIPHER_ALG_DES,
3636 .mode = CIPHER_MODE_CBC,
3637 },
3638 .auth_info = {
3639 .alg = HASH_ALG_NONE,
3640 .mode = HASH_MODE_NONE,
3641 },
3642 },
3643 {
a9c01cd6
AB
3644 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3645 .alg.skcipher = {
3646 .base.cra_name = "ecb(des)",
3647 .base.cra_driver_name = "ecb-des-iproc",
3648 .base.cra_blocksize = DES_BLOCK_SIZE,
3649 .min_keysize = DES_KEY_SIZE,
3650 .max_keysize = DES_KEY_SIZE,
3651 .ivsize = 0,
9d12ba86
RR
3652 },
3653 .cipher_info = {
3654 .alg = CIPHER_ALG_DES,
3655 .mode = CIPHER_MODE_ECB,
3656 },
3657 .auth_info = {
3658 .alg = HASH_ALG_NONE,
3659 .mode = HASH_MODE_NONE,
3660 },
3661 },
3662 {
a9c01cd6
AB
3663 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3664 .alg.skcipher = {
3665 .base.cra_name = "ofb(des3_ede)",
3666 .base.cra_driver_name = "ofb-des3-iproc",
3667 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3668 .min_keysize = DES3_EDE_KEY_SIZE,
3669 .max_keysize = DES3_EDE_KEY_SIZE,
3670 .ivsize = DES3_EDE_BLOCK_SIZE,
9d12ba86
RR
3671 },
3672 .cipher_info = {
3673 .alg = CIPHER_ALG_3DES,
3674 .mode = CIPHER_MODE_OFB,
3675 },
3676 .auth_info = {
3677 .alg = HASH_ALG_NONE,
3678 .mode = HASH_MODE_NONE,
3679 },
3680 },
3681 {
a9c01cd6
AB
3682 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3683 .alg.skcipher = {
3684 .base.cra_name = "cbc(des3_ede)",
3685 .base.cra_driver_name = "cbc-des3-iproc",
3686 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3687 .min_keysize = DES3_EDE_KEY_SIZE,
3688 .max_keysize = DES3_EDE_KEY_SIZE,
3689 .ivsize = DES3_EDE_BLOCK_SIZE,
9d12ba86
RR
3690 },
3691 .cipher_info = {
3692 .alg = CIPHER_ALG_3DES,
3693 .mode = CIPHER_MODE_CBC,
3694 },
3695 .auth_info = {
3696 .alg = HASH_ALG_NONE,
3697 .mode = HASH_MODE_NONE,
3698 },
3699 },
3700 {
a9c01cd6
AB
3701 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3702 .alg.skcipher = {
3703 .base.cra_name = "ecb(des3_ede)",
3704 .base.cra_driver_name = "ecb-des3-iproc",
3705 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3706 .min_keysize = DES3_EDE_KEY_SIZE,
3707 .max_keysize = DES3_EDE_KEY_SIZE,
3708 .ivsize = 0,
9d12ba86
RR
3709 },
3710 .cipher_info = {
3711 .alg = CIPHER_ALG_3DES,
3712 .mode = CIPHER_MODE_ECB,
3713 },
3714 .auth_info = {
3715 .alg = HASH_ALG_NONE,
3716 .mode = HASH_MODE_NONE,
3717 },
3718 },
3719 {
a9c01cd6
AB
3720 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3721 .alg.skcipher = {
3722 .base.cra_name = "ofb(aes)",
3723 .base.cra_driver_name = "ofb-aes-iproc",
3724 .base.cra_blocksize = AES_BLOCK_SIZE,
3725 .min_keysize = AES_MIN_KEY_SIZE,
3726 .max_keysize = AES_MAX_KEY_SIZE,
3727 .ivsize = AES_BLOCK_SIZE,
9d12ba86
RR
3728 },
3729 .cipher_info = {
3730 .alg = CIPHER_ALG_AES,
3731 .mode = CIPHER_MODE_OFB,
3732 },
3733 .auth_info = {
3734 .alg = HASH_ALG_NONE,
3735 .mode = HASH_MODE_NONE,
3736 },
3737 },
3738 {
a9c01cd6
AB
3739 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3740 .alg.skcipher = {
3741 .base.cra_name = "cbc(aes)",
3742 .base.cra_driver_name = "cbc-aes-iproc",
3743 .base.cra_blocksize = AES_BLOCK_SIZE,
3744 .min_keysize = AES_MIN_KEY_SIZE,
3745 .max_keysize = AES_MAX_KEY_SIZE,
3746 .ivsize = AES_BLOCK_SIZE,
9d12ba86
RR
3747 },
3748 .cipher_info = {
3749 .alg = CIPHER_ALG_AES,
3750 .mode = CIPHER_MODE_CBC,
3751 },
3752 .auth_info = {
3753 .alg = HASH_ALG_NONE,
3754 .mode = HASH_MODE_NONE,
3755 },
3756 },
3757 {
a9c01cd6
AB
3758 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3759 .alg.skcipher = {
3760 .base.cra_name = "ecb(aes)",
3761 .base.cra_driver_name = "ecb-aes-iproc",
3762 .base.cra_blocksize = AES_BLOCK_SIZE,
3763 .min_keysize = AES_MIN_KEY_SIZE,
3764 .max_keysize = AES_MAX_KEY_SIZE,
3765 .ivsize = 0,
9d12ba86
RR
3766 },
3767 .cipher_info = {
3768 .alg = CIPHER_ALG_AES,
3769 .mode = CIPHER_MODE_ECB,
3770 },
3771 .auth_info = {
3772 .alg = HASH_ALG_NONE,
3773 .mode = HASH_MODE_NONE,
3774 },
3775 },
3776 {
a9c01cd6
AB
3777 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3778 .alg.skcipher = {
3779 .base.cra_name = "ctr(aes)",
3780 .base.cra_driver_name = "ctr-aes-iproc",
3781 .base.cra_blocksize = AES_BLOCK_SIZE,
3782 .min_keysize = AES_MIN_KEY_SIZE,
3783 .max_keysize = AES_MAX_KEY_SIZE,
3784 .ivsize = AES_BLOCK_SIZE,
9d12ba86
RR
3785 },
3786 .cipher_info = {
3787 .alg = CIPHER_ALG_AES,
3788 .mode = CIPHER_MODE_CTR,
3789 },
3790 .auth_info = {
3791 .alg = HASH_ALG_NONE,
3792 .mode = HASH_MODE_NONE,
3793 },
3794 },
3795{
a9c01cd6
AB
3796 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3797 .alg.skcipher = {
3798 .base.cra_name = "xts(aes)",
3799 .base.cra_driver_name = "xts-aes-iproc",
3800 .base.cra_blocksize = AES_BLOCK_SIZE,
3801 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3802 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3803 .ivsize = AES_BLOCK_SIZE,
9d12ba86
RR
3804 },
3805 .cipher_info = {
3806 .alg = CIPHER_ALG_AES,
3807 .mode = CIPHER_MODE_XTS,
3808 },
3809 .auth_info = {
3810 .alg = HASH_ALG_NONE,
3811 .mode = HASH_MODE_NONE,
3812 },
3813 },
3814
3815/* AHASH algorithms. */
3816 {
3817 .type = CRYPTO_ALG_TYPE_AHASH,
3818 .alg.hash = {
3819 .halg.digestsize = MD5_DIGEST_SIZE,
3820 .halg.base = {
3821 .cra_name = "md5",
3822 .cra_driver_name = "md5-iproc",
3823 .cra_blocksize = MD5_BLOCK_WORDS * 4,
6a38f622 3824 .cra_flags = CRYPTO_ALG_ASYNC,
9d12ba86
RR
3825 }
3826 },
3827 .cipher_info = {
3828 .alg = CIPHER_ALG_NONE,
3829 .mode = CIPHER_MODE_NONE,
3830 },
3831 .auth_info = {
3832 .alg = HASH_ALG_MD5,
3833 .mode = HASH_MODE_HASH,
3834 },
3835 },
3836 {
3837 .type = CRYPTO_ALG_TYPE_AHASH,
3838 .alg.hash = {
3839 .halg.digestsize = MD5_DIGEST_SIZE,
3840 .halg.base = {
3841 .cra_name = "hmac(md5)",
3842 .cra_driver_name = "hmac-md5-iproc",
3843 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3844 }
3845 },
3846 .cipher_info = {
3847 .alg = CIPHER_ALG_NONE,
3848 .mode = CIPHER_MODE_NONE,
3849 },
3850 .auth_info = {
3851 .alg = HASH_ALG_MD5,
3852 .mode = HASH_MODE_HMAC,
3853 },
3854 },
3855 {.type = CRYPTO_ALG_TYPE_AHASH,
3856 .alg.hash = {
3857 .halg.digestsize = SHA1_DIGEST_SIZE,
3858 .halg.base = {
3859 .cra_name = "sha1",
3860 .cra_driver_name = "sha1-iproc",
3861 .cra_blocksize = SHA1_BLOCK_SIZE,
3862 }
3863 },
3864 .cipher_info = {
3865 .alg = CIPHER_ALG_NONE,
3866 .mode = CIPHER_MODE_NONE,
3867 },
3868 .auth_info = {
3869 .alg = HASH_ALG_SHA1,
3870 .mode = HASH_MODE_HASH,
3871 },
3872 },
3873 {.type = CRYPTO_ALG_TYPE_AHASH,
3874 .alg.hash = {
3875 .halg.digestsize = SHA1_DIGEST_SIZE,
3876 .halg.base = {
3877 .cra_name = "hmac(sha1)",
3878 .cra_driver_name = "hmac-sha1-iproc",
3879 .cra_blocksize = SHA1_BLOCK_SIZE,
3880 }
3881 },
3882 .cipher_info = {
3883 .alg = CIPHER_ALG_NONE,
3884 .mode = CIPHER_MODE_NONE,
3885 },
3886 .auth_info = {
3887 .alg = HASH_ALG_SHA1,
3888 .mode = HASH_MODE_HMAC,
3889 },
3890 },
3891 {.type = CRYPTO_ALG_TYPE_AHASH,
3892 .alg.hash = {
3893 .halg.digestsize = SHA224_DIGEST_SIZE,
3894 .halg.base = {
3895 .cra_name = "sha224",
3896 .cra_driver_name = "sha224-iproc",
3897 .cra_blocksize = SHA224_BLOCK_SIZE,
3898 }
3899 },
3900 .cipher_info = {
3901 .alg = CIPHER_ALG_NONE,
3902 .mode = CIPHER_MODE_NONE,
3903 },
3904 .auth_info = {
3905 .alg = HASH_ALG_SHA224,
3906 .mode = HASH_MODE_HASH,
3907 },
3908 },
3909 {.type = CRYPTO_ALG_TYPE_AHASH,
3910 .alg.hash = {
3911 .halg.digestsize = SHA224_DIGEST_SIZE,
3912 .halg.base = {
3913 .cra_name = "hmac(sha224)",
3914 .cra_driver_name = "hmac-sha224-iproc",
3915 .cra_blocksize = SHA224_BLOCK_SIZE,
3916 }
3917 },
3918 .cipher_info = {
3919 .alg = CIPHER_ALG_NONE,
3920 .mode = CIPHER_MODE_NONE,
3921 },
3922 .auth_info = {
3923 .alg = HASH_ALG_SHA224,
3924 .mode = HASH_MODE_HMAC,
3925 },
3926 },
3927 {.type = CRYPTO_ALG_TYPE_AHASH,
3928 .alg.hash = {
3929 .halg.digestsize = SHA256_DIGEST_SIZE,
3930 .halg.base = {
3931 .cra_name = "sha256",
3932 .cra_driver_name = "sha256-iproc",
3933 .cra_blocksize = SHA256_BLOCK_SIZE,
3934 }
3935 },
3936 .cipher_info = {
3937 .alg = CIPHER_ALG_NONE,
3938 .mode = CIPHER_MODE_NONE,
3939 },
3940 .auth_info = {
3941 .alg = HASH_ALG_SHA256,
3942 .mode = HASH_MODE_HASH,
3943 },
3944 },
3945 {.type = CRYPTO_ALG_TYPE_AHASH,
3946 .alg.hash = {
3947 .halg.digestsize = SHA256_DIGEST_SIZE,
3948 .halg.base = {
3949 .cra_name = "hmac(sha256)",
3950 .cra_driver_name = "hmac-sha256-iproc",
3951 .cra_blocksize = SHA256_BLOCK_SIZE,
3952 }
3953 },
3954 .cipher_info = {
3955 .alg = CIPHER_ALG_NONE,
3956 .mode = CIPHER_MODE_NONE,
3957 },
3958 .auth_info = {
3959 .alg = HASH_ALG_SHA256,
3960 .mode = HASH_MODE_HMAC,
3961 },
3962 },
3963 {
3964 .type = CRYPTO_ALG_TYPE_AHASH,
3965 .alg.hash = {
3966 .halg.digestsize = SHA384_DIGEST_SIZE,
3967 .halg.base = {
3968 .cra_name = "sha384",
3969 .cra_driver_name = "sha384-iproc",
3970 .cra_blocksize = SHA384_BLOCK_SIZE,
3971 }
3972 },
3973 .cipher_info = {
3974 .alg = CIPHER_ALG_NONE,
3975 .mode = CIPHER_MODE_NONE,
3976 },
3977 .auth_info = {
3978 .alg = HASH_ALG_SHA384,
3979 .mode = HASH_MODE_HASH,
3980 },
3981 },
3982 {
3983 .type = CRYPTO_ALG_TYPE_AHASH,
3984 .alg.hash = {
3985 .halg.digestsize = SHA384_DIGEST_SIZE,
3986 .halg.base = {
3987 .cra_name = "hmac(sha384)",
3988 .cra_driver_name = "hmac-sha384-iproc",
3989 .cra_blocksize = SHA384_BLOCK_SIZE,
3990 }
3991 },
3992 .cipher_info = {
3993 .alg = CIPHER_ALG_NONE,
3994 .mode = CIPHER_MODE_NONE,
3995 },
3996 .auth_info = {
3997 .alg = HASH_ALG_SHA384,
3998 .mode = HASH_MODE_HMAC,
3999 },
4000 },
4001 {
4002 .type = CRYPTO_ALG_TYPE_AHASH,
4003 .alg.hash = {
4004 .halg.digestsize = SHA512_DIGEST_SIZE,
4005 .halg.base = {
4006 .cra_name = "sha512",
4007 .cra_driver_name = "sha512-iproc",
4008 .cra_blocksize = SHA512_BLOCK_SIZE,
4009 }
4010 },
4011 .cipher_info = {
4012 .alg = CIPHER_ALG_NONE,
4013 .mode = CIPHER_MODE_NONE,
4014 },
4015 .auth_info = {
4016 .alg = HASH_ALG_SHA512,
4017 .mode = HASH_MODE_HASH,
4018 },
4019 },
4020 {
4021 .type = CRYPTO_ALG_TYPE_AHASH,
4022 .alg.hash = {
4023 .halg.digestsize = SHA512_DIGEST_SIZE,
4024 .halg.base = {
4025 .cra_name = "hmac(sha512)",
4026 .cra_driver_name = "hmac-sha512-iproc",
4027 .cra_blocksize = SHA512_BLOCK_SIZE,
4028 }
4029 },
4030 .cipher_info = {
4031 .alg = CIPHER_ALG_NONE,
4032 .mode = CIPHER_MODE_NONE,
4033 },
4034 .auth_info = {
4035 .alg = HASH_ALG_SHA512,
4036 .mode = HASH_MODE_HMAC,
4037 },
4038 },
4039 {
4040 .type = CRYPTO_ALG_TYPE_AHASH,
4041 .alg.hash = {
4042 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4043 .halg.base = {
4044 .cra_name = "sha3-224",
4045 .cra_driver_name = "sha3-224-iproc",
4046 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4047 }
4048 },
4049 .cipher_info = {
4050 .alg = CIPHER_ALG_NONE,
4051 .mode = CIPHER_MODE_NONE,
4052 },
4053 .auth_info = {
4054 .alg = HASH_ALG_SHA3_224,
4055 .mode = HASH_MODE_HASH,
4056 },
4057 },
4058 {
4059 .type = CRYPTO_ALG_TYPE_AHASH,
4060 .alg.hash = {
4061 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4062 .halg.base = {
4063 .cra_name = "hmac(sha3-224)",
4064 .cra_driver_name = "hmac-sha3-224-iproc",
4065 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4066 }
4067 },
4068 .cipher_info = {
4069 .alg = CIPHER_ALG_NONE,
4070 .mode = CIPHER_MODE_NONE,
4071 },
4072 .auth_info = {
4073 .alg = HASH_ALG_SHA3_224,
4074 .mode = HASH_MODE_HMAC
4075 },
4076 },
4077 {
4078 .type = CRYPTO_ALG_TYPE_AHASH,
4079 .alg.hash = {
4080 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4081 .halg.base = {
4082 .cra_name = "sha3-256",
4083 .cra_driver_name = "sha3-256-iproc",
4084 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4085 }
4086 },
4087 .cipher_info = {
4088 .alg = CIPHER_ALG_NONE,
4089 .mode = CIPHER_MODE_NONE,
4090 },
4091 .auth_info = {
4092 .alg = HASH_ALG_SHA3_256,
4093 .mode = HASH_MODE_HASH,
4094 },
4095 },
4096 {
4097 .type = CRYPTO_ALG_TYPE_AHASH,
4098 .alg.hash = {
4099 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4100 .halg.base = {
4101 .cra_name = "hmac(sha3-256)",
4102 .cra_driver_name = "hmac-sha3-256-iproc",
4103 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4104 }
4105 },
4106 .cipher_info = {
4107 .alg = CIPHER_ALG_NONE,
4108 .mode = CIPHER_MODE_NONE,
4109 },
4110 .auth_info = {
4111 .alg = HASH_ALG_SHA3_256,
4112 .mode = HASH_MODE_HMAC,
4113 },
4114 },
4115 {
4116 .type = CRYPTO_ALG_TYPE_AHASH,
4117 .alg.hash = {
4118 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4119 .halg.base = {
4120 .cra_name = "sha3-384",
4121 .cra_driver_name = "sha3-384-iproc",
4122 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4123 }
4124 },
4125 .cipher_info = {
4126 .alg = CIPHER_ALG_NONE,
4127 .mode = CIPHER_MODE_NONE,
4128 },
4129 .auth_info = {
4130 .alg = HASH_ALG_SHA3_384,
4131 .mode = HASH_MODE_HASH,
4132 },
4133 },
4134 {
4135 .type = CRYPTO_ALG_TYPE_AHASH,
4136 .alg.hash = {
4137 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4138 .halg.base = {
4139 .cra_name = "hmac(sha3-384)",
4140 .cra_driver_name = "hmac-sha3-384-iproc",
4141 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4142 }
4143 },
4144 .cipher_info = {
4145 .alg = CIPHER_ALG_NONE,
4146 .mode = CIPHER_MODE_NONE,
4147 },
4148 .auth_info = {
4149 .alg = HASH_ALG_SHA3_384,
4150 .mode = HASH_MODE_HMAC,
4151 },
4152 },
4153 {
4154 .type = CRYPTO_ALG_TYPE_AHASH,
4155 .alg.hash = {
4156 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4157 .halg.base = {
4158 .cra_name = "sha3-512",
4159 .cra_driver_name = "sha3-512-iproc",
4160 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4161 }
4162 },
4163 .cipher_info = {
4164 .alg = CIPHER_ALG_NONE,
4165 .mode = CIPHER_MODE_NONE,
4166 },
4167 .auth_info = {
4168 .alg = HASH_ALG_SHA3_512,
4169 .mode = HASH_MODE_HASH,
4170 },
4171 },
4172 {
4173 .type = CRYPTO_ALG_TYPE_AHASH,
4174 .alg.hash = {
4175 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4176 .halg.base = {
4177 .cra_name = "hmac(sha3-512)",
4178 .cra_driver_name = "hmac-sha3-512-iproc",
4179 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4180 }
4181 },
4182 .cipher_info = {
4183 .alg = CIPHER_ALG_NONE,
4184 .mode = CIPHER_MODE_NONE,
4185 },
4186 .auth_info = {
4187 .alg = HASH_ALG_SHA3_512,
4188 .mode = HASH_MODE_HMAC,
4189 },
4190 },
4191 {
4192 .type = CRYPTO_ALG_TYPE_AHASH,
4193 .alg.hash = {
4194 .halg.digestsize = AES_BLOCK_SIZE,
4195 .halg.base = {
4196 .cra_name = "xcbc(aes)",
4197 .cra_driver_name = "xcbc-aes-iproc",
4198 .cra_blocksize = AES_BLOCK_SIZE,
4199 }
4200 },
4201 .cipher_info = {
4202 .alg = CIPHER_ALG_NONE,
4203 .mode = CIPHER_MODE_NONE,
4204 },
4205 .auth_info = {
4206 .alg = HASH_ALG_AES,
4207 .mode = HASH_MODE_XCBC,
4208 },
4209 },
4210 {
4211 .type = CRYPTO_ALG_TYPE_AHASH,
4212 .alg.hash = {
4213 .halg.digestsize = AES_BLOCK_SIZE,
4214 .halg.base = {
4215 .cra_name = "cmac(aes)",
4216 .cra_driver_name = "cmac-aes-iproc",
4217 .cra_blocksize = AES_BLOCK_SIZE,
4218 }
4219 },
4220 .cipher_info = {
4221 .alg = CIPHER_ALG_NONE,
4222 .mode = CIPHER_MODE_NONE,
4223 },
4224 .auth_info = {
4225 .alg = HASH_ALG_AES,
4226 .mode = HASH_MODE_CMAC,
4227 },
4228 },
4229};
4230
4231static int generic_cra_init(struct crypto_tfm *tfm,
4232 struct iproc_alg_s *cipher_alg)
4233{
4234 struct spu_hw *spu = &iproc_priv.spu;
4235 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4236 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4237
4238 flow_log("%s()\n", __func__);
4239
4240 ctx->alg = cipher_alg;
4241 ctx->cipher = cipher_alg->cipher_info;
4242 ctx->auth = cipher_alg->auth_info;
4243 ctx->auth_first = cipher_alg->auth_first;
4244 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4245 ctx->cipher.mode,
4246 blocksize);
4247 ctx->fallback_cipher = NULL;
4248
4249 ctx->enckeylen = 0;
4250 ctx->authkeylen = 0;
4251
4252 atomic_inc(&iproc_priv.stream_count);
4253 atomic_inc(&iproc_priv.session_count);
4254
4255 return 0;
4256}
4257
a9c01cd6 4258static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
9d12ba86 4259{
a9c01cd6
AB
4260 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4261 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
9d12ba86
RR
4262 struct iproc_alg_s *cipher_alg;
4263
4264 flow_log("%s()\n", __func__);
4265
a9c01cd6 4266 crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
9d12ba86 4267
a9c01cd6 4268 cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
9d12ba86
RR
4269 return generic_cra_init(tfm, cipher_alg);
4270}
4271
4272static int ahash_cra_init(struct crypto_tfm *tfm)
4273{
4274 int err;
4275 struct crypto_alg *alg = tfm->__crt_alg;
4276 struct iproc_alg_s *cipher_alg;
4277
4278 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4279 alg.hash);
4280
4281 err = generic_cra_init(tfm, cipher_alg);
4282 flow_log("%s()\n", __func__);
4283
4284 /*
4285 * export state size has to be < 512 bytes. So don't include msg bufs
4286 * in state size.
4287 */
4288 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4289 sizeof(struct iproc_reqctx_s));
4290
4291 return err;
4292}
4293
4294static int aead_cra_init(struct crypto_aead *aead)
4295{
4296 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4297 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4298 struct crypto_alg *alg = tfm->__crt_alg;
4299 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4300 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4301 alg.aead);
4302
4303 int err = generic_cra_init(tfm, cipher_alg);
4304
4305 flow_log("%s()\n", __func__);
4306
4307 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4308 ctx->is_esp = false;
4309 ctx->salt_len = 0;
4310 ctx->salt_offset = 0;
4311
4312 /* random first IV */
4313 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4314 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4315
4316 if (!err) {
4317 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4318 flow_log("%s() creating fallback cipher\n", __func__);
4319
4320 ctx->fallback_cipher =
4321 crypto_alloc_aead(alg->cra_name, 0,
4322 CRYPTO_ALG_ASYNC |
4323 CRYPTO_ALG_NEED_FALLBACK);
4324 if (IS_ERR(ctx->fallback_cipher)) {
4325 pr_err("%s() Error: failed to allocate fallback for %s\n",
4326 __func__, alg->cra_name);
4327 return PTR_ERR(ctx->fallback_cipher);
4328 }
4329 }
4330 }
4331
4332 return err;
4333}
4334
4335static void generic_cra_exit(struct crypto_tfm *tfm)
4336{
4337 atomic_dec(&iproc_priv.session_count);
4338}
4339
a9c01cd6
AB
4340static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4341{
4342 generic_cra_exit(crypto_skcipher_tfm(tfm));
4343}
4344
9d12ba86
RR
4345static void aead_cra_exit(struct crypto_aead *aead)
4346{
4347 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4348 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4349
4350 generic_cra_exit(tfm);
4351
4352 if (ctx->fallback_cipher) {
4353 crypto_free_aead(ctx->fallback_cipher);
4354 ctx->fallback_cipher = NULL;
4355 }
4356}
4357
4358/**
4359 * spu_functions_register() - Specify hardware-specific SPU functions based on
4360 * SPU type read from device tree.
4361 * @dev: device structure
4362 * @spu_type: SPU hardware generation
4363 * @spu_subtype: SPU hardware version
4364 */
4365static void spu_functions_register(struct device *dev,
4366 enum spu_spu_type spu_type,
4367 enum spu_spu_subtype spu_subtype)
4368{
4369 struct spu_hw *spu = &iproc_priv.spu;
4370
4371 if (spu_type == SPU_TYPE_SPUM) {
4372 dev_dbg(dev, "Registering SPUM functions");
4373 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4374 spu->spu_payload_length = spum_payload_length;
4375 spu->spu_response_hdr_len = spum_response_hdr_len;
4376 spu->spu_hash_pad_len = spum_hash_pad_len;
4377 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4378 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4379 spu->spu_aead_ivlen = spum_aead_ivlen;
4380 spu->spu_hash_type = spum_hash_type;
4381 spu->spu_digest_size = spum_digest_size;
4382 spu->spu_create_request = spum_create_request;
4383 spu->spu_cipher_req_init = spum_cipher_req_init;
4384 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4385 spu->spu_request_pad = spum_request_pad;
4386 spu->spu_tx_status_len = spum_tx_status_len;
4387 spu->spu_rx_status_len = spum_rx_status_len;
4388 spu->spu_status_process = spum_status_process;
4389 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4390 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4391 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4392 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4393 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4394 else
4395 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4396 } else {
4397 dev_dbg(dev, "Registering SPU2 functions");
4398 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4399 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4400 spu->spu_payload_length = spu2_payload_length;
4401 spu->spu_response_hdr_len = spu2_response_hdr_len;
4402 spu->spu_hash_pad_len = spu2_hash_pad_len;
4403 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4404 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4405 spu->spu_aead_ivlen = spu2_aead_ivlen;
4406 spu->spu_hash_type = spu2_hash_type;
4407 spu->spu_digest_size = spu2_digest_size;
4408 spu->spu_create_request = spu2_create_request;
4409 spu->spu_cipher_req_init = spu2_cipher_req_init;
4410 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4411 spu->spu_request_pad = spu2_request_pad;
4412 spu->spu_tx_status_len = spu2_tx_status_len;
4413 spu->spu_rx_status_len = spu2_rx_status_len;
4414 spu->spu_status_process = spu2_status_process;
4415 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4416 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4417 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4418 }
4419}
4420
4421/**
4422 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4423 * channel for the SPU being probed.
4424 * @dev: SPU driver device structure
4425 *
4426 * Return: 0 if successful
4427 * < 0 otherwise
4428 */
4429static int spu_mb_init(struct device *dev)
4430{
9166c443 4431 struct mbox_client *mcl = &iproc_priv.mcl;
4432 int err, i;
4433
4434 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4435 sizeof(struct mbox_chan *), GFP_KERNEL);
4436 if (!iproc_priv.mbox)
4437 return -ENOMEM;
9d12ba86
RR
4438
4439 mcl->dev = dev;
4440 mcl->tx_block = false;
4441 mcl->tx_tout = 0;
f0e2ce58 4442 mcl->knows_txdone = true;
9d12ba86
RR
4443 mcl->rx_callback = spu_rx_callback;
4444 mcl->tx_done = NULL;
4445
9166c443 4446 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4447 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4448 if (IS_ERR(iproc_priv.mbox[i])) {
4449 err = (int)PTR_ERR(iproc_priv.mbox[i]);
4450 dev_err(dev,
4451 "Mbox channel %d request failed with err %d",
4452 i, err);
4453 iproc_priv.mbox[i] = NULL;
4454 goto free_channels;
4455 }
9d12ba86
RR
4456 }
4457
4458 return 0;
9166c443 4459free_channels:
4460 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4461 if (iproc_priv.mbox[i])
4462 mbox_free_channel(iproc_priv.mbox[i]);
4463 }
4464
4465 return err;
9d12ba86
RR
4466}
4467
4468static void spu_mb_release(struct platform_device *pdev)
4469{
4470 int i;
4471
9166c443 4472 for (i = 0; i < iproc_priv.spu.num_chan; i++)
9d12ba86
RR
4473 mbox_free_channel(iproc_priv.mbox[i]);
4474}
4475
4476static void spu_counters_init(void)
4477{
4478 int i;
4479 int j;
4480
4481 atomic_set(&iproc_priv.session_count, 0);
4482 atomic_set(&iproc_priv.stream_count, 0);
9166c443 4483 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
9d12ba86
RR
4484 atomic64_set(&iproc_priv.bytes_in, 0);
4485 atomic64_set(&iproc_priv.bytes_out, 0);
4486 for (i = 0; i < SPU_OP_NUM; i++) {
4487 atomic_set(&iproc_priv.op_counts[i], 0);
4488 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4489 }
4490 for (i = 0; i < CIPHER_ALG_LAST; i++)
4491 for (j = 0; j < CIPHER_MODE_LAST; j++)
4492 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4493
4494 for (i = 0; i < HASH_ALG_LAST; i++) {
4495 atomic_set(&iproc_priv.hash_cnt[i], 0);
4496 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4497 }
4498 for (i = 0; i < AEAD_TYPE_LAST; i++)
4499 atomic_set(&iproc_priv.aead_cnt[i], 0);
4500
4501 atomic_set(&iproc_priv.mb_no_spc, 0);
4502 atomic_set(&iproc_priv.mb_send_fail, 0);
4503 atomic_set(&iproc_priv.bad_icv, 0);
4504}
4505
a9c01cd6 4506static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
9d12ba86
RR
4507{
4508 struct spu_hw *spu = &iproc_priv.spu;
a9c01cd6 4509 struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
9d12ba86
RR
4510 int err;
4511
4512 /* SPU2 does not support RC4 */
4513 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4514 (spu->spu_type == SPU_TYPE_SPU2))
4515 return 0;
4516
a9c01cd6
AB
4517 crypto->base.cra_module = THIS_MODULE;
4518 crypto->base.cra_priority = cipher_pri;
4519 crypto->base.cra_alignmask = 0;
4520 crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4521 crypto->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
9d12ba86 4522
a9c01cd6
AB
4523 crypto->init = skcipher_init_tfm;
4524 crypto->exit = skcipher_exit_tfm;
4525 crypto->setkey = skcipher_setkey;
4526 crypto->encrypt = skcipher_encrypt;
4527 crypto->decrypt = skcipher_decrypt;
9d12ba86 4528
a9c01cd6 4529 err = crypto_register_skcipher(crypto);
9d12ba86
RR
4530 /* Mark alg as having been registered, if successful */
4531 if (err == 0)
4532 driver_alg->registered = true;
a9c01cd6 4533 pr_debug(" registered skcipher %s\n", crypto->base.cra_driver_name);
9d12ba86
RR
4534 return err;
4535}
4536
4537static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4538{
4539 struct spu_hw *spu = &iproc_priv.spu;
4540 struct ahash_alg *hash = &driver_alg->alg.hash;
4541 int err;
4542
4543 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4544 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4545 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4546 (spu->spu_type == SPU_TYPE_SPUM))
4547 return 0;
4548
4549 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4550 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4551 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4552 return 0;
4553
4554 hash->halg.base.cra_module = THIS_MODULE;
4555 hash->halg.base.cra_priority = hash_pri;
4556 hash->halg.base.cra_alignmask = 0;
4557 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4558 hash->halg.base.cra_init = ahash_cra_init;
4559 hash->halg.base.cra_exit = generic_cra_exit;
6a38f622 4560 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
9d12ba86
RR
4561 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4562
4563 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
9d12ba86
RR
4564 hash->init = ahash_init;
4565 hash->update = ahash_update;
4566 hash->final = ahash_final;
4567 hash->finup = ahash_finup;
4568 hash->digest = ahash_digest;
4f0129d1
RP
4569 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4570 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4571 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4572 hash->setkey = ahash_setkey;
4573 }
9d12ba86
RR
4574 } else {
4575 hash->setkey = ahash_hmac_setkey;
4576 hash->init = ahash_hmac_init;
4577 hash->update = ahash_hmac_update;
4578 hash->final = ahash_hmac_final;
4579 hash->finup = ahash_hmac_finup;
4580 hash->digest = ahash_hmac_digest;
4581 }
4582 hash->export = ahash_export;
4583 hash->import = ahash_import;
4584
4585 err = crypto_register_ahash(hash);
4586 /* Mark alg as having been registered, if successful */
4587 if (err == 0)
4588 driver_alg->registered = true;
4589 pr_debug(" registered ahash %s\n",
4590 hash->halg.base.cra_driver_name);
4591 return err;
4592}
4593
4594static int spu_register_aead(struct iproc_alg_s *driver_alg)
4595{
4596 struct aead_alg *aead = &driver_alg->alg.aead;
4597 int err;
4598
4599 aead->base.cra_module = THIS_MODULE;
4600 aead->base.cra_priority = aead_pri;
4601 aead->base.cra_alignmask = 0;
4602 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
9d12ba86 4603
3f4a537a 4604 aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
9d12ba86
RR
4605 /* setkey set in alg initialization */
4606 aead->setauthsize = aead_setauthsize;
4607 aead->encrypt = aead_encrypt;
4608 aead->decrypt = aead_decrypt;
4609 aead->init = aead_cra_init;
4610 aead->exit = aead_cra_exit;
4611
4612 err = crypto_register_aead(aead);
4613 /* Mark alg as having been registered, if successful */
4614 if (err == 0)
4615 driver_alg->registered = true;
4616 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4617 return err;
4618}
4619
4620/* register crypto algorithms the device supports */
4621static int spu_algs_register(struct device *dev)
4622{
4623 int i, j;
4624 int err;
4625
4626 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4627 switch (driver_algs[i].type) {
a9c01cd6
AB
4628 case CRYPTO_ALG_TYPE_SKCIPHER:
4629 err = spu_register_skcipher(&driver_algs[i]);
9d12ba86
RR
4630 break;
4631 case CRYPTO_ALG_TYPE_AHASH:
4632 err = spu_register_ahash(&driver_algs[i]);
4633 break;
4634 case CRYPTO_ALG_TYPE_AEAD:
4635 err = spu_register_aead(&driver_algs[i]);
4636 break;
4637 default:
4638 dev_err(dev,
4639 "iproc-crypto: unknown alg type: %d",
4640 driver_algs[i].type);
4641 err = -EINVAL;
4642 }
4643
4644 if (err) {
4645 dev_err(dev, "alg registration failed with error %d\n",
4646 err);
4647 goto err_algs;
4648 }
4649 }
4650
4651 return 0;
4652
4653err_algs:
4654 for (j = 0; j < i; j++) {
4655 /* Skip any algorithm not registered */
4656 if (!driver_algs[j].registered)
4657 continue;
4658 switch (driver_algs[j].type) {
a9c01cd6
AB
4659 case CRYPTO_ALG_TYPE_SKCIPHER:
4660 crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
9d12ba86
RR
4661 driver_algs[j].registered = false;
4662 break;
4663 case CRYPTO_ALG_TYPE_AHASH:
4664 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4665 driver_algs[j].registered = false;
4666 break;
4667 case CRYPTO_ALG_TYPE_AEAD:
4668 crypto_unregister_aead(&driver_algs[j].alg.aead);
4669 driver_algs[j].registered = false;
4670 break;
4671 }
4672 }
4673 return err;
4674}
4675
4676/* ==================== Kernel Platform API ==================== */
4677
4678static struct spu_type_subtype spum_ns2_types = {
4679 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4680};
4681
4682static struct spu_type_subtype spum_nsp_types = {
4683 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4684};
4685
4686static struct spu_type_subtype spu2_types = {
4687 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4688};
4689
4690static struct spu_type_subtype spu2_v2_types = {
4691 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4692};
4693
4694static const struct of_device_id bcm_spu_dt_ids[] = {
4695 {
4696 .compatible = "brcm,spum-crypto",
4697 .data = &spum_ns2_types,
4698 },
4699 {
4700 .compatible = "brcm,spum-nsp-crypto",
4701 .data = &spum_nsp_types,
4702 },
4703 {
4704 .compatible = "brcm,spu2-crypto",
4705 .data = &spu2_types,
4706 },
4707 {
4708 .compatible = "brcm,spu2-v2-crypto",
4709 .data = &spu2_v2_types,
4710 },
4711 { /* sentinel */ }
4712};
4713
4714MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4715
4716static int spu_dt_read(struct platform_device *pdev)
4717{
4718 struct device *dev = &pdev->dev;
4719 struct spu_hw *spu = &iproc_priv.spu;
4720 struct resource *spu_ctrl_regs;
9d12ba86 4721 const struct spu_type_subtype *matched_spu_type;
9166c443 4722 struct device_node *dn = pdev->dev.of_node;
4723 int err, i;
4724
4725 /* Count number of mailbox channels */
4726 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
9d12ba86 4727
d9fa482e
CL
4728 matched_spu_type = of_device_get_match_data(dev);
4729 if (!matched_spu_type) {
c6090480
GS
4730 dev_err(&pdev->dev, "Failed to match device\n");
4731 return -ENODEV;
4732 }
4733
9166c443 4734 spu->spu_type = matched_spu_type->type;
4735 spu->spu_subtype = matched_spu_type->subtype;
9d12ba86 4736
9166c443 4737 i = 0;
4738 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4739 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
9d12ba86 4740
9166c443 4741 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4742 if (IS_ERR(spu->reg_vbase[i])) {
4743 err = PTR_ERR(spu->reg_vbase[i]);
4744 dev_err(&pdev->dev, "Failed to map registers: %d\n",
4745 err);
4746 spu->reg_vbase[i] = NULL;
4747 return err;
4748 }
9d12ba86 4749 }
9166c443 4750 spu->num_spu = i;
4751 dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
9d12ba86
RR
4752
4753 return 0;
4754}
4755
dd508618 4756static int bcm_spu_probe(struct platform_device *pdev)
9d12ba86
RR
4757{
4758 struct device *dev = &pdev->dev;
4759 struct spu_hw *spu = &iproc_priv.spu;
4760 int err = 0;
4761
9166c443 4762 iproc_priv.pdev = pdev;
4763 platform_set_drvdata(iproc_priv.pdev,
9d12ba86
RR
4764 &iproc_priv);
4765
4766 err = spu_dt_read(pdev);
4767 if (err < 0)
4768 goto failure;
4769
4770 err = spu_mb_init(&pdev->dev);
4771 if (err < 0)
4772 goto failure;
4773
9d12ba86
RR
4774 if (spu->spu_type == SPU_TYPE_SPUM)
4775 iproc_priv.bcm_hdr_len = 8;
4776 else if (spu->spu_type == SPU_TYPE_SPU2)
4777 iproc_priv.bcm_hdr_len = 0;
4778
4779 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4780
4781 spu_counters_init();
4782
4783 spu_setup_debugfs();
4784
4785 err = spu_algs_register(dev);
4786 if (err < 0)
4787 goto fail_reg;
4788
9d12ba86
RR
4789 return 0;
4790
4791fail_reg:
4792 spu_free_debugfs();
4793failure:
4794 spu_mb_release(pdev);
4795 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4796
4797 return err;
4798}
4799
dd508618 4800static int bcm_spu_remove(struct platform_device *pdev)
9d12ba86
RR
4801{
4802 int i;
4803 struct device *dev = &pdev->dev;
4804 char *cdn;
4805
4806 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4807 /*
4808 * Not all algorithms were registered, depending on whether
4809 * hardware is SPU or SPU2. So here we make sure to skip
4810 * those algorithms that were not previously registered.
4811 */
4812 if (!driver_algs[i].registered)
4813 continue;
4814
4815 switch (driver_algs[i].type) {
a9c01cd6
AB
4816 case CRYPTO_ALG_TYPE_SKCIPHER:
4817 crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
9d12ba86 4818 dev_dbg(dev, " unregistered cipher %s\n",
a9c01cd6 4819 driver_algs[i].alg.skcipher.base.cra_driver_name);
9d12ba86
RR
4820 driver_algs[i].registered = false;
4821 break;
4822 case CRYPTO_ALG_TYPE_AHASH:
4823 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4824 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4825 dev_dbg(dev, " unregistered hash %s\n", cdn);
4826 driver_algs[i].registered = false;
4827 break;
4828 case CRYPTO_ALG_TYPE_AEAD:
4829 crypto_unregister_aead(&driver_algs[i].alg.aead);
4830 dev_dbg(dev, " unregistered aead %s\n",
4831 driver_algs[i].alg.aead.base.cra_driver_name);
4832 driver_algs[i].registered = false;
4833 break;
4834 }
4835 }
4836 spu_free_debugfs();
4837 spu_mb_release(pdev);
4838 return 0;
4839}
4840
4841/* ===== Kernel Module API ===== */
4842
4843static struct platform_driver bcm_spu_pdriver = {
4844 .driver = {
4845 .name = "brcm-spu-crypto",
4846 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4847 },
4848 .probe = bcm_spu_probe,
4849 .remove = bcm_spu_remove,
4850};
4851module_platform_driver(bcm_spu_pdriver);
4852
4853MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4854MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4855MODULE_LICENSE("GPL v2");